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CHANGE DETECTION AND THE CAUSAL IMPACT
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Causal relationships in econometrics are typically based on the concept of predictability and are established by testing Granger
causality. Such relationships are susceptible to change, especially during times of financial turbulence, making the real-time
detection of instability an important practical issue. This article develops a test for detecting changes in causal relationships
based on a recursive evolving window, which is analogous to a procedure used in recent work on financial bubble detection.
The limiting distribution of the test takes a simple form under the null hypothesis and is easy to implement in conditions of
homoskedasticity and conditional heteroskedasticity of an unknown form. Bootstrap methods are used to control family-wise
size in implementation. Simulation experiments compare the efficacy of the proposed test with two other commonly used tests,
the forward recursive and the rolling window tests. The results indicate that the recursive evolving approach offers the best
finite sample performance, followed by the rolling window algorithm. The testing strategies are illustrated in an empirical
application that explores the causal relationship between the slope of the yield curve and real economic activity in the United
States over the period 1980–2015.
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1. INTRODUCTION

Causality in econometrics typically relies on economic theory to justify the direction of causality between variables
and to inform empirical testing of the causal hypotheses. In many situations, however, there is no relevant theoreti-
cal foundation for determining the causal ordering between variables that appear to be jointly determined. In these
instances an empirical view of the concept of causality based on Granger (1969, 1988) has enjoyed widespread
use. The popularity of Granger causality stems in part from the fact that it is not specific to a particular structural
model but depends solely on the stochastic nature of variables, with no requirement to delimit some variables as
dependent variables and others as independent variables.

In an early study of Granger causality in multiple time series models Newbold and Hotopp (1986) used a vector
autoregressive moving average system with lag orders selected by information criteria to determine a fixed param-
eter system in which the tests were conducted. Since that early study it is has become well known that, among
other things, testing for Granger causality is sensitive to the time period of estimation. Original contributions by
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Thoma (1994) on the use of a forward expanding window for Granger causality testing method, and by Swanson
(1998) on a rolling window version prompted interest in the problem of dealing with the time-varying nature of
causal relationships in economics. See, for example, subsequent studies by Psaradakis et al. (2005), Balcilar et al.
(2010) and Arora and Shi (2016). This article revisits the issue of time-varying Granger causality testing from the
perspective of the recent literature for detecting and dating financial bubbles (Phillips et al., 2011; Phillips et al.,
2015a,b, Phillips and Yu, 2011; Leybourne et al., 2007. A new recursive test is proposed following the work of
Phillips et al. (2015a,b) in the context of real-time detection of financial bubbles. The procedure involves intensive
recursive calculations of the relevant test statistic, which in the current setting is a Wald test for Granger causality,
in a backward expanding sample sequence in which the final observation of all samples is the (current) observa-
tion of interest. Inference regarding the presence of Granger causality for this observation relies on the supremum
taken over the values of all the test statistics in the entire recursion. This procedure is therefore called a recursive
evolving algorithm and its performance is thoroughly investigated and compared with the forward recursive and
rolling window algorithms.

The time-varying Granger causality tests can be translated into a test for the joint significance of a subset of
the model parameters against the alternative of these parameters being significant over either the whole or a frac-
tion of the sample period. Two articles of significant relevance are Rossi (2005, 2013), which propose several
tests for parameter restrictions taking potential parameter instability into consideration in a more general context.
Importantly, the forward, rolling and recursive evolving procedures utilize only historical information and hence
could serve as real-time monitoring devices for causality. The methods proposed by Rossi (2005), however, are
ex-post testing procedures, which require estimating model parameters for each segment of the sample. Due to
this particular requirement in constructing the tests, they cannot identify breaks occurring towards the end of the
sample period – the primary interest of real-time identification. This method is, therefore, not used for comparative
purposes in this article.

Asymptotic distributions under the null hypothesis of no Granger causality in a stationary system1 are derived
for the subsample Wald statistic for forward and rolling window versions of the test and the subsample sup Wald
statistic for the recursive evolving window procedure. Limit theory under the assumption of homoskedasticity is
provided first. To take potential influences of conditional heteroskedasticity2 into account, heteroskedastic consis-
tent versions of the Wald and sup Wald statistics are proposed. The asymptotic distributions of these test statistics
are then derived under the assumption of conditional heteroskedasticity of unknown form. The major result for
practical work that emerges from this limit theory is that the robust test statistics have the same pivotal asymptotics
under homoskedasticity and conditional heteroskedasticity.

From an empirical perspective the many extensively studied problems in this area include: (i) the money–income
relationship (Stock and Watson, 1989; Thoma, 1994; Swanson, 1998; Psaradakis et al., 2005); (ii) the energy
consumption and economic output relationship (Stern, 2000; Balcilar et al., 2010; Arora and Shi, 2016); and (iii)
the detection of changes in patterns of systemic risk (Billio et al., 2012; Chen et al., 2014). The present article
employs change detection algorithms to investigate the causal relationship between the yield curve spread and
real economic activity in the United States over the period 1980–2015. Of particular importance to the current
research is the finding in the empirical literature that the predictive relationship between the slope of the yield
curve and macroeconomic activity has not been constant over time (Haubrich and Dombrosky, 1996; Dotsey,
1998; Stock and Watson, 1999; Estrella et al., 2003; Chauvet and Potter, 2005; Giacomini and Rossi, 2006; Benati
and Goodhart, 2008; Chauvet and Senyuz, 2016; Chinn and Kucko, 2015; Hamilton, 2011). The test procedures
developed here provide a natural mechanism for causal detection that allows such temporal fragilities in causal
relationships to be captured through intensive subsample data analysis.

The article is organized as follows. Section 2 reviews the concept of Granger causality and describes the forward
expanding window, rolling window, and the new recursive evolving Granger causality tests. Section 3 gives the

1 For the analysis of a possibly integrated system, see Shi et al. (2018a). Simulation results suggest that deviations from the stationarity
assumption (or the presence of integrated variables in the system) may result in a loss of power in the testing procedures.
2 The presence of conditional heteroskedasticity in financial and macroeconomic data series has been well documented in the literature. See,
for example, Engle and Bollerslev (1986), Bollerslev (1987), Nelson (1991), and Elder (2004), and Yogo (2004).
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limit distributions of these test statistics under the null hypothesis of no causality and assumptions of homoskedas-
ticity and conditional heteroskedasticity. The focus of the present article is on developing the new real-time causal
identification procedure, and proofs are given in the online supplement (Shi et al., 2018b) accompanying this
paper. Section 4 reports the results of simulations investigating performance characteristics of the various tests. In
Section 5, we use the three procedures to investigate the causal relationship between the yield curve spread and
real economic activity in the United States over the last three decades. Section 6 concludes. Robustness checks
are provided in the supplement.3

2. IDENTIFYING CHANGES IN CAUSAL RELATIONSHIPS

The unrestricted VAR(p) may be written as

yt = Φ0 + Φ1yt−1 + Φ2yt−2 + · · · + Φpyt−p + 𝜀t, (1)

or in multi-variate regression format simply as

yt = Πxt + 𝜀t, t = 1,… ,T (2)

where yt =
(
y1t, y2t

)′
, xt =

(
1, y′

t−1, y
′
t−2,… , y′

t−p

)′
, and Π2×(2p+1) =

[
Φ0,Φ1,… ,Φp

]
. Let Π̂ be the ordinary least

squares estimator of Π, Ω̂ = T−1 ∑T
t=1 𝜀̂t𝜀̂

′
t with 𝜀̂t = yt − Π̂xt, and X′ = [x1,… , xT ] be the observation matrix of

the regressors in (2). The Wald test of the restrictions imposed by the null hypothesis that y2t does not cause y1t in
Granger’s sense, or H0 ∶ y2t ↛ y1t, has the simple form

 =
[
R vec(Π̂)

]′ [
R
(
Ω̂⊗

(
X′X

)−1
)

R′
]−1 [

R vec(Π̂)
]
, (3)

where vec(Π̂) denotes the (row vectorized) 2 (2p + 1) × 1 coefficients of Π̂ and R is the p × 2(2p + 1) selection
matrix. Each row of R picks one of the coefficients to set to zero under the non-causal null hypothesis. In the present
case these are the p coefficients on the lagged values of y2t in (2). Under the null hypothesis and assumption of
conditional homoskedasticity, the Wald test statistic is asymptotically 𝜒2

p , with degrees of freedom corresponding
to the number of zero restrictions being tested. See, for example, Granger and Newbold (1986), for more details.

