
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Economics School of Economics 

3-2015 

Self-exciting jumps, learning, and asset pricing implications Self-exciting jumps, learning, and asset pricing implications 

Andras FULOP 
ESSEC Business School 

Junye LI 
ESSEC Business School 

Jun YU 
Singapore Management University, yujun@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research 

 Part of the Finance Commons, and the Finance and Financial Management Commons 

Citation Citation 
FULOP, Andras; LI, Junye; and YU, Jun. Self-exciting jumps, learning, and asset pricing implications. 
(2015). Review of Financial Studies. 28, (3), 876-912. 
Available at:Available at: https://ink.library.smu.edu.sg/soe_research/2356 

This Journal Article is brought to you for free and open access by the School of Economics at Institutional 
Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School 
Of Economics by an authorized administrator of Institutional Knowledge at Singapore Management University. For 
more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/soe_research
https://ink.library.smu.edu.sg/soe
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2356&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/345?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2356&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/631?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2356&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Self-Exciting Jumps, Learning, and Asset

Pricing Implications∗

Andras Fulop†, Junye Li‡, and Jun Yu§

First Version: May 2011;

This Version: June 2014.

∗We are grateful for comments of Yacine Ait-Sahalia, Jin-Chuan Duan, Nicolas Chopin, Laurent
Calvet, and seminar participants at National University of Singapore, Singapore Management Univer-
sity, Xiamen Univeristy, SMU-ESSEC Symposium on Empirical Finance and Financial Econometrics,
2012 China International Conference in Finance, and Princeton/QUT/SMU Tripartite Conference on
Financial Econometrics. We thank the Risk Management Institute at National University of Singapore
for providing us the computing facility.
†ESSEC Business School, Paris-Singapore. fulop@essec.fr
‡ESSEC Business School, Paris-Singapore. li@essec.edu
§Singapore Management University. yujun@smu.edu.sg

1

ppyeo
Typewritten Text
Published in Review of Financial Studies, March 2015, 28 (3),  pages 876–912https://doi.org/10.1093/rfs/hhu078Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 LicenseAccepted version



Self-Exciting Jumps, Learning, and Asset

Pricing Implications

Abstract

The paper proposes a self-exciting asset pricing model that takes into account co-

jumps between prices and volatility and self-exciting jump clustering. We employ a

Bayesian learning approach to implement real time sequential analysis. We find evi-

dence of self-exciting jump clustering since the 1987 market crash, and its importance

becomes more obvious at the onset of the 2008 global financial crisis. It is found that

learning affects the tail behaviors of the return distributions and has important impli-

cations for risk management, volatility forecasting and option pricing.

Keywords: Self-Excitation, Jump Clustering, Tail behaviors, Parameter Learning,

Sequential Bayes Factor, Excess Volatility, Volatility Forecasting, Option Pricing

JEL Classification: C11, C13, C32, G12
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The financial meltdown of 2008 and the European debt crisis of 2010 to 2012 have

impacted financial markets worldwide and have had far-reaching consequences for the

world economy. These market turmoils raise questions about how likely extreme events

are and how they can be modeled. Recent empirical studies find that a big jump in asset

prices tends to be associated with an abrupt move in asset volatility, a phenomenon

labeled as co-jumps of prices and volatility (Eraker, Johannes and Polson, 2003; Eraker,

2004; Jacod and Todorov, 2010; Todorov and Tauchen, 2011). A further intriguing

empirical observation is that an extreme movement in markets tends to be followed by

another extreme movement, resulting in self-exciting jump clustering (Carr and Wu,

2011; Äıt-Sahalia, Cacho-Diaz and Laeven, 2013).

In the present paper, we propose a self-exciting asset pricing model where both

co-jumps of prices and volatility and self-exciting jump clustering are allowed. In our

specification, negative jumps play a crucial role. In particular, whenever there is a nega-

tive jump in asset returns, it is simultaneously passed on to both diffusion variance and

the jump intensity. Therefore, the likelihood of future extreme events can be enhanced

by either jumps in diffusion volatility or increases in the jump intensity or both. The

importance of negative jumps is consistent with the well documented empirical regular-

ity in financial markets that economic agents react more strongly to bad macroeconomic

surprises than to good ones (Andersen et al., 2007). Our model is quite flexible, and has

closed-form conditional expectations of the volatility components, making it convenient

to use in volatility forecasting and risk management.

Traditional asset pricing theories usually have a strong assumption that endows

economic agents with more precise information of the model and parameters than that

available to econometricians. While this approach simplifies model specification and

inference, it ignores the need for updating the long-run components of uncertainty, and

may lead to underestimation of risks encountered by economic agents. Hansen (2007)

makes the following argument

Should we put econometricians and economic agents on comparable foot-

ing, or should we endow economic agents with much more refined knowl-
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edge? (p.1) ... As the statistical problem that agents confront in our models

is made complex, rational expectations’ presumed confidence in their knowl-

edge of the probability specification becomes more tenuous. (p.2)

Given that our model has a complex structure and contains multiple unobserved

dynamic factors, we take a different route and consider a Bayesian economic agent who

faces the same belief updating problems as confronted by the econometrician. She takes

parameters, latent states and models as unknowns and uses Bayes rule to update her

beliefs sequentially over time as market information becomes available. This may lead

to differences between ex ante beliefs and ex post outcomes, and could have important

asset pricing implications.

Statistical learning and its implications for asset pricing have attracted an enormous

amount of attention. A recent survey has been provided by Pastor and Veronesi (2009).

One of the key implications is that Bayesian learning generates persistent and long-term

changes to the agents’s beliefs, which have important influence on stock valuation,

risk measures, and time series predictability. Among others, Timmerman (1993, 1996)

and Lewellen and Shanken (2002) show that learning may generate excess volatility

and predictability in stock returns. Veronesi (2004) studies implications of learning

about a peso state in a Markov switching model. Pastor and Veronesi (2003, 2006)

investigate stock valuation and learning about profitability. Cogley and Sargent (2008)

provide an alternative explanation of the observed equity risk premium from the learning

perspective. Benzoni, Collin-Dufresne and Goldstein (2011) show that updating of

beliefs on jump parameters may cause permanent shifts in option prices.

However, most of the existing studies only focus on learning about either state vari-

ables or a single parameter. In contrast, in this paper, we concurrently learn about

parameters and state variables. Simultaneous learning in an asset pricing model with

a complex structure remains difficult, as the large number of unknowns complicates

inference and slows down the learning process. We implement Bayesian learning on our

self-exciting model by following the marginalized resample-move approach proposed by

Fulop and Li (2013), and then study the implications of learning for risk measures,
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volatility forecasting and option pricing. To highlight the effects of parameter learning

and uncertainty, we compare most results in three cases: (1) parameter learning and

uncertainty are present; (2) only parameter uncertainty is present – the full-sample pos-

terior distributions of parameters are used in analysis; and (3) both parameter learning

and uncertainty are ignored – the full-sample posterior means of parameters are used

in analysis. Recently, similar to our approach, several papers have investigated the im-

plications for asset pricing when the agent jointly learns about parameters and states.

Johannes, Korteweg and Polson (2014) investigate sequential learning and return pre-

dictability. Johannes, Lochstoer and Mou (2014) focus on learning about consumption

dynamics. Collin-Dufresne, Johannes and Lochstoer (2013) study parameter learning

in a general equilibrium setup and its implications for asset pricing.

We use the S&P 500 index for inference. The data range from January 2, 1980 to

December 31, 2012 and have 8,325 daily observations in total. This dataset includes

the 1987 market crash, the 1997 Asian financial crisis, the 2002 dot-com bubble burst,

the 2008 global financial crisis, and the recent European debt crisis of 2010 to 2012. A

number of important results emerge from our empirical analysis.

First, we find that the evidence of co-jumps between diffusion volatility and asset

returns is robust since the market crash of 1987. However, while the data call for co-

jumps in returns and jump intensities, the parameters driving the jump intensity are

hard to identify. The self-exciting jump intensity has become more important since

the 2008 global financial crisis. We find that the speed of learning for the diffusion

parameters is remarkably faster than that for the jump parameters. The slow speed

of learning and large uncertainty on the jump parameters can be explained by the low

arrival rate of extreme events.

Second, learning generates excess volatility, and does so through the jump compo-

nent. For example, in the full self-exciting model, the average annualized total return

volatility is about 18%, of which the jump volatility is about 9.4%. However, if we

ignore learning and simply use the full-sample posterior means of the parameters, the

average annualized total volatility decreases to 16.6%. This decrease is only from the
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jump volatility as the diffusion volatility is approximately the same as before, whereas

the jump volatility reduces to about 7.0%. Having investigated the higher conditional

moments of the predictive return distribution, we find that learning makes the predic-

tive distribution more left skewed and leptokurtic. Furthermore, we observe a strong

asymmetry in the amount of learning over the tails: the left tail of the return distri-

bution can be well pinned down after the 1987 market crash, whereas there is a great

deal of uncertainty on the right tail behavior throughout the sample.

Third, from a volatility forecasting perspective, the self-exciting jump intensity is

found to be important. In comparison with the more restricted specifications, the full

self-exciting model always generates smaller RMSEs and larger Mincer-Zarnowitz R2s,

whether learning is present or not. Learning also has an important implication for

volatility forecasting. For example, when learning is taken into account, the RMSE

from the full model is about 4.9%, whereas it reduces to 4.3% when the full-sample

posterior means of parameters are used. This comparison allows us to quantify the

cost of not knowing parameters in volatility forecasting. However, similar to Hansen

and Lunde (2005), we find that the GARCH(1,1) model cannot be beaten by the more

sophisticated self-exciting models in volatility forecasting.

Fourth, learning and self-exciting jumps have important implications for option pric-

ing. In general, we find that the existence of the self-exciting jump intensity makes the

model more flexible in capturing high levels of volatility during periods of financial

crisis. This feature is particularly important in pricing short maturity out-of-money

put and/or in-the-money call options. Furthermore, learning has a first-order effect on

pricing in-the-money and out-of-money short maturity call options, and its effect on the

deep out-of-money call options is even stronger than on the deep in-the-money ones.

This is closely related to the fact that learning alters the tail behaviors and introduces

even larger uncertainty on the right tail of return distributions. Our results are consis-

tent with Benzoni, Collin-Dufresne and Goldstein (2011) who argue that updating of

beliefs on jump parameters can cause permanent shifts in option prices.

The last set of results relates model-implied option prices to observed option prices
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between January 1996 and December 2012. First, we find that the model with self-

exciting jumps fits option prices better than a specification excluding this channel,

especially for short term out-of-the-money puts and during periods of financial crisis.

