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Abstract
We note that Su and Wang (2017, On Time-varying Factor Models: Estimation and Testing, Journal
of Econometrics 198, 84-101) ignore the bias terms when estimating the time-varying factor models. In
this note, we correct the theoretical results on the estimation of time-varying factor models. The

asymptotic results for testing the correct specification of time invariant factor loadings are not affected.
JEL Classification: C12, C14, C33, C38.
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1 Introduction

Su and Wang (2017, SW hereafter) introduced a time-varying factor model where factor loadings are allowed
to change smoothly over time and proposed a local version of the principal component analysis (PCA) to
estimate the latent factors and time-varying factor loadings simultaneously. After the paper was published,
we found that some bias terms have been ignored. As a result, the limiting distributions of the estimated
factors and factor loadings should be revised. In this paper, we correct the main results in SW. The notations
are the same as SW unless otherwise specified. All proofs are contained in the online supplementary
appendix.

We summarize the main corrections as follows. First, the leading bias terms in the factor loading
estimators are of O (h2) as in standard kernel regressions. Second, the estimator of the common factor
remains asymptotically unbiased for a rotational version of the true factors. Third, the bias of the estimated
factor loadings does not affect the distributions of our test statistic under the null hypothesis and the usual

sequence of Pitman local alternatives.
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financial supports from the National Science Foundation of China (No.71873151, No. 71401160). Address correspondence to:
Xia Wang, Lingnan (University) College, Sun Yat-sen University, Guangzhou 510275, China, Phone +86 8411 1191. Email:

wangzia2bQ@mail.sysu.edu.cn.



2 Correction on the limiting distributions of the estimated factors

and factor loadings
The time-varying factor model in SW is given as follows:
Xit = Ny Fy + €, (2.1)

where {X;,i = 1,2,...,N; t =1,2,...,T} is an N-dimensional time series with T' observations, F} is an
R x 1 vector of common factors, e;; is the idiosyncratic error, and the time-varying factor loading A\ is

assumed to be a nonrandom function of ¢/T"
Ait = Ai(t/T). (2.2)

Under the assumption that A; : [0,1] — R is a smooth function, we can approximate \; (%) by A; (%)
whenever ¢/T is close to r/T for any fixed r € {1,2,---,T}. Let di(t,7) = X\; (%) — Xi (%) denote the

approximation error. Then

t r t r r
Xt = A (T> — (?) n {/\ (T) Yy (T)} =\ (f) +di(t,r) (2.3)
and
Xit = Ny By + di(t,r) Fy + eir = Ny, Fy 4+ Ay(t,r) + e, (2.4)

where A;(t,r) = d;(t,r) F;. Compared with Eq. (3.1) in SW, we explicitly give out the additional term
A;(t,7), which represents the approximation error in the common component and will generate some bias
terms in the estimation of the factor loadings.

Recall that F\" = k;'/*Fy, where ki, ,, = h™ 'K ((t — ) /(Th)) and K is the boundary kernel used in
SW and constructed from a univariate kernel K with compact support [—1,1]. As in SW, we can obtain the
local PCA (LPCA) estimator ﬁ't(r) of Ft(r) and the associated LPCA estimator A, of the the factor loadings
Air- SW’s estimator of F} is obtained by running the cross-sectional regression of X;; on 5\“.

Let A, = (A1, ...Any) and AL = ()\§c) (r/T),..., )\5\? (r/T))" where )\gc) () denote the cth order deriva-
tive of \; (+) for c =1, 2. Let ko = f_ll u? K (u)du. To derive the asymptotic distribution of these estimators,

we strengthen SW’s conditions on the factor loadings and bandwidth.

Assumption A.1%*: (i) A\;(+) is third-order continuously differentiable with max; ; H)\Z(-C) t/T)|| < ¢y for
c =1,2,3 and some finite constant ¢.

(ii) As (N,T) — oo, Th" — 0, NhS — 0, Th/N — 0, Nh/T — 0, Th®> — oo, Nh? — oo, and
Th/N'/? = .

Assumption A.1*(i) requires that A;(-) be third-order continuously differentiable, which will greatly
simplify the derivation. Assumption A.1*(ii) strengthens the conditions in SW’s Assumption A.3(ii).

)

Theorems 2.1-2.3 below provide the limiting distributions of Ft(r , 5\”, and Ft, which are parallel to

Theorems 3.1-3.3 in SW.



Theorem 2.1 Suppose that Assumptions A.1, A.2(i) and A.3(i) in SW and Assumption A.1* hold. Then,
foreacht=1,2,...,T and r =1,2,...,T such that |r — t| < Th, we have

—1/2
—t A ’ r —
](: <T h > V Nh [l;t(r) — H(T) Z:’t(r) — Bg ):| *)d IN (0, &r IQTI rtQ;Lr 1) 5

where the bias term

2
T ~(r t—r ~(r ~(r t—r T

B = ¢ (T )+C2( >m2h2+0§>( 7 ) F"

with C" = VI HEO S p(ALAD /N, C = VT L HO S o (AP A N) + CSp (AN N, CF =

%VIS,TT)_lH(T)’EF(A;AQ)N), H") = (NflA;A,q)(T’lF(T)/F(T))VJE,T)_l7 VJS,TT) denotes the R x R diagonal

matriz of the first R largest eigenvalues of (NT)_1 XM X0 Vs the diagonal matrix consisting of the

eigenvalues of Z}\/TQEFE}\{Z in descending order with Y, being the corresponding (normalized) eigenvector

matriz (Y, 1, =1g), and Q, = Vrl/QT;IEXj/Q'

When we treat H (’")/Ft(r) as the pseudo-true factors, we note that the bias term B,ET) consists of three

t—r t—r

parts. The first and third parts are related to = and (T)2 that are of respective orders Op(h) and

Op(h?) and generated from the third-order Taylor expansion of d;(t,7). In the eigenvalue analysis, there

is no summation running over r or t so that terms associated with % and (t}r

out. The second part in BIET) contains two components, namely, %V]@«AH(’")’ZF(A$«2)/AT/N)Ft(T)n2h2 and
V]STT)_lc’Y)E F(A;Agl) /N )Ft(r)Rth. The first component is derived from the usual local constant estimation

t—r
T

the derivation. Consequently, B,ET) is Op(h), which is quite large but does not cause much trouble in the

)2 cannot be smoothed

of the common factors while the second one is generated from the summation over C’{T') (

) appearing in

asymptotic analyses of Nir and F.

Theorem 2.2 Suppose that Assumptions A.1, A.2(ii) and A.3(i) in SW and Assumption A.1% hold. Then,
foreachi=1,2,... N andr=1,2,...,T, we have

VTh [A ~HM,, - BA(i,r)] LYY (0, Q)™ Q”Qﬂ) ,
where By (i,r) = [éf’”’zmﬁ}.) +3Q7VEp A — (HOV 5RO + HOVS RO + OIS p O YH 1N, | koh?.

When we treat H (’“)*1/\@7« as the pseudo-true factor loadings, Theorem 2.2 indicates that the bias of j\ir
contains three terms that are associated with \;. and its first and second order derivatives, respectively.
(2)

The term related to A is introduced by the bias terms in F’t(r), the term related to A;.’ is derived from
the conventional nonparametric kernel estimation, and the term associated with /\571,) is obtained from the

interaction between the other two bias terms.

Theorem 2.3 Suppose that Assumptions A.1, A.2(i) and A.3(i) in SW and Assumption A.1* hold. Then,
for eacht =1,2,...,T, we have

A — ’ d — — - -
Vi8] %3 (o s or).

where HO = HO OO, 01 and HO' = b2 HO-1{ LAY s priy L MM s S0 M A pr(n) -1
(Qt AtQt) 2 {2 N F + N Y N
<[CnpC + (CF + 5 p HO H O,



Theorem 2.3 suggests that F} is asymptotically unbiased for H®'F,. The difference between H® and
H® is given by —Fl(t)(QtZAtQi)_l, an Op(h?) term that arises from the approximation error d; (¢,7).

Following Bai (2003) and SW, we can also derive the limit theory of the estimated common components
from Theorems 2.2-2.3. Recall that C% = M, F; and Cj; = X:tﬁf The following theorem studies the

asymptotic distribution of Ci.

Theorem 2.4 Suppose that Assumptions A.1, A.2, A.3(1) in SW and Assumption A.1* hold. Then, for
eachi=1,2,... N andr=1,2,...,T, we have

1 1 vz .
(NVm + Thvzit> (Ci - CZQ - BC(Zat)) 4N 0,1),

/ 9
where Bo(i, t) = Ny @, Bp(t)+Ba (i, t)’ ( §*”) Fy, Br(t) = —(QiSa,Q)) "HW'F,, Viy = Ay S1 TS e,
and Vay = F{S 31,55 Fy.
In comparison with the result in Theorem 3.4 in SW, the estimator é’it also exhibits biases that are
Op(h?), carried over from estimates \;, and F}.

The following theorem is a correction of Theorem 3.5 in SW and it reflects the contribution of the

approximation error.

Theorem 2.5 Suppose that Assumptions A.1, A.3(i) and A.4 in SW and Assumption A.1* hold. Then
(i) max;; | Nie — HO= || = Op ((Th/InT)=1/2 + h?)
(i) max; HFt _ H(t)’FtH = Op (N/InT)""/2 + 1?)

Cit — CY| = op ((Th/InT)=V/2TV/8 4 p2T1/8) .