As indicated in the introductory remarks, there is ample reason to expect causal relationships to change over
time, because of changes in economic policy, regulatory structure, governing institutions, or operating environ-
ments that impinge on the variables y1t and y2t. In these circumstances, testing that is based on the entire sample
using a statistic like (3), averages the sample information and inevitably destroys potentially valuable economic
intelligence concerning the impact of changes in policy or structures. Testing for Granger casualty in exoge-
nously defined subsamples of the data does provide useful information but does not enable the data to reveal the
changes or change points. Consequently, the ultimate objective is to conduct tests that allow the change points to
be determined (and hence identified) endogenously in the sample data.

Thoma (1994) and Swanson (1998) respectively, suggest using forward expanding and rolling window Wald
tests to detect changes in causal relationships. It is convenient to work in terms of sample fractions in the following
exposition. Let f be the (fractional) observation of interest and f0 be the minimum (fractional) window size required
to estimate the model. For the Thoma procedure, the starting point of the regression (f1 ) is fixed on the first avail-
able observation. As the observation of interest f moves forward from f0 (the minimum required for the regression)
to 1, the regression window size expands (fractionally) from f0 to 1 and hence the test arising from this approach is
referred to as a forward expanding window Wald test. The Swanson rolling procedure, by contrast, keeps the size

3 Data and Matlab code for the empirical application are available for download from https://sites.google.com/site/shupingshi/
GC_DataProgram.zip?attredirects=0&d=1attredirects=0&d=1.
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of the regression window (fw) constant in the sequence of regressions. As the observation of interest (f and hence
the terminal point of the regression f2) rolls forward from f0 to 1, the starting point follows accordingly, maintain-
ing a fixed distance from f2. A significant change in causality is detected when an element of the Wald statistic
sequence exceeds its corresponding critical value, so that the origination (termination) date of a change in causality
is identified as the first observation whose test statistic value exceeds (goes below) its corresponding critical value.

Drawing from the recent literature on dating multiple financial bubbles (Phillips et al., 2015a, 2015b), this arti-
cle suggests an additional test that is based on the supremum norm (sup) of a series of recursively evolving Wald
statistics that are calculated as follows. For each (fractional) observation of interest (f ∈

[
f0, 1

]
), where f0 is again

the minimum sample size to accommodate the regression, the Wald statistics are computed for a sequence of
backward expanding samples. As above, the end point of the sample sequences is temporarily fixed at the latest
observation under study f = f2 and evolves forward from this point. However, the starting points of the sample
sequences used in these regressions extend backwards from f1 =

(
f2 − f0

)
all the way to the first observation (rep-

resented by the sample fraction 0). The Wald statistic obtained for each subsample regression (using observations
over [f1, f2] with a sample size fraction of fw = f2 − f1 ≥ f0) is denoted by f2

(
f1

)
and the sup Wald statistic (up

to the latest observation corresponding to f = f2) is defined as

 f

(
f0

)
= sup
(f1,f2)∈Λ0,f2=f

{
f2

(
f1

)}
,

where Λ0 =
{(

f1, f2

)
∶ 0 < f0 + f1 ≤ f2 ≤ 1, and 0 ≤ f1 ≤ 1 − f0

}
for some (given) minimal sample size f0 ∈ (0, 1)

in the regressions. We call this procedure the recursive evolving procedure. Unlike the rolling window approach,
this procedure allows variation in the window widths fw = f2 − f1 ≥ f0 used in the regressions.

Both the forward expanding and rolling window procedures are special cases of the new procedure: the forward
expanding window has f1 = 0 fixed and sets f = f2; the rolling window has fixed window width fw = f2 − f1 = f0

(assuming the rolling window width is fixed to f0) and window initialization f1 = f2 − f0. Importantly, all three pro-
cedures rely only on past information and can therefore be used for real-time monitoring at the present observation
f . The added flexibility obtained by relaxing f1 allows the procedure to search for the optimum starting point of the
regression for each observation (in the sense of finding the largest Wald statistic). This flexibility accommodates
re-initialization in the subsample to accord with (and thereby help to detect) any changes in structure or causal
direction that may occur within the full sample.

Let fe and ff denote the origination and termination points in the causal relationship. These are estimated as the
first chronological observation whose test statistic respectively exceeds or falls below the critical value. In a single
switch case, the dating rules are giving by the following crossing times:

Forward ∶ f̂e = inf
f∈[f0 ,1]

{
f ∶ f (0) > cv

}
and f̂f = inf

f∈[f̂e,1]
{

f ∶ f (0) < cv
}
, (4)

Rolling ∶ f̂e = inf
f∈[f0,1]

{
f ∶ f

(
f − f0

)
> cv

}
and f̂f = inf

f∈[f̂e,1]
{

f ∶ f

(
f − f0

)
< cv

}
, (5)

Recursive Evolving ∶ f̂e = inf
f∈[f0 ,1]

{
f ∶  f

(
f0

)
> scv

}
and f̂f = inf

f∈[f̂e,1]
{

f ∶  f

(
f0

)
< scv

}
, (6)

where cv and scv are the corresponding critical values of the f and  f statistics. The origination and termina-
tion dates are estimated in a similar fashion when there are multiple switches in the sample period. We search the
origination and termination dates of episode i with i ≥ 2 in the sample ranges of

[
f̂i−1f , 1

]
and

[
f̂ie, 1

]
respectively.

3. ASYMPTOTIC DISTRIBUTIONS

The notation introduced in the previous section is now used for the general n dimensional multi-variate case of
(2), which allows both for changing coefficients in subsamples of the data and for changing (fractional) sample
sizes in the asymptotic theory.

J. Time Ser. Anal. 39: 966–987 (2018) © 2018 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12427
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Let ‖⋅‖ denote the Euclidean norm, ‖.‖p be the Lp-norm so that ‖x‖p =
(
𝔼 ‖x‖p)1∕p

, and t = 𝜎
{
𝜀t, 𝜀t−1 …

}
be

the natural filtration. Consider a n× 1 vector of dependent variables yt whose dynamics follow a VAR(p) given by

yt = Φ0 + Φ1yt−1 + Φ2yt−2 + · · · + Φpyt−p + 𝜀t, (7)

with constant coefficients over the subsample t = ⌊Tf1⌋,… , ⌊Tf2⌋, where ⌊⋅⌋ is the floor function. The sample size
in this regression is Tw = ⌊Tfw⌋ where fw ∈

[
f0, 1

]
for some fixed f0 ∈ (0, 1).

Assumption A0. The roots of |||In − Φ1z − Φ2z2 − · · · − Φpzp||| = 0 lie outside the unit circle.

Under assumption A0, yt has a simple moving average (linear process) representation in terms of the past history
of 𝜀t

yt = Φ̃0 + Ψ (L) 𝜀t,

where Ψ (L) =
(
In − Φ1L − Φ2L2 …−ΦpLp

)−1 =
∑∞

i=0 ΨiL
i with ‖‖Ψi

‖‖ < C𝜃i for some 𝜃 ∈ (0, 1) and Φ̃0 =
Ψ (1) Φ0. The model can be written in regression format as

yt = Πf1 ,f2
xt + 𝜀t, (8)

in which xt =
(

1, y′
t−1, y

′
t−2,… , y′

t−p

)′
and Πf1,f2

=
[
Φ0,Φ1,… ,Φp

]
.

The ordinary least squares (or Gaussian maximum likelihood with fixed initial conditions) estimator of the
autoregressive coefficients is denoted by Π̂f1 ,f2

and defined as

Π̂f1 ,f2
n×(np+1)

=

[ ⌊Tf2⌋∑
t=⌊Tf1⌋ ytx

′
t

][ ⌊Tf2⌋∑
t=⌊Tf1⌋ xtx

′
t

]−1

.