Second, we document that updates in model-implied option prices due to parameter

learning are significantly related to observed option prices, even after controlling for

model-implied option prices computed with the fixed parameter estimates. These results

extend those in Johannes, Lochstoer and Mou (2014) to option prices, and suggest that

parameter learning is a significant issue for option market participants.

Our work makes two contributions to the literature. First, we conduct a real-time

sequential analysis to examine the importance of self-exciting jump intensity. Inter-

estingly, even though the data call for simultaneous jumps between asset returns and

jump intensities from the 1987 market crash onwards, the self-exciting jump intensity

becomes more important since the onset of 2008 global financial crisis. Second, we pro-

vide novel results on the implications of learning for risk measures, volatility forecasting

and option pricing. Such results are quite relevant in practice as the agent needs to

update her beliefs sequentially over time when new market information arrives.

The rest of the paper is organized as follows. Section 1 builds the self-exciting

asset pricing model. Section 2 discusses Bayesian learning and belief updating. Section

3 implements sequential learning. Section 4 investigates asset pricing implications.

Finally, Section 5 concludes the paper. Appendix collects technical details and Monte

Carlo simulations.

1 The Self-Exciting Asset Pricing Model

Under a probability space (Ω,F, P ) and the complete filtration {Ft}t≥0, the dynamics

of asset price, St, are governed by the following time-changed stochastic process,

lnSt/S0 =

∫ t

0

µsds+
(

WT1,t − kW (1)T1,t

)

+
(

JT2,t − kJ(1)T2,t

)

, (1)
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where µt captures the instantaneous mean rate, WT1,t is a time-changed Brownian

motion, JT2,t is a time-changed jump component, which is time-inhomogeneous, Ti,t

represents business time and will be discussed below, and kW (1) and kJ(1) are con-

vexity adjustments for the Brownian motion and the time-homogeneous jump pro-

cess, respectively, and can be computed from their respective cumulant exponents:

k(u) ≡ 1
t
ln
(

E[euLt ]
)

, where Lt is either Wt or Jt.

The dynamics in (1) indicate two distinct types of shocks to asset returns: small

continuous shocks, captured by a Brownian motion, and large discontinuous shocks, gen-

erated by a jump component. In this paper, the time-homogeneous jump component is

modeled by the Variance Gamma process of Madan, Carr and Chang (1998), which is a

stochastic process in the class of infinite activity Lévy processes. The jump component

is important for capturing extreme events and generating return non-normality and im-

plied volatility smile/skew. The empirical study by Li, Wells and Yu (2008) shows that

the infinite activity Lévy models outperform the affine Poisson jump models. Further-

more, the recent nonparametric works by Äıt-Sahalia and Jacod (2009, 2011) and Lee

and Hannig (2010) provide strong evidence on infinite activity jumps in asset returns.

The Variance Gamma process can be constructed through subordinating a Brownian

motion with drift using an independent subordinator

Jt = ωSt + ηW̃ (St), (2)

where W̃t is a standard Brownian motion, and St is a Gamma subordinator St =

Γ(t; 1, v) with unit mean rate and variance rate of v. Alternatively, it can be de-

composed into the upside component, J+
t , and the downside component, J−

t , such that

Jt = J+
t + J−

t

= Γu(t;µu, vu)− Γd(t;µd, vd), (3)

where Γu is a Gamma process with mean rate µu and variance rate vu, Γd a Gamma
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process with mean rate µd and variance rate vd, and

µu =
1

2

(

√

ω2 + 2η2/v + ω
)

, vu = µ2
uv, (4)

µd =
1

2

(

√

ω2 + 2η2/v − ω
)

, vd = µ2
dv. (5)

The decay rates and the fatness of the right and the left tails are governed by λ+ = µu/vu

and λ− = µd/vd, respectively.

The stochastic business time, Ti,t ≡
∫ t

0
Vi,s−ds, captures the randomness of the

diffusion variance (i = 1) or of the jump intensity (i = 2) over a time interval [0, t]

(Clark, 1973; Carr et al., 2003; Carr and Wu, 2004). Vi,t, which should be nonnegative,

is the instantaneous variance rate (i = 1) or the jump arrival rate (i = 2), both of them

reflecting the intensity of economic activity and information flow. Stochastic volatility

or stochastic jump intensity is generated by replacing calendar time t with business time

Ti,t. The time-changed jump component has the decomposition of JT2,t = J+
T2,t

+ J−
T2,t

and its convexity adjustment term is kJ(1)T2,t =
(

k+
J (1) + k−

J (1)
)

T2,t.

Recent empirical studies find that a big negative jump in asset prices tends to be

associated with an abrupt move in asset variance, i.e., co-jumps of prices and volatility

(Jacod and Todorov, 2010; Todorov and Tauchen, 2011). Furthermore, market turmoils

seem to indicate that an extreme movement in markets tends to be followed by another

extreme movement, resulting in self-exciting jump clustering (Carr and Wu, 2011; Äıt-

Sahalia, Cacho-Diaz and Laeven, 2013). Thus, we propose to allow negative return

jumps entering into both diffusion variance and the jump intensity and model the

instantaneous variance rate, V1,t, and the jump arrival rate, V2,t, as follows,

dV1,t = κ1(θ1 − V1,t)dt+ σ11

√

V1,tdZt − σ12dJ
−
T2,t

, (6)

dV2,t = κ2(θ2 − V2,t)dt− σ2dJ
−
T2,t

. (7)

Equation (6) captures stochastic variance of the continuous shocks, where Zt is a

standard Brownian motion and is allowed to be correlated to Wt with a correlation
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parameter ρ in order to accommodate the diffusion leverage effect. Diffusion variance

also depends on the negative return jumps, indicating that there will be an abrupt

increase in V1,t once there is a negative jump in asset return. Equation (7) models

the stochastic intensity of jumps, which is a mean-reverting pure jump process. The

specification implies that the jump intensity relies only on the negative jumps in asset

returns. Dependence of diffusion variance and the jump intensity on negative return

jumps is consistent with the well-documented empirical regularity in financial mar-

kets that investors react more strongly to bad macroeconomic surprises than to good

surprises (Andersen et al., 2007).

The conditional expectation of the jump intensity (7) can be found as follows1

E[V2,t|F0] =
κ2θ2

κ2 − σ2µd

(

1− e−(κ2−σ2µd)t
)

+ e−(κ2−σ2µd)tV2,0, (8)

from which its long-run mean can be obtained by letting t → +∞,

V̄2 =
κ2θ2

κ2 − σ2µd

. (9)

Solutions (8) and (9) indicate that the conditional expectation of the jump intensity is

a weighted average between the current intensity, V2,0, and its long-run mean, V̄2, and

the speed of mean reversion of the jump intensity is controlled by κ2 − σ2µd. Using (8)

and (9), the conditional expectation of diffusion variance (6) can also be found

E[V1,t|F0] = e−κ1tV1,0 + θ1

(

1− e−κ1t
)

+ σ12µd

[1− e−κ1t

κ1
V̄2

+
e−(κ2−σ2µd)t − e−κ1t

κ2 − σ2µd − κ1

(

V̄2 − V2,0

)]

, (10)

1Define f(t) = eκ2tE[V2,t|V2,0]. f(t) can be analytically found by solving the ODE

f ′(t) = σ2µdf(t) + κ2θ2e
κ2t,

from which we obtain the conditional expectation (8).
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and its long-run mean is given by

V̄1 = θ1 +
σ12

κ1
µdV̄2. (11)

The conditional expectation of diffusion variance consists of two parts, one arising from

the square-root diffusion part (the first two terms on the right-hand side in (10)) and

the other from negative return jumps (the last term on the right-hand side in (10)). If

the jump intensity is constant, the contribution of jumps to the conditional diffusion

variance becomes constant over time.

The above model (hereafter SE-M1 ) indicates that time-varying aggregate return

volatility can be traced back to two sources: one arising from time-varying diffusion

volatility and the other from the time-varying jump intensity. In this model, the self-

exciting behavior is captured through two channels: (i) a negative jump in asset return

pushes up the jump intensity, which in turn triggers more jumps in future asset returns;

(ii) a negative jump in asset return makes diffusion volatility jump, and this high dif-

fusion volatility tends to entertain big movements in future asset returns. In contrast,

the existing literature allows only one of these channels at a time and is unable to com-

pare their relative importance. In particular, Eraker, Johannes, and Polson (2003) and

Eraker (2004) allow for co-movement of return jumps and diffusion volatility through

a synchronized Poisson process, while Äıt-Sahalia, Cacho-Diaz, and Laeven (2011) and

Carr and Wu (2010) link only the jump intensity to jumps in asset returns.

One of the central questions we are concerned with in the present paper is the

dynamic structure of extreme movements in asset returns. In order to explore the

issue, we also investigate the following restricted models:

• SE-M2 : the self-exciting model where diffusion volatility does not jump, i.e.,

σ12 = 0, and the total volatility jump and the self-exciting effect are only from

the time-varying jump intensity;

• SE-M3 : the self-exciting model where the jump intensity is constant, i.e., V2,0 =

1, κ2 = 0, and σ2 = 0, and the total volatility jump is only from the diffusion
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volatility process;

• SE-M4 : the model that has no volatility jumps and no self-exciting effect, i.e.,

σ12 = 0, V2,0 = 1, κ2 = 0, and σ2 = 0.

2 Bayesian Learning and Belief Updating

Following the suggestion by Hansen (2007), we assume that the agent in the market

is Bayesian and faces the same belief updating problem as the econometrician. She

simultaneously learns about parameters, hidden states and models sequentially over

time when new market observations arrive.

For a given self-exciting model Mi, there is a set of unknown static parameters, Θ,

and a vector of the hidden states, xt = {V1,t, V2,t, Ju,t, Jd,t}, where V1,t denotes diffusion

variance, V2,t the jump intensity, Ju,t the upside jump, and Jd,t the downside jump. The

market observations include a time series of (log) stock prices, y1:t = {lnSs}ts=1. For

each time t, Bayesian learning consists of forming the joint posterior distribution of the

hidden states and the static parameters based on information available up to time t,

p(xt,Θ|y1:t,Mi) = p(xt|Θ, y1:t,Mi)p(Θ|y1:t,Mi), (12)

where p(xt|y1:t,Θ,Mi) solves the state filtering problem, and p(Θ|y1:t,Mi) addresses the

parameter inference issue. Updating of agent’s beliefs therefore corresponds to updating

this posterior distribution.

