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Abstract: This paper considers estimation and inference concerning the autoregressive coefficient
(ρ) in a panel autoregression for which the degree of persistence in the time dimension is
unknown. Our main objective is to construct confidence intervals for ρ that are asymptotically
valid, having asymptotic coverage probability at least that of the nominal level uniformly over the
parameter space. The starting point for our confidence procedure is the estimating equation of
the Anderson–Hsiao (AH) IV procedure. It is well known that the AH IV estimation suffers from
weak instrumentation when ρ is near unity. But it is not so well known that AH IV estimation is
still consistent when ρ = 1. In fact, the AH estimating equation is very well-centered and is an
unbiased estimating equation in the sense of Durbin (1960), a feature that is especially useful in
confidence interval construction. We show that a properly normalized statistic based on the AH
estimating equation, which we call the M statistic, is uniformly convergent and can be inverted
to obtain asymptotically valid interval estimates. To further improve the informativeness of our
confidence procedure in the unit root and near unit root regions and to alleviate the problem that the
AH procedure has greater variation in these regions, we use information from unit root pretesting to
select among alternative confidence intervals. Two sequential tests are used to assess how close ρ is to
unity, and different intervals are applied depending on whether the test results indicate ρ to be near
or far away from unity. When ρ is relatively close to unity, our procedure activates intervals whose
width shrinks to zero at a faster rate than that of the confidence interval based on the M statistic.
Only when both of our unit root tests reject the null hypothesis does our procedure turn to the M
statistic interval, whose width has the optimal N−1/2T−1/2 rate of shrinkage when the underlying
process is stable. Our asymptotic analysis shows this pretest-based confidence procedure to have
coverage probability that is at least the nominal level in large samples uniformly over the parameter
space. Simulations confirm that the proposed interval estimation methods perform well in finite
samples and are easy to implement in practice. A supplement to the paper provides an extensive set
of new results on the asymptotic behavior of panel IV estimators in weak instrument settings.

Keywords: confidence interval; dynamic panel data models; panel IV; pooled OLS; uniform inference

JEL Classification: C23; C26

1. Introduction

Due to the many challenges that arise in estimating and conducting statistical inference for
dynamic panel data models, a vast literature has emerged studying these models over the past three
decades. Much has been learnt about the large sample properties and finite sample performance
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of various estimation procedures in stable dynamic panel models, not only in univariate but
also in multivariate contexts. Important contributions to this literature began with (Nickell 1981;
Anderson and Hsiao 1981, 1982), followed by (Arellano and Bond 1991; Ahn and Schmidt 1995;
Arellano and Bover 1995; Kiviet 1995; Blundell and Bond 1998; Hahn and Kuersteiner 2002;
Alvarez and Arellano 2003), amongst many others. Progress has also been made recently in studying
such models when more persistent behavior, such as unit root or near unit root behavior, is present.
(Phillips and Moon 1999) provided methods that opened up the rigorous development of asymptotics
in such models for both stationary and nonstationary cases and with multidimensional joint and
sequential limits. Many subsequent contributions to this nonstationary panel literature have
considered more complex regressions, analyzing the effects of incidental trends, serial dependence and
cross section dependence; e.g., (Chang 2002, 2004; Phillips and Sul 2003; Moon and Phillips 2004;
Moon et al. 2014, 2015; Pesaran 2006; Pesaran and Tosetti 2011).

While this literature has greatly enhanced our understanding of the panel data sampling behavior
of point estimators and of associated test statistics, such as the Studentized t statistic or the Wald
statistic, what have not been studied are confidence interval procedures which areasymptotically valid
in the sense that asymptotic coverage probabilities are at least that of the nominal level uniformly
over the parameter space. The development of theoretically justified confidence intervals is especially
important in cases where the empirical researcher may not have good prior information about the
degree of persistence in the data, since in such situations interval estimates can serve as indispensible
supplements to point estimates by providing additional information about sampling uncertainty
and about the range of possible values of the autoregressive parameter ρ that are consistent with
the observed data. Moreover, we know from the unit root time series literature that constructing an
asymptotically valid confidence interval for the autoregressive parameter of an AR (1) process is a
challenging task when the parameter space is taken to be large enough to include both the stable
and the unit root cases. This is because the Studentized statistic based on OLS estimation is not
uniformly convergent in this case, so that an asymptotically correct confidence interval cannot be
constructed by inverting the Studentized statistic in the usual way. To address this problem in the time
series literature, (Stock 1999) proposed a confidence procedure based on local-to-unity asymptotics,
while simulation and bootstrap type methods have been introduced by (Andrews 1993; Hansen 1999).
Recent results by (Mikusheva 2007, 2012) and by (Phillips 2014) have shown that the methods
of (Andrews 1993; Hansen 1999), as well as a recentered version of Stock’s method, all give the correct
asymptotic coverage probability uniformly over the parameter space. Extending these procedures to
the panel data setting does not seem to be straightforward, and panel data versions of these methods
are currently unavailable.

To address this need, the present paper proposes simple, asymptotically correct confidence
procedures for the autoregressive coefficient of a panel autoregression1. We take as our starting point
the estimating equation of the (Anderson and Hsiao 1981) IV procedure. Although much has been
written about the Anderson–Hsiao IV estimator having a weak instrument problem when ρ is unity or
very nearly unity, it should be noted that this estimator is still consistent even when ρ = 1 and that
the weak instrument problem primarily manifests itself in the form of the asymptotic distribution

1 We do not consider in this paper issues related to incidental trends, cross section dependence, and slope parameter
heterogeneity discussed earlier. While these complications are important and empirically relevant, they are beyond the
scope of the current paper and considering them here would divert from the main point of this paper which concerns the
development of uniform inference procedures.
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having greater dispersion2. In fact, the Anderson–Hsiao estimating equation is very well-centered
and is an unbiased estimating equation in the sense of (Durbin 1960), a property that is of particular
importance in constructing asymptotically valid confidence intervals. Exploiting this unbiasedness
property, we then show that a properly normalized statistic based on this estimating equation is
uniformly convergent over the parameter space Θρ = (−1, 1]. This statistic, which we refer to as the M
statistic since it is based on the (empirical) IV moment function, can be easily and analytically inverted
to obtain an asymptotically correct confidence interval. However, because of the weak instrument
problem, when the true ρ is unity or very near unity, confidence intervals obtained by inverting this M
statistic may be less informative in the sense that they may be relatively wide in finite samples and,
asymptotically, their width shrinks toward zero at the slower rate of T−1/2 even when both the cross
section (N) and the time series (T) sample sizes approach infinity. A similar drawback applies to the
GMM procedure of (Han and Phillips 2010), which achieves uniforminference with shrinkage rate
(NT)−1/2 over the full domain Θρ.

To obtain more informative interval estimates, we introduce a new confidence procedure which
uses information from two different unit root tests, with different power properties, to assess the
proximity of the true autoregressive parameter from the exact unit root null hypothesis H0 : ρ = 1.
More precisely, we infer that the true parameter value is unity or very close to unity if the more
powerful of the two unit root tests fails to reject H0, and we use, in this case, an interval that is localized
at ρ = 1, with width that shrinks at a faster N−1/2T−1 rate3. Second, if the more powerful test rejects
H0 but the less powerful test fails to reject, we use another interval that is still localized at ρ = 1 but
with greater width which shrinks at the rate N−1/2T−1/2, a rate that is still faster than that of the width
of the confidence interval based on the M statistic in the vicinity of ρ = 1. Finally, if both tests reject
H0, then we conclude that the true parameter value is far enough away from unity that we can use
the confidence interval based on the M statistic, whose width shrinks at the optimal N−1/2T−1/2 rate
in the stable region of the parameter space. We show that the asymptotic size of this pretest based
procedure can be uniformly controlled, so that this procedure is asymptotically valid, albeit slightly
conservative when the underlying process is stable. The degree of conservatism under our procedure is
also controllable and can be kept small by carefully controlling the probability of a Type II error under a
local-to-unity parameter sequence. Moreover, in addition to providing informative and asymptotically
correct confidence intervals, our procedure has the further advantage that it is given in analytical form
and, hence, is computationally simple to implement. Simulations confirm that the proposed method
performs well in finite samples.

The remainder of the paper proceeds as follows. Section 2 briefly describes the model,
assumptions, and notation. Section 3 introduces two new ways of constructing uniform confidence
intervals for the parameter ρ. The first is based on inverting the M statistic, and the second is the
pre-test based confidence interval. Results given in this section show that both confidence procedures
are asymptotically valid. Section 4 reports the results of a Monte Carlo study comparing our proposed

2 For readers interested in the asymptotic properties of the Anderson–Hsiao IV estimator, we would like to refer them to
Theorem SA-1 in the Technical Supplement to this paper. There, we present a very extensive set of results on the large
sample behavior of this estimator under various parameter sequences both near and far away from unity. In addition,
the proof of Theorem SA-1 is provided in Appendix SB of the Technical Supplement.

3 Other approaches for achieving uniform inference in estimation have been proposed recently in the time series literature
by (Han et al. 2011) using partial aggregation methods and by (Gorodnichenko et al. 2012) using quasi-differencing. In the
unit root and very near unit root cases, extending these approaches to the panel data setting leads to confidence intervals
whose width shrinks at a slower rate than the optimal N−1/2T−1 rate obtained here. (Han et al. 2014) developed a panel
estimator using X-differencing which has good bias properties and limit theory but has different limit theory in unit root
and stationary cases, complicating uniform inference.
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confidence procedures with some alternative procedures. We provide a brief conclusion in Section 5.
Proofs of the main theorems are given in the Appendix A to this paper. Proofs of additional supporting
lemmas, as well as additional Monte Carlo results, are reported in an online supplement to this paper
(Chao and Phillips 2019). The supplement provides an extensive set of results for panel estimation
limit theory in unit root and near unit root cases that help deliver the main results in the paper but are
of wider interest regarding asymptotic behavior of panel IV estimators, particularly in weak instrument
settings. The supplement also includes additional simulation results concerning the performance of
the estimation procedures considered in the paper.

