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Abstract

We provide a methodology for testing a polynomial model hypothesis by extending the approach and

results of Baek, Cho, and Phillips (2015; BCP) that tests for neglected nonlinearity using power trans-

forms of regressors against arbitrary nonlinearity. We examine and generalize the BCP quasi-likelihood

ratio test dealing with the multifold identification problem that arises under the null of the polynomial

model. The approach leads to convenient asymptotic theory for inference, has omnibus power against

general nonlinear alternatives, and allows estimation of an unknown polynomial degree in a model by

way of sequential testing, a technique that is useful in the application of sieve approximations. Simu-

lations show good performance in the sequential test procedure in identifying and estimating unknown

polynomial order. The approach, which can be used empirically to test for misspecification, is applied

to a Mincer (1958, 1974) equation using data from Card (1995). The results confirm that Mincer’s log

earnings equation is easily shown to be misspecified by including nonlinear effects of experience and

schooling on earnings, with some flexibility required in the respective polynomial degrees.
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1 Introduction

Polynomial models are popularly used in empirical work to address departures from linearity. When linear

model assumptions are violated in the data or suspected of violation, polynomial specifications are often

introducted to detect and cope with unknown forms of neglected nonlinearity. Quadratic, cubic, quartic,

and even higher degree polynomial models are flexible, easy to estimate using least squares, and may be

justified in terms of sieve approximation techniques in the context of general nonparametric formulations of

nonlinearity.

Nevertheless, the validity of a polynomial model is often verified in only a limited fashion. For any

pre-specified polynomial model, its given degree may be insufficient to detect nonlinearity in the data or it

may be redundantly too high. Test statistics that are available in the literature do not tell the researcher the

degree of nonlinearity to be included in the model without iterative testing when they reject the specified

polynomial model.

The present paper makes a twofold contribution. First, we provide a methodology for testing a poly-

nomial model hypothesis and detecting whether there is further neglected nonlinearity in the model. The

approach adopted extends recent work of Baek, Cho, and Phillips (2015, BCP henceforth) for testing arbi-

trary nonlinearity using power transforms of regressors. The methodology is a convenient way of delivering

an omnibus test for neglected nonlinearity by simple augmented regression. Second, we exploit the flexible

feature of power transforms by estimating polynomial degree in a manner that assists in specifying a par-

simonious polynomial model. For this purpose, we sequentially test the polynomial model hypothesis by

increasing the polynomial degree and controlling the overall type-I error in the sequential testing procedure.

The approach has a natural application in sieve nonparametric estimation for determining the dimension of

a suitable sieve space.

Power transforms of regressors have been popular in the literature since Tukey’s (1957, 1977) sugges-

tion of the power transform as a mechanism to link the log linear model to the linear model. Box and Cox

(1964) further developed the theory, leading to the so-called Box-Cox transform which elegantly corrobo-

rates Tukey’s (1957, 1977) ladder formula showing the log transform as a limit form as the power exponent

converges to zero. BCP used an augmented form of the Box-Cox transform in constructing a quasi-likelihod

ratio (QLR) test for neglected nonlinearity. Power transforms are also popular in time series modeling, where

Ding, Granger, and Engle (1993) and Duan (1997), for example, introduced the asymmetric power GARCH

and augmented GARCH models by applying power transform methods. In developing nonlinear regression

asymptotics, Wu (1981) and Phillips (2007) examined power transforms of time trends and showed that

1



estimating such models involves asymptotic collinearities which lead to complications in implementation

and limit theory as reviewed briefly below.

The approach pursued here extends the linear null model framework of BCP to a more general polyno-

mial class, develops omnibus tests for further neglected nonlinearity by examining the effect of the power

transform on prediction errors, and provides a statistical algorithm for estimating the degree of a polynomial

model by sequentially testing the polynomial model. While in principle this approach may seem straightfor-

ward, it has not been attempted in the prior literature using power transform methods mainly because of the

multiple identification problem that arises when testing the polynomial model assumption. Cho and Ishida

(2012) and BCP showed that testing the linear model assumption by the power transform method introduces

a trifold identification problem (bifold in the case of a location model). If the null model is an m-th degree

polynomial model, identification is aggravated by the fact that there are nowm+2 different ways to identify

the model, leading to what we call a multifold identification problem. To the best of our knowledge, this

multifold identification problem has never been addressed in the literature.

The goal of the present paper is to tackle this problem and provide a methodology for empirically testing

a null polynomial model and identifying polynomial degree by means of sequential testing. Specifically, we

consider two time-series models in parallel to BCP. The first case involves strictly stationary data and the

quasi-likelihood ratio (QLR) test statistic of the null polynomial model here is shown to have a limit dis-

tribution in terms of a functional of a Gaussian process induced by the presence of multifold identification

under the null, and we also show that the QLR test statistic possesses omnibus power under the alternative.

That is, it consistently rejects the null polynomial model under an arbitrary alternative hypothesis. As we

demonstrate below, the covariance kernel of this Gaussian process is dependent upon both the data gener-

ating process (DGP) and the model assumptions, so that the null limit critical values are case-dependent.

Next, we examine the polynomial time-trend stationary model. Although the QLR test statistic in this case

still converges weakly to a functional of a Gaussian process due to multifold identification, the covariance

kernel is regular in the sense that if the prediction error is a martingale difference sequence (MDS), the null

limit distribution is invariant to the conditional variance of the prediction error and to the degree of the null

polynomial model. This invariance has the convenient implication that asymptotic critical values can be

tabulated and these are provided by simulating a certain exponential Gaussian process (as in Cho and White,

2010). For these two time series contexts, we provide a sequential testing methodology that yields a consis-

tent estimator of the polynomial degree by iterative hypothesis testing without resorting to data snooping.

The methodology relies on suitable control of the overall test significance level to ensure a slow passage to

zero as the sample size tends to infinity.
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This estimation and inferential methodology has numerous applications in applied work. For example,

the classic Mincer (1958, 1974) equation predicts individual log earnings as the sum of a linear function

of schooling years and a quadratic function of years of potential experience. This equation has long been

influential in empirical studies of human capital and similar second degree polynomials involving variables

such as age and age squared are ubiquitous in empirical work in attempts to capture nonlinear effects in

econometric modeling. These empirical models are also used as a primary motivation for the use of sieve

approximations in nonparametric econometrics.

The second degree polynomial model of the Mincer equation provides a natural platform to apply the

testing methodology developed in the current study. Accordingly, we apply the QLR test statistic to the

Mincer equation and test the empirical adequacy of its form for explaining log earnings, using the national

longitudinal survey data from Card (1995). Revisiting this application and testing the specification using the

methods developed here, we conclude that the Mincer equation fails to capture the nonlinearity of earnings

with respect to years of experience if the model is extended to include other explanatory variables.

The paper is organized as follows. Section 2 derives the null limit distribution of the QLR test statistic

for the strictly stationary case. This section examines asymptotic power and develops a sequential testing

algorithm for detecting polynomial degree in practical applications. Section 3 extends the analysis to the

polynomial time-trend case. Section 4 reports simulations to assess finite sample performance and the

adequacy of the sequential testing algorithm. Section 5 provides an empirical application of the methodology

to a Mincer earnings equation. Concluding remarks are given in Section 6. Proofs are in the Appendix. For

notational simplicity we use (dj/djx)f(0) to denote (dj/dxj)f(x)|x=0 for some function f and positive

integer j. Other notation is standard.

2 Sequential QLR Testing for Nonlinearity with Stationary Data

This section assumes stationary data and develops the QLR machinery for testing neglected nonlinearity and

sequential testing to determine polynomial degree.

2.1 Model Formulation

We suppose that the researcher specifies a model Mm to characterize the systematic component E[yt|zt]

of a scalar endogenous variable yt given a set of covariates zt := (xt(m)′, d′t)
′ := (1, xt, . . . , x

m
t , d

′
t)
′ that
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involve m-th degree polynomial components of some process xt. The modelMm is formulated as

Mm := {E[yt|zt] = µt(·) : Ω 7→ R with µt(α, η, β, γ) := xt(m)′α+ d′tη + βxγt }, (1)

in which the power transform component xγt is introduced to allow for possible additional nonlinearity in

E[yt|zt] beyond conventional polynomial effects. In (1), the variables (yt, xt, d
′
t)
′ ∈ R2+k (k ∈ N) are

assumed to be strictly stationary and ergodic, xt is strictly nonnegative with probability 1, and the parameter

space for ω := (α′, η′, β, γ)′ := (α0, . . . , αm, η
′, β, γ)′ is Ω ⊂ R3+m+k. It is further assumed that the

signal matrix Z ′Z =
∑n

t=1 ztz
′
t is nonsingular, where Z = [z1, ..., zn]′ is the observation matrix and n is

the sample size. This model extends the framework of BCP where it is assumed that the base model is linear

and m = 1. The modelMm is motivated by the concern that an m-th degree polynomial model may not

be flexible enough to detect any remaining nonlinearity in E[yt|zt]. This model is specifically formulated to

facilitate testing the following hypothesis:

H0,m : ∃(α′∗, η′∗)′, E[yt|xt, dt] = xt(m)′α∗ + d′tη∗ with probability 1, (2)

so that them-th degree polynomial model becomes the null model whereasMm is treated as the alternative.

Many irregular issues of identification are entailed by transition fromMm to the null model. In partic-

ular, the null model can be separately generated fromMm by imposing a number of restrictions, each of

which bears its own model identification signature (c.f., Davies, 1977, 1987). Thus, if the parameter space

of γ, denoted by Γ, contains the elements {0, 1, . . . ,m}, there are (m + 2) different ways to obtain the

null model fromMm. First, for each j = 1, 2, . . . ,m + 1, if γ∗ = j − 1, the coefficient of xj−1
t becomes

(α(j−1)∗+β∗), thereby leading to the null model. Nevertheless, α(j−1)∗ and β∗ are not separately identified

although their sum is identified. Second, the null model is obtained by letting β∗ = 0, but γ∗ is itself not

identified, leading to a further identification problem. As a result, there are (m+ 2) different ways to obtain

the null model fromMm, and, accordingly, (m + 2) different identification problems. We may separately

state these in terms of the explicit sub-hypotheses

H(1)
0,m : γ∗ = 0; . . . H(m+1)

0,m : γ∗ = m; and H(m+2)
0,m : β∗ = 0.

In the following subsections, we examine the limit distribution of the QLR test statistic defined as

QLRn := n

(
1−

σ̂2
n,A

σ̂2
n,0

)
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under each null hypothesis. Here, σ̂2
n,A and σ̂2

n,0 are the means of the squared residuals obtained respectively

from the modelMm and the null model hypothesis. The quasi-likelihood (QL) function is

Ln(α, η, β, γ) := −
n∑
t=1

(yt − xt(m)′α− d′tη − βx
γ
t )2,

so that σ̂2
n,A := −n−1 maxα,η,β,γ Ln(α, η, β, γ) and σ̂2

n,0 := −n−1 maxα,η,β,γ Ln(α, η, 0, γ), where γ in

the latter is simply a placeholder whose value is irrelevant under the null. For notational simplicity, we also

let c := j − 1 from now. Therefore, c runs from 0 to m given that j = 1, 2, . . . ,m+ 1. As we demonstrate

below, the QLR test possesses omnibus power for detecting neglected nonlinearity.

The following conditions that are assumed throughout this section to fix ideas and develop an asymptotic

theory of inference.

Assumption 1. (i) (yt, xt, d
′
t)
′ ∈ R2+k (k ∈ N) is a strictly stationary and absolutely regular process with

mixing coefficient β` such that for some r > 1,
∑∞

`=1 `
1/(r−1)β` <∞, E[|yt|] <∞, and xt is nonnegative

with probability 1;

(ii) The model for E[yt|xt, dt] is specified asMm := {µt(·) : Ω 7→ R : µt(α, η, β, γ) := xt(m)′α +

d′tη+βxγt }, where Ω is the parameter space of ω := (α′, η′, β, γ)′, zt := ( xt(m)′, d′t)
′, and n is the sample

size;

(iii) Ω = (
∏m
i=0 Āi) × H × B̄ × Γ such that H , B̄, and Γ are convex and compact parameter spaces

in Rk, R, and R, respectively, with 0, 1, · · · ,m being interior elements of Γ, and for i = 0, 1, · · · ,m, Āi is

also a convex and compact parameter space in R; and

(iv) Z ′Z =
∑n

t=1 ztz
′
t is nonsingular with probability 1. �

Assumption 2. (i) For each ε > 0, A(γ) := E[Gt(γ)Gt(γ)′] and B(γ) := E[u2
tGt(γ)Gt(γ)′] are positive

definite uniformly on Γ(ε) := {γ ∈ Γ : γ /∈ ∪mi=0(i − ε, i + ε)}, where Gt(γ) := [z′t, xt(m)′ log(xt), x
γ
t ]′,

and ut := yt − E[yt|zt];

(ii) {ut,Ft} is an MDS, where Ft is the smallest σ-field generated by {zt+1, ut, zt, ut−1, · · · };

(iii) There is a strictly stationary and ergodic sequence {mt, st} such that for i = 1, 2, · · · , k, |dt,i| ≤

mt, E[m4ρ
t ] <∞, E[s8

t ] <∞, where dt,i is the i-th row element of dt, and

(iii.a) |ut| ≤ mt, |xmt | ≤ st, and | log(xt)| ≤ st;

(iii.b) |xmt | ≤ mt, |ut| ≤ st, and | log(xt)| ≤ st; or

(iii.c) | log(xt)| ≤ mt, |ut| ≤ st, and |xmt | ≤ st;

(iv) supγ∈Γ |x
γ
t | ≤ mt and supγ∈Γ |x

γ
t log(xt)| ≤ mt; and

(v) r = ρ. �
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In the above notation, it would be more precise to write zt as zt(m), which accords more closely to the

definition zt := (xt(m)′, d′t)
′ in terms of xt(m). However, we suppress the argument m for notational

simplicity and it will be implicit in what follows until we examine sequential testing. The majorization and

moment conditions given in Assumption 2(iii) are alternates and do not imply one another. It transpires that

if at least one of these conditions separately holds, then the desired results given below follow. Further details

regarding these conditions are provided when claims relevant to the conditions are stated and discussed

below.

2.2 Limit Distribution of the QLR Test Statistic underH(j)
0,m : γ∗ = c with c = 0, 1, . . . ,m

We first examine the limit behavior of the QLR test statistic underH(j)
0,m : γ∗ = c, where c = 0, 1, . . . ,m or

c = j−1 for j = 1, ...,m+ 1. Due to the recursive structure of the polynomial model, it turns out that there

is a systematic relationship between the null limit approximations for different values of c. This relationship

is exploited for an efficient delivery of the null limit distributions for different c values.

UnderH(j)
0,m : γ∗ = c we have

E[yt|xt, dt] =

m∑
i=0, i 6=c

αi∗x
i
t + (αc∗ + β∗)x

c
t + d′tη∗,

and then neither αc∗ nor β∗ is separately identified without imposing some additional condition, although

(αc∗+β∗) is an identified composite coefficient. Thus, imposing every possible additional condition for the

model identification we examine how the resulting null limit distributions are associated with each other. As

will become apparent, this process derives the desired limit distribution underH(j)
0,m.