Our self-exciting models are non-linear and non-Gaussian. Therefore, we design a

hybrid particle filter, which is capable of efficiently handling outliers (see Appendix

A for the detailed algorithm). The decomposition (12) suggests a hierarchical frame-

work for model inference and learning. At each time, for a given set of model pa-

rameters proposed from some proposal, we can run a particle filter, which delivers

the empirical distribution of the hidden states, p(xt|Θ, y1:t,Mi) and the estimate of

the likelihood, p(y1:t|Θ,Mi) that can be used for parameter learning, p(Θ|y1:t,Mi) ∝
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p(y1:t|Θ,Mi)p(Θ,Mi). To achieve this aim, we rely on the marginalized resample-move

approach developed by Fulop and Li (2013). The key point here is that the likelihood

estimate from the particle filter is unbiased (Del Moral, 2004). Further, in contrast

to traditional Bayesian methods, this approach can be easily parallelized, making it

computationally fast and convenient to use in practice.

This particle-based learning approach provides as a natural output an estimate of

the marginal likelihood of the new observation

p(yt|y1:t−1,Mi) =

∫

p(yt|xt,Θ, y1:t−1,Mi)p(xt|Θ, y1:t−1,Mi)p(Θ|y1:t−1,Mi)dxtdΘ, (13)

which summarizes model fit over time (model learning) and can be used to construct a

sequential Bayes factor for sequential model comparison. For any models M1 and M2,

the Bayes factor at time t has the following recursive formula

BFt ≡
p(y1:t|M1)

p(y1:t|M2)
=

p(yt|y1:t−1,M1)

p(yt|y1:t−1,M2)
BFt−1, (14)

which is completely out-of-sample, and can be used for sequential comparison of both

nested and non-nested models.

Bayesian learning and belief updating generate persistent and long-term shocks to

the agent beliefs. To see this, define θt = E[θ|y1:t] as the posterior mean of a parameter

θ obtained using information up to time t. The iterated expectation indicates

E[θt+1|y1:t] = E[E[θ|y1:t+1]|y1:t] = E[θ|y1:t] = θt. (15)

Therefore, θt is a martingale, indicating that shocks to the agent beleifs on this param-

eter are not only persistent but also permanent. Thus, in Bayesian learning, the agent

gradually updates her beliefs that the value of a parameter is higher or lower than that

previously thought and/or that a model fits the data better than the other.

The Bayesian learning process is initialized by an agent’s initial beliefs or the prior

distributions. We move the fixed parameters in one block using a Gaussian mixture
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proposal. Given that in our marginalized approach the likelihood estimate is a compli-

cated nonlinear function of the fixed parameters, conjugate priors are not available. In

general, we assume normal distributions for the priors. However, if a parameter under

consideration has a finite support, we take a truncated normal as its prior. The hyper-

parameters of the prior distributions are calibrated using a training sample, that is, an

initial dataset is used to provide information on the location and scale of the parameters.

This procedure is initialized by priors with very large variances. The training-sample ap-

proach is a common way to generate the objective prior distributions (O’Hagan, 1994).

We find that most of model parameters, except those controlling the self-exciting jump

intensity, κ2 and σ2, are not so sensitive to the selection of the priors. Therefore, based

on information from the training sample, we give relatively informative priors to κ2 and

σ2, but give quite flat priors to other parameters. See Appendix B for details of the

selection of functional forms and hyper-parameters for the priors, and Appendix C for

Monte Carlo and sensitivity studies.

3 Information Flow and Learning

Our Bayesian agent learns about and updates her beliefs on fixed parameters, hidden

states, and models as information arrives sequentially over time. We initialize the

Bayesian learning process using the priors described in Appendix B. Section 3.1 presents

the data used for inference. Section 3.2 implements model learning and sequential model

comparison, and Section 3.3 presents results on parameter and state learning. More

statistical results can be found in Appendix D.

3.1 The Data

The data used are the S&P 500 stock index ranging from January 2, 1980 to December

31, 2012, with 8,325 daily observations in total. This dataset contains the recent Eu-

ropean debt crisis of 2010 to 2012, the global financial crisis in late 2008, the market

crash on October 19, 1987 (-22.9%), and other market turmoils. The upper panel of
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Figure 1: S&P 500 Index Returns and Realized Volatility

Note: The figure plots S&P 500 index returns (upper panel) and realized volatility (lower panel). The

data range from January 2, 1980 to December 31, 2012. In total, there are 8,325 daily observations.

Realized volatility at each time is computed from the previous 21-day (one-month) returns at each

point in time, RVt =
√

252

21

∑20

j=0
R2

t−j .

Figure 1 plots the S&P 500 index returns. A striking feature of the data is the high

non-normality of the return distribution, with a skewness of -1.2 and a kurtosis of 29.7.

The Jarque-Bera test easily rejects the null hypothesis of normality of returns with a

very small p-value (less than 0.001).

The lower panel presents realized volatility (RVt), computed from the previous 21-

day (one-month) returns at each time, RVt =
√

252
21

∑20
j=0R

2
t−j . The simultaneity of

abrupt moves in realized volatility and extreme events in returns is very clear, and

turbulent periods tend to be realized through many consecutive large up and down

return moves. What is hard to gauge is the extent to which these are due to high

diffusion volatility or persistent fat tails. The model inference that follows will shed

more light on this issue from a Bayesian learning perspective.
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3.2 Model Learning and Sequential Comparison

In the Bayesian framework, model comparison can be made by the Bayes factor, de-

fined as the ratio of the marginal likelihoods of two models.2 This Bayesian approach

penalizes unnecessarily complicated models and is completely out-of-sample. Table 1

presents the full information Bayes factors (in log) for the four models investigated

using all available data. We find that the SE-M1 model and the SE-M3 model, both of

which allow negative return jumps to affect diffusion volatility, outperform the SE-M2

model and the SE-M4 model that exclude this channel. For example, the log Bayes fac-

tors between the SE-M1 model and the SE-M2/SE-M4 models are about 19.9 and 25.5,

respectively, and the log Bayes factors between the SE-M3 model and the SE-M2/SE-

M4 models are about 8.4 and 14.1, respectively. Thus, there is decisive evidence in

the data for negative return jumps affecting diffusion volatility and co-jumps of returns

and volatility. Furthermore, there exists very strong evidence for negative return jumps

affecting the jump intensity. Comparing the SE-M1 model, where both self-exciting

channels are allowed, to the SE-M3 model where only diffusion volatility is influenced

by return jumps, the former is very decisively preferred with a log Bayes factor of 11.4.

The above batch comparison does not tell us how market information accumulates

and how different models perform over time. Does one model outperform another in a

certain state of economy, but underperform it in other states? Our Bayesian learning

approach has a recursive nature and produces the sequential marginal likelihood at each

time for each model. We can then construct the sequential Bayes factors and use them

for real-time model analysis and comparison.

Figure 2 presents the sequential log Bayes factors that give us a richer picture of

model performance over time. A number of important features emerge. First, when

market information is scarce in the beginning of the sample, the SE-M1 model performs

nearly the same as the other three models despite that it is the best model according

2In Bayesian statistics, Jeffreys (1961) gave a scale for interpretation of Bayes factors. For two
given models, M1 and M2, if the value of the log Bayes factor is between 0 and 1.1, M1 is barely worth
mentioning; if it is between 1.1 and 2.3, M1 is substantially better than M2; if it is between 2.3 and
3.4, M1 is strongly better than M2; if it is between 3.4 and 4.6, M1 is very strongly better than M2;
and if it is larger than 4.6, M1 is decisively better than M2.
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Table 1: The Full Sample Log Bayes Factors

SE-M1 SE-M2 SE-M3 SE-M4

SE-M1 0.00 — — —

SE-M2 19.9 0.00 — —

SE-M3 11.4 -8.42 0.00 —

SE-M4 25.5 5.64 14.1 0.00

Note: The table presents the log Bayes factor of the column model to the row model using all available

S&P 500 index data from January 2, 1980 to December 31, 2012. The interpretation of values in the

table is given in Footnote 2.

to Bayes factors in Table 1.

Second, as the market information accumulates over time, in particular, after the

1987 market crash, the data strongly favor the SE-M1 model that allows negative return

jumps to affect both diffusion volatility and jump intensity.

Third, the relative importance of diffusion volatility jumps and self-exciting jump

intensities changes over time. This can be seen by comparing the SE-M2 model with

the SE-M3 model at the top-right panel of Figure 2. The self-exciting jump intensity

is more important over the period from 1992 up to 2001, whereas diffusion volatility

jumps begin to dominate after 2001. Furthermore, the lower-left panel presents the

sequential comparison between the SE-M1 model and the SE-M3 model. We clearly see

the importance of introducing the self-exciting jump intensity after the 87 market crash,

and it becomes even more important after Lehman Brother’s bankruptcy in September

2008, as the log Bayes factor very quickly moves up to about 9.0 from about 3.0.

Fourth, most of move-ups of Bayes factors happen during market turmoils. This

phenomenon is particularly obvious during the 1987 market crash and the 2008 global

financial crisis in and indicates that the market participants mainly update their beliefs

on model specifications during market turmoils.
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Figure 2: Sequential Model Comparison

Note: The figure plots the sequential log Bayes factors for sequential model comparison. The straight

dashed lines in each panel represent -3.4, 0, and 3.4, respectively, which determine how strong one

model outperforms the other. The statistical interpretation of these values is given in Footnote 2.

3.3 Parameter and State Learning

Different from batch estimation, our Bayesian learning approach provides us with the

whole picture of how parameter posteriors evolve over time with respect to accumulation

of information. Figure 3 presents the sequential learning of the fixed parameters in the

SE-M1 model, which is the best-performing one. For each parameter, the posterior

mean (solid line) and the (5, 95)% credible interval (dashed lines) are reported. We

group the model parameters into the diffusion parameter set, ΘD = (κ1, θ1, σ11, ρ, σ12),

and the jump parameter set, ΘJ = (ω, η, v, κ2, σ2).