(111) max;

3 Effects of the approximation error on the limiting distribution
of the test statistic

SW propose a statistic to test the null hypothesis of constant factor loadings, namely, Hy : Ay = Ao for
all (7,t). The test is based on the comparison between the conventional PCA estimates of the common
components under the null (e.g., Bai and Ng (2002)) and the LPCA estimates under the alternative of
time-varying factor loadings: M = ~7 Zf\;l ZtT:1(5‘;tFt — 5\;0}7})2, where \jo and F, are the PCA estimates
of the factor loadings and factors under the null. SW study the asymptotic distribution of M under Hy
and a sequence of Pitman local alternatives Hy (ant) : Ait = Xio + anrgi(%) for each i and ¢, where
ant = T7Y2N~Y4p=1/4, Like Assumption A.1*(i), we now require g; (-) to be third order continuously
differentiable.

According to the results in Section 2, we note that

T
“ 1
Nie — HO=1y,, = TH“)’ > ki g Fueis + Balist) + Ra(i,t) and
s=1
, R 1 Y
E,—HYE — S;%H(t)_lﬁ 2)\”61-,5 + Br(t) + Rp(t),



where Rp(i,t) and Rp(t) represent the smaller order terms in the asymptotic expansions. Under Hp, all
derivatives of \; (-) are zero and one can readily verify that By (i,¢) = Bp(t) = 0 so that the limiting null
distribution of M in SW continues to hold. Under H; (ayr), the first and second order derivatives of \; (t/T)
are given by )\Etc) = aNTgi(C)(t/T) with ¢ = 1,2. As aresult, Ba(i,t) = Op(ayrh?) and Br(t) = Op(anrh?),
both of which are sufficiently small so that Lemmas B.1-B.3 in SW still hold (see Appendices B and C in
the online supplement). In short, the presence of approximation error in ;\it and Ft does not affect the
limiting distributions of our test statistic under Hy and Hj(ay7). We do not repeat the results here but

rather provide a sketched proof in the online supplement.

4 Conclusion

In this paper, we correct the errors in SW which are due to the ignorance of an approximation error.
The approximation error causes some bias terms to show up in the limiting distributions of the estimated
factor loadings and alters the rotational matrix in the factor estimates. But it does not affect the limiting

distributions of our test statistic under either the null hypothesis or the local alternative hypothesis.
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Online Supplement to «Corrigendum to “On Time-varying Factor Models:
Estimation and Testing” [J. Econometrics 198 (2017) 84-101]
(NOT for Publication)
Liangjun Su?, Xia Wang®
¢ School of Economics, Singapore Management University
® Lingnan College, Sun Yat-sen University

This online supplement is composed of three appendices. Appendix A contains the proof of the results in
Section 2. Appendix B contains the proof of the results in Section 4 of Su and Wang (2017, SW hereafter).
Appendix C contains the proofs of some technical lemmas in Appendlces A and B.

We use >, >, 5 D5 and >, to denote 27 15 ZZ 1 ZJ 1 Zt 1, and Zt 1 ZS 1 » respectively.
Let Cnr = mln{r,f h 2} and Con7 = min{V/T, \/>} Denote Bit) = C’( )(t T) M40 T)(t T)QF(T)
B = W HO s p (AP A, /N), and BY) = Vi G S Rp(ALANY /N). Note that Bgt —/-;Qh?c(”F
roh?(BS) + B3 F") = ngl + By Let A = X9 () for e = 1,2.

A Proofs of Theorems in Section 2

We first state two lemmas that are used in proving the main results, which are parallel to Lemmas A.1 and
A.2 in SW.

Lemma A.1 Suppose that Assumptions A.1 and A.3(i) in SW and Assumption A.1* hold. Then (i)
T*1F<T>’[(NT)*1x< IXOEC = v =V, 4+ 0p (CRL), (i) T-UEC FO) = Q.+ Op (CRL), (iii)
H" = Q71 + Op (Cyg 7). and () H T)H(T) = Y51 4+ Op(Cxyh), where Vi and Q, are as defined in
Theorem 2.1.

Lemma A.2 Suppose that Assumptions A.1 and A.3(i) in SW and Assumption A.1* hold. Denote B =
li R 9 '

(B, BEY. Then (i) & ||F0) = FOHD — BO|" = 0p(CF3), (i) 4 || (P — FOHD — BOY R

Op(CNY), (iii) 7 H (F0) — FOHEE — BOYEO| = 0p(CR2).

Proof of Theorem 2.1 Let D(s,7) = (dy(s,7), ...,dx(s,7))’. Noting that (NT)~' X (") X (") f(r) = F(’“)V]E,TT)
and X! = A, F") 4+ D(s,r)F") + e{”), we can decompose ") — H®' F" — B{") as follows:

F(T) _ H(r)'Ft(T) _ Blgr)

r)—1 ]- A(r r) r r) r T

A~ I /
- ’(VTTHW Z F [ArFs(T) + D(s,7)F" + eg’”>] {A,,Ft(r) +D(t,r)F") + e@] —H™' F — "

_ Vjsrrj)" 1 {;ZFS(T)E(egr ZF(T) [ (T)/N E( (r) (T)/N):|

1 A ’ r 1 A r)’
+ STEOED Ne” N + T ST EOET NN +

S

1 I T T T
™~ Z EOFO D(s,ry AF — VB

1 .
(r) )y ' () FOY D(s, 7Y el + (el D (r)
7 §s FMEC D(s,r) D(t,r)F, § EE § E D(t,r)F"

}

o S PO ECN D) FD - VB

9
=" Alt,r), (A.1)
=1




where A (t,71), ..., A4(t,r) are as defined in SW and A;(¢,7), I = 5,...,9, arise from the approximation error
D (t,r). Note that VJS,?_l is well defined by Lemma A.1(i) and Assumptions Al(ii)-(iii). By Lemma A. 3
below, MZ?:I)j¢3 Aj(t,r) = op(1). In addition, SW have shown that K; (%)~ 1/2 VNhAs(t, 7‘)

N ((), V;lerI‘rtQ;Vfl). This completes the proof of Theorem 2.1. B

Lemma A.3 Suppose that Assumptions A.1 and A.3(i) in SW and Assumption A.1* hold. Then (i)
VINQ[AL(t,r) + As(t,7)] = op(1), and (ii)V NhA(t,r) = op(1) forl=4,...,9.

Proof of Theorem 2.2. Let A(") = (Agr), - A(NT)), where AET) = (Ag)7 s AE;))' and Ag) =d; (t,7) Ft(r).
Noting that A/ = T=1F0)' X ") 7=1p0)" ) = T and X = FOIA! 4+ A7) 4 ()| we have

° 1~y 1
R AL ¢ (1)’ (1) (r)
Air TF X; TF )\W + TF + TF A
= H(T)fl)\ir + %H(T)/F(T) ( )+ T |:F(7’) _ F(”‘)H("’) _ B(T)]leg’(‘)

_ Loy {pm ) ) B<’“>} -1y, L {ﬁ(r) _ p g _ gm] AM
T T i

1 1 1.
L@y e A L gy (1) L ) gOr) ) -1 (r)
JrTHFAZJrTBez TFBH )\+BA
8
= HO7 N+ D). (A.2)
=1

By Lemma A.4 below, VTR Y%, Dy(i,r) = VThBa(r)+op (1), where By (r) = {C 2 p AN 41 Q U Al
—(HO'SpC” + HOSpCf + O 5pClY Y HO =N bioh?. As in SW, VTRDy(i,r) = A=H"' S,

K (%0 ) Fseqs 4 N(0, (Q;* )/ Qi Q') by A.1(iii) and Assumption A.2(ii). This completes the proof. W

Lemma A.4 Suppose that Assumptions A.1 and A.3(i) in SW and Assumption A.1* hold. Then

(i) VThD;(i,7) = op(1) forl=2,3,4,6,

(ii) VThDs(i,r) = VTR Q- Vs p A2 1 op (1),

(iii) VThDz(i,r) = —v/Throh2[H' S e C + HO'S 2O + 8 p OV HO =10, + 0p(1),

(iv) VThDs(i,r) = VThioh2CV8 A 4+ 0p(1).
Lemma A.5 Suppose that Assumptions A.1 and A.3(i) in SW and Assumption A.1* hold. Then for
t=1,2,....T,

A~ ~ ~/

(i) Sae = 5 i Aithiy = Qi¥a, Q) + op (1),

(ZZ) \/% Zi(Ait — H(t)il)\it)eit = OP(].),

(iii) Tlﬁ > Aithig = HO-INYVHO E, = /NHO'Fy + 0p(1) where H® is defined in Theorem, 2.3.

Proof of Theorem 2.3. Noting that X;; = ;\;tH(t)’Ft + et + (HO=1\; — Xy HO' Fy, we have

I~ HY'F, = ( Z Ath,t> HO'F,
A—1 1 N N
=S5t { HO Z Aiteit + 7= Z it = HO N )eir — N Z Xit(Nig = HO= ) HO' Ry }

= Ai(t) + Aa(t) + As(2), (A.3)



where g,\,t = % > 5\“:;\; By Lemmas A.5, \/NAQ(t) = op(1) and \/NAg(t) = —W(QtZAtQ;)_lﬁ(t)’Ft+
op(1). By Lemmas A.1(iii) and A.5(i), and Assumption A.2(i), we have

1
VNA(t) = S 1HD- \FZM% = (@:24,Q)) thﬁZAit% +op (1)
SN (0@, @) 7 Q@i (@ima, @) ) = N (0, (Eijzl)’Fttz,:}le) .
It follows that VN [, — HO'F] 5 N (0, (S31Q7") TuT3lQr ") where O = H® — (Qi4,Q)) H .