A word on notation. We use ⇒ for convergence in distribution or weak convergence,
p→ for

convergence in probability, χ2
ν denotes a chi-square random variable with ν degrees of freedom,

Z denotes the standard normal random variable, and Wi (r) is the standard Brownian motion on the
unit interval [0, 1] for each i. For two sequences {XT} and {YT}, we take XT � YT to mean XT/YT =

o (1) and XT ∼ YT to mean that XT/YT = O (1) and YT/XT = O (1), as T → ∞. Similarly, for random
variables XT and YT , we take XT

p∼ YT to mean that XT/YT = Op (1) and YT/XT = Op (1), as T → ∞.
In addition, the notations Pr (·|ρ) and Pr (·|ρT) denote, respectively, a probability measure indexed by
the fixed parameter ρ and one indexed by the local-to-unity parameter ρT . Finally, we use wid(C) to
denote the width of the confidence interval C.

2. Model and Assumptions

We work with the following dynamic panel data model written in unobserved components form

yit = ai + wit, (1)

wit = ρwit−1 + εit, (2)

for i = 1, . . . , N and t = 1, . . . , T. Here, {yit} is the observed data, {wit} is generated by a latent
AR(1) process, ai denotes an (unobserved) individual effect, and ρ denotes the panel autoregressive
parameter, which is assumed to belong in the parameter space Θρ = (−1, 1]. In this paper, we will
show that certain properties of our procedure hold uniformly for ρ ∈ Θρ = (−1, 1]. We do this by
making use of a result (Lemma 2.6.2) from (Lehmann 1999) which establishes the equivalence of
uniform convergence and convergence for every parameter sequence belonging to a given parameter
space. For this purpose, it is convenient for us to consider a general class of local-to-unity parameter
sequences of the form ρ = ρT = exp {−1/q (T)}, where q (T) is a non-negative function of T such that
q (T)→ ∞ as T → ∞4. Moreover, parameter sequences for stable AR processes can also be written in
this general form by considering parameter sequences {ρT} which belong to the collection

GSt =

{
{ρT} : |ρT | = exp

{
− 1

q (T)

}
, q (T) ≥ 0, and q (T) = O (1) as T → ∞

}
. (3)

Note also that, in the case where such parameter sequences are considered, the AR process given in
expression (2) will depend on an indexed parameter ρT , as opposed to a fixed autoregressive parameter,
so that, strictly speaking, the observed data and the latent process, in this case, will be strictly triangular

4 The reason we consider indexed parameter ρT which depends on T only, and not on both N and T, is because our main
results are obtained under a general pathwise asymptotic scheme where N can grow as an arbitrary positive real-valued
power of T. In such a framework, the asymptotics are effectively single-indexed. Hence, it suffices to consider parameter
sequences that depend only on T.
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indexed arrays {yit,T , wit,T}, which depend additionally on T. However, for notational ease, we shall
suppress this additional dependence and simply write {yit, wit} in what follows.

It is sometimes convenient to rewrite the model (1) and (2) in the alternate familiar form as a
first-order autoregressive process in yit, viz.,

yit = ai (1− ρ) + ρyit−1 + εit = ηi + ρyit−1 + εit, (4)

where ηi = ai (1− ρ). The following assumptions are made on the model.

Assumption 1 (Errors): (a) {εit} ≡ i.i.d.
(
0, σ2) across i and t, σ2 > 0; (b) E

[
ε4

it
]
< ∞.

Assumption 2 (Random Effects): (a) {ai} ≡ i.i.d.
(
µa, σ2

a
)

across i, σ2
a > 0; (b) E

[
a4

i
]
< ∞; (c) εit and aj,

are mutually independent for all i, j = 1, 2, . . . , N and for all t = 1, 2, . . . , T.

Assumption 3 (Initialization): Let yi0 = ai + wi0. Suppose that {wi0} is independent across i. Suppose also
that there exists a positive constant C such that supi E

[
w2

i0
]
≤ C < ∞, and that wi0 and ε jt are independent

for all i, j = 1, 2, . . . , N and for all t = 1, 2, . . . , T.

Note that Assumption 3 on the initial condition does not impose mean stationarity, i.e., the
condition that E [yi0|ai] = ηi/ (1− ρ) = ai a.s., which in our setup is equivalent to the restriction that
E [wi0|ai] = 0 a.s. In addition, observe that Assumption 3 allows for the case where the initial condition
is fixed, i.e., wi0 = ci for some sequence of constants {ci} such that supi |ci| < ∞. It is also general
enough so that we may specify wi0 to be fixed in the unit root case but allow wi0 to be a draw from its
unconditional distribution with variance σ2/

(
1− ρ2) when the underlying process is stationary.

In lieu of Assumption 2, we also consider in this paper a fixed-effects specification given by the
following assumption.

Assumption 2* (Fixed Effects): Let {ai} be a nonrandom sequence. Suppose that there exists a positive
constant C such that sup1≤i≤N |ai| ≤ C < ∞ for all N.

All our theoretical results hold under either the random-effects specification given by Assumption
2 or the fixed-effects specification given by Assumption 2*.

3. Uniform Asymptotic Confidence Intervals

3.1. Confidence Intervals Based on the Anderson–Hsiao IV procedure

A primary objective of this paper is to develop confidence procedures with asymptotic coverage
probability that is at least that of the nominal level uniformly over the parameter space ρ ∈ (−1, 1].
As a first step, we consider a statistic based on the empirical moment function of the Anderson–Hsiao IV
procedure, but properly standardized by an appropriate estimator of the scale parameter. In particular, let

M (ρ) =
1

ω̂
√

NT

N

∑
i=1

T

∑
t=3

yit−2 (∆yit − ρ∆yit−1) ,

where ω̂2 = σ̃2
[

N−1T−1 ∑N
i=1 ∑T

t=4 (yit−3 − yit−2)
2 + N−1T−1 ∑N

i=1 y2
iT−2

]
and σ̃2 =

N−1T−1
1 ∑N

i=1 ∑T
t=2

(
yit − yi − ρ̃

[
yit−1 − yi,−1

])
and where yi = T−1

1 ∑T
t=2 yit and yi,−1 =

T−1
1 ∑T

t=2 yit−1 with T1 = T − 1. In addition, we let ρ̃ denote any preliminary estimator of ρ

that satisfies the following conditions

Assumption 4: Let ρ̃ be an estimator of ρ. Suppose that the following conditions hold for this estimator
as N, T → ∞ such that Nκ/T = τ, for κ ∈ (0, ∞) and τ ∈ (0, ∞).
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(a) ρ̃ − ρT = op

(
T−1/2

)
, if ρT = 1 for all T sufficient large or if ρT = exp {−1/q (T)} such that

T/q (T) = O (1);

(b) ρ̃− ρT = op

(
q (T)−1/2

)
, if ρT = exp {−1/q (T)} such that q (T)→ ∞ but q (T) /T → 0;

(c) ρ̃− ρT = op (1) if {ρT} ∈ GSt, where GSt is given in expression (3) above.

The asymptotic properties of M (ρ) under different parameter sequences {ρT} are given by the
following result.

Theorem 1. Let Assumptions 1, 3, 4, and either 2 or 2* hold. The following statements hold as N, T → ∞ such
that Nκ/T = τ, for κ ∈ (0, ∞) and τ ∈ (0, ∞).

(a) Suppose that {ρT} ∈ GM1 , where GM1 = {{ρT} : ρT = 1 for all T sufficiently large}. Then,

M (ρT) = − 1
σ2
√

2
√

NT

N

∑
i=1

T

∑
t=4

εit−2εit−1 +
1

σ2
√

2
√

NT

N

∑
i=1

wiT−2εiT + op (1)

⇒ N (0, 1) .

(b) Suppose that {ρT} ∈ GM2 , where GM2 = {{ρT} : ρT = exp {−1/q (T)} and T/q (T)→ 0}. Then,

M (ρT) = − 1
σ2
√

2
√

NT

N

∑
i=1

T

∑
t=4

εit−2εit−1 +
1

σ2
√

2
√

NT

N

∑
i=1

wiT−2εiT + op (1)

⇒ N (0, 1) .

(c) Suppose that {ρT} ∈ GM3 , where GM3 = {{ρT} : ρT = exp {−1/q (T)} and q (T) ∼ T}. Then,

M (ρT) = − 1
ωT
√

NT

N

∑
i=1

T

∑
t=4

εit−2εit−1 +
1

ωT
√

NT

N

∑
i=1

wiT−2εiT + op (1)

⇒ N (0, 1) ,

where ωT = σ2
√

1 + q(T)
2T

[
1− exp

{
− 2T

q(T)

}]
.

(d) Suppose that {ρT} ∈ GM4 , where

GM4 = {{ρT} : ρT = exp {−1/q (T)} and q (T)→ ∞ such that q (T) /T → 0}. Then,

M (ρT) = −
1

σ2
√

NT

N

∑
i=1

T

∑
t=4

εit−2εit−1 + op (1)⇒ N (0, 1) .

(e) Suppose that {ρT} ∈ GM5 , where

GM5 = {{ρT} : |ρT | = exp {−1/q (T)} , q (T) ≥ 0, and q (T) = O (1) as T → ∞}. Then,

M (ρT) = −
√

1 + ρT

2σ4
1√
NT

N

∑
i=1

T

∑
t=4

εit−2εit−1

+

√
1 + ρT

2σ4
(1− ρT)√

NT

N

∑
i=1

T

∑
t=4

wit−3εit−1 + op (1)

⇒ N (0, 1) .
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To provide some intuition about the M (ρ) statistic and about the conditions placed on the
preliminary estimator ρ̃ (i.e., Assumption 4), we set M∗ (ρ) = ω̂M (ρ) to be the unstandardized
version of M (ρ) . From the proof of Theorem 1, given in Appendix A, it is evident that M∗ (ρ) can
be decomposed into several terms whose orders of magnitude change depending on how close the
parameter sequence {ρT} is to unity. In consequence, the lead term of M∗ (ρ) is not the same in the
stable (panel) autoregression case as it is in the case where ρT is very close to unity. On the other hand,
when appropriately normalized, this statistic will converge to a standard normal distribution in each
case, but this requires a scale estimator that will adapt to variation in the normalization factor under
alternative parameter sequences. The estimator

ω̂ = σ̃2
[

N−1T−1 ∑N
i=1 ∑T

t=4 (yit−3 − yit−2)
2 + N−1T−1 ∑N

i=1 y2
iT−2

]
turns out to have these adaptive properties, as shown in Lemma SC-13 and its proof (given in the
supplement). An important component in the construction of a proper normalization factor is to have
a preliminary estimator ρ̃ with a fast enough rate of convergence, so that the resulting estimator of
σ2 is consistent under every possible parameter sequence {ρT} in the parameter space Θρ = (−1, 1].
Examination of the proof of Lemma SC-12 reveals that the conditions needed on ρ̃ are precisely those
given in Assumption 45.

