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Abstract

This paper proposes a new model for capturing discontinuities in the underlying financial
environment that can lead to abrupt falls, but not necessarily sustained monotonic falls, in
asset prices. This notion of price dynamics is consistent with existing understanding of market
crashes, which allows for a mix of market responses that are not universally negative. The
model may be interpreted as a martingale composed with a randomized drift process that is
designed to capture various asymmetric drivers of market sentiment. In particular, the model
is capable of generating realistic patterns of price meltdowns and bond yield inflations that
constitute major market reversals while not necessarily being always monotonic in form. The
recursive and moving window methods developed in Phillips, Shi and Yu (2015, PSY), which
were designed to detect exuberance in financial and economic data, are shown to have detective
capacity for such meltdowns and expansions. This characteristic of the PSY tests has been
noted in earlier empirical studies by the present authors and other researchers but no analytic
reasoning has yet been given to explain why methods intended to capture the expansionary
phase of a bubble may also detect abrupt and broadly sustained collapses. The model and
asymptotic theory developed in the present paper together explain this property of the PSY
procedures. The methods are applied to analyze S&P500 stock prices and sovereign risk in
European Union countries over 2001-2016 using government bond yields and credit default
swap premia. A pseudo real-time empirical analysis of these data shows the effectiveness of
the monitoring strategy in capturing key events and turning points in market risk assessment.
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1 Introduction

Crashes are often defined in terms of an abrupt discontinuity in the relationship between the
underlying financial environment and stock prices that produces an unusually large negative
movement in asset prices (Gennotte and Leland (1990); Barlevy and Veronesi (2003); Hong
and Stein (2003)). Abrupt movements in market prices of this type may well produce a major
initial unidirectional change but are seldom monotonic for a sustained period, a phenomenon
that complicates modeling and econometric inference. In this regard, market collapses share a
common feature with the expansionary phase of most bubbles.

The occurrence of financial market crashes may be due to significant news events or reported
changes in fundamentals. The sudden and disruptive re-pricing of Euro area sovereign credit
risk in 2008-2012 is a vivid example. Starting from Ireland in late September 2008, Euro area
governments announced a set of rescue packages. These measures commonly took the form of
capital injections and guarantees for financial sector liabilities and purchases of illiquid assets from
financial institutions, all intended to increase confidence in their banking systems. According to
the International Monetary Fund, as of April 15, 2009, the total support for the financial sector in
Ireland reached a level of 2.63 times its 2008 GDP.1 While the effect of these fiscal interventions on
national economies is more difficult to measure, it is clear that the interventions led to significant
deteriorations in budget positions and a ballooning of government debt. The average upfront
financing need cited in the IMF report for the Euro countries in April 2009 was around five
percent of 2008 GDP, and upfront Government financing in the UK exceeded 20%. The resulting
negative shock to the public sector caused tremendous falls in government bond prices, with bond
yields and credit default swaps soaring to record highs over the immediate years following the
crisis, particularly in Southern European countries.

On the other hand, many of the dramatic crashes in the US stock market –most notably
the 1929 and 1987 crashes –are documented to occur without any particular significant news
events or fundamental changes (Cutler et al. (1989) and Gennotte and Leland (1990)). There
is a vast literature providing alternative explanations for crash discontinuities in stock prices.
For example, Gennotte and Leland (1990) show that in a market where uninformed investors
are unable to distinguish hedging activity from information-based trades, large numbers of such
investors may revise downward their expectations when there are what appear to be infinitesimal
shifts in information or other small shocks that lead to lower prices. The pessimistic view of the
market limits their willingness to absorb the extra supply and causes a magnified price response.
In a behavioral model with heterogeneous traders that take exuberant, cautious, and neutral
views of the same fundamentals, Phillips (2016) shows that price solution paths may alternate
between exuberance and collapse, depending on the relative proportions of such traders. Small
shifts alone in these proportions can have a major impact on market direction.

Barlevy and Veronesi (2003) show that, even in the absence of hedging strategies such as stop-
loss strategies and portfolio insurance, uninformed traders can in some circumstances precipitate
a price crash. In related work, Romer (1993) and Hong and Stein (2003) consider a market
environment where investors possess diverse useful information about fundamentals. The models

1http://www.imf.org/external/np/fad/2009/042609.htm.
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proposed by Romer (1993) and Hong and Stein (2003) share a common spirit that the trading
process causes endogenous revelation of private information, which in turn can lead to large price
changes based on only small observable news events when many investors are affected. In a similar
manner, Cont and Wagalath (2013, 2016) note that the sudden deleveraging of large financial
portfolios (or fire sales) can be self-reinforcing, leading to a downward spiral in asset prices.

Taken together, all of this research points to multifarious potential sources of market reversals,
often involving only small shifts in behavior, perception, or the availability of new information.
Against this complex background, the challenge of modeling market collapse is considerable,
particular when the factors driving change are unobservable, often behavioral, and commonly
the outcome of small cumulative shifts in participant thinking and incoming news on market
fundamentals.

The approach adopted in the present paper involves a new reduced form dynamic for asset
prices during periods of disruptive market crashes where the multiplicity of unobservable drivers
is captured through the arrival of asymmetric shocks that augment the usual martingale model
for asset prices. The data generating process (DGP) is consistent with the crash definition of
Gennotte and Leland (1990). In particular, the collapse process is assumed to be driven by the
arrival of new shocks to the market that are independent of past data and that reflect broadly
negative market sentiment appearing in the market. We show that this DGP is capable of
generating both exogenous (or news-led) crises as well as endogenous crises. The random-drift
augmented martingale is of some independent interest and generalizes the usual martingale and
martingale plus drift mechanisms that are commonly used in other work.

This new model also differs from the (stationary) mildly integrated process model used in
earlier work by Phillips and Shi (2018a; 2018b, PS) and Harvey et al. (2016), where the historical
sample path of the data series matters but is attentuated in a way that reflects reduced market
expectations. Although both collapse processes can produce realistic patterns of market behav-
ior during crisis episodes where market collapses occur, the new model is especially well-suited
to capturing crash behavior where there are abrupt falls in asset prices. Correspondingly, the
asymptotic properties and implications of the two processes are very different.

One particularly useful aspect of the new model is that it explains an interesting empirical
feature of the bubble detection procedure of Phillips, Shi and Yu (2015a; 2015b, PSY). The
recursive rolling detection procedure of PSY was designed to detect speculative bubbles during the
expansion phase and to consistently estimate origination and termination dates of such bubbles.
We show both asymptotically and in finite samples that this procedure also has detective power
against the new data generating process for a market crash and that it can consistently estimate
the dates of the crash. The crash detection capability of the PSY procedure has been noted in
several recent empirical articles by the authors (PSY (2015a); PS (2018a); Shi (2017); Deng et al.
(2017)) and by many other researchers considering stock prices, exchange rates and other financial
time series where abrupt crashes and sustained collapses have occurred. See, for example, Yiu
and Jin (2013), Fantazzini (2016), and Hu et al. (2017, forthcoming). This capability of PSY is
further illustrated in the present paper with an application of the procedure to the S&P500 stock
market over the period of January 2005 to March 2009.

Crashes in asset prices are mirrored in bond yield inflation. The PSY procedure is, therefore,
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well-suited as a real-time monitoring device for ballooning sovereign risks. Sovereign risk is ac-
knowledged to pose a serious threat to the stability of the global economic and financial system.
The past decade has been a particularly unsettling period for the public sector in Europe. The
bailout packages that were implemented during and following the financial crisis opened up con-
siderable new financial linkages between the public and banking sectors, raising sovereign risk to
historical highs. Especially in Greece, rising sovereign risk led to ballooning government bond
yield and credit default swap premiums; and the unprecedented level of public debt announced
in December 2009 triggered a prolonged period of panic and sustained economic recession in the
country. This unusual period of economic and financial upheaval is difficult to model with tra-
ditional methods and is a convenient vehicle for demonstrating the usefulness of the model and
inferential methodology introduced in the present paper.