Our analysis is conducted in three steps. First, we let β be unidentified and fix its value so that αc∗ is

identified. Through this identification scheme (conditional on the fixed value β), we obtain the null limit

distribution for that fixed value β. Similarly, we select another value of β and iterate the same steps, exam-

ining how the separately obtained null limit distributions are associated with each other. By this process,

we can characterize the null limit distribution of the QLR test statistic when β is fixed. Second, we modify

the identification scheme by fixing the value αc so that β∗ is identified. By iterating steps analogous to the

β-fixed case, we can characterize the null limit distribution. Finally, we examine how the two characterized

null limit distributions are associated with each other, as obtained in the first two sequence of steps, which

leads us to derive the null limit distribution underH0,m. The schema is described in full in what follows.
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2.2.1 When β∗ is Not Identified

We first fix β and approximate the constrained quasi-likelihood (CQL) with respect to the other identified

parameters (α′∗, η
′
∗)
′. Let the following be the CQL function:

Ln(γ;β) := Ln(α̂n(γ;β), η̂n(γ;β), β, γ),

where (α̂n(γ;β), η̂n(γ;β)′)′ := arg maxα,η Ln(α, β, γ, η). Upon calculation the CQL is given by the

explicit formula

Ln(γ;β) = −{Y − βX(γ)}M{Y − βX(γ)},

where M := In − Z(Z ′Z)−1Z ′, and X(γ) := (xγ1 . . . x
γ
n)′. Note that MY = MU under H0,m, where

U := (u1, u2, . . . , un)′. For notational simplicity, define

Ac := [xc1 log(x1), . . . , xcn log(xn)]′, Bc := [xc1 log2(x1), . . . , xcn log2(xn)]′,

and apply a second-order Taylor expansion to obtain

sup
γ
{Ln(γ;β)− Ln(c;β)} =

{βA′cMU}2

β2A′cMAc − βB′cMU
+ oP(1) =

{A′cMU}2
A′cMAc

+ oP(1), (3)

using the fact that B′cMU = oP(n) under Assumptions 1 and 2. This result follows mainly from the simple

form of the derivatives (d/dγ)Ln(c;β) = 2βA′cMU and (d2/dγ2)Ln(c;β) = 2βB′cMU − 2β2A′cMAc.

We thus obtain the following null limit approximation of the QLR test statistic

QLR(γ=c;β)
n := sup

β
sup
γ
n

{
1− Ln(γ;β)

Ln(c;β)

}
=

1

σ̂2
n,0

{A′cMU}2
{A′cMAc}

+ oP(1). (4)

This representation implies that the optimization process with respect to β in (4) is asymptotically innocuous

in obtaining the null limit distribution. In (4), the notation QLR
(γ=c;β)
n is used to denote the QLR test

statistic that testsH(j)
0,m : γ∗ = c by fixing β first and subsequently maximizing with respect to γ and β.

2.2.2 When αc∗ is Not Identified

We next fix αc first and use the notation α−c to signify the vector α with all elements except αc. If αc is

fixed, the other parameters (α′−c∗, β∗, η
′
∗)
′ := (α0∗, α1∗, . . . , α(c−1)∗, α(c+1)∗, . . . , αm∗, β∗, η

′
∗)
′ are iden-

tified under the null. Therefore, we first optimize the QL function with respect to (α′−c, β, η
′)′ in the first
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stage and then maximize the QL function with respect to γ and finally with respect to αc. For this purpose,

we let (α̂−c,n(γ;αc)
′, β̂n(γ;αc), η̂n(γ;αc)

′)′ := arg maxα−c,β,η Ln(α, β, γ, η), whose specific form is

(α̂−c,n(γ;αc)
′, β̂n(γ;αc), η̂n(γ;αc)

′)′ = [Qc(γ)′Qc(γ)]−1Qc(γ)′Pc(αc),

where Pc(αc) := Y − αcX(c), Qc(γ) := [X(0), . . . , X(c − 1), X(γ), X(c + 1), . . . , X(m), D], and

D := [d1, . . . , dn]′. The CQL is also obtained as

Ln(γ;αc) = −Pc(αc)′{In −Qc(γ)[Qc(γ)′Qc(γ)]−1Qc(γ)′}Pc(αc).

We approximate this CQL by a second-order Taylor expansion with respect to γ at c. Some algebra delivers

the following first-two derivatives:

L(1)
n (c;αc) = 2(αc∗ − αc)A′cMU + 2U ′Ec(Z

′Z)−1Z ′U − U ′Z(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1Z ′U,

where Ec := (d/dγ)Qc(c) = [0n×c
...Ac

... 0n×(m−c+k)], and

L(2)
n (c;αc) =2(Zκc + U)′{Ec(Z ′Z)−1E′c + Z(Z ′Z)−1F ′c}(Zκc + U)

− 4(Zκc + U)′Z(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1E′c(Zκc + U)

− (Zκc + U)′Z(Z ′Z)−1(2E′cEc + Z ′Fc + F ′cZ)(Z ′Z)−1Z ′(Zκc + U)

+ 2(Zκc + U)′Z(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1Z ′(Zκc + U),

where Fc := (d2/dγ2)Qc(c) = [0n×c
...Bc

... 0n×(m−c+k)], and κc := [α0∗, . . . , α(c−1)∗, (αc∗ − αc), α(c+1)∗,

. . . , αm∗, η′∗]
′. These first-two derivatives are derived in the Appendix. Their null limit behavior is given in

the following result.

Lemma 1. Given Assumptions 1, 2, andH(j)
0,m, for each c = 0, 1, . . . ,m, we have:

(i) L
(1)
n (c;αc) = 2(αc∗ − αc)A′cMU + oP(

√
n); and

(ii) L
(2)
n (c;αc) = −2(αc∗ − αc)2A′cMAc + oP(n). �

The proof of Lemma 1 is given in the Appendix. Using Lemma 1 and a second-order Taylor expansion, it

follows that

QLR(γ=c;αc)
n := sup

αc
sup
γ
n

{
1− Ln(γ;αc)

Ln(c;αc)

}
=

1

σ̂2
n,0

{A′cMU}2
{A′cMAc}

+ oP(1). (5)
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Here, QLR
(γ=c;αc)
n is used to denote the QLR test statistic that tests H(c+1)

0,m : γ∗ = c by fixing αc first and

subsequently maximizing with respect to γ and αc.

Some remarks are warranted. First, although αc is treated as an unidentified nuisance parameter, it

asymptotically cancels out in the ratio limit, just as in the β-fixed case. Thus, the final optimization process

in (5) with respect to αc does not affect the null limit distribution. Second, the null approximation given on

the right side of (5) is asymptotically identical to the right side of (4), implying that the limit obtained by

fixing β first is identical to that obtained by fixing αc first, and that the limit approximation of the QLR test

statistic underH(j)
0,m is identical irrespective of whether β or αj is optimized in the final stage. This property

leads directly to the following lemma.

Lemma 2. Given Assumptions 1 and 2, QLR
(γ=c)
n = {A′cMU}2/{σ̂2

n,0(A′cMAc)} + oP(1) under H(j)
0,m :

γ∗ = c, where c = 0, 1, . . . ,m. �

Here, QLR
(γ=c)
n denotes the QLR test statistic that tests H(j)

0,m : γ∗ = c. BCP obtained the same result for

the special casem = 1. Third, the null limit approximation in Lemma 2 has a regular pattern across different

null hypotheses. Thus, for a different index (say, c′ = j′−1) the limit approximation underH(j′)
0,m is obtained

by simply replacing Ac in Lemma 2 with Ac′ := [xc
′

1 log(x1), . . . , xc
′
n log(xn)]′. This simple regular pattern

is produced because of the recursive structure of the polynomial model. Fourth, the derivation of Lemma

2 is virtually an immediate consequence of a second-order Taylor expansion, and this is a very convenient

feature of the power transform in comparison with other approaches as we now explain.

Cho, Ishida, and White (2011, 2014) and White and Cho (2012) examined testing linear model hy-

potheses by adding an analytic function to the linear model following the framework of Bierens (1990)

and Stinchcombe and White (1998). They showed that higher-order Taylor expansions are necessary in

deriving the null limit distribution of the QLR test statistic. If the so-called no-zero condition holds for

the analytic function, a fourth-order Taylor expansion is needed; and if the no-zero condition does not hold,

sixth-, eighth-, or even higher-order Taylor expansions are needed, depending on the property of the analytic

function in use. This consequence is further aggravated if a polynomial model is the null model. Then, a

further higher-order Taylor expansion is needed even when the no-zero condition holds, depending on the

polynomial degree under the null model condition. On the other hand, the power transform simplifies the

model approximation because at most a second-order Taylor expansion is needed. This feature explains the

advantage of using the power transform instead of other nonlinear functions for detecting further neglected

nonlinearity.

Finally, the augmented Box-Cox transform in BCP can be further generalized to be adapted to the

9



polynomial model. Note that if we modify the Box-Cox transform for use in the present context as

ABCt(γ; c) :=

 (xγt − xct)/(γ − c), if γ 6= c;

xct log[xt], if γ = c

by noting that

lim
γ→c

xγt − xct
γ − c = xct log[xt], (6)

this formulation generalizes the augmented Box-Cox transformation of BCP, in which c = 1. Note that

the right side of (6) is a typical element of Ac. This implies that if the conditional mean E[yt|xt, dt] is

parameterized as xt(m)′α∗ + d′tη∗ + ξ∗x
c
t log[xt]. Then testing the hypothesis that ξ∗ = 0 is equivalent to

testingH(j)
0,m in our context, where j = 1, 2, . . . ,m+ 1.

2.3 Limit Distribution of the QLR Test Statistic underH(m+2)
0,m : β∗ = 0

We consider the limit behavior of the QLR test statistic underH(m+2)
0,m : β∗ = 0. As γ∗ is not identified under

H(m+2)
0,m , we first approximate the model with respect to the other parameters (α′, β, η′)′ and maximize the

QL function with respect to γ in the final stage. For notational simplicity, we let the CQL function be denoted

by Ln(β; γ) := Ln(α̂n(β; γ), η̂n(β; γ), β, γ), where (α̂n(β; γ), η̂n(β; γ)′)′ := arg maxα,η Ln(α, η, β, γ).

The CQL has the following specific form:

Ln(β; γ) = −{Y − βX(γ)}′M{Y − βX(γ)}. (7)

Using this, we obtain the following limit approximation of the QLR test:

QLR(β=0)
n := sup

γ
sup
β
n

{
1− Ln(β; γ)

Ln(0; γ)

}
= sup

γ

1

σ̂2
n,0

{X(γ)′MU}2

X(γ)′MX(γ)
. (8)

Here, QLR
(β=0)
n is used to denote the QLR test statistic that tests the hypothesisH(m+2)

0,m : β∗ = 0.

Some remarks are in order to highlight this approximation. Note that the approximation in (8) has

the same form as that in BCP. Therefore, we can apply the functional central limit theorem (FCLT) and the

uniform law of large numbers (ULLN) to n−1/2X(·)′MU and n−1σ̂2
n,0X(·)′MX(·), respectively as in BCP.

Nevertheless, we further note that for c = 0, 1, . . . ,m, plimγ→cX(γ)′MX(γ) = 0 and plimγ→cX(γ)′MU

= 0 because limγ→cX(γ) = [xc1, x
c
2, . . . , x

c
n]′ and M is the idempotent matrix formed from the regressor

zt := ( xt(m)′, d′t)
′. As these limits are those of the numerator and denominator constituting (8), the

10



probability limit

plim
γ→c

1

σ̂2
n,0

{X(γ)′MU}2

X(γ)′MX(γ)

is an indeterminate form. Applying l’Hôpital’s rule we obtain plimγ→c 2{X(γ)′MU} {(d/dγ)X(γ)′MU}

= 0 and plimγ→c 2 {(d/dγ)X(γ)′MX(γ)} = 0, which imply that a first-order application of l’Hôpital’s

rule is insufficient to determine the probability limit. Moving to the next order, the probability limits from the

second-order derivatives are plimγ→c(d
2/dγ2)X(γ)′MU = 2{A′cMU}2 and plimγ→c(d

2/dγ2)X(γ)′M

X(γ) = 2A′cMAc. It follows that for c = 0, 1, . . . ,m, we have the following limit

plim
γ→c

1

σ̂2
n,0

{X(γ)′MU}2

X(γ)′MX(γ)
=

1

σ̂2
n,0

{A′cMU}2
A′cMAc

. (9)

Some regularity conditions are needed to justify the limit behavior of this ratio as n→∞. Specifically,

we need conditions for applying the central limit theorem (CLT) and FCLT to n−1/2[A′0MU,A′1MU, . . . ,

A′mMU ]′ and n−1/2X(·)′MU , respectively. In a similar manner, it is necessary to simultaneously apply a

law of large numbers (LLN) and ULLN to n−1[A′0MA0, A
′
1MA1, . . . , A

′
mMAm]′ and n−1X(·)′MX(·),

respectively. The conditions in Assumptions 1 and 2 are sufficient for this purpose. In particular, the quan-

tities n−1/2
∑
Gt(·)′ut and n−1

∑
Gt(·) Gt(·)′ obey the FCLT and ULLN because the components consti-

tuting Gt(·) := [z′t, xt(m)′ log(xt), x
(·)
t ]′ also constitute both n−1/2[X(·)′MU,A′0MU, . . . , A′mMU ]′ and

n−1[X(·)′MX(·), A′0MA0, . . . , A
′
mMAm]. As a result, the null limit behavior of the QLR test statistic is

obtained as a functional of these components, as shown in the following lemma.

Lemma 3. Given Assumptions 1, 2, andH(m+2)
0,m ,

(i) QLR
(β=0)
n = supγ∈Γ {X(γ)′MU}2 /{σ̂2

n,0X(γ)′MX(γ)}; and

(ii) QLR
(β=0)
n ⇒ supγ∈ΓZ(γ)2 as n → ∞, where Z(·) is a mean-zero Gaussian process whose

covariance kernel for each γ, γ′ ∈ Γ is

E[Z(γ)Z(γ′)] =
E[G(γ)G(γ′)]√

σ2(γ, γ)
√
σ2(γ′, γ′)

,

with σ2(γ, γ) := σ2
∗(E[x2γ

t ] − E[xγt z
′
t]E[ztz

′
t]
−1E[ztx

γ
t ]), and G(·) is a mean-zero Gaussian process with

covariance kernel for each γ, γ′ ∈ Γ,

E[G(γ)G(γ′)] = E[u2
tx
γ+γ′

t ]− E[u2
tx
γ
t z
′
t]E[ztz

′
t]
−1E[ztx

γ′

t ]− E[u2
tx
γ′

t z
′
t]E[ztz

′
t]
−1E[ztx

γ
t ]

+ E[xγt z
′
t]E[ztz

′
t]
−1E[u2

t ztz
′
t]E[ztz

′
t]
−1E[ztx

γ′

t ]. �
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Note that G(·) is the weak limit of n−1/2X(·)′MU. Given Lemma 2, the limit result (ii) in Lemma 3 is

identical in form to that of theorem 1 in BCP, and the null limit behavior of the QLR test statistic is obtained

in the same way as for the linear model case. We can use the FCLT in Doukhan, Massart, and Rio (1995) to

verify tightness of the process {n−1/2X(·)MU} and weak convergence to G(·), and we can apply the An-

drews (1992) ULLN to {n−1X(·)′MX(·)}. Since zt is defined using the polynomial terms x2
t , x

3
t , . . . x

m
t ,

the covariance kernel of G(·) differs for different values of m. The proof of Lemma 3 is almost identical to

that of theorem 1 in BCP, and is therefore omitted.

An additional feature of interest is worth highlighting. The associated score function in the QLR test

statistic is discontinuous at c, where c = 0, 1, . . . ,m although it is smooth elsewhere in Γ. Define zn(·) :=

{σ̂2
n,0X(·)′MX(·)}−1/2{X(·)′MU},which is the sample analog ofZ(·). For each c = 0, 1, . . . ,m, it is not

hard to show that plimγ↑czn(γ) = −plimγ↓czn(γ). This discontinuity applies also to the weak limit Z(·),

generalizing the observation in BCP for the case where m = 1. However, it follows that plimγ↑cZ(γ)2 =

plimγ↓cZ(γ)2. Therefore, if we let Z(c)2 be defined as plimγ→cZ(γ)2, Z(·)2 is continuous at each c. On

the other hand, zn(·) is twice continuously differentiable elsewhere in Γ, a consequence of the fact that the

power transform is infinitely smooth for all γ ≥ 0 and positive x > 0, which in turn implies second-order

differentiability of the covariance kernel of Z(·) over the same region of Γ. Thus, Z(·)2 is continuous on Γ

almost surely, and supγ∈ΓZ(γ)2 is well defined from the fact that Γ is a compact set.