There are a number of notable features. First, the agent’s beliefs are quite uncertain

in the beginning before the 1987 market crash with large credible intervals for all pa-

rameters. Then, as information accumulates, the credible intervals of most parameters

become narrower and narrower over time and parameter uncertainty diminishes.
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Figure 3: Parameter Learning

Note: The figure presents sequential parameter estimates over time in the SE-M1 model using the

S&P 500 index starting from January 2, 1980 up to December 31, 2012. In each panel, the posterior

means (the solid line) and (5, 95)% quantiles (the dashed lines) are reported.
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Second, the speed of learning is quite different across parameters. Learning is re-

markably faster for the diffusion parameters than for the jump parameters. We can see

that after the 1987 market crash, most of the diffusion parameters are quickly pinned

down and have narrow credible intervals. However, for the jump parameters, their cred-

ible intervals shrink very slowly. This is particularly obvious for parameters controlling

the self-exciting jump intensity, κ2 and σ2. The credible intervals of these two param-

eters barely narrow down over time. We observe a sudden tightening of the credible

interval of κ2 only from the 2008 global financial crisis onwards and a little shrinkage

of the σ2’s credible interval. The slow learning and large parameter uncertainty of the

jump parameters can be explained by the low arrival rate of extreme events and could

be important for risk management.

Third, in the SE-M1 model, the total return volatility consists of two components,

the diffusion volatility and the jump volatility, which behave quite differently. The

diffusion volatility is more persistent and less volatile than the jump volatility as the

learned value of κ1 is almost always smaller than that of κ2 and the value σ2 is particu-

larly large. The evidence of co-jumps between the volatility and the return through the

diffusion volatility is robust ever since the 1987 market crash. However, even though

the full dataset calls for self-exciting jump intensity as seen in Figure 2, it only becomes

really important at the onset of the 2008 financial crisis. The parameters driving the

intensity dynamics, in particular σ2, remain hard to identify throughout.

Finally, the agent’s beliefs on the long-run components of uncertainty vary over time.

If the agent knows the fixed parameters, her beliefs on the long-run diffusion volatility,

the long-run jump intensity, and the long-run return volatility should be constant over

time as suggested by Equations (11) and (9). However, our agent is Bayesian, and

therefore, parameter learning and uncertainty are directly transferred to her beliefs on

the long-run risks. To investigate this point, we present the long-run return volatility

and its components in Figure 4. We see from the upper panel that before the 1987

market crash, the long-run diffusion volatility varies dramatically, and the agent is

quite uncertain about its value. Since then, it has much less variation and a narrow 90%
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Figure 4: Learning about Long-Run Volatility

Note: The figure presents sequential estimates of the long-run diffusion volatility, the long-run jump

intensity, and the long-run return volatility over time in the SE-M1 model, using the S&P 500 index

from January 2, 1980 to December 31, 2012. In each panel, the (5, 50, 95)% quantiles are reported.

credible interval over time, though we observe a significant upward adjustment since

2008. In contrast, the long-run jump intensity in the middle panel changes over time

and its 90% credible interval remains large, indicating that the agent is quite uncertain

about future jumps. This pattern is even more striking during financial crises. For

example, during the 2008 financial crisis, the long-run jump intensity suddenly increases

and then slowly wanders up, and its 90% credible interval becomes larger than before.

The agent’s uncertainty on variance components is directly reflected in her beliefs on

the long-run return volatility, which is presented in the lower panel.3

3In Figure 4, we present the (5, 50, 95)% quantiles instead of the posterior means and (5, 95)%
quantiles. This is because the long-run volatility components are nonlinear functions of model parame-
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Embedded in our learning algorithm is an efficient hybrid particle filter. One ad-

vantage of this particle filter is that it can separate positive jumps and negative jumps.

This separation is important from both the statistical and the practical perspectives.

Statistically, it makes our self-exciting models feasible to estimate since both the dif-

fusion volatility and the jump intensity depend only on negative jumps. Practically,

investors are mostly concerned about negative jumps. The ability to disentangle the

negative jumps provides us with an important tool for risk management.

The left panels of Figure 5 present the filtered diffusion volatility, the jump intensity,

and the return volatility using the parameters learned at each time. We can see that

whenever there is a big negative return jump, the diffusion volatility and the jump in-

tensity abruptly move up to a high level. However, there are some important differences

between the two state variables. The diffusion volatility is well identified with a tight

90% credible interval. In contrast, our ability to pin down the jump intensity is limited

as we can see that its credible intervals are wide during the crisis periods. Furthermore,

there seems to be an abrupt change in the behavior of the jump intensity since the 2008

crisis. Prior to this episode, during a turbulent period, the credible interval of the jump

intensity first widens and then quickly reverts to its long-run mean. Ever since the 2008

crisis, however, it has remained consistently high and wide. This suggests that, as far as

the tails are concerned, the recent crisis is special, with a sustained probability of large

extreme events going forward. The lower panel presents the return volatility, which is

computed as
√

V1,t + V art(J1)V2,t. It has a large credible interval in the beginning, and

because of the information accumulation, its credible interval slowly becomes tighter

and tighter.

The right panels of Figure 5 present the filtered positive, negative, and return jumps.

The filtered negative jumps in the middle panel can effectively capture all market tur-

moils, such as the 1987 market crash, the 1997 Asian financial crisis, the 2008 financial

ters. Any extreme values of model parameters could result in very unreasonable long-run components,
which may dominate the computation of the posterior means such that they could be larger than
the 95% quantiles. This issue is particularly striking in the early stage of learning when the market
information is minimal and the posterior distributions have large dispersions.
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Figure 5: Volatility and Jumps Learning

Note: The left panels present the sequential posterior means and the (5, 95)% quantiles of the diffusion

volatility (
√

V1,t), the jump intensity (V2,t), and the return volatility (
√

V1,t + V art(J1)V2,t). The right

panels present the sequential posterior means of the positive jumps (Ju,t), the negative jumps (Jd,t)

and the return jumps (Ju,t + Jd,t) in the SE-M1 model. The data used are the S&P 500 index from

January 2, 1980 to December 31, 2012.
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crisis and the 2010 to 2012 European debt crisis. However, as shown in the upper and

the lower panels, the positive jumps are quite small, most of them less than 1%. This

is a new and potentially important empirical result, suggesting that whenever jumps in

the diffusion volatility are taken into account, the positive jump component in the index

return is not so important and the positive movements in the return can be captured

by the diffusion component. This finding reinforces our choice of giving the negative

jumps more prominence.

4 Economic and Empirical Implications

4.1 Excess Volatility and Tail Behaviors

In Bayesian learning, the model parameters have quite large 90% credible intervals in the

early stage of learning, and they slowly narrow when market information accumulates

over time. It is therefore interesting to examine how learning affects return volatility.

For this purpose, we consider the following three cases when estimating return volatility.

Case I: we take into account both parameter learning and uncertainty. Case II: we only

allow for parameter uncertainty but not for learning, that is, we use the full-sample

posterior distributions of parameters. Case III: we ignore both parameter learning and

uncertainty, and instead use the full-sample posterior means of parameters.

Table 2 presents the average annualized total volatility and its components. There

are a number of notable findings. First, for all models, the total return volatility is the

largest in Case I, when parameter learning and uncertainty are taken into account, and

it is the smallest in Case III, when both parameter learning and uncertainty are ignored.

For example, in the SE-M1 model, the total return volatility is 18.0% in Case I, but

it is only 16.6% in Case III. Second, parameter learning and uncertainty do not have

any impact on the diffusion volatility estimate. For example, the average annualized

diffusion volatility is about 15.0% in the SE-M1 model, whether parameter learning

and/or uncertainty are taken into account or ignored. A similar result can be found for

other models as well.
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Table 2: Excess Volatility and Jump Contributions

Total Vol. Diff. Vol. Jump Vol. Jump Ctr.(%)

SE-M1 Case I 18.0 15.1 9.36 30.2
Case II 16.7 15.0 7.16 19.9
Case III 16.6 15.0 7.00 19.6

SE-M2 Case I 17.5 14.8 8.93 29.0
Case II 16.7 15.0 6.98 20.6
Case III 16.5 15.0 6.52 18.8

SE-M3 Case I 18.0 15.2 9.09 30.3
Case II 16.8 15.2 6.66 19.9
Case III 16.8 15.2 6.63 19.8

SE-M4 Case I 17.7 15.1 8.57 28.3
Case II 16.4 15.3 5.58 15.0
Case III 16.4 15.3 5.44 14.4

Note: The table presents the average annualized total return volatility (
√

V1,t + V art(J1)V2,t), its

diffusion and jump components (
√

V1,t and
√

V art(J1)V2,t), and the jump contribution to total return

variance in percentage (V art(J1)V2,t/(V1,t + V art(J1)V2,t)). Three cases are considered. Case I:

both parameter learning and uncertainty is taken into account. Case II: only parameter uncertainty is

allowed, that is, the full-sample posterior distributions of parameters are used. Case III: both parameter

learning and uncertainty are ignored and simply the full-sample posterior means of parameters are

used.

Third, parameter learning and uncertainty have an important impact on the jump

volatility estimate. We can clearly see that learning increases the importance of the

jump component. For example, the average annualized jump volatility is about 9.4%,

contributing 30.2% to the total volatility in the SE-M1 model in Case I. However, if

we ignore learning and only take into account parameter uncertainty, the estimated

jump volatility becomes 7.2%, which contributes 19.9% to the total volatility in Case

II. When we move to Case III where there is no parameter learning and uncertainty,

the jump volatility is only about 7.0%, accounting for about 19.6% of total volatility.4

Comparing Cases I and II with Case III, it can be seen that learning has a first-order

impact compared to uncertainty.

4Our estimates of jump contributions to total volatility are larger than those obtained non-
parametrically. For example, Huang and Tauchen (2005) find that the jump component takes about
7% of total volatility, and Andersen, Bollerslev and Diebold (2007) find that it accounts for about
15% of total volatility. The main reason for this difference is that the data span in both studies is
quite short and does not include the 87’s market crash, the 08’s global financial crisis and the recent
European debt crisis.
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Figure 6: Skewness, Kurtosis, and Tail Indices

Note: The upper panels present the sequential mean ratios of the conditional skewness (left) and the

sequential mean ratios of the conditional kurtosis (right), between with and without learning. The

dashed red lines indicate the level of 1. The lower panels present the sequential ratio of t-statistics of

the right tail index estimates (λ+) and the left tail index estimates (λ−) in the SE-M1 model.

In particular, if we take a look at higher conditional moments, we find that learning

generates even more left-skewed and leptokurtic predictive distributions. The upper

panels of Figure 6 present the sequential mean ratios of the conditional skewness and the

sequential mean ratios of the conditional kurtosis, between with and without learning

(Case I and Case III). We can see that nearly all the ratios are larger than one, and this

feature is particularly obvious in the early stage of learning when the market information

is minimal and after the 1987 market crash. As the market information accumulates,

the ratio slowly converges to one. Furthermore, in our model, the right and the left tails

are determined by the positive and the negative jump components, which follow the

Gamma processes. The fatness and the decay rates of the two tails are controlled by

λ+ and λ− respective for the right and the left tails (Madan, Carr, and Chang, 1998).

