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Specification Tests for Temporal Heterogeneity in Spatial
Panel Data Models with Fixed Effects∗

Yuhong Xu and Zhenlin Yang†

aSchool of Economics, Singapore Management University, 90 Stamford Road, Singapore 178903.

August 12, 2019

Abstract
We propose adjusted quasi score (AQS) tests for testing the existence of temporal

heterogeneity in slope and spatial parameters in spatial panel data (SPD) models,
allowing for the presence of individual-specific and/or time-specific fixed effects (or in
general intercept heterogeneity). The SPD model with spatial lag is treated in detail by
first considering the model with individual fixed effects only, and then extending it to
the model with both individual and time fixed effects. Two types of AQS tests (näıve
and robust) are proposed, and their asymptotic properties are presented. These tests
are then fully extended to SPD models with both spatial lag and spatial error. Monte
Carlo results show that the robust tests have much superior finite and large sample
properties than the naive tests. Thus, the proposed robust tests provide reliable tools
for identifying possible existence of temporal heterogeneity in regression and spatial
coefficients. Empirical applications of the proposed tests are given.

Key Words: Spatial panels; Fixed effects; Time-Varying Covariate Effects; Time-
Varying Spatial Effects; Change Points.

JEL Classification: C10, C13, C21, C23, C15

1. Introduction

Being able to control unobserved heterogeneity may be one of the most important

features of a panel data (PD) model. Heterogeneity may occur on intercept, slope and error

variance. In a spatial PD model (SPD), it may also occur on spatial parameters (Anselin,

1988). Heterogeneity in variance is often referred to as heteroskedasticity. Heterogeneity

may occur in spatial and/or temporal dimension. When unobserved heterogeneity occurs

on the intercept, it gives rise to individual-specific effects and/or time-specific effects,

which may appear in the model additively or interactively. Change point or structural

break may be considered as a special case of unobserved heterogeneity.
∗We thank Editor, Gabriel Ahlfeldt, and two anonymous referees for their constructive comments that

have led to significant improvements of the paper. Thanks are also due to the participants of the XI World
Conference of the Spatial Econometrics Association, Singapore, June 2017, and the seminar participants at
the Tohoku University, Japan, Dec. 2018, for their helpful comments. Zhenlin Yang gratefully acknowledges
the financial support from Singapore Management University under Grant C244/MSS16E003.
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Temporal heterogeneity is a common feature in an SPD model. It is an important issue

but relatively unexplored in the spatial panel literature. Temporal heterogeneity may

occur as a result of a credit crunch or debt, an oil price shock, a tax policy change, a fad

or fashion in society, a discovery of a new medicine, and an enaction of new governmental

program (Bai, 2010). Many economic processes, for example, housing decisions, technology

adoption, unemployment, welfare participation, price decisions, crime rates, trade flows,

etc., exhibit time heterogeneity patterns. Values observed at one location depend on the

values of neighboring observations at nearby locations. Therefore, one may be interested

in the question whether this dependence stays the same over time.

There is a sizable literature on temporal heterogeneity in regular panel data models,

mostly on change points or structural breaks, see, Bai (2010), Liao (2008), Feng et al.

(2009), to name a few. In spatial models, previous literature has focused more on the

spatial heterogeneity (e.g., Aquaro et al., 2015; LeSage et al., 2016, 2017). The literature

on temporal heterogeneity in spatial panel data models is rather thin. We are only aware

of the following two works, Sengupta (2017) who proposes tests for a structural break in

a spatial panel model without fixed effects, and Li (2018) who studies fixed effects SPD

models with structural changes. SPD models with temporal heterogeneity also appear in

finance literature, see, e.g., Blasques et al. (2016) and Catania and Billé (2017), but under

a different setting where the time dimension is much larger than the spatial dimension.

In this paper, we consider the fixed effects SPD models with temporal heterogeneity in

regression and spatial coefficients. We focus on the testing problems. The presence of tem-

poral heterogeneity renders the usual fixed effects estimation method through transforma-

tion (Lee and Yu, 2010; Baltagi and Yang, 2013; Yang et al. 2016) inapplicable in handling

the individual-specific fixed effects. A general method, the adjusted quasi score (AQS)

method, is introduced for constructing tests for temporal homogeneity/heterogeneity on

regression coefficients and spatial correlation coefficients in SPD models, allowing for pres-

ence of spatial-temporal heterogeneity in the intercepts (or fixed effects). The SPD model

with spatial lag dependence is first treated in detail by first considering the model with

individual-specific fixed effects only, and then extended to the model with both individual

and time specific fixed effects. Two types of AQS tests (näıve and robust) are proposed,

and their asymptotic properties are presented. These tests are then fully extended to the

SPD models with both spatial lag (SL) and spatial error (SE) dependence. Monte Carlo

results show that the robust tests have much superior finite and large sample properties

than the naive tests. Thus, the proposed robust tests provide reliable tools for practi-

tioners. Two empirical applications of the proposed tests are presented, and a detailed

guidance is given to aid applied researchers in their empirical studies.

The rest of the paper is organized as follows. Section 2 presents AQS tests for the panel

SL model with one-way and two-way fixed effects, where a general method for constructing

non-normality robust AQS tests is outlined. Section 3 generalizes these tests to the SPD

models with both SL and SE dependence. Section 4 presents Monte Carlo results. Section
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5 presents two empirical applications to give a detailed illustration on how the proposed

methods are implemented. Section 6 discuss possible extensions and concludes the paper.

2. Tests for Temporal Heterogeneity in Panel SL Model

In this section, we introduce the general AQS method for constructing the specification

tests and a method for the practical implementations of these tests, using the simplest

panel SL model with one-way FE (i.e., unobserved spatial heterogeneity in the intercept).

Then, we extend these tests to a panel SL model with two-way FE (i.e., the unobserved

spatiotemporal heterogeneity in intercepts). Asymptotic properties of the proposed tests

are presented. Some key quantities for calculating the test statistics, the Hessian and

expected Hessian matrices, and the variance-covariance matrix of the AQS function, are

given in Appendix B, and proofs of theorems are sketched in Appendix C.

2.1. Panel SL model with one-way FE

Consider the following panel SL model with individual-specific FE, or one-way FE:

Ynt = λtWnYnt + Xntβt + cn + Vnt, (2.1)

where Ynt is an n× 1 vector of observations on the dependent variable for t = 1, 2, . . . , T ;

Xnt is an n × k matrix containing the values of exogenous regressors and possibly their

spatial lags, Wn is an n×n spatial weight matrix; Vnt is an n×1 vector of independent and

identically distributed (iid) disturbances with mean zero and variance σ2; λt is the spatial

lag parameter and βt is a k × 1 vector of regression coefficients for the tth period; and cn

denotes the individual-specific fixed effects or the spatial heterogeneity in intercept.

Null hypotheses. We are primarily interested in tests for temporal homogeneity (TH)

in regression and spatial coefficients, i.e., the tests of the null hypothesis:

HTH
0 : β1 = · · · = βT = β and λ1 = · · · = λT = λ, (2.2)

allowing for the presence of unobserved cross-sectional heterogeneity in intercept, i.e., the

individual specific fixed effects cn. If HTH
0 is rejected, one may wish to find the ‘cause’ of

such a rejection instead of fitting the general heterogeneous model (2.1). Natural tests

to proceed would be the tests of TH in regression coefficients only (RH), HRH
0 : β1 = · · · =

βT = β, and the tests of TH in spatial coefficients only (SH): HSH
0 : λ1 = · · · = λT = λ. If

HRH
0 is not rejected, then one may infer that the cause of rejection of HTH

0 is the existence

of temporal heterogeneity in spatial coefficients; if HSH
0 is not rejected, then the cause of

rejection of HTH
0 may be the existence temporal heterogeneity in regression coefficients. In

both cases, one would fit a simpler model of heterogeneous spatial coefficients only, or of

heterogeneous regression coefficients only. If both HRH
0 and HSH

0 are rejected, one may need

to fit the general model (2.1). However, rejection of both HRH
0 and HSH

0 may be due to the
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existence of change points (CPs) in β-coefficients and λ-coefficients, giving rise to a case

of particular interest: change point detection in the spirit of Bai (2010) and Li (2018):

HCP
0 : β1 = · · · = βb0 6= βb0+1 = · · · = βT and λ1 = · · · = λ`0 6= λ`0+1 = · · · = λT , (2.3)

where 1 < b0, `0 < T , and b0 and `0 can be the same or different. If HCP
0 is not rejected, one

may fit a much simpler model with one CP in βt at t = b0 and one CP for λt at t = `0. These

discussions can be extended to have more one CP in βt and λt. All of these hypotheses

can be put in a general framework and tests can be constructed in a general manner.1

Adjusted (quasi) score functions. As λt and βt are allowed to change with t, the

usual fixed-effects estimation methods, such as first differencing or orthogonal transforma-

tion, cannot be applied. We propose an adjusted score (AS) or adjusted quasi score (AQS)

method for estimating the structural parameters in the model, which proceeds by first

eliminating cn through direct maximization of the loglikelihood function, given the struc-

tural parameters, and then adjusting the resulting concentrated (quasi) score function to

give a set of estimating functions that are unbiased or asymptotically unbiased so as to

achieve asymptotically unbiased estimation. The resulting set of AS or AQS functions

then lead to a set of score-type of tests, referred to as the AQS tests in this paper, for

identifying temporal heterogeneity in regression coefficients and spatial parameters.

We develop score-type tests as they require only the estimation of the null model.

However, the construction of the score-type of tests requires the full quasi score (QS)

function, derived from the quasi Gaussian loglikelihood, as if {Vnt} are iid N(0, σ2In):

`SL1(θ, cn) = −nT

2
ln(2πσ2) +

T∑
t=1

ln |An(λt)| −
1

2σ2

T∑
t=1

V ′
nt(λt, βt, cn)Vnt(λt, βt, cn), (2.4)

where θ = (β′,λ′, σ2)′, β = (β′1, . . . , β
′
T )′ and λ = (λ1, . . . , λT )′; An(λt) = In − λtWn, In

is an n× n identity matrix, and Vnt(βt, λt, cn) = An(λt)Ynt −Xntβt − cn, t = 1, . . . , T .

First, given θ, `SL1(θ, cn) is partially maximized at: c̃n(β,λ) = 1
T

∑T
t=1[An(λt)Ynt −

Xntβt], which gives the concentrated loglikelihood function of θ upon substitution:

`c
SL1(θ) = −nT

2
ln(2πσ2) +

T∑
t=1

ln |An(λt)| −
1

2σ2

T∑
t=1

Ṽ ′
nt(β,λ)Ṽnt(β,λ), (2.5)

where Ṽnt(β,λ) = An(λt)Ynt − Xntβt − c̃n(β,λ). Then, differentiate `c
SL1(θ) to get the

concentrated score (CS) or concentrated quasi score (CQS) function of θ:

Sc
SL1(θ) =


1
σ2 X ′

ntṼnt(β,λ), t = 1, . . . , T,

1
σ2 (WnYnt)′Ṽnt(β,λ)− tr[Gn(λt)], t = 1, . . . , T,

− nT
2σ2 + 1

2σ4

∑T
t=1 Ṽ ′

nt(β,λ)Ṽnt(β,λ),

(2.6)

where Gn(λt) = WnA−1
n (λt), t = 1, . . . , T .

1Various conditional tests of, e.g., RH given SH, SH given RH, CP on βt only given SH, and CP on λt only
given RH, are also of interest, of which, the test of RH given SH is an extension of the well known Chow’s
(1960) test for a linear regression and Anselin’s (1988, Sec. 9.2.2) test for a spatial error model.
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Let θ0 = (β′0,λ
′
0, σ

2
0)
′ be the true value of the general parameter vector θ = (β′,λ′, σ2)′.

We view that Model (2.1) holds only under the true θ0. The usual expectation and

variance operators correspond to θ0. At the true θ0, we have c̃n(β0,λ0) = V n + cn and

thus Ṽnt ≡ Ṽnt(β0,λ0) = Vnt − V n, where V n = 1
T

∑T
t=1 Vnt. Furthermore, WnYnt =

Gn(λt0)(Xntβt0 + cn + Vnt). With these, it is easy to show that,

E[Sc
SL1(θ0)] =

{
0′Tk,1, −

1
T tr[Gn(λt0)], t = 1, . . . T, − n

2σ2
0

}′
,

where 0m,r denotes an m× r matrix of zeros. Clearly, 1
nT E[Sc

SL1(θ0)] 9 0, unless T →∞.

A necessary condition for consistent estimation is violated. Therefore, the direct approach

does not yield consistent estimators unless T goes to large. Even if T goes large with

n, there will be an asymptotic bias of order O( 1
T 2 ) for the estimation of {λt}, and an

asymptotic bias of order O( 1
T ) for the estimation of σ2.

To have a inference method that is consistent and asymptotically unbiased, CS or CQS

function given in (2.6) should be adjusted by subtracting the above bias vector from it,

leading to the AS or AQS function as

S?
SL1(θ) =


1
σ2 X ′

ntṼnt(β,λ), t = 1, . . . , T,

1
σ2 (WnYnt)′Ṽnt(β,λ)− T−1

T tr[Gn(λt)], t = 1, . . . , T,

−n(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ′

nt(β,λ)Ṽnt(β,λ).

(2.7)

It is easy to show that E[S?
SL1(θ0)] = 0, and that 1

nT S?
SL1(θ0)

p−→ 0 as n → ∞ alone,

or both n and T go infinity. Thus, this AQS function gives a set of unbiased estimating

functions, and paves the way for developing asymptotically valid score-type tests.2

Construction of AQS tests. Denote by θ̃SL1 the constrained estimator of θ under

H0.3 Let JSL1(θ) = − ∂
∂θ′S?

SL1(θ), ISL1(θ0) = E[JSL1(θ0)] and ΣSL1(θ0) = Var[S?
SL1(θ0)],

with their expressions given in Appendix B.1. The usual score test, treating S?
SL1(θ) as a

genuine score vector so that the information matrix equality (IME) holds, takes the form:

TSL1 = S?
SL1(θ̃SL1)′J−1

SL1(θ̃SL1)S?
SL1(θ̃SL1), (2.8)

where JSL1(θ̃SL1) can be replaced by ISL1(θ̃SL1) or ΣSL1(θ̃SL1). However, S?
SL1(θ) is not

a genuine score function even if the errors are normal, as it comes from the original

score function after some adjustments. In this case, the IME or its generalized version

(Cameron and Trivedy, 2005; Wooldridge, 2010) does not hold. Hence, the test statistic

TSL1 constructed in this usual way may not be valid even if the errors are normal, unless

under ‘specific’ situations where ISL1(θ0) and ΣSL1(θ0) are asymptotically equivalent, i.e.,

the IME holds asymptotically. See the discussions below Theorem 2.1 for details.
2Solving the estimating equation, S?

SL1(θ) = 0, gives the unconstrained AQS estimator of θ. Simplifying
this AQS function under the null gives AQS function of the null model, and the constrained estimates of
the null model parameters. See the end of section for a general method for estimating the null models.

3For testing HTH
0 in (2.2), for example, β̃SL1 = 1T ⊗ β̃SL1, λ̃SL1 = 1T ⊗ λ̃SL1, and θ̃SL1 = (β̃

′
SL1, λ̃

′
SL1, σ̃

2
SL1)

′,
where β̃SL1 and λ̃SL1 are the estimators of the common β and λ, and 1T is a T × 1 vector of ones.
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To address this issue, denoting kq = dim(θ) = (k+1)T +1, we put our testing problem

in a general framework with null hypothesis being written as

H0 : Cθ0 = 0, (2.9)

where C is a kp × kq matrix generating kp linear contrasts in the parameter vector θ.

For example, for testing HTH
0 in (2.2), the number of constraints kp = (k + 1)(T − 1),

and the linear contrast matrix C = [blkdiag{Ck
T , C1

T }, 0kp,1], where blkdiag{· · · } forms

a block diagonal matrix, and Cm
τ is an m(τ − 1)×mτ matrix defined as

Cm
τ = [(1τ−1 ⊗ Im), −(Iτ−1 ⊗ Im)], (2.10)

where ⊗ is the Kronecker product; for testing HRH
0 , C = [Ck

T , 0kp,T , 0kp,1] and kp = (T−1)k;

for testing HSH
0 , C = [0kp,kT , C1

T , 0kp,1] and kp = T − 1; and for testing HCP
0 in (2.3),

C = [blkdiag{Ck
b0

, Ck
T−b0

, C1
`0

, C1
T−`0

}, 0kp ] and kp = (T − 2)(k + 1). The C matrices for

tests of CP on β-coefficients only or tests of CP on λ-coefficients only can be formulated

easily. The CP-test can be carried out repeatedly until the ‘true’ change points are detected.

In all these and other interesting cases, kp and C can be easily written out.