2.4 Limit Distribution of the QLR Test Statistic underH0,m

We now examine the relationships among the limit approximations obtained under each hypothesis. This

examination is conducted to obtain the null limit approximation of the QLR test statistic underH0,m.

The null limit approximations given in Sections 2.2 and 2.3 are those obtained by imposing all possible

conditions to produce the null model fromMm. By the definition of the QLR test statistic, the null limit

approximation has to be obtained as the maximum of all null approximations, and the null approximation

derived under H(m+2)
0,m dominates the other null approximants. The null approximation in (4) is identical to

the right side of (9). Thus, for each c = 0, 1, . . . ,m, we have

sup
γ∈Γ

1

σ̂2
n,0

{X(γ)′MU}2

{X(γ)′MX(γ)} ≥
1

σ̂2
n,0

{A′cMU}2
{A′cMAc}

+ oP(1), (10)

where the left side of (10) is the QLR test statistic obtained under H(m+2)
0,m : β∗ = 0, and the right side is

the limit approximation of the QLR test statistic derived under H(c+1)
0,m : γ∗ = c as given in Lemmas 3 and

2, respectively. This fact implies that for every c = j − 1, QLR
(β=0)
n dominates QLR

(γ=c)
n , from which we

12



conclude the following result.

Theorem 1. Given Assumptions 1 and 2, QLRn ⇒ supγ∈ΓZ(γ)2 underH0,m. �

Note that the covariance kernel of Z(·) in Lemma 3 depends on the joint distribution of (ut, zt), and so

a different kernel is derived for each different model and/or conditional variance condition of ut, which

implies that the QLR test statistic is not a distribution-free test statistic. Accordingly, different models yield

different asymptotic critical values although they are specified in terms of the same data. As BCP show by

simulation, Hansen’s (1996) weighted bootstrap is useful for obtaining the asymptotic critical values in this

case.

2.5 Asymptotic Power of the QLR Test Statistic

BCP showed that the QLR test statistic possesses omnibus and local power for models with m = 1 and

this property holds for m > 1. To demonstrate we let E[yt|xt, dt] = xt(m)′α∗ + d′tη∗ + s(xt) under the

alternative, where s(·) is a continuous nonlinear function whose nonlinearity cannot be represented in terms

of an m-th degree polynomial. With this formulation the QLR test statistic can be shown to have power

against an arbitrary nonlinear function s(·) that satisfies this property.

Define

h0 := min
α,η

E[(yt − xt(m)′α− d′tη)2] = E[u2
t ] + E[q2

t ],

h(γ) := min
α,η

E[(yt − xt(m)′α− d′tη − βx
γ
t )2] = E[u2

t ] + var[qt]− cov[ut(γ), qt]
2/var[qt],

where ut(γ) := xγt − z′tE[ztz
′
t]
−1E[ztx

γ
t ] and qt := s(xt)− z′tE[ztz

′
t]
−1E[zts(xt)], and note that the proba-

bility limit of the QLR test statistic is obtained as

1

n
QLRn = sup

γ∈Γ

(
1− h(γ)

h0

)
+ oP(1)

under the given regularity condition. In view of this representation, the power of the QLR test statistic

derives from the fact that infγ∈Γ h(γ) is strictly less than h0 for any arbitrarily selected s(·). In addition,

the QLR test statistic has nontrivial local power when the nonlinear component s(xt) vanishes to zero at the

rate O
(
n−1/2

)
. These results are formally stated as follows.

Theorem 2. Given Assumptions 1 and 2,

(i) if E[yt|xt, dt] = xt(m)′α∗ + d′tη∗ + s(xt) with E[s(xt)
2] < ∞ and E[log4j∗(xt)] < ∞, for some
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γ̃ ∈ Γ, h(γ̃) ∈ (0, h0) and

1

n
QLRn =

(
1− h(γ̃)

h0

)
+ oP(1),

where j∗ := min{j ∈ N : E[vt logj(xt)] 6= 0}, and vt is the linear projection error obtained by projecting

yt into the space of (xt(m)′, d′t)
′;

(ii) if E[yt|xt, dt] = xt(m)′α∗ + d′tη∗ + n−1/2s(xt) with |s(xt)| ≤ mt,

QLRn ⇒ sup
γ∈Γ

(
Z(γ) +

ζ(γ)

σ(γ)

)2

,

where ζ(γ) := E[s(xt)x
γ
t ]− E[s(xt)z

′
t]E[ztz

′
t]
−1E[ztx

γ
t ]. �

Since s(·) is an arbitrarily selected nonlinear function, Theorem 2(i) implies that the QLR test statistic has

omnibus power. Therefore, the QLR test statistic has power even when E[yt|xt, dt] is a polynomial function

with respect to xt with degree that exceeds m. The existence of j∗ in Theorem 2(i) follows from theorem

2 of Bierens (1982), and Theorem 2 follows as a corollary of theorem 5 of BCP. The proof is therefore

omitted.

The intuition underlying the existence of omnibus power in Theorem 2 is straightforward and can be

exposited in terms of the Stichcombe and White (1998) approach to testing. First note that the testing factor

can be written as xγt = exp(γ log(xt)). Here, log(·) is a one-to-one monotonic and measure preserving

mapping, so that the consistent power property of the QLR test is unaffected by the log transformation.

Second, exp(·) is an analytic function, so that it is generically comprehensively revealing (in the terminology

of Stichcombe and White, 1998), thereby producing the omnibus power property.

2.6 Sequentially Testing the Polynomial Model

We next examine a sequential testing procedure in which we allow the polynomial degree m to increase

and apply a sequence of tests until the null hypothesis is no longer rejected. This procedure provides a

natural mechanism for estimating the degree of a polynomial model at some given level of significance α.

Modifying earlier notation to accommodate sequential testing, we signal polynomial model degree in the

QLR test statistic by indexing the degree, so that QLR
(m)
n denotes the QLR test statistic computed using a

polynomial null model of m-th degree. This modification avoids confusion when computing multiple QLR

test statistics.

The testing procedure requires that a maximum degree polynomial model be specified in advance. Ac-

cordingly, we define Pd(m̄) := {1, 2, . . . , m̄} to be a subset of Γ such that each element of Pd(m̄) is an
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interior element of Γ and m̄ is the upper limit polynomial degree envisaged for implementation. Sequential

testing then proceeds as follows:

• Step 1: Compute QLR
(1)
n using M′1 such that Γ contains Pd(m̄) as its subset. If QLR

(1)
n is less

than the critical value given by Theorem 1, let m̂n = 1; otherwise, move to the next step, where m̂n

denotes the estimate of the unknown polynomial degree.

• Step 2: Iterate the above steps for j = 2, 3, . . . , m̄ usingMj with the same Γ until QLR
(j)
n is greater

than the asymptotic critical value in Theorem 1. We let m̂n be the smallest polynomial degree such

that the QLR test statistic does not reject the null hypothesis.

• Step 3: If for j = 1, 2, . . . , m̄, QLR
(j)
n exceeds the asymptotic critical values in Theorem 1, we

conclude that an m̄-th degree polynomial model is unable to capture the nonlinearity of E[yt|xt, dt]

with respect to xt.

Several remarks are in order concerning this sequential procedure. First, as shown earlier, the QLR test

statistic is not distribution free, so that the asymptotic critical values in Theorem 1 need to be obtained case-

dependently. Thus, for different j = 1, 2, . . . , m̄, different asymptotic critical values need to be applied to

QLR
(j)
n . Use of Hansen’s (1996) weighted bootstrap can yield consistent asymptotic critical values in this

case. In Section 5, we apply the weighted bootstrap in an empirical illustration of the QLR test statistic to

demonstrate this implementation. Second, to elaborate on the procedure, we can let Γ contain Pd(m̄), but

choose another parameter space Γ for each j: that is, modelMj can be specified using different Γj such

that Pd(j) is a subset of Γj and each element of Pd(j) is an interior element of Γj . For each Γj , different

asymptotic critical values have again to be used. Finally, using Theorems 1 and 2(i), we are able to obtain

the following result which ensures size control in the sequential testing procedure.

Corollary 1. If Assumptions 1 and 2 hold for each m ∈ Pd(m̄), if m∗ ∈ Pd(m̄), where

m∗ := inf{m ∈ N : ∃ (α, η),E[yt|xt, dt] = xt(m)′α+ d′tη},

then for any ε > 0 and significance level α, limn→∞ P (|m̂n −m∗| > ε) = α. �

Thus, when the significance level α is given, the estimated polynomial degree is equal to the unknown

polynomial degree with probability (1 − α)% at the limit. Here, the unknown polynomial degree m∗ is

defined as the minimum degree polynomial model out of the correctly specified polynomial models. Note

that if m∗ exists for Pd(m̄), every polynomial model with a degree higher than m∗ is correctly specified.
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Therefore, m∗ signifies the most parsimonious polynomial model that is correctly specified. Corollary 1

implies that we can avoid the data snooping problem despite the application of a number of test statistics to

a single data set. But there is a type I error: the estimated m̂n has the limiting (size controlled) probability

α that m̂n differs from m∗. Third, there is the opportunity for consistent estimation by m̂n if we control

size to depend on n so that α = αn → 0 slowly as n→∞. The following theorem provides conditions for

such consistent estimation of m∗.

Theorem 3. Under the same conditions as Corollary 1, if (i) there is a Gaussian process BS(·) such that

for all γ, γ′ ∈ Γ, for some δ, cov(BS(γ),BS(γ′)) = 1 − |γ − γ′|δ (1 + o(1)) and cov(BS(γ),BS(γ′)) ≤

cov(Z0(γ),Z0(γ′)), where for each γ,Z0(γ) := Z(γ)/σ0(γ) and σ0(γ) := var[Z(γ)]1/2, (ii) limn→∞αn

= 0, and (iii) limn→∞ log(αn)/n = 0, then for any ε > 0, limn→∞ P (|m̂n −m∗| > ε) = 0. �

By Theorem 3, m̂n consistently estimates m∗. Theorem 3 extends the sequential testing result in Hosoya

(1989) in which likelihood ratio test statistics are sequentially applied that marginally follow chi-squared

distributions under the null. Although the null limit distribution here is not chi-squared but depends on

a stochastic process, we can still obtain the same result as Hosoya (1989) under the conditions given in

Theorem 3. These conditions are used to apply a suitable approximation of the distribution of the Gaussian

extremum (c.f., Piterbarg, 1996). Details are provided in the proof. In brief, by comparing the covariance

kernel of Z0(·) in Theorem 1 with that of a certain stationary Gaussian process, Bs(·), we obtain that a

critical value c′n for which P(supγ∈ΓZ0(γ)2 ≥ c′n) = αn is bounded from above by the Slepian inequality.

This critical value can be compared with another critical value cn such that P(supγ∈ΓZ(γ)2 ≥ cn) = αn

and we show that the upper bound for c′n is also a upper bound for cn. Theorem 3 is proved by associating

the upper bound of cn with the conditions for αn in Theorem 3 in a manner that if − log(αn)/n → 0 and

αn → 0, then cn/n → 0 and cn → ∞. These results are sufficient for limn→∞ P(m̂n > m∗) = 0 and

limn→∞ P(m̂n < m∗) = 0, respectively, given Theorem 2(i). This implies that limn→∞ P(m̂n = m∗) = 1.

3 Sequential QLR Testing for Time-Trend Stationary Data

3.1 DGP and the m-th Degree Polynomial Time-Trend Model

We now extend the analysis to include a polynomial time-trend stationary process. The focus is on testing

for further neglected nonlinearity in trend when an m-th degree polynomial time-trend model is specified.

We suppose that our alternative model for E[yt|dt] is specified as

M′m := {µt(·) : Ωn 7→ R : µt(αn, η, βn, γ) := st(m)′αn + d′tη + βns
γ
n,t},
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where dt ∈ Rk (k ∈ N) is a strictly stationary and ergodic process, yt is a polynomial time-trend stationary

process, and st(m) := [1, sn,t, s
2
n,t, . . . , s

m
n,t]
′, where for t = 1, 2, . . . , n, sn,t := t/n is a (normalized)

linear time trend. As before, the hypothesis of interest is

H̃0 : ∃(α′∗, η′∗)′, E[yt|dt] = st(m)′αn,∗ + d′tη∗ with probability 1.

The modelM′m is a reparameterized version of the following polynomial time-trend stationary model:

M′′m := {µt(·) : Ω 7→ R : µt(α, η, β, γ) := t(m)′α+ d′tη + βtγ},

where t(m) := [1, t, t2, . . . , tm]′. The parameters inM′m are related to those inM′′m through the identities

αn ≡ diag[1, n, n2, . . . , nm]α and βn ≡ βnγ . Thus, estimating the parameters in M′′m by least squares

is easily converted to least squares usingM′m, and vice versa. This equivalence implies that the QLR test

statistic value obtained fromM′m is identical to that obtained fromM′′m.

The null limit distribution has to be deduced from M′m, although the two models yield the same

level of the QLR test statistic. The null limit distribution cannot be easily obtained from M′′m due to

the singularity problem involved in the limit theory (see Phillips, 2007). Specifically, upon normaliza-

tion, the associated signal matrix ofM′′m, viz.,
∑
Ḡt(γ)Ḡt(γ)′, involves a singular almost sure limit, where

Ḡt(γ) := [t(m)′, d′t, t(m)′ log(t), tγ ]′ corresponds to Gt(γ) in Section 2. For instance, taking moment

matrix formed from the outer product of [t(m)′, t(m)′ log(t)]′ and normalizing appropriately, we obtain

F−1
n

n∑
t=1

 t(m)t(m)′ t(m)t(m)′ log(t)

t(m)t(m)′ log(t) t(m)t(m)′ log2(t)

F−1
n

a.s.→

 N N

N N

 ,
where Fn := diag[n1/2, n3/2, . . . , nm+1/2, n1/2 log(n), n3/2 log(n), . . . , nm+1/2 log(n)], andN is an (m+

1) × (m + 1) matrix whose j-th row and i-column element equals 1/(j + i + 1). The normalizing matrix

Fn is selected to ensure a bounded almost sure nontrivial limit for
∑
Ḡt(γ)Ḡt(γ)′. This limit matrix is the

analogue of A(γ) of Section 2 (defined in Assumption 2) in the polynomial time trend context ofM′′m. The

noninvertibility of this limit matrix makes it awkward to obtain the null limit distribution usingM′′m. Phillips

(2007) dealt with singularities of this type involving general slowly varying functions such as log(t) in

regression and nonlinear regression models and showed how the use of alternative weak trend formulations

such asM′m provides a convenient approach to the limit theory. In particular, in the present case the use of

the formulationM′m removes the limiting singularity and the null limit distribution of the QLR test statistic
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can be readily analyzed, as is now discussed.

3.2 Asymptotic Null Distribution of the QLR Test Statistic

We assume the following conditions.

