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Abstract A celebrated result in the theory of tournaments is that relative performance
evaluation (tournaments) is a superior compensation method to absolute performance
evaluation (piece rate contracts) when the agents are risk-averse, the principal is risk-
neutral or less risk-averse than the agents and production is subject to common shocks
that are large relative to the idiosyncratic shocks. This is because tournaments get
closer to the first best by filtering common uncertainty. This paper shows that, sur-
prisingly, tournaments are superior even when agents are liquidity constrained so that
transfers to them cannot fall short of a predetermined level. The rationale is that, by
providing insurance against common shocks through a tournament, payments to the
agents in unfavorable states increase and payments in favorable states decrease which
enables the principal to satisfy tight liquidity constraints for the agents without pay-
ing any ex ante rents to them, while simultaneously providing higher-power incentives
than under piece rates. The policy implication of our analysis is that firms should adopt
relative performance evaluation over absolute performance evaluation regardless of
whether the agents are liquidity (wealth) constrained or not.

Keywords Piece rates · Tournaments · Contests · Liquidity constraints

JEL Classification D82 · D21

1 Introduction

Even though linear contracts are only proxies of the theoretically optimal non-linear
contracts, they are popular in several occupations or industries (e.g., sales, physician
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162 K. Marinakis, T. Tsoulouhas

contracts with HMOs, contracts between processors and farmers, and faculty raises),
partly because they are simple to design and easy to implement and enforce.1 The
most common linear contracts are the piece rate contract and the cardinal tournament.
Both of these are applicable when cardinal data on individual agent performance
are available. By contrast, ordinal (or rank-order) tournaments are informationally
wasteful when data on the agents’ cardinal performance are available (Holmström
1982). Under rank-order tournaments, the prizes are fixed ex ante. Under cardinal
tournaments, the sum of prizes is fixed ex ante and relative performance evaluation
determines each agent’s share of the pie. Under the piece rate contract each agent
is evaluated according to his absolute performance or according to his performance
against a predetermined standard, while under the tournament each agent is evaluated
relative to the performance of his peers. In particular, under both schemes each agent
receives a base payment and a bonus payment, but the bonus payment is determined by
absolute performance in piece rates and by relative performance in tournaments.2 Fol-
lowing the footsteps of Lazear and Rosen (1981), Green and Stokey (1983), Nalebuff
and Stiglitz (1983), Malcomson (1984) and others, the comparison of cardinal tour-
naments and piece rates has been the subject of current literature (Tsoulouhas 1999;
Tsoulouhas and Vukina 1999, 2001; Hueth and Ligon 2001; Wu and Roe 2005, 2006;
Tsoulouhas and Marinakis 2007; Marinakis and Tsoulouhas 2009; Tsoulouhas 2010).3

This comparison is important because it allows us to contrast the efficiency of absolute
performance evaluation against relative performance evaluation.

Absent liquidity considerations, when agents are risk averse and production is sub-
ject to sufficiently large common shocks, the tournament is a superior incentive scheme
to the piece rate. This is because the tournament uses the information generated by
the performance of the group of participating agents as a whole, while the piece rate
does not. Specifically, if the disturbance in the output of each agent is correlated with
the disturbances in the output of the other agents, the information contained in the
average production can be very useful to the principal in creating a contract which
is a step closer to the First Best. Moreover, under the tournament, if the principal is
risk-neutral or is less risk-averse than the agent, an insurer–insuree relationship can
be developed between principal and agent allowing for a Pareto improvement of the
contract. That is, the principal will offer insurance to the risk averse agent by filtering
away the common shock from his responsibility. Insurance will make the agent more
tolerant to a higher-power incentive scheme and, therefore, the agent is expected to
increase his effort level.

1 To some extent, the non-linearity of the theoretically optimal contract is due to the fact that contracts
accommodate all possible events. Holmström and Milgrom (1987), however, have argued that schemes
that adjust compensation to account for rare events may not provide correct incentives in ordinary high
probability circumstances.
2 The base payment ensures agent participation and the bonus provides incentives to perform. Under tour-
nament an agent receives a bonus if his performance is above that of his peers, and a penalty otherwise.
3 Note that Tsoulouhas (2010) examines a form of cardinal tournaments in which the weights on absolute
and group average performance are not equal. Under these tournaments, the total prize is not fixed and the
principal can increase his profit over standard tournaments, however, these tournaments are more difficult
to design in practice and, hence, to the best of our knowledge, they are not used.
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Are tournaments optimal under liquidity constraints? 163

One might conjecture that the superiority of tournaments over piece rates may not
survive under liquidity constraints. Tsoulouhas and Vukina (1999) and Marinakis and
Tsoulouhas (2009) have proved that the optimality of tournaments over piece rates
can break down when the risk-neutral principal is subject to a limited liability (bank-
ruptcy) constraint, which limits the payments a principal can make, provided that the
liquidation value of the principal’s enterprise is sufficiently small. This is so because
tournaments increase payments in unfavorable states, but these are the states in which
the limited liability constraint comes into play. The intuition is that contracts with risk
neutrality and limited liability for the principal look very much like those that would
have been obtained with risk aversion. In other words, if the principal is concerned
about the allocation of profit across states, he will no longer offer insurance against
common shocks via tournaments and will resort to piece rate contracts or fixed perfor-
mance standards. This paper investigates the optimality of tournaments over piece rates
when the agent, instead, is subject to a liquidity constraint which introduces ex post
limitations on the minimum payment the agent can accept or the maximum penalty
that can be imposed on him (Innes 1990, 1993a,b). The liquidity constraint prevents
the principal from compensating the agent by an amount smaller than a predetermined
level in all states of nature.

The models used by Lazear and Rosen (1981), Green and Stokey (1983) and others
allow the payments to the agents to be negative. In particular, under both the piece
rate and the tournament payment schemes, if the agents produced a sufficiently low
output they would usually have to pay the principal. Thus, according to the standard
literature, if the production of an agent is sufficiently low the principal will penalize
the agent by imposing a negative compensation and acquire whatever output the agent
produced. This is certainly inconsistent with what we observe in reality.

The liquidity constraint is partly an institutional constraint on contracts. It is
imposed by law for several industries in numerous countries. Such legislation aims at
removing the burden of excessive penalties imposed on agents for negative outcomes
beyond their control, rather than at maximizing social welfare. However, a liquidity
constraint for the agent may alter the choice the principal makes between tournaments
and absolute performance contracts. This can be due to a number of reasons. Some
of these reasons are in favor of tournaments and some are in favor of piece rates.
First, by increasing payments to the agents in unfavorable states, tournaments are
more likely to satisfy tight liquidity constraints for the agents. Second, by providing
insurance, tournaments may satisfy the liquidity constraints for the agents without
paying rents to them. This is so because tournaments increase the compensation to the
agents in unfavorable states but reduce the payments in favorable states. By contrast
piece rates may pay the agents ex ante rents when the liquidity constraints are tight
(i.e., when the minimum required payment to the agents is high), which reduces the
principal’s profit. If piece rates pay ex ante rents to the agents, they could be dominant
over tournaments from the principal’s perspective only if implemented effort under
piece rates were sufficiently higher. But, in general, tournaments allow the principal to
implement higher-power incentives than piece rates, which enhances the dominance
of tournaments. Third, agents may be unable to pay for insurance especially in low
states of nature if the liquidity constraints are tight, which works against tournaments.
Fourth, the attitude of the principal and the agents toward risk may change. Liquidity
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164 K. Marinakis, T. Tsoulouhas

constraints may make the agents more tolerant to risk, in the sense that if the agents
know that their liability is limited, they may become indifferent among the range of
states over which the liquidity constraint is binding.4 On the other hand, the liquidity
constraints for the agents are expected to make the principal care about the alloca-
tion of payments and, hence, profit across states to satisfy the liquidity constraints
and ensure agent participation. When the principal becomes less tolerant to risk, while
agents simultaneously become more tolerant to risk and, therefore, they are not willing
to pay enough for insurance, the principal may find it less profitable to offer insurance
to the agent through a tournament and may resort to piece rates again. Thus, in all, it
is not a priori clear if tournaments, which are normally superior over piece rates when
production is subject to common shocks, maintain their superiority under liquidity
constraints for the agents.