It should be noted that the Anderson–Hsiao IV estimator, which we will denote by ρ̂IVD in this
paper, does not satisfy the conditions of Assumption 46. This is because, as shown in Theorem SA-1
of the supplement to this paper, ρ̂IVD − ρT

p∼ T−1/2 when ρT = 1 for all T sufficient large or when
ρT = exp {−1/q (T)} such that T/q (T) = O (1), so that its rate of convergence is not fast enough in
the unit root and near unit root regions of the parameter space. Furthermore, the pooled OLS (POLS)
estimator, which we will denote by ρ̂pols, also does not satisfy these conditions since it is inconsistent
in the stationary region as shown in Theorem SA-2 of the supplement. Hence, in Appendix SA of the
supplement to our paper, we introduce a new point estimator, ρ̂AIP, which is an average of ρ̂IVD and
ρ̂pols where the average is taken using a data-dependent weight function that, in turn, depends on a
unit root statistic. This estimator turns out to satisfy the conditions of Assumption 4 because it exploits
the differential strengths of ρ̂IVD and ρ̂pols in different parts of the parameter space and can place more
or less weight on one or the other of these two estimators, depending on the information provided
by a preliminary unit root test on the true value of ρ. We use ρ̂AIP in constructing the scale estimator
ω̂ for the Monte Carlo results reported Section 4 of this paper, but we note that ρ̂AIP is not the only
estimator which satisfies Assumption 4, as both the within-group OLS estimator and the bias-corrected
within-group estimator proposed by (Hahn and Kuersteiner 2002) could also be used to obtain a scale
estimator ω̂ with the desired properties, although ρ̂AIP does have a faster rate of convergence than
the uncorrected within-group estimator in the unit root and near unit root cases. Because the focus
of this paper is on confidence procedures, and not on point estimation, we will not give technical
details of ρ̂AIP in the body of this paper, but will instead refer interested readers to Appendix SA of the
supplement for more details, as well as for formal results, on the rate of convergence of ρ̂AIP under
alternative parameter sequences.

5 The proof of Lemma SC-12 is also given in Appendix SC of the technical supplement.
6 We use the notation ρ̂IVD to denote the Anderson–Hsiao IV estimator because it is a procedure where IV

estimation is performed on a first-differenced equation. Later, we use ρ̂IVL to denote the IV estimator introduced
by (Arellano and Bover 1995) since, in that procedure, IV is performed on the panel autoregression in levels.
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The following theorem shows the uniform convergence of the statistic M (ρ) over the parameter
space Θρ = (−1, 1].

Theorem 2. Let Φ (x) denote the cdf of a standard normal random variable. Suppose that Assumptions 1, 3,
4, and either 2 or 2* hold. Then, for each x ∈ R,

sup
ρ∈(−1,1]

|Pr (M (ρ) ≤ x|ρ)−Φ (x)| → 0,

as N, T → ∞ such that Nκ/T = τ for constants κ ∈ (0, ∞) and τ ∈ (0, ∞)7.

Remark 1. (i) Let zα denote the 1− α quantile of the standard normal distribution. A level 1− α confidence
interval based on the statistic M (ρ) can be taken to be

CM
α = {ρ ∈ (−1, 1] : −zα/2 ≤M (ρ) ≤ zα/2} (5)

It is immediate from Theorem 2 that the confidence procedure defined by (5) is asymptotically valid in the
sense that its coverage probability is equal to the nominal level 1− α in large samples, uniformly over
ρ ∈ (−1, 1].

(ii) The uniform limit result given in Theorem 2 above is established under a pathwise asymptotic scheme
where we take N, T → ∞ such that Nκ/T = τ for constants κ ∈ (0, ∞) and τ ∈ (0, ∞). Note that the
asymptotic framework employed here does not restrict N and T to follow a specific diagonal expansion
path, but rather allows for a whole range of possible paths indexed by κ ∈ (0, ∞); and, hence, our results
do not require the kind of restrictions on the relative magnitudes of N and T that are often imposed in
other asymptotic analysis of panel data models. Indeed, by allowing T to grow as any positive (real-valued)
power of N, our framework can accommodate a wide variety of settings where T may be of smaller, larger,
or similar order of magnitude as N.

(iii) As noted earlier and as is evident from the proof of Theorem 2 given in the Appendix A, uniform convergence
here is established by showing convergence to the same distribution under every parameter sequence in
the parameter space. To the best of our knowledge, the use of this approach in statistics originated with the
book on large sample theory by (Lehmann 1999). Important extensions, as well as applications, of this
approach to a variety of econometric models and inferential procedures have also been made more recently
in the papers by (Andrews and Guggenberger 2009; Andrews et al. 2011).

(iv) As we noted earlier in the Introduction, a primary reason why the M statistic is well-behaved is that the
(empirical) IV moment function is well-centered as an unbiased estimating equation. In this sense, our
approach relates to early work by (Durbin 1960) on unbiased estimatingequations which was applied to time
series AR (1) regression in his original study. Importantly, in dynamic panel data models with individual
effects, estimating equations associated with least squares procedures tend not to be as well-centered as the
IV estimating equations explaining the need for IV in this context (c.f., Han and Phillips 2010).

(v) A drawback of CM
α is that the rate at which the width of this confidence interval shrinks toward zero

as sample sizes grow is relatively slow for parameter sequences that are very close to unity. As also
noted in the Introduction, this is due to the well-known ‘weak instrument’ problem which induces a

7 Note that we use the notation Pr (·|ρ) instead of perhaps the more familiar notation Pρ (·) to denote a probability measure
indexed by the parameter ρ because, in this paper, we will often consider somewhat complicated local-to-unity parameters
and subsequences of such parameters, which are less conveniently expressed in terms of subscripts.
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slow rate of convergence for the Anderson–Hsiao IV procedure in this case. More precisely, using the
results given in Lemmas SA-1, SC-1, and SC-13 in the supplement to this paper, we can easily show that
wid
(
CM

α

)
= Op

(
T−1/2

)
when ρT = exp {−1/q (T)} such that

√
NT/q (T) = O (1), so that the rate

of shrinkage here does not even depend on N, even as both N and T go to infinity (see also Phillips 2018).
This slower rate of convergence is also reflected in the Monte Carlo results reported in Section 4 below, as the
results there show that the average interval width of CM

α can be a very substantial fraction of the width of the
entire parameter space when ρ = 1. To improve on the performance of CM

α , the next subsection introduces
a pretest-based confidence procedure which is similarly asymptotically valid but which in addition provides
more informative intervals when the underlying process has a unit root or a near unit root.

3.2. A Pretest-Based Confidence Procedure

To enhance the informativeness of the confidence procedure when there is a unit root, we use a
pretest approach. The idea is to apply two different unit root tests sequentially to assess the proximity
of ρ to unity and then implement different confidence intervals depending on the information about
the location of ρ that emerges from these tests. More precisely, we propose the following level 1− α

confidence interval of the form

Cγ,α,N,T = I {T1 ≤ −zγ1} I {T2 ≤ −zγ2}CM
α1
+ I {T1 > −zγ1}C

UR1
γ1,α2

+I {T1 ≤ −zγ1} I {T2 > −zγ2}CUR2
γ2,α2

, (6)

where CM
α1

is as defined in (5) above,

CUR1
γ1,α2

=

{
ρ ∈ (−1, 1] : 1−

√
2 (zγ1 + zα2)

T
√

N
≤ ρ ≤ 1

}
, and (7)

CUR2
γ2,α2

=

{
ρ ∈ (−1, 1] : 1−

2 (zγ2 + zα2)√
NT

≤ ρ ≤ 1
}

(8)

and where γ = (γ1, γ2), α = α1 + α2, I is an indicator function, and we again take zγ1 to be the 1− γ1

quantile of a standard normal distribution for some γ1 ∈ (0, 0.5], with zγ2 and zα2 similarly defined. In
addition, we take

T1 =
M1/2

yy

(
ρ̂pols − 1

)
σ̂

,

with Myy = ∑N
i=1 ∑T

t=2

(
yit−1 − y−1,NT

)2
, to be the unit root test statistic based on the POLS

estimator; and
T2 = ω̂IVL (ρ̂IVL − 1) ,

with ω̂IVL = σ̂−2N−1/2T−1/2 ∑N
i=1 ∑T

t=3 ∆yit−1yit−1, is a unit root test statistic based on the IV estimator

ρ̂IVL =

[
N

∑
i=1

T

∑
t=3

∆yit−1yit−1

]−1 N

∑
i=1

T

∑
t=3

∆yit−1yit

which was introduced by (Arellano and Bover 1995) and further analyzed in (Blundell and Bond 1998).
From expression (6), it is apparent that the confidence procedure follows a sequential tree structure.
We first pretest for the presence of a unit root using T1. If the result of this first test fails to reject the
unit root null hypothesis, then we employ the tighter unit root interval CUR1

γ1,α2
. Otherwise, we conduct

a second test of the unit root null hypothesis using a less powerful test T2. If this second test fails to
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reject the null hypothesis, we use the wider unit root interval CUR2
γ2,α2

. On the other hand, if both tests
reject the unit root null hypothesis, we then use the interval CM

α1
, which is asymptotically valid but less

informative unless the true value of ρ is sufficiently far away from unity.
The next theorem shows that this confidence procedure is asymptotically valid in the sense that

its non-converage probability is at most the nominal significance level α uniformly over the parameter
space under pathwise asymptotics.

Theorem 3. Let α ∈ (0, 0.5] be the specified significance level and let N, T → ∞ such that Nκ/T = τ for
constants κ ∈ (0, ∞) and τ ∈ (0, ∞). Set N = N (T) = (τT)1/κ and Cγ,α,N,T = Cγ,α,N(T),T = Cα,T .
Suppose that Assumptions 1, 3, 4, and either 2 or 2* hold. Then,

lim sup
T→∞

sup
ρ∈(−1,1]

Pr
(
ρ /∈ Cγ,α,T |ρ

)
≤ α.

Remark 2. (i) The pre-test based confidence procedure proposed here is inspired by the work of (Lepski 1999)
who used information from a test procedure to increase the accuracy of confidence sets. The original Lepski
paper and subsequent extensions of that paper focused on problems of nonparametric function estimation
and canonical versions of such problems, as represented by the many normal means model. Because we
deal with a model that differs from the one studied in (Lepski 1999) and because we use a dual pre-test
framework, the construction and analysis of our procedure also differ, even though we use the same idea to
improve set estimation accuracy.