Assumption 3. (i) The time series {dt} is stationary φ-mixing with mixing decay rate −`/2(` − 1) with

` ≥ 2 or α-mixing with mixing decay rate −`/(`− 2) with ` > 2, and yt is a time-trend stationary process;

(ii) The model for E[yt|dt] is specified asM′m := {µt(·) : Ωn 7→ R : µt(αn, η, βn, γ) := st(m)′αn +

d′tη + βns
γ
n,t}, where Ωn is the parameter space of ωn := (α′n, η

′, βn, γ)′, and n is the sample size;

(iii) Ωn = (
∏m
i=0 Āi,n)×H×B̄n×Γ such thatH and Γ are convex and compact parameter spaces inRk

and R, respectively, with 0, 1, · · · ,m being interior elements of Γ with inf Γ > −1/2; for i = 0, 1, · · · ,m

and for each n, Āi,n and B̄ are also convex and compact spaces in R; and

(iv) Z ′Z =
∑n

t=1 zn,tz
′
n,t is nonsingular with probability 1, where zn,t := (st(m)′, d′t)

′. �

Further conditions are needed to obtain regular null limit behavior of the QLR test statistic. Before

imposing them, we introduce the following symmetric matrices to aid notation. For each γ, let

Ã(γ) :=


Ã1,1 Ã1,2 Ã1,3(γ)

Ã2,1 Ã3,3 Ã3,4(γ)

Ã3,1(γ) Ã4,3(γ) Ã4,4(γ)

 :=


Ã1,1 Ã1,2 Ã1,3 Ã1,4(γ)

Ã2,1 Ã2,2 Ã2,3 Ã2,4(γ)

Ã3,1 Ã3,2 Ã3,3 Ã3,4(γ)

Ã4,1(γ) Ã4,2(γ) Ã4,3(γ) Ã4,4(γ)

 ,

where the submatrices are defined as follows: for i, j = 1, 2, . . . ,m+ 1,

Ã1,1
(m+1)×(m+1)

:=

[
1

i+ j − 1

]
, Ã1,2

(m+1)×k
:=

[
E[d′t]

j

]
, Ã1,3

(m+1)×(m+1)

:=

[
−1

(i+ j − 1)2

]
,

Ã1,4(γ)
(m+1)×1

:=

[
1

γ + j

]
, Ã2,2

k×k
:= E[dtd

′
t], Ã2,3

k×(m+1)

:=

[
−E[dt]

j2

]
, Ã2,4(γ)

k×1

:=

[
E[dt]

γ + 1

]
,

Ã3,3
(m+1)×(m+1)

:=

[
2

(i+ j − 1)3

]
, Ã3,4(γ)

(m+1)×1

:=

[
−1

(γ + j)2

]
, and Ã4,4(γ)

1×1

:=
1

2γ + 1
.

Since Ã(γ) is supposed to be symmetric, we let Ã2,1 := Ã′1,2, Ã3,1 := Ã′1,3, Ã4,1(γ) := Ã1,4(γ)′, Ã2,3 :=

Ã′3,2, Ã2,4(γ) := Ã4,2(γ)′, and Ã4,3 := Ã′3,4. Observe that Ã(γ) corresponds to A(γ) in Section 2 and is

identical to the almost sure limit of n−1
∑
G̃t(γ)G̃t(γ)′, where G̃t(γ) := [ st(m)′, d′t, st(m)′ log(sn,t), s

γ
n,t]
′,

which exists under mild moment conditions that are assured by Assumption 4 below. We next define
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B̃(γ, γ′) as follows:

B̃(γ, γ′) :=


B̃1,1 B̃1,2 B̃1,3(γ′)

B̃2,1 B̃3,3 B̃3,4(γ′)

B̃3,1(γ) B̃4,3(γ) B̃4,4(γ, γ′)

 :=


B̃1,1 B̃1,2 B̃1,3 B̃1,4(γ′)

B̃2,1 B̃2,2 B̃2,3 B̃2,4(γ′)

B̃3,1 B̃3,2 B̃3,3 B̃3,4(γ′)

B̃4,1(γ) B̃4,2(γ) B̃4,3(γ) B̃4,4(γ, γ′)

 ,

where the submatrices are defined below, for i, j = 1, 2, . . . ,m+ 1,

B̃1,1
(m+1)×(m+1)

:=

[
E[u2

t ]

i+ j − 1

]
, B̃1,2

(m+1)×k
:=

[
E[u2

td
′
t]

j

]
, B̃1,3

(m+1)×(m+1)

:=

[
−E[u2

t ]

(i+ j − 1)2

]
,

B̃1,4(γ′)
(m+1)×1

:=

[
E[u2

t ]

γ′ + j

]
, B̃2,2

k×k
:= E[u2

tdtd
′
t], B̃2,3

k×(m+1)

:=

[
−E[u2

tdt]

j2

]
, B̃2,4(γ′)

k×1

:=

[
E[u2

tdt]

γ′ + 1

]
,

B̃3,3
(m+1)×(m+1)

:=

[
2E[u2

t ]

(i+ j − 1)3

]
, B̃3,4(γ′)

(m+1)×1

:=

[
−E[u2

t ]

(γ′ + j)2

]
, B̃4,4(γ, γ′)

1×1

:=
E[u2

t ]

γ + γ′ + 1
,

where ut := yt − E[yt|dt]. Let B̃(γ, γ) be symmetric, so that B̃2,1 := B̃′1,2, B̃3,1 := B̃′1,3, B̃4,1(γ) :=

B̃1,4(γ)′, B̃2,3 := B̃′3,2, B̃2,4(γ) := B̃4,2(γ)′, and B̃4,3 := B̃′3,4. The matrix B̃(γ, γ) corresponds to B(γ)

in Section 2, and B̃(γ, γ′) is the almost sure limit of n−1
∑
u2
t G̃t(γ)G̃t(γ

′)′, which again exists under mild

moment and other regularity conditions that are assured by the following assumption.

Assumption 4. (i) For each ε > 0, Ã(·) and B̃(·, ·) are positive definite uniformly on Γ(ε);

(ii) {ut,Ft} is an MDS, where Ft is the adapted smallest σ-field generated by {dt+1, ut, dt, ut−1, · · · };

(iii) There is a strictly stationary and ergodic sequence {mt} such that for j = 1, 2, · · · , k, |dt,i| ≤ mt,

|ut| ≤ mt, and for some r > 1, E[m4r
t ] <∞, where dt,i is the i-th row element of dt. �

Several remarks are warranted on these conditions. First, Assumption 4 matches assumption 7 of BCP

except that Ã(·) and B̃(·, ·) in Assumption 4(i) are constructed for an arbitrary polynomial degree m rather

thanm = 1. Second, althoughm is unspecified, it is not hard to verify that Ã(·) is positive definite uniformly

on Γ(ε) if and only if the covariance matrix of dt is positive definite. If Ã(·) is reorganized into

 A1,1(γ) A1,2(γ)

A2,1(γ) Ã2,2

 :=


A1,1(γ)

Ã1,2

Ã3,2

Ã4,2(γ)

Ã2,1 Ã2,3 Ã2,4(γ) Ã2,2

 ,
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where

A1,1(γ) :=

 A1,1 A1,2(γ)

A2,1(γ) Ã4,4(γ)

 :=


Ã1,1 Ã1,3 Ã1,4(γ)

Ã3,1 Ã3,3 Ã3,4(γ)

Ã4,1(γ) Ã4,3(γ) Ã4,4(γ)

 ,
A1,1 is positive definite by the definitions of Ã1,1, Ã1,3, and Ã3,3. This in turn implies thatA1,1(γ) is positive

definite uniformly for each γ ∈ Γ(ε) if and only if Ã4,4(γ)−A2,1(γ)A−1
1,1A1,2(γ) is positive definite. Some

algebra shows that

Ã4,4(γ)− A2,1(γ)A−1
1,1A1,2(γ) =

∏m
i=0(γ − i)4

(1 + 2γ)
∏m
i=0(γ + i+ 1)4

,

which is strictly greater than zero for each γ ∈ Γ(ε), implying that A1,1(·) is positive definite uniformly on

Γ(ε). This further implies that Ã(·) is positive definite uniformly on Γ(ε) if and only if for each γ ∈ Γ(ε),

Ã2,2 − A2,1(γ)A1,1(γ)−1A1,2(γ) is positive definite. Here, every column of A1,2(γ) is a linear transforma-

tion of the first column of A1,1(γ), so that Ã2,2 − A2,1(γ)A1,1(γ)−1A1,2(γ) = E[dtd
′
t]− E[dt]E[dt]

′ that is

the covariance matrix of dt. Therefore, Ã(·) is positive definite uniformly on Γ(ε) if and only if the covari-

ance matrix of dt is positive definite, that is provided the elements of dt are not linearly dependent almost

surely. Third, Assumptions 3 and 4 imply that the regressors are now bounded processes in probability, so

that the null limit distribution of the QLR test statistic can be analyzed similarly to that of Section 2. In

particular, the singular matrix problem no longer arises.

The main result of this section is contained in the following theorem.

Theorem 4. Given Assumptions 3, 4, and H̃0, QLRn ⇒ supγ∈Γ Z̃(γ)2, where Z̃(·) is a Gaussian process

with covariance kernel for each γ and γ′ ∈ Γ given by

E[Z̃(γ)Z̃(γ′)] = cm(γ, γ′)
(1 + 2γ)1/2(1 + 2γ′)1/2

(1 + γ + γ′)
(11)

with cm(γ, γ′) :=
∏m
i=0(γ − i)(γ′ − i)/|

∏m
i=0(γ − i)(γ′ − i)|. �

The proof of Theorem 4, which is given in the Appendix, proceeds along the following lines. We first show

that the QLR test statistic under H̃0 is identical to that obtained under the hypothesis that β∗ = 0. Next, the

null limit distribution under the hypothesis that β∗ = 0 is obtained as supγ∈Γ Z̃(γ)2. Finally, the covariance

kernel in (11) is derived from the sample analog of Z̃(·) denoted as z̃n(·) := {σ̂2
n,0S(·)′MS(·)}−1/2{S(·)′M

U}, where S(γ) := [sγn,1, s
γ
n,2, . . . , s

γ
n,n]′, M := In−Z(Z ′Z)−1Z ′, and U := [u1, u2, . . . , un]′. Derivation

of the weak limit process proceeds in the same way as Theorem 1. We therefore focus on deriving the
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covariance kernel of Z̃(·) in Theorem 4. Let G̃(·) and σ̃2(·, ·) be the weak limit of n−1/2S(·)′MU and the

almost sure limit of n−1σ̂2
n,0S(·)′MS(·), respectively. We show that for each γ and γ′, we have

σ̃2(γ, γ) =
σ2
∗
∏m
i=0(γ − i)2

(2γ + 1)
∏m
i=0(γ + i+ 1)2

, and

E[G̃(γ)G̃(γ′)] =
σ2
∗
∏m
i=0(γ − i)(γ′ − i)

(γ + γ′ + 1)
∏m
i=0(γ + i+ 1)(γ′ + i+ 1)

,

where σ2
∗ := E[u2

t ] as before. Thus, the covariance kernel in (11) is obtained as

E[G̃(γ)G̃(γ′)]

{σ̃2(γ, γ)}1/2{σ̃2(γ′, γ′)}1/2
.

The Gaussian process Z̃(·) is independent of the joint distribution of {dt, ut}, just as in BCP. In partic-

ular, Theorem 4 holds irrespective of whether the error is conditionally hetroskedasticity or homoskedastic,

viz., the QLR test is a distribution free test. Its applicability is therefore relatively wide. We call the Gaussian

process Z̃(·) the polynomial power Gaussian process.

The polynomial power Gaussian process is associated with some other useful Gaussian processes. First,

the polynomial power Gaussian process generalizes the power Gaussian process in BCP, which is obtained

by simply setting m = 1. Second, the distribution of the polynomial power Gaussian process differs ac-

cording to the value of m. Nonetheless, the squared polynomial power Gaussian process has an identical

distribution irrespective of m because for any m, c2
m(·, ·) ≡ 1. Therefore, the critical values of the QLR test

statistic can also be obtained, just as in BCP, by simulating the truncated exponential Gaussian processes

in Cho and White (2010) and Cho, Cheong, and White (2011). Specifically, let the truncated exponential

Gaussian process be defined as

Z̄`(γ) :=
∑̀
i=2

[
γ4

(γ + 1)2(2γ + 1)

]−1/2(
γ

γ + 1

)i
Gi,

where Gi ∼iid N(0, 1) and ` is some given large integer. Then, the functional supγ∈Γ Z̄`(γ)2 can be

simulated in order to obtain the asymptotic critical values. When ` is sufficiently large, the true asymptotic

critical values are close to the critical values obtained by simulating supγ∈Γ Z̄`(γ)2.

We tabulate asymptotic critical values obtained in this way for large `. The critical values of BCP should

be used only when m = 1. Table 1 reports critical values for the QLR test for models with polynomials of

degree m = 2, 3, 4, 5, 6, 7, 8, 9, 10. With these tabulated results, users can test for neglected nonlinearity
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up to a 10th degree polynomial null model. The values reported are obtained with ` = 1000 and one million

replications. Since this methodology provides more precise critical values than those in BCP, we include the

m = 1 case in Table 1.1

3.3 Asymptotic Power of the QLR Test Statistic

As in the stationary case, the QLR test statistic has power for detecting misspecified time-trend polynomial

models. Model misspecification can arise in many ways for time-trend stationary data due to the vast extent

of possible nonstationary time trends, and the QLR test statistic does not have omnibus power against all

forms of misspecification, although it would have non-trivial power against an analytic transformation of

time trend by an analysis analogous to that in Section 2.5. We therefore restrict attention to the power of

the QLR test under a set of time-trend alternatives involving misspecified polynomial degree and omitted

smoothly slowly varying (SSV) functions. The former alternative is particularly important in constructing

a consistent time-trend degree selection algorithm. The latter are important in case of logarithmic and

more general power function alternatives. Suppose, for example, that E[yt|dt] = t(m)′α∗ + d′tη∗ + s(t)

under the alternative, where s(·) is an SSV function. Phillips (2007) provides many SSV functions that

include powered logarithm functions and iterated logarithmic function that occur in empirical applications

and nonlinear regression problems. Since the set of SSV functions is relatively large and typically involves

only minor departures from polynomical time trends, the results given below indicate that the QLR test

statistic will have power and non-trivial local power against such alternatives, as well as a large number of

other time-trend alternatives.

Theorem 5. Given Assumptions 3 and 4,

(i) if for some m0 > m, E[yt|dt] = t(m0)′α∗ + d′tη∗,

1

n
QLRn = sup

γ∈Γ

σ̃2(γ,m0)

{σ̃2(γ, γ)}1/2{σ̃2(m0,m0)}1/2
+ oP(1);

(ii) if E[yt|dt] = t(m)′α∗ + d′tη∗ + s(t) with s(·) being a SSV function, and ns′(n)→ c ( 6= 0),

1

n
QLRn = sup

γ∈Γ

(
c2σ2
∗

σ2
∗ + c2q

)(
p(γ)

σ̃(γ, γ)

)2

+ oP(1),

where p(γ) := (γ − 1)(7γ + 15)/{4(γ + 1)2(γ + 2)} and q := 91/64;

1Interested readers can download the GAUSS program code that generates the null limit distribution. The URL is

http://web.yonsei.ac.kr/jinseocho/research.htm. Users can select different values of the lower and upper bounds of Γ, `, and the

number of replications in running the code.
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(iii) if E[yt|dt] = t(m)′α∗ + d′tη∗ + s(t) with s(·) being a SSV function, and ns′(n)→∞,

1

n
QLRn = sup

γ∈Γ

(
σ2
∗
q

)(
p(γ)

σ̃(γ, γ)

)2

+ oP(1),

(iv) if E[yt|dt] = t(m)′α∗ + d′tη∗ + s(t)/{n3/2s′(n)} with s(·) being a SSV function,

QLRn ⇒ sup
γ∈Γ

(
Z̃(γ) +

p(γ)

σ̃(γ)

)2

.

Part (i) of Theorem 5 gives the power function of the QLR test statistic when the null model is misspecified

by setting the polynomial time-trend degree too low. This result is useful in assuring consistency of the

sequential testing algorithm discussed below. Polynomial functions do not belong to the SSV function class

and parts (ii, iii, and iv) give the power function properties of the QLR test statistic against various SSV

function alternatives and these results hold as corollaries of theorem 6 of BCP.