Our analysis shows that, surprisingly, in the presence of sufficient common uncer-
tainty a principal contracting with risk averse agents will prefer to offer a tournament
even when agents are liquidity constrained. This finding is diametrically opposite to
the result for the case when the principal, instead, is subject to limited liability. The
rationale for this result follows directly from the discussion above. It turns out that by
providing insurance against common shocks through a tournament, so that payments
to the agents in unfavorable states increase and payments in favorable states decrease,
the principal can satisfy tight liquidity constraints for the agents without paying any ex
ante rents to them while simultaneously providing them with higher-power incentives
than under piece rates. The individual rationality constraints for the agents are always
binding under tournaments, whereas under piece rates they are non-binding (that is,
the agents receive ex ante rents) when the liquidity constraints for the agents are really
tight (that is, when the minimum payment required to satisfy the liquidity constraints
is high). This finding establishes our claim that the principal can satisfy tight liquidity
constraints for the agents without paying any ex ante rents to them under tournament.
Our second claim, that the principal can implement higher-power incentives under
tournament, is facilitated by the fact that the piece rate contract cannot be defined for
a piece rate larger than one (in the sense that the principal would not make an offer such
that marginal cost exceeded marginal revenue) whereas the tournament is defined for
a larger bonus factor. The larger the minimum payment satisfying an agent’s liquidity
constraint, the higher the power of incentives the principal provides. In other words,
the principal counterbalances the increase in the base payment, which is required to
satisfy the liquidity constraint, with higher-power incentives in order to curb agent
rents and in order to reduce the likelihood that output is low. Tournaments provide the
principal with added flexibility in the determination of this power when the liquidity
constraints are really tight.5

4 This is certainly in accord with Laffont and Martimort (2002) who state (see p. 121): “A limited liability
constraint on transfers implies higher-powered incentives for the agent. It is almost the same as what we
would obtain by assuming that the agent is a risk lover. The limited liability constraint on transfers somewhat
convexifies the agent’s utility function.”
5 On the other hand, regardless of whether the principal offers a piece rate or a tournament, the liquidity
constraints for the agents are non-binding (that is, in some sense, agents receive ex post rents) when the
minimum payment required to satisfy the liquidity constraints is low. In that case, the analysis is similar
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Are tournaments optimal under liquidity constraints? 165

The empirical application that stems from our analysis is that firms should adopt
relative performance evaluation via tournaments over absolute performance evaluation
via piece rates regardless of whether the agents are liquidity (wealth) constrained or
not. This finding enhances the generality of the results obtained in Lazear and Rosen
(1981), Green and Stokey (1983) and Nalebuff and Stiglitz (1983). For instance, in
the case of processor companies contracting with farmers who most often are liquidity
constrained, processors need not fear that the farmers’ liquidity issues detract from
the superiority of tournaments.6 Processors have been using tournaments for decades,
especially with chicken growers, and there has been lots of mostly anecdotal evidence
that farmers complain about such payment schemes in the presence of wealth con-
straints. Last but not least, note that similar to Lazear and Rosen (1981), Green and
Stokey (1983), Nalebuff and Stiglitz (1983) and Malcomson (1984) we are not looking
for the optimal contract, instead, we contrast the efficiency properties of absolute to
relative performance evaluation by comparing cardinal tournaments to piece rates the
way they are used in practice.7

Section 2 presents our model and Sect. 3 presents the benchmark case without
liquidity constraints with mostly known results in the literature. Section 4 presents
our results when the agents are liquidity constrained and Sect. 5 determines the domi-
nant compensation scheme. Section 6 extends the analysis by relaxing the assumption
of risk-aversion for the agents. Section 7 concludes. Appendix A presents the main
results of a representative numerical analysis. Appendix B presents the results of an
analysis if common uncertainty were relatively low.

2 Model

A principal signs a contract with n homogeneous agents.8 Each agent i produces
output according to the production function xi = a + ei + η + εi , where a is the
agent’s known ability, ei is his effort, η is a common shock and εi is an idiosyn-
cratic shock. The idiosyncratic shocks, εi , and the common shock follow independent

Footnote 5 continued
to the benchmark case in Lazear and Rosen (1981), Green and Stokey (1983) and Nalebuff and Stiglitz
(1983), and tournaments are optimal under sufficient common uncertainty.
6 Wealth constraints can certainly be a concern in contracts for salesmen as well.
7 Kim (1997) analyzes a setting with a risk neutral principal and a single risk neutral agent whose liability
is limited. He shows that the optimal contract is a bonus contract in which the principal and the agent
share the output, and the agent receives an additional fixed bonus only when output is greater than some
predetermined level. We differ from Kim because in our model there are multiple agents who are risk-averse
and their activities are subject to common uncertainty. Also see footnote 12 below.
8 Agent heterogeneity has been examined in a number of recent papers. In a model similar to ours,
Theilen (2003) examines optimal piece rate contracts in the presence of moral hazard and adverse selec-
tion. Tsoulouhas et al. (2007) consider CEO contests that are open to heterogeneous outsider contestants.
Mathews and Namoro (2008) examine the entry choice of heterogeneous agents over tournaments with
different prize levels. Konrad and Kovenock (2010) examine discriminating contests with stochastic con-
testant abilities. Kolmar and Sisak (2007) analyze discriminating contests among heterogeneous contestants.
Tsoulouhas and Marinakis (2007) analyze ex post agent heterogeneity to make the point that agent heter-
ogeneity compromises the insurance function of tournaments. Instead, Riis (2010) allows for agents who
are heterogeneous ex ante.
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distributions. Each agent’s effort and the subsequent realizations of the shocks are
private information to him, but the output obtained is publicly observed. The principal
compensates agents for their effort based on their outputs by using a piece rate con-
tract or a cardinal tournament. Agent preferences are represented by a CARA utility

function u(wi , ei ) = − exp

(
−wi + e2

i
2a

)
, where the agent’s coefficient of absolute

risk aversion is set equal to 1 for simplicity. The cost of effort is measured in monetary
units. Each agent has a reservation utility − exp(−u), where u is arbitrary (zero or
positive).

3 Piece rates and tournaments without liquidity constraints

We start by deriving the optimal contractual variables for the piece rate and the tourna-
ment without liquidity constraints for the agents. We assume that the total production
disturbance, η + εi , follows a normal distribution with zero mean and variance equal
to c/

√
2π, and the idiosyncratic shock, εi , follows a normal distribution with zero

mean and variance equal to d/
√

2π .9

3.1 Piece rates

The piece rate contract (R) is the payment scheme in which the compensation to the i th

agent is wi = bR+βR xi , where (bR, βR) are the contractual variables to be determined
by the principal. The principal determines the optimal values of these parameters by
backward induction. Thus, the principal calculates each agent’s expected utility

EU R = − exp

(
−bR − βR(a + ei ) + e2

i

2a
+ β2

Rc

2
√

2π

)
. (1)

To ensure the compatibility of the contract with agent incentives to perform, the prin-
cipal calculates the effort level that maximizes (1). First order conditions yield10

ei = aβR . (2)

To ensure the compatibility of the contract with agent incentives to participate, the
principal selects the value of the base payment, bR , that satisfies the agent’s individual
rationality constraint with equality so that the agent receives no rents but still accepts
the contract. The agent’s individual rationality constraint satisfies EU R = − exp(−u),
where EU R is determined by (1) and (2). Solving for bR implies

bR = u +
c√
2π

− a

2
β2

R − aβR . (3)

9 As will become obvious in the remaining analysis, this assumption on the variance simplifies the expo-
sition.
10 Note that the concavity of the utility function implies that first order conditions are sufficient.
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Thus, by choosing the piece rate βR , the principal can precisely determine the agent’s
effort because the agent will optimally set his effort according to (2). In addition, by
setting bR in accordance with (3) the principal can induce agent participation at least
cost. That is, agent incentives to perform are only determined by the piece rate βR ,
whereas agent incentives to participate are determined by the base payment bR .

Given conditions (2) and (3) the principal maximizes his expected total profit

ET�R =
n∑

i=1

[Exi − Ewi ] = n

[
a + aβR −

c√
2π

+ a

2
β2

R − u

]
. (4)

The solution to this problem satisfies

βR = a

a + c√
2π

. (5)

Condition (3) then implies

bR = u − a2

2

c√
2π

+ 3a[
c√
2π

+ a
]2 . (6)

Given conditions (5) and (4) expected profit per agent is

E�R = a + 1

2

a2

a + c√
2π

− u. (7)

3.2 Tournaments

The cardinal tournament (T) is the payment scheme in which the compensation to
each agent is determined by a relative performance evaluation. Specifically, wi =
bT + βT (xi − x), where x is the average output obtained by all agents and (bT , βT )

are the contractual variables to be determined by the principal.11 Under a tournament
the agent’s expected utility is

EUT = − exp

(
−bT − βT

n − 1

n
(a + ei ) + βT

1

n
� j �=i (a + e j )

+ e2
i

2a
+ 1

2

n − 1

n

β2
T d√
2π

)
. (8)

11 Again, as mentioned earlier, “hybrid” cardinal tournaments of the form wi = bT + βT xi − γT x are
analyzed in Tsoulouhas (2010). These tournaments are more difficult to design in practice and, to the best
of our knowledge, they are not used.
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The effort level that maximizes (8) satisfies

ei = n − 1

n
aβT . (9)

Further, the individual rationality constraint EUT = − exp(−u) implies

bT = u + 1

2

n − 1

n

(
n − 1

n
a + d√

2π

)
β2

T . (10)

Then, given conditions (9) and (10), the principal maximizes expected total profit

ET�T = n

[
a + n − 1

n
aβT − 1

2

n − 1

n

(
n − 1

n
a + d√

2π

)
β2

T − u

]
. (11)

The solution to the principal’s maximization problem satisfies

βT = a
n−1

n a + d√
2π

, (12)

therefore,

bT = u + 1

2

a2

a + n
n−1

d√
2π

. (13)

Given (12) and (11) expected profit per agent is

E�T = a + 1

2

a2

a + n
n−1

d√
2π

− u. (14)

By comparing (4) to (14) it can easily be shown that

E�T > E�R ⇔ n

n − 1
d < c, (15)

that is, tournaments are superior when total uncertainty is large relative to the idi-
osyncratic uncertainty (equivalently, when common uncertainty is relatively large)
and when the number of agents is large. This is so because tournaments eliminate
common uncertainty but they add the average individual noise of others. It is also
straightforward to show that bT > bR and βT > βR . The rationale behind the first
inequality is that the expected bonus payment under tournament is zero, whereas that
under piece rate is positive. Therefore, agents expect to be compensated for effort
through the base payment in a tournament. The intuition behind the second inequality
is that the principal implements higher-power incentives when common uncertainty is
removed from the responsibility of the agent under tournament. By comparing effort
under piece rates in (2) to that under tournaments in (9), it follows that effort under

123



Are tournaments optimal under liquidity constraints? 169

tournaments is larger provided that common uncertainty is sufficiently large, that is,
[n/(n −1)]d < c, which is a prerequisite for tournaments to be superior to begin with.
Specifically,

aβR <
n − 1

n
aβT ⇔ n

n − 1
d < c.