Let k = np+1 and let 𝜋̂f1,f2
≡ vec

(
Π̂f1 ,f2

)
denote the (row vectorized) nk×1 coefficients resulting from an ordinary

least squares regression of each of the elements of yt on xt for a sample running from ⌊Tf1⌋ to ⌊Tf2⌋ given by

𝜋̂f1,f2
=

[
𝜋̂1,f1,f2

𝜋̂2,f1,f2
… 𝜋̂n,f1,f2

]′
,

in which 𝜋̂i,f1,f2
=

[∑⌊Tf2⌋
t=⌊Tf1⌋ yitx

′
t

] [∑⌊Tf2⌋
t=⌊Tf1⌋ xtx

′
t

]−1
. It follows that

𝜋̂f1,f2
− 𝜋f1,f2

=

[
In ⊗

⌊Tf2⌋∑
t=⌊Tf1⌋ xtx

′
t

]−1 [ ⌊Tf2⌋∑
t=⌊Tf1⌋ 𝜉t

]
, (9)

where 𝜋f1,f2
denotes the population coefficient of 𝜋̂f1,f2

and 𝜉t ≡ 𝜀t ⊗ xt. The estimator of the residual variance

matrix is Ω̂f1,f2
= T−1

w

∑⌊Tf2⌋
t=⌊Tf1⌋ 𝜀̂t𝜀̂

′
t , where 𝜀̂′t =

[
𝜀̂1t, 𝜀̂2t,… , 𝜀̂nt

]
and 𝜀̂it = yit − x′

t 𝜋̂i,f1,f2
. The final factor

∑⌊Tf2⌋
t=⌊Tf1⌋ 𝜉t

on the right side of (9) may be interpreted as the simple composition of functionals
∑⌊Tf2⌋

t=1 𝜉t −
∑⌊Tf1⌋−1

t=1 𝜉t of the

partial sum process 1√
T

∑⌊Tr⌋
t=1 𝜉t defined on the product space D [0, 1]nk. This interpretation is useful in developing

limit theory for statistics based on the recursively evolving regression coefficients 𝜋̂f1,f2
.

wileyonlinelibrary.com/journal/jtsa © 2018 John Wiley & Sons Ltd J. Time Ser. Anal. 39: 966–987 (2018)
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The primary concern is the distribution of the Wald statistic for testing causality under the null hypothesis. In this
instance, the coefficient matrix Πf1,f2

is constant for the entire sample
[
f1, f2

]
. The null hypothesis for the causality

test falls in the general framework of linear hypotheses of the form H0 ∶ R𝜋f1,f2
= 0, where R is a coefficient

restriction matrix (of full row rank d). Given
(
f1, f2

)
, the usual form of the Wald statistic for this null hypothesis is

f2

(
f1

)
=

(
R𝜋̂f1,f2

)′ ⎧⎪⎨⎪⎩R
⎡⎢⎢⎣𝛀̂f1,f2

⊗

( ⌊Tf2⌋∑
t=⌊Tf1⌋ xtx

′
t

)−1⎤⎥⎥⎦R′

⎫⎪⎬⎪⎭
−1 (

R𝜋̂f1 ,f2

)
. (10)

3.1. Homoskedasticity

Under the assumption of homoskedasticity, the innovations are stationary, conditionally homoskedastic martingale
differences satisfying either of the following two conditions.

Assumption A1.
{
𝜀t,t

}
is a strictly stationary and ergodic martingale difference sequence (mds) with

𝔼
(
𝜀t𝜀

′
t|t−1

)
= 𝛀 a.s. and positive definite Ω.

Assumption A2.
{
𝜀t,t

}
is a covariance stationary mds with 𝔼

(
𝜀t𝜀

′
t|t−1

)
= 𝛀 a.s., positive definite 𝛀, and

supt 𝔼 ‖‖𝜀t
‖‖4+c

< ∞ for some c > 0.

Lemma 3.1. Given the model (7), under assumption A0 and A1 or A2 and the null (maintained) hypothesis of
an unchanged coefficient matrix Πf1,f2

= Π for all (fractional) subsamples
(
f1, f2

)
∈ Λ0 we have

(i) 𝜋̂f1,f2
→a.s. 𝜋f1,f2

= 𝜋,

(ii) 𝛀̂f1 ,f2
→a.s. 𝛀,

(iii)
√

T
(
𝜋̂f1,f2

− 𝜋f1,f2

)
⇒

[
In ⊗ Q

]−1

[
B
(
f2

)
− B

(
f1

)
fw

]
,

where B is vector Brownian motion with covariance matrix 𝛀⊗Q, where Q =𝔼
(
xtx

′
t

)
> 0, and 𝜋̂f1,f2

and 𝛀̂f1,f2
are

the least squares estimators of 𝜋f1,f2
and 𝛀 = 𝔼

(
𝜀t𝜀

′
t

)
. The co-domain of the limit in (iii) is the subspace D

(
Λ0

)
of the Skorohod space D [0, 1]nk equipped with the uniform metric. The finite dimensional distribution of the limit

in (iii) for fixed f2 and f1 is N
(

0, 1

fw
𝛀⊗ Q−1

)
.

From part (iii) and for fixed
(
f1, f2

)
the asymptotic covariance matrix of

√
T
(
𝜋̂f1,f2

− 𝜋f1,f2

)
is f −1

w

(
𝛀⊗ Q−1

)
,

which is dependent on the fractional window size fw. The limit in (iii) may be interpreted as a double indexed
process with parameters (f1, f2) ∈ Λ0 that is linearly dependent on the single indexed stochastic process B. The
proof of Lemma 3.1 (iii) uses an argument in which a standardized version of the estimation error (9) is written as
an indexed composition of continuous functionals of the partial sum process X0

T (⋅) ∶=
1√
T

∑⌊T⋅⌋
t=1 𝜉t which satisfies

the weak convergence X0
T (⋅) ⇒ B(⋅) on the product Skorohod space D [0, 1]nk. This representation in terms of a

continuous functional facilitates the asymptotic development of further continuous functionals such as the sup
Wald statistic in the following parameters (f1, f2) ∈ Λ0.
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Proposition 3.1. Under A0 and A1 or A2, the null hypothesis R𝜋f1,f2
= 0, and the maintained null of an

unchanged coefficient matrix Πf1 ,f2
= Π for all subsamples, the subsample Wald process and sup Wald statistic

converge weakly to the following limits

f2

(
f1

)
⇒

[
Wd

(
f2

)
− Wd

(
f1

)(
f2 − f1

)1∕2

]′ [
Wd

(
f2

)
− Wd

(
f1

)(
f2 − f1

)1∕2

]
(11)

 f

(
f0

)
⇒ sup

(f1,f2)∈Λ0,f2=f

[
Wd

(
f2

)
− Wd

(
f1

)(
f2 − f1

)1∕2

]′ [
Wd

(
f2

)
− Wd

(
f1

)(
f2 − f1

)1∕2

]
(12)

where Wd is vector Brownian motion with covariance matrix Id and d is the number of restrictions (the rank of R)
under the null.

The limit process that appears in (11) is a quadratic functional of Wd (⋅). Its finite dimensional distribution
for fixed f1 and f2 is 𝜒2

d , whereas the sup functional that appears in (12) involves the supremum of a continuous
functional taken over

(
f1, f2

)
∈ Λ0 of the stochastic process X0

T (⋅).
Consider a simple alternative hypothesis of causality with a structural break such that

yt =

{
Πxt + 𝜀t, if t1 ≤ t ≤ te

Π∗xt + 𝜀t, if te < t ≤ t2

(13)

where te = ⌊Tfe⌋ is the break point. Let 𝜋 ≡ vec (Π) and 𝜋∗ ≡ vec (Π∗). We assume that R𝜋 = 0 and R𝜋∗ = g > 0,
i,e. the causality is switched on at te. Notice that model (13) collapses to model (8) under the null when te = t2.
Under the data generating process of (13) assuming te < t2, the ordinary least squares estimator 𝜋̂f1,f2

becomes

𝜋̂f1,f2
=

[
In ⊗

⌊Tf2⌋∑
t=⌊Tf1⌋ xtx

′
t

]−1 [ ⌊Tf2⌋∑
t=⌊Tf1⌋ 𝜉t

]
+

[
In ⊗

⌊Tf2⌋∑
t=⌊Tf1⌋ xtx

′
t

]−1 [(
In ⊗

⌊Tfe⌋∑
t=⌊Tf1⌋ xtx

′
t

)
𝜋 +

(
In ⊗

⌊Tf2⌋∑
t=⌊Tfe⌋ xtx

′
t

)
𝜋∗

]
. (14)

We can show that under the assumptions of A0 and A1 or A2, the ordinary least squares estimator in (14)
converges to a weighted average of 𝜋 and 𝜋∗ such that

𝜋̂f1,f2
→a.s 𝜋̄f1,f2

≡ 𝜋
(
fe − f1

)
+ 𝜋∗ (f2 − fe

)
.