3.4 Sequentially Testing the Polynomial Time-Trend Model

The test procedure can be used sequentially to estimate polynomial degree using the approach in Section

2.6 applied to the time-trend stationary modelsM′j for j = 1, 2, . . . , m̄. The results given in Corollary 1

continue to hold for sequential testing in this context. That is, if we let

m∗ := inf{m ∈ N : ∃(α, η), E[yt|dt] = sn,t(m)′α+ d′tη},

as in Corollary 1, then for any ε > 0 and significance level α, limn→∞ P (|m̂n −m∗| > ε) = α. As before,

consistent estimation of m∗ is achieved if the significance level tends to zero slowly as n→∞.

Corollary 2. Given that Assumptions 3 and 4 hold for each m ∈ Pd(m̄), if (i) m∗ ∈ Pd(m̄), (ii) there is a

Gaussian process BS(·) such that for all γ, γ′ ∈ Γ, for some δ, cov(BS(γ),BS(γ′)) = 1 − |γ − γ′|δ (1 +

o(1)) and cov(BS(γ),BS(γ′)) ≤ cov(Z̃(γ), Z̃(γ′)), (iii) limn→∞αn = 0, and (iv) limn→∞ log(αn)/n =

0, then for any ε > 0, limn→∞ P (|m̂n −m∗| > ε) = 0. �

The intuition behind Corollary 2 is identical to that of Theorem 3. As αn → 0, Theorem 4 implies that

limn→∞ P(m̂n > m∗) = 0. Next, if the asymptotic critical value cn = o(n), Theorem 5(i) implies that

limn→∞ P(m̂n < m∗) = 0, so that limn→∞ P(m̂n = m∗) = 1. This desired result follows just as in the

proof of Theorem 3. The only point of difference from Theorem 3 is that we do not have to standardize Z̃(·)

as its variance is already unity, as given in Theorem 4, so that Corollary 2 compares the covariance function
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of BS(·) directly with that of Z̃(·) to yield a consistent estimator for m∗.

4 Simulations

We conducted an extensive simulation to assess the performance characteristics of the QLR test statistic.

The following simulation design was used for a time-trend stationary process. First, we generated data sets

{yt, dt} according to the scheme

yt = α0∗ + α1∗t+ α2∗t
2 + η∗dt + ut,

where ut := cos(dt)vt, dt := ρ∗dt−1 +wt with d0 ∼ N(0, 1/(1−ρ2
∗)) such that (vt, wt)

′ ∼iid N(02, σ
2
∗I2)

and (α0∗, α1∗, α2∗, η∗, σ
2
∗, ρ∗) = (1, 1, 1, 1, 1, 0.5). This design is a typical second degree polynomial time-

trend stationary process with conditionally heteroskedastic residuals. Second, we used the following models

for testing specification

M′m := {µt(·) : Ωn 7→ R : µt(αn, η, βn, γ) := st(m)′αn + dtη + βns
γ
n,t}

with γ ∈ Γ := [0.0, 3.5] and m = 1, 2, 3. These models have a parameter space Γ that includes the

unknown polynomial degree as an interior element. Third, we implemented the sequential testing algorithm

at significance levels of 1%, 5%, and 10%. We used sample sizes of 50, 100, 200, 300, 400, and 500, and for

each sample size 5,000 replications were performed, enabling estimation of the probability of the sequential

procedure leading to a polynomial degree estimate equal to the unknown true polynomial degree m∗ = 2.

Simulation results are reported in Table 2 and can be summarized as follows. First, when m is less than

the unknown polynomial degree 2, the model rejection rates are 100%. Even when the sample size is as

small as 50, the rejection rates are 100% for every level of significance, implying that the sequential testing

procedure estimates the degree less than the unknown polynomial degree with an extremely low probability.

This also implies that the power of the QLR test statistic is high even for small sample sizes. Second, for the

given significance level α, the predicted probability for the unknown polynomial degree is almost (1 − α)

even when the sample size is as small as 50. This implies that the overall type I error is controlled efficiently

in estimating the polynomial degree.

Before moving to discuss the next simulation, some caveats should be mentioned. First, the procedure

assumes that the model is correctly specified with respect to other covariates. If the polynomial degrees of

other explanatory variables are incorrectly specified, the estimated polynomial degree by the procedure can
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be biased. Second, in practice, a higher degree polynomial model can be rejected although a lower degree

polynomial model cannot be rejected. Given that the lower degree polynomial model is nested within the

higher degree polynomial model, the decision should be made based upon the test outcome for the higher

degree polynomial model.

Next, we studied sequential estimation of the polynomial degree. For this purpose, we used the same

design environment and applied Corollary 2 with the significance level αn determined by the sample size

so that αn → 0 and log(αn)/n → 0 as n increases. To assess performance, we estimated the empirical

probability of m̂n equaling m∗ = 2 for each αn as follows

P̂n(αn) :=
1

r

r∑
i=1

I(m̂n,i = m∗),

where I(·) is the indicator function, r is the total number of iterations, viz., 5,000, and m̂n,i denotes the

sequential estimator of m∗ for the i-th simulation. For each given αn, P̂n(αn) estimates the probability of

m̂n = m∗, so that if m̂n estimates m∗ consistently, P̂n(αn)− (1−αn) should converge to zero as n tends

to∞ because αn → 0 as n→∞. We examine how P̂n(αn) evolves as n→∞.

The simulation results are reported in Table 3. We consider three sequences for the level of significance:

αn = n−1, αn = n−3/4, and αn = n−1/2. Note that αn → 0 and log(αn)/n→ 0 in each case as n→∞.

If αn = n−1, the significance level approaches zero quickly, whereas the approach to zero is much slower

when αn = n−1/2, and αn = n−3/4 provides an intermediate rate of approach. These rates are selected to

cover significance levels between 10% and 0%, when the sample size is greater than 100, so that type I errors

are neither too large or too small for moderately sized samples. If the level of significance converges to zero

more slowly than n−1/2, the level of significance becomes too large to use in most practical applications. On

the other hand, if the level of significance converges to zero more quickly than n−1, the level of significance

is too small for good estimates P̂n(αn).

The main results of Table 3 can be summarized as follows. First, the distance between P̂n(αn) and

(1 − αn) is close to zero for every selection of αn. This outcome suggests that m∗ can be successfully

estimated by the sequential estimation procedure. Second, as the sample size increases, the distance between

P̂n(αn) and (1 − αn) shows evidence of convergence to zero for every selection of αn, indicating as

expected that degree estimation by m̂n becomes more precise in large samples. Third, the distance between

P̂n(αn) and (1 − αn) is relatively small when αn = n−1 and this choice of αn appears to deliver more

desirable sequential estimation results than the other choices.

We compare these estimation results with standard information criterion-based estimators using the same
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DGP. Three information criteria are examined, viz., Akaike’s (1973, 1974) information criterion (AIC), the

Bayesian information criterion (BIC), and small sample-size corrected AIC. These methods are applied to

the following models

M′0,m := {µt(·) : Ωn 7→ R : µt(α0, . . . , αm, η) := α0 + α1t+ . . .+ αmt
m + dtη},

with m = 1, 2, 3. Note thatM′0,m differs fromM′m in the fact that the power transform of the time trend

is omitted from the right side of the model. The motivation for using M′0,m lies in the fact that these

information criteria are typically defined to apply to identified models, whereas if M′m were attempted

for use with m = m∗, the model would be unidentified. Instead, to apply the information criteria as

degree selectors, we first follow the usual procedure of working with identified models. We let m̃n be the

polynomial degree estimated by the smallest information criterion value out of m = 1, 2, 3.

The penultimate lower panel of Table 3 shows simulation results based on the information criteria. The

performances of the information criteria are measured by

P̃n :=
1

r

r∑
i=1

I(m̃n,i = m∗),

where m̃n,i is the estimator of m∗ for the i-th simulation using the information criteria. The results are as

follows. First, the performance measure P̃n × 100 converges to 100% for BIC as the sample size increases,

whereas those for AIC and AICc do not converge to 100% as fast as BIC. Second, BIC performs overall

better than AIC and AICc. If the sample size is as high as 1,000, most of the estimates obtained givem∗ = 2.

In fact, 99.06% of 5,000 iterations are correctly estimated. Third, the overall performance of the BIC-based

estimator is, nevertheless, inferior to those of the sequential test procedure. In particular, if αn = n−3/4 or

n−1, the sequential estimation of the polynomial degree is more often precise than the BIC-based estimator,

whereas if αn = n−1/2, the BIC-based estimator shows better performance than the sequential estimation

procedure. These results show that the sequential estimation procedure generally estimates polynomial

degree better than information criteria, especially when faster approach rates to zero are selected for αn.

We also apply the information criteria to M′m despite the presence of the identification problem and

report the simulation results in the lower panel of Table 3. To distinguish the earlier information criteria,

we added the superscript ‘′’ to the information criteria labels. The overall simulation results differ from the

results usingM′0,m. First, the performance measures steadily converge to 100% for all of the criteria AIC′,

BIC′, and AICc′, as the sample size increases. Second, it is not recommended to use these information
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criteria in small samples. If the sample size is less than 500, performance of all of the information criteria

is poor. On the other hand, if the sample size is as large as 600, performance of these criteria are more or

less similar to those performed by AIC, BIC, and AICc. Third, the best performing information criterion

is BIC′, although it is inferior to BIC, implying that the sequential estimation procedure outperforms BIC
′

when αn = n−1 or n−3/4, and the dominance of the sequential procedure now applies even when n−1/2.

5 Empirical Applications

Since Mincer (1958, 1974) first introduced the earnings equation using schooling years and potential work

experience, the following equation has been the most influential empirical model for human capital earnings:

log(wt) = α0∗ + η∗st + α1∗xt + α2∗x
2
t + ut, (12)

where wt is earnings, st is schooling years, and xt is potential work experience of individual t. Most

empirical models on earnings data since Mincer (1958, 1974) are specified by adding more explanatory

variables to the right side of (12) or by modifying the model in (12) into a structural equation.2 Unless

structural interpretations are involved, the unknown parameters are estimated by least squares method for

most available earnings data across countries. The main reasons for the popularity of this model are its

power to fit earnings data well despite its simple structure and its useful theory underpinnings. According

to Card (1999), about 20–35% of earnings variation are explained by this simple equation .

Against this background persistent questions have been raised over the possibility that the earnings

equation in (12) is misspecified. Murphy and Welch (1990) empirically examined the usefulness of the

functional form in (12) using the current population survey (CPS) data from 1964 to 1987 and concluded

that the quadratic functional form in (12) is unacceptable and argued instead for a quartic functional form

in the experiences variable. Heckman, Lochner, and Todd (2006) and Lemieux (2006), motivated by the

same question, both conclude that recent earnings data do not fit the Mincer equation as well as 1960’s

and 1970’s earnings data. In particular, Lemieux (2006) shows that the quadratic function is not flexible

enough to capture empirically the relationship between earnings and experiences. The quartic model is also

preferred by Lemieux (2006), who points out that the Mincer equation in recent years needs to accommodate

different cohort effects and potential misspecification in terms of schooling years that may be corrected by

including squared schooling years. Heckman, Lochner, and Todd (2006) estimated the earnings equation

nonparametrically, so that a polynomial degree was not estimated.

2See Card (1999) for a survey of the empirical literature on Mincer’s equation.
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Following a similar motivation to Murphy and Welch (1990), we revisit the Mincer equation using the

QLR statistic to test specification. The data set used for this study is the same as in Card (1995) and examines

the causal relationship between earnings and schooling years. The national longitudinal survey (NLS) data

constructed by Card (1995) were drawn from 24–36 aged men in 1976, so that different cohort effects do

not affect estimation of the Mincer equation. The sample size is 3,010, of which 2,707 individuals are white

males. For more information on the data, readers are refered to Card (1995).

We focus on estimating the following models including the conventional Mincer equation in (12):

log(wt) = α0∗ + η1∗st + α1∗xt + α2∗x
2
t + η2∗bt + η3∗m76t + ut, (13)

log(wt) = α0∗ + η1∗st + α1∗xt + α2∗x
2
t + η2∗bt + η3∗m76t + η4∗m66t +

11∑
j=5

ηj∗rj,t + ut, (14)

where bt is a dummy variable for black/white, m76t is a dummy variable for residence in the South and in

a metropolitan area in the year of 1976, rj,t is an indicator for region of residence in 1966; and m66t is a

dummy variable for residence in the South and in a metropolitan area in the year of 1966. The year 1966 is

treated as an important base year because the NLS data survey started in the same year. These models are

the first two Mincer equation models estimated by Card (1995) modified by features of the NLS data. Note

that all variables besides experience and schooling years are dummy variables, so that the functional form

in the conditional mean equation is otherwise linear. In addition to these models, Card (1995) estimated

various other models by including additional explanatory variables, but we focus here on the models in (12),

(13), and (14) as the other model estimation results are very similar.

We apply the QLR test in the following manner. First, we test for further neglected nonlinearity with

respect to experience xt. We let the parameter space of the power coefficient be [−0.25, 5.00], so that we can

test up to fifth degree polynomial models as the null model. Hansen’s (1996) weighted bootstrap is applied

to our QLR test to obtain the p-values of the QLR tests. The bootstrap iteration number is 500. While

computing the test statistics, we extend the null models in (12), (13), and (14) to including polynomial

terms in schooling years. This modification accommodates the possibility that the QLR test may reject the

null model because of nonlinearity with respect to schooling years, which was one of Lemieux’s (2006)

concerns. The models in (12), (13), and (14) are therefore extended as follows

log(wt) = α0∗ +

m1∑
j=1

βj∗s
j
t +

m2∑
j=1

αj∗x
j
t + ut, (15)
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log(wt) = α0∗ +

m1∑
j=1

βj∗s
j
t +

m2∑
j=1

αj∗x
j
t + η1∗bt + η2∗m76t + ut, (16)

log(wt) = α0∗ +

m1∑
j=1

βj∗s
j
t +

m2∑
j=1

αj∗x
j
t + η1∗bt + η2∗m76t + η3∗m66t +

10∑
j=4

ηj∗rj,t + ut, (17)

with m1, m2 = 1, 2, . . . , 5. These models are treated as the null specification in our tests. Second, we

reverse the roles of schooling years and experience and conduct the same testing procedures in the first

step. That is, we test for further neglected nonlinearity with respect to schooling years st using the same

parameter space for power coefficient.

The test results are contained in Tables 4 and 5. The left- and right-side panels report the p-values

from testing for further neglected nonlinearity with respect to experience and schooling years, respectively.

Inferences depend on the data, models, and levels of significance. Despite these differences, we can draw

some consistent features of the data from these specification tests. We summarize the findings as follows.

First, the major implication of these tests on the specification of the Mincer equation is that all models

that are linear in experience are rejected when testing for the neglected nonlinearity in experience at the

1% level of significance, confirming the presence of nonlinearity in this variable and the need for squared

or higher degree polynomial terms in experience in the earnings equation. The nonlinearity in experience

specification is further affirmed by testing the null models with respect to schooling years. All p-values in

the right-side panels of Tables 4 and 5 imply that neglected nonlinear terms with respect to schooling years

are hard to detect if squared or higher degree terms in experience are included in the regression, although its

reversed relationship is not found. That is, even if schooling years are squared or further higher terms are

included, the models are still nonlinear with respect to experience as observed for all models and hold also

for white men. This finding differs from what Lemieux (2006) discovered from more recent CPS data.

Second, the results in Tables 4 and 5 imply that the original Mincer’s hypothesis is statistically supported

by the sequential estimation procedure. For the original Mincer equation, we focus on (15) and sequentially

estimate m1 and m2 in the following manner using the first-left panels of Tables 4 and 5: for given m2 say

1, we sequentially test m1 = 1, 2, . . . , 5 at the 1% level of significance. If we cannot accept the null for

all m1 = 1, 2, . . . , 5, we increase m2 to the next higher level, say 2 for this case, and continue testing with

respect to m1 = 1, 2, . . . , 5, until the hypothesis cannot be rejected. We let m2 increase from 1 to 5. The

first-left panels of Table 4 and 5 show that m1 and m2 estimated by this sequential estimation are 1 and 2,

respectively, and these are the same degrees as asserted by the Mincer equation. Furthermore, we also note

that Mincer equation holds for white men data even when models are extended to Models (16) and (17).