Using 10-year government bond yields and five-year credit default swap premia as proxies for
sovereign risk, we conduct a pseudo real-time monitoring exercise of sovereign risk in Portugal,
Greece, Ireland, Italy and Spain (PIIGS) over the period from January 2001 to September 2016.
The PSY procedure identifies both the 2007-2008 and the 2010-2012 crisis episodes in all PIIGS
countries. The warning signal is switched on by the test as early as July 2007 in the CDS
market (September 2007 in the bond market) and again for all PIIGS countries soon after the
Greek announcement of a 300 billion national debt (exceeding the entire Greek economy) led to
a downgrade by rating agencies of Greek debt to junk status with wide repercussions for other
European economies, foreshadowing the European debt crisis.

The paper is organized as follows. Section 2 introduces the new econometric model for cap-
turing price crashes and yield inflation, along with various limit properties associated with the
model that facilitate testing. We calibrate the model to the S&P 500 stock market prices dur-
ing the subprime mortgage crisis period and to Greek 10-year government bond yields during
the European debt crisis period. Section 3 describes the recursive rolling procedure of PSY and
investigates the asymptotic and finite sample performance of the procedure under the proposed
data generating process for price crashes. The crash detection capability of the PSY test is
demonstrated in Section 4 with an application to the S&P500 stock market. Section 5 conducts
a pseudo real-time monitoring of sovereign risk in the PIIGS countries, with both the 10-year
government bond yield and the 5-year credit default swaps. Section 6 concludes. Proofs and
other technical material are in the Appendix.

2 An Econometric Model for Price Collapse and Yield Inflation

In the spirit of Gennotte and Leland (1990) and Barlevy and Veronesi (2003), we can think of
a price crash as a discontinuity in the pricing function originating from a change in one of its
continuous arguments, producing what might end up being a very large response to a small change
in fundamentals or perceptions of fundamentals. Barlevy and Veronesi provide a mechanism for
such changes in terms of a disjointed locally non-monotonic demand curve (locally upward sloping
and cutting off at some price level) for an asset associated with uninformed traders making noisy
decisions in the face of risk.

In a related way, but in a reduced form framework, the econometric model we employ mod-

4



ifies the usual efficient market price mechanism by introducing asymmetric shock effects that
supplement fundamentals. In particular, in our model the logarithmic price change or asset re-
turn (logPt − logPt−1) is driven by the superposition of martingale differences and a random
sequence (−Lt) that is temporarily and locally asymmetric in the negative direction, embodying
trader negative sentiment on the direction of fundamentals. We use a prototypical set up to
demonstrate the capability of this model to capture forces that can precipitate a market price
crash. The model is specifically useful in analyzing the asymptotic behavior of econometric tests
for collapse during such episodes.

The model is constructed to have the following specific form during crash episodes

logPt − logPt = −Lt + εt, (1)

where the εt are martingale difference innovations with variance σ2, the random sequence Lt
follows an asymmetric scaled uniform distribution, and εt and Lt are assumed independent. We
assume that Lt takes the form

Lt = Lbt, with bt ∼iid U [−ε, 1] and ε < 1 (2)

where L is a positive scale quantity measuring shock intensity and bt is uniform on an interval
ranging from a (usually small) negative value −ε to unity. The average return during market
crashes is therefore negative and is given by −L (1− ε) /2. We refer to this collapse process (1) as
the L-process. The support of bt is designed to produce predominantly negative shocks mixed with
some positive shocks in −Lt that occur with smaller probability controlled by the magnitude of
the parameter ε. This specification, as demonstrated below, leads to realistic collapse trajectories
that are not necessarily monotonic. Abrupt major crashes are captured with (1) by allowing the
scale parameter L to diverge (i.e. L→∞). We refer to (1) under this setting as the L∞-process.

The L-process in (2) induces a form of randomized drift in the time series with direction
determined by the signed asymmetry and intensity determined by L. Many variants of the proto-
typical specification (2) are possible. In particular, the support of bt controls the general form of
the data trajectories produced by the model. For instance, the paths become progressively closer
to those of a martingale with (monotonic) linear drift as the support narrows to a single point,
showing that simpler variants of martingale models with some (potentially noisy) deterministic
drift are subsumed within the formulation as ε → −1. Higher order randomized drifts are also
included in this framework by simple extension of the definition (2).2 On the other hand, as ε→ 1
the paths become closer to a martingale that is observed with additional noise or measurement
error, such as noise originating in market microstructure effects.

Suppose Pt is the price of a τ -period discount bond and yt is the continuously compounded
zero-coupon nominal yield to maturity. The relationship between the bond price and its yield
is Pt = exp(−τyt). This implies an inverse linear relationship between the bond yield and

2For example, the L-process produces a randomized quadratic drift in the time series when Lt = L∗
t bt, with

L∗
t = La1 + La2t and constant coefficients (La1 , La2), which specializes to a non-random quadratic drift when

ε → −1. This formulation can be further extended by employing coefficients La1,t, La1,t which are individually
randomized in the same manner as Lt but with their own uniformly and asymmetrically distributed scale factors.

5



logarithmic price such that yt = − 1
τ logPt. Assuming a collapse process (1) for bond prices, yt

follows the dynamic

yt − yt−1 =
1

τ
Lt + vt with vt ∼iid N(0, σ2/τ). (3)

Unlike the process for bond prices, the L-component of the bond yield (i.e. 1
τLt) is positive which

produces an inflationary overall pattern to bond yields during periods of credit crunch.
Moreover, the specification (1) may be such that the L-process switches on or off depending

on the financial environment and trader sentiment. This switching behavior is controlled by the
scale parameter L, which takes the value zero during normal periods or a positive number when
the market sustains declines or collapses. Denote the date of market collapse by Tc = bTrcc for
some sample fraction rc > 0 where the floor function b·c gives the integer part of its argument.
The logarithmic asset price in a two-regime framework then follows the generating mechanism

logPt =

{
cT−η + logPt−1 + εt if t ∈ N ≡ [1, Tc]

logPt−1 − Lt + εt if t ∈ C ≡ (Tc, T ]
. (4)

In the normal regime (denoted N), the scale parameter L is zero and the log price is assumed
to follow a martingale with an asymptotically negligible drift (i.e. cT−η with constant c and
η > 1/2), designed to capture a slow drift in the market over time, as used in PSY and PS. When
the market collapses (denoted as regime C), the log price switches to the L-process dynamic (1).

Next, suppose that the asset of interest is a discount bond and its price follows DGP (4). The
bond yield yt then satisfies the two-regime mechanism

yt =

{
−cτT−η + yt−1 + vt if t ∈ N ≡ [1, Tc]

yt−1 + 1
τLt + vt if t ∈ C ≡ (Tc, T ]

, (5)

which generates bond yield inflation via the scaled and positively signed L-process (1/τ)Lt. It
follows that appropriate signing of the L-process generating mechanism allows for both price
collapse episodes and ballooning yield data trajectories.

To visualize the realism of the data generating process, we calibrate (4) to the S&P 500 price
index from January 2005 to February 2009 and (5) to the Greek 10-year government bond yield
from January 2006 to February 2012. Data are obtained from DataStream. The sample period
covers, respectively for these two series, the famous subprime mortgage crisis and the European
debt crisis period.

The US stock market reached historical highs in mid-2007 and started to tumble from the
second half of 2007. For the purpose of calibration, we therefore use the period 2005M01-2007M07
for the normal (N) regime and the period 2007M08-2009M02 for the crisis (C) regime. This
simulation uses iid(0, σ2) innovations εt and the calibrated parameter settings are X0 = 7.08,
cT−η = 0.009, σ = 0.024, L = 0.17, ε = 0.63, Tc = 31 and T = 50. Figure 1b plots a typical
realization of (4) and Figure 1a the log S&P 500 price index for comparison. As evident from
these graphs, the new DGP is capable of generating empirically realistic patterns of serious market
downturns.
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Figure 1: The logarithmic S&P 500 price index running from January 2005 to March 2009 and a
typical realization of the data generating process (4).

(a) log S&P 500 price index
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The announcement of a 300 billion euro debt by the Greek government in December 2009
triggered a round of aggressive expansion in bond yields. We divided the sample into two periods:
2006M01-2009M11 (regime N) and 2009M12-2012M02 (regime C) with calibrated parameter
settings y0 = 3.6, τ = 120, −cτT−η = 0.03, σ = 2.16, L = 391.79, ε = 0.45, Tc = 47 and T = 74.
A simulated sample path and the Greek 10-year government bond yield are plotted in Figure 2b.
It is evident from these graphs that, when the L-process is appropriately signed as in (5), the
mechanism can equally well generate patterns of noisy upward expansion.