]
Proof of Theorem 2.4. Recall that Bp(t) = —(Q:Z,Q}) ' H®'F;. Note that

Cit — C5,

B, — N, F,
it T

/ A
HO- Ny = Ba(i,)) (B = HO'F, = Br(t)) + Ba(i,t) Br()
’ R /
o= HO™ Wy = Bai,1)) HO'F,+ (A — HO™ '\ = Ba(i.1)) Br(t)

L (HOTY (Ft - HY'F, - Bp(t)) + N (HO1) Bp(t)

-0
(

+ Ba(i,t) (ﬁt _HO'E, Bp(t)) + Ba(i,t) HO'F, = Z oD, (A4)

By Theorems 2.2-2.3 and the fact that Bj(i,t) and Bp(t) are both Op (h?), ¢V = Op((NTh)=1/2),
CP = 0p(h*), CY = Op((Th)~2/2h?), and C) = Op(N~1/2h2). Noting that H® = Q; ' + Op (CyL)

by Lemma A.1(iii), C\¥ + C® = X, (H®O-1Y Bp(t) + By (i,t) HY'F, = B (i, t) + op(Cyk) where Cyp =
min{v/Th, VN }. By the proofs of Theorems 2.2-2.3, VVTh(Ayy—H® =1 \;;— By (i, t)) = \/LH(WZ K[ (5t ) Fseis
+op (1) and VN (Fy — HO'F, — Bp(t)) = (Q:3a,Q)) " Qtﬁ > Aiteir +op (1). These results, along with

the fact that HO H®' = ¥ .1 + Op(Cyh) by Lemmas A.1(iv), imply that

s _ _ c
Ont |Cie — C% = Bo(iyt)| = CnrlCF) +CP) +op (1) = \/N»T NyQ1 (QiSa, Q) Qi —= \/— Z/\ztezt

C —t
+\/%F£H(t \/72 (S )Fseis+0P(1)

Cnr Cnr

\/*gllt \/7521,15 +op (1)
where £, = /\thA Z Niceir and &y = F/YL! FZ K} (%5t)Fseis. By Assumption A.2, 51”

N (0, V1) and &, 4 N(07V2it) It is easy to show that &1+ and &, are asymptotlcally independent.
Consequently, we have %;UZC’NT[C’Zt CY — Bo(i,t)] AN (0,1), where Vjy = =3 Vi + ¢ Vo A

The next lemma is needed in the proof of the uniform convergence results in Theorem 2.5.

Lemma A.6 Let Sy, = Q,Sa, Qb B = (B{", .., BY), and By = (Bx (1,7),..., Ba (N, 7))
that the conditions in Theorem, 2. 5 hold Then

(i) max, HVJS,TT) - VT) =op (1),

(i) max, |H") — QY| = op (1), and max,

. Suppose

THFOEC) - Q| = op (1),



2

(iii) max, L Hﬁw — FOHE® - BO|" = 0p (T-1h~1 + N=1InT) + op(h?),

w) max, | £ (F™ — FOH® - BOYFOHO | = Op (T h~' + N~ InT) + op(h?),
T
v) max; , || & FO) _ 0 ) Z gy = Op (T7'h™ L+ N~ 1InT) + op(h?),
) T 7
(UZ) max; %(F(T”) —_ g B(r))/AET) =Op (T—lh—l + N-1lln T) + 0p(h4) ;

= Op((Th) ™" + (Th/InT)"** h + h?),
= Op((Th/InT)" "% 1),

r T (r)
%H( ) p( )/Ai

(vii) max; ,

%B(T)lel(»r)

(vidi) max; ,

(iz) max;. , %F(’“)'B(’”)H(T)*l)\i,,H = Op((Th)™" + (Th/WnT) > h + k2 + N~'hInT),
(z) max; , | B AT = Op(h2),
(xi) max, S'AW — Sl =0p (1),

~ 2
A, = AHOV — BN = 0p (CR2IT),

(xii) max, + ‘

~ /
(xiti) max, % H (A, ~ A HO-V B/(()) AHOV| = 0p (C;,% In T) 7

(ziv) max, || (JAX, — A HM pr)l e || =O0p (C’K,QT InT).

Proof of Theorem 2.5. (i) By (A.2), \jy—H) =1\, = Z?:l D, (i, 7). SW have shown that max; , || D1 (¢,7)||
= Op((Th/InT)~'/2). By Lemma A.6(v), max;, || Ds(i,7)|| = Op(T"*h~' + N~'InT) + op(h*). By
Lemma A.6(iii)-(iv), max;, ||Ds(i,r)|| = Op(T"'h=' + N='InT) + op(h?). By Lemma A.4(vii)-(x),
Sy max, | Dy(i,7)|| = Op((Th) " +(Th/WnT) ™" bt h>+ N~ AInT). Then max;, | X — HO 1A, || =

Op((Th/InT)~/2 +h?).
(ii)-(iii) The proof follows from that of Theorem 3.5(ii)-(iii) in SW by using Lemma A.6(xi)-(xiv) with
obvious modifications. W

B Proofs of Theorems in Section 4 of SW

The proofs of Theorems 4.1 to 4.3 in SW rely on Lemmas B.1-B.3. We argue that these three lemmas all
hold under H; (ay7). Then the results in SW’s Theorems 4.1 to 4.3 continue to hold.

Lemma B.1 Suppose that Assumptions A.1, A.3(i), A.4, and A.7 in SW and Assumption A.1* hold. Then
under Hy (ant) with ayT = T-Y2N-1/4p=1/4
Vi~ V| = op(Ch nT) ),
() ma | 10 — Hy]) = Op(Ci (0 D)),
Svr = Sro| = Op(CRE (1)),

(i) 3 34 | 2500 = HO - g0)es

. 2

) L3, ||F - H(t)’FtH =0p (N 7).
Lemma B.2 Suppose that Assumptions A.1, A.3(i), A.4 and A.7 in SW and Assumption A.1% hold. Then
under Hy (ant) with ayr = T~Y2N—1/4p=1/4

. 2

(i) #||/F - FH| = 0p (Cir).

(ii) 7(F = FH)'FH = Op (Cynp) + 0p (anT)

(ZZZ) %(F — FH)/F =Op (C(;]\QTT) + op (aNT) s

(i) max,

(#i) max,

2
=O0p(T?h2+N2InT),




(iv) X(F'F — H'F'FH) = Op (Cyér) + op (ant),
(v) VNT = VO +Op (CONT)
(vi) H=Qy" + Op (CONT)

(vii) + Nio — H "Nio

(viii) max,.

= Or (Conr) -
(H(’”)‘l) STLHM (B ) VA?%(%F/F)H = 0p(Cyk (InT)"?),

Lemma B.3 Let Ry (i,t) = Z?=2 Dy(i,t) and Rp(t) = Aa(t) + As(t). Let R} (i) and R%(t) be as defined in
SW (Lemma B.3). Suppose that Assumptions A.1, A.3(i), A.4 and A.7 in SW and Assumption A.1* hold.
Then under Hy (anT) with ayt = T-Y2N-Y4p—1/4

(i) 57 2 e IRA (L 0)]|* = (T72h72 + N=2(InT)?) ,
(ii) 57 25 21 |1Re (D) = Op(Cy7 (nT)?),

(iti) % i ||ROA(i)||2 =0Op (C(;zéT) +op (G?VT) J

(iv) % Dot ||R%(t)“2 =0p (CO_JéfT) t+op (a?VT) .

Proofs of Theorems 4.1-4.3 in SW As Lemmas B.1-B.3 remain valid with little modifications, the proofs
in SW continue to hold. B

C Proof of the Technical Lemmas in Appendices A and B
Proof of Lemma A.1. (i) From the method of local PCA, we have
(NT)"1X 0 x () ) = poiy ) (C.1)

Premultiplying both sides by 7~ F'("" and using the fact that T-1EF'() F(") = I, we obtain the first equality
n (i). Premultiplying both sides of (C.1) by (%A;Ar)l/z %F(’")/ and plugging X (") = FMA! + A1) 4 ()
with A" being defined in the proof of Theorem 2.2 yield

MANY2 (p0Y p\ A AL [ FT) () 40 NMANY2 [ p@) p) ) o

riir rilr r) riir r 9

( N ) T N T N ( N ) T NT? (©-2)
, , , - 2 () A e () ' (r ") » () ()l

where divh. = dith +dlf 5, dlfh, = (A VA ECEC Mg PD | PO FORD 4 B0 S £,
r / r r (r)r fo(r) T I8 ) (T T T ) r r )/ r
anddN)T2:(AAT)l/Q{FUFUAANTF i <)]\%}>A F()TF()+ HA(N)TA;) ()+F(>A;V>:I“;>F()

P () A ()

< }. SW show that HdNT1H = Op(T~'h~' + N~1/2). Now, we want to show HdNT2H =

Op(T='h=1 + N=1/2 £ h2). Note that N"'AZA, = Sy + Op(N~V2) and £33, FOF™ = sp +
Op(T~'2h=1/2) as in SW. First, we study ﬁA;A(T)'F(T). Note that

ﬁA;A <T>——ZZAWA(”F(T ZNTZZA”A (t,r) F oy = Z@l,

where ¢, ;. = Ft(r) — H(T)’Ft(r) — Bt(r)7 Doty = H(T)’Ft(r)7 and @3, = Bt(r). By (A.1), ©; = E?:l 01y,
where Oy = &+ >, >, )\irdi(t,r)Ft(T)Al(t, r). By tedious but straightforward analysis, we can show that
>0 ©u = Op(h?). In addition, we can show that Oy = 5 3, 37, kf 4, Ainds (t, 1) F,F{H") = Op(h?) and

2 /
szh e Nindi(t, 1) Fy FY C’(T) ( 7 ) C(T)li h? +C (t;r>

= 0p(h?).