(ii) Since

lim sup
T→∞

sup
ρ∈(−1,1]

Pr
(
ρ /∈ Cγ,α,T |ρ

)
= lim sup

T→∞

[
1− inf

ρ∈(−1,1]
Pr
(
ρ ∈ Cγ,α,T |ρ

)]
= 1− lim inf

T→∞
inf

ρ∈(−1,1]
Pr
(
ρ ∈ Cγ,α,T |ρ

)
,

it follows that the result obtained in Theorem 3, i.e., lim supT→∞ supρ∈(−1,1] Pr
(
ρ /∈ Cγ,α,T |ρ

)
≤ α, is

equivalent to lim infT→∞ inf
ρ∈(−1,1]

Pr
(
ρ ∈ Cγ,α,T |ρ

)
≥ 1− α, so that the proposed confidence interval has

asymptotic coverage probability that is at least the nominal level 1− α uniformly over ρ ∈ (−1, 1].

(iii) In the procedure given by (6), α1 is the significance level for the confidence interval CM
α1

. It is, of course,
also the asymptotic non-coverage probability of CM

α1
, since CM

α1
is asymptotically valid.

(iv) As noted in the Introduction and in Remark 3.1 (v) above, a drawback of CM
α1

is that its width shrinks slowly
for parameter sequences that are very close to unity. The pre-test confidence procedure seeks to improve
on this rate by applying two different unit root tests sequentially and by using the information from these
tests to determine whether to use local-to-unity intervals whose width shrinks at a faster rate than CM

α1

when the autoregressive parameter value is in close proximity of unity. To see how this improvement is
achieved, note that when the true parameter value is within an N−1/2T−1 neighborhood of unity then,
aside from the relatively small probability event of a Type I error, the first unit root test T1 will fail to
reject H0 : ρ = 1, resulting in the use of the interval CUR1

γ1,α2
. When the parameter is this close to unity,

wid
(
CUR1

γ1,α2

)
= Op

(
N−1/2T−1

)
whereas wid

(
CM

α1

)
= Op

(
T−1/2

)
, so that the use of CUR1

γ1,α2
leads

to significant improvement over CM
α1

. The reason for a second unit root test using the statistic T2 is

that for parameter sequences ρT = exp {−1/q {T}} such that max
{

T,
√

NT
}
� q (T) �

√
NT,

the first unit root test T1 will reject H0 with probability approaching one as sample sizes grow, but the less
powerful unit root test based on T2 will not, subject again to the relatively small probability event of a
Type I error. For parameter sequences in this region, wid

(
CM

α1

)
= Op

(
N−1/2T−3/2q (T)

)
. The result
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is that we can make further improvement by using the interval CUR2
γ2,α2

which has width wid
(
CUR2

γ2,α2

)
=

Op

(
N−1/2T−1/2

)
= op

(
N−1/2T−3/2q (T)

)
. Finally, if both these unit root tests reject H0, then our

procedure will infer that the parameter is far enough away from unity to use CM
α1

. Of course, the two unit
root tests are subject to Type II errors; but, as explained in Remark 3.2(vi) below, the probability of Type II
errors could also be properly controlled under our procedure8.

(v) γ1 and γ2, on the other hand, are the significance levels for the unit root tests based on T1 and T2. Note that,
especially in large samples, the specification of γ1 and γ2 really has more of an impact on the width of the
resulting interval than it does on the coverage probability, so that γ1 and γ2 are not significance levels in
the traditional sense. For example, consider the choice of γ1. Observe that a smaller value of γ1 leads to a
wider CUR1

γ1,α2
. However, the effect of γ1 on the width of the interval adopted by the overall procedure could

be ambiguous, since, if the null hypothesis of an exact unit root is true, an increase in γ1 would reduce the
width of CUR1

γ1,α2
but could also lead to a greater chance that T1 will falsely reject the null hypothesis and

switch to either CUR2
γ2,α2

or CM
α1

, both of which are wider than CUR1
γ1,α2

in large samples. A similar argument
shows that it is also difficult to predict a priori the effect of varying γ2 on the width of the resulting interval.
On the other hand, note that, except for pathological specifications where γ1 = 0 and/or γ2 = 0 (ruled out
by our assumption), varying either γ1 or γ2 or both does not lead to a material distortion in the (asymptotic)
coverage probability of the proposed procedure. To see why this is so, consider the case where the unit
root specification is true. Then, even when both γ1 and γ2 are set to be large so that the null hypothesis
is falsely rejected with high probability leading to the use of CM

α1
, we will still end up with asymptotic

coverage probability greater than the nominal level 1− α since CM
α1

is asymptotically valid and, by design,
α1 < α = α1 + α2. On the other hand, if the underlying process is stable, then both of the unit root
tests will reject the null hypothesis withprobability approaching one asymptotically, as long as neither γ1

nor γ2 is set equal to zero, and our procedure will switch to CM
α1

which controls the asymptotic coverage
probability properly.

(vi) Pre-testing leads to the possibility of errors whose probability needs to be controlled. In particular, there
may be parameter sequences which lie just outside of CUR1

γ1,α2
, for which T1 may fail to reject H0 : ρ = 1

even in large samples. In addition, there may be parameter sequences which lie just outside of CUR2
γ2,α2

,
for which H0 is rejected by T1 but for which T2 may not reject H0 even in large samples. In both of these
scenarios, there is the possibility that none of our intervals will cover the true parameter sequence. However,
in the proof of Lemma A1 given in the Appendix SB of the technical supplement, we show that, under our
procedure, the probability of committing such Type II errors can be no greater than α2 asymptotically9.
Hence,by constructing CUR1

γ1,α2
and CUR2

γ2,α2
in the manner suggested above, we can properly control the

probability of not switching to CM
α1

when it is preferable to make that switch. In consequence, the asymptotic
non-coverage probability under our procedure is always less than or equal to α = α1 + α2. Given a
particular significance level α, different combinations of α1 and α2 involve trade-offs where a smaller α2

8 A recent paper by (Bun and Kleibergen 2014) also considers, amongst other things, combining elements of the approach
of (Anderson and Hsiao 1981, 1982; Arellano and Bond 1991), which uses lagged levels of yit as instruments for equations
in first differences, with the approach by (Arellano and Bover 1995; Blundell and Bond 1998) which uses lagged differences
of yit as instruments for equations in levels. The focus of the (Bun and Kleibergen 2014) paper differs substantially from
that of the present paper. In particular, they consider test procedures which attain the maximal attainable power curve
under worst case setting of the variance of the initial conditions, whereas our procedure uses pretest based information to
aggressively increase the power of our inferential procedure in certain regions of the parameter space. Moreover, unlike our
paper, they do not provide results on confidence procedures whose asymptotic coverage probability is explicitly shown to
be at least that of the nominal level uniformly over the parameter space; and their analysis is conducted within a fixed T
framework.

9 The statement of Lemma A1 is given in the Appendix A of the paper. Its proof is lengthy and it is therefore placed in the
technical supplement.
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leads to a smaller probability of committing a Type II error but also leadsto a larger α1 and, thus, to CM
α1

having a smaller asymptotic coverage probability.

(vii) An advantage of our pretest based confidence procedure is its computational simplicity, as it is given in
analytical form and, thus, does not require the use of bootstrap or other types of simulation-based methods
for its computation. Moreover, the fact that CM

α1
, the interval used under our procedure in the stable case, is

based on the Anderson–Hsiao procedure has the further benefit that its validity does not depend on imposing
the assumption of mean stationarity of the initial condition. Hence, the design of our procedure has taken
into consideration certain trade-offs on the competing goals of interval accuracy, computational simplicity,
and the relaxation of the assumption of initial condition stationarity.

4. Monte Carlo Study

This section reports the results of a Monte Carlo study comparing the finite sample performance
of alternative confidence procedures. For the simulation study, we consider data generating processes
of the form

yit = ai + wit,

wit = ρwit−1 + εit, for i = 1, . . . , N and t = 1, . . . , T;

where {εit} ≡ i.i.d. N (0, 1) and {ai} ≡ i.i.d. N (2, 1). We vary ρ = 1.00, 0.99, 0.95, 0.90, 0.80,
and 0.60 and wi0 = 0, 2. In addition, we let N = 100, 200. When N = 100, we take T = 50,
100; and when N = 200, we consider T = 100, 200. We take α = 0.05 throughout, so that the
(nominal) confidence level is always kept at 95%. Four versions of the pre-test based confidence
interval (PCI) given by expression (6) above are considered, with different specifications of γ1, γ2, α1,
and α2, as summarized in the following tables.

Tables 1–12 below provide simulation results comparing the four PCI procedures described above
with the CM

0.05 procedure given in (5) and with confidence intervals obtained by inverting Studentized
statistics associated with the POLS and IVD estimators. More specifically, Tables 1–4 give the empirical
coverage probabilities while Tables 5, 7, 9 and 11 report the average width of the confidence intervals
under each of forty-eight experimental settings, obtained by varying ρ, N, T, and wi0. In addition,
in Tables 6, 8, 10 and 12 we report the number of instances out of 10,000 simulationrepetitions that
a particular confidence procedure leads to an empty interval, which occurs when the intersection of
the (unrestricted) interval and the parameter space is the null set. For example, in the case of the CM

0.05

procedure, an empty interval would arise if

{ρ ∈ (−1, 1] : −zα/2 ≤M (ρ) ≤ zα/2} = (−1, 1] ∩ {ρ ∈ R : −zα/2 ≤M (ρ) ≤ zα/2}

= ∅.

Glancing at Tables 1–4, we see that, consistent with our theory, the empirical coverage probabilities
of the CM

0.05 procedure show the greatest degree of uniformity across different experiments. On the
other hand, all four PCIs have empirical coverage probabilities that are uniformly better than the CM

0.05

procedure across all forty-eight experiments. An intuitive explanation for this result can be given as
follows. When the unit root null hypothesis is true, application of the pre-test procedure will lead to the
use of either CUR1

γ1,α2
or CUR2

γ2,α2
, except in the small probability event where a Type I error is committed by

both of the unit root tests T1 and T2. Since both of these intervals cover the point ρ = 1 by construction,
the overall procedure in this case should cover this point with very high probability. On the other
hand, when the unit root hypothesis is false, the pre-test procedure switches to the interval CM

α1
but
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with α1 set at a level strictly less than 0.05, resulting again in coverage probabilities which are greater
than that of the CM

0.05 procedure.