Figure 2: Greek 10-year government bond yields from January 2006 to February 2012 and a
typical realization of the DGP (5).
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Model behavior under different collapse regimes

Key properties of the model and recursive tests are determined by the behavior of log prices under
the DGP (4), where a market crash occurs after a period of normal martingale dynamics in log
prices. As shown in Lemma A.3 of the Appendix, when the collapse process follows Lt as in (2),
asset price dynamics take the following different forms in normal and crash regimes:

(i) For t ∈ N , logPt=bTrc =
∑bTrc

s=1 εs {1 + op (1)} ∼a T 1/2B (r).

(ii) For t ∈ C, logPt=bTrc = −
∑bTrc

j=Tc+1 Lj {1 + op (1)} ∼ a − TL1
2(r − rc) (1− ε),

where B(·) is Brownian motion with variance σ2. Martingale behavior in the normal regime is
standard. But when observations lie in the crisis regime, the composition of asset prices involves
several components

logPt = logPTc︸ ︷︷ ︸
initial condition

−
t∑

j=Tc+1

Lj︸ ︷︷ ︸
L-component

+
t∑

j=Tc+1

εj︸ ︷︷ ︸
stochastic trend

, (6)

each component having its own driver elements. The L-process component in (6) dominates both
the initial condition and the stochastic trend, diverging to negative infinity at the rate Op(T ) for
the L-process with fixed L and at rate Op(TL) when L → ∞. The bond yield, by definition,
will diverge to positive infinity at the same rate. The model therefore accommodates scenarios of
collapse or exuberance with rates and direction controlled by the behavior of L. As is apparent
from the form of (6), the crash process includes simple drift mechanisms as a special case when
the L-process is nonstochastic, producing a linear drift3 as a special case, for instance, when
ε→ −1.

This model differs substantially from the bubble collapse process used in PS (2018a,b). While
the L-process in (1) generates collapse patterns that are independent of the underlying asset
price dynamics, the PS process produces path-dependent trajectories. In PS, bubble implosion
is modeled by a (stationary) mildly integrated process (Phillips and Magdalinos, 2007, 2009).
Specifically,

logPt =

{
dT−η + logPt−1 + εt if t ∈ N ≡ [1, Tc]

γT logPt−1 + εt, if t ∈ C ≡ (Tc, T ]
. (7)

where γT = 1 − cT−β with localizing (to unity) coefficient c > 0 and β ∈ [0, 1).4 Under this
model, the dynamics of log prices in regime C can be rewritten as

logPt = γt−TcT logPTc︸ ︷︷ ︸
initial condition

+

t−Tc−1∑
j=0

γjT εt−j︸ ︷︷ ︸
stochastic shocks

.

3Here,
∑t

j=Tc+1 Lj → L(t−Tc−1) as ε→ −1. As indicated earlier, higher order polynomial drifts are produced
in a similar fashion upon suitable definition of the deterministic component of Lj .

4Harvey et al. (2016) set the localizing exponent coefficient β to be zero, so that the process in regime C is a
fixed stationary process rather than mildly integrated.
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Given that γT < 1, the impact of the random shocks εt diminishes as time elapses; and the speed
at which the diminution occurs increases as the parameter β becomes smaller.

Under the generating mechanism (7) and with εt satisfying either Assumption A1 or A2 in
the Appendix, asset price dynamics take the following form in the crash regime for t ∈ C,

logPt=bTrc =

t−Tc−1∑
j=0

γjT εt−j {1 + op (1)} ∼a T β/2Xc

with Xc ≡ N
(
0, σ2/2c

)
. The limit theory follows directly from Phillips and Magdalinos (2007)5

and in this case the initial condition is dominated asymptotically by the reverting component.
Thus, standardized log prices converge to a normal variate with mean zero at the rate Op(T

β/2)
and with variance dependent on the localizing coefficient c in the mildly integrated component of
(7). Evidently, the order of magnitude of logPt in regime C is much higher under DGP (4) than
under DGP (7), with the L-process placing direct downward pressure on prices. This difference
can have a considerable impact on price trajectories under collapse regimes, particularly when
the intensity parameter L is large, which enables more realistic representation of prices during
abrupt crises with dramatic collapses in prices.

3 The PSY Procedure for Detecting Crashes

The PSY procedure has been applied to a wide variety of financial and real estate markets for
bubble monitoring [see, for example, Gutierrez (2012); Fantazzini (2016); Etienne et al. (2013);
Pavlidis et al. (2016); Shi et al. (2016)]. The methodology and warning alert system has also
received attention from policy makers6 and the financial press (Meyer, 2013). The method has
been successfully employed both as a crisis dating device and as an early warning alert system
for market exuberance.

The rolling-recursive procedure of PSY is based on a right-tailed unit root test (Phillips et al.,
2014). The null hypothesis captures normal market behavior and states that the logarithmic asset
price follows a martingale process with a mild drift function such that

logPt = kT−γ + logPt−1 + εt, with constant k and γ > 1/2. (8)

where the term kT−γ captures any mild drift that may be present in prices but which is of smaller
order than the martingale component and is therefore asymptotically negligible. The regression
model used for estimation and inference includes an intercept but no time trend and has the
following typical form7

∆ logPt = µ+ ρ logPt−1 + εt, εt
mds∼

(
0, σ2

)
. (9)

5See Phillips and Shi (2018a,b) for related work on bubble implosion asymptotics.
6For example, the quarterly exuberance indicators published by the Federal Reserve Bank of Dallas for 23 inter-

national housing markets (http://www.dallasfed.org/institute/houseprice/) are based on the PSY procedure.
7For the empirical application discussed later an augmented Dickey-Fuller specification is used with a lag order

of one.
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Suppose the regression runs from T1 ≡ br1T c to T2 ≡ br2T c. The corresponding unit root (t-ratio)
test statistic, denoted by DF r2r1 , is defined as

DF r2r1 =

∑T2
j=T1

X̃j−1

(
X̃j − X̃j−1

)
[
σ̂r1r2

∑T2
j=T1

X̃2
j−1

]1/2 , (10)

where X̃j−1 is the demeaned log price and σ̂2r1,r2 is the least squares (OLS) estimator of the error
variance of the regression over [T1, T2]. Notice that the sign of the DF statistic is determined by
the numerator.

For each observation of interest brT c, corresponding to some sample fraction r, we construct
a backward expanding subsample sequence with the end point of the regression fixed on brT c (i.e.
r2 = r) and allow the starting point to vary within its feasible range such that r1 ∈ [0, r − r0],
where r0 is the minimum window size required to initiate the regression. The test statistic for
brT c is denoted by BSDFr(r0) and defined as

BSDFr(r0) = sup
r1∈[0,r−r0],r2=r

{
DF r2r1

}
.

Under the null hypothesis, the BSDF statistic has a limit distribution determined by the limiting
sup variate

Fr(r0) := sup
r1∈[0,r−r0],r2=r


1
2rw

[
W (r2)

2 −W (r1)
2 − rw

]
−
∫ r2
r1
W (s)ds [W (r2)−W (r1)]

r
1/2
w

[
rw
∫ r2
r1
W (s)2ds−

(∫ r2
r1
W (s)ds

)2]1/2
 (11)

where W is the standard Brownian motion and rw = r2− r1. This limit distribution is calculated
with critical values for right-sided significance testing by simulation, as described in PSY (2015a).
For practical implementation, the setting for the minimum window size r0 that is recommended
in PSY (2015a) is 0.01 + 1.8/

√
T .

Somewhat unexpectedly given the right-sided nature of the PSY test (which is designed to
focus on market exuberance), this procedure also has detective power against market collapse
in the process (1). This property was mentioned in the Introduction and has been noted in the
many recent studies cited there, including the original PSY article. In what follows we provide
an analytic explanation for this phenomenon. We also provide simulation evidence that explores
the properties of the PSY procedure under a market collapse generating mechanism based on the
L− process model described above.