4 Piece rates and tournaments with liquidity constraints

Next we turn to the case with liquidity constraints for the agents. The liquidity con-
straint is

wi ≥ w, (16)

where w is the minimum permissible payment. The liquidity constraints for the agents
necessitate a support for the production shocks which is bounded below and above. The
support must be bounded below so that in the worst possible output state the liquidity
constraints are still satisfied (obviously they cannot be satisfied with an output space
which is unbounded below). For a similar reason, the support must be bounded above
to eliminate the case when the payment under tournament is below the minimum
required to satisfy the liquidity constraint when average output is unbounded above.12

With bounded support for the production shocks one might expect that the First Best
is always implementable by punishing the agent severely for outcomes outside the
support (see p. 140 in Bolton and Dewatripont 2005). Note, however, that the liquidity
constraints of the agents prevent severe punishment of them.

The requirement of bounded support eliminates unbounded distributions such as the
normal, which we used in Sect. 3 (and is typically used in the literature for the setting
without liquidity constraints). The normal distribution is one of the assumptions that
are made in order to obtain a closed form solution for the case without liquidity con-
straints. Further, a truncated normal distribution provides neither a closed form solution
nor a numerical one. However, we were able to obtain significant insight through a
numerical analysis by assuming that the idiosyncratic and the common shocks follow
independent uniform distributions, in which case the sum of these shocks follows a
triangular distribution. Specifically, the idiosyncratic shocks, εi , follow independent
uniform distributions with support [−d, d], and therefore, the total production shock,
vi ≡ εi +η, follows a triangular distribution with density f (·), the support of which is

12 An alternative approach would be to consider a modification of the payment schemes such that the agent
still receives the minimum payment required to satisfy his liquidity constraint, w, specifically, consider
max{w, wi } where wi is determined by the scheme. We ignore this approach for two reasons. First, this
paper compares simple linear cardinal tournaments to piece rates the way they are used in the empirical
applications stated earlier. Kinked schemes of the form above are not used in these applications. Second,
we pursued the analysis of the kinked case and it was intractable because the expected utility of a non-
linear (concave) transformation of a kinked payment scheme cannot be calculated analytically. However,
we determined that the results are qualitatively similar.
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assumed to be [−c, c] with zero mean.13 The following lemmata apply to piece rates
and tournaments with liquidity constraints.

Lemma 1 Under piece rates, when the agents are subject to liquidity constraints
in addition to individual rationality constraints, at least one of the individual ratio-
nality and the liquidity constraints for each agent binds depending on the values of
parameters w, u, a and c.

Proof First note that if both constraints were non-binding, then, the principal would
reduce the payments to the agent until one of the two constraints became binding
(that is, until the agent received no rents in an ex ante or in an ex post sense). As
shown in Sect. 3, solving without the liquidity constraint for each agent (in which case
the individual rationality constraint is obviously binding) implies that the contractual
variables (bR, βR) satisfy conditions (6) and (5), respectively, and therefore the pay-
ment wi may or may not satisfy the liquidity constraint in all states depending on the
values of parameters w, u, a and c. Therefore, when the individual rationality con-
straint is binding, the liquidity constraint is binding or non-binding (the latter when w

is relatively low). Solving without the individual rationality constraint (in which case
the liquidity constraint is obviously binding in the lowest possible state) implies that
the payments to the agent may or may not satisfy the individual rationality constraint
depending on the values of parameters w, u, a and c again. Therefore, when the liquid-
ity constraint is binding the individual rationality constraint is binding or non-binding
(the latter when w is relatively large). ��
Lemma 2 Under tournaments, when the agents are subject to liquidity constraints in
addition to individual rationality constraints, and assuming that the regularity con-
dition a > [n/(n − 1)]d holds, the individual rationality constraint for each agent is
always binding and the liquidity constraint for each agent is binding or non-binding
depending on the values of parameters w, u, a and d.

Proof First, similar to Lemma 1, the two constraints cannot simultaneously be non-
binding. Solving without the individual rationality constraint (in which case the liquid-
ity constraint is obviously binding in the lowest possible state) implies that bT =
w+βT d. This is so because wi = bT +βT (xi − x) = w and, given that εi ∈ [−d, d],
if the number of agents is sufficiently large xi − x

D→ uni f orm[−d, d]. Then, since
the principal’s profit per agent is �i = xi −bT = a −w + ( n−1

n a − d
)
βT +η+ εi , it

follows that expected profit per agent is E�T = a−w+( n−1
n a − d

)
βT . To maximize

this expected profit the principal chooses the maximum βT that satisfies the individual
rationality constraint with equality so that the agent accepts the contract. Therefore,
the individual rationality constraint is always binding. As shown in Sect. 3, solving

13 Note that the triangular distribution we use in our numerical analysis with liquidity constraints is a
first-order approximation of the normal distribution we use in the analysis without liquidity constraints.
Again, the model without the liquidity constraint can be analyzed and provide a closed form solution when
the total shock follows a normal distribution, however, it does not provide even a numerical solution when
it follows a triangular distribution. On the other hand, the model with the liquidity constraint can provide a
numerical solution with a triangular distribution, but it does not provide even a numerical solution with a
normal distribution.
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without the liquidity constraint (in which case the individual rationality constraint
is obviously binding) implies that the contractual variables (bT,βT ) satisfy (13) and
(12), respectively, and therefore the payment wi may or may not satisfy the liquidity
constraint in all states depending on the values of parameters w, u, a and d. Therefore,
when the individual rationality constraint is binding, the liquidity constraint is binding
or non-binding (the latter when w is relatively low). ��

Note that the regularity condition a > [n/(n − 1)]d requires that agents are of
sufficiently high ability. The proof of Lemma 2, then, shows that the principal’s profit
is increasing in the bonus factor βT . The rationale why the individual rationality con-
straint is always binding for the tournament case but not for the piece rate case is
that profit is decreasing in the piece rate βR . Therefore, unlike the tournament case in
which the principal benefits by increasing the bonus factor βT until it yields no rents
to the agent, in the piece rate case the principal may prefer to provide the agent with
rents in order to increase his profit. Thus, there is a fundamental difference between
tournaments and piece rates in this respect, which drives the results in our paper.

4.1 Piece rates

We start by analyzing the piece rate case. The piece rate scheme can be written as wi =
bR + βR (a + ei + vi ) . As Lemma 1 indicates, the individual rationality constraint
can be binding or not. Because of this, the procedure for determining the contractual
variables is somewhat different than the one we followed above for the case without
liquidity constraints (without liquidity constraints the individual rationality constraints
are always binding). With liquidity constraints, we determine the base payment bR

through these constraints, and the piece rate βR from the profit maximizing condition.
Then we check whether this solution satisfies the individual rationality constraints.

Clearly, if the payment satisfies the liquidity constraint (16) in the lowest possi-
ble state, then, it satisfies the constraint in all states because the payment scheme is
increasing in the state. Therefore, if the constraint is binding in the lowest state, then
it is non-binding in all states. From the agent’s perspective, given that the principal
controls incentives through the payment scheme, the worst state is the one in which the
principal provides him no incentives to perform and the production state turns out to
be the worst, that is, ei = 0 and vi = −c.14 In the remaining analysis we focus on the
case when the liquidity constraint is binding in the lowest possible state. Therefore,
the principal will set

14 Recall that the liquidity constraint is an institutional constraint which prohibits penalizing the agent for
obtaining a low output, and it should hold regardless of whether the contract is optimal or not. The agent’s
optimal response under the contract should not be included in the calculation of the required base wage,
because we cannot assume the optimal contract in setting up the constraint. Instead, the constraint deter-
mines the agent’s optimal response under contract and the optimal contract. By setting effort at the lowest
possible level, and by setting the state at the worst possible realization, we can ensure that the piece rate
contract always satisfies the agent’s liquidity constraint. Note that under tournaments, instead, and given
the homogeneity of agents, efforts cancel out of the payment calculation.
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bR = w − βR (a − c) . (17)

The expected utility for the agent is

EUi = −
c∫

−c

exp (−βRvi ) f (vi )dvi exp

(
−w − βRc − βRei + e2

i

2a

)
. (18)

To provide correct incentives to the agent, the principal calculates the effort level ei

that maximizes (18). First order conditions yield

−
c∫

−c

exp (−βRvi ) f (vi )dvi exp

(
−w − βRc − βRei + e2

i

2a

) (
−βR + ei

a

)
= 0

and, because neither
∫ c
−c exp (−βRvi ) f (vi )dvi nor exp

(
−w − βRc − βRei + e2

i
2a

)

can be equal to zero, it follows that

ei = aβR . (19)

The principal’s profit per agent is �i = (1 − βR) xi − bR = a + aβR − aβ2
R − w −

βRc + (1 − βR) vi . Then the expected profit per agent is

E�R = a + aβR − aβ2
R − w − βRc. (20)

Maximizing the expected profit with respect to βR yields

βR = a − c

2a
. (21)

Hence, given the contractual variables and the optimal effort level for the agent, the
expected profit per agent is

E�R = 5

4
a + 1

4

c2

a
− 1

2
c − w. (22)

Note that condition (22) indicates that the principal will make an offer only if w is
relatively low, otherwise production is unprofitable.

