
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Economics School of Economics 

11-2018 

Threshold regression asymptotics: From the compound Poisson Threshold regression asymptotics: From the compound Poisson 

process to two-sided Brownian motion process to two-sided Brownian motion 

Ping YU 
University of Hong Kong 

Peter C. B. PHILLIPS 
Singapore Management University, peterphillips@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research 

 Part of the Econometrics Commons 

Citation Citation 
YU, Ping and PHILLIPS, Peter C. B.. Threshold regression asymptotics: From the compound Poisson 
process to two-sided Brownian motion. (2018). Economics Letters. 172, 123-126. 
Available at:Available at: https://ink.library.smu.edu.sg/soe_research/2353 

This Journal Article is brought to you for free and open access by the School of Economics at Institutional 
Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School 
Of Economics by an authorized administrator of Institutional Knowledge at Singapore Management University. For 
more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/soe_research
https://ink.library.smu.edu.sg/soe
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2353&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/342?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2353&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Economics Letters 172 (2018) 123–126

Contents lists available at ScienceDirect

Economics Letters

journal homepage: www.elsevier.com/locate/ecolet

Threshold regression asymptotics: From the compound Poisson
process to two-sided Brownian motion
Ping Yu a,∗, Peter C.B. Phillips b,c,d,e,1

a The University of Hong Kong, Hong Kong
b Yale University, USA
c University of Auckland, New Zealand
d University of Southampton, United Kingdom
e Singapore Management University, Singapore

h i g h l i g h t s

• We show asymptotic equivalence between joint asymptotics and sequential asymptotics in threshold regression.
• We show how compound Poisson process can be approximated by two-sided Brownian motion.
• We show randomness in the number of summands of compound Poisson process disappears in approximation.
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a b s t r a c t

The asymptotic distribution of the least squares estimator in threshold regression is expressed in terms of
a compound Poisson process when the threshold effect is fixed and as a functional of two-sided Brownian
motion when the threshold effect shrinks to zero. This paper explains the relationship between this dual
limit theory by showing how the asymptotic forms are linked in terms of joint and sequential limits. In
one case, joint asymptotics apply when both the sample size diverges and the threshold effect shrinks to
zero, whereas sequential asymptotics operate in the other case inwhich the sample size diverges first and
the threshold effect shrinks subsequently. The two operations lead to the same limit distribution, thereby
linking the two different cases. The proofs make use of ideas involving limit theory for sums of a random
number of summands.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Threshold regression (TR) is an important statistical model that
has been influential in many fields. There are extensive applica-
tions in economics and Hansen (2011) provides a summary of the
empirical literature. The typical setup has the following form

y =

{
x′β1 + u1, q ≤ γ ;

x′β2 + u2, q > γ ;
(1)

∗ Correspondence to: Faculty of Business and Economics, TheUniversity of Hong
Kong, Pokfulam Road, Hong Kong.

E-mail addresses: pingyu@hku.hk (P. Yu), peter.phillips@yale.edu
(P.C.B. Phillips).
1 Cowles Foundation for Research in Economics, Yale University, POBox 208281,

New Haven, CT, USA.

where uℓ satisfies E [uℓ|x, q] = 0 and may be conditionally het-
eroskedastic over the two regimes ℓ = 1,2,2 the variable q governs
the threshold trigger γ that splits the sample and qhas density fq (·)
and distribution Fq (·), the regressor x ∈ Rk may include q as a co-
variate, and β := (β ′

1, β
′

2)
′
∈ R2k is the coefficient vector covering

the two regimes. The setup is similar to simple linear regression
except that the slope coefficients depend onwhether the threshold
variable q crosses the threshold point γ . The parameter γ is often
of primary interest in applications.

Under the conditional mean independence assumption E
[
uℓ|x,

q
]

= 0, the threshold parameter γ can be estimated by nonlinear

2 The symbol ℓ is used to indicate the two regimes in (1) and, to simplify notation
in what follows, the explicit values ‘‘ℓ = 1,2’’ are often omitted.

https://doi.org/10.1016/j.econlet.2018.08.039
0165-1765/© 2018 Elsevier B.V. All rights reserved.