Then ﬁA;A(“’F(’”) = Op(h?). Similarly, we have that =ALAT'FM) = Op(h?).
Y F). Noting that T-1/2 [ F)| =1, we have gk || FI7AM AW FO)

<

sp

T3/2 ||F /A(T)A(T)/H In addltlon

T
2
ADACY T = N2T3 Z SN ki ki ook gt {F Fldi(t,r)di(s,v) FoFld; (s, r)d; (1,r) FF{}

3,7 ts I=1
[0) (h4 1 2
P % N
< =7 2 Fiar (T > K ||Ft||2> — 0p(h).
s t

Then i FOAMACFT) = Op(h?).
Third, we study —F(T)’A(T) (") (1) Note that NT2 FOYA@ ) ) < NT3/2 ||F YA (T)’H

In view of the fact that £ >, kj ., FF/di(t,r) = Op (h* + (Th/InT)~'/2h) uniformly in i, we can readily
show that

HF /A(’r’) r)/

N2T3 Z Z Z kh trkh srkh lrtr {FtF d (t T)eléejsd (l T) Eﬂ }

i,j t,s 1=1

N2T3

E kh sr€is€js

}

T
Zkhlr (I,r) Ry F{

2
= Op(h* + (Th)™").

:J\:}‘tar{[ ZkhtTFth t?‘
4,

1 *

f Zkh,sreisejs

max
?

1
T Z k;:,trFtFt/di (ta 7”)
t

Ve E() = Op((Th)~Y/2 + h?) and HdNTQH = Op ((Th)=/2 + N=Y/2 + h2). The rest

of the proof then follows that of Lemma A.1(i) in SW.
(ii)-(iii) The proof is exactly the same as that of Lemma A.1(ii)-(iii) in SW. B

Proof of Lemma A.2. (i) Noting that Ft(r) - H(T)/Ft(r) - Bt(r) = 2?21 Ai(t,r) by (A.1), we have
r ’ T T 2 —(r 2 T 2

T3, Ft(T) - H™ Ft( ) Bg N < HVN:,(W) 23, 2?21 HVjsf%Al(t,r)H by the Cauchy-Schwarz (CS here-

after) inequality. By Lemma A.1(i), we can bound £ >, [|A;(t, 7)||? by determining the probability order of

2
=3, HVISITI)‘AZ (t, T)” . The terms associated with Ay (¢,7) to A4 (¢,7) have been analyzed by SW. Now, we
consider the other terms in the above summation . First,

3 2 3
—ZHVIS,TT)Ag,tr H <3 Zfz E3ZA51(T)
=1 t =1
where Xéq),t =0, ng),t = VJE, Bé +1 and Xé?;t = VJS;’T)Bg)Q y (A.1) and the CS inequality, Asi(r) <

957 | Asu(r), where Az (r) = £ 3, \|TN S, Au(s, ) FS D(s,r) A F7|2. By analyzing Asy(r) one by
one, we can show that As;(r) = Op(Cy%). For Ass(r) we have

1
A
t

where Aso(r) _H S EOFD D(s r) A, — Ky A2A

1 r r r
TN Z SOz,ers( )/D(SW)/ArFt( ) gl)t
S

1 R2ky . AP'A
SIS o el el n o hRag Ar A
T g Fs FS D(S,?”) AT B EF

2
2 _
Ft(T) < HH(T) A52(T)2,

1
T;‘

23R 0 25




Op (h?), where the leading term is bounded above by

I e

by the CS inequality and the uniform approximation of Riemann summation to a definite integral. Then
Asa(r) = Op((Th) ™" h? 4+ (Th) ™ + h*) = Op(Cy%). Similarly,

ADA,

ZkthF’ Sp) ¥

= Op((Th)"*h) +O((Th)™)

3
Op(1 1 .
Asz(r) < PT( ) > WE > FOFT D (s, 1) A B — VLB B2
t s =1
< 0r () e FO RO AED — a0y, ALALY B2, () i O (B
=TT Zt TNZ (5,7’ Sy e BT+ 0p (1)
Op (1) () (r) —-r 2 , 9 A;Aﬁ.l) 6
< Et F TN§ Koo | = | FoFl = Srh?na| = +0p (h%)

= Op((Th) ™" h* + (Th) ™% + h%) = op(Cy7),
_ A s — ) 2 — o\ (s
where ¢1,5r = C7 /( a )s €250 = O3 'koh?, and c3 4 = Cy (

Next, noting that £ 3 | £{")

*)2. Then 7 32, [ 4s(t,7)I|I* = Op(Cy7).

2
= R, we have

2

1 ) 2 ]
7o st = 7 2
1 ()1
NTZHFS Dis,r

1 (r) 2 1 1 () (r)! 7 (r)
T;HVNT/h(t,T)H T; —;FS F'D(s,r)e;
<R

]- - [d
= S B EC D(s, ) DAt ) F

| |77 S lpns

2

OP( )7 and

TN

FM'D(s, r)’ey)

21 = Op(N~'h?).

Similarly, we can show that & 3", HVNTA8 (t 7‘)H = Op(N~1h?%). Finally, we shall show that

2

TZHVI(V?AQM H TZ
:;Z

e S E DG V)

2
NAY ¢ NAP

N T QN(T)

| = opn?).

1 ~
o > EOFD N D@ )Y — HO'Sp

2
To establish the last claim, we first obtain a rough bound for # 3, HVjs,TT)Ag (t, 7")” = Op(h?). Then com-

r ’ T T 2 . .
bining the above results, we obtain 7 >, Ft(r) —H™ Ft( ) B,E N = Op(T7*h='+ N~1+h?). With this




2
preliminary result, we can readily obtain a better control on % Dot HVIS,TT)AQ (t,r) H

3
1 , 2 1
o |viaen| <331 Y
t =1 t
= Op(T'h™ + N~' + h®)Op(h?) + Op((Th) " h? 4+ (Th) "> + h*) + Op(h?)
=Op(T"'h+ N7'h* + h?),

where xﬁ)’t = ng)t =0 and X(Z)t = V]ST) H . Combining the above results yields the desired result.

2

1 . N
TN Z‘P1,ers( VALD(t,r)F — Xgl)t

(i) By (A.1), L(FO —FC @) _BOY RO FE) = v~ S Ay (r)HT), where Ay(r) = L 52, VL Ai(t,r)F.
Ay(r), 1 =1,...,4, have been analyzed by SW. For As(r ) we have

A=Y

Ft(r)/

1 . . r r r
7 DS B EN di(s, )N, — Vi) BY
s i

3 3
1 1 r [ r T A
= Z T Z NT Z Z Wl,ers( ),di(sv T))‘;rFt( ) Xél)t F( V= Z Asi(r).
=1 i =1

First, || As1(r)|| < Asi(r) & 3, [[FV || = Asi(1)Op (1), where Ay (1) = || 5kp 30 3, 0160 S di(s, )X, |-
By (A.1), Asi(r) = 30, A51l(r), where Agyy(r) = = 30,32, Ai(s,7)Fdi(s,7) X, By tedious calcula-
tions, we can show that 219:1 Asyi(r) = Op(Cyrh?) = Op(Cy3). For, Asy(r), we can apply Lemma A.1(i)

to obtain Agy(r) = HW Agy(r) 4 32, FVF 40 p(CyLh2), where Agy(r) = = 52,5, FSVFT dy (s, )\, —
D h2ro ADA,.
FS 7N

. In addition, it is easy to show that

1 ) h2ke AD'A,
NTZZkhSTFFd (s.1)X5y = Bp—= —

Then Asy(r) = Op(Cx2). Next, noting that BY) = [C“) (==
Ars) = 73

=7 Z
= 2.2.2./¢

= Op((Th)~Y2h? + (Th) ™).

s = \

) + C ) kah? + C_'?ET) (S;T)Q} F{) | we have

]. T T T T
ZZB(”F(”’d (s, )N B — VLB, | B

NT

_ NADT o0
TZZ r)< ) (T)F(T)’d (s, 7‘))\ —h2/£2C'Y)EFTT Ft( )Ft( y

2
h2 CV(T) s—r
I'i 3 T
It is easy to show that

2
A531 ZCT) ZF(T)F(T) ( T ) _EFK/Qh2
and Aszo(r) = Op((Th)~'/2h? + h*). Then As3(r) = Op(Crn2) and A5(r) = Op(Cya).

Next, note that As(r) = iy S0 EOFD D (s, 0y Dt ) FOFT = 530 i S 01 B D(s, 1)
D(t,r)F, T)F Zl L Ag1(r). For Agy(r), we have

1/2
_ 1
[ g1 (r)|| < {TZ Hsol,erQ}

FUMFEM di(s, 7))\, F, (T)F( = = As3.1(r) + Asz2(r).

1A (1)
e FOE = 0p ()2 + (Th) )

2y 1/2

' D(s,r) D(t,r)F ETY = Op(Cyi)h.




Note that Ags(r) = H" Aga(r), where Agy(r) = w32, 30, FVF D(s,r) D(t,7)F F{™. Noting that
(2 sS—r
ir

di(s,r) = )\(1)( D)+ 2A (B55)2 + Op((372)3), we can readily show that
A 1 * *
HAGZ(T)H = ‘ W Z Z kh,srkh,trFSFs/di(sv T)di(tv T)/FtFt/
t,s 1
1 . ms—rt—r, ay 4
WZZkhkh WP I T AV RE| 4+ 0p (h*)
) 2
* (ns 4y _ —1;2 -2 4
T zt: Ky o Fs FING,) ——— T +0p (h*) = Op((Th)™*A? + (Th) ™ + h*) and
_ 1 r r
HA63(7=)H = TEN Z HBET)FS(T)/D(S’ ’r)/D(t, ’I“)Ft( )Ft( )

+0p (h*) = Op((Th)™'/2h3 + 1*).