Given conditions (17) and (21), the individual rationality constraint requires

−
c∫

−c

exp

(
−a − c

2a
vi

)
f (vi )dvi exp

(
−w − 3

4
c + 5

8

c2

a
+ 1

8
a

)
≥ − exp(−u).

(23)
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Clearly, (23) may or may not hold, depending on the values of parameters w, u, a and c.
If it holds, then the contractual variables to be offered by the principal satisfy (17)
and (21). If (23) does not hold, that is, if βR in (21) violates the individual rationality
constraint, then the individual rationality constraint is binding. In this case, βR must
be determined through the individual rationality constraint with equality. Given (18),
(19) and the density function for vi , the individual rationality constraint is written as

c∫
−c

exp (−βRvi )
c − |vi |

c2 dvi exp

(
1

2
aβ2

R − βRc

)
exp(−w) = exp(−u). (24)

Given that c > 0, (24) is equivalent to

[
1 + exp (2βRc) − 2 exp (βRc)

]
exp (−βRc)

β2
Rc2

× exp

(
1

2
aβ2

R − βRc

)
exp(u − w) − 1 = 0. (25)

A closed form solution for βR is impossible to obtain from (25). As a result we have
to rely on computational methods in order to determine the piece rate values βR which
are individually rational. Our computations proceed as follows: we derive the contrac-
tual variables from Eqs. (17) and (21) assuming that the liquidity constraint is binding
in the lowest state and ignoring the individual rationality constraint. Then we check
if the individual rationality constraint (23) is satisfied by the solution (in which case
it is non-binding) or if it is violated (in which case it is binding). If (23) is found to
be binding, then the piece rate βR is derived by the solution of (25) using a Newton
algorithm and bR is still determined by (17). In this case, when we have multiple solu-
tions for βR , we keep the one maximizing the principal’s profit. If (23) is found to be
non-binding we keep the solutions from Eqs. (17) and (21).

4.2 Tournaments

Next, we turn to the tournament case. Recall that under the tournament the com-
pensation to each agent is wi = bT + βT (xi − x) , which can be written as wi =
bT + βT (ei − e) + βT ϑi , where ϑi ≡ εi − ε, with e denoting the average effort
and ε denoting the average idiosyncratic shock. Given that the agents are homoge-
neous, the contract is uniform for all agents and the optimal effort level is equal in
equilibrium for all agents.15 Thus, the compensation to each agent can be expressed
as wi = bT + βT ϑi . As shown in the proof of Lemma 2,

15 Skaperdas and Gan (1995) have shown that if the agents are heterogeneous in their risk-aversion rates,
then, their equilibrium effort can be sensitive to the risk-aversion rate. In a model with limited liability for
the agents, they show that the more risk-averse agent exerts higher effort as insurance against loss. Instead
of heterogeneous agents, Konrad and Schlesinger (1997) assume that agents are identical and examine the
effects of risk-aversion on rent-seeking and rent-augmenting expenditures to show that risk-aversion may
have ambiguous effects on expenditures in rent-seeking contests. Our analysis indicates that our results
are qualitatively correct provided that the agents are risk-averse, but they depend quantitatively on the
risk-aversion rate.
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bT = w + βT d. (26)

Similar to piece rates, if the liquidity constraint is binding in the lowest state, then it
is non-binding in all states, because the payment under tournament is also increasing
in the state. The agent’s expected utility is

EUi = −
d∫

−d

exp (−βT ϑi ) f (ϑi )dϑi

× exp

(
−w − βT d − βT

n − 1

n
ei + βT

1

n
�n

j=1
j �=i

e j + e2
i

2a

)
. (27)

The effort level that maximizes the agent’s expected utility satisfies

−
d∫

−d

exp (−βT ϑi ) f (ϑi )dϑi exp

(
−w − βT d − βT

n − 1

n
ei + βT

1

n
�n

j=1
j �=i

e j + e2
i

2a

)

×
(

−βT
n − 1

n
+ ei

a

)
= 0.

Because the product of the first two terms in the equation cannot be equal to zero,
it follows that

ei = n − 1

n
aβT . (28)

Given Lemma 2, which states that the individual rationality constraint is always bind-
ing under tournaments with liquidity constraints, the principal chooses the value of the
bonus factor βT that satisfies the agent’s individual rationality constraint with equality.
Thus, (26 ), (27) and (28) imply

EUi = −
d∫

−d

exp (−βT ϑi ) f (ϑi )dϑi exp

(
−w − βT d + 1

2

(
n − 1

n

)2

aβ2
T

)

= − exp(−u). (29)
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Note that in equilibrium the random variable xi − x ≡ ϑi
D→ uniform[−d, d].16

Hence,
∫ d
−d exp (−βT ϑi ) f (ϑi )dϑi converges to

d∫
−d

exp (−βT ϑi )
1

2d
dϑi = exp (βT d) − exp (−βT d)

2βT d
.

Then, (29) becomes

−exp (βT d) − exp (−βT d)

2βT d
exp

(
−w − βT d + 1

2

(
n − 1

n

)2

aβ2
T

)
=− exp(−u)

⇔ exp

(
1

2

(
n − 1

n

)2

aβ2
T − βT d

)
exp(u − w) = 2βT d

exp (βT d) − exp (−βT d)
.

(30)

Clearly, similar to the piece rate case, Eq. (30) has no closed form solution.
A solution can only be obtained by computational methods (recall that we use a Newton
algorithm). The principal’s profit per agent is �i = xi −bT = a−w+( n−1

n a − d
)
βT

+ εi + η. Hence, given the optimal base payment and the optimal effort level for the
agent, the expected profit per agent is

E�T = a − w +
(

n − 1

n
a − d

)
βT . (31)

where βT can only be determined numerically by solving (30).

5 The dominant contract under liquidity constraints

The principal’s decision about which compensation scheme to offer depends entirely
on expected profits. Clearly, under both schemes, expected profits decline when a
liquidity constraint is introduced in addition to the other constraints. Our analysis
indicates that these profits decline faster under piece rates as the liquidity constraint
becomes tighter. The intuition behind our result is that the liquidity constraint dis-
torts the agent’s incentives to perform because it reduces the penalty the principal can
impose for unfavorable outcomes. Therefore, the principal needs to provide higher-
power incentives. By filtering common shocks from the responsibility of the agent,
tournaments make the agent more tolerant to higher-power incentives, hence, it is
easier for the principal to implement higher-power incentives under tournament than
under piece rates. Moreover, the piece rate βR cannot exceed 1 (i.e., because marginal

16 Convergence in distribution utilizes the Central Limit Theorem, which involves the limit of the distri-
bution’s cdf as n converges to infinity. For n around 30 and above, the convergence becomes near absolute.
For a value of n = 100 (which is used in Appendix A) the convergence error becomes smaller than machine
precision (2.21e-016).
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(b)

(a)

(c)

Fig. 1 The expected profit per agent and the contractual variables for the piece rate contract and the
tournament

cost cannot exceed marginal revenue). By contrast, the bonus factor βT can exceed
1 which enables the implementation of higher-power incentives.