γ1 γ2 α1 α2

CPCI1 0.01 0.01 0.025 0.025
CPCI2 0.01 0.01 0.049 0.001
CPCI3 0.05 0.05 0.025 0.025
CPCI4 0.05 0.05 0.049 0.001

A possible deficiency of the CM
0.05 procedure as shown in Tables 5, 7, 9 and 11 is that the average

widths of intervals obtained from this procedure are substantially wider than that of the other
procedures when ρ = 1. Moreover, in the ρ = 1 case, the use of the CM

0.05 procedure results in
empty intervals in roughly 2.61% of the times, ranging from a low of 215 empty intervals (out of 10, 000
repetitions) in the case with N = 100, T = 50, and wi0 = 0 to a high of 295 empty intervals (out of
10, 000 repetitions) in the case where N = 100, T = 100, and wi0 = 210. In contrast, no empty interval is
observed for any of the pre-test procedures in any of the 48 experiments, including experiments where
ρ = 1. It should also be noted that, outside of the unit root case, the results of Tables 5–12 do show
CM

0.05 to provide informative intervals with average widths that are much smaller than those in the
ρ = 1 case. In addition, as the true value of ρ moves significantly away from unity, such as in the cases
where ρ = 0.95, 0.9, 0.8, and 0.6; empty intervals were no longer observed for CM

0.05.
For the four alternative specifications of PCI, there does not seem to be a great deal of difference

in their performance across the experiments, although some minor trade-offs in coverage probability
vis-à-vis average interval width can be discerned. For example, looking at PCI1, we see that this
procedure provides very tight intervals in the case where ρ = 1. In fact, the average interval width for
this procedure in the unit root case is ≤0.0070, except in the smaller sample size case with N = 100
and T = 50, where it is still around 0.0133. Moreover, amongst the seven procedures examined in
our study, the empirical coverage probability of PCI1 is the highest, or is at least tied for the highest,
almost across the board, for the 48 experiments whose results are reported in Tables 1–4. Although the
higher coverage probability of PCI1 in the stable region is due at least in part to the fact that it is
designed to be conservative with α1 = 0.025 when the true process is stable, it should be noted that the
informativeness of PCI1, as measured by its average width, does not seem to have suffered significantly
as a result. Note, in particular, that over the 48 experiments the widest average interval width recorded
for PCI1 was only 0.1446, or approximately 7% of the width of the entire parameter space (−1, 1]; and
this occurred with the smaller sample sizes of N = 100 and T = 50. In addition, PCI1 has average
width strictly less than 0.1 in 38 of the experiments. On the other hand, PCI2 sets α1 = 0.049 and is,
thus, less conservative relative to PCI1, particularly in the stable region. In consequence, PCI2 tends
to have not only smaller interval widths but also lower coverage probabilities relative to PCI1 when
the underlying process is stable. The results for PCI1 and PCI2 are illustrative of how the pre-test
procedures can greatly improve upon CM

0.05 in terms of accuracy in the unit root and near unit root
cases while maintaining coverage probability at a high level throughout the parameter space, with the
only downside being that they yield slightly wider intervals when the true process is stable.

10 It might initially seem strange in Tables 6 and 8 that in the cases where ρ = 1 and N = 100, the number of empty intervals
for CM

0.05 actually increased as the sample size in the time dimension increased from T = 50 to T = 100. However, there is an
intuitive explanation for this result. As noted earlier, in the unit root case, the rate of concentration of the width of the CM

0.05
interval is Op

(
T−1/2), so that intervals obtained under this procedure are wider in the T = 50 case than in the T = 100 case,

leading to a higher chance of a non-null intersection with the parameter space.
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Tables 1–4 also show that confidence intervals constructed by inverting Studentized statistics
associated with ρ̂POLS and ρ̂IVD are decidedly inferior to the pre-test based confidence procedures.
Consistent with our theory, Tables 1–4 show that these confidence intervals have highly non-uniform
coverage probabilities across different (true) parameter values ρ. More specifically, the coverage
probabilities of the IV-based confidence intervals are especially poor when ρ is unity or near-unity,
whereas the coverage probabilities for the POLS-based confidence intervals begin to deviate
dramatically from the nominal level when ρ = 0.95 or less. Moreover, from the results reported in
Tables 6, 8, 10 and 12, we note that CIIVD, the confidence procedure based on inverting the Studentized
statistic associated with ρ̂IVD, leads to an empty interval in more than 40% of the simulation runs
when ρ = 1. This is perhaps not surprising since, as shown in Theorem SA-1 in Appendix SA of the
supplement to this paper, ρ̂IVD is not uniformly convergent over the parameter space and does not
have an asymptotic normal distribution when the true ρ equals unity. Hence, when ρ = 1, the CIIVD

procedure, which is designed to achieve the correct asymptotic coverage in the stationary case, will not
only exhibit poor coverage probabilities but will often deliver intervals that lie entirely outside the
parameter space. Interestingly, even though the CIPOLS procedure is based on the correct asymptotics
when ρ = 1, it nevertheless produces some empty intervals in the unit root case as shown in Tables 6,
8, 10 and 12. This suggests a need to modify the usual t-ratio based confidence procedure in cases
where there is interest in a point on the boundary of a bounded parameter space, such as ρ = 1.

Table 1. Coverage Probabilities (nominal level = 0.95).

N = 100, wi0 = 0

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CI PCI4

1.00 50 0.9490 0.1229 0.9430 1.0000 1.0000 0.9999 0.9996
1.00 100 0.9518 0.1251 0.9411 1.0000 1.0000 0.9999 0.9999
0.99 50 0.9476 0.3874 0.9385 0.9957 0.9934 0.9891 0.9828
0.99 100 0.9443 0.6239 0.9448 0.9918 0.9850 0.9872 0.9752
0.95 50 0.7995 0.8046 0.9369 0.9839 0.9678 0.9839 0.9678
0.95 100 0.6816 0.8911 0.9445 0.9874 0.9749 0.9874 0.9743
0.90 50 0.2384 0.8738 0.9376 0.9833 0.9649 0.9758 0.9491
0.90 100 0.0507 0.9223 0.9465 0.9715 0.9489 0.9715 0.9476
0.80 50 0.0002 0.9055 0.9378 0.9677 0.9386 0.9677 0.9386
0.80 100 0.0000 0.9254 0.9421 0.9705 0.9432 0.9705 0.9432
0.60 50 0.0000 0.9162 0.9351 0.9650 0.9361 0.9650 0.9361
0.60 100 0.0000 0.9335 0.9425 0.9700 0.9435 0.9700 0.9435

Results based on 10,000 simulations.

Table 2. Coverage Probabilities (nominal level = 0.95).

N = 100, wi0 = 2

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 50 0.9490 0.1345 0.9311 1.0000 1.0000 0.9998 0.9996
1.00 100 0.9518 0.1285 0.9339 1.0000 1.0000 0.9999 0.9999
0.99 50 0.9493 0.4537 0.9226 0.9947 0.9929 0.9878 0.9792
0.99 100 0.9449 0.6648 0.9370 0.9910 0.9859 0.9856 0.9750
0.95 50 0.8056 0.8720 0.9164 0.9752 0.9595 0.9748 0.9578
0.95 100 0.6864 0.9172 0.9326 0.9842 0.9706 0.9839 0.9682
0.90 50 0.2498 0.9227 0.9150 0.9715 0.9490 0.9624 0.9322
0.90 100 0.0546 0.9376 0.9359 0.9632 0.9397 0.9634 0.9372
0.80 50 0.0002 0.9353 0.9198 0.9567 0.9213 0.9567 0.9213
0.80 100 0.0000 0.9393 0.9313 0.9644 0.9331 0.9644 0.9331
0.60 50 0.0000 0.9357 0.9225 0.9563 0.9250 0.9563 0.9250
0.60 100 0.0000 0.9414 0.9358 0.9657 0.9376 0.9657 0.9376

Results based on 10,000 simulations.
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Table 3. Coverage Probabilities (nominal level = 0.95).

N = 200, wi0 = 0

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 100 0.9494 0.0921 0.9455 1.0000 1.0000 0.9998 0.9997
1.00 200 0.9458 0.0879 0.9499 0.9999 0.9999 0.9998 0.9998
0.99 100 0.9468 0.6346 0.9482 0.9875 0.9786 0.9856 0.9742
0.99 200 0.9409 0.8101 0.9483 0.9867 0.9759 0.9863 0.9748
0.95 100 0.4377 0.8949 0.9436 0.9844 0.9696 0.9782 0.9558
0.95 200 0.1796 0.9243 0.9444 0.9736 0.9467 0.9736 0.9461
0.90 100 0.0010 0.9186 0.9451 0.9705 0.9462 0.9705 0.9462
0.90 200 0.0000 0.9349 0.9475 0.9742 0.9481 0.9742 0.9481
0.80 100 0.0000 0.9320 0.9447 0.9740 0.9457 0.9740 0.9457
0.80 200 0.0000 0.9353 0.9422 0.9715 0.9433 0.9715 0.9433
0.60 100 0.0000 0.9368 0.9452 0.9707 0.9466 0.9707 0.9466
0.60 200 0.0000 0.9439 0.9482 0.9732 0.9490 0.9732 0.9490

Results based on 10,000 simulations.

Table 4. Coverage Probabilities (nominal level = 0.95).

N = 200, wi0 = 2

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 100 0.9494 0.0958 0.9370 1.0000 1.0000 1.0000 0.9996
1.00 200 0.9458 0.0911 0.9468 0.9999 0.9999 0.9998 0.9998
0.99 100 0.9471 0.6731 0.9398 0.9850 0.9773 0.9824 0.9712
0.99 200 0.9421 0.8297 0.9441 0.9857 0.9755 0.9847 0.9728
0.95 100 0.4475 0.9167 0.9327 0.9802 0.9614 0.9725 0.9473
0.95 200 0.1850 0.9325 0.9401 0.9702 0.9423 0.9702 0.9413
0.90 100 0.0009 0.9351 0.9341 0.9622 0.9354 0.9622 0.9354
0.90 200 0.0000 0.9420 0.9411 0.9703 0.9431 0.9703 0.9431
0.80 100 0.0000 0.9436 0.9364 0.9683 0.9372 0.9683 0.9372
0.80 200 0.0000 0.9433 0.9398 0.9678 0.9407 0.9678 0.9407
0.60 100 0.0000 0.9419 0.9374 0.9669 0.9392 0.9669 0.9392
0.60 200 0.0000 0.9469 0.9447 0.9710 0.9456 0.9710 0.9456

Results based on 10,000 simulations.