This finding is consistent with Heckman, Lochner, and Todd (2006) and Lemieux (2006)’s conclusion that
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the Mincer equation fits well 1960’s and 1970’s earnings data.

Third, the evidence suggests that different polynomial models for different set of explanatory variables

are required to address nonlinearity in specification. The original Mincer equation does not include explana-

tory variables other than schooling years and experience. Models (16) and (17) are specified by including

additional explanatory variables. Our empirical findings using black and white men data and the same se-

quential testing procedure evidently show that m1 and m2 in Model (16) need to be at least 2 and 3 in

order to eliminate need for further nonlinearity in schooling years and experience, respectively. On the other

hand, Model (17) estimates 1 and 3 for m1 and m2, respectively. These estimations show that the respective

degrees of polynomial nonlinearity with respect to schooling years and experience in the original Mincer

equation are not invariant to the inclusion of other explanatory variables in the model, thereby indicating the

need for some flexibility in treating potential nonlinearity in these key variables, as is possible with flexible

polynomial specifications and, more generally, with sieve approximants.

6 Conclusion

Testing for misspecification is now a standard feature of empirical econometric work. The methodology

developed here provides a convenient mechanism for testing for an arbitrary presence of neglected nonlin-

earity in models that already involve polynomial functions of covariates or time trends. Given the extensive

use of such polynomial specifications in empirical applications, it is especially useful to have simple tools to

test directly for omitted nonlinearities. Our approach relies on QLR statistics that are constructed explicitly

to evaluate the impact of including additional power transforms of the regressors in the regression. This ap-

proach provides for convenient implementation to assess specification in practice and further enables direct

estimation of polynomial degree along with its consistent power against arbitrary alternatives. While the

methods have been developed here for parametric models, they may be used in the context of nonparametric

sieve approximations in assessing choice of a polynomial approximant degree.

Of particular interest is the fact that the null limit distribution of the QLR statistic resolves the multi-

fold identification problem inherent in polynomial and power transform regressions. Moreover, when the

prediction errors in the equation form an MDS the QLR test statistic is asymptotically distribution free for

testing further neglected nonlinearity with respect to time trends, so is well suited for convenient application

in models where the nature of the time trend is uncertain. Simulations confirm that these tests have good

finite sample performance and relate well to the limit theory. The sequential testing procedure for consis-

tently estimating unknown polynomial degree also works well in simulations, comparing favorably with
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and frequently dominating the performance of information criteria. Simulations show that this procedure

controls overall type I error efficiently. Empirical application of these methods to earnings data studied by

Card (1995) show that the methods are informative about specification weaknesses in conventional Mincer

equation modeling, indicating that more flexible specifications are needed to capture the impact of schooling

and experience on earnings.

7 Appendix

Before proving the main results, we provide the following supplementary lemma to assist in the derivations.

Lemma A1. Given Assumptions 1 and 2,

(i) A′cU = OP(
√
n), Z ′U = OP(

√
n), E′cU = OP(

√
n);

(ii) A′cZ = OP(n), Z ′Z = OP(n), E′cZ = OP(n);

(iii) A′cAc = OP(n), A′cEc = OP(n), B′cU = OP(n), B′cZ = OP(n), E′cZ = OP(n), E′cEc = OP(n),

F ′cU = OP(n), and F ′cZ = OP(n); and

(iv) B′cU = oP(n) and F ′cU = oP(n). �

Proof of Lemma A1: (i) By the definition ofEc := [0n×c
...Ac

... 0n×(m−c+k)], we note that ifA′cU = OP(
√
n),

then E′cU = OP(
√
n). Therefore, we focus on proving that A′cU = OP(

√
n).

By the definition of A′cU , n−1/2A′cU = [n−1/2
∑
xct log(xt)ut], so that if E[x2c

t log2(xt) u
2
t ] < ∞,

we can apply the CLT. When we apply the Cauchy-Schwarz inequality, we obtain: (a) E[x2c
t log2(xt)u

2
t ] ≤

E[x4c
t log4 (xt)]

1/2E[u4
t ]

1/2 ≤ E[x8c
t ]1/4E[log8(xt)]

1/4E[u4
t ]

1/2; (b)E[x2c
t log2(xt)u

2
t ] ≤ E[u4

t log4(xt)]
1/2E[

x4c
t ]1/2 ≤ E[u8

t ]
1/4E[log8(xt)]

1/4E[x4c
t ]1/2; and (c) E[x2c

t log2(xt)u
2
t ] ≤ E[x4c

t u
4
t ]

1/2E[log4(xt)]
1/2 ≤

E[x8c
t ]1/4 E[u8

t ]
1/4E[log4(xt)]

1/2. We now note that the elements in the right side of (a), (b), and (c) are

finite by Assumption 2(iii), respectively.

As for Z ′U , n−1/2Z ′U = n−1/2
∑
zt,iut obeys a CLT if E[z2

t,iu
2
t ] < ∞. We note that E[z2

t,iu
2
t ] ≤

E[z4
t,i]

1/2E[u4
t ]

1/2 by the Cauchy-Schwarz inequality. If E[z4
t,i] < ∞ and E[u4

t ] < ∞, the desired results

follow. These conditions are already required in Assumption 2.

(ii) As in (i), if A′cZ = OP(n), E′cZ = OP(n) by the definition of Ec. For A′cZ = [
∑
xct log (xt)zt,i],

this obeys the LLN if E[|xct log(xt)zt,i|] < ∞. We consider two cases separately: for some `, when zt,i =

dt,` and when zt,i = x`t .

Take the case: zt,i = dt,`. Note thatE[xct log(xt)zt,i] = E[xct log(xt)dt,`]. Therefore, (a)E[xct log(xt)dt,`

] ≤ E[x2c
t log2(xt)]]

1/2E[d2
t,`]

1/2 ≤ E[x4c
t ]1/4E[log4(xt)]

1/4E[d2
t,`]

1/2; (b) E[xct log (xt)dt,`] ≤ E[d2
t,` log2(

xt)]
1/2E[x2c

t ]1/2 ≤ E[d4
t,`]

1/4E[log4(xt)]
1/4E[x2c

t ]1/2; (c) E[xct log(xt)dt,`] ≤ E[x2c
t d

2
t,`]

1/2E[log2(xt)]
1/2

31



≤ E[x4c
t ]1/4E[d4

t,`]
1/4E[log2(xt)]

1/2 by the Cauchy-Schwarz inequality. All these bounds are finite by As-

sumption 2(iii).

Next consider the case when zt,i = x`t . Then, E[xct log(xt)zt,i] = E[xc+`t log(xt)], which is bounded by

E[x
2(c+`)
t ]1/2E[log2(xt)]

1/2. We note that Assumption 2(iii) then ensures the required finite bound.

As for Z ′Z, n−1Z ′Z = n−1
∑
zt,izt,` obeys an LLN if E[|zt,izt,`|] < ∞. We note that E[|zt,izt,`|] ≤

E[z2
t,i]

1/2E[z2
t,`]

1/2 by the Cauchy-Schwarz inequality. If E[z2
t,i] < ∞, the desired results follows as it is

assumed in Assumption 2(iii).

(iii) By the definitions of Ec and Fc := [0n×c
...Bc

... 0n×(1+m−j+k)], if A′cAc = OP(n), B′cU = OP(n),

B′cZ = OP(n), and A′cZ = OP(n) then A′cEc = OP(n), F ′cU = OP(n), F ′cZ = OP(n), E′cEc = OP(n),

and E′cZ = OP(n). We have already shown that A′cZ = OP(n) in (ii). We, therefore, focus on proving

A′cAc = OP(n), B′cU = OP(n), and B′cZ = OP(n).

We examine each case in turn. (a) We note that n−1A′cAc = n−1
∑
x2c
t log2(xt), so that if E[x2c

t log2(

xt)] < ∞, the LLN holds. We note that E[x2c
t log2(xt)] ≤ E[x4c

t ]1/2E[log4(xt)]
1/2, and the right side is

finite by Assumption 2(iii).

(b) Note that n−1B′cU = n−1
∑
xct log2(xt)ut and, if E[|xct log2(xt)ut|] <∞, the LLN holds. We also

note that (b.i) E[xct log2(xt)ut] ≤ E[x2c
t log4(xt)]

1/2 E[u2
t ]

1/2 ≤ E[x4c
t ]1/4E[log8(xt)]

1/4 E[u2
t ]

1/2; (b.ii)

E[xct log2(xt)ut] ≤ E[u2
t log4(xt)]

1/2E[x2c
t ]1/2 ≤ E[u4

t ]
1/4E[log8(xt)]

1/4E[x2c
t ]1/2; and (b.iii) E[xct log2(

xt)ut] ≤ E[u2
tx

2c
t ]1/2E[log2(xt)]

1/2 ≤ E[u4
t ]

1/4E[x4c
t ]1/4E[log2(xt)]

1/2. Thus, each of the elements form-

ing the right side is finite by Assumption 2(ii.a), 2(ii.b), and 2(ii.c), respectively.

(c) Finally, we examine n−1B′cZ = [n−1
∑
xct log2(xt)zt,i]. As before, there are two separate cases:

for some `, zt,i = dt,` or zt,i = x`t . We first consider zt,i = dt,`. Note that E[|xct log2(xt)zt,i|] = E[|xct log2

(xt)dt,`|]. Therefore, (c.i) E[|xct log2(xt)dt,`|] ≤ E[x2c
t log4(xt)]

1/2E[d2
t,`]

1/2 ≤ E[x4c
t ]1/4E[log8(xt)]

1/4

E[d2
t,`]

1/2; (c.ii) E[xct log2(xt)xt,i] ≤ E[d2
t,` log4(xt)]

1/2E[x2c
t ]1/2 ≤ E[d4

t,`]
1/4E[log8(xt)]

1/4E[x2c
t ]1/2; and

(c.iii) E[|xct log2(xt)dt,`|] ≤ E[d2
t,` x

2c
t ]1/2E[log4(xt)]

1/2 ≤ E[d4
t,`]

1/4 E[x4c
t ]1/4E[log4(xt)]

1/2. Then, the

right sides are finite by Assumption 2(iii.a), 2(iii.b), and 2(iii.c), respectively.

Next consider zt,i = x`t . Then, E[|xct log2(xt)zt,i|] = E[|xc+`t log2(xt)|] ≤ E[|x2j−2+2`
t |]1/2 E[| log4(xt)

|]1/2. This bound is also finite by Assumption 2(iii).

(iv) By the definition of Fc, if B′cU = oP(n), it follows that F ′cU = oP(n). We already proved that

B′cU = OP(n) in (iii), and applying the LLN and the MDS condition in Assumption 2(ii) implies that

B′cU = oP(n). This completes the proof. �

Proof of Lemma 1: (i) To show the stated claim, we first derive the first-order derivative of Ln(γ;αc) with
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respect to γ. Note that

L(1)
n (γ;αc) = 2Pc(αc)

′Qc(γ)(Qc(γ)′Qc(γ))−1
[
(d/dγ)Qc(γ)′Pc(αc)

]
+ Pc(αc)

′Qc(γ){(d/dγ)(Qc(γ)′Qc(γ))−1}Qc(γ)′Pc(αc),

Qc(c) = Z from Qc(γ) := [X(0), . . . , X(j − 2), X(γ), X(j), . . . , X(m), D] and (d/dγ)Qc(γ) = Ec.

Next, Pc(αc) = Y −αcX(c) = Z[α0∗, . . . , αj−2, (αc∗−αc), αj , . . . , αm∗, η′∗]′+Z ′U = Zκc +U , so that

Pc(αc) = Zκc + U . Finally, we obtain that

(d/dγ)(Qc(γ)′Qc(γ))−1
γ=c = −(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1 (18)

and collect all these separate derivations in (d/dγ)Ln(γ;αc). This yields that

L(1)
n (c;αc) = 2(Zκc + U)′Z(Z ′Z)−1E′c(Zκc + U)

− (Zκc + U)′Z(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1Z ′(Zκc + U).

We further rearrange the terms on the right side. The first component is the sum of four other components :

(a) 2κ′cZ
′Z(Z ′Z)−1E′cZκc = 2κ′cE

′
cZκc; (b) 2κ′cE

′
cU ; (c) 2U ′Z(Z ′Z)−1E′cZκcy = 2κ′cZ

′Ec(Z ′Z)−1Z ′

U ; and (d) 2U ′Z(Z ′Z)−1E′cU . Next, the second component is the sum of four components: (a)−κ′cZ ′Ecκc
−κ′cE′cZκc = −2κ′cE

′
cZ κc; (b)−U ′Z(Z ′Z)−1Z ′Ec κc−κ′cE′cZ(Z ′Z)−1Z ′U = −2κ′cE

′
cZ(Z ′Z)−1Z ′ U ;

(c)−U ′Z(Z ′Z)−1E′cZκc−κ′cZ ′ Ec(Z ′Z)−1Z ′U = −2κ′cZ
′Ec(Z ′Z)−1Z ′U ; and (d)−U ′Z(Z ′Z)−1(Z ′Ec

+E′jZ)(Z ′Z)−1Z ′U . If we collect these eight different components according to their order of convergence,

they can be classified into the following three different terms:

• (a) 2κ′cE
′
cZκc − 2κ′cE

′
cZκc = 0;

• (b, c) 2κ′c{E′c + Z ′Ec(Z ′Z)−1Z ′ − E′cZ(Z ′Z)−1Z ′ − Z ′Ec(Z ′Z)−1Z ′}U = 2(αc∗ − αc)A′cMU

because Z ′Ec = A′c;

• (d) 2U ′Z(Z ′Z)−1E′cU − U ′Z(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1Z ′U ,

so that the first-order derivative is now obtained as

L(1)
n (c;αc) = 2(αc∗ − αc)A′cMU + 2U ′Ec(Z

′Z)−1Z ′U − U ′Z(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1Z ′U,

and this is the desired first-order derivative. Given this derivative, Lemma A1(i and ii) implies that the
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second and third terms in the right side are oP(n), so that the desired result follows from this.

(iii) We next examine the second-order derivative. In the same way, we obtain that

L(2)
n (c;αc) =2(Pc(αc)

′Ec)(Z
′Z)−1(E′cPc(αc)) + 4(Pc(αc)

′Z){(d/dγ)[Qcc
′Qcc]

−1}E′cPc(αc)

+ 2(Pc(αc)
′Z)(Z ′Z)−1F ′cPc(αc) + (Pc(αc)

′Z){(d2/dγ2)[Qcc
′Qcc]

−1}Z ′Pc(αc).

We note that (18) already provides the form of (d/dγ)[Q(γ)′Q(γ)]−1
γ=c, and

(d2/dγ2)[Q(γ)′Q(γ)]−1
γ=c =2Z(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1Z ′

− (Z ′Z)−1(2E′cEc + Z ′Fc + F ′cZ)(Z ′Z)−1.

Using these and the previous definitions, the second-order derivative is obtained as

L(2)
n (c;αc) = 2(Zκc + U)′{Ec(Z ′Z)−1E′c + Z(Z ′Z)−1F ′c}(Zκc + U)

− 4(Zκc + U)′Z(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1E′c(Zκc + U)

− (Zκc + U)′Z(Z ′Z)−1(2E′cEc + Z ′Fc + F ′cZ)(Z ′Z)−1Z ′(Zκc + U)

+ 2(Zκc + U)′Z(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1Z ′(Zκc + U).