The lower panels of Figure 6 present the sequential t-statistics, defined as the ratios of

the posterior means to the posterior standard deviations, for the two tail indices. The

t-ratio for the right tail index is always much less than 2. When we take a closer look

25



at the posterior standard deviations of the same parameter, we find them very large.

Hence, we can conclude that the information accumulation is not helpful in reducing

the uncertainty on the right tail. However, the left tail can be pinned down very quickly

after the 1987 market crash, since the t-ratio after October, 1987 is larger than 2, and

the posterior standard deviation (not reported) gets smaller as the market information

accumulates. Clearly, the agent is more confident about the behavior of the left tail.

4.2 Learning and Volatility Forecasting

In this subsection, we evaluate the relative performance of the four jump models for

predicting daily total volatility, and quantify the cost of not knowing the parame-

ters. For each model, expected one-day ahead return variance at time t is given by

Et[
∫ t+τ

t
V1,sds] + V art(J1)Et[

∫ t+τ

t
V2,sds], which is known analytically. As a compari-

son, we also take a look at the performance of the GARCH(1,1) model. True volatility

is approximated by the realized one, computed from the previous 21-day (one-month)

returns at each time, as in Subsection 3.1.

We again consider the three cases that were defined in the previous subsection.

Table 3 reports the forecasting results including the RMSEs, the R2s from the Mincer-

Zarnowitz (MZ hereafter) regressions, and the Diebold-Mariano (DM hereafter) statis-

tics. We have the following findings. First, the SE-M1 model, which takes into account

both diffusion volatility jumps and self-exciting jump intensity, always outperforms the

other three jump models, whether parameter learning and/or uncertainty are present

or not. For example, in Case I, the RMSE and MZ R2 from the SE-M1 model are 4.94%

and 83.8%, respectively, whereas the other three jump models generate larger RMSEs

and smaller MZ R2s.

Second, the existence of parameter learning and/or uncertainty makes volatility

more difficult to forecast. This feature holds for all models. The RMSEs (MZ R2s) are

the highest (smallest) in Case I and the smallest (highest) in Case III. For example, for

the SE-M1 model, the RMSE is about 4.9% in Case I, whereas it decreases to 4.3% in

Case III, and the MZ R2 is about 83.8% in Case I, while it increases to 85.5% in Case
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Table 3: Volatility Forecasting

SE-M1 SE-M2 SE-M3 SE-M4 GARCH

Case I RMSE 4.94 5.36 5.49 6.04 2.61
MZ R2 83.8 78.4 80.5 69.4 94.0
DM – -1.94 -3.67 -1.55 5.94

Case II RMSE 4.40 5.24 5.08 5.40 2.34
MZ R2 85.9 78.6 82.6 74.8 94.9
DM – -2.00 -2.20 -1.88 3.82

Case III RMSE 4.36 5.16 5.03 5.23 2.33
MZ R2 86.3 78.9 82.8 76.6 95.0
DM – -1.92 -2.14 -1.82 3.91

Note: The table presents the volatility forecasting results. True volatility is approximated by the

realized one, computed from the previous 21-day (one-month) returns at each time, i.e., RVt =
√

252

21

∑20

j=0
R2

t−j . RMSE is the root mean squared error between forecasted and realized volatility. MZ

R2 represents the R2 from the Mincer-Zarnowitz regression, and DM stands for the Diebold-Mariano

statistic, where the squared error loss function and the HAC-type variance with 21 lags are adopted

and the benchmark model is chosen to be the SE-M1 model in each case. Three cases are considered.

Case I: both parameter learning and uncertainty are taken into account. Case II: only parameter

uncertainty is allowed, that is, the full-sample posterior distributions of parameters are used. Case

III: both parameter learning and uncertainty are ignored and simply the full-sample posterior means

of parameters are used.

III.

Third, we measure the forecast accuracy using the DM statistic, where the squared

error loss function and the HAC-type variance (with 21 lags) are adopted and the

benchmark model is chosen to be the SE-M1 model in each case. The forecasting

errors in the DM statistic are measured using the residuals from the corresponding MZ

regression. The SE-M1 model outperforms the other three jump models in all three

cases but the significance level is different. For example, the SE-M1 model significantly

outperforms the SE-M2 model and the SE-M3 model at the 10% level and the 5% level,

respectively, for all three cases. However, the SE-M1 model significantly outperforms

the SE-M4 model only at the 10% level in Cases II and III.

Fourth, when comparing the SE-M1 model to the GARCH(1,1) model, we find

that the GARCH(1,1) model cannot be beaten by the more sophisticated models, even

though the sequential Bayes factors indicate that the SE-M1 model performs much
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better than the GARCH(1,1) model in modeling the S&P 500 index returns.5 This

result is similar to what Hansen and Lunde (2005) find.

4.3 Option Pricing Implications

4.3.1 Simulation-based Results

Now we begin to investigate how self-excitation and learning affect the implied volatility

surface. As we only use the underlying return data to estimate the models, the problem

of unavailability of the risk-premium parameters remains. For simplicity, we assume

that the jump and the volatility parameters remain the same under the change of

measure. In the next subsection, we will calibrate the risk-premium parameters using

the observed options data. The risk-free interest rate is fixed at 4.00%. At each time

starting from January 1981, whenever we obtain the parameter and volatility particles

in learning, we use the Monte-Carlo method to price call options with maturity 7, 30,

90, and 250 days and with moneyness (define as K/S) 0.85, 0.90, 0.95, 1.00, 1.05, 1.10,

and 1.15. Therefore, both parameter and volatility uncertainties are taken into account

at each time in this practice. We price the same cross-section of options again using the

full-sample posterior means of the parameters and filtered volatility obtained from these

estimates. Thus, in the latter, the parameter learning and uncertainty are ignored.

Table 4 presents the time-series mean of the implied volatility ratios, with and

without learning, for each option in the SE-M1 model and the SE-M3 model. For both

models, all ratios are either larger than or equal to one, indicating that learning does

(positively) affect the option pricing. In particular, we find that the learning effect

on the in-the-money and the out-of-the-money options than on the near-the-money

options, and it is more pronounced for deep out-of-the-money options than for deep

in-the-money options. These results are closely related to the results that learning

alters the tail behaviors and introduces even larger uncertainty on the right tail of the

5Bayesian learning of the GARCH(1,1) model is efficient and very fast as the likelihood function is
in closed form and we do not need any filtering methods. The full-sample log Bayes factor between
the SE-M1 model and the GARCH(1,1) model is as large as 275.
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Table 4: Effects of Learning on Option Pricing

SE-M1 SE-M3
K/S 7 Days 30 Days 90 Days 250 Days 7 Days 30 Days 90 Days 250 Days

0.85 1.13 1.05 1.01 1.00 1.02 1.03 1.01 1.00
0.90 1.09 1.02 1.00 1.00 1.01 1.01 1.00 1.00
0.95 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.01 1.01 1.01 1.00 1.01 1.00 1.00 1.00
1.05 1.11 1.06 1.02 1.01 1.06 1.05 1.01 1.01
1.10 1.37 1.12 1.05 1.02 1.30 1.09 1.04 1.01
1.15 1.78 1.21 1.09 1.03 1.74 1.16 1.07 1.02

Note: The table presents the mean ratios of the BS implied volatility between with and without

learning (Case I and Case III) in the SE-M1 model and the SE-M3 model. We consider call options

with maturity 7, 30, 90, and 250 days and with moneyness (define as K/S) 0.85, 0.90, 0.95, 1.00, 1.05,

1.10, and 1.15. Option prices are computed using the Monte Carlo simulation method.

predictive return distributions. We also find that in general the learning effect decreases

with respect to maturity. Moreover, we find that the main difference between the SE-M1

model and the SE-M3 model is in the short maturity in-the-money options, indicating

the self-exciting jump intensity mainly affects the left tail of return distributions.

To further investigate the learning effect, Figure 7 plots the time series of the implied

volatility computed from the SE-M1 model (left panels) and the SE-M3 model (right

panels). The solid and the dashed lines plot the implied volatility for contracts with

maturity 7 days when learning is taken into account and when it is ignored, respectively.

We first focus on the SE-M1 model. As shown in the middle panel, learning does not

seem to have a first-order effect on pricing the at-the-money options, except during

the market crash in October 1987 when the implied volatility from learning is much

higher. However, the picture is starkly different in the upper and the lower panels

for the implied volatility of the deep in-the-money and the deep out-of-the-money call

options. Learning does have a first-order effect here.

For deep in-the-money options, when learning is ignored, the implied volatility has

little variation with abrupt bursts and drop-backs during the financial crisis periods,

whereas when learning is taken into account, the implied volatility moves up to high

levels during the crisis periods and stays there for a very long time. The deep in-
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Figure 7: Learning and Implied Volatility

Note: The figure plots the time-series of implied volatility for call options with maturity 7 days

computed from the SE-M1 model (left panels) and the SE-M3 model (right panels). Options are

priced using the Monte Carlo simulation method. The solid line plots the implied volatility when

learning is taken into account, whereas the dashed (red) line plots the implied volatility when learning

is ignored. We consider options with moneyness (K/S) equal to 0.85 in the upper panels, 1.00 in the

middle panels, and 1.15 in the lower panels.
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the-money options are sensitive to extreme downside movements. These observations

seem to indicate that learning leads to a long-lasting shift of beliefs on the left tail

of the predictive return distribution. Benzoni, Collin-Dufresne, and Goldstein (2011)

argue that updating of beliefs about jump parameters may cause a permanent shift in

option prices. Our investigation reinforces this intuition. For the deep out-of-money

options, the implied volatility is in general larger when learning is allowed than when

learning is ignored, indicating learning can also generate the fat right tail. Overall,

the above results suggest that parameter learning and uncertainty are likely to have

important implications for pricing options that depend on the tails of the predictive

return distribution. However, as the sample size grows, the effect of learning diminishes.

But the rate of the diminishing effect differs for the in-the-money compared to the

out-of-money options. For the in-the-money options, the implied volatility is similar,

whether learning is allowed or ignored. This indicates that the left-tail uncertainty

vanishes at the end of the sample. However, this is not the case for the out-of-money

options, indicating that the right-tail uncertainty remains. This result is consistent

with what we have found in Figure 6.