S FO FO' D (s, r) Dt ) EE

Thus, we have Ag(r ) OP(sz)

Next, Ar(r) = gy S0 FSVF D(s,r) et B = S5 by iy pran FY ' D(s ) eV E = Y0 An(r).
For A71(r), we have

1/2
_ 1 1
Jdn )] < {Tg meuz} —

where we use the fact that

TBNQZ ZFT)/ D(s,r)e;” "

1/2

D(s,r) el B = Op(CL)Op((NT/h)~1/?),

2

T3NQZ h,sr szhter STeZtF
< —Zkher NTZZkhtreltd s, 7“ F/

Note that Az (r ) = H"'" Az5(r), where Az(r) = =4 >, >, FS(T)FS(T)'D(S,r)’egr)Ft(r)/. It is easy to show
that Ara(r) = w7 2 S, kL FsFldi(s,7) % >, kir et F] = Op((Th)~'/2h?). Then Azy(r) = Op(Cy7).
Similarly, we can show that

| Ars ()| = ﬁzz

Hence, we have Az (r ) Op(Cya).
Next, As(r) = NT2 Et sF(T) (T) D(tyr)Ft(T)Ft(r)l = Z‘?:liﬁ Zt,s <Pz,sr€gr)/D(t77’)F F(T Ez 1A8l( )-
We can show that Ag(r) = Op(Cy3) by showing that Ag(r) = Op(Cy%) for I = 1,2,3. Similarly,

Ag(r) = Op(Cy%). Combining the above results and using Lemma A.1(i) yield the claim in part (ii)
of the lemma.
(iii) This follows from (i) and (ii) and the triangle inequality. B

Proof of Lemma A.3. (i) This has been shown in SW.
(ii) SW establish the result for I = 4. We now show that A(t,r) = V]E,TT)Al(t,T) = op((Nh)~'/?) for
l=5,...,9. For A5(t,r), we have

= Op((NTh)™*h?).

3
C_'Y) S - T 4 C_ér)hQKQ + C‘ér) <S - 7") F;(T)FVS(T)IZD(S7 ’I“) (r )F(r OP(C )

3 3
]. 1 T r A
As(t.r) = gy D FE Dis ) A =3 |7 LDl E <3| = 3 Anater
=1 s =1

S



By Lemma A.2(i),

_ 1
||A5,1(t7r)|| S ﬁ Z H‘Pl,ers(T)/D

1/2
1 1
SES P IRES>

S

D(s,r)' A,
N

2y 1/2
F } Op(h™'/%) = Op(Cx1)Op(h)Op(h~1/?).

Then VNhAs 1 (t,7) = Op(CyiV/NR) = Op(T~YV2NY2p1Y2 4 h 4+ NV2h3) = op(1) as Nh/T — 0 and
Nh6 — 0 under Assumption A.1*(ii). Next, note that Ass(t,r) = H(T)/A5’2(t,’f’)Ft(r)7 where As o(t, ) =
DD ki, o FsEg D (s, r) A, — L2"‘2EF(AQ)/AT/N). We can show that

(1) 2 2)r
s—r\ AVA, 1)1 . s—r ATA,
Aso(t,r) Zkh S F’( T ) ~— 3 TzsjkhﬂFsF;( ) TN + Op(Rh®)
Op((Th) ™2 h+ (Th)™") + Op((Th)"Y* h2 + (Th) ™' + h3) + Op(h?)
Op((Th) ™2 h 4 (Th)™ + h?),

where we use the fact that Y kj  FuF/(355) = Op((Th)™"*h) + O(Th)™"). Then vVNhAs(t,r)
=V NhOp((Th)~ 1/2h+h3+CNTh2)Op( “1/2) = Op(NV2T=1/2p1/2 4 N1/2h8/2 4 h?) = 0p(1). Noting
that x5, = Ve By = B2kaCy S p(AAY /N)E, we have

ALALY
N

_ 1 _ _
As3(t,r) = lTN Z B EM D(s,r) A, — h%gC{”ZF Ft(r) = A5 3(t, ’I‘)Ft(r).

Using the definitions of B{") and D(s,r), we can show that

1 (s—r)2 3y ol
> (=) FOF" - h?ky%p
T \T

Then VNhA;53(t,r) = VNROp((Th)™'/2h? + h3 + (Th)=1)Op(h='/?) = op(1). In sum, we have shown
that VNhAs(t,r) = op(1).
Next, Ag(t,r) = ﬁ 3. Fﬁgr)F§r)'D(s,r)’D(t,r)Ft(T) = 2?21 ﬁ >, <pl7STFS(T)'D(s,r)’D(t,r)Ft(r) = Z?:1 Agi(t,7).

For Ag1(t, ), we have
) 1/2 L) 12
2 , r
{Tznmn } { FLD(s, ) D) } 2

= Op(Cyp)Op(h*)Op(h™/?) = op((Nh)™'/?),

ALALY

Ass(t,r) = CY" +0p (h®) = Op((Th)~Y/2h2+(Th) = +h3).

[ 6. (t.7)

IN

2 _
s Fs(r)/D(s,r)’D(t,r)H = Op(h?*) for |t —r| < Th. For Aga(t,r), we

where we use the fact that

have

—_ 1 % S—7Tr As-l)/Ag-l) t—r r
Aea(t,r) = =HO' Yk FLF, ( - ) ~ ( - ) F" + 0p (h?)

= Op((Th) ™2 12 4+ (Th) ™ bt 19/2) = 0p(NR)~'12).

10



In addition, we can readily show that Ag3(t,r) = 2= >, B EM D(s, ) D(t,r)F") = Op(hd/?) =
op((Nh)~1/2). Consequently, vV NhAg(t,r) = op(1). Next, Aqr(t,r) = 753, T)F(T)/D( r) e (r) _ Zl LT s
@Z’STFS(T)/D(S,T)%)(:T) =32 | A74(t,r). Note that

1/2
_ 1
|A7a(t,7)|| < {TZH‘PLerQ} {

where we use the fact that

FO'D(s,r)'e;”

1/2
2
} = Op(Cyp)Op(NT2RY 24072,

2
ki ir + Op(h°)

ms—r (2)3 2| o,
|:>\ T 2)‘17“ ( T ) :|62t

1 2
7 2 [P Dl
2

ki + Op (1)

A<1> Li@s—

9 Nir T lei

NTZkhsr HF ||

= OP(Nilh + hs).

In addition,

_ 1 _
Ara(t,r) = ﬁH(r)/ZZFS(r)FS(r)/ {AE},)S r )\(2)(

) } euky? +Op(h*/?)

T 2T

- p 2 kil Fog <N Do+ AE?S}T}@“) kil + Op(h°/?) = Op(NI/211/2 4 2/2)

and 14773@7,,4) — TNZ [ (s r) + C(T H2h2 + C(T)(s r) ]FS(T)FS(T)ID(S,T)/etk';;lt/TQ - Op ( 1/2h3/2 4
h5/2). Therefore, we have VNhA7(t,r) = op(1). Next, As(t,r) = S0, 7 3, cplyert(T)/D(t,T)’egT) =
Z?:l Ag(t, 7). Following the analysis of Az7(t,7), we can also show that vV NhAg(t,r) = op(1).

Lastly, Ag(t,7) = 2?21 (ﬁ Do cpl,STFs(r)/A’TD(t, r)Ft(T) - ng)t) = 2?21 Ag i(t, ). Note that

D(t7 r)Ft(T)

1/2
_ 1 1
HAg’l(t,’f‘)H < {TZ Hspl,sTHZ} {TN2 Z‘

I view of By = [C{(452) + O (552)2] B = Vi 100y A (150 4 1 AKD t2ry2] B0 ana

Lemma A.1(i), we can readily show that

_ 1 r
Ago(t,r) = [TN S HO RO RO, rFED — v o)

S

= HO Ay o(t,r)F",

where Ag o(t,7) DI F(T)F(T)'A/ D(t,r)—Xp [A;%ﬁl)(t%) + %A;]/\\IT(?)(%) } Op((Th)~'2h+(Th)™") =
op((Nh)~ 1/2). Slmllarly,

- 1 ~(r r ~(r - ] r
| Ag,3(t,7)|| < TNZH [q )(STT) + O kah? 4 C )(STT)Q} FOFC A D(t,r)F™)
1 A(r) (S TN () () A7 (r) 5/2

S /J—WZS:HCl (T)Fs Fs ATD(t7T) HFt +0P(h )

= Op((Th)"2h*? 4 (Th)"'h'/2 + h°/*) = op((Nh) /).

11



Then Ag(t,r) = op((Nh)~'/?). R

Proof of Lemma A.4. (i) SW (Lemma A.4 (i)-(ii)) have shown vThD; (i,7) = op (1) for I = 1,2. For
Dy(i,r), we have

[ Da (i, )| =

)/dz (t T

1/2
2
Zsal W E di(t,7) ) = Op(Cy3)O0p(h)
T

<{; Zumu} {;;\

2
by Lemma A.2(i) and the fact that & >°, HF(T i(t, 7’)H = Op(h?). Then VThD4(i,r) = Op(T/2hY/2CN1h) =
Op(h+TY2p3/2N=1/2 4 TV/217/2) = op(1). For Dg(i,r), we have

. 1 ) (r r - r (), =T _
Do(i,r) = = S Bely) = = Zkh - {C’( ) 4 8 kah? + G )(T )2] Fieir = Op((Th)~"/2h).
t

That is, vV ThDg(i,7) = Op(h) = op(1).
(ii) Note that

1 r 1
Ds(i,r) = TH(T)IF(T)/Al(‘ ) _ 57 r)/zkh L F )\( )( - ) + H(r)/zkh L F )\(1)( )+ Op (h3)

T

h2
= 2QVERAY + Op((Th) ™2+ (Th) ™) + Op (k).

Then vThDs(i,r) = VT hz@Q—l/zFAZ? +op(1).
(iii) Note that —D7(i,r) = + >, F} FEMBM M1y, = SrAY, gpl,t,.Bt(T)/H(T)_lx\iT =3 Dyi(i,r).