3.1 Asymptotic Performance

We start by discussing the limit behavior of the PSY test under the two data generating processes
(4) and (5).
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Theorem 1 Under the generating mechanism (4) with εt satisfying either Assumption A1 or
A2 in the Appendix and Lt satisfying (2) for either constant L or L → ∞, the unit root t-ratio
test statistic DF r2r1 = Op(T

1/2)→ +∞ as T →∞, when r1 ∈ N and r2 ∈ C.

The proof is given in the Appendix. Theorem 1 reveals that when the recursive PSY regression
proceeds from a normal regime to a crash regime, the DF r2r1 statistic diverges to positive infinity
as T → ∞. It follows that right-sided unit root tests are consistent under a collapse alternative
generated according to the L− process given in (4).

Theorem 2 Under the generating mechanism (7) with εt satisfying either Assumption A1 or
A2 in the Appendix, the unit root t-ratio test statistic DF r2r1 = Op(T

1/2)→ −∞ as T →∞, when
r1 ∈ N and r2 ∈ C.

The proof of theorem 2 follows just as in Phillips and Shi (2018a,b) and is available from the
authors upon request. Thus, under the generating mechanism used in PSY and PS, the unit root
test diverges to negative infinity as the sample size goes to infinity and therefore appears to have
no discriminatory power in the right-sided testing environment associated with bubble and crisis
detection. This result contrasts sharply with theorem 1 where the same test statistic has strong
discriminatory power in right-sided testing.

The source of the divergence in the limiting properties of standard unit root tests under the
two generating mechanisms (4) and (7) lies in the distinct behavior of the numerator of the
statistic (10) under the two processes. Specifically,

T2∑
j=T1

X̃j−1

(
X̃j − X̃j−1

)
= −

T2∑
j=Tc+2

X̃j−1Lj{1 + op(1)} =

{
Op(T

2)→ +∞ if L is a constant

Op(T
2L2)→ +∞ if L→∞

assuring divergence to positive infinity under (4) and

T2∑
j=T1

X̃j−1

(
X̃j − X̃j−1

)
= (γT − 1)

T2∑
j=Tc

X̃2
j−1{1 + op(1)} = Op(T

2−β)→ −∞

assuring divergence to negative infinity under (7). By virtue of its construction from unit root
statistics, the backward sup statistic BSDF also diverges to positive infinity under (4) and to
negative infinity under (7) at the same rate T 1/2, in both cases when the observation interval
includes the crisis regime (i.e. for r ∈ C).

This differing behavior of the BSDF statistic determines the outcome of the PSY detection
process (designed originally for bubbles in the expansionary phase) under the two different crisis
mechanisms. To fix ideas, let cvr (βT ) be the (1− βT ) 100% percentile of the limiting distribution
under the null (11) (i.e. the critical value of the BSDFr statistic) and assume that cvr (βT )→∞
as βT → 0. The break date Tc is estimated as the first chronological observation whose BSDF
statistic exceeds cvr (βT ).
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Theorem 3 Under the data generating process (4) with εt satisfying either Assumption A1 or
A2 and Lt satisfying (2) for either constant L or L→∞, the break date rc of crash origination
is consistently estimated by the PSY detector if

1

cvr (βT )
+
cvr (βT )

T 1/2
→ 0.

The PSY procedure cannot consistently estimate the break date rc under the DGP (7).

The proof of Theorem 3 is based on Theorems 1 and 2 and follows directly as in the arguments
given in PSY (2015b). Given the substantial empirical evidence that the PSY algorithm detects
crisis collapse, particularly abrupt collapses or slow sustained collapses, these analytic results
indicate that the generating process (4) has considerable advantage in modeling various collapse
mechanisms that arise in practical work with financial and economic data.

3.2 Finite Sample Performance

The empirical size of the PSY test has already been studied in detail in PSY (2015a). Here we
investigate the performance of the PSY procedure under the alternative hypothesis of a price
collapse using the new L-process mechanism (2). The data generating processes are (4) in Table
1 for logarithmic prices and (5) in Table 2 for bond yields, with parameter settings the same as
for Figures 1b and 2b. The number of replications is 5, 000. We vary some of the key parameters
to gain a more comprehensive view of test performance.

We report the successful detection rate (SDR) and mean and standard deviation of the bias
of the estimated crash origination date, i.e. r̂c − rc. The successful detection rate provides a
more complete performance measure than power. Successful detection satisfies the following two
conditions: (i) for all r ∈ [r0, 1], there should be at least one realized test statistic BSDFr(r0)
that exceeds the relevant critical value; and (ii) the estimated crash origination date r̂c should
exceed the actual date rc of collapse. Note that only the first condition is required for power
calculation.

It is obvious from both tables that test power declines as the break point moves towards the
end of the sample period. This decline in power occurs because there are fewer observations in
the crisis regime as rc moves towards unity and therefore the crisis signal is weaker given the
same collapse intensity. The successful detection rate of the BSDF test increases with the sample
size, which is expected given test consistency. For example under (4), the SDR of the test rises
from 48.6% to 87.7% when T increases from 50 to 200. The last panels of Tables 1 and 2 show
the SDR of the test with respect to variations in collapse intensity L. As expected and as evident
in the tables, power increases with L.

The estimation accuracy of the origination date remains roughly the same with respect to
sample size T and collapse magnitude L. However, bias reduces as the break point moves towards
the end of the sample period. The latter is due to the definition of the successful detection rate
which requires that only those estimates greater than rc are counted, thereby ensuring that the
maximum bias is constrained to be 1− rc.
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Table 1: The successful detection rate of the BSDF test for crisis identification under DGP (4)
for log prices.

T = 50 and L = 0.17 rc = 0.8 and L = 0.17 T = 50 and rc = 0.8
SDR r̂c − rc SDR r̂c − rc SDR r̂c − rc

rc = 0.6 0.736 0.20 (0.11) T = 50 0.486 0.11 (0.05) L = 0.1 0.388 0.11 (0.06)
rc = 0.7 0.633 0.15 (0.08) T = 100 0.699 0.10 (0.05) L = 0.2 0.540 0.11 (0.05)
rc = 0.8 0.486 0.11 (0.05) T = 150 0.805 0.10 (0.05) L = 0.3 0.622 0.10 (0.05)
rc = 0.9 0.291 0.06 (0.03) T = 200 0.877 0.10 (0.05) L = 0.4 0.653 0.09 (0.05)

Table 2: Empirical power of the BSDF test for crisis identification under DGP (5) for bond yields.

T = 50 and L = 391.79 rc = 0.8 and L = 10 T = 50 and rc = 0.8
SDR r̂c − rc SDR r̂c − rc SDR r̂c − rc

rc = 0.6 0.836 0.16 (0.10) T = 50 0.267 0.11 (0.06) L = 10 0.267 0.11 (0.06)
rc = 0.7 0.800 0.12 (0.07) T = 100 0.348 0.10 (0.06) L = 100 0.694 0.09 (0.05)
rc = 0.8 0.712 0.09 (0.05) T = 150 0.407 0.10 (0.06) L = 200 0.712 0.09 (0.05)
rc = 0.9 0.519 0.05 (0.03) T = 200 0.474 0.10 (0.06) L = 400 0.713 0.09 (0.05)

4 Detecting the Subprime Mortgage Crisis

The bursting of the US real estate bubble in 2007 led to mortgage delinquencies and foreclosures
coupled with a major secondary impact on financial markets through the devaluation of housing-
related securities. This financial market impact triggered instability in the global financial system
and an economic recession in US. As depicted in Figure 1a, log prices of S&P index stocks dropped
dramatically starting from late 2007 towards the end of the sample period in 2009. We apply
the PSY procedure to both the log prices and the price-dividend ratio of the monthly S&P500
index over the period from January 2005 to March 2009. The 95% finite sample critical values
are obtained by a wild bootstrap procedure. The wild bootstrap is used to replicate the pattern
of heteroskedasticity in the original shocks of the financial return data and hence is expected to
reduce the risk of any size distortion in practical application of the PSY procedure (Harvey et al.,
2016).