We now further compare the SE-M1 model and the SE-M3 model and examine what

roles the self-exciting jump intensity plays. Comparing the right panels to the left ones

in Figure 7, we have the following findings. First, as seen from the middle panels,

regardless of learning, the SE-M1 model prices the at-the-money options quite similarly

to the SE-M3 model during the calm periods, whereas during the crisis periods, the

SE-M1 model seems to be more flexible to capture high levels of volatility than the

SE-M3 model. Second, when pricing the deep in-the-money options, the upper panels

indicate that (1) the SE-M1 model is more flexible at tracking fluctuations of volatility

and at capturing high levels of volatility during the financial crisis; and (2) learning can

generate an even more persistent and fatter left tail in the short term in the SE-M1

model compared to the SE-M3 model. Third, the SE-M1 model and the SE-M3 model

produce similar deep out-of-money option prices, whether learning is considered or not.

However, for options with longer maturities, the learning effect becomes smaller,
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and both models perform quite similarly at different moneyness (not reported). The

findings are consistent with what we have found in Table 4, and imply that the two

models differ mainly in their ability to price the short maturity options.

4.3.2 Real Data Applications

In addition to the simulation-based results, we also use real option data to evaluate the

model performance and learning effects. The S&P 500 index option data are obtained

from the OptionMetrics volatility surface that provides daily call and put prices, BS

implied volatility for the standardized maturities, and Deltas between January 1996

and December 2012. In accordance with the option pricing literature, we only keep

Wednesday put prices and exclude options with maturity larger than a half year.

Option prices not only reflect agent’s expectations over the evolution of the un-

derlying but also contain risk premium information. In derivative pricing theory, they

are reflected in the stochastic discount factor (SDF) that drives a wedge between the

real world and the pricing measures. We assume a simple reduced-form SDF with two

free parameters: γJ , the jump risk premium parameter distorting the Lévy density of

the jump component, and γV , the risk premium parameter connected to the diffusion

volatility shocks (see Appendix E for the change of measure).6

To simplify the analysis, we assume that agents know the exact risk premium pa-

rameters and only learn about the other parameters of the system, which are obtained

from Section 3. Furthermore, we do not take into account the equilibrium implications

of learning for risk premia, and hence, our treatment is in the spirit of Johannes, Ko-

rteweg and Polson (2014) and Johannes, Lochstoer and Mou (2014). The risk premium

parameters are calibrated using option prices. A consistent treatment of pricing should

condition on the agent’s information set. In our case, however, the complexity of learn-

ing over states and parameters results in an infinite dimensional state space similar

to that in Johannes, Lochstoer and Mou (2014) which makes the problem intractable.

6Under this change of measure, only ω, η, κ1, and θ1 are different, and the other parameters remain
unchanged. The jump risk-premium parameter is bounded, −λ+ < γJ < λ−, such that the risk-neutral
tail indices, λQ

+ = λ+ + γJ and λQ
−
= λ− − γJ , are positive.
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Hence, we resort to a simplified treatment of option pricing learning, where we integrate

over state and parameter uncertainty, but risk aversion is taken into account through

two fixed parameters, leading to a deterministic shift of the distribution under the risk

neutral measure.

To calibrate the risk-premium parameters, we compute model-implied option prices

on a 2-dimensional grid of risk premia using equidistant grid points in both direc-

tions. For each specification, we pick the risk premium parameters minimizing the

mean squared errors between the model-implied and observed option prices, weighted

by the BS Vega,

γ̂J , γ̂V = arg min
γJ ,γV

1

N

N
∑

i=1

(

Oobs
i − OM

i

V egai

)2

where N is the number of options, Oobs
i is the observed option price, and OM

i is the

model-implied option price. Given that the SE-M1 model and the SE-M3 model dom-

inate the other models, we focus on these two specifications in what follows.

Table 5 reports the calibrated risk premia and the implied risk-neutral parameters

both for the case when learning is taken into account and for the case when parameter

uncertainty is ignored and the full sample posterior means are plugged into the option

pricing routine. For the SE-M1 model, the calibrated jump risk premium, γJ , is positive

under both cases. A positive γJ indicates that the risk-neutral return distribution is

more left-skewed and more leptokurtic than the physical counterpart. However, one can

see in the table that the implied risk-neutral jump parameters, ω and η, stay well within

the central 90% credible intervals of their physical counterparts, suggesting that there

is a greater degree of statistical uncertainty about the exact location of the jump risk-

premium parameter. This result is unsurprising given that jumps are rare events and we

only use underlying return data to estimate the physical jump parameters. By contrast,

the diffusion volatility risk premium, γV , is negative, resulting in a slower mean reversion

and a higher stationary mean risk-neutral diffusion volatility process than the physical

one. Furthermore, the implied risk-neutral parameters are well outside the central 90%

credible intervals of their physical counterparts, pointing towards the reliability of the
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Table 5: Risk Premia and Implied Risk-Neutral Parameters

A. SE-M1

Case I Case III
γJ 3.85 3.42
γV -8.42 -9.47

Full-Sample Posterior (Physical)
Mean 5th Prctile 95th Prctile Implied Risk-Neutral Mean

ω -0.058 -0.084 -0.035 -0.072 -0.070
η 0.023 0.004 0.041 0.025 0.025
κ1 5.793 4.555 7.062 3.174 2.847
θ1 0.017 0.013 0.020 0.031 0.035

B. SE-M3

Case I Case III
γJ 3.00 -1.14
γV -10.52 -10.52

Full-Sample Posterior (Physical)
Mean 5th Prctile 95th Prctile Implied Risk-Neutral Mean

ω -0.062 -0.088 -0.039 -0.079 -0.058
η 0.023 0.004 0.043 0.026 0.022
κ1 4.386 3.438 5.426 1.011 1.011
θ1 0.021 0.017 0.025 0.092 0.092

Note: This table presents the calibrated risk premia from a grid search on S&P 500 index option

data obtained from the OptionMetrics volatility surface on Wednesdays between January 1996 and

December 2012. Results are shown both for the SE-M1 model and the SE-M3 model and both when

parameter learning is taken into account and when parameter learning and uncertainty are ignored.

The risk-neutral parameters implied by the calibrated risk premia are also reported.

calibrated risk premium. For the SE-M3 model, under the case of parameter learning,

we obtain similar results to the SE-M1 model. However, when we ignore parameter

learning and simply use the fixed full-sample posterior means, the calibration becomes

more involved and we get a negative γJ , further indicating unreliability of the jump

risk premium calibration and misspecification of the SE-M3 model.

Table 6 reports the root mean squared errors (RMSE) between the model-implied

and the observed implied volatility across maturities and strikes for the SE-M1 model

and SE-M3 model, when parameter learning is taken into account. We find that the

SE-M1 model always provides a better fit than the SE-M3 model with a root mean

squared error of 3.2% compared to 3.4% for the SE-M3 model. Furthermore, in line

with the simulation-based results, the advantage of the SE-M1 model is particularly
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Table 6: Option Pricing Errors with Learning

∆ 30 days 60 days 91 days 122 days 152 days

A. SE-M1

-0.8 3.34 2.83 2.81 2.86 3.05
-0.7 2.88 2.67 2.72 2.82 3.04
-0.6 2.94 2.72 2.74 2.82 3.01
-0.5 3.16 2.88 2.85 2.89 3.02
-0.4 3.51 3.17 3.09 3.07 3.14
-0.3 4.02 3.66 3.49 3.41 3.42
-0.2 4.71 4.33 4.08 3.92 3.84

B. SE-M3

-0.8 3.36 2.74 2.79 2.98 3.20
-0.7 2.94 2.63 2.73 2.95 3.20
-0.6 3.09 2.75 2.78 2.94 3.17
-0.5 3.42 2.99 2.93 3.00 3.15
-0.4 3.88 3.38 3.21 3.17 3.23
-0.3 4.52 3.97 3.68 3.53 3.48
-0.2 5.40 4.80 4.39 4.12 3.95

Note: The table presents the root mean squared option pricing errors in percentage of the S&P 500

index put options for different strikes and maturities for the SE-M1 model and the SE-M3 model

with parameter learning taken into account. The option data are from the OptionMetrics volatility

surface on Wednesdays between January 1996 and December 2012. For each model, the risk premium

parameters are the optimal ones from the grid search.

important in pricing the short term out-of-the money puts for which the left tail of the

predictive return distributions plays a critical role. For instance, for the 30-day options

with the Delta equal to -0.2, it has a RMSE of 4.7% compared to 5.4% for the SE-M3

model.

Having taken a closer look at the behavior of the two models across different

episodes, we see that the dominance of the SE-M1 model is concentrated in the period

since the 2008 financial crisis. Allowing for the self-exciting jump intensity leads to

substantially higher option prices and helps reduce the gap between the model-implied

and the observed option prices. The increased importance of self-excitation since 2008

is not limited to the short-term OTM puts. The overall RMSE across maturities and

strikes since the Lehman bankruptcy (September 15, 2008) is 3.3% for the SE-M1 model

versus 3.7% for the SE-M3 model, mirroring a widening gap in overall performance be-

tween the two models. This finding reinforces our previous result indicated in Figure
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2, which suggests that the self-exciting jump intensity becomes even more important

after the 2008 financial crisis as measured by sequential Bayes factors.

When the full-sample posterior means of the fixed parameters are used in calibrating

the risk premium parameters and pricing options (not reported), we again find that the

SE-M1 model dominates the SE-M3 model. However, the difference in RMSEs between

learning and no-learning is smaller in the real data than in the simulated data. This is

not surprising as our observed options data only start in January 1996, by which date

parameter uncertainty has substantially decreased as seen from parameter learning in

Figure 3.

Johannes, Lochstoer and Mou (2014) propose a test procedure to detect the impact

of parameter learning on asset prices. In particular, they regress equity returns on

belief updates with parameter learning, while controlling for belief updates in the fixed-

parameter case. A significant coefficient is interpreted as evidence for the importance

of parameter learning for asset prices. Here we mimic their approach for option prices

where the agents’ information set consists of past stock returns. In particular, we are

interested in whether updates in model-implied option prices, due to parameter learning

have any explanatory power for observed option prices over and above model-implied

option prices in the fixed parameter case. To simplify exposition of the results, we

collapse the cross-section of options by looking at the cross-sectional average option

price for any give maturity date and focus on the SE-M1 model.7

Denote the cross-sectional average model-implied implied volatility at time t for

a given maturity τ when learning is taken into account as IV M,Learning
t,τ . The same

quantity, when the full sample posterior means are plugged into the option pricing

routine, is denoted by IV M,F ixed
t,τ . And the observed counterpart is denoted by IV Obs

t,τ .