Table 5. Average Width of Confidence Intervals.

N = 100, wi0 = 0

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 50 0.0059 0.0493 0.9810 0.0133 0.0168 0.0161 0.0204
1.00 100 0.0030 0.0361 0.7866 0.0070 0.0088 0.0090 0.0114
0.99 50 0.0126 0.0576 0.2362 0.1001 0.1233 0.1235 0.1456
0.99 100 0.0073 0.0452 0.0947 0.0898 0.1105 0.0866 0.1029
0.95 50 0.0184 0.0902 0.1215 0.1385 0.1504 0.1357 0.1367
0.95 100 0.0123 0.0721 0.0838 0.0963 0.0967 0.0944 0.0889
0.90 50 0.0234 0.1063 0.1273 0.1446 0.1311 0.1442 0.1285
0.90 100 0.0161 0.0764 0.0838 0.0958 0.0842 0.0958 0.0842
0.80 50 0.0297 0.1052 0.1171 0.1339 0.1177 0.1339 0.1177
0.80 100 0.0207 0.0744 0.0784 0.0897 0.0788 0.0897 0.0788
0.60 50 0.0369 0.0992 0.1057 0.1209 0.1062 0.1209 0.1062
0.60 100 0.0259 0.0701 0.0724 0.0828 0.0727 0.0828 0.0727

Results based on 10,000 simulations.
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Table 6. Number of Empty Intervals (out of 10,000).

N = 100, wi0 = 0

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 50 185 4400 215 0 0 0 0
1.00 100 169 4339 263 0 0 0 0
0.99 50 0 2768 243 0 0 0 0
0.99 100 0 1347 164 0 0 0 0
0.95 50 0 62 9 0 0 0 0
0.95 100 0 0 0 0 0 0 0

There are no empty intervals for any of the procedures in the cases ρ = 0.9, 0.8, and 0.6.

Table 7. Average Width of Confidence Intervals.

N = 100, wi0 = 2

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 50 0.0059 0.0491 0.9114 0.0132 0.0166 0.0152 0.0195
1.00 100 0.0030 0.0360 0.7521 0.0069 0.0087 0.0091 0.0112
0.99 50 0.0126 0.0576 0.1821 0.1005 0.1242 0.1172 0.1402
0.99 100 0.0073 0.0457 0.0844 0.0888 0.1096 0.0831 0.0999
0.95 50 0.0182 0.0925 0.1025 0.1260 0.1409 0.1182 0.1220
0.95 100 0.0122 0.0728 0.0764 0.0896 0.0914 0.0867 0.0823
0.90 50 0.0230 0.1071 0.1054 0.1210 0.1109 0.1200 0.1069
0.90 100 0.0160 0.0764 0.0757 0.0866 0.0761 0.0866 0.0761
0.80 50 0.0292 0.1052 0.0995 0.1137 0.0999 0.1137 0.0999
0.80 100 0.0206 0.0744 0.0722 0.0826 0.0726 0.0826 0.0726
0.60 50 0.0366 0.0992 0.0954 0.1091 0.0958 0.1091 0.0958
0.60 100 0.0258 0.0701 0.0688 0.0786 0.0691 0.0786 0.0691

Results based on 10,000 simulations.

Table 8. Number of Empty Intervals (out of 10,000).

N = 100, wi0 = 2

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 50 185 4360 270 0 0 0 0
1.00 100 169 4363 295 0 0 0 0
0.99 50 0 2411 275 0 0 0 0
0.99 100 0 1144 184 0 0 0 0
0.95 50 0 12 6 0 0 0 0
0.95 100 0 0 0 0 0 0 0

There are no empty intervals for any of the procedures in the cases ρ = 0.9, 0.8, and 0.6.

Table 9. Average Width of Confidence Intervals.

N = 200, wi0 = 0

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 100 0.0021 0.0253 0.7838 0.0048 0.0060 0.0066 0.0083
1.00 200 0.0010 0.0178 0.6377 0.0027 0.0033 0.0037 0.0047
0.99 100 0.0051 0.0340 0.0696 0.0662 0.0796 0.0657 0.0751
0.99 200 0.0032 0.0272 0.0384 0.0454 0.0544 0.0429 0.0487
0.95 100 0.0087 0.0540 0.0635 0.0722 0.0654 0.0720 0.0641
0.95 200 0.0060 0.0387 0.0421 0.0481 0.0423 0.0481 0.0423
0.90 100 0.0114 0.0540 0.0592 0.0677 0.0595 0.0677 0.0595
0.90 200 0.0080 0.0382 0.0400 0.0457 0.0402 0.0457 0.0402
0.80 100 0.0147 0.0526 0.0554 0.0634 0.0557 0.0634 0.0557
0.80 200 0.0103 0.0372 0.0382 0.0437 0.0384 0.0437 0.0384
0.60 100 0.0183 0.0496 0.0512 0.0585 0.0514 0.0585 0.0514
0.60 200 0.0129 0.0351 0.0356 0.0407 0.0358 0.0407 0.0358

Results based on 10,000 simulations.
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Table 10. Number of Empty Intervals (out of 10,000).

N = 200, wi0 = 0

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 100 208 4538 256 0 0 0 0
1.00 200 241 4685 247 0 0 0 0
0.99 100 0 1108 114 0 0 0 0
0.99 200 0 252 51 0 0 0 0
0.95 100 0 0 0 0 0 0 0
0.95 200 0 0 0 0 0 0 0

There are no empty intervals for any of the procedures in the cases ρ = 0.9, 0.8, and 0.6.

Table 11. Average Width of Confidence Intervals.

N = 200, wi0 = 2

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 100 0.0021 0.0252 0.7507 0.0048 0.0060 0.0064 0.0081
1.00 200 0.0010 0.0179 0.6201 0.0027 0.0033 0.0037 0.0047
0.99 100 0.0051 0.0344 0.0623 0.0647 0.0783 0.0622 0.0720
0.99 200 0.0031 0.0274 0.0365 0.0448 0.0539 0.0417 0.0477
0.95 100 0.0086 0.0542 0.0571 0.0653 0.0594 0.0650 0.0578
0.95 200 0.0060 0.0387 0.0398 0.0455 0.0400 0.0455 0.0400
0.90 100 0.0113 0.0540 0.0535 0.0612 0.0538 0.0612 0.0538
0.90 200 0.0079 0.0382 0.0380 0.0435 0.0382 0.0435 0.0382
0.80 100 0.0145 0.0526 0.0511 0.0584 0.0513 0.0584 0.0513
0.80 200 0.0103 0.0372 0.0366 0.0419 0.0368 0.0419 0.0368
0.60 100 0.0182 0.0496 0.0486 0.0556 0.0488 0.0556 0.0488
0.60 200 0.0129 0.0351 0.0347 0.0397 0.0349 0.0397 0.0349

Results based on 10,000 simulations.

Table 12. Number of Empty Intervals (out of 10,000).

N = 200, wi0 = 2

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 100 208 4552 280 0 0 0 0
1.00 200 241 4608 261 0 0 0 0
0.99 100 0 906 127 0 0 0 0
0.99 200 0 209 52 0 0 0 0
0.95 100 0 0 0 0 0 0 0
0.95 200 0 0 0 0 0 0 0

There are no empty intervals for any of the procedures in the cases ρ = 0.9, 0.8, and 0.6.

5. Conclusions

The uniform inference procedure proposed here utilizes information from pretesting the unit
root hypothesis to aid the construction of confidence intervals in panel autoregression by means of
data-based selection among intervals that are well suited to particular regions of the parameter space.
The construction is asymptotically valid in the sense that the large sample coverage probability is at
least that of the nominal level uniformly over a wide parameter space that includes unity. The method
is particularly simple to implement in practical work and simulations provide encouraging evidence
that the method produces confidence intervals with good finite sample accuracy, as measured by
the combination of empirical coverage probability and average interval width. The panel AR model
considered here is a simple model. But it is the kernel of all dynamic panel models and embodies all
the characteristics that make uniform inference and confidence interval construction difficult. Even in
the time series case these problems are well known to be challenging. In the panel case, the challenges



Econometrics 2019, 7, 45 18 of 28

are accentuated by additional issues arising from the presence of incidental effects and multi-index
limit theory. The pre-test confidence interval solution proposed here addresses these challenges and
has potential for application in more complex models.
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Appendix A. Proofs of the Main Results

The proofs given here rely on a large number of technical results that are established in the Technical
Supplement (Chao and Phillips 2019). These results are designated in the derivations that follow by
use of the prefix S. Lemmas A1 and A2 are stated in Appendix A and their proofs are given in the
Technical Supplement. The proofs rely on functional limit theory for integrated and near integrated
processes in conjunction with joint limit theory arguments for multi-indexed asymptotics (Phillips
1987a, 1987b; Phillips and Moon 1999).

Proof of Theorem 1. Let ∆εit (ρT) = ∆yit − ρT∆yit−1, and note that

M (ρT) =
1

ω̂
√

NT

N

∑
i=1

T

∑
t=3

yit−2 (∆yit − ρT∆yit−1)

=
1

ω̂
√

NT

N

∑
i=1

T

∑
t=3

ai∆εit (ρT) +
1

ω̂
√

NT

N

∑
i=1

T

∑
t=3

wit−2∆εit (ρT) .

Applying partial summation, we have

1
ω̂
√

NT

N

∑
i=1

T

∑
t=3

wit−2∆εit (ρT)

=
1

ω̂
√

NT

N

∑
i=1

[
T

∑
t=4

(wit−3 − wit−2) εit−1 + wiT−2εiT − wi1εi2

]

=

(
1− exp

{
− 1

q (T)

})
1

ω̂
√

NT

N

∑
i=1

T

∑
t=4

wit−3εit−1 −
1

ω̂
√

NT

N

∑
i=1

T

∑
t=4

εit−2εit−1

+
1

ω̂
√

NT

N

∑
i=1

wiT−2εiT −
1

ω̂
√

NT

N

∑
i=1

wi1εi2,
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so that

M (ρT) = − 1
ω̂
√

NT

N

∑
i=1

T

∑
t=4

εit−2εit−1 +
1

ω̂
√

NT

N

∑
i=1

wiT−2εiT

+ (1− ρT)
1

ω̂
√

NT

N

∑
i=1

T

∑
t=4

wit−3εit−1 +
1

ω̂
√

NT

N

∑
i=1

T

∑
t=2

ai∆εit −
1

ω̂
√

NT

N

∑
i=1

wi1εi2.