The error variance estimator Ω̂f1,f2
→a.s. Λ+Ω, where Λ depends on the break location fe and the coefficients 𝜋 and

𝜋∗. This shows that the least squares estimates 𝜋̂f1,f2
and Ω̂f1,f2

are inconsistent under the alternative of parameter
instability, as in Rossi (2005, 2013). Under the alternative R𝜋 = 0 and R𝜋∗ = g > 0, it follows that the test statistics
f2

(
f1

)
and  f2

(
f1

)
have order Op(T) and diverge, in contrast to the well-defined limit distributions that apply

under the null as given in Proposition 3.1. Following similar arguments to those in Phillips et al. (2015b), the break
date (or the causality origination date) estimator f̂e can be shown to be consistent provided that the critical values
have order greater than Op(1) and smaller than Op(T). A full investigation of the asymptotic behavior of the test
statistics under the alternative and the consistency of the causality dating algorithm will be provided in later work
on a separate article.
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3.2. Conditional Heteroskedasticity of an Unknown Form

In this subsection, the impact of conditional heteroskedasticity on the limiting distributions of the standard Wald
and sup Wald statistics is investigated. The conditional heteroskedasticity case requires the following additional
assumption.

Assumption A3.
{
𝜀t,t

}
is an mds satisfying the following conditions:

(i) 𝜀t is strongly uniformly integrable with a dominating random variable 𝜀 that satisifies 𝔼
(‖𝜀‖4+c) < ∞ for

some c > 0;
(ii) T−1 ∑T

t=1 𝔼
(
𝜀t𝜀

′
t|t−1

)
→a.s. 𝛀 where 𝛀 is positive definite with elements 𝛀 =

(
Ωij

)
;

(iii) T−1 ∑T
t=1 𝔼

(
𝜀2

i,t|t−1

)
𝜀t−s →a.s. 0 and T−1 ∑T

t=1 𝔼
(
𝜀i,t𝜀j,t|t−1

)
𝜀t−s𝜀

′
t−s →a.s. Γ(i,j)

s for i, j = 1,… , n and s ≥ 1.

Strong uniform integrability is commonly assumed in cases of conditional and unconditional heterogeneity (see,
for instance, Phillips and Solo (1992), Remarks 2.4(i) and 2.8 (i) and (ii)). Assumption A3 implies that

{
𝜀t

}
is

serially uncorrelated, unconditionally homoskedastic if 𝔼
(
𝜀t𝜀

′
t

)
= 𝛀 for all t (and hence covariance stationary in

that case), but is otherwise potentially conditionally heteroskedastic. A3 allows, among other possibilities, stable
ARCH or GARCH errors. Note that A3(i) is equivalent to assuming that

sup
t
𝔼 ‖‖𝜀t

‖‖4+c
< ∞ for some c > 0,

a condition that is often used in work involving heteroskedasticity (see, for example, Boswijk et al. (2016), Patilea
and Rassi (2012), and Bodnar and Zabolotskyy (2011)). A3(iii) is required for Lemma 3.3(ii), and is similar to the
condition used by Hannan and Heyde (1972, Theorem 2), Gonçalves and Kilian (2004), and Boswijk et al. (2016)
for the univariate case.

Lemma 3.2. Under A0 and A3, for all f2, f1 ∈ [0, 1] and f2 > f1,

(i) T−1
w

∑⌊Tf2⌋
t=⌊Tf1⌋ 𝜀t →a.s 0,

(ii) T−1
w

∑⌊Tf2⌋
t=⌊Tf1⌋ 𝜀t𝜀

′
t →a.s 𝛀,

(iii) T−1
w

∑⌊Tf2⌋
t=⌊Tf1⌋ 𝜀t𝜀

′
s →a.s 0,

(iv) T−1
w

∑⌊Tf2⌋
t=⌊Tf1⌋ xt𝜀

′
t →a.s 0,

(v) T−1
w

∑⌊Tf2⌋
t=⌊Tf1⌋ xtx

′
t →a.s Q, where Q is defined as

Q ≡

[
1 1′

p ⊗ Φ̃′
0

1p ⊗ Φ̃0 Ip ⊗ Φ̃0Φ̃′
0 + Θ

]
with Θ =

∞∑
i=0

[ Ψi𝛀Ψ′
i · · · Ψi+p−1ΩΨ′

i
⋮ ⋱ ⋮

Ψi𝛀Ψ′
i+p−1 · · · ΨiΩΨ′

i

]
.

In view of the covariance stationarity of 𝜀t, Lemma 3.2 holds for all possible fixed fractions of data with (f1, f2) ∈
Λ0. However, this is not in general true under global covariance stationary (Davidson, 1994) or nonstationary
volatility settings, where the right-hand side of the statements in Lemma 3.2 may depend on f1 and f2.

Recalling that 𝜉t ≡ 𝜀t⊗xt, partial sums of the time series
{
𝜉t

}
continue to obey a martingale invariance principle

under A0 and A3, as in Theorem 3 of Brown (1971). This invariance result relies on the validity of the two standard
conditions given in Lemma 3.3.

Lemma 3.3. Under A0 and A3, the mds
{
𝜉t,t

}
satisfies the following Lindeberg and stability conditions:
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(a) For every 𝛿 > 0

1
T

T∑
t=1

𝔼
{‖‖𝜉t

‖‖2
.1

(‖‖𝜉t
‖‖ ≥

√
T𝛿

) |t−1

} p
→ 0, (15)

(b) T−1 ∑T
t=1 𝔼

{
𝜉t𝜉

′
t |t−1

}
→a.s 𝚺, where 𝚺 =

{
𝚺(i,j)}

i,j∈[1,n] with block partitioned elements

𝚺(i,j) =

[
Ωij 1′

p ⊗ΩijΦ̃′
0

1p ⊗ΩijΦ̃0 Ip ⊗ΩijΦ̃0Φ̃′
0 + Ξ(i,j)

]

and

𝚵(i,j)
≡

∞∑
i=0

⎡⎢⎢⎢⎢⎣
ΨiΓ

(i,j)
h+j+iΨ

′
i · · · Ψi+p−1Γ

(i,j)
h+j+iΨ

′
i

⋮ ⋱ ⋮

ΨiΓ
(i,j)
h+j+iΨ

′
i+p−1 · · · ΨiΓ

(i,j)
h+j+iΨ

′
i

⎤⎥⎥⎥⎥⎦
.

Under Lemma 3.3, partial sums of
{
𝜉t

}
satisfy X0

T (⋅) ∶=
1√
T

∑⌊T⋅⌋
t=1 𝜉t ⇒ B(⋅), so that

1√
T

⌊Tf2⌋∑
t=⌊Tf1⌋ 𝜉t ⇒ B

(
f2

)
− B

(
f1

)
. (16)

The limit in (16) is a linear functional of the vector Brownian motion B with covariance matrix 𝚺.

Lemma 3.4. Under A0 and A3,

(a) 𝜋̂f1,f2
→a.s. 𝜋f1,f2

,

(b) Ω̂f1,f2
→a.s. 𝛀,

(c)
√

Tw

(
𝜋̂f1,f2

− 𝜋f1,f2

)
⇒ f −1∕2

w V−1
[
B
(
f2

)
− B

(
f1

)]
, where V = In ⊗ Q and B is vector Brownian motion with

covariance matrix 𝚺.
(d) T−1

w

∑⌊Tf2⌋
t=⌊Tf1⌋ 𝜉t𝜉

′
t →a.s. 𝚺, where 𝜉t ≡ 𝜀̂t ⊗ xt−1.