Finally, we rearrange the right side according to their order of convergence and obtain that

• 2κ′c{Z ′E′c(Z ′Z)−1E′c+F ′c}Zκc−4κ′c(Z
′Ec+E′cZ)(Z ′Z)−1E′cZκc+2κ′c(Z

′Ec+E′cZ)(Z ′Z)−1Z ′

Ec+E′cZ)κc−κ′c(2E′cEc+Z ′Fc+F ′cZ) κc = 2κ′cE
′
cZ(Z ′Z)−1Z ′Ecκc−2κ′cE

′
cEcκc = −2(αc∗−

αc)
2A′cM Ac;

• 4κ′cZ
′Ec(Z ′Z)−1E′cU−4κ′c(Z

′Ec+E′cZ)(Z ′Z)−1E′cU−4κ′cZ
′Ec(Z ′Z)−1(Z ′Ec+E′cZ)(Z ′Z)−1Z ′

U + 2κ′cF
′
cU + 2κ′cZ

′Fc(Z ′Z)−1Z ′U + 4κ′c(Z
′Ec + E′cZ)(Z ′ Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1Z ′U −

2κ′c(2E
′
cEc+Z

′Fc+F ′cZ)(Z ′Z)−1Z ′ U = 2(αc∗−αc)[B′cMU−2A′cMEc(Z
′Z)−1Z ′U−2A′cZ(Z ′

Z)−1E′cMU ]; and

• 2[U ′Ec(Z ′Z)−1E′cU+U ′Fc(Z ′Z)−1Z ′U−2U ′Ec(Z ′Z)−1(Z ′Ec+E′cZ)(Z ′Z)−1Z ′ U ]+2U ′Z(Z ′

Z)−1[(Z ′Ec + E′cZ)(Z ′Z)−1(Z ′Ec + E′cZ)− E′cEc − Z ′Fc](Z ′Z)−1Z ′ U .

We now apply Lemma A1 to each of these terms. First, Lemma A1(ii and iii) imply that A′cMAc =

A′cAc − AcZ(Z ′Z)−1Z ′Ac = OP(n). Second, B′cMU = B′cU − B′cZ(Z ′Z)−1Z ′U , and Lemma A1

(ii and iii) implies that B′cMU = OP(n). Furthermore, Lemma A1(iv) implies that B′cMU = oP(n).
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Third, A′cMEc = A′cEc − A′cZ(Z ′Z)−1Z ′Ec. Assumption 2 and Lemma A1(ii, iii, and iv) imply that

A′cMEc(Z
′Z)−1Z ′U = oP(n). Fourth, E′cMU = EcU − EcZ(Z ′Z)−1Z ′U = oP(n) by Lemma A1(i and

iv), so that A′cZ(Z ′Z)−1E′cMU = oP(n). Therefore, B′cMU −2A′cMEc(Z
′Z)−1Z ′U −2A′cZ(Z ′Z)−1E′c

MU = oP(n). Finally, we combine all terms in Lemma A1 and obtain that

2[U ′Ec(Z
′Z)−1E′cU + U ′Fc(Z

′Z)−1Z ′U − 2U ′Ec(Z
′Z)−1(Z ′Ec + E′cZ)(Z ′Z)−1Z ′U ]

+ 2U ′Z(Z ′Z)−1[(Z ′Ec + E′cZ)(Z ′Z)−1(Z ′Ec + E′cZ)− E′cEc − Z ′Fc](Z ′Z)−1Z ′U = oP(n).

All of these facts imply that L
(2)
n (c;αc) = −2(αc∗ − αc)2A′cMAc + oP(n). �

Proof of Lemma 2: It is proved in the text. �

Proof of Lemma 3: Given Lemma 2, the proof is almost identical to the proof of theorem 1 of BCP. �

Proof of Theorem 1: In fact, (10) implies that QLRn = QLR
(β=0)
n under H0,m, and Lemma 3(ii) implies

that QLR
(β=0)
n ⇒ supγ∈ΓZ(γ)2. The desired result follows. �

Proof of Theorem 2: (i and ii) Assumptions 1 and 2 satisfy the regularity assumptions 1, 2(iii, v), 4(ii),

and 5 of BCP. Furthermore, we can let [xt, x
2
t , . . . , x

m
t ] be a part of dt of BCP. From these two facts, the

assumptions in theorem 5 of BCP are satisfied. Therefore, the BCP results apply to Theorem 2 with m(xt)

of BCP being s(xt) in the current paper. �

Proof of Theorem 3: Before proving the claim, we let γ and γ̄ be the lower and upper limit of Γ such that

Γj := [γj , γj+1] such that γ0 := γ, γm̄+1 := γ̄, and for j = 1, 2, . . . , m̄, γj := j.

We now prove the stated claim. First, limn→∞ P(m̂n > m∗) = limn→∞αn = 0 by virtue of the size

decay condition (ii). Second, Theorem 2(i) implies that if cn = o(n), for any j < m∗, limn→∞ P(QLR
(j)
n >

cn) = 1. This implies that if αn is selected to yield cn = o(n), the desired result follows. We note

the following six properties (i to vi): (i) supγ∈Γj Z(γ)2 = supγ∈Γj{max[0,Z(γ)]2 + max[0,Z(γ)]2} ≤

supγ∈Γj max[0,Z(γ)]2 + supγ∈Γj max[0,Z(γ)]2}, so that for any u > 0,

P

(
sup
γ∈Γj

Z(γ)2 ≥ u2

)
≤ P

(
sup
γ∈Γj

max[0,Z(γ)]2 ≥ u2

2

)
+ P

(
sup
γ∈Γj

min[0,Z(γ)]2 ≥ u2

2

)

= P

(
sup
γ∈Γj

Z(γ) ≥ u√
2

)
+ P

(
inf
γ∈Γj
Z(γ) ≤ − u√

2

)
= 2P

(
sup
γ∈Γj

Z(γ) ≥ u√
2

)
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by the fact that P(infγ∈Γj Z(γ) ≤ −u/
√

2) = P(supγ∈Γj Z(γ) ≥ u/
√

2), where the last equality holds

from the symmetry of Gaussian process distribution. Therefore, for any u > 0,

P

(
sup
γ∈Γ
Z(γ)2 ≥ u2

)
≤ 2

m̄+1∑
j=1

P

(
sup
γ∈Γj

Z(γ) ≥ u√
2

)
. (19)

(ii) Given the conditions, if we let σ∗ := supγ∈Γ var[Z(γ)]1/2, for any γ, |Z(γ)/σ∗| ≤ |Z(γ)/σ0(γ)| =

|Z0(γ)|, so that for any u > 0,

P

(
sup
γ∈Γj

Z(γ)

σ∗
≥ u

)
≤ P

(
sup
γ∈Γj

Z0(γ) ≥ u
)
. (20)

(iii) Lemma 7.1 of Piterbarg (1996) implies that as u→∞,

P

(
sup
γ∈Γj

BS(γ) ≥ u
)

= Hδµ(Γj)u
2/δ(1− Φ(u))(1 + o(1)), (21)

where Φ(·) is the distribution function of the standard normal random variable, µ(·) is the Lebesgue measure

of the given argument, Hδ := limγ̄→∞H(γ̄)/γ̄, and H(γ̄) := E[exp(maxγ∈[0,γ̄] BF (γ))]. Here, BF (·) is a

fractional Brownian motion with mean −|γ|δ and cov(BF (γ),BF (γ′)) = |γ|δ + |γ′|δ − |γ − γ′|δ on Γ.

(iv) The Slepian inequality implies that for any v, P(supγ Z0(γ) ≥ v) ≤ P(supγ BS(γ) ≥ v) (e.g.,

Piterbarg, 1996, p.6). Therefore, the Slepian inequality, (20), and (21) imply that as u→∞,

P

(
sup
γ∈Γj

Z(γ) ≥ u√
2

)
≤ Hδµ(Γj)

(
u√
2σ∗

)2/δ (
1− Φ

(
u√
2σ∗

))
(1 + o(1)), (22)

so that it follows that

P

(
sup
γ∈Γ
Z(γ)2 ≥ u2

)
≤ 2Hδµ∗

(
u√
2σ∗

)2/δ (
1− Φ

(
u√
2σ∗

))
(1 + o(1))

by (19), where µ∗ := µ(Γ).

(v) We further note that 1 − Φ(·) = 1
2erfc((·)/

√
2) ≤ 1

2 exp(−(·)2/2). Hence, if u → ∞, it follows

from

P

(
sup
γ∈Γ
Z(γ)2 ≥ u2

)
≤ Hδµ∗

(
u2

2σ2
∗

)1/δ

exp

(
− u2

4σ2
∗

)
(1 + o(1)). (23)

(vi) Finally, if we let the left side of (23) and u2 be the significance level αn and its associated critical
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value cn, respectively, then

− log(αn)

n
≥ −1

δ

log(cn)

n
+

1

4σ2
∗

cn
n

+ o(1)

by noting that
{

log (Hδµ∗)− 1
δ log(2σ2

∗)
}

= O(1). We now note that

−1

δ

log(cn)

n
+

1

4σ2
∗

cn
n

=
1

4σ2
∗

cn
n

(
1− 4σ2

∗
δ

log(cn)

cn

)
=

1

4σ2
∗

cn
n

(1 + o(1))

as cn → ∞. Therefore, if log(αn) = o(n), as is assumed in condition (iii), it follows that cn = o(n). This

completes the proof. �

Proof of Theorem 4: Weak convergence of the QLR test statistic is proved in the same way as that of

Theorem 1, so we only derive the covariance kernel of Z̃(·).

First, note that applying Theorem 1 implies that QLRn = supγ∈Γ {S(γ)′MU}2 /{σ̂2
n,0S(γ)′MS(γ)}

under H̃0. Next, applying the ULLN to n−1S(·)′MS(·) shows that supγ∈Γ |n−1σ̂2
n,0S(γ)′MS(γ)−σ̃2(γ, γ)|

a.s.→ 0, where for each γ,

σ̃2(γ, γ) := σ2
∗{Ã4,4(γ)− Ã3,1(γ)(Ã1,1)−1Ã1,3(γ)} =

σ2
∗
∏m
i=0(γ − i)2

(2γ + 1)
∏m
i=0(γ + i+ 1)2

.

Also note that for each γ,

1√
n

(S(γ)′MU) =
1√
n

∑
uts

γ
n,t − Ã3,1(γ)(Ã1,1)−1 1√

n

∑
utzn,t + oP(1),

so that, if we let G̃(·) be the weak limit of n−1/2S(γ)′MU , we have

E[G̃(γ)G̃(γ′)] = B̃4,4(γ, γ′)− Ã3,1(γ)(Ã1,1)−1B̃1,3(γ′)

− Ã3,1(γ′)(Ã1,1)−1B̃1,3(γ) + Ã3,1(γ)(Ã1,1)−1B̃1,1(Ã1,1)−1Ã1,3(γ′)

=
σ2
∗
∏m
i=0(γ − i)(γ′ − i)

(γ + γ′ + 1)
∏m
i=0(γ + i+ 1)(γ′ + i+ 1)

.

This implies that

E[Z̃(γ)Z̃(γ′)] =
{
∏m
i=0(γ − i)(γ′ − 1)}(2γ + 1)1/2(2γ′ + 1)1/2

{
∏m
i=0 |γ − i| · |γ′ − i|}(γ + γ′ + 1)

= cm(γ, γ′)
(2γ + 1)1/2(2γ′ + 1)1/2

(γ + γ′ + 1)

by the definition of cm(γ, γ′) :=
∏m
i=0(γ − i)(γ′ − i)/|

∏m
i=0(γ − i)(γ′ − i)|, as desired. �
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Proof of Theorem 5: Part (i): Given that m0 > m, if we define G(m0) :=
∑m0

j=m+1 αj∗[1
j , 2j , . . . , tj , . . . ,

(n− 1)j , nj ]′, then

σ̂2
n,0 − σ̂2

n,A = sup
γ∈Γ

{n−1(U +G(m0))′MS(γ)}2
(n−1S(γ)′MS(γ))

.

Here, we note that supγ |n−1U ′MS(γ)| = oP(1). Furthermore, G(m0) = O(nm0) and n−m0G(m0) =

αm0∗S(m0) + o(1), so that n−1G(m0)′MS(γ) = αm0∗n
m0−1S(m0)′MS(γ) +OP(nm0−2). This implies

that supγ∈Γ |n−1−m0G(m0)′MS(γ)− αm0∗n
−1S(m0)′MS(γ)| = oP(1), so it follows that

σ̂2
n,0 − σ̂2

n,A = sup
γ∈Γ

α2
m0∗n

2m0
{n−1S(m0)′MS(γ)}2

(n−1S(γ)′MS(γ))
+ oP(n2m0). (24)

We next note that σ̂2
n,0 = n−1(U +G(m0))′M(U +G(m0)). Hence,

σ̂2
n,0 = σ2

∗ + α2
m0∗n

2m0n−1S(m0)′MS(m0) + oP(n2m0). (25)

With these results in hand, (24) and (25) imply that

1

n
QLRn =

σ̂2
n,0 − σ̂2

n,A

σ̂2
n,0

= sup
γ∈Γ

{n−1S(γ)′MS(m0)}2
(n−1S(γ)′MS(γ))(n−1S(m0)′MS(m0))

+ oP(1)

= sup
γ∈Γ

σ̃2(γ,m0)

{σ̃2(γ, γ)}1/2{σ̃2(m0,m0)}1/2
+ oP(1),

by noting that σ̃2(·, ·) is the almost sure limit of n−1σ̂2
n,0S(·)′MS(·).

Parts (ii, iii, and iv): In our context, we can let σ2
∗g(γ, γ̃) and K of theorem 6 in BCP be σ̃(γ, γ̃) and

1, respectively. The desired results then follow from theorem 6(ii.a, ii.b, v). �
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Levels \ Γ [−0.20, 1.50] [−0.10, 1.50] [0.00, 1.50] [0.10, 1.50]
10% 3.7336 3.5869 3.4772 3.4003

5% 5.0114 4.8423 4.7283 4.6434

1% 8.0323 7.8151 7.7430 7.6375

Levels \ Γ [−0.20, 2.50] [−0.10, 2.50] [0.00, 2.50] [0.10, 2.50]
10% 3.8966 3.7750 3.6651 3.5822

5% 5.1831 5.0589 4.9339 4.8459

1% 8.2617 8.1332 7.9663 7.8625

Levels \ Γ [−0.20, 3.50] [−0.10, 3.50] [0.00, 3.50] [0.10, 3.50]
10% 4.0125 3.8996 3.8050 3.7358

5% 5.3049 5.1925 5.0956 5.0150

1% 8.3942 8.2808 8.1330 8.0578

Levels \ Γ [−0.20, 4.50] [−0.10, 4.50] [0.00, 4.50] [0.10, 4.50]
10% 4.0975 3.9859 3.8874 3.8128

5% 5.4021 5.2884 5.1750 5.0841

1% 8.5032 8.3619 8.2586 8.1464

Levels \ Γ [−0.20, 5.50] [−0.10, 5.50] [0.00, 5.50] [0.10, 5.50]
10% 4.1702 4.0576 3.9581 3.8978

5% 5.4927 5.3664 5.2487 5.1970

1% 8.5837 8.4411 8.3105 8.2641

Levels \ Γ [−0.20, 6.50] [−0.10, 6.50] [0.00, 6.50] [0.10, 6.50]
10% 4.2150 4.1058 4.0209 3.9663

5% 5.5267 5.4220 5.3256 5.2666

1% 8.6134 8.5069 8.4181 8.3524

Levels \ Γ [−0.20, 7.50] [−0.10, 7.50] [0.00, 7.50] [0.10, 7.50]
10% 4.2587 4.1599 4.0652 4.0051

5% 5.5725 5.4723 5.3720 5.2999

1% 8.6938 8.5761 8.4599 8.3650

Levels \ Γ [−0.20, 8.50] [−0.10, 8.50] [0.00, 8.50] [0.10, 8.50]
10% 4.3033 4.1951 4.1135 4.0538