We turn first to part (a). In this case, by assumption, ρT = 1 for all T sufficiently large. Under the
random-effects specification given by Assumption 2, we can apply parts (g) and (i) of Lemma SD-11,
part (a) of Lemma SD-25, and part (a) of Lemma SC-13 to obtain

M (ρT) = − 1
ω̂
√

NT

N

∑
i=1

T

∑
t=4

εit−2εit−1 +
1

ω̂
√

NT

N

∑
i=1

wiT−2εiT

+ (1− ρT)
1

ω̂
√

NT

N

∑
i=1

T

∑
t=4

wit−3εit−1 +
1

ω̂
√

NT

N

∑
i=1

T

∑
t=2

ai∆εit −
1

ω̂
√

NT

N

∑
i=1

wi1εi2

= − 1
ω̂
√
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N

∑
i=1

T

∑
t=4

εit−2εit−1 +
1

ω̂
√

NT

N

∑
i=1

wiT−2εiT + Op

(
(1− ρT)

√
T
)

+Op

(
1√
T

)
= − 1

σ2
√

2
1√
NT

N

∑
i=1

T

∑
t=4

εit−2εit−1 +
1

σ2
√

2
1√
NT

N

∑
i=1

wiT−2εiT + op (1) .

It follows from applying Lemma SD-24 that M (ρT)⇒ N (0, 1), as required. Moreover, it is easily seen
that, by applying part (b) of Lemma SE-1 in lieu of part (g) of Lemma SD-11 in the argument given
above, the same result can be obtained under the fixed-effects specification given by Assumption 2*.

Next consider part (b), where we take ρT = exp {−1/q (T)} such that T/q (T)→ 0. In the case of
the random-effects specification given by Assumption 2, we can use the results in parts (g) and (i) of
Lemma SD-11, part (b) of Lemma SD-25, and part (b) of Lemma SC-13 to deduce that

M (ρT) = − 1
ω̂
√

NT

N

∑
i=1

T

∑
t=4

εit−2εit−1 +
1

ω̂
√

NT

N

∑
i=1

wiT−2εiT + Op

( √
T

q (T)

)
+ Op

(
1√
T

)

= − 1
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√

2
1√
NT

N

∑
i=1

T

∑
t=4

εit−2εit−1 +
1

σ2
√

2
1√
NT

N

∑
i=1

wiT−2εiT + op (1) .

It follows from part (a) of Lemma SD-22 that M (ρT) ⇒ N (0, 1). Moreover, it is easily seen that,
by applying part (b) of Lemma SE-1 in lieu of part (g) of Lemma SD-11 in the argument given above,
the same result can be obtained under the fixed-effects specification given by Assumption 2*.

Consider part (c), where we take ρT = exp {−1/q (T)} such that q (T) ∼ T. Under the
random-effects specification given by Assumption 2, we can apply parts (g) and (i) of Lemma SD-11,
part (c) of Lemma SD-25, and part (c) of Lemma SC-13 to deduce that

M (ρT) = − 1
ω̂
√

NT

N

∑
i=1

T

∑
t=4

εit−2εit−1 +
1

ω̂
√

NT

N

∑
i=1

wiT−2εiT + Op

(
1√
T

)

− 1
ωT
√

NT

N

∑
i=1

T

∑
t=4

εit−2εit−1 +
1

ωT
√

NT

N

∑
i=1

wiT−2εiT + op (1) ,
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where ωT = σ2 {1 + [q (T) /2T] [1− exp {−2T/q (T)}]}1/2. It follows from part (b) of Lemma SD-22
that M (ρT) ⇒ N (0, 1). Moreover, it is easily seen that, by applying part (b) of Lemma SE-1 in lieu
of part (g) of Lemma SD-11 in the argument given above, the same result can be obtained under the
fixed-effects specification given by Assumption 2*.

For part (d), we consider the case where ρT = exp {−1/q (T)} such that q (T) → ∞ but
q (T) /T → 0. Here, we first apply part (d) of Lemma SC-13 and part (d) of Lemma SD-21 to obtain

1
ω̂
√

NT

N

∑
i=1

wiT−2εiT =
1

σ2
√

NT

N

∑
i=1

wiT−2εiT
[
1 + op (1)

]
= Op

(√
q (T)

T

)
.

Under the random-effects specification given by Assumption 2, we further apply parts (g) and (i) of
Lemma SD-11 and part (d) of Lemma SD-25 to obtain

M (ρT) = − 1
ω̂
√

NT

N

∑
i=1

T

∑
t=4

εit−2εit−1 + Op

(√
q (T)

T

)
+ Op

(
1√

q (T)

)
+ Op

(
1√
T

)

= − 1
σ2
√

NT

N

∑
i=1

T

∑
t=4

εit−2εit−1 + op (1) .

By part (c) of Lemma SD-22, we then deduce that M (ρT)⇒ N(0, 1), as required for (d). Moreover, it is
easily seen that, by applying part (b) of Lemma SE-1 in lieu of part (g) of Lemma SD-11 in the argument
given above, the same result can be obtained under the fixed-effects specification given by Assumption
2*.

Finally, to show part (e), we first consider the random-effects specification given by Assumption 2.
In this case, note that, by applying parts (g) and (i) of Lemma SD-11, part (e) of Lemma SD-21, and part
(e) of Lemma SC-13, we obtain

1
ω̂
√

NT

N

∑
i=1

T

∑
t=3

wit−2∆εit (ρT)

= − 1
ω̂
√

NT

N

∑
i=1

T

∑
t=4

εit−2εit−1 +
(1− ρT)

ω̂
√

NT

N

∑
i=1

T

∑
t=4

wit−3εit−1 + Op

(
1√
T

)

=

√
1 + ρT

2σ4
1√
N

N

∑
i=1

(Xi,T + Yi,T) + op (1) ,

where Xi,T = −T−1/2 ∑T
t=4 εit−2εit−1 and Yi,T = (1− ρT) T−1/2 ∑T

t=4 wit−3εit−1. It follows by Lemma
SD-23 that M (ρT) =

√
(1 + ρT) / (2σ4)N−1/2 ∑N

i=1 (Xi,T + Yi,T) + op (1) ⇒ N (0, 1). Moreover, it is
easily seen that, by applying part (b) of Lemma SE-1 in lieu of part (g) of Lemma SD-11 in the argument
given above, the same result can be obtained under the fixed-effects specification given by Assumption
2*.

Proof of Theorem 2. To proceed, note that, in the pathwise asymptotics considered here, N grows as
a monotonically increasing function of T, so that the asymptotics can be taken to be single-indexed
with T → ∞. Now, let

{
GMj : j = 1, 2, 3, 4, 5

}
be the collections of parameter sequences defined

in the statement of Theorem 1. Moreover, let
{

ρk,T
}
∈ GMsk

(for k = 1, 2, . . . , 5), i.e.,
{

ρk,T
}

is a
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sequence belonging to the collection GMsk
11. Define Tk = fk (T) (k = 1, . . . , d), with d ≤ 5, where fk (·) :

N→ N is an increasing function in its argument, and let
{

ρk,Tk

}
denote a subsequence of

{
ρk,T

}
.

Note that every parameter sequence ρT ∈ (−1, 1] can be represented as {ρT} =
⋃d

j=1

{
ρj,Tj

}
, where{

ρ1,T1

}
∈ GMs1

, . . . ,
{

ρd,Td

}
∈ GMsd

, with GMsk
6= GMs` for k 6= ` and where N =

⋃d
k=1 {Tk = fk (T) : T ∈ N},

with N denoting the set of natural numbers.
Next, note that Pr

(
ρk,T /∈ CM

α1,T |ρk,T

)
= Pr

(∣∣MT (ρk,T)
∣∣ > zα1/2|ρk,T

)
. Theorem 1 implies that,

for any ε > 0 and for each k ∈ {1, . . . , d}, there exists positive integer Mk such that for every positive
integer T ≥ Mk, ∣∣Pr

(∣∣M (ρk,T)
∣∣ > zα1/2|ρk,T

)
− Pr

(
|Z| > zα1/2

)∣∣ < ε,

where Z ∼ N (0, 1). Moreover, for any positive integer T ≥ Mk, we have Tk = fk (T) ≥ T ≥ Mk

by Lemma SD-33 (given in Appendix SD in the technical supplement to this paper), from which we
further deduce that

∣∣Pr
(∣∣M (

ρk,Tk

)∣∣ > zα1/2|ρk,Tk

)
− Pr

(
|Z| > zα1/2

)∣∣ < ε.

Next, let M = max { f1 (M1) , . . . , fk (Md)}. Consider any positive integer T ≥ M; we must have
T = fk (T∗) for some k = 1, . . . , d and for some T∗ ∈ N. Given that T = fk (T∗) ≥ M ≥ fk (Mk),
we also deduce that T ≥ T∗ ≥ Mk by Lemma SD-33 since fk (·) is an increasing function of its
argument. It follows that for every sequence {ρT} and for all T ≥ M

∣∣Pr
(
|M (ρT)| > zα1/2|ρT

)
− Pr

(
|Z| > zα1/2

)∣∣
=

∣∣∣Pr
(∣∣∣M (

ρk, fk(T∗)

)∣∣∣ > zα1/2|ρk, fk(T∗)

)
− Pr

(
|Z| > zα1/2

)∣∣∣ < ε.

The desired result then follows from (Lepski 1999) Lemma 2.6.2.

Lemma A1. Let ρT = exp {−1/q (T)}, and suppose that Assumptions 1, 3, 4, and either 2 or 2* hold.
Then, the following statements are true as N, T → ∞ such that Nκ/T = τ, for constants κ ∈ (0, ∞) and
τ ∈ (0, ∞).

(a) Let GP
1 = {{ρT} : ρT = 1 for all T sufficiently large}, and set N = N (T) = (τT)1/κ and Cγ,α,N,T =

Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
1 ,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α.

(b) Let GP
2 =

{
{ρT} : ρT = exp

{
1

q(T)

}
,
√

NT � q (T)
}

, and set N = N (T) = (τT)1/κ and

Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
2 ,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α.

11 The reason for using the notation GMsk
, as opposed to GMk , is so that we can refer to a particular collection of sequences

amongst
{
GMj : j = 1, 2, . . . , 5

}
without GMs1

necessarily being GM1 , for example.
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(c) Let

GP
3

=

{
{ρT} : ρT = exp

{
1

q (T)

}
,
√

NT ∼ q (T) , and ρT ≥ 1− (zγ1 + zα2)
√

2√
NT

eventually

}
,

and set N = N (T) = (τT)1/κ and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
3 ,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α.