The score-type test is constructed based on the AQS function S?
SL1(θ̃SL1), and its

asymptotic variance-covariance (VC) matrix. Denote by N0 = n(T−1) the effective sample

size to differentiate from the overall sample size N = nT . Under mild regularity conditions,

such as the
√

N0-consistency of θ̃SL1 under the null, we have by Taylor expansion:

1√
N0

S?
SL1(θ̃SL1) = 1√

N0
S?
SL1(θ0) + 1

N0
ISL1(θ0)

√
N0(θ̃SL1 − θ0) + op(1), and

[ 1
N0

ISL1(θ0)]−1 1√
N0

S?
SL1(θ̃SL1) = [ 1

N0
ISL1(θ0)]−1 1√

N0
S?
SL1(θ0) +

√
N0(θ̃SL1 − θ0) + op(1).

As Cθ0 = 0 under H0, we have Cθ̃SL1 = 0 (see Wooldridge 2010, p.424). It follows that

C[ 1
N0

ISL1(θ0)]−1 1√
N0

S?
SL1(θ̃SL1) = C[ 1

N0
ISL1(θ0)]−1 1√

N0
S?
SL1(θ0) + op(1), (2.11)

leading to the asymptotic VC matrix of C[ 1
N ISL1(θ0)]−1 1√

N
S?
SL1(θ̃SL1) as

ΞSL1(θ0) = C[ 1
N0

ISL1(θ0)]−1[ 1
N0

ΣSL1(θ0)][ 1
N0

ISL1(θ0)]−1C ′. (2.12)

This gives an asymptotically valid and nonnormality robust AQS test:

T
(r)
SL1 = S̃?′

SL1Ĩ
−1
SL1C

′(CĨ−1
SL1Σ̃SL1Ĩ

−1
SL1C

′)−1
CĨ−1

SL1S̃
?
SL1, (2.13)

where S̃?
SL1 = S?

SL1(θ̃SL1), ĨSL1 = ISL1(θ̃SL1), and Σ̃SL1 = ΣSL1(θ̃SL1).

Remark 2.1. Although the AQS test given in (2.13) is developed based on the panel SL

model with 1FE, the general principles behind apply to all models considered in this paper.

It also applies to more complicated spatial models as well as many non-spatial models.

Asymptotic properties. In studying the asymptotic properties of the proposed

tests, we focus on the tests of temporal homogeneity to ease the exposition. Therefore,

some of the regularity conditions, i.e., Assumptions 2 and 4, correspond to the null model

6



under HTH
0 in (2.2) only. However, these assumptions can be easily relaxed to cater a

non-homogeneous null model. Denote X◦
nt = Xnt − X̄n, where X̄n = 1

T

∑T
t=1 Xnt.

Assumption1. The disturbances {vit} are iid across i and t with mean zero, variance

σ2
0, and E |vit|4+ε0 < ∞ for some ε0 > 0.

Assumption2. Under H0, the parameter space Λ of the common λ is compact, and

the true value λ0 is in the interior of Λ. The matrix An(λ) is invertible for all λ ∈ Λ.

Assumption3. The elements of Xnt are non-stochastic, and are bounded uniformly

in n and t, such that limN0→∞
1

N0

∑T
t=1 X◦′

ntX
◦
nt exists and nonsingular. The elements of

cn are uniformly bounded.

Assumption4. Wn has zero diagonal elements, and is uniformly bounded in both row

and column sums in absolute value. A−1
n (λ) is also uniformly bounded in both row and

column sums in absolute value for λ in a neighborhood of λ0.

Theorem 2.1. Under Assumptions 1-4, if further, (i) θ̃SL1 is
√

N0-consistent for θ0

under HTH
0 , and (ii) ISL1(θ) and ΞSL1(θ) are positive definite for θ in a neighborhood of

θ0 when N0 is large enough, then we have, under HTH
0 , T

(r)
SL1

D−→ χ2
kp

, as n →∞.

Note that in case of testing for temporal homogeneity, kp = (T − 1)(k + 1), and that

in case of testing for a ‘single change’ of points, kp = (T − 2)(k + 1). It can easily be

seen that TSL1 is in general not an asymptotic pivotal quantity due to the violation of

IME. However, if ISL1(θ0) � ΣSL1(θ0), where � denotes asymptotic equivalence, then

Ĩ−1
SL1C

′(CĨ−1
SL1Σ̃SL1Ĩ

−1
SL1C

′)−1
CĨ−1

SL1 � Ĩ−1
SL1 (see Wooldridge, 2010, p. 424), and hence TSL1

becomes valid. This is in fact true when T is also large as seen from the expressions given

in Appendix B.1, but this case needs an extra care as in Remark 2.2 below.

Remark 2.2. When T → ∞ as n → ∞, the degrees of freedom (d.f) of the chi-

square statistic increase with n. In this case, one may apply the arguments for ‘double

asymptotics’ (see, e.g., Rempala and Wesolowski, 2016) to show that (T (r)
SL1−kp)/

√
2kp

D−→
N(0, 1) as n/

√
T → ∞. This sample size requirement (n goes large faster than

√
T ) is

rather weak as it is typical in spatial panels that n is at least as large as T .

Estimation of null models. The construction of the AQS tests requires estimation

of various null models, which could be the homogeneous model as specified by HTH
0 in

(2.2), the model with homogeneity in β’s only, the model with homogeneity in λ’s only,

or the model with change points as specified by HCP
0 in (2.3), etc. Each null model can

be estimated by solving the simplified AQS equations by simplifying S?
SL1(θ) according to

the null hypothesis, which is clearly inconvenient to the applied researchers. To facilitate

practical applications of our methods, a general Lagrange Multiplier (LM) method is

introduced. Let lSL1(θ) be the objective function to be maximized subject to Cθ0 = 0,

with S?
SL1(θ) given in (2.7) being its partial derivatives. Define the Lagrangian

LSL1(θ) = lSL1(θ)− φ′(Cθ),

where φ is a kp×1 vector of Lagrange multipliers. Taking partial derivatives and equating

7



to 0, we have kq equations ∂LSL1

∂θ
= S∗SL1(θ)−C ′φ = 0kq ,1. Together with the kp constraints

Cθ = 0, we have kq + kp equations for the kq + kp unknowns θ and φ, leading toθ̃SL1

φ̃SL1

 = arg

 S?
SL1(θ)− C ′φ = 0kq ,1

Cθ = 0kp,1

 . (2.14)

To further aid the applications, we make the Matlab codes available upon request, or

online at http://www.mysmu.edu/faculty/zlyang/.

Finally, from the expressions of ISL1(θ0) and ΣSL1(θ0) given in Appendix B.1, we see

that they both contain cn, which is estimated by plugging the null estimates β̃SL1 and λ̃SL1

into c̃n(β,λ). Furthermore, in case of nonnormality, the VC matrix ΣSL1(θ0) contains two

additional parameters, the skewness γ and excess kurtosis κ of the idiosyncratic errors

Vn,it, and their estimates are obtained by applying Lemma 4.1(a) of Yang et al. (2016).

See Sec. 5 for a detailed discussion on issues related to practical implementations.

However, as the hypothesis HHT
0 given in (2.2) and the corresponding homogeneous

model plays an important role in studying the asymptotic properties of the test and in

Monte Carlo simulation, an outline is given on how S?
SL1(θ) is simplified and how it leads

to constrained AQS estimators with the desired asymptotic properties. Let θ = (β′, λ, σ2)′.

The constrained estimate of cn given (β, λ) becomes c̃◦n(β, λ) = An(λ)Ȳn − X̄nβ where Ȳn

and X̄n are the averages of {Ynt} and {Xnt}, respectively. Along the same line leading to

(2.7), one can easily show that AQS function for the homogeneous model takes the form:

S◦SL1(θ) =


1
σ2

∑T
t=1 X◦′

ntṼ
◦
nt(β, λ),

1
σ2

∑T
t=1(WnY ◦

nt)
′Ṽ ◦

nt(β, λ)− (T − 1)tr[Gn(λ)],

−n(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

◦′
nt (β, λ)Ṽ ◦

nt(β, λ),

(2.15)

Ṽ ◦
nt(β, λ) = An(λ)Ynt − Xntβ − c̃◦n(β, λ) = An(λ)Y ◦

nt − X◦
ntβ, where Y ◦

nt = Ynt − Ȳn and

X◦
nt = Xnt − X̄n. Solving the estimating equations, S◦SL1(θ) = 0, gives the null estimator

θ̃SL1 of θ. The AQS estimation provides an alternative to the QML estimation based

on transformation of Lee and Yu (2010). The two can be shown to be asymptotically

equivalent, and therefore θ̃SL1 is
√

n(T − 1)-consistent for θ.

2.2. Panel SL model with two-way FE

While the unit-specific fixed effects are important to the spatial panel data models,

the time-specific effects often cannot be neglected. In this section, we extend our tests to

panel SL model with two-way FE (2FE). The model takes the following form:

Ynt = λtWnYnt + Xntβt + cn + αt1n + Vnt, (2.16)

where {αt} are the unobserved time-specific effects or the unobserved temporal heterogene-

ity in the intercept, and 1n is an n×1 vector of ones. As the spatial parameters and regres-
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sion coefficients change only with time. One can apply transformation method to eliminate

the time-specific effects as is widely applied in the literature, see, e.g., Lee and Yu (2010),

Baltagi and Yang (2013) and Yang et al. (2016). Define Jn = In − 1
n1n1′n. Assume Wn

is row-normalized (i.e., row sums are one). Then, JnWn = JnWnJn. Let (Fn,n−1,
1√
n
1n)

be the orthonormal eigenvector matrix of Jn, where Fn,n−1 is the n× (n− 1) sub-matrix

corresponding to the eigenvalues of one. By Spectral Theorem, Jn = Fn,n−1F
′
n,n−1. It

follows that F ′
n,n−1Wn = F ′

n,n−1WnFn,n−1F
′
n,n−1. Premultiplying F ′

n,n−1 on both sides of

(2.16), we have the following transformed model:

Y ∗
nt = λtW

∗
nY ∗

nt + X∗
ntβt + c∗n + V ∗

nt, t = 1, . . . , T, (2.17)

where Y ∗
nt = F ′

n,n−1Ynt, and so are X∗
nt, c∗n and V ∗

nt defined; and W ∗
n = F ′

n,n−1WnFn,n−1.

After the transformation, the effective sample size is (n − 1)T . Model (2.17) takes an

identical form as Model (2.1). Furthermore, V ∗
nt ∼ (0, σ2

0In−1), which is normal if V ∗
nt is,

and is independent of V ∗
ns, s 6= t.4 Hence, the steps leading to the score-type tests and the

consistent estimation of the null model are similar to those for the SL one-way FE model.

Define A∗
n(λt) = In−1−λtW

∗
n , t = 1, . . . , T . The quasi Gaussian loglikelihood function

of θ = (β′,λ′, σ2)′ and c∗n of Model (2.17) is

`SL2(θ, c∗n) = − (n−1)T
2 ln(2πσ2) +

∑T
t=1 ln |A∗

n(λt)|

− 1
2σ2

∑T
t=1 V ∗′

nt(λt, βt, c
∗
n)V ∗

nt(λt, βt, c
∗
n), (2.18)

where V ∗
nt(βt, λt, c

∗
n) = A∗

n(λt)Y ∗
nt −X∗

ntβt − c∗n. Given θ, `SL2(θ, c∗n) is maximized at:

c̃∗n(β,λ) = 1
T

∑T
t=1[A

∗
n(λt)Y ∗

nt −X∗
ntβt], (2.19)

which gives the concentrated loglikelihood function of θ upon substitution:

`c
SL2(θ) = − (n−1)T

2 ln(2πσ2) +
∑T

t=1 ln |A∗
n(λt)| − 1

2σ2

∑T
t=1 Ṽ ∗′

nt(β,λ)Ṽ ∗
nt(β,λ), (2.20)

where Ṽ ∗
nt(β,λ) = A∗

n(λt)Y ∗
nt − X∗

ntβt − c̃∗n(β,λ). Now, define G∗
n(λt) = W ∗

nA∗−1
n (λt).

Differentiating `c
SL2(θ) gives the CS or CQS function of θ of Model (2.17):

Sc
SL2(θ) =


1
σ2 X∗′

ntṼ
∗
nt(β,λ), t = 1, . . . , T,

1
σ2 (W ∗

nY ∗
nt)

′Ṽ ∗
nt(β,λ)− tr[G∗

n(λt)], t = 1, . . . , T,

− (n−1)T
2σ2 + 1

2σ4

∑T
t=1 Ṽ ∗′

nt(β,λ)Ṽ ∗
nt(β,λ).

(2.21)

Takes the expectation of the above score, we have,

E[Sc
SL2(θ0)] =

{
0′Tk, −

1
T tr[G∗

n(λt0)], t = 1, . . . T, −n−1
2σ2

0

}′
,

which again shows that model estimation based on maximizing the quasi loglikelihood

would not lead to consistent estimates of the model parameters. The CQS function given
4The time-specific effects can also be eliminated by pre-multiplying Jn on both sides of (2.16). However,

the resulting disturbances JnVnt would not be linearly independent over the cross-section dimension.
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in (2.21) should be adjusted by recentering, giving the AQS function of Model (2.17):

S?
SL2(θ) =


1
σ2 X∗′

ntṼ
∗
nt(β,λ), t = 1, . . . , T,

1
σ2 (W ∗

nY ∗
nt)

′Ṽ ∗
nt(β,λ)− T−1

T tr[G∗
n(λt)], t = 1, . . . , T,

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ∗′

nt(β,λ)Ṽ ∗
nt(β,λ).

(2.22)

It is easy to show that E[S?
SL2(θ)] = 0, and that 1

nT S?
SL2(θ0)

p−→ 0 as n →∞ alone, or both

n and T go infinity. Thus, this AQS function gives a set of unbiased estimating functions,

and paves the way for developing asymptotic valid score-type tests. Again, simplifying this

AQS function under various null hypotheses gives the AQS functions of the null models

and the constrained estimates. See the end of the Section for a general formulation.

Now, the tests concerning {βt} and {λt} allow the existence of both unobserved cross-

sectional and time-specific heterogeneity in the intercept, i.e., the existence of both indi-

vidual specific fixed effects and the time specific fixed effects. As the transformed 2FE

panel SL model takes an identical form as 1FE panel SL model, the tests developed for

1FE panel SL model extends directly to give tests for the 2FE panel SL model. Let θ̃SL2 be

the null estimate of θ. Let ISL2(θ0) and ΣSL2(θ0) be, respectively, the expected negative

Hessian and the VC matrix of S?
SL2(θ0), given in Appendix B.2. The AQS test, robust

against nonnormality and taking into account of the estimation of fixed effects, is:

T
(r)
SL2 = S̃?′

SL2Ĩ
−1
SL2C

′(CĨ−1
SL2Σ̃SL2Ĩ

−1
SL2C

′)−1
CĨ−1

SL2S̃
?
SL2, (2.23)

where S̃?
SL2 = S?

SL2(θ̃SL2), ĨSL2 = ISL2(θ̃SL2), and Σ̃SL2 = ΣSL2(θ̃SL2). As in the case of

1FE-SL model, when ISL2(θ0) � ΣSL2(θ0), Ĩ−1
SL2C

′(CĨ−1
SL2Σ̃SL2Ĩ

−1
SL2C

′)−1
CĨ−1

SL2 � Ĩ−1
SL2, and

hence T
(r)
SL2 reduces to the näıve test: TSL2 = S̃?′

SL2J̃
−1
SL2S̃

?
SL2, where J̃SL2 = − ∂

∂θ
S?
SL2(θ̃SL2).

Asymptotic properties of these tests can be studied along the same line as the tests

for 1FE panel SL model. Again we focus on the test of HTH
0 for ease of exposition. The

effective sample size becomes N0 = (n−1)(T−1) due to the ‘estimation’ of both individual-

and time-specific FEs. Let ΞSL2(θ) and X∗◦
nt be defined as ΞSL1(θ) and X◦

nt in Sec. 2.1.

Assumption 3′: The elements of Xnt are nonstochastic, and are bounded uniformly

in n and t, such that limN0→∞
1

N0

∑T
t=1 X∗◦′

nt X∗◦
nt exists and is nonsingular.

Theorem 2.2. Under Assumptions 1-2, 3′, and 4, if further, (i) θ̃SL2 is
√

N0-consistent

for θ0 under HTH
0 , and (ii) ISL2(θ) and ΞSL2(θ) are positive definite for θ in a neighborhood

of θ0 when N0 is large enough, then we have, under HTH
0 , T

(r)
SL2

D−→ χ2
kp

, as n →∞.

Note that while the effective sample size for the 2FE-SL model is smaller than that

of the 1FE-SL model, the d.f. associated with the test statistics remain the same. As

discussed below Theorem 2.1, TSL2 is not an asymptotic pivotal quantity unless T is also

large. As in Remark 2.2, if T grows with n, (T (r)
SL2−kp)/

√
2kp

D−→ N(0, 1), as n/
√

T →∞.