Figure 1 illustrates that tournaments are dominant over piece rates when liquidity
constraints are introduced. In particular, panel (a) shows that expected profit is always
strictly larger under tournament regardless of the value of w, that is, regardless of how
tight the liquidity constraint is. Note that in our numerical analysis (see Appendix A),
the results of which are depicted in Fig. 1, we assume that [n/(n − 1)]d < c. That is,
we assume that common uncertainty is sufficiently large relative to the idiosyncratic
uncertainty. As shown in Appendix A, we use the parameter set a = 10, n = 100,

c = 3, d = 0.5, however, the results are qualitatively the same for any parameters
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satisfying the regularity conditions [n/(n − 1)]d < c and [n/(n − 1)]d < a. For the
case without liquidity constraints expected profits per agent are calculated by using
conditions (7) and (14). For the case with binding liquidity constraints expected prof-
its per agent are calculated by using condition (20) where βR is determined either
by (21) or by the numerical solution of (25), and condition (31) where, again, βT is
determined numerically by (30). Obviously, for the range over which the liquidity
constraint is non-binding, expected profit is flat and independent of w. We confirmed
this result for all possible values of common uncertainty that satisfy condition (15).
A sufficient increase in the minimum permissible wage w decreases the expected
profit under both schemes, but it does so much faster under piece rates. In fact, piece
rates cannot be defined at all after a critical value of w is passed (see point B in
panel (a)), because the principal needs to offer a piece rate larger than 1 to provide
correct incentives to the agent. However, given that βR cannot exceed 1, piece rates
cannot be defined.17 In interpreting the results depicted in Fig. 1, note that for w in the
range up to A the individual rationality constraint under piece rates is binding and the
liquidity constraint is non-binding. For w in the AB range the individual rationality
constraint under piece rates is binding or non-binding and the liquidity constraint is
binding. Under tournaments, the individual rationality constraint is always binding
(see Lemma 2). Lastly, for w in the range up to C the limited liability constraint under
tournament is non-binding.

Again, in our numerical analysis we assume that common uncertainty is relatively
large, that is, [n/(n − 1)]d < c. If, instead, common uncertainty were relatively low,
that is, if [n/(n − 1)]d > c, absent a liquidity constraint for the agent the tournament
would be suboptimal, as condition (15) indicates. In terms of adjustments to panel (a)
in Fig. 1, expected profit under piece rates would be higher up to point A. Recall that
the piece rate is not defined beyond point B. Further, over range AB, expected profit
under tournaments is shown by condition (14), and expected profit under piece rates
is shown by condition (22) if the individual rationality constraint under piece rates is
non-binding. Thus, expected profit under tournament would be larger if

1

2

⎛
⎝ a2

a + n
n−1

d√
2π

+ c

⎞
⎠ − 1

4

(
a + c2

a

)
> u − w.

Hence, if u − w is sufficiently small, the principal will still find it optimal to switch
to a tournament even though common uncertainty is relatively low, primarily for the
sake of satisfying the liquidity constraint. That is, the liquidity constraint can reverse
the preferences of the principal. Appendix B provides the numerical analysis when
the individual rationality constraint under piece rates is binding, instead. This analysis
also supports the finding above.18

Panel (b) indicates that the base payment is always larger (and positive) under
tournament, but it increases with w, that is, when the minimum acceptable payment

17 In other words, the principal does not find it profitable to make an offer that the agent will accept.
18 We are thankful to an anonymous referee for highlighting the importance of this possibility for the
analysis.
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increases the base payment must also increase to provide correct incentives to the
agent to participate. As mentioned earlier, the rationale behind the positive bT and the
negative bR is that the expected bonus payment under tournament is zero, whereas
that under piece rate is positive. Therefore, agents expect to be compensated for effort
through the base payment in a tournament. Under piece rates the bonus also com-
pensates the agents for their effort costs. In fact, the expected bonus exceeds the cost
of effort and the base payment is negative. Further, panel (c) indicates that both the
piece rate βR and the bonus factor βT increase when w increases and the liquidity
constraint is binding. There are two reasons for this: First, because the base payment
increases when w increases, the principal must provide the agents with higher-power
incentives in order to exert more effort and make up in lost profit due to the increase in
the base payment. Second, when w increases, the principal provides the agents with
higher-power incentives in order to minimize the likelihood that output is low and the
principal is forced by the liquidity constraint to pay the minimum acceptable wage
to the agent when, absent the constraint, it would have been optimal to pay less or
impose a penalty. Again, note that piece rates are not defined for a piece rate above 1,
whereas under tournaments the principal can continue to provide incentives to the
agents through a bonus factor larger than 1, which explains the increased dominance
of tournaments over piece rates for large values of the minimum acceptable payment w.

6 Piece rates and tournaments with risk-neutrality

We now simplify our model by assuming that the agents are risk-neutral. Relaxing
risk-aversion allows us to obtain closed form solutions for the contractual parameters
even with liquidity constraints. Under risk-neutrality and without liquidity constraints,
the determination of the optimal bonus factor for both the piece rate and the tourna-
ment leads to trivial results, especially because the provision of insurance is a major
issue in contrasting piece rates to tournaments. This is the reason why our baseline
model includes risk-aversion for the agents, even though a closed form solution cannot
be obtained. The analysis with risk-neutrality and liquidity constraints, however, con-
forms with our findings for the more interesting risk-averse case. Agent preferences

are represented by u (wi , ei ) = wi − e2
i

2a . We assume that both production shocks η

and εi follow identical and independent distributions with zero means. The support of
η+εi is [−c, c] and the support of εi is [−d, d] . We start with the case of no liquidity
constraints for the agents.

Under a piece rate contract wi = bR + βR xi , the agent’s utility is

u (wi , ei ) = bR + βRei + βRa + βRη + βRεi − e2
i

2a
,

hence, his expected utility is

EU R = bR + βRei + βRa − e2
i

2a
.
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Maximizing expected utility with respect to ei yields a condition identical to (2) above.
The agent’s individual rationality constraint then implies

bR = u − a

2
β2

R − aβR .

The principal’s expected profit per agent is

E�R = a + aβR − 1

2
aβ2

R − u.

Maximizing with respect to βR yields

βR = 1.

The intuition is that when agents are risk-averse, the optimal choice under piece rates
is the solution of “selling the enterprise to the agent” (i.e., a piece rate of 1 so that, in
light of moral hazard, the agent assumes all the risk). It follows that

bR = u − 3

2
a,

and expected profit per agent at the optimum piece rate is

E�R = 3

2
a − u.

Under a tournament wi = bT + βT (xi − x), the agent’s utility is:

u (wi , ei ) = bT + βT

⎛
⎝n − 1

n
(ei + εi ) − 1

n

∑
j �=i

(
e j + ε j

)⎞⎠ − e2
i

2a
,

hence, his expected utility is

EUT = bT + βT

⎛
⎝n − 1

n
ei − 1

n

∑
j �=i

e j

⎞
⎠ − e2

i

2a
.

Maximizing expected utility with respect to ei yields a condition identical to (9) above.
The agent’s individual rationality constraint then implies

bT = u + 1

2

(
n − 1

n

)2

aβ2
T .

The principal’s expected profit per agent is

E�T = a + n − 1

n
aβT − 1

2

(
n − 1

n

)2

aβ2
T − u.
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Maximizing with respect to βT yields

βT = n

n − 1
.

Hence,

bT = u + 1

2
a,

and expected profit per agent at the optimum tournament is

E�T = 3

2
a − u,

which is identical to that under piece rates. The intuition here is that when the agents
are risk-neutral the principal cannot charge them a risk-premium for removing com-
mon uncertainty from their responsibility, and the contract induces the agents to exert
the same effort ei = a they would exert under piece rates. This result conforms with
the Lazear and Rosen (1981) finding that both piece rates and tournaments are equally
efficient with risk-neutral agents.19

We continue with the case of liquidity constraints for the agents. In this case, under
piece rates, it follows that

bR + βR xi ≥ w ⇔ u + 1

2
a + η + εi ≥ w.

Thus, in the worst state of nature, the liquidity constraint must satisfy

u + 1

2
a − c ≥ w.

If w satisfies this inequality, the optimal piece rate contract is the one determined
above without liquidity constraints. By contrast, for a sufficiently large w, the liquid-
ity constraint is binding. Thus,

bR = w − βR(a − c),

while the optimal effort is still given by (2). Expected profit per agent satisfies

E�R = a − aβ2
R − w + βR(a − c).

Maximizing with respect to βR implies

βR = a − c

2a
.

19 Again, note that Lazear and Rosen (1981) considered rank-order tournaments though.
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It can be shown that the individual rationality constraint yields

c + 1

2
a − 3

2

c2

a
≥ 4

(
u − w

)
.

If the individual rationality constraint is binding, βR is calculated from the constraint
with equality. That is,

w − βR(a − c) + 1

2
aβ2

R + aβR = u ⇔ 1

2
aβ2

R + cβR + (
w − u

) = 0

⇔ βR =
−c +

√
c2 − 2a

(
w − u

)
a

,

because βR cannot be negative and provide correct incentives.
Under tournaments, the liquidity constraint implies

bT + βT (xi − x) ≥ w ⇔ bT + βT (ei − e) + βT (εi − ε) ≥ w.

Given agent homogeneity, it follows that

bT + βT (εi − ε) ≥ w ⇔ u + 1

2
a + n

n − 1
(εi − ε) ≥ w.

Thus, in the worst state of nature, the liquidity constraint must satisfy

u + 1

2
a − c ≥ w.

If w satisfies this inequality, the optimal tournament contract is the one determined
above without liquidity constraints. Similar to the piece rate case, the liquidity con-
straint is binding for a sufficiently large w. Thus,

bT = w + βT d,

while the optimal effort is still given by (9). Expected profit per agent satisfies

E�T =
(

n − 1

n
a − d

)
βT + a − w,

where, similar to Lemma 2 above, we assume that the regularity condition n−1
n a−d >0

holds. If the individual rationality constraint is binding, βT is calculated from the con-
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straint with equality. That is,

w + βT d −
( n−1

n aβT
)2

2a
= u ⇔ 1

2

(
n − 1

n

)2

aβ2
T − dβT + (

u − w
) = 0

⇔ βT = d +
√

d2 − 2
( n−1

n

)2
a

(
u − w

)
( n−1

n

)2
a

,

because the principal will obviously choose the highest-power incentives that are
feasible.