(d) Let

GP
4

=

{
{ρT} : ρT = exp

{
1

q (T)

}
,
√

NT ∼ q (T) , and ρT < 1− (zγ1 + zα2)
√

2√
NT

eventually

}
,

and set N = N (T) = (τT)1/κ and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
4 ,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 + α2 = α.

(e) Let GP
5 =

{
{ρT} : ρT = exp {1/q (T)} ,

√
NT � q (T) , and T � q (T)�

√
NT
}

, and set N =

N (T) = (τT)1/κ and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
5 ,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α.

(f) Let

GP
6

=

{
{ρT} : ρT = exp

{
1

q (T)

}
, T � q (T) ∼

√
NT, and ρT ≥ 1−

2 (zγ2 + zα2)√
NT

eventually
}

,

and set N = N (T) = (τT)1/κ and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
6 ,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α.

(g) Let

GP
7

=

{
{ρT} : ρT = exp

{
1

q (T)

}
, T � q (T) ∼

√
NT, and ρT < 1−

2 (zγ2 + zα2)√
NT

eventually
}

,

and set N = N (T) = (τT)1/κ and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
7 ,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 + α2 = α.
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(h) Let GP
8 =

{
{ρT} : ρT = exp

{
1

q(T)

}
,
√

NT � q (T) ∼ T
}

, and set N = N (T) = (τT)1/κ and

Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
8 ,

lim sup
T→∞

Pr
(

ρT /∈ Cγ,α,T |ρT ∈ GP
8

)
≤ α1 < α.

(i) Let GP
9 =

{
{ρT} : ρT = exp {1/q (T)} ,

√
NT � q (T)� T

}
, and set N = N (T) = (τT)1/κ and

Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
9 ,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α.

(j) Let

GP
10

=

{
{ρT} : ρT = exp

{
1

q (T)

}
, q (T) ∼

√
NT ∼ T, and ρT ≥ 1−

2 (zγ2 + zα2)√
NT

eventually
}

,

and set N = N (T) = τT and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
10,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α.

(k) Let

GP
11

=

{
{ρT} : ρT = exp

{
1

q (T)

}
, q (T) ∼

√
NT ∼ T, and ρT < 1−

2 (zγ2 + zα2)√
NT

eventually
}

,

and set N = N (T) = τT and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
11,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 + α2 = α.

(l) Let

GP
12

=

{
{ρT} : ρT = exp

{
1

q (T)

}
, q (T) ∼

√
NT � T, and ρT ≥ 1−

2 (zγ2 + zα3)√
NT

eventually
}

,

and set N = N (T) = (τT)1/κ and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
12,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α.

(m) Let

GP
13

=

{
{ρT} : ρT = exp

{
1

q (T)

}
, q (T) ∼

√
NT � T, and ρT < 1−

2 (zγ2 + zα2)√
NT

eventually
}

,
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and set N = N (T) = (τT)1/κ and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for ρT ∈ GP
13,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 + α2 = α.

(n) Let

GP
14 =

{
{ρT} : ρT = exp

{
1

q (T)

}
, T � q (T)�

√
NT and

√
N � q (T)

}
,

and set N = N (T) = (τT)1/κ and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
14,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α.

(o) Let

GP
15 =

{
{ρT} : ρT = exp

{
1

q (T)

}
, T � q (T) , N1/4T1/4 � q (T) , and q (T) /

√
N = O (1)

}
,

and set N = N (T) = (τT)1/κ and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
15,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α.

(p) Let GP
16 =

{
{ρT} : (T � q (T)) ∩

(
q (T) /N1/4T1/4 = O (1)

)}
, and set N = N (T) = (τT)1/κ and

Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
16,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α.

(q) Let GP
17 =

{
{ρT} : ρT = exp {1/q (T)} , N1/3T1/3 � q (T) ∼ T �

√
NT
}

, and set N = N (T) =

(τT)1/κ and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
17,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α.

(r) Let

GP
18 =

{
{ρT} : ρT = exp

{
1

q (T)

}
, N1/4T1/4 � q (T) ∼ T, and

q (T)
N1/3T1/3 = O (1)

}
,

and set N = N (T) = (τT)1/κ and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
18,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α.

(s) Let GP
19 =

{
{ρT} : ρT = exp {1/q (T)} , q (T) ∼ T, and q (T) /

(
N1/4T1/4

)
= O (1)

}
, and set

N = N (T) = (τT)1/κ and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
19,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α.



Econometrics 2019, 7, 45 25 of 28

(t) Let

GP
20 =

{
{ρT} : ρT = exp

{
1

q (T)

}
, N1/3T1/3 � q (T)�

√
NT, and (q (T)� T)

}
,

and set N = N (T) = (τT)1/κ and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
20,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α.

(u) Let GP
21 =

{
{ρT} : ρT = exp {1/q (T)} , q (T)� T, and q (T) ∼ N1/3T1/3

}
, and set N = N (T) =

(τT)1/κ and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
17,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α.

(v) Let

GP
22 =

{
{ρT} : ρT = exp

{
1

q (T)

}
, q (T)→ ∞, q (T)� T, and q (T) /N1/3T1/3 → 0

}
,

and set N = N (T) = (τT)1/κ and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then, for {ρT} ∈ GP
22,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α.

The proof of Lemma A1 is given in Appendix SB of the technical supplement.

Lemma A2. Suppose that Assumptions 1, 3, 4, and either 2 or 2* hold, and let

GP
23 =

{
{ρT} : |ρT | = exp

{
− 1

q (T)

}
, q (T) ≥ 0, and q (T) = O (1) as T → ∞

}
,

Also, let N, T → ∞ such that Nκ/T = τ, for constants κ ∈ (0, ∞) and τ ∈ (0, ∞), so that we can set
N = N (T) = (τT)1/κ and Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T . Then,

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α1 < α,

for {ρT} ∈ GP
19.

The proof of Lemma A2 is also given in Appendix SB of the technical supplement.

Proof of Theorem 3. In the pathwise asymptotics considered here, N grows as a monotonically
increasing function of T, so that the asymptotics can be taken to be single-indexed with T → ∞.
Hence, we can set N = (τT)1/κ and simplify notation by writing Cγ,α,N,T = Cγ,α,N(T),T = Cγ,α,T .

To proceed, note that, by property of a supremum, there exists a sequence {ρT ∈ (−1, 1] : T ≥ 1}
such that

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
= lim sup

T→∞
sup

ρ∈(−1,1]
Pr
(
ρ /∈ Cγ,α,T |ρ

)
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Thus, for some fixed significance level α ∈ (0, 0.5], to show that

lim sup
T→∞

sup
ρ∈(−1,1]

Pr
(
ρ /∈ Cγ,α,T |ρ

)
≤ α,

it suffices to show that
lim sup

T→∞
Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α

for every sequence {ρT ∈ (−1, 1] : T ≥ 1}. To proceed, let
{
GP

j : j = 1, 2, . . . , 23
}

be the collections of

parameter sequences defined in Lemmas A1 and A2 given above. Moreover, let
{

ρk,T
}
∈ GP

sk
(for

k = 1, . . . , 23), i.e.,
{

ρk,T
}

is a sequence belonging to the collection GP
sk

. Define Tk = fk (T) (k = 1, . . . , d),
with d ≤ 23, where fk (·) : N→ N is an increasing function in its argument, and let

{
ρk,Tk

}
denote

a subsequence of
{

ρk,T
}

. Note that every parameter sequence ρT ∈ (−1, 1] can be represented as
{ρT} =

⋃d
j=1

{
ρj,Tj

}
, where

{
ρ1,T1

}
∈ GP

s1
, . . . ,

{
ρd,Td

}
∈ GP

sd
, with GP

sk
6= GP

s` for k 6= ` and where

N =
d⋃

k=1

{Tk = fk (T) : T ∈ N} (A1)

with N denoting the set of natural numbers {1, 2, . . . }. Moreover, define υk,T =

supm≥T Pr
(

ρk,m /∈ Cγ,α,m|ρk,m ∈ GP
sk

)
and pk = lim supT→∞ Pr

(
ρk,T /∈ Cγ,α,T |ρk,T ∈ GP

sk

)
.

It is clear from the definition of υk,T and pk that limT→∞ υk,T = pk for each k ∈ {1, 2, . . . , d}; or, more
formally, for any ε > 0, there exists positive integer Lk such that, for all T ≥ Lk,

∣∣υk,T − pk
∣∣ < ε,

from which it follows, using the results of Lemma A1, that, for any ε > 0 and for each k ∈ {1, 2, . . . , d},
there exists a positive integer Lk such that, for all T ≥ Lk, υk,T < pk + ε ≤ α + ε. Now, for any
k ∈ {1, . . . , d} and for any positive integer T ≥ Lk, we have, by Lemma SD-33 given in Appendix
SD of the technical supplement to this paper, that Tk = fk (T) ≥ Lk, so that

∣∣υk,Tk
− pk

∣∣ < ε, for any
subsequence

{
υk,Tk

}
of
{

υk,T
}

, from which we further deduce that

υk,Tk
= sup

m≥Tk

Pr
(

ρk,m /∈ Cγ,α,m|ρk,m ∈ GP
sk

)
< pk + ε ≤ α + ε.

Next, let Lmax = max { f1 (L1) , . . . , fd (Ld)}. Consider any positive integer T ≥ Lmax;
then, (A1) implies that T = fk (T∗) for some k = 1, . . . , d and for some T∗ ∈ N. By the fact that
fk (·) is an increasing function of its argument, we have that T = fk (T∗) ≥ Lmax ≥ fk (Lk) ≥ Lk,
from which it follows that for every positive integer T ≥ Lmax

sup
m≥T

Pr (ρm /∈ Cγ,α,m|ρm) = sup
m≥ fk(T∗)

Pr (ρm /∈ Cγ,α,m|ρm)

≤ sup
m≥Lmax

Pr (ρm /∈ Cγ,α,m|ρm) < α + ε

Hence, for any sequence {ρT} ∈ (−1, 1],

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
= inf

T≥1
sup
m≥T

Pr (ρm /∈ Cγ,α,m|ρm) < α + ε.

Since ε is arbitrary, we deduce that

lim sup
T→∞

Pr
(
ρT /∈ Cγ,α,T |ρT

)
≤ α
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for any sequence {ρT} ∈ (−1, 1], which gives the desired conclusion.
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