‘ _ 0 1/2 2)1/2 N B
For D13, 1), we have [|Dr1 6, ) | < { £ 55, era|*} {; > |B” } O] Ixir| = Op(CR3)IOR(R)
= op((Th)~Y/?). For D7 5(i,r) and D7 3(i,7), we have

D (i, r) ZHW FMBM HM=1y,,
() ) ) | A ()2 (r) (-1

fZH’“ " [C(T)Jrc hm—i—C(T)}HT Air

= 2k HO [C“”’ +c<”] HO1, +0p<<Th)—1/2h+ (Th)~") and

. 1 T T ~

D (i) = TZB( ‘B %—TZC

t

= W?roC SR O HOTIN,, + Op (hP)

F(T t(T)/C'Y)/+OP (hB)

Thus, we have VThD7(i,7) = —/Thh?ks [H(T)’Epc_ér) + H(T)’Epc_’ér) + C_'Y)ZFC_'Y)/} HO=1),, + op(1).
(iv) For Dg(i,r), we have

. ]- r r 1 *rt_r ~(r ~(r t—r T T t—r
Ds(i,r) = TZB( VEM di(t,r) = TZ {cf ) 7 (" h24y + C >(T)2} FOFMAD 7 +0p(h’)
t

=7 Z D2 EDFEOAD 1 0p (1) = h2aC T SeAD + Op((Th) V212 + (Th)~1) + Op(h?).
Then VThDs(i,7) = h2kCVSp A 4+ 0p(1). W
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Proof Lemma A.5. (i) By (A.2),

8 8 !

1z < 1

¥ > Aty = ¥ ST HO N+ Dl(z‘,t)] [H(t)l)\it +Y Di(ist)| =T+ o+ Js+
i 7 =1 =1

where J; = HOUL S N NJHO Y Jy = LS HOING S Di(i,t)]!, J3 = Jp, and Jy = &3,
[Z?Zl Dl(i7t)][Z?:1 Dy(i,t))'. SW show that J; 5 Q;%4,Q} by Assumption A.1(iii) and Lemma A.1(iii).
Despite the presence of some additional terms in Z?zl D (i,t) due to the approximation bias, we can easily
follow SW and show that .Jo = op(1) and J; = 0p(1). Then % 3, Ak, = QiSa, Q) + op (1).

(ii) By (A.2), we have \/% S (it — HO7 I\ )eqr = Z?Zl Dy (t), where Df (t) = \/% > Di(i, t)ey for
I =1,..,8 Following SW (Lemma A.6(ii)) with some minor changes (e.g., D2(t) should be decomposed
into nine terms according to (A.1)), we can show that D; (t) = op(1) for | = 1,2,3. Now, we consider the
terms Dy (t) to Dg (t). For Dy(t), using d;(s,t) = )\(1)5 ¢ )\(2)(§ 1?2+ Op((5:4)?) and Lemma A.2(i),

2 it
we have

+VNOp(CyLh?)

§ t ezt

||D4 H— Z Z‘PlstF "di(s,t)eir|| = Z‘Plsts
\/7
1 1 s—1t 1/2
9 _
S

= Op(Cy1)Op(h)Op(1) + 0p(1) = op(1),

+ Op(l)

\/* Z /\zt it

(t) —

F, T = Op (h) and that N-1/2 > )\Etl)eit = Op(1). For D5(t)v

1
where we also use the fact that )

S

7

| Ds(t)|| = \/% ‘ Z ZH(t)F(t)F(t)/d (5,t)es

!
= \/% ‘ Z%ZkzvstH(t)FsF;Z%)‘g) (3;2?) eirll + VNOp(h?)
2
< HH(t) ’Z IT Zkh Fs F’ H H \FZ)\” eit|| +op(1) < Op(h) +op(1) = op(1).
1=

Next, noting that B(t) Zl 1€, stFS( ),

\F Z Z BWeWe,

[ Ds (1)

3
% ; k;ﬁst ; cl,sth\/% ; €is€it

2 9 1/2

IN

kh,st

2
—tS*t =(t =(t s—t
' +0§)n2h2+0§)( - >

1
T2

= O0p(h)Op(NY2T712 £ 1) = 0p(1),

% Z E@ €is€it

where we use the fact that >, || ~ i Fs eweth <> HN > E(Fseisest) H +>, H ~ 2ilFseiseir — E(Fseiseit)]H2
- Zs |}7N,F S’t H +Op (T/N) - ( ) +Op (T/N) with YN, F (S,t) =N Zi E(E‘?else'l,t)'

13



For Dy(t), it suffices to consider a rough bound:
5 1 LS~ po g -1
D0 = | 30 £ Y A B O e
1 N
- () gty
7O FVB

| T om0t

1
-] H\/NZAM

= Op(h)Op(1)Op(1) = op(1).

Finally,

10100 = | 32 5 32 BOR

\/}Z ZB ¢ 1)ST eir + Op(VNK3)

1 ~ — _ _ _
= TZ Cl(t)ST + C§"roh? + CFY <ST> F(t)F(t)l \f Z)‘lt eit|| +op(1)
= OP(hQ)OP(l) +op(1) =op(1).
This proves the desired result in (ii).
(iii) We make the following decomposition
1 NN _ 1 < _ : _
ﬁ Z Ait [)‘it - H(t) 1>\i1ﬁ]lftj(t)l1:‘zt = ﬁ Z[)‘it - H(t) 1)\it][>\it - H(t) 1)\it]/H(t)/Ft

1 ~
+ﬁ Z HO7N\ Ny — HOTIN ) HY'Fy = Ly (8) + Lo ().

By Theorem 2.2, HS\” — HO=I\,|| = Op(h%+ (Th)~Y/2) = Op(Cy 7). Following the proof of Theorem 2.2,

we can readily show that

1L (1)) < —= ZHM—

For Ly (t), we have L (t) = Y1y <k 30 HO ™I Dy(i, ) HO'Fy = 307 Loy (1) by (A.2). Tet Loy (t) =
i Y eV FO. Then Ly (t) = HyY| ' Lo () HO HO'F,. In view of the fact that

= Op(N'2Cy2) = op (1).

_ 1 hl/2
L t A €; t)F tyr = — k; 7 €1€ O 1/2
2,1 T ﬁ E E it s Th { NT 1/2 E h, et it } P(( ) )

14



by Assumption A.1(vii), we have Ly 1 (t) = op (1) . For Los(t) and Lo 3(t), we have by Lemma A.2

1 1 .
L2z ()| = H\/ﬁ ZH(t)—1)\it [Tegt)/ (F(t) _ g B(t)ﬂ HO R
1
— HH(t) 1 Z (\F Z)\ne(t)> HO'F,
T Z H VN Z Aiely,

o 1 -
|MMUW—HHw1T¢N§:MMMﬂ0U

< OPT(l) H [0 — FO O — o]

2) /2 ) 1/2
{T > H%,stHQ} = Op(1)Op(Cyy) and

[F®) _ po ) _ B(t)]’ FO O R,

\/% > Ial’? (CNT)OP(NY?) = op(1).

i

") gy

FOG  HO'E,

For Ly 4(t), we have

Lo 4(t

—ZH(” Dies Zd (s, )
H®-1 Z/\”)‘(l)/ 723;

= OP(NI/Z)OP(C;[T) +op(1) =0p(1)
F(t)go1 st = Op(Cy7) by similar analysis as used in the proof of Lemma

t
F(t)¢315t1 HY'F, + Op(N'Y2h205L)

—t

where we use the fact that £ > %
()% + Op((s—;t)g)}’FS(t), we can readily show

A.2(ii).
For Lo 5(t), using A( ) =g, (s,1) FY =

that 7
2
Lo s(t) = —ZH(” it { HWY'F WA“)] HY'F, = HO™'N "Ly 5 () HO HY' Fy + Op(NV/2R)

[/\(1)3 t éAEf)

=1

where Ly 51(f) = 1 32, A & 0, ki FuFJ (370! for I = 1,2, Note that || Ly s (1)]] < Hrz A
Y =o0p(1) and

Op(NY2)Op((Th)=Y2h + (Th)~
Nh2ky NAL
\/72 K2 tNt EF+0P(1)~

< |3 Sk FuF
Ly 52(t) =
\/>h2f$2 H(t) 14 At » H(t)H(t)/Ft -+ OP( ) = Op(l).
Let Log(t) = ﬁzz At [72 B"e! } Then Log(t) = HW ™ Ly g(t)HW'F,. For Lyg(t), we have
fEM%&w””zufx&@zﬂwg%thmwwwm

Ez,e(t):T\, =
TZ h, stFs—— Z/\ztezs

1 s—t]?
{TZ kZ,sthTH }

S

1A (2) . 2
\FAA 1ZkhstFF’< t) _

Then L2’5< )

|Ezsatl] =
2
i

it€is

IN

15

= Op(hl/Z)Op (1) = op (1
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Similarly, we can show that Lo g;(t) = op (1) for I = 2,3. Then Lo g(t) = op (1). For La7(t), we make the
following decomposition:

AA
—Lyq(t) = \/»TZZH“) N X HOVBO O HO Fy = O 2L gy (ZLQH ) HY'F,

where Lo 7,(t) = ‘/Tj > Bgt)gofjst. Note that

L) 172
} = N'20p(Cx1)Op(h) = op(1).

2
1 1
Lana®l < N2 {T; ||¢1,St||2} {T; |5

For Ls 7,2(t), we have

F,F'H®

s—1t 2
T

where we use the fact that g S ks G FSFL = \WOP((Th)_l/2 h+ (Th)=™') = op (1). For Lo 73(t),
we use BY' C(lt =t éét)hQHQ + C_'ér)(%t) to obtain

Loza(t) = £ ZB(t F(t rg® — Z kh . [C(t) s — + @2(t),{2h2 + C‘:gt) (

_ Wh%g [éé” + OPE”} SEH® +op(1),

L2 7, 3 ZB(t \/70(” F(t F(t C(t)/+0 ( ) = \/Nh2ligé£t)2FC’£t)/+0P(l).