Figure 3 plots the log price (left panel) and the price-dividend ratio (right panel) of the
S&P 500 index. The shaded areas are the identified periods of the market crash based on the
PSY detection algorithm. For the log price series, the crisis monitoring algorithm finds a single
episode of market collapse. The identified origination date coincides with the collapse of Lehman
Brothers in September 2008. By comparison, the price-dividend ratio series appears to contain
more sensitive information concerning the market downturn with a warning alert of a crash in
early 2008. With this series, the PSY procedure detects evidence of the emergent crisis much
earlier after the market peak in 2007, revealing an initial episode of collapse that runs from
January to March 2008, followed by the later collapse in September 2008 at the time of the
Lehman Brothers bankruptcy.
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Figure 3: The logarithmic price (left) and the price-dividend ratio (right) of the S&P 500 price
index running from January 2005 to March 2009. The shaded areas are the identified periods of
market crashes based on the PSY dating procedure.
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For both series, this application demonstrates that the right-sided PSY test and market
monitoring procedures are useful in detecting and dating market crashes as well as episodes
of market exuberance and bubbles, confirming the relevance of the limit theory given earlier for
the detection of collapse episodes in financial data.

5 Detecting the Sovereign Debt Crisis

We focus on the sovereign debt crisis experienced in the European Union (EU) following the
global financial crisis. The countries included in the study are Portugal, Ireland, Italy, Greece,
and Spain (PIIGS). These are the five EU member states that were unable to refinance their
government debt or to bail out over-indebted banks on their own during the debt crisis. We
measure the sovereign credit risk with both 10-year government bond yields and five-year credit
default swaps (CDS).

5.1 Government Bond Yield Indicators

The monthly 10-year government bond yield spreads of the PIIGS countries (along with Germany)
from January 2001 to September 2016 are plotted in Figure 4. The data are obtained from
DataStream.

As is evident in the figure, government yields in these five countries over the period 2003 to
late 2008 move almost in line with each other with only mild fluctuations in their levels around
5%. The bond yields of Greece and Ireland rose after the bailout announcement of the Irish
government on September 30, 2008 and reached a temporary peak in January 2009. A second
round of far more aggressive expansion in bond yields started soon after the Greek government’s
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announcement of a 300 billion Euro debt on December 10, 2009. Led by the rapid and substantial
rise in Greek yields to over 25%, the yields of all countries continued to mount to historical highs,
with Greek yields clearly dominating in terms of the magnitude of this yield inflation. The Greek
government bond yield peaked in March 2012 when Greece defaulted on its debt.

Figure 4: The 10-year government bond yield (%) of PIIGS from January 2001 to September
2016
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Portugese and Irish debt yields followed similar time paths peaking in January 2012 (Portugal)
and July 2011 (Ireland). A less dramatic rise in Greek government bond yields occurred over
the period from late 2014 to early 2015 with some later fluctuations in levels through 2016.
This subsequent episode was triggered by the sustained economic recession through to the fourth
quarter of 2014, a dramatic one-day fall of 12% in the Athens stock market in December 2014,
and the election victory of the political party Syrizia, which led the new Greek government to
reject the existing bailout terms. In response, the European ‘Troika’8 temporarily suspended all
scheduled remaining aid to Greece. The yields of Spain and Italy closely follow each other during
this period. In the aftermath of the crisis, the debt yields of all the PIIGS countries (except
Greece) declined from mid 2015 onwards and have been relatively stable since. The German
government bond yields remained uniformly the lowest throughout the entire period and with a
minor fluctuation in early 2015 descended over the full tenure of the crisis, consistent with the
perception of a ‘flight-to-quality’ in government debt (Beber et al., 2009).

In our empirical work with these data, we applied the PSY test to both the bond yields
and the bond yield spread between the PIIGS and Germany. In the latter case, the German
bond yield serves as a proxy ‘fundamental’, capturing changes in macroeconomic conditions and
investor risk aversion. The wild bootstrap is employed to obtain appropriate 95% finite-sample
critical values for the test. The PSY test statistic sequence starts from February 2003. Figure

8The Troika includes the European Commission, the European Central Bank, and the International Monetary
Fund.
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5 plots the 10-year government bond yields (left panel (a)) and bond yield spreads between the
PIIGS countries and Germany (right panel (b)), with the shaded areas in the figure showing the
crisis episodes identified by the PSY procedure. The first vertical line indicates the date of the
Irish government’s announcement of bank bailout packages in Setember 2008; the second vertical
line indicates the date when the Greek government admitted a 300 billion Euro debt; and the
final line marks the beginning of the 2014 economic recession in Greece.

Figure 5: The PSY test based on the 10-year government bond yields (left) and the bond yield
spreads (right) of the PIIGS countries from February 2003 to September 2016. The shaded areas
are the identified periods of market crashes based on the procedure.
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(b) PSY test based on bond yield spreads between the
PIIGS countries and Germany
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Based on the 10-year government bond yield series, the PSY procedure finds no evidence of
a market crash in 2007-2008 in the PIIGS countries. This result contrasts with the findings for
bond yield spreads, where prolonged periods of deviation from martingale dynamics are detected
for all countries. This suggests that bond yield spreads provide a much stronger signal concerning
sovereign risk than bond yield levels. German government bonds were seen as a ‘safe haven’ during
the debt crisis and the increased demand during this period for German bonds led to lower bond
yields. The spreads reflect relative movements in both yield series, thereby providing a measure
of relative sovereign risk and providing a more sensitive ongoing indicator of the prevailing crisis
conditions.

Based on the bond yield spreads, crashes are detected in every government bond market
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during the global financial crisis. The warning signal in Ireland switched on immediately after
Ireland’s announcement of bailout packages for the financial sector. This finding is consistent
with the view that the fiscal intervention by government transferred financial sector stress to the
public sector (Mody (2009); Zoli and Sgherri (2009); Ejsing and Lemke (2011); Acharya et al.
(2014)). The timing of the warning signals differ for the other PIIGS countries. While the bailout
packages for the financial sectors were announced at the end of 2008 for those countries, the test
results show that the sovereign bond yields of Greece, Italy, Portugal and Spain all began to
deviate from the German yields in late 2007 or early 2008. So, the warning alerts in the data are
evident much earlier for these countries indicating that market assessment of sovereign risk pre-
dated the bailout announcements and coincided with recognition of more general global financial
crisis conditions that affected EU countries. Termination of this crisis episode occurs around the
same time in all PIIGS countries in early 2009.

The second episode of major deviations in yield spreads occurs with the emergence of the
European debt crisis. The episode began soon after Greece’s announcement of a e300 billion debt
and it affected Greece, Portugal, Spain and Ireland in early-to-mid 2010. The crisis intensified
in 2011, involving all PIIGS countries. Greece suffered the longest duration of this debt crisis,
followed by Portugal and Ireland. Spain appeared to suffer the least and the impact there was
intermittent. The warning signals switched off in late 2011 in Ireland, early 2012 in Italy, Portugal
and Greece, and by mid-2012 in Spain.

5.2 Credit Default Swap Indicators

A credit default swap (CDS) is a financial swap agreement in which the buyer of the CDS contract
pays a periodic fee to the seller until the contract matures or a certain specified credit event occurs.
The periodic payments are usually written as a percentage of the underlying asset’s notional value
and constitute the CDS premium. In the event of a loan default or other credit event, the CDS
seller compensates the buyer with the difference between the market value and face value of
the issue. The ‘restructuring clause’ of a CDS contract specifies the credit events that trigger
settlement. The CDS contract fee is paid semi-annually on an actual/360 day count basis and
therefore the contracts do not suffer from declining maturities like conventional debt instruments.
By non-arbitrage theory, the CDS premium of sovereign risk should equal the spread between the
government bond yield and the risk free rate.9

The daily CDS premiums are sourced from the Markit database, which is an average across all
quotes provided by market makers after a series of data cleaning tests. We focus on the spreads
of all the CDS contracts (denominated in US dollars) with the full restructuring clause.10 We
use the five-year spreads because these contracts are the most liquid and account for a large
proportion of the CDS market. Unlike the five-year CDS contracts, the 10-year government
bonds are much less liquid. Hence bond spreads bear both the credit risk and the liquidity risk
especially during periods of market stress (Beber et al. (2009), Manganelli and Wolswijk (2009),

9See, for example, Acharya et al. (2002) and Hull and White (2000).
10It is published in 1999 by ISDA. Under this contract option, any restructuring event qualifies as a credit event

(and any bond of maturity up to 30 years is deliverable).
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and Schwarz (2017)). The CDS premium measures market credit risk and serves here as an
alternative proxy for sovereign risk.