Published in Economics Letters, 2018, 172, 123-126. 
https://doi.org/10.1016/j.econlet.2018.08.039
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0

https://doi.org/10.1016/j.econlet.2018.08.039
http://www.elsevier.com/locate/ecolet
http://www.elsevier.com/locate/ecolet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.econlet.2018.08.039&domain=pdf
mailto:pingyu@hku.hk
mailto:peter.phillips@yale.edu
https://doi.org/10.1016/j.econlet.2018.08.039


124 P. Yu, P.C.B. Phillips / Economics Letters 172 (2018) 123–126

least squares regression giving the least squares estimator (LSE)

γ̂ = argmin
γ∈Γ

Mn (γ ) ,

where Γ is the parameter space of γ , which is assumed to be a
proper subset of the support of q, the criterion function is

Mn (γ ) := min
β1,β2

n∑
i=1

(
yi − x′

iβ11(qi ≤ γ ) − x′

iβ21(qi > γ )
)2 ,

and 1(·) is the indicator function. Optimization of Mn (γ ) typi-
cally leads to an interval estimate of γ . Common practice in the
literature on threshold regression employs the left-endpoint LSE
(LLSE) to resolve this uncertainty, although Yu (2012, 2015) has
recently shown that the middle-point LSE (MLSE) is more efficient
in most cases. The precise definition of the argminγ operation or
the particular choice (LLSE orMLSE) of practical implementation of
the regression estimator γ̂ do not affect any of the results in this
paper.

Two approaches have been proposed for inference about γ in
the TR model (1). The first is the fixed-threshold-effect framework
of Chan (1993)where the break differential δ0 := β10−β20 is taken
as fixed andwherewe use the zero subscript to indicate true value.
In this framework, γ̂ is n-consistent, and

n (γ̂ − γ0)
d

−→ argmin
v

D (v) , (2)

where

D (v) =

{ ∑N1(|v|)
i=1 z1i, if v ≤ 0,∑N2(v)
i=1 z2i, if v > 0,

(3)

zℓi has an absolutely continuous distribution, Nℓ (·) is a Poisson
process with intensity fq(γ0), and {z1i, z2i}i≥1, N1(·) and N2(·) are
independent of each other. Define the variables

z1i : = 2x′

iδ0u1i + δ′

0xix
′

iδ0,

z2i : = −2x′

iδ0u2i + δ′

0xix
′

iδ0,

where z1i represents the effect onMn (γ ) −Mn (γ0) when γ is dis-
placed on the left of γ0, and z2i represents the converse case. Then
z1i = lim∆↑0 z1i1 {γ0 + ∆ < qi ≤ γ0} is the limiting conditional
value of z1i given γ0 + ∆ < qi ≤ γ0, ∆ < 0 with ∆ ↑ 0, and z2i =

lim∆↓0 z2i1 {γ0 < qi ≤ γ0 + ∆} is the limiting conditional value of
z2i given γ0 < qi ≤ γ0 + ∆, ∆ > 0 with ∆ ↓ 0. It follows that
the density of the quantity zℓi is fzℓ,q(zℓ, γ0)/fq(γ0), the conditional
density of zℓ given q = γ0. In this framework, the asymptotic
distribution of γ̂ is given as the argmin of the compound Poisson
process D (v) in (3).