Estimation of null models. The general constrained root-finding method, the LM

procedure, presented at the end of Sec. 2.1 for the panel SL model with 1FE directly
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applies to the panel SL model with 2FE to give constrained estimates of various null

models. This greatly facilitates the practical applications. Again, the homogeneous model

specified by HTH
0 in (2.2) and its AQS estimation play important roles in studying the

asymptotic properties and performing Monte Carlo simulations, and therefore an outline is

given on the estimation procedures based on the simplified AQS function. The constrained

estimate of c∗n, given (β, λ), becomes c̃∗◦n (β, λ) = A∗
n(λ)Ȳ ∗

n − X̄∗
nβ, where Ȳ ∗

n and X̄∗
n are

the averages of {Y ∗
nt} and {X∗

nt}, respectively. Along the same line leading to (2.15), we

have the AS or AQS function for the homogeneous panel SL model with 2FE:

S◦SL2(θ) =


1
σ2

∑T
t=1 X∗◦′

nt Ṽ ∗◦
nt (β, λ),

1
σ2

∑T
t=1(W

∗
nY ∗◦

nt )′Ṽ ∗◦
nt (β, λ)− (T − 1)tr[G∗

n(λ)],

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

∗◦′
nt (β, λ)Ṽ ∗◦

nt (β, λ),

(2.24)

where Ṽ ∗◦
nt (β, λ) = A∗

n(λ)Y ∗
nt −X∗

ntβ − c̃∗◦n (β, λ) = An(λ)Y ∗◦
nt −X∗◦

nt β, Y ∗◦
nt = Y ∗

nt − Ȳ ∗
n and

X∗◦
nt = X∗

nt − X̄∗
n. Solving the estimating equations, S◦SL2(θ) = 0, gives the null estimator

θ̃SL2 of θ. Again, it can be shown to be asymptotically equivalent to the transformation-

based QML estimator of Lee and Yu (2010). Thus, θ̃SL2 is
√

(n− 1)(T − 1)-consistent for

θ. The estimation of cn and γ and κ contained in ISL2(θ0) and ΣSL2(θ0) proceeds similarly.

3. Test for Temporal Heterogeneity in Panel SLE Model

The tests introduced in the earlier section can be easily extended to a more general

SPD model where the the disturbances are also subject to spatial interactions, giving an

SPD model with both spatial lag and error (SLE) dependence. Again, we first present

results for the one-way FE model, and then the results for the two-way FE model.

3.1. Panel SLE model with one-way FE

The SLE model with one-way fixed effects has the form:

Ynt = λtWnYnt + Xntβt + cn + Unt, Unt = ρtMnUnt + Vnt, (3.1)

where Mn is another spatial weight matrix capturing the spatial interactions among the

disturbances, which can be the same as Wn, and {ρt} are the spatial error parameters,

possibly changing with time. Again, we are primarily interested in the test for temporal

homogeneity, which now corresponds to a test of the following null hypothesis:

HTH
0 : β1 = · · · = βT = β, λ1 = · · · = λT = λ, and ρ1 = · · · = ρT = ρ. (3.2)

If this test is rejected, one would be interested in testing various hypotheses discussed in

Sec. 2.1, including HCP
0 in (2.3) extended to include the ρ-component, to find out the cause

of the rejection. An interesting test for the panel SLE model would be the conditional

test: HTHC
0 : β1 = · · · = βT = β, and λ1 = · · · = λT = λ, given ρ1 = · · · = ρT = ρ. In this
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case, the alternative (full) model is a submodel of (3.1) with the disturbance following a

homogeneous SAR process: Unt = ρMnUnt + Vnt. We present the most general case here,

and give necessary details related to this submodel at the end of Sec. 3.2.

Following the same set of notation as in the earlier section, and further denoting

ρ = (ρ1, . . . , ρT )′, θ = (β′,λ′,ρ′, σ2)′, and Bn(ρt) = In − ρtMn, t = 1, . . . , T , we have the

(quasi) Gaussian loglikelihood for (θ, cn):

`SLE1(θ, cn) =− nT
2 ln(2πσ2) +

∑T
t=1 ln |An(λt)|+

∑T
t=1 ln |Bn(ρt)|

− 1
2σ2

∑T
t=1 V ′

nt(βt, λt, ρt, cn)Vnt(βt, λt, ρt, cn), (3.3)

where Vnt(βt, λt, ρt, cn) = Bn(ρt)[An(λt)Ynt −Xntβt − cn], t = 1, . . . , T .

Similarly to the developments in the previous section, we first eliminate cn through

a direct maximization of the loglikelihood function, given the other model parameters θ,

and then adjust the resulting CS or CQS function to eliminate the asymptotic bias or

inconsistency. Given θ, `SLE1(θ, cn) is maximized at

c̃n(β,λ,ρ) =
[∑T

t=1 B′
n(ρt)Bn(ρt)

]−1 ∑T
t=1

[
B′

n(ρt)Bn(ρt)
(
An(λt)Ynt −Xntβt

)]
, (3.4)

leading to the concentrated (quasi) Gaussian loglikelihood function of θ upon substitution:

`c
SLE1(θ) =− nT

2 ln(2πσ2) +
∑T

t=1 ln |An(λt)|+
∑T

t=1 ln |Bn(ρt)|

− 1
2σ2

∑T
t=1 Ṽ ′

nt(β,λ,ρ)Ṽnt(β,λ,ρ), (3.5)

where Ṽnt(β,λ,ρ) = Vnt(βt, λt, ρt, c̃n(β,λ,ρ)) = Bn(ρt)[An(λt)Ynt −Xntβt − c̃n(β,λ,ρ)].

To facilitate the subsequent derivations, denote U◦
nt(βt, λt) = An(λt)Ynt − Xntβt,

Dn(ρt) = B′
n(ρt)Bn(ρt) and Dn(ρ) =

∑T
t=1 Dn(ρt). Then,

Ṽnt(β,λ,ρ) = Bn(ρt)U◦
nt(βt, λt)−Bn(ρt)c̃n(β,λ,ρ),

c̃n(β,λ,ρ) = D−1
n (ρ)

∑T
t=1 Dn(ρt)U◦

nt(βt, λt), and the key term in (3.5):∑T
t=1 Ṽ ′

nt(β,λ,ρ)Ṽnt(β,λ,ρ) =
∑T

t=1 U◦′
nt(βt, λt)Dn(ρt)U◦

nt(βt, λt)

−
( ∑T

t=1 Dn(ρt)U◦
nt(βt, λt)

)′D−1
n (ρ)

( ∑T
t=1 Dn(ρt)U◦

nt(βt, λt)
)
.

Differentiating `c
SLE1(θ) gives the CS or CQS function of θ:

Sc
SLE1(θ) =



1
σ2 X ′

ntB
′
n(ρt)Ṽnt(β,λ,ρ), t = 1, . . . , T,

1
σ2 (WnYnt)′B′

n(ρt)Ṽnt(β,λ,ρ)− tr[Gn(λt)], t = 1, . . . , T,

1
σ2 Ṽ ′

nt(β,λ,ρ)Hn(ρt)Ṽnt(β,λ,ρ)− tr[Hn(ρt)], t = 1, . . . , T,

− nT
2σ2 + 1

2σ4

∑T
t=1 Ṽ ′

nt(β,λ,ρ)Ṽnt(β,λ,ρ),

(3.6)

where Hn(ρt) = MnB−1
n (ρt), t = 1, . . . , T .

At the true θ0, we have, c̃n(β0,λ0,ρ0) = cn + D−1
n

∑T
s=1 B′

nsVns and hence Ṽnt ≡
Ṽnt(β0,λ0,ρ0) = Vnt − BntD−1

n

∑T
s=1 B′

nsVns, and WnYnt = Gnt(Xntβ0 + cn + B−1
nt Vnt),
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where Bnt = Bn(ρt0), Gnt = Gn(λt0), and Dn = Dn(ρ0). It is easy to show that,

E[Sc
SLE1(θ0)] =



0Tk,1,

−tr[D−1
n (ρ0)B′

n(ρt0)Bn(ρt0)Gn(λt0)], t = 1, . . . T,

−tr[Bn(ρt0)D−1
n (ρ0)B′

n(ρt0)Hn(ρt0)], t = 1, . . . T,

− n
2σ2

0
.

Therefore, the AS or AQS function of θ for Model (3.1) takes the form:

S?
SLE1(θ) =



1
σ2 X ′

ntB
′
n(ρt)Ṽnt(β,λ,ρ), t = 1, . . . , T,

1
σ2 (WnYnt)′B′

n(ρt)Ṽnt(β,λ,ρ)− tr[Rnt(ρ)Gn(λt)], t = 1, . . . , T,

1
σ2 Ṽ ′

nt(β,λ,ρ)Hn(ρt)Ṽnt(β,λ,ρ)− tr[Snt(ρ)Hn(ρt)], t = 1, . . . , T,

−n(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ′

nt(β,λ,ρ)Ṽnt(β,λ,ρ),

(3.7)

where Rnt(ρ) = In − D−1
n (ρ)B′

n(ρt)Bn(ρt) and Snt(ρ) = In −Bn(ρt)D−1
n (ρ)B′

n(ρt).

It is easy to show that E[S?
SLE1(θ)] = 0, and that 1

nT S?
SLE1(θ0)

p−→ 0 as n →∞ alone,

or both n and T go infinity. Thus, this AQS function gives a set of unbiased estimating

functions, and paves the way for developing asymptotic valid score-type tests.

Construction of AQS tests. Denote the constrained estimator (under H0) of θ

by θ̃SLE1.5 To test various hypotheses concerning temporal homogeneity/heterogeneity,

one is tempt to use the näıve test, TSLE1 = S?
SLE1(θ̃SLE1)′J−1

SLE1(θ̃SLE1)S?
SLE1(θ̃SLE1), treating

S?
SLE1(θ) as a genuine score function, where JSLE1(θ0) = − ∂

∂θ′S?
SLE1(θ0), which can be

replaced by ISLE1(θ0) = E[JSLE1(θ0)], or ΣSLE1(θ0) = Var[S?
SLE1(θ0)] (see Appendix B.3

for their expressions). Again, S?
SLE1(θ) is not a genuine score function. Hence, the test

constructed in the usual way may not be a valid test statistic, even if the errors are normal.

To give a general robust test, we again, as in the previous section, put our testing prob-

lem in a general framework with null hypothesis being written as H0: Cθ0 = 0, with some

modifications on C to include the ρ parameters. The dimensions of C are again denoted as

kp×kq with kp linear contrasts on the parameter vector θ of dimension kq = (k +2)T +1.

For HTH
0 in (3.2), we have kp = (T−1)(k+2) and C = [blkdiag{Ck

T , C1
T , C1

T }, 0kp,1], where

Cm
τ is defined in (2.10). For tests of CP in βt, λt and ρt at time points b0, `0 and r0, respec-

tively, kp = (T − 2)(k + 2) and C = [blkdiag{Ck
b0

, Ck
T−b0

, C1
`0

, C1
T−`0

, C1
r0

, C1
T−r0

}, 0kp,1].

Similarly, the score-type test is based on the AQS function S?
SLE1(θ̃SLE1) evaluated at

the null estimate θ̃SLE1 of θ, and the asymptotic VC matrix of S?
SLE1(θ̃SLE1). Now, the

effective sample size is back to N0 = n(T − 1) as for the 1FE panel SL model. Following

the fundamental developments in Sec 2.1, we have, under mild regularity conditions such

as the
√

N0-consistency of θ̃SLE1, an asymptotically valid and nonnormality robust AQS
5In case of testing HTH

0 given in (3.2), the constrained estimators of β, λ and ρ are, respectively,
β̃SLE1 = 1T ⊗ β̃SLE1, λ̃SLE1 = 1T ⊗ λ̃SLE1, and ρ̃SLE1 = 1T ⊗ ρ̃SLE1, where β̃SLE1, λ̃SLE1 and ρ̃SLE1 are the estimators

of the common β, λ and ρ, leading to the constrained estimator of θ as θ̃SLE1 = (β̃
′
SLE1, λ̃

′
SLE1, ρ̃

′
SLE1, σ̃

2
SLE1)

′.
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test:

T
(r)
SLE1 = S̃?′

SLE1Ĩ
−1
SLE1C

′(CĨ−1
SLE1Σ̃SLE1Ĩ

−1
SLE1C

′)−1
CĨ−1

SLE1S̃
?
SLE1, (3.8)

where S̃?
SLE1 = S?

SLE1(θ̃SLE1), ĨSLE1 = ISLE1(θ̃SLE1), and Σ̃SLE1 = ΣSLE1(θ̃SLE1).

Asymptotic properties of the proposed tests are established based on Assumptions 1-4

in Sec. 2, and the following additional conditions on Mn and Bn(ρ).

Assumption5. Under H0, the parameter space P of the common ρ is compact. The

true value ρ0 is in the interior of P. The matrix Bn(ρ) is invertible for all ρ ∈ P. Mn

has zero diagonal elements, and are uniformly bounded in both row and column sums in

absolute value. B−1
n (ρ) is uniformly bounded in both row and column sums in absolute

value for ρ in a neighborhood of ρ0.

Furthermore, the existence and consistency of the constrained estimator β̃SLE1 de-

pends on the existence and nonsingularity of limn→∞
1

nT

∑T
t=1 X◦′

ntB
′
nBnX◦

nt, which fol-

lows from Assumption 2 and the positive definiteness of B′
nBn. Denoting ΞSLE1(θ) =

CI−1
SLE1(θ)ΣSLE1(θ)I−1

SLE1(θ)C ′, we have the following theorem.

Theorem 3.1. Under Assumptions 1-5, if further, (i) θ̃SEL1 is
√

N0-consistent for θ0

under HTH
0 , and (ii) ISLE1(θ) and ΞSLE1(θ) are positive definite for θ in a neighborhood of

θ0 when N0 is large enough, then we have, under HTH
0 , T

(r)
SLE1

D−→ χ2
kp

, as n →∞.

Note that the d.f. associated with the test statistics is kp = (T−1)(k+2) for testing for

temporal homogeneity, and kp = (T − 2)(k + 2) for testing for a ‘single change’. Similarly,

if T increases with n it can be shown that TSLE1 is not an asymptotic pivotal quantity, and

that (T (r)
SLE1 − kp)/

√
2kp

D−→ N(0, 1), as n/
√

T →∞.

Estimation of null models. The general LM procedure presented in Sec. 2.1 can

be applied to estimate various null (1FE-SLE) models based on S?
SLE1(θ) and a properly

specified linear contrast matrix C. To estimate the homogeneous model for asymptotic

analyses and Monte Carlo simulation, let θ = (β′, λ, ρ, σ2)′. Under HTH
0 , the constrained

estimate of cn given (β, λ) becomes c̃◦n(β, λ) = An(λ)Ȳn − X̄nβ, and the error vector

becomes Ṽ ◦
nt(β, λ, ρ) = Bn(ρ)[An(λ)Y ◦

nt −X◦
ntβ], where Y ◦

nt = Ynt − Ȳn, X◦
nt = Xnt − X̄n,

and Ȳn = 1
T

∑T
t=1 Ynt and X̄n = 1

T

∑T
t=1 Xnt. The AQS function at HTH

0 takes the form:

S◦SLE1(θ) =



1
σ2

∑T
t=1 X◦

ntB
′
n(ρ)Ṽ ◦

nt(β, λ, ρ),
1
σ2

∑T
t=1(WnY ◦

nt)
′B′

n(ρ)Ṽ ◦
nt(β, λ, ρ)− (T − 1)tr[Gn(λ)],

1
σ2

∑T
t=1 Ṽ ◦′

nt(β, λ, ρ)Hn(ρ)Ṽ ◦
nt(β, λ, ρ)− (T − 1)tr[Hn(ρ)],

−n(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ◦′

nt(β, λ)Ṽ ◦
nt(β, λ).

(3.9)

Solving the estimating equations, S◦SLE1(θ) = 0, gives the null estimator θ̃SLE1 of θ, which

is shown to be asymptotically equivalent to the transformation-based QML estimator of

Lee and Yu (2010), and thus is
√

n(T − 1)-consistent. To estimate cn, γ and κ, refer to

the discussions at the end of Section 2.1.

14



3.2. Panel SLE model with two-way FE

The panel SLE model with two-way fixed effects has the form:

Ynt = λtWnYnt + Xntβt + cn + αt1n + Unt, Unt = ρtMnUnt + Vnt, (3.10)

which extends Model (2.16) by adding the spatial error dependence term. Applying the

same orthonormal transformation as that for Model (2.16), i.e., premultiplying F ′
n,n−1

on both sides of (3.10), and using JnWn = JnWnJn, JnMn = JnMnJn and Jn =

Fn,n−1F
′
n,n−1, we have the following transformed model:

Y ∗
nt = λtW

∗
nY ∗

nt + X∗
ntβt + c∗n + U∗

nt, U∗
nt = ρtM

∗
nU∗

nt + V ∗
nt, (3.11)

where Y ∗
nt, X∗

nt, c∗n, W ∗
n and V ∗

nt are defined as in Model (2.17), and M∗
n = F ′

n,n−1MnFn,n−1.

After the transformation, the effective sample size becomes N0 = (n − 1)(T − 1) as for

the 2FE panel SL model. As Model (3.11) takes an identical form as Model (3.1) and

the elements of V ∗
nt are iid normal if the original errors are normal, the steps leading to

the score-type test and the steps leading to consistent estimation of the null models are

similar. We first present the results for the general model, and then give the necessary

details for the submodel with constant ρ at the end of this section and in Appendix B.5.