To summarize the analysis with risk-neutral agents, the optimal piece rate under
liquidity constraints for the agents is determined according to the following procedure:

(i) Set βR = 1 and calculate bR = u − 3
2 a.

(ii) If bR + βR (a − c) ≥ w, then the liquidity constraint is always non-binding
(while the individual rationality constraint is binding) and the optimal piece rate
contract is the one determined above without a liquidity constraint. Otherwise,
we continue with step (iii).

(iii) Calculate βR = a−c
2a and bR = w − βR(a − c).

(iv) If cβR + 1
2 aβR ≥ u−w, then the individual rationality constraint is non binding

(while the liquidity constraint is binding) and the optimal piece rate contract is
the one calculated in step (iii). Otherwise, we continue with step (v).

(v) Calculate βR = −c+√
c2−2a(w−u)

a and bR = w − βR(a − c), which define the
optimal piece rate contract in this case (where all constraints are binding). The
expected profit per agent can then be calculated as

E�R = a − a (βR)2 − bR .

The related procedure under tournaments is:

(i) Set βT = n
n−1 and calculate bT = u + 1

2 a.
(ii) If bT −dβT ≥ w, then the liquidity constraint is always non-binding (while the

individual rationality constraint is binding) and the optimal tournament con-
tract is the one determined above without a liquidity constraint. Otherwise, we
continue with step (iii).

(iii) Calculate βT = d+
√

d2−2
(

n−1
n

)2
a(u−w)(

n−1
n

)2
a

and bT = w + βT d, which define the

optimal tournament contract in this case (where all constraints are binding).
The expected profit per agent can then be calculated as

E�T = n − 1

n
aβT + a − bT .

Figure 2 summarizes the findings of the risk-neutral agent case. As Fig. 2 shows,
expected profit is identical for piece rates and tournaments when the liquidity con-
straints are non-binding, however, when the liquidity constraints are binding, expected
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Fig. 2 The expected profit per agent for the piece rate contract and the tournament, when agents are
risk-neutral

profit under tournaments is higher. These findings enhance the generality and robust-
ness of our main result.

7 Conclusion

A familiar result in the principal-agent literature is that when agents are risk averse
and production is subject to relatively large common shocks the tournament is a
superior compensation scheme to the piece rate. The superiority of tournaments over
piece rates may not survive under liquidity constraints. Prior research (for instance,
Tsoulouhas and Vukina 1999; Marinakis and Tsoulouhas 2009 for limited liability
on the principal) would lead someone to expect the same result even when limited
liability is imposed on the agent instead of the principal. In addition, one might
also expect that limited liability would make the agents more tolerant to risk (in
the sense that liquidity constraints convexify the agent’s utility function) and the
principal less tolerant to risk (in the sense that the principal cares about the allo-
cation of payments across states in order to satisfy the liquidity constraints). The
reduced interest of agents in getting insurance, as well as the reduced ability of the
principal to provide it, might diminish the scope for tournaments. However, there
is a fundamental difference between limited liability on the principal side and lim-
ited liability on the agent side. Under limited liability for the principal, the agents
cannot be suckered by the prospect of payments the principal cannot make, there-
fore, a limited liability constraint is introduced to put a maximum on the payment
to the agents in low states. Liquidity constraints for the agents, instead, put a min-
imum on the payments to the agents in low states. Our analysis builds on this fact
to show that in the presence of common uncertainty a principal contracting with risk
averse agents will prefer to offer a tournament even when agents are liquidity con-
strained.
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The rationale for our result is that by providing insurance against common shocks
through a cardinal tournament, so that payments to the agents in unfavorable states
increase and payments in favorable states decrease, the principal can satisfy tight
liquidity constraints for the agents without paying any ex ante rents to them while
simultaneously providing them with higher-power incentives than under piece rates.
The larger the minimum payment satisfying an agent’s liquidity constraint, the higher
the power of incentives the principal provides. In other words, the principal counter-
balances the increase in the base payment, which is required to satisfy the liquidity
constraint, with higher-power incentives in order to curb agent rents and in order to
reduce the likelihood that output is low. Tournaments provide the principal with added
flexibility in the determination of this power.
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Appendix A

This following table (Table 1) presents the main results of a representative numerical
analysis when common uncertainty is sufficiently large that is, when [n/(n−1)]d < c.
In particular, for the parameter set a = 10, n = 100, c = 3, d = 0.5, we derive the
vector of contractual parameters for a specified range of w.

Appendix B

This following table (Table 2) presents the results of a numerical analysis if common
uncertainty were relatively low, that is, if [n/(n − 1)]d > c. In particular, for the
parameter set a = 10, n = 100, c = 1, d = 3, we derive the vector of contractual
parameters for a specified range of w.

123



Are tournaments optimal under liquidity constraints? 185

Ta
bl

e
1

Pa
ra

m
et

er
va

lu
es

:a
=

10
,n

=
10

0,
c

=
3,

d
=

0.
5

M
in

im
um

b
R

β
R

�
R

IR
L

C
bT

β
T

�
T

IR
L

C
w

ag
e

fo
r

PR
fo

r
PR

fo
r

To
ur

.
fo

r
To

ur
.

1
−1

2.
43

62
0.

89
29

14
.4

64
3

B
in

di
ng

N
on

-b
in

di
ng

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

1.
1

−1
2.

43
62

0.
89

29
14

.4
64

3
B

in
di

ng
N

on
-b

in
di

ng
4.

90
19

0.
98

14
14

.9
01

9
B

in
di

ng
N

on
-b

in
di

ng
1.

2
−1

2.
43

62
0.

89
29

14
.4

64
3

B
in

di
ng

N
on

-b
in

di
ng

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

1.
3

−1
2.

43
62

0.
89

29
14

.4
64

3
B

in
di

ng
N

on
-b

in
di

ng
4.

90
19

0.
98

14
14

.9
01

9
B

in
di

ng
N

on
-b

in
di

ng
1.

4
−1

2.
43

62
0.

89
29

14
.4

64
3

B
in

di
ng

N
on

-b
in

di
ng

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

1.
5

−1
2.

43
62

0.
89

29
14

.4
64

3
B

in
di

ng
N

on
-b

in
di

ng
4.

90
19

0.
98

14
14

.9
01

9
B

in
di

ng
N

on
-b

in
di

ng
1.

6
−1

2.
43

62
0.

89
29

14
.4

64
3

B
in

di
ng

N
on

-b
in

di
ng

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

1.
7

−1
2.

43
62

0.
89

29
14

.4
64

3
B

in
di

ng
N

on
-b

in
di

ng
4.

90
19

0.
98

14
14

.9
01

9
B

in
di

ng
N

on
-b

in
di

ng
1.

8
−4

.3
77

6
0.

88
25

6.
58

93
B

in
di

ng
B

in
di

ng
4.

90
19

0.
98

14
14

.9
01

9
B

in
di

ng
N

on
-b

in
di

ng
1.

9
−4

.3
76

3
0.

89
66

6.
33

71
B

in
di

ng
B

in
di

ng
4.

90
19

0.
98

14
14

.9
01

9
B

in
di

ng
N

on
-b

in
di

ng
2

−4
.3

72
9

0.
91

04
6.

08
44

B
in

di
ng

B
in

di
ng

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

2.
1

− 4
.3

67
5

0.
92

39
5.

83
11

B
in

di
ng

B
in

di
ng

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

2.
2

−4
.3

60
2

0.
93

72
5.

57
73

B
in

di
ng

B
in

di
ng

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

2.
3

−4
.3

51
2

0.
95

02
5.

32
3

B
in

di
ng

B
in

di
ng

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

2.
4

−4
.3

40
5

0.
96

29
5.

06
82

B
in

di
ng

B
in

di
ng

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

2.
5

−4
.3

28
3

0.
97

55
4.

81
29

B
in

di
ng

B
in

di
ng

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

2.
6

−4
.3

14
6

0.
98

78
4.

55
71

B
in

di
ng

B
in

di
ng

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

2.
7

−4
.2

99
5

0.
99

99
4.

30
1

B
in

di
ng

B
in

di
ng

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

2.
8

−
–

–
PR

no
td

efi
ne

d
4.

90
19

0.
98

14
14

.9
01

9
B

in
di

ng
N

on
-b

in
di

ng
2.

9
−

–
–

PR
no

td
efi

ne
d

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

3
−

–
–

PR
no

td
efi

ne
d

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

3.
1

−
–

–
PR

no
td

efi
ne

d
4.

90
19

0.
98

14
14

.9
01

9
B

in
di

ng
N

on
-b

in
di

ng
3.

2
−

–
–

PR
no

td
efi

ne
d

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

3.
3

−
–

–
PR

no
td

efi
ne

d
4.

90
19

0.
98

14
14

.9
01

9
B

in
di

ng
N

on
-b

in
di

ng
3.