Figure 6: The CDS premium (%) of the PIIGS countries sampled from 01/01/2007 to 02/09/2016.
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Figure 6 displays the CDS premiums of the PIIGS countries, along with Germany, for the
sample period running from 01/01/2007 to 02/09/2016. Panel (a) is for Greece and (b) for all the
other countries. The dynamic patterns of the CDS premia are similar to the 10-year government
bond yields (Figure 4). It is noteworthy that the Greek CDS premium at the peak of the European
debt crisis is more than ten times that of other countries. The Greek CDS market was closed in
March 2012 when Greece defaulted on its debt. The CDS premium reached 231 percent at the
time of market closing. The market reopened in June 2013 with a premium around 10 percent
and was followed by another small market bump in the first half of 2015.

We apply the PSY test with wild bootstrapping is applied to the spreads between the sovereign
and Germany CDS premia. The PSY statistic starts from 08/06/2007.11 Figure 7b plots the CDS
premium of the PIIGS countries, with the shaded areas being the identified crash periods. The
PSY test results based on the bond yield spread are plots in Figure 7a for comparison.

As with the bond yield spreads, the PSY test based on CDS spreads finds two major periods
of upward expansions across all countries over the sample period, namely the periods around the
subprime mortgage crisis in 2007-2009 and the European debt crisis in 2010-2012. Interestingly,
using information from the CDS market, one would be able to detect ballooning sovereign risk in
2007-2009 earlier for all countries than from the bond market. In particular, the sovereign risk in
Ireland was detected one year earlier in the CDS market (October 2007) than in the bond market.

11For the Greek market, we re-initiate the test in June 2013, with the minimum window size kept the same.
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Figure 7: The PSY test based on the 10-year government bong yield spreads (left) and the credit
default swap premium spreads (right) between PIIGS countries and Germany from January 2007
to September 2016. The shaded areas are the periods identified using the procedure.
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(b) PSY test based on CDS spreads
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For the European debt crisis period in 2010-2012, signals from the bond market are stronger than
those from the CDS market. One potential explanation is that liquidity risk, in addition to credit
risk, is a major concern during this period. The concern is less severe for CDSs than bonds, given
that the CDS market is much more liquid. This results in faster expansions in bond yields than
in CDS premiums and hence the signal of sovereign risk is stronger in the bond market.

Based on the CDS spreads, the PSY procedure detects an additional episode of sovereign
risk in Greece which starts from the last quarter of 2014. This period overlaps with the latest
economic recession in Greece which we described earlier. Notice that we do not detect this episode
with the bond yield spreads.

6 Conclusions

This paper introduces a new data generating mechanism for modeling financial market crises
and collapses. The model involves an asymmetrically distributed input process that raises the
probability of sustained, but not necessarily monotonic, market movements in one direction,
thereby accommodating both crisis and expansionary phases. The new model is particularly

19



suited to capturing abrupt market falls. It accords with market crash definitions used in finance
theory such as Gennotte and Leland (1990) and Barlevy and Veronesi (2003) and it can explain the
upward expansionary dynamics of bond yields during crisis periods. Both asymptotic properties
and finite sample performance reveal that the recursive and moving window procedures of PSY
(2015a,b) have detective capability for market meltdowns as well as expansions, providing analytic
support to earlier evidence of this capability that has arisen in various empirical studies.

As an illustration of this capacity to identify sharp market downturns, the PSY procedure was
applied to S&P 500 stock market data from January 2005 to March 2009. The test switches on a
warning signal in January 2008 (lasting for three months) and again upon the Lehman Brothers
bankruptcy in September 2008, capturing key discontinuities in the financial environment during
the GFC.

The effectiveness of the procedure for monitoring ballooning sovereign risk was illustrated
with an application to Portugal, Ireland, Italy, Greece, and Spain. This analysis of European
Union sovereign risk spreads reveals two common crisis episodes for the PIIGS countries over
2001-2016, using 10-year government bond yield spreads and 5-year credit default swap spreads.
The warning alert given by the test predates the EU bailout of the financial sector in September
2008, switching on as early as July 2007 for Portugal and for Spain with the CDS spread data
or, alternately, September 2007 with the bond yield spread data. Subsequently, the test dates
origination of the European debt crisis to December 2009 from the CDS market, soon after the
Greek government’s announcement of e300 billion indebtedness. Interestingly, the origination
date for the debt crisis is evidenced from the bond market data much later in April 2011. The
CDS data also signals the 2014-2015 crisis episode in Greece that was triggered by the economic
recession.

These illustrations show that whilst the ‘true’ generating mechanisms of financial time series
during market meltdowns and expansions are unknown, most likely unknowable, and inevitably
alter from one crisis to another, it is possible to capture the effects of major disturbances in
the financial environment using recursive test procedures that are sensitive to departures from
martingale assumptions in both expansionary and collapse directions. The reduced form model
we use for price dynamics during market crashes allows for a mixture of market responses that
produces realistic patterns of price behavior during market reversals and can be viewed as a
plausible modeling mechanism for data generated during a variety of different collapse scenarios.
Asymptotic theory and finite sample evidence from this econometric model as well as the empirical
illustrations together show the potential of these recursive monitoring algorithms for detecting
and dating major changes in financial environment conditions that produce market meltdowns
and exuberance.
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Appendix

This Appendix provides assumptions, preliminary lemmas, and main results concerning the limit
behavior of recursive statistics designed to detect bubble and collapse phenomena. The generating
mechanism assumed for Xt = logPt is the L-process

Xt =

{
cT−η +Xt−1 + εt if t ∈ N ≡ [1, Tc]

Xt−1 − Lt + εt, if t ∈ C ≡ (Tc, T ]
, (12)

where X0 = Op (1), Lt = Lbt with bt ∼i.i.d U [−ε, 1] and ε, L > 0. The innovations εt and process
Lt are assumed to be independent. In what follows let ξt be the centered uniform random variate
such that ξt = bt−a with a = Ebt = 1

2 (1− ε) and σ2ξ = Vbt = 1
12 (1 + ε)2. We make the following

assumptions.

A1: εt is iid with zero mean and Eε2t = σ2 <∞.

A2: εt is a martingale difference sequence (mds) satisfying:

(i) εt is strongly uniformly integrable with a dominating random variable η that satisifies
E
(
η2 ln+ |η|

)
<∞;

(ii) T−1
∑T

t=1 E
(
ε2t |Ft−1

)
→a.s. σ

2, where Ft = σ {εt, εt−1...} is the natural filtration.

A1 assumes homoskedastic independent innovations and A2 allows for conditional heteroskedas-
ticity. Under A2 {εt} is serially uncorrelated and unconditionally homoskedastic if E

(
ε2t
)

= σ2

for all t (and hence covariance stationary in that case), but potentially conditionally heteroskedas-
tic. A2 allows, among other possibilities, stable ARCH or GARCH errors. From Phillips and
Solo (1992), under either A1 or A2 together with the conditions on bj we have the following
invariance principles

T−1/2
bT ·c∑
t=1

εt ⇒ B (·) =: σW (·) , T−1/2
bT ·c∑
t=1

ξt ⇒ Bξ (·) =: σξWξ (·) (13)

23



where W and Wξ are independent standard Brownian motions and the floor function b·c returns
the integer part of its argument.

A Some Useful Lemmas

Lemma A.1 As T →∞, 1
T

∑t=bTrc
j=1 bj →a.s. rE(bj) = 1

2 (1− ε) r.

Proof. By ergodicity and straightforward calculation we have as T →∞

1

T

t=bTrc∑
j=1

bj =
1

T

bTrc∑
j=1

[−ε+ (1 + ε)Uj ] = −εbTrc
T

+ (1 + ε)
1

T

bTrc∑
j=1

Uj →a.s.
1

2
(1− ε) r.