Then by Lemma A.1(iii),
AA ~ _ _ _
Laa(t) = —VNR2 iy HO T =2 g O (c@zpcf)’ + [05” n cg,t)} EFH@) HY'F, 4 op(1).
Next,

1
Log(t) = i > HO N Dy(iyt) HO'F, = HO T Z it ZB“ FOAD ST HY'E, + Op(N'/?1h?)

O S |1 RO

AALY
N

c t),H(t)/Ft + OP(1>

=V NIk HO! SrCYHO'E, + op(1).

Combine the above results yields \ﬁ > )\zt[ i — HOZIN ) HO = VNHO'F, + op(1). B

Proof of Lemma A.6. (i)-(ii) The proof follows from that of Lemma A.7(i)-(ii) of SW and the proof of
Lemma A.1 in this paper.

(if) By (A1), 7 30, |7 = HOVE = B0 < 9)[VEp | Sy Ar(r) where Ay (1) = £ 52, Vi Au(t, ) -
Noting that max, V]Sf?_l" < max, HV]STT)_l - Vr_lH + ||V;=!|| = Op (1) by part (i), we can prove (iii) by
finding the uniform probability bound for A4, (r), I =1,---,9. SW (Lemma A.7(iii)) have studied the terms

A1(r) to Ay4(r) to obtain max, Z?Zl Ay(r) = Op((Th)™' + NInT). For the remaining terms, noting that
Az(r) and Ag(r) are higher order term than As(r) and A4(r), respectively, it suffices to bound As(r), Ag(r)
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and Ag(r). For As(r), we have

2

A5(’F) = T

3 2 3
1
iy Ly =33 400
=1 t 1=1
We will obtain rough probability bound for max, As;(r), | = 1,2,3. Note that

maxi Z H@l sr

1 - r r) (r
ﬁ Z FS(T)FS(T)/D(S’ r)/ArFt( ) - V]&%Bét)

1 I
TN Z cpl,ers( )/D(s, r)/ATFt(T) - Xg)t

maXA51()<max ZHF(T) (s,7) A,

mngNQZ‘

2 (ryy P — 2
=0p(1) F"'D(s,7)A,|| =Op (h?).In

addition, max, & > ||<p178r||2 < Op(1) Z?:l max, A; (r). With arguments that are much simpler than
those used in the analyses of max, A;(r) for I = 5,...,9 below, we can easily obtain a rough bound:
max, 2?25 Ai(r) = Op((Th)™") + op(h?). Then we obtain a rough probability order: max, As(r) =
Op(((Th)™" + N2 InT)h2) + op(h*). For As(r),

It is trivial to show that max, + >, HFt(T)

2
1 o o R2ea APAL]
maxA52 = max— ﬁZFﬁ( JF( )’D(s,r)'AT.Ft( ) TEF I - Ft( )
<0 F(r (r)/ (7”)
< max Z N
A?)’AT 1 12
+Op (1 max [ ZF(T)F(T)’ ( ) N TZ HFt( ) + Op(h°)
t
= op(hZ(Th/lnT)— + (Th)~% + h°)
by Assumption A.4(ii) in SW and Lemma A.6(i). Similarly,
*(T) A,Ag’l) (7«) ?
maXA53 max—z TNZBT)F ’Ds (s,7)'A,. — C} EF7TK:2h2 F,
1 ) ~(rw AL A r
< max || 3" BUFD(s,r) A, - O Sp=rE B

S

= Op(h*(Th/InT)~ + (Th)~?).

Then max, As(r) = Op((T/h) "' InT + N~*h2InT) 4+ op(h*) = op((Th) " + NInT + h*). Next, Ag(r) =
(T T T 2 T T 2
7 0 || 7w So VR D(s ry D) FY | <350, 7 5 | 7y S ner B Ds ) D T =350

27 2
Ag,i(r). It is easy to show that max, Ag3(r) = Op(h®) and max, Ag 1(r) < max, {NlT > HD(L‘7 r)Ft(T) }
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Xg D H‘pl,erQ = h4Op((Th)™" + NInT) + op(h?)]. For Aga(r), we have
2

r

1 1 T T i
max Ag2(r) < Op(1) max T;ﬁ;ﬂ( VE) D(s,r) D(t,r)F"

+ Op(hG)

2
1 s—r\ AMAM 1 t—r
_ LS pmper (220 #72 (r)
op(l)mngstFs (T) N TtFt (T)

1 ey (ST A(l)IA (r)
Op(1) max TZS:FS( ) F( >’( - ) TZF ( )
Op ((Th)"'AW*InT + (Th)~*) Op ((Th)‘1h2 InT + (Th)~?) + Op(h%).

IN

+ Op(hﬁ)

In sum, we have max, Ag(r) = op((Th) " + N~ InT + h%).
For A7(r), it suffices to consider the rough probability bound

2

max —

1
max —
TXTZ:

max A7 (r) ZF(T)F(T)/D(S r) e (r)

IN

el

2
g 23 [FO DG el | = 0n((/ )y 2 4 )
t s

(r)/

2
< maee Y30 7 [| B () e 00 e
+0p (1) = Op((N/InT) " h?+h®). Similarly, max, As(r) = Op((N/InT) " h?+hO). For Ag(r), we have

D(s,r)'e,

2
where we use the fact that max,. TINT N2 Et s (r) H

2

1 T T T 2 1
Aor) = 5 3 [Viipattr) - Vi B =

<3Z Xt:

1 - r s T
oY Z EOFEC N D(t,r)F — v B

ZAQI

TN Z‘Pl ST‘FQ(T /A, (t T)Ft Xllt

where xgl)t = xgg)t =0 and x(g)t — v B Following the analysis of As(r), we can show that max, Ag 1 ()

= Op(((Th) ' +N~InT)h2)+op(h*). It is easy to show that max, Ago(r) = Op ((Th/InT)"'h? + (Th)~?)
and max, Ag13(r) = Op((Th/InT)~ h* 4+ h®). Then max, Ay(r) = op((Th)™" + N='InT + h%).
2

In sum, we have shown that £ Y, HF(T) HOE — BO ’ =O0p (T7'h™ '+ N"'InT) + op(h*).

(iv) Following the proof of SW’s Lemma A.7(iv) and the steps in the proof of Lemmas A.2(ii) and Lemma
A.6(iii), we can show that max, H%(F(”) — FOHMYFOHO|| =0p (T7*h™' + N~'InT) + op(h*).

(v) By (A.1), we have l(F(T) — FMHE — oy E N = VN;T Z?:l AEFE; (i,r), where AE) (i,r) =
7 Ly, V]SZZAl(t r)e;, (r) . By SW (Lemma A.7(v)), max;_, ‘ Z?:l AE, (z,r)H =0Op (T‘lh_1 + N1 lnT). For

the remaining terms, since AFE7(i,r) and AFEg(i,r) are higher order terms than AFs3(i,r) and AE,(i,71),
respectively, we only consider AFs(i,r), AFEs(i,r) and AEgy(i,r). For AE5(i,r), we have

TZ

ey

| AEs(3,7) TN ZF VEO D(s, ) A F — v BEY

1 r r r r
TN Z ‘pl,er§ 'D(s, T)/ArFt( ) Xgl)t‘| gt)

3
= Z AE571(Z', ’I“).
=1
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For the first two terms, we have

1 , 1/2 1 ) 1/2
ZF(r) o {TZH%,STH } {TNQZ‘ D(s,r)/ATH }

= Op((Th/ haT)*l/Z)[OP((Th)*l/2 + (N/InT)"Y?) + op(h?)]h = op((Th) ™' + N~ InT + h*)

max AEs51(i,1) < max

and
T (2)
. 1 - 1 R h2k AN, "
II%%XAE572(Z,T) = max || ;H( ) lTN ;FS( JEM D(s,r) A, — ?QEFT FeD
1 (r) (1) 1 ) p(r)r , W2ro . APA,
TZFt €it ﬁZFS FS D(S,T) AT-_TEF N
t s

= Op((Th/InT)"/*)Op((Th/InT)" 2k + (Th)™') = op((Th) ™).
For AFEs 3(i,r), noting that BSZ?Q = Ii2h2Bég)Ft( ) = gyh2V T) 1C(r (A;Agnl)/N)Ft(T)7

1 1 (r) (1)1 : 26 MA Y Lo )
72\ 7w 2 B Dl A = O S | R

(1)
ZF(T) (7”) A;A,-
N

= Or((Th/ 1HT>*” 2>0P<<Th/ TR 4 (Th)) = o (T,

max AFEs5 3(i,r) = max

2,7 7,7

< max max

TN ZB(T (" D(s,r) Ay — #2020

Therefore, max; , || AE5(i,7)|| = op((Th)™' + N~ InT + h*). For AEg(i,r), we have

[AEG (i, )|

1 1 L) " (r
T2 7w 2 B EYD(s ry Dt ) F e
t S

3
1 1 .
<D T2 T D P ' D(s,r) D(t,r)F"elf)
=1 t s

) 1/2 ) ) 12
2
(i} o }

= Op((Th/ lnT)’l/zh)[Op((Th)’l/z + (N/ 1nT)1/2) +op(h®)h = op((Th)"' + N~1InT + h?),
TN1/2 ZD t T F(T) (7”) TN1/2 ZF ) D(s,r)/
= Op((Th/ lnT)*l/zh)Op((Th/ InT)"Y2h) = op((Th)™1),

»

3
= Z AEgJ(’L’, ’I“).
=1

It is easy to show that

FM'D(s,r)

) 1 ) (r
n}’z}“xAEgﬁl(Z,T) < HZ_I%X mzt:D(tﬂ“) ) Et)

max AFg (i, < max || H"
7,7 T

and similarly max; , AEg 3(i

, Op ((Th/lnT) V2p2 4 (Th)~ '+ h*)Op((Th/ InT)~*/2h) = op((Th) "'+
h*). Thus max; . | AEs(i,7)]

op((Th)™* + N='InT + h*). Analogously, we can also show that

maXHAEg(z ) =op((Th) "+ Nt InT+h%).