4
−

–
–

PR
no

td
efi

ne
d

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

3.
5

−
–

–
PR

no
td

efi
ne

d
4.

90
19

0.
98

14
14

.9
01

9
B

in
di

ng
N

on
-b

in
di

ng
3.

6
−

–
–

PR
no

td
efi

ne
d

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

3.
7

−
–

–
PR

no
td

efi
ne

d
4.

90
19

0.
98

14
14

.9
01

9
B

in
di

ng
N

on
-b

in
di

ng
3.

8
−

–
–

PR
no

td
efi

ne
d

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

3.
9

−
–

–
PR

no
td

efi
ne

d
4.

90
19

0.
98

14
14

.9
01

9
B

in
di

ng
N

on
-b

in
di

ng
4

−
–

–
PR

no
td

efi
ne

d
4.

90
19

0.
98

14
14

.9
01

9
B

in
di

ng
N

on
-b

in
di

ng

123



186 K. Marinakis, T. Tsoulouhas

Ta
bl

e
1

co
nt

in
ue

d

M
in

im
um

bR
β

R
�

R
IR

L
C

bT
β

T
�

T
IR

L
C

w
ag

e
fo

r
PR

fo
r

PR
fo

r
To

ur
.

fo
r

To
ur

.

4.
1

–
–

–
PR

no
td

efi
ne

d
4.

90
19

0.
98

14
14

.9
01

9
B

in
di

ng
N

on
-b

in
di

ng
4.

2
–

–
–

PR
no

td
efi

ne
d

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

4.
3

–
–

–
PR

no
td

efi
ne

d
4.

90
19

0.
98

14
14

.9
01

9
B

in
di

ng
N

on
-b

in
di

ng
4.

4
–

–
–

PR
no

td
efi

ne
d

4.
90

19
0.

98
14

14
.9

01
9

B
in

di
ng

N
on

-b
in

di
ng

4.
5

–
–

–
PR

no
td

efi
ne

d
4.

99
84

0.
99

67
14

.9
58

9
B

in
di

ng
B

in
di

ng
4.

6
–

–
–

PR
no

td
efi

ne
d

5.
10

36
1.

00
72

14
.9

57
9

B
in

di
ng

B
in

di
ng

4.
7

–
–

–
PR

no
td

efi
ne

d
5.

20
87

1.
01

75
14

.9
55

9
B

in
di

ng
B

in
di

ng
4.

8
–

–
–

PR
no

td
efi

ne
d

5.
31

38
1.

02
77

14
.9

52
8

B
in

di
ng

B
in

di
ng

4.
9

–
–

–
PR

no
td

efi
ne

d
5.

41
89

1.
03

78
14

.9
48

8
B

in
di

ng
B

in
di

ng
5

–
–

–
PR

no
td

efi
ne

d
5.

52
39

1.
04

78
14

.9
43

7
B

in
di

ng
B

in
di

ng
5.

1
–

–
–

PR
no

td
efi

ne
d

5.
62

89
1.

05
77

14
.9

37
8

B
in

di
ng

B
in

di
ng

5.
2

–
–

–
PR

no
td

efi
ne

d
5.

73
38

1.
06

75
14

.9
30

9
B

in
di

ng
B

in
di

ng
5.

3
–

–
–

PR
no

td
efi

ne
d

5.
83

86
1.

07
72

14
.9

23
1

B
in

di
ng

B
in

di
ng

5.
4

–
–

–
PR

no
td

efi
ne

d
5.

94
34

1.
08

69
14

.9
14

5
B

in
di

ng
B

in
di

ng
5.

5
–

–
–

PR
no

td
efi

ne
d

6.
04

82
1.

09
64

14
.9

05
B

in
di

ng
B

in
di

ng
5.

6
–

–
–

PR
no

td
efi

ne
d

6.
15

29
1.

10
59

14
.8

94
7

B
in

di
ng

B
in

di
ng

5.
7

–
–

–
PR

no
td

efi
ne

d
6.

25
76

1.
11

52
14

.8
83

6
B

in
di

ng
B

in
di

ng
5.

8
–

–
–

PR
no

td
efi

ne
d

6.
36

23
1.

12
45

14
.8

71
7

B
in

di
ng

B
in

di
ng

5.
9

–
–

–
PR

no
td

efi
ne

d
6.

46
69

1.
13

37
14

.8
59

1
B

in
di

ng
B

in
di

ng
6

–
–

–
PR

no
td

efi
ne

d
6.

57
14

1.
14

29
14

.8
45

7
B

in
di

ng
B

in
di

ng
6.

1
–

–
–

PR
no

td
efi

ne
d

6.
67

6
1.

15
19

14
.8

31
7

B
in

di
ng

B
in

di
ng

6.
2

–
–

–
PR

no
td

efi
ne

d
6.

78
04

1.
16

09
14

.8
16

9
B

in
di

ng
B

in
di

ng
6.

3
–

–
–

PR
no

td
efi

ne
d

6.
88

49
1.

16
98

14
.8

01
4

B
in

di
ng

B
in

di
ng

6.
4

–
–

–
PR

no
td

efi
ne

d
6.

98
93

1.
17

86
14

.7
85

3
B

in
di

ng
B

in
di

ng
6.

5
–

–
–

PR
no

td
efi

ne
d

7.
09

37
1.

18
74

14
.7

68
5

B
in

di
ng

B
in

di
ng

6.
6

–
–

–
PR

no
td

efi
ne

d
7.

19
81

1.
19

61
14

.7
51

1
B

in
di

ng
B

in
di

ng
6.

7
–

–
–

PR
no

td
efi

ne
d

7.
30

24
1.

20
48

14
.7

33
1

B
in

di
ng

B
in

di
ng

6.
8

–
–

–
PR

no
td

efi
ne

d
7.

40
67

1.
21

33
14

.7
14

4
B

in
di

ng
B

in
di

ng
6.

9
–

–
–

PR
no

td
efi

ne
d

7.
51

09
1.

22
18

14
.6

95
2

B
in

di
ng

B
in

di
ng

7
–

–
–

PR
no

td
efi

ne
d

7.
61

51
1.

23
03

14
.6

75
4

B
in

di
ng

B
in

di
ng

123



Are tournaments optimal under liquidity constraints? 187

Ta
bl

e
2

Pa
ra

m
et

er
va

lu
es

:a
=

10
,n

=
10

0,
c

=
1,

d
=

3

M
in

im
um

bR
β

R
�

R
IR

fo
r

PR
L

C
fo

r
PR

bT
β

T
�

T
IR

L
C

w
ag

e
fo

r
To

ur
.

fo
r

To
ur

.

1
−1

4.
05

33
0.

96
15

14
.8

07
7

B
in

di
ng

N
on

-b
in

di
ng

4.
44

79
0.

92
02

14
.4

47
9

B
in

di
ng

N
on

-b
in

di
ng

1.
1

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
4.

44
79

0.
92

02
14

.4
47

9
B

in
di

ng
N

on
-b

in
di

ng

1.
2

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
4.

44
79

0.
92

02
14

.4
47

9
B

in
di

ng
N

on
-b

in
di

ng

1.
3

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
4.

44
79

0.
92

02
14

.4
47

9
B

in
di

ng
N

on
-b

in
di

ng

1.
4

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
4.

44
79

0.
92

02
14

.4
47

9
B

in
di

ng
N

on
-b

in
di

ng

1.
5

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
4.

44
79

0.
92

02
14

.4
47

9
B

in
di

ng
N

on
-b

in
di

ng

1.
6

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
4.

44
79

0.
92

02
14

.4
47

9
B

in
di

ng
N

on
-b

in
di

ng

1.
7

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
4.

23
21

0.
84

4
13

.9
27

B
in

di
ng

B
in

di
ng

1.
8

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
4.

37
61

0.
85

87
13

.9
24

8
B

in
di

ng
B

in
di

ng

1.
9

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
4.

51
92

0.
87

31
13

.9
20

4
B

in
di

ng
B

in
di

ng

2
−1

4.
05

33
0.

96
15

14
.8

07
7

B
in

di
ng

N
on

-b
in

di
ng

4.
66

13
0.

88
71

13
.9

14
1

B
in

di
ng

B
in

di
ng

2.
1

− 1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
4.

80
26

0.
90

09
13

.9
05

8
B

in
di

ng
B

in
di

ng

2.
2

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
4.

94
31

0.
91

44
13

.8
95

9
B

in
di

ng
B

in
di

ng

2.
3

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
5.

08
29

0.
92

76
13

.8
84

2
B

in
di

ng
B

in
di

ng

2.
4

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
5.

22
2

0.
94

07
13

.8
71

B
in

di
ng

B
in

di
ng

2.
5

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
5.

36
04

0.
95

35
13

.8
56

3
B

in
di

ng
B

in
di

ng

2.
6

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
5.

49
81

0.
96

6
13

.8
40

2
B

in
di

ng
B

in
di

ng

2.
7

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
5.

63
53

0.
97

84
13

.8
22

8
B

in
di

ng
B

in
di

ng

2.
8

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
5.