In the presence of conditional heteroskedasticity, the Wald and sup Wald statistic have non-standard, non-pivotal
asymptotic distributions as detailed in the following result.

Proposition 3.2. Under the assumption of conditional heteroskedasticity of unknown form (A0 and A3), the
null hypothesis R𝜋f1,f2

= 0, and the maintained hypothesis of an unchanged coefficient matrix Πf1 ,f2
= Π for all

subsamples, the subsample Wald and sup Wald statistics have the following limits

f2

(
f1

)
⇒

[
Wd

(
f2

)
− Wd

(
f1

)(
f2 − f1

)1∕2

]′

AB−1A′

[
Wd

(
f2

)
− Wd

(
f1

)(
f2 − f1

)1∕2

]
,

 f

(
f0

)
⇒ sup

(f1 ,f2)∈Λ0 ,f2=f

[
Wd

(
f2

)
− Wd

(
f1

)(
f2 − f1

)1∕2

]′

AB−1A′

[
Wd

(
f2

)
− Wd

(
f1

)(
f2 − f1

)1∕2

]
,

where Wd is vector Brownian motion with covariance matrix Id, A = 𝚺1∕2V−1R′, and B = R (𝛀⊗ Q)R′.
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The presence of conditionally heterogeneous errors affects the limit behavior of the standard Wald statistic,
which no longer has the simple limit distribution (11). In consequence, use of the limit theory (12) for the sup
Wald statistic may lead to invalid and distorted inference. A pivotal version of the statistic is obtained by suitable
asymptotic covariance matrix estimation.

3.3. Heteroskedastic-Consistent Test Statistics

The heteroskedasticity consistent version of the Wald statistic is denoted by ∗
f2

(
f1

)
and defined as


∗
f2

(
f1

)
= Tw

(
R𝜋̂f1,f2

)′ [
R
(

V̂−1
f1 ,f2

𝚺̂f1 ,f2
V̂−1

f1 ,f2

)
R′

]−1 (
R𝜋̂f1,f2

)
, (17)

where V̂f1,f2
≡ In ⊗ Q̂f1 ,f2

with Q̂f1,f2
≡

1

Tw

∑⌊Tf2⌋
t=⌊Tf1⌋ xtx

′
t , and 𝚺̂f1,f2

≡
1

Tw

∑⌊Tf2⌋
t=⌊Tf1⌋ 𝜉t𝜉

′
t with 𝜉t ≡ 𝜺̂t ⊗ xt. The

corresponding heteroskedasticity consistent sup Wald statistic is


∗
f

(
f0

)
∶= sup

(f1,f2)∈Λ0,f2=f

{


∗
f2

(
f1

)}
.

As discussed following Lemma 3.1 and Proposition 3.1, for the purpose of deriving asymptotics the statistics
f2

(
f1

)
and ∗

f2

(
f1

)
may be treated as functionals (indexed by the sample fractions

(
f1, f2

)
) of the stochastic

process X0
T . The sup statistics ∗

f

(
f0

)
and  f

(
f0

)
are then composite functionals of X0

T . In the Online Sup-
plement this approach to the asymptotic theory uses the continuity of these functionals and the weak convergence
X0

T (⋅) ⇒ B(⋅) to establish the limit theory.
Note that under the homoskedasticity assumption of A1 or A2, the limit of the matrix 𝚺̂f1 ,f2

that appears in the
heteroskedastic consistent Wald statistic (17) would be given by 𝛀 ⊗ Q and the asymptotic covariance matrix
would simplify as follows

V̂−1
f1,f2

𝚺̂f1,f2
V̂−1

f1 ,f2
→a.s

(
In ⊗ Q

)−1 (𝛀⊗ Q)
(
In ⊗ Q

)−1 = 𝛀⊗ Q−1.

In this case, therefore, the heteroskedastic consistent test statistics, ∗
f2

(
f1

)
and 

∗
f

(
f0

)
, reduce to the

conventional Wald and sup Wald statistics of f2

(
f1

)
and  f

(
f0

)
.

Proposition 3.3. Under the assumption of either homoskedasticity (A0 and A1 or A2) or conditional het-
eroskedasticity of unknown form (A0 and A3), the null hypothesis R𝜋f1,f2

= 0, and the maintained hypothesis of
an unchanged coefficient matrix Πf1 ,f2

= Π for all subsamples, the subsample heteroskedastic consistent Wald and
sup Wald statistics converge weakly to the following limits


∗
f2

(
f1

)
⇒

[
Wd

(
f2

)
− Wd

(
f1

)(
f2 − f1

)1∕2

]′ [
Wd

(
f2

)
− Wd

(
f1

)(
f2 − f1

)1∕2

]
,


∗
f

(
f0

)
⇒ sup

(f1,f2)∈Λ0,f2=f

[
Wd

(
f2

)
− Wd

(
f1

)(
f2 − f1

)1∕2

]′ [
Wd

(
f2

)
− Wd

(
f1

)(
f2 − f1

)1∕2

]
,

where Wd is vector Brownian motion with covariance matrix Id and d is the number of restrictions (the rank of R)
under the null.

J. Time Ser. Anal. 39: 966–987 (2018) © 2018 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12427



976 S. SHI, P. C. B. PHILLIPS AND S. HURN

The limit theory shows that the robust test statistics remain unchanged for both scenarios – homoskedasticity
and conditional heteroskedasticity. The asymptotic distributions are the same as those of the Wald process and sup
Wald statistic under the assumption of homoskedasticity, given in (11) and (12).

4. SIMULATION EXPERIMENTS

There is significant evidence to suggest that Wald tests suffer from size distortions in small samples (Guilkey and
Salemi, 1982; Toda and Phillips, 1993, 1994). This section therefore reports a series of simulation experiments
designed to assess the finite sample characteristics of the forward, rolling and recursive evolving causality tests
proposed in Section 2. The prototype model used in the simulation experiments is the bivariate VAR(1) model:

DGP ∶
[

y1t
y2t

]
=

[
𝜙11 𝜙st
0 𝜙22

] [
y1t−1
y2t−1

]
+

[
𝜀1t
𝜀2t

]
(18)

where 𝜀1t and 𝜀2t are i.i.d. N (0, 1). Assumption A0 requires ||𝜙11
|| < 1 and ||𝜙22

|| < 1. For simplicity, the causal
channel from y1 to y2 is shut down. Parameter 𝜙st

controls the strength of the causal path running from y2t to y1t.
Under the null hypothesis of no causality, 𝜙st

= 0. Under the alternative hypothesis, causation runs from y2t−1 to
y1t from observation ⌊feT⌋ to

⌊
ff T

⌋
. Let st be a causal indicator that takes the value unity for the causal period and

zero otherwise such that

st =

{
1, if ⌊feT⌋ ≤ t ≤

⌊
ff T

⌋
0, otherwise

.

The autoregressive coefficient 𝜙st
then equals 𝜙12st.

Initial values of the data series (y11 and y21) are set to unity. The lag length p in the regression model is fixed
at one. The rolling window test procedure uses a window length taken to be the minimum window size, f0. The
experiments are repeated 1,000 times for each parameter constellation. We report the sizes (probability of rejecting
at least one true null hypothesis) and powers (probability of rejecting at least one false null hypothesis) of the three
procedures for these various cases.

4.1. Multiplicity

The multiplicity problem refers to the well-known fact that the probability of making a Type I error rises with the
number of hypotheses being tested. In the current context, all three testing algorithms require that the test statistic
be compared with the corresponding critical value for each observation starting from 𝜏0 ≡ ⌊Tf0⌋ to T , so that the
number of hypotheses tested over the sample period equals T − 𝜏0 + 1. To control for any size distortion arising
from this recursive testing, the bootstrap method proposed in Shi et al. (2018a) is used.

The details of the corrective bootstrap algorithm are set out below for a bivariate VAR(1) but the procedure is
easily extended to higher dimensional systems.