1 I T T T T T
Z WZF N D(t, ) Fel) — VB el
t

S
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Then max; , H%(F(” ~ FOH) ROyl H = Op (T7'h~' + N='InT) + op(h?).
(vi) The proof is analogous to that of (v) and thus omitted.

(vii) Note that max; , %H(T)’F(T)’Agr) < max, ||H(”) H =1 = Op (1) Z1, where Z1 = max; , ||T > F (T)F(T)/
xd; (t,7)]]-
21 = max Zkh SFEld (t,7)
1 1
< max Zkhtr2F< ))\() +max Zkhtr (FF| — ZF)< 7 ) AV L op (h?)

— O((Th)™") 4+ Op((Th/WmT)""/* h) + Op (h?).

Then max; . || A HO'FO'AD| = Op((Th) ™" + (Th/InT)™ /% h + h2).

(viii) Note that LB el = LS BMelT) < LS [0 r 1 O ko2 + O ()2 Fe) = 308
c§ | masci. | & 52, ki 7 Frc| = Op((Th/ InT) "2 )
and similarly, max;, Za,:, = Op((Th/ lnT)_l/2 h?) for I = 2,3. It follows that max; .
Op((Th/InT) "2 h).

(IX) H%F(T)/B('I)H('I)_IAZTH S H%(F(’r) _ F('I)H('I) _ B(T))/B('r)H(T)—l)\’LTH_’_H%H('])/F(’!)/B(’I)H(T)—IAZTH
+ H %B(”)’B(T)H(T)_l/\irH = Zf’zl Es3,1,ir- Following the proof of (iv), we can also show that

Ho 1,ir- It is easy to show that max; , Za 1 4 < max,

%B(r)legr)

/
= (F(’“) FOHE® B(")) BO|| = 0p([(Th)™" + N~ InT]h) + op(h?).

max =231 < O, (1) max
ir @7

As in the proof of (vii), we can readily show that max; , =3 2 = Op((Th)™" 4+ (TH In T)_l/2 h + h?) and
LEO' BOHO=N N = Op((Th) " +(Th/InT)"/? h+

max; E3,3,iT = max; r 537271‘7« = OP(hZ) Then max;
B2+ N-'RInT).

(x) Noting that Bér) = [C_'fr)%+c_'§r)f<&2h2+éér)(t
LS BOF di (t,r)|| = 0p (h2).
(xi) The proof is analogous to that of Lemmas A.5(i) in this paper and the Lemma A.6 (vi) in SW, and

thus omitted here. )
(xil) By (A.2), Sr = HO7IN||” < 850 & 2D,

Following the proof of Lemma A.4 and using the previous results in this lemma, we can show that
. 2
LA = A mOY| = op(cRimT),

(xiii)-(xiv) The proof follows from that of Lemma A.7(viii)-(ix) with obvious modifications and thus
omitted here. B

= )Q]Ft(r), it is trivial to show that max; , %B(’”)’AET)

= max; ,

(r)—1s 2

Proof of Lemma B.1. (i)-(iii) The proof is essentially the same as that of Lemma B.1(i)-(iii) in SW and
hence omitted here.

(iv) By (A.2) and the CS inequality, 7 >, H N ()\Zt — HO )\ )eq § 8 Zlgzl Dy, where D; = 7.},

| % > Du (i t) eitHz. By Lemma B.1(iv) in SW, 21:1 Dy =0p (T72h™2+ N~2InT). For Dy, we have by
the CS inequality and Lemma A.6(iii)

1 1
T Z Prst Z Fdi(s,t)eq
s i

2
1 D —
=UT Z [1,06]” Ds =[O (Th)™" + N~ InT) +0p(h*) D,

1
D4:T

t
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_ 2 _
where Dy = 75 37, |15 30, FVdi(s, t)ean| . Let Day = 25 30, [ F (3 305 A e Cfor 1= 1,2
Note that
1 2
4 N ZFS(t)Idi(S,t)eit S 3([)4’1 + D4’2) + Op (a?VThfi) = OP(G?VTN_th + a?VTh6)7

_ 2 2
where we use the fact that Dy; < 7Y, HZLN Al )eltH max; 7 Y HFS(t)'(S—;t)lH = Op(a%N~1h?) for

i Vit
[ =1,2. Tt follows that Dy = [Op ((Th)_1 + N1 lnT) +op(h")]Op (a3 N7 h? + a%ph®) = op(T72h =2 +
N=2InT). For Ds, we have

Ds5 = T Z ZD5 i,t) e %Z % ZH(t)Ee(t)Es(t)'di(S,t)Git

= i 2" t)le < T > ZNZ)\U)G”

Noting that

2
=1

Ds 1

IN

max

2
H H

21
Z/\(l) th:

= 0p(ap(N/IN)")Op((Th) " h+ (Th) )
(

ZkhstFF/ EF)

Zkh stT

and similarly D5 2 = Op(ai(N/In N)~ )O h4) we have D5 = Op{a%(N/In N)_l[(Th)_l h+ (Th)_2]+
adr(N/InN)"h* + adph®} = op (T72h72 + N~2InT) . For Dg, we have

Z Z (t) % Z Z k;,,tscl,stheiseit

where ¢ o = C( )(Tt) Co,st = C‘ K)th and c3 st = C(t)(%) . Note that

2
sFe et
E hts

2

Dg =

3
YD
=1

t

IN

D671 max HC(T)

1

IN

— 12 1 x bt—s_
mngCf ) Tzkh,tsT’YN,F(Sat)

S

Z hts '7NF<S t)

1
+th:

Op (axr) Op(T™% + (NT/h)™" h?)

where 7y p(s,1) = FSeT/Set —n.p(s,t) and vy p(s,t) = % E [Fs€yey] . Similarly Dg; = Op (akp) Op(T72 +

(NTh)~" h*) for | = 2,3. Then have Dg = Op(a%(T~2+(NTh)™ ")) = op (T"2h~2+ N=2InT) . For Dy,
we have

2 3
=3 Z D7,l,
=1

1 .
7 D OB e

1 41
T Z ‘Pl,tngt)/H(t) 1N Z Aiteit
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where recall that ¢, ,, = FD —gOF® B(t), Do st HOF®  and 3.6t = = B{". We can show
1

D7, < f; Z‘Pl st t)'H(t) ! ZAzte'Lt

= KW [Op ((Th) +N"'InT) +op (h")] Op ( “'InN) =op (T"?h?+ N ?InT),

D7y = ;2; ZH@)F“)B“ "TH®- Z)\nezt

max

2

max

Z F(t)F(t)'c/ Lts Z Aiteit

= Op ((Th)™'R* + (Th)* + h*) Op (N 1lnN):0p( 2h?+ N7?InT),

2
and similarly, Dry = & 3, |+ 32, BB HOL S dwea| = Op (ko h! N InN) = op(T~2h72

+N72InT). It follows that D; = op(T~2h=2 + N=2InT). For Dg, it is easy to obtain a rough probability
bound:

3
1

Combining the above results concludes the proof of (iv).
(v) The proof is essentially the same as that of Lemma B.1 in SW and thus omitted. W

2
=Op (ap(R*N"'InN 4+ 1%)) =op (T"°h >+ N °InT).

1 1
T Z cz,sth(t)Fs(t)/N Z di(s,t)eq

S

Proof of Lemma B.2. (i)-(vii) are only involved with the conventional PCA estimate so the proof follows
from that of Lemma B.2(i)-(vii) in SW. The proof of (viii) follows from that of Lemma B.2(viii) in SW with
some modifications. W

Proof of Lemma B.3. (i) Noting that Ra(i,t) = Y__, Di(i, ) by (A.2), we have = 30, 32, [|Ra (i, )|

730, R, where Ry = +2 57,5, | Di(i, t)||° . SW (Lemma B.3) show that 7, Ry = Op ((Th) ™2 + (N/InT)~?)).
Now, we consider the remaining terms. For Ry, we have

Z@lstF( i(s,1)

=O0p(T'h P+ N'InT + hY)Op(h*a%r) = op(T"2h™2 + (N/ lnT)_ ).

Ry = <max—ZH<p1 6tH max—

NT

For R5, we have
2

Rs = HW Z ki o FoFldi(s,t)

NT

2
N*ZZ

= Op(aXr[(Th) ™ 1? + (Th) ")) + Op(h'axr) = op(T*h~%).

+ Op(h*axr)

2
1 —t
LSk

2
= 32?:1 Rg,1. Note

2
3
L BT <3500 2y,

Next, R = ﬁzz Do
that

1
T 2 ki sec s Fseis

= Op(ayr)Op((Th)™'h?) = op(T~*h7?)

Z kh st F Cis

() ||?
Re1 < max HCl

NT
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and similarly Rg; = Op(a%7)Op((Th)~th*) for | = 2,3. Thus Rg = op(T~2h~2). For Ry, we have

—323”

Following the analysis of R4 and Rj, we can show that Ry = op(T72h™2 + N=%(InT)?) and R7» =
op(T~2h~2%). In addition, R;3 = Op(h*aks) = op(T~2h=2). Then R; = op(T2h~2 + N=2(InT)?).
Lastly, it is easy to show that

Z F t)IH 1)\Z_T

2 @) ry(r)—1
E r1sBs H i
— NT

2

1 _o,
Ry = ngng“Fg“'di(s,t) = Op(h'ajr) = op(T7?h7?).

NT

Combining the above results yields = >, 3, [| R (4, H)* = op (I'2h=2+ N~2(InT)?)

(ii) The proof is essentially the same as that of Lemma B.3(ii) in SW. This is due to the fact that Bp ()
is Op(ayrh?), which is op(min(T~'h~1, N71)).

(iii)-(iv) This follows Lemma B.3(iii)- (1V) in SW as only the conventional PCA is involved. B
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