Define A∗
n(ρt) = In−1 − λtW

∗
n and B∗

n(ρt) = In−1 − ρtM
∗
n, t = 1, . . . , T . Similar to

the previous section, we eliminate c∗n through a direct maximization of the loglikelihood

function to give the concentrated loglikelihood function of θ:

`c
SLE2(θ) =− nT

2 ln(2πσ2) +
∑T

t=1 ln |A∗
n(λt)|+

∑T
t=1 ln |B∗

n(ρt)|

− 1
2σ2

∑T
t=1 Ṽ ∗′

nt(β,λ,ρ)Ṽ ∗
nt(β,λ,ρ) (3.12)

where Ṽ ∗
nt(β,λ,ρ) = B∗

n(ρt)U◦∗
nt (βt, λt)−B∗

n(ρt)D∗−1
n (ρ)

∑T
s=1 D∗

n(ρs)U◦∗
ns(βs, λs), D∗

n(ρ) =∑T
t=1 D∗

n(ρt), D∗
n(ρt) = B∗′

n (ρt)B∗
n(ρt), and U◦∗

nt (βt, λt) = A∗
n(λt)Y ∗

nt − X∗
ntβt. As in the

previous subsection, we can obtain the AS or AQS function of θ for Model (3.10) as

S?
SLE2(θ) =



1
σ2 X∗′

ntB
∗′
n (ρt)Ṽ ∗

nt(β,λ,ρ), t = 1, . . . , T,

1
σ2 (W ∗

nY ∗
nt)

′B∗′
n (ρt)Ṽ ∗

nt(β,λ,ρ)− tr[R∗
nt(ρ)G∗

n(λt)], t = 1, . . . , T,

1
σ2 Ṽ ∗′

nt(β,λ,ρ)H∗
n(ρt)Ṽ ∗

nt(β,λ,ρ)− tr[S∗nt(ρ)H∗
n(ρt)], t = 1, . . . , T,

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ∗′

nt(β,λ,ρ)Ṽ ∗
nt(β,λ,ρ),

(3.13)

where R∗
nt(ρ) = In−1 − D∗−1

n (ρ)D∗
nt(ρt), and S∗nt(ρ) = In−1 −B∗

nt(ρt)D∗−1
n (ρ)B∗′

nt(ρt).

Denote the null estimator of θ by θ̃SLE2. Let JSLE2(θ) = − ∂
∂θ′S?

SLE2(θ), ISLE2(θ0) =

E[JSLE2(θ0)] and ΣSLE2(θ0) = Var[S?
SLE2(θ0)] with their expressions given in Appendix B.4.

The robust AQS test, taking into account of estimation of fixed effects, has the forms:

T
(r)
SLE2 = S̃?′

SLE2Ĩ
−1
SLE2C

′(CĨ−1
SLE2Σ̃SLE2Ĩ

−1
SLE2C

′)−1
CĨ−1

SLE2S̃
?
SLE2, (3.14)

where S̃?
SLE2 = S?

SLE2(θ̃SLE2), ĨSLE2 = ISLE2(θ̃SLE2), Σ̃SLE2 = ΣSLE2(θ̃SLE2), and the linear
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contrast matrix C has the same form as that for the 1FE panel SLE model. Similarly, when

ISLE2(θ0) � ΣSLE2(θ0), T
(r)
SLE2 reduces to the näıve test: TSLE2 = S̃?′

SLE2J
−1
SLE2(θ̃SLE2)S̃?

SLE2.

Let ΞSLE2(θ) be defined similarly as ΞSLE1(θ) for the 1FE panel SLE model.

Theorem 3.2. Under Assumptions 1-2, 3′, and 4-5, if (i) θ̃SLE2 is
√

N -consistent for

θ0 under HTH
0 , and (ii) ISLE2(θ) and ΞSLE2(θ) are positive definite for θ in a neighborhood

of θ0 when N0 is large enough, then we have, under HTH
0 , T

(r)
SLE2

D−→ χ2
kp

, as n →∞.

The d.f. kp associated with these tests remain the same as that in Theorem 3.1.

Similarly, it can be shown that TSLE2 is not an asymptotic pivotal quantity, and that

(T (r)
SLE2 − kp)/

√
2kp

D−→ N(0, 1), as n/
√

T →∞.

Estimation of the null model. Again, the general LM procedure can be adapted

to estimated a null (panel SLE-2FE) model based on the AQS function S?
SLE2(θ) and a

properly specified linear contrast matrix C. To estimate the null model specified by HTH
0 ,

the constrained estimate of cn given (β, λ) becomes c̃◦∗n (β, λ) = A∗
n(λ)Ȳ ∗

n − X̄∗
nβ where Ȳ ∗

n

and X̄∗
n are the averages of {Y ∗

nt} and {X∗
nt}, respectively. Along the same line leading to

(3.13), one can easily show that AQS function of Model (3.11) at HTH
0 takes the form:

S◦∗SLE2(θ) =



1
σ2

∑T
t=1 X◦∗′

nt B∗′
n (ρ)Ṽ ◦∗

nt (β, λ, ρ),
1
σ2

∑T
t=1(W

∗
nY ◦∗

nt )′B∗′
n (ρ)Ṽ ◦∗

nt (β, λ, ρ)− (T − 1)tr[G∗
n(λ)],

1
σ2

∑T
t=1 Ṽ ◦∗′

nt (β, λ, ρ)H∗
n(ρ)Ṽ ◦∗

nt (β, λ, ρ)− (T − 1)tr[H∗
n(λ)],

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ◦∗′

nt (β, λ, ρ)Ṽ ◦∗
nt (β, λ, ρ),

(3.15)

Ṽ ◦∗
nt (β, λ, ρ) = B∗

n(ρ)[A∗
n(λ)Y ∗

nt − X∗
ntβ − c̃◦∗n (β, λ)] = B∗

n(ρ)[A∗
n(λ)Y ◦∗

nt − X◦∗
nt β], where

Y ◦∗
nt = Y ∗

nt − Ȳ ∗
n and X◦∗

nt = X∗
nt − X̄∗

n. Solving the estimating equations, S◦∗SLE2(θ) = 0,

gives the null estimator θ̃SLE2 of θ = (β′, λ, ρ, σ2)′, which is shown to be asymptotically

equivalent to the transformation-based estimator of Lee and Yu (2010). Thus, θ̃SLE2 is√
(n− 1)(T − 1)-consistent for θ. Estimation of cn, γ and κ proceeds similarly.

A special submodel is the panel SLE model homogeneous ρ-coefficients. With

two-way FE, the AQS function of θ = (β′,λ′, ρ, σ2)′ is obtained by simplifying S?
SLE2(θ):

S?0
SLE2(θ) =



1
σ2 X∗′

ntB
∗′
n (ρ)Ṽ ∗

nt(β,λ, ρ), t = 1, . . . , T,

1
σ2 (W ∗

nY ∗
nt)

′B∗′
n (ρ)Ṽ ∗

nt(β,λ, ρ)− T−1
T tr[G∗

n(λt)], t = 1, . . . , T,

1
σ2

∑T
t=1 Ṽ ∗′

nt(β,λ, ρ)H∗
n(ρ)Ṽ ∗

nt(β,λ, ρ)− (T − 1)tr[H∗
n(ρ)],

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ∗′

nt(β,λ, ρ)Ṽ ∗
nt(β,λ, ρ).

(3.16)

This provides a channel for carrying out various conditional tests, given the temporal

homogeneity in ρ. Necessary details for constructing these tests are provided in Appendix

B.5., and these can easily be simplified to give AQS tests for the 1FE model.

Finally, a very special submodel, the SPD model with spatial errors (SE), deserves some

discussions as it parallels with the panel SL models popular in practical applications. The
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AQS function of θ = (β′,ρ′, σ2)′ of the panel SE model with 2FE takes the form:

S?
SE2(θ) =


1
σ2 X∗′

ntB
∗′
n (ρt)Ṽ ∗

nt(β,ρ), t = 1, . . . , T,

1
σ2 Ṽ ∗′

nt(β,ρ)H∗
n(ρt)Ṽ ∗

nt(β,ρ)− tr[S∗nt(ρ)H∗
n(ρt)], t = 1, . . . , T,

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ∗′

nt(β,ρ)Ṽ ∗
nt(β,ρ),

(3.17)

where Ṽ ∗
nt(β,ρ) = B∗

n(ρt)U◦∗
nt (βt) − B∗

n(ρt)D∗−1
n (ρ)

∑T
s=1 D∗

n(ρs)U◦∗
ns(βs), and U◦∗

nt (βt) =

Y ∗
nt −X∗

ntβt. This can be used to perform tests concerning {βt} and {ρt} in the panel SE

model with 2FE. The necessary detail for constructing these tests are given in Appendix

B.6, which can easily be simplified to give the AQS tests for panel SE model with 1FE.

4. Monte Carlo Study

Extensive Monte Carlo experiments are conducted to investigate the finite sample

performance of the proposed tests, based on the following four data generation processes

(DGPs), the SPD models with, respectively, 1FE-SL, 2FE-SL, 1FE-SLE and 2FE-SLE:

DGP1 : Ynt = λt0WnYnt + X1ntβ1t0 + X2ntβ2t0 + cn0 + Vnt, t = 1, 2, . . . , T,

DGP2 : Ynt = λt0WnYnt + X1ntβ1t0 + X2ntβ2t0 + cn0 + αt01n + Vnt, t = 1, 2, . . . , T.

DGP3 : Ynt = λt0WnYnt + X1ntβ1t0 + X2ntβ2t0 + cn0 + Unt,

Unt = ρt0MnUnt + Vnt, t = 1, 2, . . . , T.

DGP4 : Ynt = λt0WnYnt + X1ntβ1t0 + X2ntβ2t0 + cn0 + αt01n + Unt,

Unt = ρt0MnUnt + Vnt, t = 1, 2, . . . , T.

We concentrate on the tests of temporal homogeneity. In all the Monte Carlo ex-

periments for simulating the empirical sizes of the tests, βt = (β1t, β2t)′ = (1, 1)′, λt ∈
{0.5, 0,−0.5}, and ρt ∈ {0.5, 0,−0.5} for all t = 1, . . . , T , σ2

0 = 1, n ∈ {50, 100, 200, 500},
and T = {3, 6}. Each set of Monte Carlo results is based on 10,000 Monte Carlo samples

for the two SL models, and 5,000 for the two SLE models.

The weight matrices are generated based on three different methods: (i) Rook

Contiguity, (ii) Queen Contiguity, and (iii) Group Interaction, with details given

in Yang (2015a). In spatial layouts (i)-(ii), the degree of spatial interactions (number of

neighbors each unit has) is fixed, while in (iii) it may grow with the sample size. This is

attained by allowing the number of groups, G, in the sample of spatial units to be directly

related to the sample size n, e.g., G = n0.5. Hence, the average group size, m = n/G,

gives a measure of the degree of spatial dependence among the n spatial units. The actual

sizes of the groups are generated from a discrete uniform distribution from .5m to 1.5m.

The two exogenous regressors are generated according to REG1: Xjnt
iid∼ N(0, In)

for j = 1, 2 and t = 1, . . . , T ; and REG2: the ith value of the jth regressor in the gth group

is such that Xjt,ig
iid∼ (2zg + zig)/

√
10, where (zg, zig)

iid∼ N(0, 1) when group interaction
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scheme is followed; {Xjt,ig} are thus independent across j and t, but not across i.

The errors, vit = σ0eit, are generated according to err1: {eit} are iid standard

normal; err2: {eit} are iid normal mixture with 10% of values from N(0, 4) and the

remaining from N(0, 1), standardized to have mean 0 and variance 1; and err3: {eit} iid

log-normal (i.e., log eit
iid∼ N(0, 1)) standardized to have mean 0 and variance 1.

Partial Monte Carlo results are reported in Tables 1 & 2 for the panel SL models, and

Tables 3 & 4 for the panel SLE models. The results in Tables 1 & 2 show the following.

(i) The proposed robust test performs very well in general with empirical coverage

probabilities all very close to their nominal levels, except that in cases of heavy spatial

dependence (Group Interaction) and not-so-large n, it can be slightly undersized.

As sample size increases, the empirical sizes quickly converge to their nominal levels.

(ii) In contrast, the näıve test can perform quite badly, with empirical sizes being as

high as 35% for tests of 10% nominal level, when the erorrs are fairly non-normal

(e.g., log-normal). It is interesting to note that the size distortions for the näıve

tests also drop as sample size increase.

(iii) A larger T seems lead to a worsened performance for the näıve tests under Queen

Contiguity but not under Group Interaction.

(iv) The finite sample performance of the tests for 1FE panel SL model do not seem to

differ much from those for 2FE panel SL model.

From the results for the panel SLE model, reported (in Tables 3 & 4) and unreported

(available from the authors upon request), similar patterns are observed for the finite

sample performance of the proposed tests. In summary, the proposed robust tests are

reliable and easy to apply, and hence are recommended for the applied researchers. The

Monte Carlo experiments for the power of the tests, and the size and power of the other

tests, e.g., tests for change points, are also carried out, and the results (available from the

authors upon request) show similar patterns.

5. Empirical Applications

The specification tests of temporal homogeneity in spatial panel data models proposed

in this paper are demonstrated in empirical settings using two well known data sets:

Public Capital Productivity (Munnell, 1990) and Cigarette Demand (Baltagi and Levin,

1992). We endeavor to provide a detailed guidance to aid applied researchers in their

empirical studies. First, a general discussion is given on the issues of spatial interaction

and spatiotemporal heterogeneity commonly existed in economic studies.

5.1. Spatial interaction and spatiotemporal heterogeneity.

A wide range of empirical studies, such as urban economics, international trade, pub-

lic finance, industrial organization, real estate analyses and regional economics, deal with

18



spatial interaction. Values observed at one location depend on the values of neighboring

observations at nearby locations due to budget spillovers, difference in tax rates, copy-

catting, network effects, et. However, this dependence may not stay the same over time.

There are two major reasons for specifying, estimating, and testing for the time-varying

spatial effects in the regression models. One is the growing interest in using theoreti-

cal economics that include time-varying spatial effects to analyze economic phenomenon

such as externalities, group patterns and some other economic processes, for example,

housing decisions, unemployment, price decisions, crime rates, trade flows, etc., which ex-

hibit time heterogeneity patterns. The effects of relevant variables, including interactions

among agents, on economic activities are changing over time. This may be due to the

change of government policy, an unexpected accident, the change of the benefit from the

interactions. The second driver is the need from geographic research and environmental

study, where researchers usually face a large set of geocoded data when analyzing the

relationships between different variables. Under this situation, due to the spatial inter-

action and the fact that everything in nature is changing over time, time-varying spatial

autoregression model is more outstanding than many other econometric models. Adding

the time-varying spatial effects in the regression model may be necessary.

One empirical problem we discuss in this paper is the U.S. cigarette demand in state

level from 1963-1992 (Baltagi and Levin, 1992). The tax policy on cigarette differs by

states, and this leads to substantial cross-state sales. Due to the government interventions

(in 1965, 1967, 1971) and the reports about the health hazards of smoking (in 1983),

the effects of the spatial lag, spatial error and the variables (price per pack of cigarettes,

population, per capita disposable income, and etc) on the US cigarette demand might

be subject to the temporal heterogeneity. The other empirical problem we discuss is the

U.S. public capital productivity in state level from 1970-1986 (Munnell, 1990). The private

production of each state may subject to spillover effects of infrastructure improvement from

other states. Temporal homogeneity may be in question due to the change in policies and

the change of economic environment such as 1973 oil crisis and the 1979 energy crisis.

These two data sets have been extensively used in Baltagi (2013) for the illustrations of

various standard panel data techniques.

Many other empirical studies have documented the existence of spatial interaction or

spatial spillover effects, and these naturally raise the question whether these spillover ef-

fects as well as the economic variables effects remain constant over time due to policy

change. Care (1991) studied spatial patterns in household demand. Case et al. (1993)

showed that the U.S. states’ budget expenditure depends on the spending of similar states.

Policies have changed over the years, and one might be interested in testing if the spa-

tial patterns and budget spillovers remain the same over time. Acemoglu et al. (2012)

studied the inter-sectoral input-output linkages in the U.S. Baltagi et al. (2016) studied

intra-sectoral spillovers in total factor productivity (TFP) across Chinese producers in

the chemical industry using a panel data on 12,552 firms over 2004-2006, by modeling
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spatial spillovers in TFP through contextual effects of observable variables and the spatial

dependence of the disturbances. Test of stability/homogeneity of the covariate effects as

well as spatial effects may be interesting, perhaps based on extended data.

Therefore, it is highly desirable to have a general procedure to identify the possi-

ble existence of temporal heterogeneity in spatial panel data models to aid the applied

researchers in their empirical studies. The AQS test we propose may serve the purpose.

We provide a detailed instruction, through two empirical applications, of how to con-

struct AQS-tests for testing certain null hypothesis in an SPD model allowing spatiotem-

poral heterogeneity in the intercept (fixed effects), i.e., the model specified by (2.1), (2.16),

(3.1), or (3.10), based on the AQS function defined by (2.7), (2.22), (3.7), or (3.13). Given

a null hypothesis, the linear contrast matrix C is defined, the null model is estimated by

solving the LM-equations (defined as in (2.14) for the panel SL model with 1FE), and the

corresponding test statistic defined by (2.13), (2.23), (3.8), or (3.14) is computed.