Step 1: Using the full sample period, estimate a bivariate VAR(1) model which imposes the null hypothesis of no
Granger causality from y2 to y1. The resultant equation is

[
y1t
y2t

]
=

[
𝜙11 0
𝜙12 𝜙22

] [
y1t−1
y2t−1

]
+

[
e1t
e2t

]
(19)

in which e1t and e2t are the estimated residuals.
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Step 2: Let 𝜏b be the number of observations in the window over which size is to be controlled. For a sample size
𝜏0 + 𝜏b − 1, generate a bootstrap sample given by[

yb
1t

yb
2t

]
=

[
𝜙̂11 0

𝜙̂12 𝜙̂22

][
yb

1t−1

yb
2t−1

]
+

[
eb

1t

eb
2t

]
(20)

with initial values yb
11 = y11 and yb

21 = y21, and where the residuals eb
1t and eb

2t are randomly drawn with
replacement from the estimated residuals in Step 1.

Step 3: Using the bootstrapped series, compute the test statistic sequences for the forward,
{
b

1,t

}𝜏0+𝜏b−1

t=𝜏0

, rolling,{
b

t−𝜏0+1,t

}𝜏0+𝜏b−1

t=𝜏0

, and recursive evolving,
{


b
t (𝜏0)

}𝜏0+𝜏b−1

t=𝜏0
, algorithms respectively, and the associated

maximum values of the test statistic sequences

Forward (Thoma): b
1,t = max

t∈[𝜏0,𝜏0+𝜏b−1]

(


b
1,t

)
,

Rolling (Swanson): b
t−𝜏0+1,t = max

t∈[𝜏0 ,𝜏0+𝜏b−1]

(


b
t−𝜏0+1,t

)
,

Recursive evolving (PSY): b
t (𝜏0) = max

t∈[𝜏0 ,𝜏0+𝜏b−1]

(


b
t (𝜏0)

)
.

(21)

Step 4: Repeat Steps 2 to 3 for B = 499 times.
Step 5: The critical values of the forward, rolling and recursive evolving procedures are now given by the 95%

percentiles of the
{
b

1,t

}B

b=1
,
{
b

t−𝜏0+1,t(𝜏0)
}B

b=1
, and

{


b
t (𝜏0)

}B

b=1
sequences respectively. Using these

critical values, the probability of having at least one false positive detection over the sample period 𝜏b is 5%,
thereby controlling for any potential size distortion due to multiplicity.4

4.2. Empirical Sizes and Powers

Table I reports the size (left panel) and power (middle and right panels) of the three procedures with different
specifications of the persistence parameters

{
𝜙11, 𝜙22

}
, the minimum window size f0, and the sample size T . It is

apparent in these results that the empirical size of all the procedures does not vary with the settings of the minimum
window f0 and the sample size T . Importantly, the empirical sizes of all three tests are close to nominal (5%) in
most settings. This outcome shows the effectiveness of the bootstrap procedure in dealing with the multiplicity
issue.5 There is one exception. When

{
𝜙11, 𝜙22

}
= (0.5, 0.8), the empirical size for the rolling and recursive

evolving procedures is close to twice the nominal size, while the size distortion for the forward algorithm is less
severe. Unreported simulations suggest similar levels of size distortion for all three procedures when either one of
the two autoregressive coefficients moves closer to unity. We conjecture that this size distortion is caused by the
induced local-to-unity property (Phillips, 1987) of the data series in such cases. Interestingly and importantly for
empirical practice, when the VAR model (1) is augmented by one lag as in Shi et al. (2018a), the empirical size
of all the procedures under these parameter settings becomes close to the nominal size. This finding accords with
known limit theory for subset testing in nonstationary VARs with augmented lags and merits further investigation
in future work.

For the calculation of empirical powers in Table I, the causality (from y2t → y1t) switches on in the middle of the
sample (fe = 0.5) and the relationship lasts for 20% of the sample with termination at ff = 0.7. The causal strength

4 We set 𝜏b = T in the simulation to control the size over the entire sample period. In the empirical application we control the size over a
three-year period and this requires setting 𝜏b = 𝜏0 + 35.
5 Unreported simulation results show that the forward, rolling and recursive evolving procedures are significantly over-sized when asymptotic
critical values are used. The empirical sizes are respectively, 9%, 16% and 19% for the forward, rolling and recursive evolving procedures
when T = 100, (𝜙11, 𝜙22) = (−0.5, 0.8), and f0 = 0.12.
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Table I. The empirical sizes and powers of the testing procedures. The parameter setting under the alternative is: fe = 0.5 and
 = 0.2

Size Power (𝜙12 = 0.5) Power (𝜙12 = 0.8)

Forward Rolling Recursive Forward Rolling Recursive Forward Rolling Recursive
(Thoma) (Swanson) (PSY) (Thoma) (Swanson) (PSY) (Thoma) (Swanson) (PSY)

(𝜙11, 𝜙22): f0 = 0.24 and T = 100

(0.5,0.5) 0.07 0.08 0.08 0.18 0.40 0.39 0.35 0.71 0.71
(0.5,0.8) 0.08 0.10 0.12 0.26 0.54 0.56 0.39 0.81 0.81
(-0.5,0.8) 0.05 0.05 0.05 0.29 0.49 0.53 0.48 0.79 0.81
(0.5,-0.8) 0.04 0.03 0.04 0.29 0.50 0.56 0.48 0.87 0.86⌊Tf0⌋: T = 100 and (𝜙11, 𝜙22) = (−0.5, 0.8)

18 0.06 0.04 0.05 0.27 0.38 0.45 0.44 0.70 0.77
24 0.05 0.05 0.05 0.29 0.49 0.53 0.48 0.79 0.81
36 0.06 0.06 0.06 0.34 0.51 0.54 0.53 0.77 0.77

T: f0 = 0.24 and (𝜙11, 𝜙22) = (−0.5, 0.8)

100 0.05 0.05 0.05 0.29 0.49 0.53 0.48 0.79 0.81
200 0.06 0.05 0.06 0.45 0.67 0.81 0.69 0.96 0.99
300 0.04 0.06 0.06 0.60 0.74 0.93 0.87 0.99 1.00

Note: Calculations are based on 1000 replications, with the 5% bootstrapped critical values of the statistics illustrated in Section 4.1.

Table II. The impact of causal characteristics on empirical powers of the test-
ing procedures. The persistent parameters (𝜙11, 𝜙22) = (−0.5, 0.8), causality

strength 𝜙12 = 0.8, the minimum window f0 = 0.24, and T = 100

Causality duration  Causality location fe
fe = 0.5  = 0.2

 = 0.1  = 0.2  = 0.3 fe = 0.3 fe = 0.5 fe = 0.7

Forward 0.23 0.48 0.70 0.61 0.48 0.38
Rolling 0.35 0.79 0.95 0.81 0.79 0.79
Recursive 0.38 0.81 0.98 0.83 0.81 0.80

Note: Calculations are based on 1,000 replications, with the 5% bootstrapped
critical values of the statistics illustrated in Section 4.1.

𝜙12 is 0.5 in the middle panel and 0.8 in the right panel. In Table II, we fix the causal strength (i.e., 𝜙12 = 0.8)
and the persistence parameters (i.e., (𝜙11, 𝜙22) = (−0.5, 0.8)) and investigate the impact of causal characteristics
(the causal duration  and the location of the causal episode fe) on the empirical powers. The results reported
in Tables I and II show that, at least for the DGPs considered in this simulation exercise, the recursive evolving
procedure has the highest power. The power advantage of the recursive evolving procedure is most obvious when
the causal strength is moderate and the sample size is relatively large. For example, when 𝜙12 = 0.5, the power of
the recursive evolving algorithm is 14% (19%) higher than that of the rolling window procedure when T = 200
(T = 300).

Furthermore, for all three algorithms, the power increases with the strength of the causal relationship 𝜙12, the
sample size T , and the duration of the causal relationship . The powers increase slightly when the data becomes
more persistent (i.e., 𝜙22 rises form 0.5 to 0.8). There are no obvious changes in the powers when the persistent
parameters change signs. The power of the forward procedure is higher when the change in causality happens
early in the sample. By contrast, the location of the switch does not have an obvious impact on the performance
of the rolling and recursive evolving algorithms.