5% 5.6144 5.5156 5.4253 5.3551

1% 8.7141 8.6312 8.4897 8.4218

Levels \ Γ [−0.20, 9.50] [−0.10, 9.50] [0.00, 9.50] [0.10, 9.50]
10% 4.3351 4.2366 4.1557 4.0880

5% 5.6507 5.5505 5.4726 5.3905

1% 8.7754 8.6351 8.5425 8.4747

Levels \ Γ [−0.20, 10.50] [−0.10, 10.50] [0.00, 10.50] [0.10, 10.50]
10% 4.3652 4.2769 4.1752 4.1244

5% 5.6828 5.5892 5.4841 5.4492

1% 8.8038 8.7053 8.5877 8.5292

Table 1: ASYMPTOTIC CRITICAL VALUES OF THE QLR TEST STATISTIC. This table contains the asymp-

totic critical values obtained by generating the truncated exponential Gaussian process 1,000,000 times.
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α m \ n 50 100 200 300 400 500 600 700 800 900 1,000

10%

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2∗ 89.42 90.90 90.76 91.66 90.46 90.18 91.22 91.06 91.96 91.40 92.02

3 8.08 7.00 7.02 6.36 7.48 7.54 6.86 7.36 6.24 6.72 6.28

≥ 4 2.50 2.10 2.22 1.98 2.06 2.28 1.92 1.58 1.80 1.88 1.70

5%

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2∗ 94.68 95.20 95.42 95.98 95.32 95.18 95.48 95.80 96.00 95.46 95.64

3 4.28 3.90 3.82 3.24 3.84 3.98 3.82 3.76 3.46 3.90 3.74

≥ 4 1.04 0.90 0.76 0.78 0.84 0.84 0.70 0.44 0.54 0.64 0.62

1%

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2∗ 98.98 99.08 99.16 99.06 99.22 99.04 99.08 99.08 99.20 99.26 98.92

3 0.84 0.80 0.70 0.86 0.68 0.80 0.86 0.88 0.70 0.68 0.96

≥ 4 0.18 0.12 0.14 0.08 0.10 0.16 0.06 0.04 0.10 0.06 0.12

Table 2: ESTIMATED POLYNOMIAL DEGREES BY THE QLR TEST STATISTIC (IN PERCENT). NUMBER

OF ITERATIONS: 5,000. This table shows the portion of the estimated polynomial degrees by sequentially

applying the QLR test statistic. DGP: yt = α0∗ + α1∗t + α2∗t2 + η∗dt + cos(dt)vt, dt := ρ∗dt−1 + wt,
and (vt, wt)

′ ∼iid N(0, σ2
∗I2) such that (α0∗, α1∗, α2∗, η∗, σ

2
∗, ρ∗) = (1, 1, 1, 1, 1, 0.5). MODEL: M′m :=

{µt(·) : Ωn 7→ R : µt(αn, η, βn, γ) := st(m)′αn + dtη + βns
γ
n,t}, where m = 1, 2, 3, and γ ∈ Γ :=

[0.0, 3.5].

Methods \ n 50 100 200 300 400 500 600 700 800 900 1,000

Seqnt. Estmtn. 85.56 90.90 93.44 95.22 95.32 95.74 96.12 96.78 97.26 97.06 97.00

with αn = n−1/2 (85.85) (90.00) (92.92) (94.22) (95.00) (95.52) (95.91) (96.22) (96.46) (96.66) (96.83)

Seqnt. Estmtn. 94.34 97.28 98.22 98.78 99.02 99.10 99.20 99.28 99.44 99.58 99.32

with αn = n−3/4 (94.68) (96.83) (98.11) (98.61) (98.88) (99.05) (99.17) (99.26) (99.33) (99.39) (99.43)

Seqnt. Estmtn. 97.78 99.08 99.58 99.64 99.84 99.82 99.82 99.86 99.88 99.92 99.90

with αn = n−1 (98.00) (99.00) (99.50) (99.66) (99.75) (99.80) (99.83) (99.85) (99.87) (99.88) (99.90)

AIC 81.70 83.12 83.42 84.10 83.32 83.88 83.80 84.24 84.28 83.38 84.46

BIC 93.94 96.18 97.58 98.16 98.34 98.76 98.58 99.06 99.20 99.16 99.06

AICc 85.94 84.86 84.80 84.78 83.74 84.38 84.18 84.52 84.52 83.64 84.70

AIC′ 1.94 2.08 2.42 2.76 5.80 81.00 85.60 82.56 82.20 85.50 86.76

BIC′ 0.44 0.16 0.18 0.10 0.12 0.94 89.66 92.18 90.76 94.86 95.82

AICc′ 1.50 1.60 2.22 2.54 5.44 81.20 85.76 82.72 82.40 85.76 86.98

Table 3: PORTION OF SEQUENTIALLY ESTIMATED POLYNOMIAL DEGREES BY THE QLR TEST STA-

TISTIC (IN PERCENT). NUMBER OF ITERATIONS: 5,000. This table shows the percentages of the cor-

rectly estimated polynomial degree by the sequential application of the QLR test statistic and informa-

tion criteria: P̂n(αn) × 100 and P̃n × 100. Figures in parentheses denote (1 − αn) × 100. The level

of significance αn is a function of the sample size n that satisfies the conditions in Corollary 2, and

P̂n(αn) := 1
r

∑r
i=1 I(m̂n,i = m∗), where r is the number of iterations, and m̂n,i is the sequential esti-

mator of m∗ for the i-th simulation. Similarly, P̃n := 1
r

∑r
i=1 I(m̃n,i = m∗), where m̃n,i is the information

criterion-based estimator of m∗ for the i-th simulation. DGP: yt = α0∗+α1∗t+α2∗t2 + η∗dt + cos(dt)vt,
dt := ρ∗dt−1 + wt, and (vt, wt)

′ ∼iid N(0, σ2
∗I2) such that (α0∗, α1∗, α2∗, η∗, σ

2
∗, ρ∗) = (1, 1, 1, 1, 1, 0.5).

MODEL:M′m := {µt(·) : Ωn 7→ R : µt(αn, η, βn, γ) := st(m)′αn+dtη+βns
γ
n,t}, wherem = 1, 2, 3, and

γ ∈ Γ := [0.0, 3.5]. AIC, BIC, and AICc are applied toM′0,m := {µt(·) : Ωn 7→ R : µt(α0, . . . , αm, η) :=
st(m)′αn + dtη}, and AIC′, BIC′, and AICc′ are applied toM′m, where m = 1, 2, 3.
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Null Model 1: α0∗ +
∑m1

j=1 βj∗s
j
t +

∑m2

j=1 αj∗x
j
t

m2 \m1 1 2 3 4 5 m1 \m2 1 2 3 4 5

1
54.95 38.11 38.36 31.66 31.12

1
19.31 1.41 2.28 2.60 2.86

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (64.00) (37.80) (31.40) (27.80)

2
3.71 4.88 3.46 3.68 3.25

2
3.14 5.91 3.94 1.61 2.04

(7.00) (9.40) (6.20) (2.20) (5.20) (36.00) (23.00) (26.00) (56.60) (51.20)

3
2.21 3.09 3.71 2.27 2.01

3
12.41 3.55 5.32 5.65 2.23

(19.20) (9.80) (5.40) (13.80) (18.60) (2.60) (28.00) (12.80) (12.40) (41.40)

4
2.38 3.44 4.64 3.43 2.51

4
0.64 0.13 0.07 0.02 0.01

(20.40) (5.40) (2.80) (7.60) (16.40) (65.40) (95.00) (97.60) (99.60) (100.0)

5
1.53 1.30 2.08 7.92 1.13

5
0.31 0.22 0.05 0.21 0.02

(33.40) (26.40) (19.80) (46.40) (36.80) (86.00) (91.80) (99.00) (89.60) (99.40)

Null Model 2: α0∗ +
∑m1

j=1 βj∗s
j
t +

∑m2

j=1 αj∗x
j
t + η1∗bt + η2∗m76t

m2 \m1 1 2 3 4 5 m1 \m2 1 2 3 4 5

1
51.27 43.96 43.80 38.70 38.13

1
7.72 0.84 0.08 0.02 0.06

(0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (70.20) (98.80) (99.80) (99.00)

2
5.90 5.41 5.23 5.40 5.09

2
0.37 0.63 0.10 0.13 0.36

(0.80) (0.60) (0.80) (0.40) (0.40) (89.20) (79.80) (98.40) (96.40) (90.60)

3
4.86 5.20 5.18 4.03 3.84

3
7.06 1.18 2.54 2.13 1.11

(0.60) (1.20) (1.40) (2.80) (2.20) (3.80) (58.00) (23.80) (34.80) (55.80)

4
5.43 4.53 5.53 4.06 4.48

4
0.25 0.06 0.01 0.01 0.00

(1.00) (4.00) (2.00) (4.60) (3.00) (85.60) (99.00) (99.80) (99.80) (100.0)

5
2.35 1.77 1.89 2.28 1.63

5
0.12 0.07 0.02 0.17 0.05

(12.40) (20.00) (17.60) (12.20) (20.40) (95.00) (98.80) (99.60) (90.40) (98.00)

Null Model 3: α0∗ +
∑m1

j=1 βj∗s
j
t +

∑m2

j=1 αj∗x
j
t + η1∗bt + η2∗m76t + η3∗m66t +

∑10
j=4 ηj∗rj,t

m2 \m1 1 2 3 4 5 m1 \m2 1 2 3 4 5

1
54.16 46.16 45.97 41.09 40.42

1
8.48 0.84 0.06 0.01 0.06

(0.00) (0.00) (0.00) (0.00) (0.00) (0.80) (73.20) (99.20) (100.0) (99.40)

2
6.52 6.14 5.80 5.68 5.61

2
0.81 0.87 0.11 0.11 0.26

(0.60) (0.60) (0.80) (0.80) (0.40) (73.40) (70.00) (96.40) (97.20) (91.60)

3
5.02 4.93 5.13 3.75 2.66

3
7.31 1.11 2.27 1.68 0.66

(1.20) (2.20) (1.40) (2.20) (7.80) (4.80) (56.40) (31.20) (39.00) (74.80)

4
4.46 5.51 5.83 3.27 3.83

4
0.43 0.08 0.00 0.01 0.00

(2.20) (0.80) (1.60) (6.00) (5.20) (71.40) (96.80) (100.0) (99.60) (100.0)

5
2.18 1.96 1.92 1.74 1.38

5
0.11 0.21 0.02 0.40 0.04

(13.00) (18.80) (18.40) (17.40) (24.40) (96.40) (91.40) (99.60) (81.20) (98.80)

Table 4: INFERENCES OF THE MINCER EQUATION USING ALL OBSERVATIONS. This table shows the

QLR test statistic and its p-values that are obtained by the data set in Card (1995). The sample size is 3,010.

Figures are the QLR test statistics, and figures in parentheses are the p-values of the QLR tests measured

in percent that are computed by the weighted bootstrap with 500 number of bootstrap iterations. The left-

and right-side panels test for neglected polynomial degrees with respect to experiences and schooling years,

respectively. Boldface p-values indicate significance levels less than 0.01.
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Null Model 1: α0∗ +
∑m1

j=1 βj∗s
j
t +

∑m2

j=1 αj∗x
j
t

m2 \m1 1 2 3 4 5 m1 \m2 1 2 3 4 5

1
40.00 33.34 33.31 29.12 28.75

1
6.72 0.48 0.08 0.16 0.15

(0.00) (0.00) (0.00) (0.00) (0.00) (1.40) (86.00) (98.40) (95.00) (96.00)

2
1.61 1.13 1.05 0.70 0.59

2
0.42 1.54 0.41 0.31 0.17

(27.60) (41.00) (38.20) (37.00) (44.40) (83.80) (56.00) (87.40) (88.40) (94.20)

3
3.19 3.34 3.39 1.84 1.94

3
9.61 3.93 5.36 2.30 1.41

(5.80) (3.60) (2.80) (14.80) (10.60) (3.80) (15.40) (9.20) (30.60) (48.60)

4
2.42 1.53 2.42 1.44 2.35

4
0.07 0.00 0.00 0.00 0.00

(10.00) (22.20) (8.20) (20.00) (5.40) (99.40) (99.80) (100.0) (100.0) (99.60)

5
2.33 1.45 2.30 1.43 2.26

5
0.01 0.01 0.01 0.02 0.00

(15.00) (32.20) (14.60) (18.60) (10.60) (100.0) (99.20) (99.60) (99.60) (99.80)

Null Model 2: α0∗ +
∑m1

j=1 βj∗s
j
t +

∑m2

j=1 αj∗x
j
t + η1∗m76t

m2 \m1 1 2 3 4 5 m1 \m2 1 2 3 4 5

1
37.02 33.05 32.69 29.06 28.88

1
4.40 0.82 0.29 0.06 0.07

(0.00) (0.00) (0.00) (0.00) (0.00) (6.40) (7.08) (89.40) (98.60) (99.40)

2
1.98 1.33 1.33 1.64 1.54

2
0.73 0.46 0.63 0.77 0.35

(15.00) (13.60) (26.60) (20.60) (19.80) (70.20) (85.00) (75.40) (62.40) (86.20)

3
5.47 1.00 5.38 3.89 3.90

3
5.78 3.65 3.91 1.61 1.38

(0.80) (27.80) (0.80) (3.00) (2.40) (8.00) (17.80) (15.80) (45.00) (48.60)

4
3.17 4.44 3.94 3.82 3.89

4
0.02 0.00 0.00 0.01 0.01

(8.00) (2.40) (2.60) (2.60) (3.60) (99.40) (100.0) (100.0) (100.0) (100.0)

5
2.10 1.75 4.11 1.79 2.55

5
0.00 0.02 0.00 0.04 0.00

(18.20) (23.80) (5.20) (13.80) (6.80) (100.0) (99.80) (100.0) (98.00) (99.80)

Null Model 3: α0∗ +
∑m1

j=1 βj∗s
j
t +

∑m2

j=1 αj∗x
j
t + η1∗m76t + η2∗m66t +

∑9
j=3 ηj∗rj,t

m2 \m1 1 2 3 4 5 m1 \m2 1 2 3 4 5

1
39.82 34.88 34.66 31.06 30.89

1
5.06 0.75 0.12 0.04 0.0

(0.00) (0.00) (0.00) (0.00) (0.00) (2.80) (74.60) (97.60) (99.60) (99.80)

2
2.72 1.83 1.84 2.07 1.42

3
0.39 0.58 0.22 0.58 0.14

(10.00) (16.20) (19.00) (12.00) (21.60) (88.20) (79.20) (93.60) (75.00) (96.40)

3
5.57 0.42 5.61 4.12 4.00

4
3.97 2.03 3.45 0.99 0.98

(0.40) (27.20) (1.20) (3.60) (3.40) (19.00) (37.40) (20.40) (56.80) (58.80)

4
2.87 2.50 4.45 3.50 4.31

4
0.03 0.00 0.00 0.02 0.01

(10.60) (12.40) (1.00) (6.00) (2.60) (99.20) (100.0) (99.80) (99.60) (99.40)

5
2.56 2.98 1.55 1.32 1.49

5
0.13 0.00 0.01 0.08 0.00

(13.20) (12.00) (29.20) (26.00) (20.60) (93.00) (100.0) (99.60) (96.40) (100.0)

Table 5: INFERENCES OF THE MINCER EQUATION USING WHITE YOUNG MEN DATA. This table shows

the QLR test statistic and its p-values that are obtained by the data set in Card (1995). The sample size is

2,707. Figures are the QLR test statistics, and figures in parentheses are the p-values of the QLR tests mea-

sured in percent that are computed by the weighted bootstrap with 500 number of bootstrap iterations. The

left- and right-side panels test for neglected polynomial degrees with respect to experiences and schooling

years, respectively. Boldface p-values indicate significance levels less than 0.05.
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