Lemma A.2 As T →∞,
(a) T−2

∑T2
j=Tc+2(j−Tc−1)bj → 1−ε

4 (r2− rc)2; (b) T−2
∑T2

j=Tc+2

∑j−1
i=Tc+1 bi →

1−ε
4 (r2− rc)2; and

(c) T−2
∑T2

j=Tc+2

∑j−1
i=Tc+1 bibj →

(1−ε)2
8 (r2 − rc)2;

Proof. (a) Simply note that T−2
∑T2

j=Tc+2(j−Tc−1)bj = aT−2
∑T2

j=Tc+2(j−Tc−1)+T−2
∑T2

j=Tc+2(j−
Tc−1)ξj = 1

2a(r2−rc)2 (1 + op(1)) since T−
3
2
∑T2

j=Tc+2(j−Tc−1)ξj →d

∫ r2
rc
rdBξ(r) is a weighted

sum of T2 − (Tc + 1) iid centered uniform random variates.
(b) The result follows directly from (a) since

∑T2
j=Tc+2

∑j−1
i=Tc+1 bi = a

∑T2
j=Tc+2

∑j−1
i=Tc+1 (1 + op(1)).

(c) In a similar fashion, T−2
∑T2

j=Tc+2

∑j−1
i=Tc+1 bibj = a2 T−2

∑T2
j=Tc+2

∑j−1
i=Tc+1 (1 + op(1))→

(1−ε)2
8 (r2 − rc)2.

Limit Behavior of Xt

Lemma A.3 As T →∞,
(a) For t ∈ N , Xt=bTrc =

∑t
s=1 εs {1 + op (1)} ∼a T 1/2B (r).

(b) For t ∈ C, Xt=bTrc = −
∑t

j=Tc+1 Lj {1 + op (1)} ∼ a − TL1
2(r − rc) (1− ε).

Proof. (a) For t ∈ N , Xt = X0 + cT−ηt +
∑t

s=1 εs, and since T−1/2
∑t

s=1 εs
L→ B (r) it follows

that

Xt = cT 1−η
(
t

T

)
+ T 1/2

(
T−1/2

t∑
s=1

εs

)
∼a T 1/2B (r) .

(b) For t ∈ C, we haveXt = (Xt−1 − Lt)+εt = XTc−
∑t

j=Tc+1 Lj+
∑t

j=Tc+1 εj = −
∑t

j=Tc+1 Lj {1 + op (1)}
∼ a − TL1

2(r − rc) (1− ε) , because XTc ∼ aT 1/2B(rc),
∑t

j=Tc+1 εj ∼a T 1/2 [B(r)−B(rc)], and

t∑
j=Tc+1

Lj = TL

 1

T

t∑
j=Tc+1

bj

 ∼a TL1

2
(r − rc) (1− ε) =

{
Op(T ) if L is a constant

Op(TL) if L→∞.
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Lemma A.4 Let X̃t = Xt − T−1w

∑T2
j=T1

Xj. Then

(a) 1
Tw

∑T2
j=T1

Xj = 1
Tw

∑T2
j=Tc+1Xj {1 + op (1)} ∼a −TL (r2−rc)2

rw
1−ε
4 .

(b) X̃t = Xt − T−1w

∑T2
j=T1

Xj =

{
− 1
Tw

∑T2
j=T1

Xj {1 + op (1)} if t ∈ N0[
Xt − 1

Tw

∑T2
j=T1

Xj

]
{1 + op (1)} if t ∈ C

.

Proof. (a) Write 1
Tw

∑T2
j=T1

Xj = 1
Tw

∑Tc
j=T1

Xj + 1
Tw

∑T2
j=Tc+1Xj . The first term is

1

Tw

Tc∑
j=T1

Xj = T 1/2Tc − T1 + 1

Tw

 1

Tc − T1 + 1

Tc∑
j=T1

Xj√
T

 ∼a T 1/2 rc − r1
rw

∫ rc

r1

B (s) ds. (14)

For the second term,

1

Tw

T2∑
j=Tc+1

Xj = − L

Tw

T2∑
j=Tc+2

j−1∑
i=Tc+1

bi {1 + op (1)} = − L

Tw
T 2

T−2 T2∑
j=Tc+2

j−1∑
i=Tc+1

bi

 {1 + op (1)}

(15)

∼a −LT
(r2 − rc)2

rw

1− ε
4

from Lemma A.2 (16)

Thus, 1
Tw

∑T2
j=T1

Xj = 1
Tw

∑T2
j=Tc+1Xj {1 + op (1)} ∼a −TL (r2−rc)2

rw
1−ε
4 .

(b) This follows directly from (a).

Lemma A.5 As T →∞,

(a)
∑T2

j=T1
X̃2
j−1 ∼a T 3L2(r2 − rc)3 (1−ε)

2

4

(
1
3 −

r2−rc
4rw

)
,

(b)
∑T2

j=T1
X̃j−1εj ∼a −T 3/2L1

2 (1− ε)
{

(r2 − rc)B(r2)−
∫ r2
rc
B(s)ds− (r2−rc)2

2rw
[B(r2)−B(r1)]

}
,

(c)
∑T2

j=T1
X̃j−1

(
X̃j − X̃j−1

)
∼a T 2L2 (r2−rc)2(1−ε)2

8rw
(rc − r1) .

Proof. (a) Write
∑T2

j=T1
X̃2
j−1 =

∑Tc+1
j=T1

X̃2
j−1 +

∑T2
j=Tc+2 X̃

2
j−1. The first term is

Tc+1∑
j=T1

X̃2
j−1 =

Tc+1∑
j=T1

− 1

Tw

T2∑
j=T1

Xj

2

{1 + op (1)} ∼a T 3L2(rc − r1)
(r2 − rc)4 (1− ε)2

16r2w
.

The second term is

T2∑
j=Tc+2

X̃2
j−1 =

T2∑
j=Tc+2

Xj−1 −
1

Tw

T2∑
i=T1

Xi

2

{1 + op (1)} (17)

=

 T2∑
j=Tc+2

X2
j−1 − 2

 1

Tw

T2∑
i=T1

Xi

 T2∑
j=Tc+2

Xj−1

+

T2∑
j=Tc+2

 1

Tw

T2∑
i=T1

Xi

2 {1 + op (1)} (18)

25



∼a T 3L2 (r2 − rc)3

4
(1− ε)2

[
1

3
− r2 − rc

2rw
+

(r2 − rc)2

4r2w

]
, (19)

since ∑T2
j=Tc+2X

2
j−1 =

∑T2
j=Tc+2

(
−
∑j−1

i=Tc+1 Li

)2
{1 + op (1)}

=
∑T2

j=Tc+2 (j − 1− Tc)2
(

1
j−1−Tc

∑j−1
i=Tc+1 Li

)2
{1 + op (1)}

= L2
(

1
j−1−Tc

∑j−1
i=Tc+1 bi

)2∑T2
j=Tc+2 (j − 1− Tc)2 {1 + op (1)} ∼a T 3L2 (r2 − rc)3

12
(1− ε)2 ,

T2∑
j=Tc+2

Xj−1 = −
T2∑

j=Tc+2

j−1∑
i=Tc+1

Li {1 + op (1)} = − L

 T2∑
j=Tc+2

j−1∑
i=Tc+1

bi

 {1 + op (1)} (20)

= −LT 2

T−2 T2∑
j=Tc+2

j−1∑
i=Tc+1

bi

 {1 + op (1)} ∼a −T 2L(r2 − rc)2
1− ε

4
, (21)

−2
(

1
Tw

∑T2
i=T1

Xi

)(∑T2
j=Tc+2Xj−1

)
∼a −T 3L2 (r2−rc)4(1−ε)2

8rw
,

and∑T2
j=Tc+2

(
1
Tw

∑T2
i=T1

Xi

)2
= (T2 − Tc − 1)

(
1
Tw

∑T2
i=T1

Xi

)
∼a T 3L2 (r2−rc)5(1−ε)2

16r2w
.

Therefore,
T2∑
j=T1

X̃2
j−1 ∼a T 3L2(r2 − rc)3

(1− ε)2

4

(
1

3
− r2 − rc

4rw

)
.