5.2. Public capital productivity

Munnell (1990) investigated the productivity of public capital in private production

based on data for 48 U.S. states observed over 17 years (1970-1986). Baltagi and Pinnoi

(1995) considered a Cobb-Douglas production function of the form:

ln(gsp) = β1 ln(pcap) + β2 ln(pc) + β3 ln(emp) + β4unemp + ε,

with state-specific fixed effects, where ‘gsp’ is the gross social product of a given state,

‘pcap’, ‘pc’ and ‘emp’ are the inputs of private capital, public capital, and labor respec-

tively. In order to capture business cycle effects, an additional variable ‘unemp’ is also

added which indicates the state unemployment rate. The model now is extended by

adding the time-specific fixed effects and the spatial effects. The latter is for capturing

the possible spill over effects of public capital. The spatial weight matrix (Wn) is specified

using a contiguity form where (i, j)th element is indicated as 1 if state i and j share a

common border, otherwise 0. The final Wn is row normalized. The data file Product.csv

and the spatial weights matrix weight Product.csv, and the associated matlab files can

be found in the website: http://www.mysmu.edu/faculty/zlyang/.

It is well known that 1970-86 is the period that U.S. had experienced several social

and economic shocks such as the baby booms in the early 1970s, the oil crises in 1973

and 1979, and economic recession between 1980-82. It is therefore questionable that the

above production relationship would remain stable over time. We demonstrate how our

AQS test can answer this question, and how it may help detecting change points.

To test HTH
0 , the temporal homogeneity, assign k = 4. Based on full data, T = 17,

kp = (k + 1)(T − 1) = 80 and C = [blkdiag{Ck
T , C1

T }, 0kp,1] for the SL models; and

(k + 2)(T − 1) = 96 and C = [blkdiag{Ck
T , C1

T , C1
T }, 0kp,1] for the SLE models, where

Cm
τ is defined in (2.10) for m = 1, k. To test HTH

0 based on first four periods, T = 4,
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kp = (k + 1)(T − 1) = 15 for the SL models, and (k + 2)(T − 1) = 18 for the SLE models.

The C matrices remain in the same forms. Note that kp is also the degrees of freedom

(df) of the chi-squared test statistics, based on which the asymptotic critical values and

p-values are found.

Table below summarize the values of the test statistics and their p-values, for the näıve

tests and the nonnormality robust AQS tests for temporal homogeneity based on both the

full dataset and a subset of data, fitted using the four models: 1FE-SL, 2FE-SL, 1FE-SLE

and 2FE-SLE. From the table we see that all tests based on full data (t1–t17) give a clean

rejection of the temporal homogeneity hypothesis HTH
0 .

Tests for Temporal Homogeneity: Public Capital Productivity

Data TSL1 T
(r)
SL1 TSL2 T

(r)
SL2 T

(r)
SLE1 T

(r)
SLE1 TSLE2 T

(r)
SLE2

t1–t17 1621 321 3189 328 1971 289 1556 326
.000 .000 .000 .000 .000 .000 .000 .000

t1–t5 215.60 68.14 22.34 18.22 47.18 38.43 33.08 19.57
.000 .000 .322 .573 .003 .031 .102 .721

t1–t4 10.24 9.37 9.59 8.69 11.78 10.61 7.07 11.43
.804 .857 .845 .893 .858 .910 .990 .875

Note: p-values are in every second row.

As discussed in Section 2.1, a rejection of HTH
0 may be due to the existence of change

points instead of full heterogeneity. Thus, we break down the panel into sub-periods to test

whether HTH
0 holds for a smaller panel. Indeed, based on the first four periods (t1–t4), all

tests do not reject HTH
0 , indicating that the panel consisting of the first four periods is fairly

homogeneous. Furthermore, based on t1–t5, the tests T
(r)
SL1 and T

(r)
SLE1 reject HTH

0 but T
(r)
SL2

and T
(r)
SLE2 do not, suggesting that if temporal heterogeneity in intercepts is not controlled

for, the first change point is t5 or 1974, the year after the first oil crisis. However, T
(r)
SL2 and

T
(r)
SLE2 do not reject HTH

0 up to first six periods, meaning that after controlling both spatial

and temporal heterogeneity in intercepts, the panel is homogeneous in first six periods but

changes in structure from 7th period onwards.6 Applying the pair of test T
(r)
SL2 and T

(r)
SLE2 to

test HTH
0 based on other sub-periods from 1976 onwards, all tests reject HTH

0 at 10% level,

except the tests based on the following tow sub-periods: t7–t8 and t12–t13. These suggest

that there exist multiple change points in this panel, and hence the standard applications

of homogeneous penal methods are not valid.7

Based on the above results, we recommend the pairs of tests T
(r)
SL2 and T

(r)
SLE2 for practical

applications as they control both spatial and temporal heterogeneity in intercepts (two-way

fixed effects). We can further carry out the tests for detecting change points. However,the

tests for temporal homogeneity based on sub-panels have revealed quite a clear picture,

we therefore do not pursue CP tests in this application.
6The p-values for these two tests are .513 and .633 based on t1–t6, and .000 and .000 based on t1–t7,

suggesting that the structure has changed since year 7 (or 1977) onwards.
7The relatively much bigger values of the usual or näıve tests show that they are rather unreliable, in

line with the Monte Carlo results.
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5.3. Cigarette demand.

Second application of the proposed tests uses another well known data set, the Cigarettes

Demand for the United States (Baltagi and Levin, 1992). It contains a panel of 46 states

over 30 time periods (1963-1992). The data file cigarette.csv, spatial weight matrix

weight cigarette.csv, and the associated matlab codes can be found in the website:

http://www.mysmu.edu/faculty/zlyang/. Our analysis is based on the response vari-

able Y = Cigarette sales in packs per capita; and the covariates X1 = Price per pack of

cigarettes; X2 = Population above the age of 16; X3 = Per capita disposable income; and

X4 = Minimum price in adjoining states per pack of cigarettes. Earlier studies include

Hamilton (1972), McGuiness and Cowling (1975), Baltagi and Levin (1986, 1992), Baltagi

et al. (2000), and Yang et al. (2006), all under homogeneity assumption and in log-log

form except in Yang et al. (2006) who estimated the Box-Cox functional form. The spatial

weight matrix is specified using a contiguity form where (i, j)th element is 1 if state i and

j share a common border, otherwise 0, and then row normalized.

Tests for temporal homogeneity/heterogeneity is of particular interest in cigarette de-

mand, due to government’s policy interventions (in 1965, 1967, 1971) in attempting reduc-

ing the consumptions of cigarettes, and the reports from medial journals as well as Surgeon

General warning (in 1983) about the health hazards of smoking (see Baltagi and Levin,

1986). The table below summarize the values of the test statistics and their p-values, for

tests of homogeneity based on the full panel or sub-panels and using the log-log form.

Tests for Temporal Homogeneity: Cigarette Demand

T
(r)
SL1 T

(r)
SL2 T

(r)
SLE1 T

(r)
SLE2 T

(r)
SL1 T

(r)
SL2 T

(r)
SLE1 T

(r)
SLE2

t1–t30 443 517 507 587 t1–t10 122 118 116 126
.000 .000 .000 .000 .000 .000 .000 .000

t11–t20 99 90 104 112 t21–t30 135 114 121 106
.000 .000 .000 .000 .000 .000 .000 .000

t1–t3 13.13 9.38 9.68 8.75 t4–t5 6.72 6.23 7.86 8.10
.217 .497 .644 .724 .242 .285 .248 .230

t1–t5 43.0 30.7 45.0 40.8 t5–t8 21.7 19.2 21.2 17.4
.002 .060 .006 .018 .116 .204 .271 .495

Note: p-values are in every second row.

From the results we see that all tests based on the full data, and the first, second

and last ten years data clearly reject HTH
0 , the hypothesis of temporal homogeneity in

regression and spatial coefficients. Therefore, the Cigarette Demand panel is temporally

heterogeneous. Further breaking down the panel and repeatedly applying the set of robust

tests, we see that only the sub-panels 1963-65, 1966-67, and 1967-70 are fairly stable,

suggesting that panel structures have changed after 1965, 1967, and 1970, in line with the

policy interventions in 1965, 1967 and 1971. From the results, we also see that controlling

the temporal heterogeneity in intercepts seems increase the stability of the overall model

structure as seen from the larger p-values associated with T
(r)
SL2 and T

(r)
SLE2.
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Furthermore, applying T
(r)
SL2 to test HCP

0 based on data from t1–t5 with b0 = `0 = 3

gives a p-value of 0.632 compared with 0.06 from the test of HTH
0 given in the table above.

This confirms that 1965 is a point after which the structure has changed. Similarly, based

on data from t4–t9, the p-value is 0.231 for testing HCP
0 using T

(r)
SL2 with b0 = `0 = 3,

suggesting that 1968 is another change point. The CP tests with multiple change points

can be carried out as well based on the general LM procedure we propose.

However, the matlab function fsolve that our LM-procedure depends upon may not

alway perform well. This seems to be an interesting computation problem, and is beyond

the scope of this paper. In any situation, one can always repeatedly apply our robust tests

for testing temporal homogeneity as they are based up the optimization functions such as

fminbnd and fmincon, which are numerically much more stable stable than fsolve.

In summary, our tests show that there exit multiple change points in the the Cigarette

Demand panel, and hence in real applications, one should base their analyses either on a

shorter panel so that a homogeneous SPD model can be used, or a relatively longer panel

and the corresponding SPD model with ’specified’ change points.

6. Conclusion and Discussion

We introduce adjusted quasi score tests for temporal homogeneity/heterogeneity in

regression and spatial coefficients in spatial panel data models allowing the existence of

spatial and temporal heterogeneity in the intercepts of the model. The proposed tests are

robust against nonnormality, they are simple and reliable as shown by the Monte Carlo

results, and can be repeatedly applied to identity a ‘parsimonious model’ instead of the

model with full temporal heterogeneity. That is, once the null hypothesis of homogeneity

is rejected (as in the two empirical applications), one may proceed with further tests of

hypotheses with known change points suggested by the data (as in Cigarette Demand

application). Thus, the proposed tests provide useful tools for the applied researchers.

The tests can be extended by (i) adding higher-order spatial terms and spatial Durbin

terms in the model, (ii) treating individual- and time-specific effects as random effects, or

correlated random effects, (iii) allowing spatial-temporal heterogeneity in error variance

(i.e., heteroskedasticity), (iv) allowing interactive fixed effects, and (v) by allowing dy-

namic effects in the model. These extensions are interesting but clearly beyond the scope

of the current paper, which will be in our future research agenda.
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Appendix A: Some Basic Lemmas

Lemma A.1 (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two

sequences of n×n matrices that are uniformly bounded in both row and column sums. Let

Cn be a sequence of conformable matrices whose elements are uniformly bounded. Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,

(ii) the elements of An are uniformly bounded and tr(An) = O(n), and

(iii) the elements of AnCn and CnAn are uniformly bounded.

Lemma A.2 (Yang, 2015b, Lemma A.1, extended). For t = 1, 2, let Ant be n × n

matrices and cnt be n× 1 vectors. Let εn be an n× 1 random vector of iid elements with

mean zero, variance σ2, and finite 3rd and 4th cumulants µ3 and µ4. Let ant be the vector

of diagonal elements of Ant. Define Qnt = c′ntεn + ε′nAntεn, t = 1, 2. Then, for t, s = 1, 2,

Cov(Qnt, Qns) ≡ f(Ant, cnt;Ans, cns)

= σ4tr[(A′
nt + Ant)Ans)] + µ3a

′
ntcns + µ3c

′
ntans + µ4a

′
ntans + σ2c′ntcns.

Lemma A.3 (CLT for Linear-Quadratic Forms, Kelejian and Prucha, 2001). Let

An, an, cn and εn be as in Lemma A.2. Assume (i) An is bounded uniformly in row and

column sums, (ii) n−1
∑n

i=1 |c
2+η1
n,i | < ∞, η1 > 0, and (iii) E|ε4+η2

n,i | < ∞, η2 > 0. Then,

ε′nAnεn + c′nεn − σ2tr(An)

{σ4tr(A′
nAn + A2

n) + µ4a′nan + σ2c′ncn + 2µ3a′ncn}
1
2

D−→ N(0, 1).

Appendix B: Hessian, Expected Hessian and VC Matrices

Notation. For t, s = 1, . . . , T , blkdiag{At} forms a block-diagonal matrix by placing

At diagonally, {At} forms a matrix by stacking At horizontally, and {Bts} forms a matrix

by the component matrices Bts. The expected negative Hessian I$(θ0) and the VC matrix

Σ$(θ0) of the AQS function, $=SL1, SL2, SLE1, SLE2, are both partitioned according

to the slope parameters β, the spatial lag parameters λ, spatial error parameters ρ (if

existing in the model), and the error variance σ2, with the sub-matrices denoted by, e.g.,

Iββ, Iβλ, Σββ, Σβλ. Furthermore, diag(·) forms a diagonal matrix and diagv(·) a column

vector, based on the diagonal elements of a square matrix.

Parametric quantities, e.g., An(λt0) and Bn(ρt0), evaluated at the true parameters are

denoted as Ant and Bnt. For a matrix An, denote As
n = An + A′

n. The bold 0 represents

generically a vector or a matrix of zeros, to distinguish from the scalar 0.

Let VN = (V ′
n1, . . . , V

′
nT )′ be the vector of original errors with elements {vit} being iid

of mean 0, variance σ2, skewness γ and excess kurtosis κ. We present here results sufficient

for the implementation of the tests introduced in the paper. More details can be found in

a Supplementary Appendix available at: http://www.mysmu.edu/faculty/zlyang/.
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B.1. Panel SL model with one-way FE. The negative Hessian matrix JSL1(θ0)

is given in the Supplementary Appendix. Its expectation ISL1(θ0) has the components:

Iββ = blkdiag
{

1
σ2
0
X ′

ntXnt

}
−

{
1

Tσ2
0
X ′

ntXns

}
, Iλβ = blkdiag

{
1
σ2
0
η′ntXnt

}
−

{
1

Tσ2
0
η′ntXns

}
,

Iλλ = blkdiag
{

1
σ2
0
η′ntηnt + T−1

T tr(Gs
ntGnt)

}
−

{
1

Tσ2
0
η′ntηns

}
, Iσ2λ =

{
T−1
Tσ2

0
tr(Gnt)

}
,

Iσ2β = 0, Iσ2σ2 = n(T−1)
2σ4

0
, where ηnt = Gnt(Xntβt0 + cn) and Gs

nt = Gnt + G′
nt.

The VC matrix ΣSL1(θ0) is obtained by applying Lemma A.2 with ε replaced by VN ,

cnt by Π1t and Π2t, and Ant by Φt and Ψ:

ΣSL1(θ0) =


{
f(0,Π1t;0,Π1s)

}
,

{
f(0,Π1t; Φs,Π2s)

}
,

{
f(0,Π1t; Ψ,0)

}
∼,

{
f(Φt,Π2t; Φs,Π2s)

}
,

{
f(Φt,Π2t; Ψ,0)

}
∼, ∼, f(Ψ,0; Ψ,0)

 ,

where Π1t = 1
σ2
0
Z◦

NtXnt, Π2t = 1
σ2
0
Z◦

Ntηnt, Φt = 1
σ2
0
ZNtG

′
ntZ

◦′
Nt, and Ψ = 1

2σ4

∑T
t=1 Z◦

NtZ
◦′
Nt;

Z◦
Nt = ZNt − Z̄N , ZNt = zt ⊗ In, Z̄N = 1

T (lT ⊗ In), and zt be a T × 1 vector of element 1

in the tth position and 0 elsewhere.

B.2. Panel SL model with two-way FE. The negative Hessian matrix JSL2(θ0)

is given in the Supplementary Appendix. Its expectation ISL2(θ0) has the components:

Iββ = blkdiag
{

1
σ2
0
X∗′

ntX
∗
nt

}
−

{
1

Tσ2
0
X∗′

ntX
∗
ns

}
, Iλβ = blkdiag

{
1
σ2
0
η∗′ntX

∗
nt

}
−

{
1

Tσ2
0
η∗′ntX

∗
ns

}
,

Iλλ = blkdiag
{

1
σ2
0
η∗′ntη

∗
nt + T−1

T tr(G∗s
ntG

∗
nt)

}
−

{
1

Tσ2
0
η∗′ntη

∗
ns

}
, Iσ2λ =

{
T−1
Tσ2

0
tr(G∗

nt)
}
,

Iσ2β = 0, Iσ2σ2 = (n−1)(T−1)
2σ4

0
, where η∗nt = G∗

nt(X
∗
ntβt0 + c∗n) and G∗s

nt = G∗
nt + G∗′

nt.

ΣSL2(θ0) has an identical form as ΣSL1(θ0) with the relevant quantities replaced by

Π1t = 1
σ2
0
Z◦∗

NtX
∗
nt, Π2t = 1

σ2
0
Z◦

NtFn,n−1η
∗
nt, Φt = 1

σ2
0
Z∗

NtG
∗′
ntZ

◦∗′
Nt , and Ψ = 1

2σ4

∑T
t=1 Z◦∗

NtZ
◦∗′
Nt ,

where Z∗
Nt = ZNtFn,n−1 and Z◦∗

Nt = Z◦
NtFn,n−1.