The power of the forward procedure increases with the minimum window f0. For both the rolling and recursive
evolving algorithms, powers of these two procedures increase as f0 rises from 0.18 to 0.24 but remain roughly the
same or slightly lower when f0 expands further to 0.36. This is consistent with our expectation that the additional
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observations in the minimum window increase power only when they contain additional information of the causal
relationship.6 In practice the optimal choice of f0 will depend on the strength and duration of the causal relationship
and hence will be episode specific. At a minimum, f0 needs to be large enough to ensure that there are enough
observations to initiate the regression.

4.3. The Heteroskedastic-Consistent Tests

We consider two forms of conditional heteroskedasticity, namely, a GARCH(1,1) model and a stochastic volatility
(SV) model, both of which are standard in the literature (Shephard, 1996; Gonçalves and Kilian, 2004; Deo, 2000;
Cavaliere et al., 2014). The GARCH model is

𝜀it = h1∕2
it vit with vit ∼i.i.d N(0, 1),

hit = 𝛼0 + 𝛼1𝜀
2
it−1 + 𝛽1hit−1.

As in Gonçalves and Kilian (2004), different levels of volatility persistence are considered, given by 𝛼1 + 𝛽1 =
{0.5, 0.95, 0.99}. The unconditional volatility of the residual is normalized to unity. The stochastic volatility model
is

𝜀it = 𝜂it exp(hit),
hit = 𝜆hit−1 + 0.5vit,

where (𝜂it, vit) ∼i.i.d N(0, diag(𝜎2
v , 1)). The model parameters (𝜆, 𝜎v) are set to be either (0.951, 0.314) or

(0.936, 0.424) as in Shephard (1996) and Gonçalves and Kilian (2004).7

The sizes and powers of the heteroskedastic-consistent tests under the DGP of (18) and with the above two spec-
ifications of conditional heteroskedasticity are reported in Table III. The persistence parameters are (𝜙11, 𝜙22) =
(−0.5, 0.8). The minimum window size f0 = 0.24. We set the sample size T = 100 and 𝜙12 = 0.8 in the left panel.
In the right panel, we consider the case with a moderate causal strength 𝜙12 = 0.5 and sample size T = 200.

The general conclusion from Table III is that the heteroskedastic-consistent tests behave very much like the
those in the homoskedastic case. For the DGPs and the types of causal switching considered here, it appears that
the recursive evolving procedure provides overall best performance. The results remain largely unchanged for all
the different parameter settings of the GARCH and SV models.

5. CAUSALITY, THE YIELD CURVE SLOPE AND REAL ECONOMY ACTIVITY

The slope of the yield curve, defined as the difference between zero-coupon interest rates on 3-month Treasury
bills and 10-year Treasury bonds, is a potentially important explanatory variable in the prediction of real economic
activity (Harvey, 1988). Empirical evidence of the ability of the slope of the yield curve to forecast macroeconomic
activity, including real economic growth or recessions, was provided in the 1980s and 1990s for several countries
(Stock and Watson, 1989; Estrella and Hardouvelis, 1991; Estrella and Mishkin, 1998; Dotsey, 1998; Estrella and
Mishkin, 1997; Plosser and Rouwenhorst, 1994). More recent work in the context of predicting real activity and
recessions suggests that the slope of the yield curve still retains its predictive power (Estrella, 2005; Chauvet and
Potter, 2002; Ang et al., 2006; Wright, 2006; Estrella and Trubin, 2006; Rudebusch and Williams, 2009; Kauppi
and Saikkonen, 2008).

While most of the early literature focused on the ability of the yield curve to predict real activity, it is reasonable
to conjecture that feedback effects are present from real activity to monetary policy and therefore to the yield

6 Recall that the duration of the causality episode is 0.2. When the minimum window f0 exceeds that duration, the regression contains a mix
of causal and non-causal observations.
7 They are obtained by matching the SV model to real exchange rate data (Shephard, 1996).
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Table III. The empirical performance of the heteroskedastic-consistent tests under the null DGP with
conditional heteroskedasticity of GARCH(1,1) and stochastic volatility. The parameter settings are:

(𝜙11, 𝜙22) = (−0.5, 0.8), f0 = 0.24, fe = 0.5, and  = 0.2

T = 100, 𝜙12 = 0.8 T = 200, 𝜙12 = 0.5

Forward Rolling Recursive Forward Rolling Recursive
(Thoma) (Swanson) (PSY) (Thoma) (Swanson) (PSY)

Size
GARCH

𝛼1 = 0.05, 𝛽1 = 0.45 0.06 0.05 0.05 0.06 0.05 0.06
𝛼1 = 0.05, 𝛽1 = 0.90 0.05 0.04 0.05 0.06 0.05 0.05
𝛼1 = 0.05, 𝛽1 = 0.94 0.05 0.04 0.05 0.06 0.05 0.05

Stochastic volatility
𝜆 = 0.951, 𝜎v = 0.314 0.05 0.06 0.06 0.03 0.05 0.05
𝜆 = 0.936, 𝜎v = 0.424 0.04 0.06 0.06 0.04 0.05 0.05

Power
GARCH

𝛼1 = 0.05, 𝛽1 = 0.45 0.34 0.70 0.71 0.32 0.53 0.65
𝛼1 = 0.05, 𝛽1 = 0.90 0.34 0.69 0.71 0.33 0.54 0.64
𝛼1 = 0.05, 𝛽1 = 0.94 0.33 0.69 0.70 0.33 0.54 0.62

Stochastic volatility
𝜆 = 0.951, 𝜎v = 0.314 0.18 0.61 0.63 0.19 0.57 0.62
𝜆 = 0.936, 𝜎v = 0.424 0.19 0.60 0.62 0.23 0.58 0.63

Note: Calculations are based on 1,000 replications, with the 5% bootstrapped critical values of the
statistics illustrated in Section 4.1.

curve (Estrella and Hardouvelis, 1991; Estrella and Mishkin, 1997; Estrella, 2005; Huse, 2011). Consequently a
substantial body of empirical work in this area has been conducted in terms of VAR models (Ang and Piazzesi,
2003; Evans and Marshall, 2007; Diebold et al., 2006), which provides ample precedence to support the use of
VAR models to establish the direction of Granger causality in these macroeconomic relationships.

In the present application a four-variable VAR model is used to test for changes in Granger causal relationships
between the slope of the yield curve and the macroeconomy using United States data. The variables included are
proxies for the macroeconomy: real economic activity

(
yt

)
, inflation

(
𝜋t

)
, the monetary policy interest rate

(
it

)
,

and the yield curve spread
(
St

)
. The decision to use a four-variable VAR model means that the curvature (or bow)

of the yield curve is omitted from the model. There have been attempts to devise theoretical links between the
curvature of the yield curve and the macroeconomy (Dewachter and Lyrio, 2006; Modena, 2008; Mönch, 2012);
but there is little evidence to support the nature of the relationship. In view of the ambivalent evidence, it was
decided not to include the curvature in the VAR.

5.1. Data

Real economic activity is proxied by the annual growth rate of (real) industrial production. Inflation is measured
from the core consumer price index and calculated as log differences (multiplied by 1200). The policy rate is
measured using the effective Federal funds rate. Term spread is defined as the difference between the 3-month
Treasury bill rate and the 10-year government bond rate. All the data are obtained from the Federal Reserve Bank
of St. Louis FRED8 at the monthly frequency. The data start from January 1980 to March 2015 (T = 423).

The data are plotted in Figure 1. The left panel plots the annualized growth rate of industrial production (left
axis) and inflation (right axis). The right panel plots the Federal funds rate and the slope of the yield curve. Official
NBER recession periods that coincide with the sample period, namely 1980:M01-M07, 1981:M07-1982:M11,
1990:M07-1991:M03, 2001:M03-M11 and 2007:M12-2009:M06 are marked in grey. Industrial production falls
sharply during recessions. After the 2008-2009 recession, the growth rate of industrial production rebounds quickly
and is relatively stable until the end of the sample. Inflation fluctuates around the 2% level and shows a persistent

8 Website: wwww.research.stlouisfed.org/fred2/.
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Figure 1. Time series plots of real economic activity and inflation (left panel) and the Federal funds rate and the slope of
the yield curve (right panel) in the United States. Also shown are official NBER recession periods shaded in grey, namely,
1980:M01-M07, 1981:M07-1982:M11, 1990:M07-1991:M03, 2001:M03-M11 and 2007:M12-2009:M06. The vertical lines
mark the generally accepted dates of the onset of an inverted yield curve given by 1980M11, 2000M08 and 2006M08

respectively

decline towards the end of the sample period, consistent with the deflationary conditions prevalent in the United
States economy after the Global Financial Crisis and the movement of the Federal funds rate to the zero lower
bound.