The second approach is the shrinking-threshold-effect frame-
work of Hansen (2000) which is borrowed from the structural
change literature such as Picard (1985) and Bai (1997), where the
break differential δ0 shrinks to zero as n → ∞ and is therefore
denoted by δn. As long as ∥δn∥ → 0 and

√
n ∥δn∥ → ∞ (i.e., δn does

not fall in a contiguous neighborhood of the unidentified case δn =

0, or in other words, there is sufficient identification information
asymptotically in the sample data), then γ̂ is consistent with the
convergence rate an := n ∥δn∥

2, and

an (γ̂ − γ0)
d

−→ argmin
v

C (v) , (4)

where

C(v) =

{
2
√
fq(γ0)Ω1W1(|v|) + fq(γ0)Q |v| , if v ≤ 0,

2
√
fq(γ0)Ω2W2(|v|) + fq(γ0)Q |v| , if v > 0,

(5)

withQ = limn→∞

δ′
nE[xx′|q=γ0]δn

δ′
nδn

,Ωℓ = limn→∞

δ′
nE

[
xxu2

ℓ
|q=γ0

]
δn

δ′
nδn

, and
the pair {Wℓ(v), ℓ = 1, 2} being two independent standard Brow-
nianmotions defined on [0, ∞). In this framework, the asymptotic

distribution of γ̂ is given as the argmin of the drifted two-sided
Brownianmotion C(v) in (5) with different scale parameters in the
two directions.

An interesting question that emerges from these two different
asymptotic distributions of γ̂ is how they are related, given that
they both arise from the same statistical problem. In particular,
why and how does the argmin of a compound Poisson process
transition to the argmin of a two-sided Brownian motion as the
parameter δ0 changes from being treated as ‘fixed’ to one that
‘shrinks to zero’. The goal of the present paper is to provide the
connection between the two limit theories.

2. Two asymptotic distributions and their connection

This section provides some background on the two different
limit forms D(·) and C(·) and some intuition on how they deter-
mine the asymptotic distributions of γ̂ and influence the different
convergence rates. From Yu (2014), we have the finite sample
formulation

n (γ̂ − γ0) = argmin
v

Dn (v) + op(1), (6)

where

Dn (v) =

n∑
i=1

z1i1
(
γ0 +

v

n
< qi ≤ γ0

)
+

n∑
i=1

z2i1
(
γ0 < qi ≤ γ0 +

v

n

)
.

From Hansen (2000), we have the alternate formulation

an (γ̂ − γ0) = argmin
v

Cn (v) + op(1), (7)

where

Cn (v) =

n∑
i=1

z1i1
(

γ0 +
v

n ∥δn∥
2 < qi ≤ γ0

)

+

n∑
i=1

z2i1
(

γ0 < qi ≤ γ0 +
v

n ∥δn∥
2

)
.

Note from these criteria that in estimating γ , we may effectively
assume that the parameter vector β is known. The reason is that
estimation of γ involves only local information around the thresh-
old value γ0 while estimation of β involves global information and
these two components of the information set are independent —
see Yu (2012, 2015).

The difference between the criteria Dn (·) and Cn (·) is that the
localizing parameter v inDn (·) is standardized to v/∥δn∥

2 in Cn (·) ,

taking account of the shrinking differential δn. As a result, we
may write (7) as argmin Cn (v) = ∥δn∥

2 argmin Dn (v) . This re-
standardization relating the criteria explains why the convergence
rate of γ̂ changes from n to an = n ∥δn∥

2 in moving from (6) to (7).
To understand the limit theory in which Dn (·) converges to

D (·), we may rewrite Dn (·) as

Dn (v) =

{ ∑N1n(|v|)
i=1 z1i, if v ≤ 0,∑N2n(v)
i=1 z2i, if v > 0,

where N1n(|v|) =
∑n

i=1 1
(
γ0 +

v
n < qi ≤ γ0

)
and N2n(v) =

∑n
i=1

1
(
γ0 < qi ≤ γ0 +

v
n

)
. Note that Nℓn(·) is a binomial process. For

example, for any given v > 0,

N2n(v) ∼ Bin (n, pn (v)) ,

with pn (v) = Fq
(
γ0 +

v
n

)
− Fq (γ0), and for any v2 > v1 > 0,

the increment N2n(v2) − N2n(v1) is independent of N2n(v1). It is
well known that a binomial process will converge to a Poisson
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process if npn (v) converges to a finite number for any v. In our
case, npn (v) → fq (γ0) v, where fq (·) is assumed to be continuous,
positive and finite in a neighborhood of γ0.3 This explains why
Dn (·) ⇝ D (·), where we use ⇝ to indicate weak convergence of
a stochastic process on the associated probability space.