B.3. Panel SLE model with one-way FE. The negative Hessian matrix JSEL1(θ0)

is in the Supplementary Appendix. Its expectation ISEL1(θ0) has the components:

Iββ = blkdiag
{

1
σ2
0
X ′

ntDntXnt

}
−

{
1
σ2
0
X ′

ntDntD−1
n DnsXns

}
;

Iλβ = blkdiag
{

1
σ2
0
η′tDntXnt

}
−

{
1
σ2
0
η′tDntD−1

n DnsXns

}
, Iρβ = 0Tk

Iλλ = blkdiag
{

1
σ2
0
η′ntDntηnt + tr(SntḠ

s
ntḠnt)

}
−

{
1
σ2
0
η′ntDntD−1

n Dnsηns

}
,

Iλρ = blkdiag
{
tr(Ḡ′

ntSntH
s
nt)

}
; Iσ2σ2 = −n(T−1)

2σ4
0

+ 1
σ4
0

∑T
t=1 tr(Snt)

Iρλ = blkdiag
{
tr(Ḡ′

ntSntH
s
ntSnt)} −

{
tr(G′

nsDnsD−1
n ḊntD−1

n )
}

Iρρ = blkdiag
{
tr(Hs

ntSntHnt −BntD−1
n ḊntB

−1
nt Hnt)

}
+

{
tr(BntD−1

n ḊnsD−1
n B′

ntHnt)
}

Iσ2β = 0, Iσ2λ =
{

1
σ2
0
tr(RntGnt)

}
, Iσ2ρ = 1

σ2
0
tr(SntHnt).

where Ḋnt = − d
dρt0

Dnt = M ′
nBnt + B′

ntMn, and Ḡnt = BntGntB
−1
nt .

The VC matrix ΣSL1(θ0) is obtained by applying Lemma A.2 with ε replaced by VN ,

cnt by Π1t, or Π2t, and Ant by Φ1t, Φ2t, or Ψ:
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ΣSLE1(θ0) =

{
f(0,Π1t;0,Π1s)

}
,
{
f(0,Π1t; Φ1s,Π2s)

}
,

{
f(0,Π1t; Φ2s,0)

}
,

{
f(0,Π1t; Ψ,0)

}
∼,

{
f(Φ1t,Π2t; Φ1s,Π2s)

}
,
{
f(Φ1t,Π2t; Φ2s,0)

}
,
{
f(Φ1t,Π2t; Ψ,0)

}
∼, ∼,

{
f(Φ2t,0; Φ2s,0)

}
,

{
f(Φ2t,0; Ψ,0)

}
∼, ∼, ∼, f(Ψ,0; Ψ,0)

 ,

where Π1t = 1
σ2
0
Z�

NtBntXnt, Π2t = 1
σ2
0
Z�

NtBntηnt, Φ1t = 1
σ2
0
ZNtB

−1′
nt G′

ntB
′
ntZ

�′
Nt, Φ2t =

1
σ2
0
Z�

NtHntZ
�′
Nt, Ψ = 1

2σ4
0

∑T
t=1 Z�

NtZ
�′
Nt, with Z�′

Nt = [Z ′
Nt −BntD−1

n (l′T ⊗ In)BN ] and BN =

blkdiag(Bn1, . . . , BnT ).

B.4. Panel SLE model with two-way FE. The negative Hessian matrix JSEL2(θ0)

is in the Supplementary Appendix. Its expectation ISEL2(θ0) has the components:

Iββ = blkdiag
{

1
σ2
0
X∗′

ntD
∗
ntX

∗
nt

}
−

{
1
σ2
0
X∗′ntD

∗
ntD∗−1

n D∗
nsX

∗
ns

}
;

Iλβ = blkdiag
{

1
σ2
0
η∗′t D∗

ntX
∗
nt

}
−

{
1
σ2
0
η∗′t D∗

ntD∗−1
n D∗

nsX
∗
ns

}
; Iρβ = 0;

Iλλ = blkdiag
{

1
σ2
0
η∗′ntD

∗
ntη

∗
nt + tr(S∗ntḠ

∗s
ntḠ

∗
nt)

}
−

{
1
σ2
0
η∗′ntD

∗
ntD∗−1

n D∗
nsη

∗
ns

}
;

Iλρ = blkdiag
{
tr(Ḡ∗′

ntS
∗
ntH

∗s
nt )

}
; Iσ2σ2 = − (n−1)(T−1)

2σ4
0

+ 1
σ4
0

∑T
t=1 tr(S∗nt);

Iρλ = blkdiag
{
tr(Ḡ∗′

ntS
∗
ntH

∗s
ntS

∗
nt)

}
−

{
tr(G∗′

nsD
∗
nsD∗−1

n Ḋ∗
ntD∗−1

n )
}
;

Iρρ = blkdiag
{
tr(H∗s

ntS
∗
ntH

∗
nt −B∗

ntD∗−1
n Ḋ∗

ntB
∗−1
nt H∗

nt)
}

+
{
tr(B∗

ntD∗−1
n Ḋ∗

nsD∗−1
n B∗′

ntH
∗
nt)

}
;

Iσ2β = 0; Iσ2λ =
{

1
σ2
0
tr(R∗

ntG
∗
nt)

}
; Iσ2ρ =

{
1
σ2
0
tr(S∗ntH

∗
nt)

}
,

where Ḋ∗
nt = − d

dρt0
D∗

nt = M∗′
n B∗

nt + B∗′
ntM

∗
n, and Ḡ∗

nt = B∗
ntG

∗
ntB

∗−1
nt .

The VC matrix ΣSLE2(θ0) takes an identical form as ΣSLE1(θ0), but with Π1t =
1
σ2
0
Z�∗

NtB
∗
ntX

∗
nt, Π2t = 1

σ2
0
Z�∗

NtB
∗
ntη

∗
nt, Φ1t = 1

σ2
0
Z∗

NtB
∗−1′
nt G∗′

ntB
∗′
ntZ

�∗′
Nt , Φ2t = 1

σ2
0
Z�∗

NtH
∗
ntZ

�∗′
Nt ,

and Ψ = 1
2σ4

0

∑T
t=1 Z�∗

NtZ
�∗′
Nt , where Z∗

Nt = ZNtFn,n−1 and Z�∗
Nt = Z�

NtFn,n−1.

B.5. Panel SLE model with two-way FE and homogeneous ρ. The expected

negative Hessian corresponding to the AQS function given in (3.16) has components:

Iββ = blkdiag
{

1
σ2
0
X∗′

ntD
∗
nX∗

nt

}
−

{
1

Tσ2
0
X∗′

ntD
∗
nX∗

ns

}
, ,

Iλβ = blkdiag
{

1
σ2
0
η∗′ntD

∗
nX∗

nt

}
−

{
1

Tσ2
0
η∗′ntD

∗
nX∗

ns

}
, Iρβ = 0

Iλλ = blkdiag
{

1
σ2
0
η∗′ntD

∗
nη∗nt + T−1

T tr(Ḡ∗s
ntḠ

∗
nt)

}
−

{
1

Tσ2
0
η∗′ntD

∗
nη∗ns

}
,

Iλρ =
{

T−1
T tr(Ḡ∗′

ntH
∗s
n )

}
, Iρρ = (T − 1)tr(H∗s

n H∗
n),

Iσ2β = 0′tk, Iσ2λ =
{

T−1
Tσ2

0
tr(G∗

nt)
}
, Iσ2ρ = T−1

σ2
0

tr(H∗
n), Iσ2σ2 = n(T−1)

2σ4
0

.

The VC matrix of the AQS function given in (3.16) is obtained by applying Lemma A.2

with εn replaced by VN , cnt by Π1t = 1
σ2
0
Z◦∗

NtB
∗
nX∗

nt, or Π2t = 1
σ2
0
Z◦∗

NtB
∗
nη∗nt, and Ant by

Φ1t = 1
σ2
0
Z∗

NtB
∗−1′
n G∗′

ntB
∗′
n Z◦∗′

Nt , or Φ2 = 1
σ2
0

∑T
t=1 Z◦∗

NtH
∗
nZ◦∗′

Nt , or Ψ = 1
2σ4

0

∑T
t=1 Z◦∗

NtZ
◦∗′
Nt ,

where Z∗
Nt = ZNtFn,n−1, and Z◦∗

Nt = Z◦
NtFn,n−1:
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

{
f(0,Π1t;0,Π1s)

}
,
{
f(0,Π1t; Φ1s,Π2s)

}
,

{
f(0,Π1t; Φ2,0)

}
,

{
f(0,Π1t; Ψ,0)

}
∼,

{
f(Φ1t,Π2t; Φ1s,Π2s)

}
,
{
f(Φ1t,Π2t; Φ2,0)

}
,
{
f(Φ1t,Π2t; Ψ,0)

}
∼, ∼, f(Φ2,0; Φ2,0), f(Φ2,0; Ψ,0)

∼, ∼, ∼, f(Ψ,0; Ψ,0)

 .

B.6. Panel SE model with two-way FE The expected negative Hessian matrix

corresponding to the AQS function given in (3.17) has the components:

Iββ = blkdiag
{

1
σ2
0
X∗′

ntD
∗
ntX

∗
nt

}
−

{
1
σ2
0
X∗′

ntD
∗
ntD∗−1

n D∗
nsX

∗
ns

}
, Iρβ = 0;

Iρρ = blkdiag
{
tr(H∗s

ntS
∗
ntH

∗
nt −B∗

ntD∗−1
n ḊntB

∗−1
nt H∗

nt)
}

+
{
tr(B∗

ntD∗−1
n ḊnsD∗−1

n B∗′
ntH

∗
nt)

}
;

Iσ2β = 0; Iσ2ρ =
{

1
σ2
0
tr(S∗ntH

∗
nt)

}
; Iσ2σ2 = − (n−1)(T−1)

2σ4
0

+ 1
σ4
0

∑T
t=1 tr(S∗nt).

Applying Lemma A.2 with εn being replaced by VN , cnt by Πt = 1
σ2
0
Z�∗

NtB
∗
ntX

∗
nt, and Ant

by Φt or Ψ, we obtain the corresponding VC matrix of the AQS function (3.17):
{
f(0,Πt;0,Πs)

}
,

{
f(0,Πt; Φs,0)

}
,

{
f(0,Πt; Ψ,0)

}
∼,

{
f(Φt,0; Φs,0)

}
,

{
f(Φt,0; Ψ,0)

}
∼, ∼, f(Ψ,0; Ψ,0)

 ,

where Φt = 1
σ2
0
Z�∗

NtH
∗
ntZ

�∗′
Nt , Ψ = 1

2σ4

∑T
t=1 Z�∗

NtZ
�∗′
Nt , and Z�∗

Nt = Z�
NtFn,n−1.

Appendix C: Proof of the Theorems

The four theorems share some similar features. We provide here only the proof of

the most general Theorem 3.2. The detailed proofs of all theorems can be found in the

Supplementary Appendix, available at: http://www.mysmu.edu/faculty/zlyang/.

Proof of Theorem 3.2. Consider the AQS function S?
SLE2(θ) given in (3.13). We

need to show that 1√
N0

S?
SLE2(θ0)

D−→ N
(
0, limN0→∞

1
N0

ΣSLE2(θ0)
)
, as N0 →∞. We have

Ṽ ∗
nt ≡ Ṽ ∗

nt(β0,λ0,ρ0) = V ∗
nt −B∗

ntD∗−1
n

∑T
s=1 B∗′

nsV
∗
ns = F ′

n,n−1Z
�′
NtVN , and

W ∗
nY ∗

nt = G∗
nt(X

∗
ntβt0 + c∗n + B−∗1

nt V ∗
nt) = η∗nt + G∗

ntB
∗−1
nt F ′

n,n−1Z
′
NtVN .

Hence, the AQS function at true θ0 can be written as

S∗SLE2(θ0) =



Π′
1tVN , t = 1, . . . , T,

Π′
2tVN + V′

NΦ1tVN − tr(R∗
ntG

∗
nt), t = 1, . . . , T,

V′
NΦ2tVN − tr(S∗ntH

∗
nt), t = 1, . . . , T,

V′
NΨVN − (n−1)(T−1)

2σ2 ,

(C.1)

where Π1t = 1
σ2
0
Z�∗

NtB
∗
ntX

∗
nt, Π2t = 1

σ2
0
Z�∗

NtB
∗
ntη

∗
nt, Φ1t = 1

σ2
0
Z∗

NtB
∗−1′
nt G∗′

ntB
∗′
ntZ

�∗′
Nt , Φ2t =

1
σ2
0
Z�∗

NtH
∗
ntZ

�∗′
Nt , and Ψ = 1

2σ4
0

∑T
t=1 Z�∗

NtZ
�∗′
Nt , with Z∗

Nt = ZNtFn,n−1 and Z�∗
Nt = Z�

NtFn,n−1;
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ZNt = zt ⊗ In and zt is a T × 1 vector with tth element being 1 and other elements being

zero; and Z�′
Nt = [Z ′

Nt −BntD−1
n (l′T ⊗ In)BN ] and BN = blkdiag(Bn1, . . . , BnT ).

First, as the elements of Xnt are non-stochastic and uniformly bounded (by Assump-

tion 3), the row and column sums of B∗
nt are uniformly bounded in absolute values by

Assumption 5 and Lemma A.1. It follows that the elements of Π1t are uniformly bounded.

By Assumption 4 and Lemma A.1(i), Gnt is uniformly bounded in both row and column

sums. By Lemma A.2 of Lee and Yu (2010),

(In − λF ′
n,n−1WnFn,n−1)−1 = F ′

n,n−1(In − λWn)−1Fn,n−1. (C.2)

We have A∗−1
nt = F ′

n,n−1A
−1
nt Fn,n−1. Thus, G∗

nt is uniformly bounded in both row and

column sums by Lemma A.1(iii), and the elements of η∗nt = G∗
nt(X

∗
ntβt0 + c∗n) are uni-

formly bounded by Assumption 3. It follows that the elements of Π2t are uniformly

bounded. Similarly, B∗−1
nt = F ′

n,n−1B
−1
nt Fn,n−1, and therefore the elements of H∗

nt is uni-

formly bounded in both row and column sums. With these and the definitions of ZNt

and Z�
Nt, it is easy to show that Φ1t, Φ2t and Ψ are uniformly bounded in both row and

column sums. Thus, under Assumptions 1-5, the central limit theorem (CLT) of linear-

quadratic (LQ) form of Kelejian and Prucha (2001) or its simplified version (under iid

errors) given in Lemma A.3 can be applied to each element of S?
SLE2(θ0) to establish its

asymptotic normality. Then, an application of Cramér-Wold device under a finite T gives,
1√
N0

S?
SLE2(θ0)

D−→ N
(
0, limN0→∞

1
N0

ΣSLE2(θ0)
)
, as N0 →∞. Then, by (2.11) and (2.12),

C[ 1
N0

ISLE2(θ0)]−1 1√
N0

S?
SLE2(θ̃SLE2)

D−→ N
(
0, limN0→∞ΞSLE2(θ0)

)
.

It left to show that, as N0 →∞,

(a) 1
N0

[ISLE2(θ̃SL1)− ISLE2(θ0)]
p−→ 0,

(b) 1
N0

[ΣSLE2(θ̃SLE2)− ΣSL1(θ0)]
p−→ 0.

Under the
√

N0-consistency of θ̃SLE2 and with the analytical expressions of ISLE2(θ0)

and ΣSLE2(θ0) given in Appendix B.4, the proofs of these results are repeated applications

of the mean value theorem (MVT) to each component of 1
N0

[ISLE2(θ̃SLE2)− ISLE2(θ0)] and

each component of 1
N0

[ΣSLE2(θ̃SLE2)− ΣSLE2(θ0)].

To show (a), we pick a typical element of ISLE2(θ0) given in Appendix B.4,

Iλλ = blkdiag
{

1
σ2
0
η∗′ntD

∗
ntη

∗
nt + tr(S∗ntḠ

∗s
ntḠ

∗
nt)

}
−

{
1
σ2
0
η∗′ntD

∗
ntD∗−1

n D∗
nsη

∗
ns

}
to show that 1

N0
(Ĩλλ − Iλλ)

p−→ 0. The proofs for the other components follow similarly.

Recall: η∗nt = G∗
nt(X

∗
ntβt0 + c∗n), D∗

n(ρ) =
∑T

t=1 D∗
n(ρt), D∗

n(ρt) = B∗′
n (ρt)B∗

n(ρt), B∗
n(ρt) =

In−1 − ρtM
∗
n, S∗nt(ρ) = In−1 −B∗

nt(ρt)D∗−1
n (ρ)B∗′

nt(ρt), and Ḡ∗
nt = B∗

ntG
∗
ntB

∗−1
nt .

By Assumptions 4 and 5 and Lemma A.1(i), it is straightforward to show the two

matrices, D∗
n(ρt) and Ḡ∗

nt(λt, ρt), are uniformly bounded in both row and column sums

in a neighborhood of (λt0, ρt0) for each t, and so are their derivatives. Clearly with the

properties of D∗
n(ρt) and a finite T , D∗

n(ρ) is uniformly bounded in both row and column
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sums in a neighborhood of ρ0, and so are its derivatives.