Since the yield curve is typically upward sloping, the slope factor, defined as the difference between the
zero-coupon interest rates on 3-month Treasury bills and 10-year Treasury bonds, usually takes a negative value.
Steeper yield curves are represented by lower values of the slope factor. If the yield curve becomes inverted then
the slope factor will be positive and the dates of the onset of an inverted yield curve are shown by vertical lines.
Notable instances are in 2000 (when a recession followed) and in 2006 (when the inverted yield curve was not
immediately followed by a recession). A final feature of Figure 1b is the settling of the effective funds rate at zero
for the latter part of the sample period after 2009Q1, the zero lower bound period of monetary policy.

In estimating the VAR and implementing tests of Granger causality, the lag order is assumed the same for all
subsamples and selected using the Bayesian information criteria (BIC) for the whole sample period with a maxi-
mum potential lag length 12. The selected lag order is three. When implementing the recursive testing procedure
the minimum window size is f0 = 0.2, which contains 84 observations. This constant window size is also used
for the rolling procedure. The critical values are obtained from bootstrapping procedure illustrated in Section 4.1
with 499 replications. The empirical size is 5% and is controlled over a three-year period.9

A sensitivity analysis is conducted using a minimum window size of f0 = 0.25 and with empirical sizes con-
trolled over a two year period. Additionally, we repeat the empirical analysis using quarterly output gap as a proxy
for real economic activity. These results are collected in the online supplement (Shi et al., 2018b).

5.2. Yield Curve Slope to Real Economic Activity

The time-varying Wald test statistics for causal effects from the slope of the yield curve to real economic activity,
along with their bootstrapped critical values, are displayed in Figure 2. The three rows illustrate the sequences of
test statistics obtained from the forward recursive, rolling window and recursive evolving procedures respectively,
while the columns of the figure refer to the two different assumptions of the residual error term (homoskedasticity
and heteroskedasticity) for the VAR. Sequences of the test statistics start from December 1986, the shaded areas
are the NBER recession periods, vertical lines are the dates of the onset of an inverted yield curve and the dates
of causal episodes are also shown.

9 We estimate the VAR model under the null with the whole sample and simulate 84 + 35 = 119 observations for each bootstrapped sample.
The same critical value is applied to all tests over the sample period.
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Figure 2. Tests for Granger causality running from the yield curve slope to the growth rate of industrial production. The shaded
areas are the NBER recession periods, the vertical lines are the dates of the onset of an inverted yield curve and causal periods

are shown in text

Panels (a) and (b) of Figure 2 indicate that the test statistics of the predictive power of the slope of the yield curve
for real economic activity are always below their critical values at the end of the sample period in March 2015.
Consequently, the null hypothesis of no Granger causality from the yield curve slope to the industrial production
over the whole sample period cannot be rejected. This result highlights the danger of using Wald tests of Granger
causality indiscriminately over the full sample period. The fact that the slope of the yield curve has little predictive
power towards the end of the sample is to be expected given that this period is characterised by interest rates at
the zero lower bound. The relative lack of information encoded in the slope of the yield curve during this period,
therefore, is bound to have a significant distorting influence on inference based on the entire sample.

An even stronger result is provided by the forward recursive Wald test (both homoskedastic and heteroskedastic)
of causality to the effect that there is no causal relationship (or change in the causal relationship) between the slope
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of the yield curve and real economic activity over the entire sample period. This conclusion appears to be at odds
not only with our priors but also with all existing evidence of the usefulness of the slope of the term structure in
predicting real economic activity.

By contrast, the rolling and recursive evolving procedures (panels (c) to (f) of Figure 2) paint a different picture
from that of an unequivocal failure to reject the null hypothesis of no predictability. Instead, a far more dynamic
causal relationship between the slope of the yield curve and real economic activity is revealed. Furthermore,
the difference between the homoskedastic and heteroskedastic tests is quite obvious for the rolling and recursive
evolving procedures. Under the homoskedastic assumption, the rolling window procedure does not find any
episodes of causality running from the yield curve slope to the growth rate of industrial production over the entire
sample period; and the recursive evolving procedure detects one episode that occurred in November 1998 lasting
for 1 month. By contrast, the heteroskedastic-consistent tests find stronger evidence of causality. Under the het-
eroskedastic assumption, both the rolling and recursive evolving procedures detect one episode in 1998, which
starts in October 1998 and ends in November 1998 (March 1999) according to the rolling (recursive evolving)
procedure. The duration suggested by the recursive evolving algorithm is longer than that suggested by the rolling
procedure.

The heteroskedastic-consistent recursive evolving algorithm detects an additional episode in 2009, starting in
April and terminating in July. This difference in these empirical results highlights the efficacy of the recursive
evolving algorithm and the importance of taking the potential heteroskedasticity in the data into consideration
when conducting Granger causality tests.

5.3. Real Economic Activity to the Yield Curve Slope

Figure 3 displays the time-varying Wald test statistics for causal effects running from real economic activity to the
slope of the yield curve. The first interesting feature of the results reported in panels (a) and (b) of Figure 3 is that a
simple Granger causality test based on the entire sample would suggest no evidence against the null hypothesis of
no causality. Casual inspection of the other graphics in this figure would suggest that the unambiguous conclusion
of no causal relationship from economic activity to the slope of the yield curve would be understating the balance
of evidence.

The second conclusion to emerge from these results is that the empirical findings are sensitive to the assumptions
made about the variance of the VAR errors. The strongest discrepancy occurs with the recursive evolving algorithm
shown in Figure 3(e, f) where there is a dramatic decrease in the number of causal episodes when using the
heteroskedastic-consistent version of the test.10 Our third observation is that, just as in the case when testing
causality running from the slope of the yield curve to real economic activity, the recursive evolving procedure
detects more episodes of causality than the forward and rolling algorithms. The forward procedure suggests no
causality, despite strong rejection of the null hypothesis by the other two methods over the period of 2012–2015.
The recursive evolving method also detects an episode in 1989–1991, running from 1989:M03 to 1991:M12.

The results obtained from this empirical examination of causal links between the slope of the yield curve and
real economic activity suggest that the recursive evolving algorithm is most able to detect causal changes. This
result is consistent with the lessons from the simulation experiments and from the results reported in the online
supplement when quarterly data is used for the empirical application.

6. CONCLUSION

The recursive evolving test procedure introduced here provides a mechanism for detecting and dating changes in
Granger causal relationships. The approach uses sequences of the supremum norm of Wald statistics. Variants of
the test that are robust to departures from homoskedasticity are also examined. Limit distributions of the tests are
obtained and shown to have simple forms that are amenable to computation for the purpose of providing critical

10 Consequently, we focus on the heteroskedastic-consistent tests for sensitivity analysis presented in the online supplement.
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Figure 3. Tests for Granger causality running from the growth rate of industrial production to the yield curve slope. The shaded
areas are the NBER recession periods, the vertical lines are the dates of the onset of an inverted yield curve and causal periods

are shown in text

values. The recursive evolving procedure is compared to forward recursive and rolling window tests. The simula-
tion findings indicate that the recursive evolving approach has superior change detection performance among the
three methods in finite samples with the models considered here.

The tests are used to investigate causal relationships between the slope of the yield curve and real economic
activity (proxied by either the output gap or industrial production) using United States data over 1980-2015. The
empirical application builds on earlier findings in the literature concerning bidirectional causal effects between the
yield slope on real economic activity. The results are consistent with much of the earlier literature. However, their
most striking feature is the fact that causal relationships show considerable sensitivity to the subsample period.
They reveal how endogenous detection of switches in causal effects can provide useful insights about how the
nature of the macroeconomic impact of the yield curve slope can change over time. However, they also point to
fragilities that can arise in the indiscriminate application of the tests over arbitrarily chosen subsamples.
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