In the first stage, we want to focus on the variability in model-implied IVs due solely

to parameter learning. Hence, we run the following time series regression

IV M,Learning
t,τ = α1,τ + β1,τIV

M,F ixed
t,τ + εt,τ . (16)

7The strike-specific results and results for the SE-M3 model are similar and are available upon
request.
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Table 7: Belief Updating and Implied Volatility

30 days 60 days 91 days 122 days 152 days

Intercept −0.00 −0.01 −0.02 −0.03∗ −0.04∗

(0.01) (0.01) (0.01) (0.02) (0.02)

IV M,Fixed
t,τ 1.09∗∗∗ 1.08∗∗∗ 1.10∗∗∗ 1.12∗∗∗ 1.15∗∗∗

(0.04) (0.06) (0.07) (0.07) (0.09)
ε̂t,τ 0.89∗∗ 1.17∗∗∗ 1.26∗∗∗ 1.33∗∗∗ 1.13∗∗∗

(0.38) (0.30) (0.27) (0.26) (0.28)

Note: The table presents the results from the regressions of the observed implied volatilities (IVs) on

the innovations in model-implied IVs due to parameter learning. For each maturity, the dependent

variable is the observed average IVs across strikes on each day. The control variable is the model-

implied counterpart from the SE-M1 model when parameter uncertainty is ignored. The variable of

interest is the model-implied counterpart with parameter learning. This latter is orthogonalized by

using the residual from a regression of the model-implied IVs with learning on a constant and the

model-implied IVs with the fixed parameters. The option data are from the OptionMetrics volatility

surface on Wednesdays between January 1996 and December 2012. HAC standard errors (Newey-

West, 30 lags) are reported in parenthesis, ∗ denotes the significance at the 10% level, ∗∗ denotes the

significance at the 5% level,∗∗∗ denotes the significance at the 1% level.

We estimate this regression separately for each maturity, τ , and take the residual from

the OLS regression, ε̂t,τ , as the option price variability that is entirely due to parameter

learning. Then in the second stage, we run an OLS regression of the observed IVs on a

constant, the model-implied IVs with the fixed parameters, and the residuals obtained

from the first stage regression (16) as follows

IV Obs
t,τ = α2,τ + β2,τIV

M,F ixed
t,τ + β3,τ ε̂t,τ + ξt,τ . (17)

The estimation results are reported in Table 7. We can clearly see that the coefficient of

ε̂t,τ , β3,τ , is highly statistically significant in each maturity. This indicates that updates

in beliefs due to parameter learning have a highly significant effect on the observed IVs

across all maturities, over and above the variability in model-implied IVs computed

using the fixed parameters.
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5 Concluding Remarks

We propose a self-exciting asset pricing model that takes into account co-jumps between

prices and volatility and self-exciting jump clustering. A Bayesian learning approach

is employed to implement a real-time sequential analysis. We find that the evidence

of co-jumps between volatility and asset returns through diffusion volatility is robust

ever since the 1987 market crash. Interestingly, while the data call for simultaneous

jumps between asset returns and jump intensities from the 87’s market crash onwards,

the self-exciting jump intensity has become more important since the onset of the 2008

global financial crisis.

The new asset pricing model and the Bayesian learning approach allow us to investi-

gate implications of learning for a variety of asset pricing applications. In this paper, we

provide novel results on implications of learning for risk measures, volatility forecasting

and option pricing. Such results are quite relevant in practice as market participants

need to update her beliefs sequentially over time when new market information arrives.

There are several interesting research directions that our results suggest. First, it

would be interesting to examine what we can find if option prices are included in the

learning procedure. This could help better identify the jump intensity and speed up

the learning process. Second, the sequential nature of our joint parameter and state

learning routine promises several practical applications such as derivative pricing or

portfolio allocation.

Appendix

A A Hybrid Particle Filter

Our model can be cast into a state-space model framework. After discretizing the return

process for a time interval τ using the Euler method, we have the following observation
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equation

lnSt = lnSt−τ +
(

µ− 1

2
V1,t−τ − k(1)V2,t−τ

)

τ +
√

τV1,t−τwt + Ju,t + Jd,t, (A.1)

where wt is a standard normal noise, and Ju,t and Jd,t represent the upside and downside

jump noises.

We take the diffusion variance V1,t, the jump intensity V2,t, and the upside/downside

jumps Ju,t/Jd,t as the hidden states. The diffusion variance and the jump intensity follow

(6) and (7), and the upside/downside jumps are Gammas. After discretizing, we have

the state equations as follows

V1,t = κ1θ1τ + (1− κ1τ)V1,t−τ + σ11

√

τV1,t−τzt − σ12Jd,t, (A.2)

V2,t = κ2θ2τ + (1− κ2τ)V2,t−τ − σ2Jd,t, (A.3)

Ju,t = Γ(τV2,t−τ ;µu, vu), (A.4)

Jd,t = −Γ(τV2,t−τ ;µd, vd), (A.5)

where zt is a standard normal noise, which is correlated to wt in (A.1) with the cor-

relation parameter ρ. In empirical analysis, we normalize θ2 to 1 in order to alleviate

the identification problem, as the time-homogeneous jump component has non-unit

variance rate.

The above model is clearly non-linear and non-Gaussian. Therefore, we use a particle

filter to estimate the likelihood and the hidden states. The most commonly used particle

filter is the bootstrap filter of Gordon, Salmond, and Smith (1993), which simply takes

the state transition density as the proposal density. However, the bootstrap filter is

known to perform poorly when the observation is informative on the hidden states. Our

model has this feature because when we observe a large move in asset price, the jump

can be largely pinned down by this observation. On the other hand, when the return

is small, it is almost due to the diffusion component and contains little information

on the jump. Hence, to provide an efficient sampler, we use an equally weighted two-
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component mixture as the proposal on the jump: the first component is a normal draw,

equivalent to sampling from the transition density of the diffusion component, and the

second component involves drawing from the transition law of the jump. We need this

second component to stabilize the importance weights for small returns. Otherwise, we

would compute the ratio of a normal and a gamma density in the importance weights

which is unstable around zero. When the return is positive, we use this mixture as the

proposal for the positive jump and the transition density for the negative jump, and

vice-versa.

The algorithm of the proposed hybrid particle filter consists of the following steps:

Step 1: Initialize at t = 0: set initial particles to be
{

V
(i)
1,0 = θ1;V

(i)
2,0 = 1; J

(i)
u,0 =

0; J
(i)
d,0 = 0

}M

i=1
and give each set of particles a weight 1/M ;

Step 2: For t = 1, 2, . . .

• If Rt = lnSt − lnSt−τ > 0,

– draw J
(i)
d,t from its transition law (A.5);

– draw J
(i)
u,t both from its transition law (A.4) and its conditional posterior dis-

tribution Ju,t = lnSt−lnSt−τ−(µ− 1
2
V1,t−τ−k(1)V2,t−τ )τ−Jd,t−

√

τV1,t−τwt,

which is normally distributed. Equal weights are attached to particles ob-

tained from the transition law and the conditional posterior;

– compute the particle weight by

w
(i)
t =

p(lnSt|J (i)
u,t, J

(i)
d,t , V

(i)
1,t−τ , V

(i)
2,t−τ)p(J

(i)
u,t|V (i)

2,t−τ)

0.5p(J
(i)
u,t|V (i)

2,t−τ ) + 0.5φ(µ̄, σ̄)
,

where φ(·, ·) represents the normal density with mean µ̄ = lnSt − lnSt−τ −

(µ− 1
2
V

(i)
1,t−τ − k(1)V

(i)
2,t−τ )τ − J

(i)
d,t and standard deviation σ̄ =

√

τV
(i)
1,t−τ ;

• Otherwise, if Rt = lnSt − lnSt−τ < 0,

– draw J
(i)
u,t from its transition law (A.4);
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– draw J
(i)
d,t both from its transition law (A.5) and its conditional posterior dis-

tribution Jd,t = lnSt− lnSt−τ −(µ− 1
2
V1,t−τ −k(1)V2,t−τ )τ−Ju,t−

√

V1,t−τwt,

which is normally distributed. Equal weights are attached to particles ob-

tained from the transition law and the conditional posterior;

– compute the particle weight by

w
(i)
t =

p(lnSt|J (i)
u,t, J

(i)
d,t , V

(i)
1,t−τ , V

(i)
2,t−τ)p(J

(i)
d,t |V

(i)
2,t−τ)

0.5p(J
(i)
d,t |V

(i)
2,t−τ ) + 0.5φ(µ̄, σ̄)

,

where φ(·, ·) represents the normal density with mean µ̄ = lnSt − lnSt−τ −

(µ− 1
2
V

(i)
1,t−τ − k(1)V

(i)
2,t−τ )τ − J

(i)
u,t and standard deviation σ̄ =

√

τV
(i)
1,t−τ ;

• Normalize the weight: w̃
(i)
t = w

(i)
t /

∑M

j w
(j)
t ;

Step 3: Resample (Stratified Resampling)

• Draw the new particle indexes by inverting the CDF of the multinomial charac-

terized by w̃
(i)
t at the stratified uniforms i+U (i)

M
, where U (i) are i.i.d uniforms;

• reset the weight to 1/M ;

Step 4: Update the diffusion variance and the jump intensity particles using (A.2) and

(A.3), where zt = ρwt+
√

1− ρ2z̃t with z̃ being an independent standard normal noise.

B The Priors and Posteriors

The Bayesian learning procedure is initialized by the priors. In the full SE-M1 model,

there are 11 parameters, among which κ1, θ1, σ11, σ12, η, v, κ2, and σ2 need to be

positive and ρ needs to be in [-1, 1]. We assume normal distributions for the priors.

However, if a parameter under consideration has a finite support, we take a truncated

normal as its prior.

The hyper-parameters are calibrated using a training sample from January, 1975 to

December, 1979. As a result, we use quite flat priors for most of parameters except those
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Table B.1: The Prior Distributions

F. Form Support (µ0, σ0) F. Form Support (µ0, σ0)

µ Normal (−∞,∞) (0.07, 0.15)
κ1 Tr. Normal (0,∞) (5.00, 7.00) ω Normal (−∞,∞) (-0.05, 0.10)
θ1 Tr. Normal (0,∞) (0.03, 0.06) η Tr. Normal (0,∞) (0.03, 0.06)
σ11 Tr. Normal (0,∞) (0.30, 0.60) v Tr. Normal (0,∞) (0.80, 2.00)
ρ Tr. Normal [−1, 1] (-0.50, 0.60) κ2 Tr. Normal (0,∞) (15.0, 10.0)
σ12 Tr. Normal (0,∞) (0.50, 1.00) σ2 Tr. Normal (0,∞) (55.0, 20.0)

controlling dynamics of the jump intensity, κ2 and σ2. Table B.1 presents the exact

functional form and hyper-parameters for the prior distribution of each parameter.