By Assumption 5 and Lemma A.1(i), D∗−1
n (ρt) is uniformly bounded in both row and

column sums in a neighborhood of ρt0 for each t, and so are its derivatives. By a matrix

result that for two invertible matrices An and Bn, (An + Bn)−1 = A−1
n + 1

1+cA
−1
n BnA−1

n ,

where c = tr(BnA−1
n ), we infer that for a finite T , D∗

n(ρ) is uniformly bounded in both

row and column sums in a neighborhood of ρ0, and so are its derivatives. It follows that

S∗nt(ρ) is uniformly bounded in both row and column sums in a neighborhood of ρ0, and

so are its derivatives. Noting that Ĩλλ = Iλλ(θ̃SLE2) and Iλλ = Iλλ(θ0), we have by MVT,

for each component of Iλλ(θ) denoted as Iλλ,ts(θ), t, s = 1, . . . , T ,

1
N0

Iλλ,ts(θ̃SLE2) = 1
N0

Iλλ,ts(θ0) + [ 1
N0

∂
∂θ′ Iλλ,ts(θ̄)](θ̃SLE2 − θ0),

where θ̄ lies elementwise between θ̃SLE2 and θ0, with θ̄ being
√

N0-consistent as θ̃SLE2 is.

With the above argument and Lemma A.1(ii), we have 1
N0

∂
∂θ′ Iλλ,ts(θ̄) = Op(1). Therefore,

1
N0

[Iλλ,ts(θ̃SLE2)− Iλλ,ts(θ0)] = op(1) for each (t, s), and 1
N0

[Iλλ(θ̃SLE2)− Iλλ(θ0)] = op(1).

Note that the easily proved results such as 1
N0

(c̃nG̃ntc̃n − cnGntcn)
p−→ 0, has been used.

The proofs of the other components of 1
N0

[ISLE2(θ̃SL1)− ISL1(θ0)]
p−→ 0 proceeds similarly.

To show (b), we again choose the most complicated term, f(Φ1t,Π2t; Φ1s,Π2s) that

corresponds to λ, to show in details where the quantities involved are given at the end of

Appendix B.4: Π1t = 1
σ2
0
Z�∗

NtB
∗
ntX

∗
nt, Π2t = 1

σ2
0
Z�∗

NtB
∗
ntη

∗
nt, Φ1t = 1

σ2
0
Z∗

NtB
∗−1′
nt G∗′

ntB
∗′
ntZ

�∗′
Nt ,

and Φ2t = 1
σ2
0
Z�∗

NtH
∗
ntZ

�∗′
Nt , where Z∗

Nt = ZNtFn,n−1 and Z�∗
Nt = Z�

NtFn,n−1.

Applying Lemma A.2 with Ant replaced by Φ1t, ant by φ1t = diagv(Φ1t), and cnt by

Π2t (similarly for the quantities with subscript s), and noting that µ3 = γ and µ4 = κ, we

obtain the covariance between the λt- and λs-components of the AQS function:

f(Φ1t,Π2t; Φ1s,Π2s) = σ4
0tr[(Φ

′
1t + Φ1t)Φ1s] + γφ′1tΠ2s + γΠ′

2tφ1s + κφ′1tφ1s + σ2
0Π

′
2tΠ2s.

Applying MVT and following the similar arguments as in (a), the convergence of the

relevant terms can easily be proved, e.g., 1
N0
{tr[(Φ̃′

1t + Φ̃1t)Φ̃1s] − tr[(Φ′
1t + Φ1t)Φ1s]} =

op(1), 1
N0

[φ′1tΠ2s − φ′1tΠ2s] = op(1), etc. Furthermore, σ̃2
SLE2 − σ2

0 = op(1), and hence

σ̃4
SLE2 − σ4

0 = op(1); for the estimates obtained from Lemma 4.1(a) of Yang et al. (2016),

it is easy to show that γ̃ − γ
p−→ 0 and κ̃− κ

p−→ 0. It follows that

[f̃(Φ̃1t, Π̃2t; Φ̃1s, Π̃2s)− f(Φ1t,Π2t; Φ1s,Π2s)] = op(1).

Similarly, the convergence of the other elements of 1
N0

[ΣSLE2(θ̃SLE2)−ΣSLE2(θ0)] is proved.

�
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Catania L., Billé, A. G., 2017. Dynamic spatial autoregressive models with autoregressive

and heteroskedastic disturbances. Journal of Applied Econometrics 32, 1178-1196.

Chow, G. C., 1960. Tests of equality between sets of coefficients in two linear regressions.

Econometrica 28, 591-605.
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Table 1a. Empirical Sizes of Tests for Temporal Homogeneity in Panel SL Model
One-Way Fixed Effects, Queen Contiguity

T = 3 T = 6
λ n TSL1 T

(r)
SL1 TSL1 T

(r)
SL1

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .208 .135 .052 .096 .045 .007 .216 .138 .050 .095 .044 .008
100 .150 .086 .024 .098 .046 .009 .161 .097 .028 .103 .050 .009
200 .128 .068 .015 .103 .049 .008 .129 .069 .018 .099 .051 .010
500 .107 .054 .010 .097 .046 .007 .110 .054 .011 .098 .049 .009

0 50 .204 .135 .053 .102 .048 .008 .214 .137 .050 .095 .046 .009
100 .147 .086 .025 .099 .048 .008 .160 .096 .027 .105 .051 .009
200 .127 .069 .015 .104 .049 .009 .127 .068 .018 .100 .049 .010
500 .111 .056 .011 .100 .048 .008 .109 .056 .012 .099 .050 .010

-.5 50 .204 .133 .055 .102 .048 .008 .212 .136 .051 .097 .046 .009
100 .147 .086 .025 .099 .049 .008 .160 .097 .027 .103 .050 .009
200 .129 .068 .015 .103 .048 .009 .127 .070 .017 .100 .050 .010
500 .108 .055 .012 .101 .048 .009 .110 .056 .012 .100 .049 .010

Normal Mixture Error
.5 50 .201 .129 .053 .096 .047 .006 .229 .154 .061 .121 .070 .023

100 .149 .088 .027 .100 .048 .009 .163 .096 .029 .099 .050 .010
200 .130 .073 .019 .105 .052 .011 .133 .073 .018 .103 .054 .010
500 .112 .058 .012 .102 .051 .009 .118 .061 .012 .102 .051 .010

0 50 .197 .126 .052 .099 .047 .007 .229 .150 .061 .103 .053 .011
100 .149 .087 .028 .102 .049 .010 .161 .094 .029 .099 .048 .010
200 .129 .073 .019 .105 .052 .010 .132 .073 .018 .104 .054 .011
500 .111 .059 .012 .103 .051 .010 .120 .061 .012 .102 .053 .009

-.5 50 .193 .129 .052 .097 .048 .008 .231 .151 .062 .103 .053 .012
100 .150 .088 .028 .101 .050 .010 .162 .094 .030 .101 .050 .010
200 .130 .073 .019 .104 .052 .011 .132 .073 .018 .103 .053 .011
500 .113 .059 .013 .102 .051 .010 .118 .062 .013 .101 .052 .010

Log-normal Error
.5 50 .180 .119 .045 .089 .043 .008 .211 .145 .060 .100 .054 .017

100 .149 .087 .027 .097 .047 .009 .164 .102 .032 .101 .057 .012
200 .133 .071 .018 .097 .045 .009 .147 .087 .030 .101 .055 .014
500 .127 .071 .018 .100 .051 .011 .142 .078 .030 .101 .050 .011

0 50 .180 .118 .046 .093 .044 .008 .193 .130 .056 .099 .054 .015
100 .132 .078 .023 .094 .047 .009 .146 .086 .024 .100 .052 .010
200 .109 .057 .013 .089 .042 .008 .114 .064 .017 .094 .051 .012
500 .099 .052 .012 .010 .050 .010 .110 .058 .013 .102 .053 .011

-.5 50 .194 .128 .049 .097 .045 .008 .225 .154 .072 .106 .058 .016
100 .142 .083 .024 .096 .047 .010 .191 .118 .042 .104 .057 .013
200 .120 .067 .017 .095 .046 .009 .166 .102 .032 .102 .054 .012
500 .118 .065 .016 .098 .050 .011 .151 .102 .032 .102 .050 .010
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Table 1b. Empirical Sizes of Tests for Temporal Homogeneity in Panel SL Model
One-Way Fixed Effects, Group Interaction

T = 3 T = 6
λ n TSL1 T

(r)
SL1 TSL1 T

(r)
SL1

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .222 .144 .057 .086 .034 .004 .219 .136 .048 .085 .039 .007
100 .150 .089 .025 .088 .039 .006 .165 .094 .028 .089 .042 .007
200 .124 .067 .018 .092 .042 .008 .128 .070 .016 .094 .045 .008
500 .110 .059 .014 .097 .049 .011 .113 .057 .012 .095 .048 .009

0 50 .232 .157 .065 .087 .036 .005 .232 .151 .056 .084 .040 .007
100 .155 .091 .027 .089 .040 .006 .173 .099 .030 .091 .044 .008
200 .124 .068 .020 .090 .042 .008 .131 .071 .016 .095 .044 .008
500 .110 .060 .015 .098 .049 .010 .114 .058 .013 .096 .048 .009

-.5 50 .238 .163 .071 .086 .038 .004 .239 .159 .063 .085 .038 .007
100 .157 .092 .029 .088 .040 .005 .178 .102 .033 .089 .043 .008
200 .126 .069 .020 .091 .043 .008 .133 .072 .016 .096 .043 .008
500 .111 .061 .014 .098 .049 .010 .115 .059 .012 .096 .048 .009

Normal Mixture Error
.5 50 .230 .151 .056 .087 .033 .004 .215 .143 .051 .088 .046 .009

100 .154 .088 .025 .087 .041 .006 .165 .094 .025 .087 .041 .009
200 .131 .070 .017 .095 .043 .008 .133 .071 .018 .093 .043 .009
500 .114 .061 .013 .100 .048 .009 .116 .059 .011 .096 .048 .008

0 50 .241 .163 .068 .088 .036 .005 .231 .155 .061 .088 .046 .008
100 .157 .092 .029 .089 .041 .006 .170 .098 .029 .089 .041 .008
200 .133 .070 .018 .095 .044 .008 .133 .072 .019 .094 .042 .009
500 .114 .059 .014 .099 .048 .010 .133 .072 .019 .094 .042 .009

-.5 50 .259 .181 .081 .093 .043 .007 .270 .186 .083 .096 .050 .010
100 .168 .103 .033 .096 .046 .007 .193 .118 .040 .093 .046 .010
200 .136 .075 .020 .097 .045 .009 .142 .079 .023 .094 .045 .010
500 .116 .060 .015 .098 .048 .009 .117 .059 .012 .097 .048 .008

Log-normal Error
.5 50 .218 .143 .054 .081 .035 .005 .206 .137 .050 .079 .040 .009

100 .151 .088 .026 .084 .037 .005 .176 .107 .034 .091 .048 .012
200 .130 .069 .018 .091 .043 .006 .142 .081 .022 .095 .051 .012
500 .108 .057 .012 .094 .045 .008 .126 .066 .016 .101 .049 .010

0 50 .227 .151 .064 .084 .036 .006 .243 .166 .075 .087 .045 .010
100 .152 .091 .029 .088 .040 .006 .185 .122 .046 .097 .049 .013
200 .137 .077 .019 .096 .047 .008 .136 .078 .025 .097 .052 .011
500 .107 .059 .014 .098 .048 .009 .115 .057 .014 .098 .048 .010

-.5 50 .263 .188 .086 .093 .043 .008 .350 .259 .139 .106 .057 .015
100 .179 .114 .042 .101 .049 .010 .260 .186 .090 .105 .054 .014
200 .161 .096 .029 .107 .056 .010 .185 .114 .043 .103 .052 .013
500 .123 .067 .018 .100 .051 .010 .131 .072 .021 .101 .051 .010
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Table 2a. Empirical Sizes of Tests for Temporal Homogeneity in Panel SL Model
Two-Way Fixed Effects, Queen Contiguity

T = 3 T = 6
λ n TSL2 T

(r)
SL2 TSL2 T

(r)
SL2

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .192 .123 .047 .093 .045 .007 .228 .148 .059 .100 .050 .010
100 .140 .080 .023 .096 .048 .009 .157 .094 .029 .102 .050 .011
200 .120 .064 .015 .098 .049 .009 .128 .068 .017 .101 .052 .009
500 .103 .051 .013 .098 .048 .011 .105 .056 .012 .095 .049 .010

0 50 .194 .123 .048 .094 .046 .008 .224 .147 .059 .101 .049 .010
100 .138 .082 .023 .095 .050 .009 .126 .069 .017 .099 .051 .009
200 .115 .064 .016 .096 .049 .009 .157 .095 .027 .101 .049 .010
500 .101 .052 .012 .098 .048 .009 .126 .069 .017 .099 .051 .009

-.5 50 .192 .123 .047 .093 .045 .009 .225 .148 .058 .100 .049 .009
100 .138 .081 .023 .096 .049 .008 .157 .092 .027 .101 .048 .010
200 .116 .063 .015 .096 .049 .009 .125 .069 .016 .102 .050 .009
500 .105 .055 .011 .096 .048 .009 .108 .056 .013 .097 .051 .011

Normal Mixture Error
.5 50 .198 .131 .052 .100 .048 .008 .232 .155 .063 .106 .054 .013

100 .140 .080 .025 .096 .047 .010 .165 .100 .030 .107 .055 .012
200 .124 .067 .016 .101 .051 .009 .132 .071 .019 .104 .051 .013
500 .110 .055 .013 .100 .050 .010 .106 .056 .012 .097 .051 .010

0 50 .199 .132 .052 .102 .048 .009 .234 .154 .064 .110 .055 .013
100 .139 .080 .024 .097 .047 .009 .166 .100 .031 .109 .054 .011
200 .124 .067 .017 .102 .051 .010 .129 .072 .019 .102 .051 .013
500 .110 .055 .012 .102 .050 .010 .106 .055 .013 .096 .049 .010

-.5 50 .199 .130 .053 .101 .049 .009 .234 .157 .066 .112 .057 .013
100 .143 .084 .025 .101 .048 .009 .164 .097 .031 .107 .053 .012
200 .123 .069 .016 .103 .051 .010 .133 .073 .020 .105 .053 .012
500 .109 .056 .012 .101 .050 .009 .107 .056 .014 .096 .048 .012

Log-normal Error
.5 50 .196 .131 .055 .100 .050 .009 .242 .171 .079 .107 .067 .018

100 .139 .081 .027 .095 .050 .011 .171 .112 .041 .105 .055 .015
200 .128 .070 .018 .106 .053 .010 .141 .081 .026 .104 .052 .013
500 .109 .060 .014 .101 .052 .011 .123 .068 .019 .101 .051 .010

0 50 .196 .133 .059 .106 .055 .010 .239 .167 .081 .110 .055 .021
100 .137 .078 .024 .095 .048 .010 .166 .110 .039 .107 .054 .018
200 .126 .070 .018 .104 .052 .010 .133 .079 .025 .105 .049 .015
500 .107 .056 .013 .100 .051 .010 .116 .061 .016 .102 .051 .013

-.5 50 .205 .141 .066 .112 .062 .011 .249 .177 .083 .108 .055 .026
100 .154 .089 .028 .106 .052 .012 .172 .110 .042 .099 .048 .019
200 .129 .074 .019 .107 .056 .012 .145 .088 .030 .098 .049 .020
500 .110 .058 .014 .103 .052 .010 .122 .068 .018 .100 .049 .014
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Table 2b. Empirical Sizes of Tests for Temporal Homogeneity in Panel SL Model
Two-Way Fixed Effects, Group Interaction

T = 3 T = 6
λ n TSL2 T

(r)
SL2 TSL2 T

(r)
SL2

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .226 .148 .059 .086 .038 .005 .223 .142 .052 .087 .040 .007
100 .155 .090 .025 .090 .036 .006 .166 .095 .029 .089 .043 .007
200 .124 .070 .018 .091 .044 .006 .131 .073 .016 .093 .045 .008
500 .112 .060 .015 .097 .050 .010 .114 .057 .013 .096 .047 .010

0 50 .240 .159 .068 .088 .039 .005 .237 .154 .059 .086 .040 .007
100 .159 .094 .025 .090 .037 .006 .174 .102 .031 .088 .042 .007
200 .127 .072 .018 .091 .044 .007 .133 .074 .016 .094 .046 .008
500 .112 .060 .014 .097 .050 .010 .116 .059 .013 .097 .046 .010

-.5 50 .244 .167 .075 .088 .039 .005 .249 .164 .065 .086 .040 .007
100 .163 .096 .028 .089 .038 .006 .179 .104 .033 .085 .043 .007
200 .127 .073 .019 .092 .045 .007 .134 .076 .017 .094 .045 .008
500 .113 .059 .014 .098 .049 .010 .117 .059 .013 .097 .046 .010

Normal Mixture Error
.5 50 .232 .150 .058 .080 .034 .005 .222 .144 .055 .082 .041 .008

100 .159 .090 .024 .088 .039 .006 .164 .095 .027 .083 .041 .008
200 .130 .072 .018 .095 .045 .007 .133 .071 .017 .089 .043 .010
500 .114 .059 .014 .097 .048 .009 .118 .060 .012 .098 .047 .009

0 50 .245 .167 .069 .085 .038 .006 .247 .165 .071 .083 .039 .007
100 .164 .098 .027 .089 .040 .006 .175 .103 .032 .080 .038 .007
200 .131 .072 .018 .094 .043 .008 .132 .072 .019 .089 .041 .009
500 .115 .059 .014 .096 .048 .009 .119 .060 .012 .096 .047 .009

-.5 50 .269 .185 .085 .097 .047 .009 .298 .209 .100 .101 .052 .012
100 .177 .110 .035 .099 .046 .007 .205 .127 .045 .094 .046 .008
200 .138 .077 .020 .096 .045 .008 .145 .082 .023 .095 .045 .010
500 .115 .059 .014 .096 .047 .009 .122 .063 .013 .099 .049 .009

Log-normal Error
.5 50 .217 .143 .057 .078 .036 .005 .215 .142 .055 .076 .036 .008

100 .152 .088 .025 .079 .034 .005 .176 .111 .036 .082 .041 .009
200 .132 .073 .018 .089 .044 .006 .141 .080 .023 .088 .046 .010
500 .113 .057 .013 .094 .047 .008 .119 .062 .014 .096 .048 .009

0 50 .240 .165 .073 .085 .040 .006 .246 .174 .079 .085 .038 .008
100 .164 .099 .034 .086 .041 .006 .191 .129 .051 .091 .040 .008
200 .135 .076 .020 .092 .043 .007 .143 .083 .027 .095 .044 .009
500 .111 .057 .014 .092 .045 .008 .113 .060 .013 .097 .045 .010

-.5 50 .287 .207 .104 .112 .060 .013 .347 .269 .151 .119 .068 .022
100 .201 .131 .054 .109 .057 .012 .270 .195 .099 .119 .065 .019
200 .156 .095 .028 .105 .054 .010 .191 .122 .049 .105 .056 .014
500 .120 .067 .017 .098 .050 .009 .141 .081 .021 .103 .052 .010
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Table 3a. Empirical Sizes of Tests for Temporal Homogeneity in Panel SLE Model
One-Way Fixed Effects, Queen Contiguity, λ = 0.5.