The reason why the variable zℓi changes to zℓi is because only
those qi that are local to γ0 are involved in Dn (·). In Dn (·), Nℓn(·)
and zℓi are correlated through the correlation between qi and zℓi.
But for two random variables (X, Y ), their joint density f (X, Y ) =

f (Y |X) f (X) factors so that Y given X is statistically independent
of X although f (Y |X) may still be functionally dependent on X —
see footnote 10 of Heckman (1997). This explains why zℓi, as a
conditional random variable given qi, is independent of Nℓ(·).

In contrast to the case of Dn (·), observe that n
(
Fq

(
γ0 +

v

n∥δn∥2

)
− Fq (γ0)

)
≈ fq (γ0)

v

∥δn∥2
→ ∞, as ∥δn∥ → 0, so that infinitely

many qi’s are involved asymptotically in the local neighborhood of
γ0 for any given v > 0. As a result, a central limit theorem can
be applied for a given v to the sums involved in Cn (·) and under
tightness a functional law gives rise to (5). It is not hard to show
the following moment limits

E [Cn (v)] = nE
[
δ′

nxix
′

iδn · 1
(

γ0 < qi ≤ γ0 +
v

n ∥δn∥
2

)]
→ Q · fq (γ0) v,

and

V (Cn (v)) ≈ nV
(

−2x′

iδnu2i · 1
(

γ0 < qi ≤ γ0 +
v

n ∥δn∥
2

))
→ 4Ω2 · fq (γ0) v.

Then, because Cn (·) is an independent increments process, it fol-
lows by standard empirical process methods that Cn (·) converges
to the process C (·) in (5).

3. Sequential asymptotics

Given the different limits described above, the question studied
in the present paper is the mechanism by which the convergence
n (γ̂ − γ0) = argminv Dn (v) + op(1)

d
−→ argminv D (v) changes

to n ∥δn∥
2 (γ̂ − γ0) = argminv Cn (v) + op(1)

d
−→ argminv C (v)

when ∥δn∥ → 0. Note that Cn(v) = Dn

(
v

∥δn∥2

)
, so the second

limit distribution follows by a joint asymptotic argument in which
both n → ∞ and ∥δn∥ → 0. On the other hand, the first limit
distribution is obtained by letting n → ∞ with δ0 fixed. Given
that argminv D

(
v

∥δ0∥2

)
= ∥δ0∥

2 argminv D (v) it follows that

n ∥δ0∥
2 (γ̂ − γ0) is approximately argminv D

(
v

∥δ0∥2

)
in the first

framework. We therefore seek to explain why argminv D
(

v

∥δ0∥2

)
d

−→ argminv C (v) as ∥δ0∥ → 0. In other words, the question in-
volves explaining themechanism bywhich sequential asymptotics
generates the same asymptotic distribution as joint asymptotics,
viz., why letting n → ∞ and ∥δn∥ → 0 jointly generates the
same limit distribution of γ̂ as first letting n → ∞ and then letting
∥δ0∥ → 0.4 The relevant processes are simply represented in the
following diagram:

3 See Yu and Zhao (2013) for cases where the density fq(·) need not be continu-
ous at γ0 and need not be bounded below by zero and bounded above by a positive
constant in a neighborhood of γ0 .
4 As suggested by the referee, in the sequential asymptotics, δ0 in D(·) does not

depend on n because n has already diverged to ∞, so we maintain the notation δ0
in the sequential asymptotics.