Figure B.1 presents the prior and full-sample posterior distributions for each param-

eter. We can see that for most parameters, even though the priors are quite flat, the

dispersions of the posterior distributions are very small. However, for the parameters

controlling the jump intensity, κ2 and σ2, we use quite informative priors. Using the

full sample, κ2 seems to be well pinned down. This is consistent with what we have

got from learning that indicates that its credible interval shrinks dramatically after the

2008’s financial crisis. However, σ2 remains difficult to be identified as the posterior

distribution still has quite large dispersion.

C Monte Carlo and Sensitivity Studies

In implementation of our Bayesian learning approach, we need to choose the number

of state particles, M , the number of parameter particles, N , and the thresholds for

resample and move, N1 and N2, respectively. As discussed in Andrieu et al. (2010)

and Fulop and Li (2013), M is linearly related to the largest sample siz (T ) that one

wants to tackle. Pitt et al. (2012) provide practical guidelines on how to choose optimal

number of state particles (M). However, there are not any guidelines on how to choose

N , N1 and N2. In this Appendix, we implement Monte Carlo studies to see how well

the algorithm works on the self-exciting model and how sensitive it is to N , N1, and

N2.
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Figure B.1: The Prior and Posterior Distributions
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Table C.1: Monte Carlo Studies

MC1 MC2 MC3
Θ True Value Mean RMSE Mean RMSE Mean RMSE

µ 0.10 0.089 0.029 0.090 0.028 0.090 0.029
κ1 5.00 5.204 0.709 5.180 0.721 5.212 0.710
θ1 0.02 0.021 0.003 0.021 0.003 0.021 0.003
σ11 0.30 0.301 0.022 0.301 0.023 0.301 0.022
ρ -0.60 -0.595 0.046 -0.595 0.047 -0.594 0.046
σ12 0.50 0.560 0.117 0.556 0.113 0.558 0.114

ω -0.05 -0.055 0.014 -0.055 0.014 -0.055 0.014
η 0.03 0.027 0.006 0.027 0.006 0.027 0.006
v 0.80 1.314 0.668 1.300 0.656 1.331 0.687
κ2 15.0 18.24 3.943 18.17 3.794 18.37 3.985
σ2 50.0 48.32 5.264 48.65 5.058 48.40 5.023

We take the SE-M1 model as an example. There are 11 parameters in total, Θ =

(µ, κ1, θ1, σ11, ρ, σ12, ω, η, v, κ2, σ2). For each simulation in each Monte Carlo study, we

generate a sequence of daily observations with sample size T = 6000. The true values of

parameters are Θ∗ = (0.10, 5.00, 0.02, 0.30, −0.60, 0.50, −0.05, 0.03, 0.80, 15.0, 50.0),

which are close to the full-sample estimates in Section 3. The initial values of the stock

price, S0, diffusion variance, V1,0, and the jump intensity, V2,0 are given as 100, 0.03,

and 1.00, respectively, and the priors are the same as in Appendix B (Table B.1). Based

on the guidelines of Pitt et al. (2012), we choose M = 5 ∗ 1024. Any increase of this

number may result in higher acceptance rates, but it also increases the computational

cost. As for the choices of N , N1, and N2, we consider the following three Monte Carlo

studies

• MC1: N = 2 ∗ 1024, and N1 = N2 = N/2;

• MC2: N = 2 ∗ 1024, and N1 = N2 = N ∗ 2/3;

• MC3: N = 4 ∗ 1024, and N1 = N2 = N/2.

The total number of simulated paths is 50 in each Monte Carlo study. We use the

same simulated dataset across the three Monte Carlo studies. Graphical processor-

based parallel architectures (GPUs) are used to speed up computations. Table C.1
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Table C.2: Sensitivity Study

M = 8 ∗ 1024 M = 16 ∗ 1024
Θ Mean Std Mean Std

µ 0.045 0.004 0.043 0.004
κ1 5.983 0.393 6.015 0.200
θ1 0.017 0.000 0.017 0.000
σ11 0.310 0.005 0.317 0.003
ρ -0.606 0.006 -0.611 0.005
σ12 0.498 0.024 0.510 0.019

ω -0.058 0.003 -0.057 0.002
η 0.023 0.001 0.021 0.002
v 0.701 0.048 0.684 0.034
κ2 10.76 1.154 9.789 0.512
σ2 79.45 2.489 79.85 2.120

LMLH 2.719e4 1.094 2.720e4 0.723

Time ≈ 1.6 days ≈ 3.0 days

presents the Monte Carlo simulation results. The following findings are in order. First,

our parameter learning algorithm is quite robust and not sensitive to the choices of N ,

N1, and N2 as the three Monte Carlo studies deliver quite similar results. Second, the

diffusion parameters, ΘD, and the jump parameters, ω and η, can be well identified

by our learning algorithm as their means are quite close to the true values and their

RMSEs are very small in all three Monte Carlo studies. Third, however, the jump

parameters, v, κ2, and σ2, which control the jump structure and intensity dynamics,

are not easy to estimate. This is because the relatively large value of v generates a

small number of sizable jumps, making extreme events arrive at a very low frequency.

Based on the above results, in empirical applications, we choose N = 4 ∗ 1024, and

N1 = N2 = N/2. However, the choice of the number of state particles (M) is more

sensitive in real data applications than in simulations. In order to investigate this issue,

we implement a sensitivity study. Using the real data in Subsection 3.1, we implement

15 independent runs of the algorithm for the SE-M1 model by setting M1 = 8 ∗ 1024

and M2 = 16 ∗ 1024, respectively. Table C.2 presents means and standard deviations

of the posterior means of the model parameters and the log marginal likelihoods across

these runs. We clearly see that the log marginal likelihood (LMLH) under M1 is nearly
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the same as that under M2, even though its standard deviation under M2 is a little bit

reduced. Similar result can also be found for the parameter estimates. These results

indicate that in the real data applications, model inference is not so sensitive to the

choice of the number of state particles between M1 and M2, though we decide to choose

M = 16 ∗ 1024 in our empirical analysis.

We program in MATLAB the main algorithm and offload the computational bot-

tleneck of the algorithm, the particle filter, to the GPU, coded in CUDA. Relying on

a Telsa K20 GPU, our Bayesian learning algorithm is quite fast. As we can see from

Table C.2, if we set the number of state particles equal to M1, each run on the real data

takes about 1.6 days. If we set it equal to M2, each run takes about 3 days.

D ESS and Acceptance Rates

Figure D.1 presents the efficient sample sizes and the acceptance rates at the move

steps for the four models. In general, we can see from the left panel that the algorithm

takes more move steps in the early stage of learning when the market information is

minimal. We also find that the SE-M1 and the SE-M3 models take less move steps

than the SE-M2 and the SE-M4 models, in particular, during the financial crises. From

the right panel, we see that the acceptance rate remains high in the SE-M1 model over

time, larger than 35%. However, in the SE-M3 model, it drops a little and in the SE-M2

and the SE-M4 models it decreases to a low level during the 2008’s financial crisis. Less

move steps and higher acceptance rates in the SE-M1 model indicate that it can better

adapt to the outliers.

E Change of Measure

The no-arbitrage condition indicates that there exists at least one almost surely positive

process, Kt, with K0 = 1, such that the discounted gains process associated with any

admissible trading strategy is a martingale (Harrison and Kreps, 1979). Kt, which is
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Figure D.1: ESS and Acceptance Rates
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assumed to be a semimartingale, is called the stochastic discount factor or the pricing

kernel. We propose a class of models for the stochastic discount factor, Kt, such that

the change-of-measure does not alter the model structure. Specifically,

Kt = exp
(

−
∫ t

0

rsds
)

E

(

−
∫ t

0

γW (s)dWs

)

E

(

−
∫ t

0

γV (s)dZs

)

×E

(

∫ t

0

∫

R−

(γJ(s, x)− 1)π̃(dx, ds)
)

, (E.1)

where rt is the risk-free rate of interest, E(·) denotes the stochastic (Doleans-Dade) expo-

nential operator, π̃ is a compensated random measure, and γW (t), γV (t) and γJ(t, x)−1

define market prices for the risk factors in the market.

The price for the diffusive volatility risk, Zt, is assumed to have a form of γV (t) =

γV
√

V1,t, where γV is a constant. For the jump component, the above change of measure

indicates that its risk-neutral Lévy density, νQ(dx), is related to its objective one, ν(dx),

by νQ(dx) = γJ(t, x)ν(dx). We assume γJ(t, x) has an exponential form, e−γJx, where γJ

is a constant, such that the risk-neutral Lévy density of the jump component is simply

an exponential tilting of the objective one. In contrast, we leave γW (t) unspecified.

The Variance Gamma process has a Lévy density under the objective measure, P ,

as follows,

ν(dx) =
1

v





exp
(

− µu

vu
x
)

x
1x>0 +

exp
(

− µd

vd
|x|

)

|x| 1x<0



 dx. (E.2)

The above change of measure indicates that the risk-neutral Lévy density should have

a form of

νQ(dx) =
1

v





exp
(

− (µu

vu
+ γJ)x

)

x
1x>0 +

exp
(

− (µd

vd
− γJ)|x|

)

|x| 1x<0



 dx. (E.3)
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We therefore have the following risk-neutral model under the Q measure:

lnSt/S0 =

∫ t

0

rsds+
(

WQ
T1,t

− kQ
W (1)T1,t

)

+
(

JQ
T2,t

− kQ
J (1)T2,t

)

, (E.4)

dV1,t = κQ
1

(

θQ1 − V1,t

)

dt+ σ11

√

V1,tdZ
Q
t − σ12d(J

−
T2,t

)Q, (E.5)

dV2,t = κ2(θ2 − V2,t)dt− σ2d(J
−
T2,t

)Q, (E.6)

where κQ
1 = κ1 + σ11γV , θ

Q
1 = κ1θ1/κ

Q
1 , W

Q
t and ZQ

t are two independent standard

Brownian motions. The time-homogenous jump component is still the Variance Gamma

process with the risk-neutral Lévy density, νQ(dx), given by (E.3). The risk-neutral

jump parameters are now given as follows: ωQ = (ω − γJη
2)/A, ηQ = η/

√
A, and

vQ = v, where A = 1 + γJωv − γ2
J
η2v

2
.
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