(b) Write
∑T2

j=T1
X̃j−1εj =

∑Tc+1
j=T1

X̃j−1εj +
∑T2

j=Tc+2 X̃j−1εj . The first term is

Tc+1∑
j=T1

X̃j−1εj =

Tc+1∑
j=T1

− 1

Tw

T2∑
i=T1

Xi

 εj {1 + op (1)} =

− 1

Tw

T2∑
i=T1

Xi

 Tc+1∑
j=T1

εj {1 + op (1)}

∼a T 3/2L
(r2 − rc)2 (1− ε)

4rw
[B(rc)−B(r1)] ,

since 1
Tw

∑T2
i=T1

Xi ∼a −TL (r2−rc)2(1−ε)
4rw

, and
∑Tc+1

j=T1
εj ∼a T 1/2 [B(rc)−B(r1)] . The second term

is

T2∑
j=Tc+2

X̃j−1εj =

T2∑
j=Tc+2

Xj−1 −
1

Tw

T2∑
i=T1

Xi

 εj =

T2∑
j=Tc+2

Xj−1εj − T 1/2

 1

Tw

T2∑
i=T1

Xi

T−1/2 T2∑
j=Tc+2

εj
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∼a −T 3/2L
1− ε

2

{
(r2 − rc)B(r2)−

∫ r2

rc

B(s)ds− (r2 − rc)2

2rw
[B(r2)−B(rc)]

}
,

because ∑T2
j=Tc+2

Xj−1εj =
∑T2

j=Tc+2

[
−
∑j−1

i=Tc+1 Li {1 + op (1)}
]
εj

= −L
∑T2

j=Tc+2 (j − 1− Tc) εj
(

1
j−1−Tc

∑j−1
i=Tc+1 bi

)
{1 + op (1)}

= −T 3/2L1−ε
2

[
T−3/2

∑T2
j=Tc

(j − 1− Tc) εj
]
{1 + op (1)}

∼a −T 3/2L1−ε
2

[
(r2 − rc)B(r2)−

∫ r2
rc
B(s)ds

]
,

and

−T 1/2

 1

Tw

T2∑
i=T1

Xi

T−1/2 T2∑
j=Tc

εj

 = −T 1/2
(

1
Tw

∑T2
i=T1

Xi

)(
T−1/2

∑T2
j=Tc

εj

)
∼a T 3/2L (r2−rc)2(1−ε)

4rw
[B(r2)−B(rc)] .

Thus,

T2∑
j=T1

X̃j−1εj ∼a −T 3/2L
1

2
(1− ε)

{
(r2 − rc)B(r2)−

∫ r2

rc

B(s)ds− (r2 − rc)2

2rw
[B(r2)−B(r1)]

}
.

(3) Write

T2∑
j=T1

X̃j−1

(
X̃j − X̃j−1

)
=

Tc+1∑
j=T1

X̃j−1εj +

T2∑
j=Tc+2

X̃j−1 (−Lj + εj) (22)

=

T2∑
j=T1

X̃j−1εj −
T2∑

j=Tc+2

X̃j−1Lj . (23)

The first term is

T2∑
j=T1

X̃j−1εj ∼a −T 3/2L
1

2
(1− ε)

{
(r2 − rc)B(r2)−

∫ r2

rc

B(s)ds− (r2 − rc)2

2rw
[B(r2)−B(r1)]

}
.

The second term is

T2∑
j=Tc+2

X̃j−1Lj =

T2∑
j=Tc+2

Xj−1 −
1

Tw

T2∑
i=T1

Xi

Lj {1 + op(1)}

=

 T2∑
j=Tc+2

Xj−1Lj −

 1

Tw

T2∑
i=T1

Xi

 T2∑
j=Tc+2

Lj

 {1 + op(1)}
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∼a −T 2L2 (r2 − rc)2 (1− ε)2

8rw
(rc − r1) , (24)

because

T2∑
j=Tc+2

Xj−1Lj =

T2∑
j=Tc+2

(
−

j−1∑
i=Tc+1

Li

)
Lj {1 + op(1)} ∼a −T 2L2 (r2 − rc)2 (1− ε)2

8
from Lemma A.2,

and

−

 1

Tw

T2∑
i=T1

Xi

 T2∑
j=Tc+2

L̃j

 = − (T2 − Tc)

 1

Tw

T2∑
i=T1

Xi

 1

T2 − Tc

T2∑
j=Tc+2

Lj


∼a T 2L2 (r2 − rc)3 (1− ε)2

8rw
.

Thus,
T2∑
j=T1

X̃j−1

(
X̃j − X̃j−1

)
∼a T 2L2 (r2 − rc)2 (1− ε)2

8rw
(rc − r1) .

B Test asymptotics

The fitted regression for the recursive unit root tests has the following form (see PSY, 2015a &
2015b for details)

X̃t = µ̂r1,r2 + ρ̂r1,r2X̃t−1 + ε̂t,

where X̃t is demeaned Xt, and the intercept µ̂r1,r2 and slope coefficient ρ̂r1,r2 are obtained using
data over the subperiod [r1, r2].

Remark 1 Based on Lemma A.5, the limit behavior of ρ̂r1,r2 − 1 is obtained using

ρ̂r1,r2 − 1 =

∑T2
j=T1

X̃j−1

(
X̃j − X̃j−1

)
∑T2

j=T1
X̃2
j−1

=


Op(T 2)
Op(T 3)

= Op(T
−1) if L is a constant

Op(T 2L2)
Op(T 3L2)

= Op(T
−1) if L→∞

The sign of ρ̂r1,r2−1 is identical to that of the quantity
∑T2

j=T1
Xj−1 (Xj −Xj−1), which is positive.
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Remark 2 The residual error variance of the regression over [T1, T2] is

σ̂2r1,r2 = T−1w

T2∑
j=T1

(
X̃j − ρ̂r1,r2X̃j−1

)2

= T−1w

Tc−1∑
j=T1

[
εj −

(
ρ̂r1,r2 − 1

)
X̃j−1

]2
+

T2∑
j=Tc

[
εj −

(
ρ̂r1,r2 − 1

)
X̃j−1 − L̃j

]2
= T−1w

T2∑
j=T1

ε2j +
(
ρ̂r1,r2 − 1

)2
T−1w

T2∑
j=T1

X̃2
j−1 − 2T−1w

T2∑
j=Tc

εjL̃j

− 2
(
ρ̂r1,r2 − 1

)
T−1w

T2∑
j=T1

X̃j−1εj + 2
(
ρ̂r1,r2 − 1

)
T−1w

T2∑
j=Tc

X̃j−1L̃j

=

(ρ̂r1,r2 − 1
)2
T−1w

T2∑
j=T1

X̃2
j−1 − 2

(
ρ̂r1,r2 − 1

)
T−1w

T2∑
j=T1

X̃j−1εj

 {1 + op (1)}

=

{
Op (1) if L is a constant

Op(L
2) if L→∞

The above orders follow because: (i) when L is a constant

(ρ̂r1,r2 − 1)2 T−1w

T2∑
j=T1

X̃2
j−1 = Op

(
T−2

)
Op
(
T 2
)

= Op (1) ,

2
(
ρ̂r1,r2 − 1

)
T−1w

T2∑
j=T1

X̃j−1εj = Op
(
T−1

)
Op

(
T 1/2

)
= Op

(
T−1/2

)
,

2
(
ρ̂r1,r2 − 1

)
T−1w

T2∑
j=Tc

X̃j−1L̃j = Op
(
T−1

)
Op (T ) = Op (1) ;

and (ii) when L→∞

(ρ̂r1,r2 − 1)2 T−1w

T2∑
j=T1

X̃2
j−1 = Op

(
T−2

)
Op
(
T 2L2

)
= Op

(
L2
)
,

2
(
ρ̂r1,r2 − 1

)
T−1w

T2∑
j=T1

X̃j−1εj = Op
(
T−1

)
Op

(
T 1/2L

)
= Op

(
T−1/2L

)
,

2
(
ρ̂r1,r2 − 1

)
T−1w

T2∑
j=Tc

X̃j−1L̃j = Op
(
T−1

)
Op
(
TL2

)
= Op

(
L2
)
.
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Then, the limit distribution of the unit root t statistic is

DF r2r1 =

(∑T2
j=T1

X̃2
j−1

σ̂2r1r2

)1/2 (
ρ̂r1,r2 − 1

)
= Op(T

1/2)→ +∞.

which follows directly from the results in Lemma A.5 and Remark 1 and 2. This proves Theorem
1.
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