Dn (v)
n→∞
−→ D (v)

↓ v =
v

∥δn∥2
?↓ v =

v

∥δ0∥2
, ∥δ0∥ → 0

Cn (v)
n→∞
−→

∥δn∥→0
C (v)

Problems of joint and sequential limit theory have been ad-
dressed before inweak convergence theory (Billingsley, 1968, The-
orem 4.2), in panel data asymptotics (Phillips and Moon, 1999)
and in near-unit root limit theory (Phillips, 1987; Chan and Wei,
1987; Bykhovskaya and Phillips, 2018). The latter work, which
bears some similarity to the present context in terms of taking
limits to the boundary of the domain of definition of the pa-
rameters, deals with the first order autoregression (AR(1)) model
{yt = ayt + ut; t = 1, 2, . . . , n} with parameter a = ec/n, −∞ <

c ≤ 0.5 When a is fixed, or c diverges to negative infinity at the
rate n so that c ∼ c∗n for some fixed c∗ < 0 then the model
is a stable, or asymptotically stable AR(1) model. In this case, we
have joint asymptotics where both |c| and n diverge to ∞, and the
asymptotic distribution of the LSE â of a is normal. When n → ∞

and the localizing parameter c ≤ 0 is fixed, the model has a root
that is local to unity since a → 1, and the asymptotic distribution
of â involves quadratic functionals of a diffusion process. Theorem
2 of Phillips (1987) shows that the sequential limit distribution of
â (after normalization and centering) by first letting n → ∞ and
then letting c → −∞ is the same as the joint limit distribution
obtained by letting n → ∞ and c → −∞ at the simultaneous
rate n.

The following theorem provides a rigorous statement of the
corresponding asymptotic distributional equivalence that obtains
in the threshold regression model.

Theorem 1. If (i) δ0E[xx|q=γ0]δ0
δ′
0δ0

→ Q and
δ0E

[
xxu2

ℓ
|q=γ0

]
δ0

δ′
0δ0

→ Ωℓ

as ∥δ0∥ → 0, 0 < Q < ∞ and 0 < Ωℓ < ∞ ; (ii) 0 <

f ≤ fq(γ0) ≤ f < ∞; (iii) the conditional distributions of uℓ|x,q=γ

and x|q=γ are continuous at q = γ0, E [uℓ|x, q = γ0] = 0 and
E

[
∥x∥4

|q = γ0
]

< ∞, then

v̂ := argmin
v

D
(

v

∥δ0∥
2

)
d

−→ argmin
v

C (v) as ∥δ0∥ → 0, (8)

where D(·) and C(·) are defined in (3) and (5).

Proof. We apply Theorem 2.7 of Kim and Pollard (1990) to derive
this result. We need to check two conditions for that theorem to
apply: (i) v̂ = Op(1) as ∥δ0∥ → 0; and (ii) D

(
v

∥δ0∥2

)
⇝ C (v) ∈

Cmin (R) as ∥δ0∥ → 0, where Cmin (R) is defined as the subset of
continuous functions g(·) ∈ Bloc (R) for which (a) g(t) → ∞ as
|t| → ∞ and (b) g(t) achieves its minimum at a unique point in
R, and Bloc(R) is the space of all locally bounded real functions on
R endowed with the uniform metric on compacta. Two lemmas in
the Appendix are used to establish these conditions. The shelling
method (see, e.g., Theorem 3.2.5 of Van der Vaart and Wellner,
1996) is used in Lemma 1 of the Appendix to prove condition (i);
and we apply Theorem 2.3 of Kim and Pollard in Lemma 2 to prove
condition (ii). These two lemmas then give the convergence result
(8) stated in the theorem. ■

An important and novel feature in the above theorem is that
as distinct from usual limiting objective functions that arise in
extremum estimation problems, the limit function D (·) involves a

5 The case where c > 0 and c → ∞ at the upper boundary of the domain
of definition is also considered in Phillips (1987). Bykhovskaya and Phillips (2018)
consider cases where c(·) = cg(·) is a function and the scale coefficient c → ±∞.
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random rather than deterministic number of summands. It is this
feature that is decisive in determining the asymptotic equivalence
in the theorem.