T = 3 T = 6
ρ n TSLE1 T

(r)
SLE1 TSLE1 T

(r)
SLE1

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .199 .142 .075 .082 .039 .005 .161 .099 .036 .090 .042 .011
100 .123 .068 .025 .094 .043 .009 .097 .050 .012 .092 .043 .006
200 .084 .044 .009 .099 .046 .007 .079 .038 .008 .102 .049 .011
500 .070 .034 .006 .104 .049 .009 .064 .030 .005 .102 .054 .009

0 50 .223 .164 .093 .090 .042 .006 .171 .104 .041 .093 .047 .010
100 .132 .076 .029 .095 .046 .012 .105 .058 .014 .097 .047 .007
200 .087 .046 .011 .103 .050 .010 .082 .039 .008 .104 .050 .011
500 .069 .036 .006 .102 .050 .011 .063 .028 .005 .103 .054 .010

-.5 50 .232 .174 .098 .093 .042 .006 .181 .120 .048 .096 .047 .010
100 .134 .083 .033 .097 .045 .011 .118 .064 .014 .098 .048 .008
200 .097 .047 .013 .105 .050 .012 .079 .039 .008 .102 .052 .011
500 .070 .035 .006 .102 .052 .009 .061 .028 .005 .102 .049 .011

Normal Mixture Error
.5 50 .196 .139 .072 .081 .037 .004 .168 .106 .044 .092 .047 .008

100 .121 .070 .025 .087 .040 .008 .107 .057 .017 .096 .053 .012
200 .084 .043 .011 .092 .046 .006 .082 .044 .010 .101 .052 .013
500 .071 .035 .008 .099 .052 .012 .070 .036 .009 .097 .046 .014

0 50 .212 .151 .080 .087 .042 .005 .167 .110 .044 .089 .045 .010
100 .131 .076 .028 .089 .041 .009 .105 .054 .015 .097 .046 .011
200 .085 .046 .011 .095 .046 .008 .078 .039 .009 .100 .047 .012
500 .071 .036 .007 .097 .050 .010 .064 .032 .006 .104 .054 .012

-.5 50 .226 .164 .090 .093 .040 .006 .197 .131 .057 .104 .056 .013
100 .140 .083 .030 .094 .043 .009 .126 .073 .023 .104 .055 .013
200 .094 .050 .013 .102 .051 .010 .086 .048 .013 .103 .055 .014
500 .073 .038 .009 .101 .051 .012 .074 .034 .005 .102 .055 .011

Log-normal Error
.5 50 .150 .102 .046 .083 .038 .006 .169 .108 .044 .092 .048 .010

100 .115 .075 .035 .091 .044 .010 .106 .058 .015 .098 .051 .010
200 .109 .067 .027 .095 .046 .009 .073 .036 .008 .090 .046 .010
500 .089 .050 .016 .100 .049 .011 .064 .032 .006 .104 .052 .012

0 50 .217 .160 .090 .082 .041 .009 .179 .118 .045 .092 .048 .011
100 .126 .077 .031 .087 .042 .009 .108 .062 .017 .100 .055 .008
200 .101 .055 .015 .103 .048 .010 .074 .035 .007 .095 .044 .008
500 .071 .035 .008 .096 .048 .010 .059 .031 .006 .099 .050 .011

-.5 50 .192 .138 .069 .090 .045 .006 .202 .136 .054 .098 .050 .011
100 .137 .087 .038 .092 .048 .010 .128 .074 .019 .108 .057 .010
200 .094 .045 .014 .101 .048 .011 .081 .041 .008 .099 .049 .009
500 .078 .040 .010 .102 .051 .010 .064 .030 .005 .105 .050 .012
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Table 3b. Empirical Sizes of Tests for Temporal Homogeneity in Panel SLE Model
One-Way Fixed Effects, Queen Contiguity, λ = −0.5.

T = 3 T = 6
ρ n TSLE1 T

(r)
SLE1 TSLE1 T

(r)
SLE1

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .190 .131 .058 .088 .037 .007 .167 .102 .036 .088 .042 .010
100 .116 .068 .022 .093 .044 .009 .098 .050 .013 .091 .044 .007
200 .079 .042 .009 .094 .046 .007 .078 .040 .010 .100 .050 .012
500 .071 .033 .007 .101 .050 .009 .060 .029 .005 .102 .053 .009

0 50 .209 .149 .073 .091 .040 .006 .169 .104 .040 .094 .043 .010
100 .125 .073 .027 .099 .050 .011 .102 .056 .013 .093 .047 .006
200 .084 .043 .010 .098 .048 .010 .079 .040 .008 .104 .051 .010
500 .072 .033 .007 .103 .050 .011 .059 .029 .005 .096 .054 .010

-.5 50 .225 .162 .085 .095 .040 .006 .172 .111 .044 .094 .043 .010
100 .131 .081 .031 .101 .050 .011 .109 .059 .013 .099 .047 .008
200 .089 .044 .013 .105 .049 .011 .082 .039 .009 .104 .052 .010
500 .069 .032 .007 .100 .049 .010 .057 .030 .005 .096 .049 .012

Normal Mixture Error
.5 50 .187 .129 .061 .079 .034 .004 .176 .111 .043 .092 .047 .008

100 .111 .068 .022 .086 .042 .008 .105 .054 .016 .097 .051 .013
200 .083 .044 .009 .091 .047 .006 .085 .046 .010 .102 .056 .012
500 .072 .033 .008 .102 .049 .011 .074 .036 .008 .099 .053 .010

0 50 .200 .140 .071 .086 .039 .006 .166 .105 .041 .090 .047 .010
100 .126 .074 .027 .092 .042 .009 .103 .056 .016 .095 .049 .011
200 .079 .045 .009 .095 .047 .008 .076 .041 .010 .098 .050 .012
500 .071 .035 .008 .100 .049 .010 .064 .031 .007 .101 .050 .012

-.5 50 .218 .156 .080 .088 .041 .007 .191 .124 .052 .100 .054 .013
100 .136 .079 .031 .096 .045 .008 .119 .068 .021 .105 .055 .013
200 .087 .048 .013 .098 .048 .009 .088 .048 .014 .106 .057 .014
500 .073 .037 .009 .103 .053 .011 .075 .034 .007 .104 .053 .011

Log-normal Error
.5 50 .175 .125 .063 .084 .036 .009 .174 .110 .043 .092 .046 .010

100 .138 .087 .038 .089 .042 .010 .099 .055 .016 .098 .050 .011
200 .096 .048 .014 .096 .045 .008 .075 .037 .008 .098 .046 .011
500 .075 .038 .009 .101 .052 .011 .066 .028 .006 .100 .053 .013

0 50 .207 .145 .081 .086 .042 .011 .173 .111 .044 .093 .046 .010
100 .122 .078 .029 .090 .044 .009 .105 .056 .013 .096 .048 .009
200 .091 .047 .010 .095 .047 .008 .076 .037 .007 .099 .046 .009
500 .071 .035 .008 .099 .049 .011 .057 .027 .006 .101 .047 .011

-.5 50 .201 .138 .072 .093 .043 .008 .191 .125 .051 .097 .049 .012
100 .141 .092 .039 .096 .048 .010 .118 .067 .017 .104 .053 .010
200 .089 .045 .012 .104 .050 .009 .084 .041 .008 .104 .051 .010
500 .072 .034 .007 .104 .049 .010 .062 .029 .006 .103 .046 .012
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Table 4a. Empirical Sizes of Tests for Temporal Homogeneity in Panel SLE Model
Two-Way Fixed Effects, Queen Contiguity, λ = 0.5.

T = 3 T = 6
ρ n TSLE2 T

(r)
SLE2 TSLE2 T

(r)
SLE2

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .235 .181 .105 .083 .038 .006 .310 .226 .115 .087 .044 .008
100 .212 .151 .086 .093 .045 .008 .190 .111 .036 .090 .041 .007
200 .182 .121 .054 .098 .044 .006 .139 .079 .021 .101 .049 .011
500 .134 .073 .022 .100 .048 .010 .121 .064 .014 .102 .055 .009

0 50 .272 .208 .117 .088 .043 .007 .314 .224 .111 .094 .045 .010
100 .217 .143 .070 .094 .046 .011 .197 .116 .036 .093 .043 .008
200 .161 .097 .032 .100 .051 .008 .142 .083 .022 .103 .050 .011
500 .125 .065 .017 .105 .049 .011 .119 .064 .014 .102 .053 .010

-.5 50 .302 .233 .136 .094 .042 .005 .321 .239 .114 .092 .045 .009
100 .209 .142 .062 .095 .046 .011 .205 .128 .042 .096 .047 .009
200 .153 .090 .029 .102 .050 .009 .151 .081 .023 .098 .052 .010
500 .119 .064 .015 .102 .054 .009 .115 .061 .014 .103 .051 .010

Normal Mixture Error
.5 50 .221 .159 .090 .083 .037 .004 .315 .242 .127 .090 .044 .008

100 .212 .154 .085 .085 .044 .008 .201 .128 .050 .097 .053 .010
200 .183 .122 .059 .092 .046 .008 .150 .090 .029 .101 .052 .009
500 .137 .082 .028 .100 .053 .012 .139 .079 .022 .100 .053 .010

0 50 .269 .201 .114 .089 .043 .005 .315 .235 .124 .092 .052 .012
100 .212 .149 .075 .089 .045 .009 .189 .118 .043 .096 .047 .010
200 .158 .098 .033 .096 .048 .008 .143 .078 .025 .099 .050 .013
500 .121 .070 .016 .099 .050 .010 .120 .063 .016 .102 .053 .012

-.5 50 .285 .225 .137 .093 .046 .008 .380 .286 .164 .103 .056 .011
100 .229 .161 .083 .100 .047 .010 .229 .152 .061 .108 .060 .012
200 .166 .102 .036 .101 .053 .009 .176 .106 .034 .104 .058 .012
500 .132 .070 .018 .106 .054 .012 .136 .075 .020 .097 .050 .010

Log-normal Error
.5 50 .239 .181 .105 .085 .039 .006 .314 .232 .123 .091 .043 .008

100 .222 .154 .086 .090 .043 .007 .196 .117 .041 .095 .047 .009
200 .185 .126 .056 .096 .047 .008 .138 .079 .020 .097 .047 .009
500 .138 .074 .024 .102 .049 .011 .123 .064 .016 .105 .052 .010

0 50 .246 .188 .108 .085 .042 .010 .319 .235 .115 .095 .047 .011
100 .204 .141 .074 .090 .045 .007 .194 .115 .040 .095 .051 .008
200 .180 .114 .047 .095 .047 .009 .142 .076 .021 .095 .048 .009
500 .129 .075 .022 .097 .048 .010 .115 .060 .014 .100 .050 .011

-.5 50 .300 .235 .146 .093 .044 .008 .344 .246 .126 .097 .050 .011
100 .214 .145 .064 .094 .045 .010 .208 .133 .050 .101 .055 .010
200 .156 .092 .028 .099 .046 .008 .154 .086 .023 .101 .049 .011
500 .123 .066 .015 .104 .051 .010 .121 .061 .014 .102 .050 .010
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Table 4b. Empirical Sizes of Tests for Temporal Homogeneity in Panel SLE Model
Two-Way Fixed Effects, Queen Contiguity, λ = −0.5.

T = 3 T = 6
ρ n TSLE2 T

(r)
SLE2 TSLE2 T

(r)
SLE2

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .235 .173 .105 .086 .039 .007 .313 .225 .117 .089 .044 .009
100 .216 .158 .086 .093 .046 .009 .189 .113 .037 .088 .044 .006
200 .180 .117 .054 .093 .047 .007 .143 .079 .023 .100 .049 .012
500 .134 .076 .021 .103 .048 .010 .118 .062 .014 .100 .053 .010

0 50 .271 .206 .116 .089 .040 .007 .315 .226 .109 .093 .044 .009
100 .220 .149 .072 .098 .048 .011 .197 .115 .038 .092 .047 .008
200 .160 .096 .032 .100 .051 .009 .146 .085 .024 .104 .052 .011
500 .127 .062 .017 .103 .049 .011 .111 .059 .015 .094 .050 .010

-.5 50 .301 .233 .130 .095 .038 .007 .325 .232 .112 .092 .044 .009
100 .214 .146 .065 .101 .048 .011 .206 .127 .039 .096 .046 .008
200 .158 .092 .029 .103 .050 .011 .152 .087 .022 .102 .053 .010
500 .117 .065 .014 .100 .050 .010 .111 .057 .013 .096 .048 .011

Normal Mixture Error
.5 50 .220 .161 .088 .080 .035 .005 .316 .243 .129 .093 .047 .009

100 .213 .153 .085 .088 .043 .009 .204 .129 .048 .103 .051 .012
200 .182 .121 .059 .096 .047 .006 .153 .089 .032 .106 .058 .013
500 .139 .083 .030 .104 .049 .010 .137 .080 .022 .101 .051 .010

0 50 .256 .194 .113 .084 .043 .006 .321 .242 .124 .093 .049 .011
100 .214 .151 .079 .091 .046 .008 .189 .121 .042 .098 .046 .011
200 .155 .100 .033 .097 .048 .009 .146 .079 .028 .095 .051 .013
500 .124 .068 .018 .099 .049 .011 .118 .064 .017 .102 .053 .012

-.5 50 .279 .219 .138 .089 .043 .007 .378 .288 .162 .111 .059 .016
100 .232 .157 .082 .097 .049 .010 .234 .151 .058 .110 .057 .013
200 .166 .103 .035 .102 .050 .010 .170 .104 .035 .106 .052 .014
500 .128 .072 .019 .103 .054 .011 .134 .078 .018 .098 .047 .010

Log-normal Error
.5 50 .230 .178 .105 .086 .039 .008 .317 .232 .125 .089 .043 .009

100 .218 .156 .087 .093 .045 .008 .197 .116 .042 .093 .049 .009
200 .184 .122 .055 .093 .044 .008 .143 .080 .022 .100 .047 .010
500 .139 .077 .024 .101 .052 .010 .119 .063 .015 .102 .053 .011

0 50 .242 .184 .107 .087 .043 .011 .315 .230 .113 .095 .046 .010
100 .202 .142 .074 .091 .043 .010 .196 .115 .039 .093 .047 .008
200 .176 .114 .046 .098 .046 .010 .141 .082 .023 .099 .049 .010
500 .128 .074 .024 .098 .050 .011 .110 .055 .013 .102 .050 .010

-.5 50 .298 .230 .138 .095 .042 .008 .332 .245 .127 .097 .050 .010
100 .220 .146 .067 .100 .045 .011 .212 .129 .048 .100 .052 .010
200 .156 .092 .029 .100 .046 .009 .154 .089 .022 .105 .051 .011
500 .123 .065 .015 .104 .051 .009 .115 .060 .015 .100 .048 .011
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