4. Heuristic arguments and an illustrative example

To provide some intuition on the limit result (8) we use the
following simple example. Suppose x = 1, q ∼ U [0, 1], u1 = u2 =

u with variance 1, and u is independent of q in (1). In this simple
case, ∥δn∥2

= δ2n , fq(γ0) = 1, Q = 1, Ωℓ = 1,

z1i = z1i = δ20 + 2δ0ui and z2i = z2i = δ20 − 2δ0ui,

so that

E [zℓi] = δ20 and V (zℓi) = 4δ20 .

Let v > 0 be given. Then

E [D (v)] = E [E [D (v) |N2 (·)]] = E [N2(v)E [z2i]]
= E

[
N2(v)δ20

]
= δ20v,

and, since D (v) =
∑N2(v)

i=1 z2i when v > 0 , we have

V (D (v)) = E [V (D (v) |N2 (·))] + V (E [D (v) |N2 (·)])
= E [N2 (·)V (z2i)] + V (N2(v)E [z2i])

= E
[
4δ20N2(v)

]
+ V

(
N2(v)δ20

)
= 4δ20v + δ40v

= δ20v
(
4 + δ20

)
. (9)

By Example 3(i) of Robbins (1948), we have the following CLT for a
random number of summands

D (v) − E [D(v)]
V (D(v))

=

∑N2(v)
i=1 z2i − δ20v√
δ20v

(
4 + δ20

) v→∞
⇝ N (0, 1) .

That is, as v → ∞,
N2(v)∑
i=1

z2i ∼d δ20v +

√
δ20v

(
4 + δ20

)
N (0, 1) ,

where the symbol ∼d is read as ‘approximately distributed as’.
Making the change-of-variables v ↦−→ v/δ20 , we have

N2(v/δ20 )∑
i=1

z2i ∼d v +

√
v

(
4 + δ20

)
N (0, 1) (10)

∼d v + 2
√

vN (0, 1) =fdd C(v), (11)

as δ0 → 0, giving the finite dimensional distribution (represented
as ‘=fdd’ in (11)) for given v of C(v) in (5) in the present example.

In the final line of approximation above, the quantity δ40v, which
is present in the variance of

∑N2(v)
i=1 z2i in (9) and which appears

after the transformation v ↦−→ v/δ20 as δ20v in (10), is negligible
when δ0 → 0. Since this term δ40v arises from the randomness of
the number of summands N2 (·), it follows from (11) that it can
be neglected asymptotically if δ0 → 0 as it is of smaller order.
In other words, if N2 (·) is replaced by its mean or if the random
number of summands is changed to a deterministic summation,
the final approximation is unchanged. In effect, upon rescaling so
that v ↦−→ v/δ20 → ∞ as δ0 → 0, the random sum CLT argument
leads directly to the finite dimensional distribution of C(v).

While the CLT of Robbins (1948, Theorem 1) cannot strictly be
applied as it stands in the present example, it provides a pow-
erful measure of intuition.6 Moreover, because D

(
v/δ20

)
is an

6 The key point is that as δ0 → 0, the mean E
[
z22i

]
= δ20

(
4 + δ20

)
depends on δ20

in the present case and is not fixed as in Robbins (1948). If we check the condition

independent increments process, we naturally expect tightness to
hold and then, in view of (11), we have weak convergence of the
random sum process

∑N2(v/δ20 )
i=1 z2i ⇝ v + 2W (v) as a stochastic

process on [0, ∞). In sum, these heuristics deliver the sequence of
approximations

nδ20 (γ̂ − γ0) ∼d δ20 argmin
v

N2(v)∑
i=1

z2i

= argmin
v

N2(v/δ20 )∑
i=1

z2i

∼d argmin
v

{v + 2W (v)}

= argmin
v

C(v),

which are rigorously justified in the general setting by Theorem 1
above.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.econlet.2018.08.039.
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