77
19

0.
99

06
13

.8
04

1
B

in
di

ng
B

in
di

ng

2.
9

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
5.

90
79

1.
00

26
13

.7
84

2
B

in
di

ng
B

in
di

ng

3
−1

4.
05

33
0.

96
15

14
.8

07
7

B
in

di
ng

N
on

-b
in

di
ng

6.
04

34
1.

01
45

13
.7

63
1

B
in

di
ng

B
in

di
ng

3.
1

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
6.

17
84

1.
02

61
13

.7
40

9
B

in
di

ng
B

in
di

ng

3.
2

−1
4.

05
33

0.
96

15
14

. 8
07

7
B

in
di

ng
N

on
-b

in
di

ng
6.

31
3

1.
03

77
13

.7
17

7
B

in
di

ng
B

in
di

ng

123



188 K. Marinakis, T. Tsoulouhas

Ta
bl

e
2

co
nt

in
ue

d

M
in

im
um

bR
β

R
�

R
IR

fo
r

PR
L

C
fo

r
PR

bT
β

T
�

T
IR

L
C

w
ag

e
fo

r
To

ur
.

fo
r

To
ur

.

3.
3

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
6.

44
7

1.
04

9
13

.6
93

4
B

in
di

ng
B

in
di

ng

3.
4

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
6.

58
07

1.
06

02
13

.6
68

2
B

in
di

ng
B

in
di

ng

3.
5

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
6.

71
39

1.
07

13
13

.6
42

B
in

di
ng

B
in

di
ng

3.
6

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
6.

84
67

1.
08

22
13

.6
14

9
B

in
di

ng
B

in
di

ng

3.
7

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
6.

97
91

1.
09

3
13

.5
87

B
in

di
ng

B
in

di
ng

3.
8

−1
4.

05
33

0.
96

15
14

.8
07

7
B

in
di

ng
N

on
-b

in
di

ng
7.

11
12

1.
10

37
13

.5
58

2
B

in
di

ng
B

in
di

ng

3.
9

−4
.9

18
6

0.
97

98
5.

31
77

B
in

di
ng

B
in

di
ng

7.
24

29
1.

11
43

13
.5

28
6

B
in

di
ng

B
in

di
ng

4
−4

.9
18

4
0.

99
09

5.
09

89
B

in
di

ng
B

in
di

ng
7.

37
42

1.
12

47
13

.4
98

2
B

in
di

ng
B

in
di

ng

4.
1

–
–

–
PR

no
td

efi
ne

d
7.

50
52

1.
13

51
13

.4
67

1
B

in
di

ng
B

in
di

ng

4.
2

–
–

–
PR

no
td

efi
ne

d
7.

63
59

1.
14

53
13

.4
35

2
B

in
di

ng
B

in
di

ng

4.
3

–
–

–
PR

no
td

efi
ne

d
7.

76
62

1.
15

54
13

.4
02

7
B

in
di

ng
B

in
di

ng

4.
4

–
–

–
PR

no
td

efi
ne

d
7.

89
62

1.
16

54
13

.3
69

4
B

in
di

ng
B

in
di

ng

4.
5

–
–

–
PR

no
td

efi
ne

d
8.

02
6

1.
17

53
13

.3
35

5
B

in
di

ng
B

in
di

ng

4.
6

–
–

–
PR

no
td

efi
ne

d
8.

15
54

1.
18

51
13

. 3
01

B
in

di
ng

B
in

di
ng

4.
7

–
–

–
PR

no
td

efi
ne

d
8.

28
46

1.
19

49
13

.2
65

8
B

in
di

ng
B

in
di

ng

4.
8

–
–

–
PR

no
td

efi
ne

d
8.

41
35

1.
20

45
13

.2
3

B
in

di
ng

B
in

di
ng

4.
9

–
–

–
PR

no
td

efi
ne

d
8.

54
21

1.
21

4
13

.1
93

6
B

in
di

ng
B

in
di

ng

5
–

–
–

PR
no

td
efi

ne
d

8.
67

05
1.

22
35

13
.1

56
7

B
in

di
ng

B
in

di
ng

5.
1

–
–

–
PR

no
td

efi
ne

d
8.

79
86

1.
23

29
13

.1
19

2
B

in
di

ng
B

in
di

ng

5.
2

–
–

–
PR

no
td

efi
ne

d
8.

92
65

1.
24

22
13

.0
81

1
B

in
di

ng
B

in
di

ng

5.
3

–
–

–
PR

no
td

efi
ne

d
9.

05
42

1.
25

14
13

.0
42

6
B

in
di

ng
B

in
di

ng

5.
4

–
–

–
PR

no
td

efi
ne

d
9.

18
16

1.
26

05
13

.0
03

5
B

in
di

ng
B

in
di

ng

5.
5

–
–

–
PR

no
td

efi
ne

d
9.

30
88

1.
26

96
12

.9
63

9
B

in
di

ng
B

in
di

ng

123



Are tournaments optimal under liquidity constraints? 189

Ta
bl

e
2

co
nt

in
ue

d

M
in

im
um

bR
β

R
�

R
IR

fo
r

PR
L

C
fo

r
PR

bT
β

T
�

T
IR

L
C

w
ag

e
fo

r
To

ur
.

fo
r

To
ur

.

5.
6

–
–

–
PR

no
td

efi
ne

d
9.

43
57

1.
27

86
12

.9
23

9
B

in
di

ng
B

in
di

ng

5.
7

–
–

–
PR

no
td

efi
ne

d
9.

56
25

1.
28

75
12

.8
83

3
B

in
di

ng
B

in
di

ng

5.
8

–
–

–
PR

no
td

efi
ne

d
9.

68
9

1.
29

63
12

.8
42

3
B

in
di

ng
B

in
di

ng

5.
9

–
–

–
PR

no
td

efi
ne

d
9.

81
54

1.
30

51
12

.8
00

8
B

in
di

ng
B

in
di

ng

6
–

–
–

PR
no

td
efi

ne
d

9.
94

15
1.

31
38

12
.7

58
9

B
in

di
ng

B
in

di
ng

6.
1

–
–

–
PR

no
td

efi
ne

d
10

.0
67

5
1.

32
25

12
.7

16
6

B
in

di
ng

B
in

di
ng

6.
2

–
–

–
PR

no
td

efi
ne

d
10

.1
93

2
1.

33
11

12
.6

73
8

B
in

di
ng

B
in

di
ng

6.
3

–
–

–
PR

no
td

efi
ne

d
10

.3
18

8
1.

33
96

12
.6

30
7

B
in

di
ng

B
in

di
ng

6.
4

–
–

–
PR

no
td

efi
ne

d
10

.4
44

2
1.

34
81

12
.5

87
1

B
in

di
ng

B
in

di
ng

6.
5

–
–

–
PR

no
td

efi
ne

d
10

.5
69

4
1.

35
65

12
.5

43
1

B
in

di
ng

B
in

di
ng

6.
6

–
–

–
PR

no
td

efi
ne

d
10

.6
94

4
1.

36
48

12
.4

98
8

B
in

di
ng

B
in

di
ng

6.
7

–
–

–
PR

no
td

efi
ne

d
10

.8
19

3
1.

37
31

12
.4

54
B

in
di

ng
B

in
di

ng

6.
8

–
–

–
PR

no
td

efi
ne

d
10

.9
44

1.
38

13
12

.4
08

9
B

in
di

ng
B

in
di

ng

6.
9

–
–

–
PR

no
td

efi
ne

d
11

.0
68

6
1.

38
95

12
.3

63
5

B
in

di
ng

B
in

di
ng

7
–

–
–

PR
no

td
efi

ne
d

11
.1

92
9

1.
39

76
12

.3
17

6
B

in
di

ng
B

in
di

ng

123



190 K. Marinakis, T. Tsoulouhas

References

Bolton P, Dewatripont M (2005) Contract theory. MIT Press, Cambridge
Green J, Stokey N (1983) A comparison of tournaments and contracts. J Polit Econ 91:349–364
Holmström B (1982) Moral hazard in teams. Bell J Econ 13:324–340
Holmström B, Milgrom P (1987) Aggregation and linearity in the provision of intertemporal incentives.

Econometrica 55:303–328
Hueth B, Ligon E (2001) Agricultural markets as relative performance evaluation. Am J Agric Econ 83:

318–328
Innes R (1990) Limited liability and incentive contracting with ex-ante action choices. J Econ Theory

52:45–67
Innes R (1993) Financial contracting under risk neutrality, limited liability and ex ante asymmetric infor-

mation. Economica 60:27–40
Innes R (1993) Debt, futures and options: optimal price-linked financial contracts under moral hazard and

limited liability. Int Econ Rev 34:271–295
Kolmar M, Sisak D (2007) Multi-prize contests as incentive mechanisms for the provision of public goods

with heterogeneous agents. Working paper
Kim S (1997) Limited liability and bonus contracts. J Econ Manag Strategy 6:899–913
Konrad KA, Kovenock D (2010) Contests with stochastic abilities. Econ Inquiry 48(1):89–103
Konrad KA, Schlesinger H (1997) Risk aversion in rent-seeking and rent-augmenting games. Econ

J 107(445):1671–1683
Laffont JJ, Martimort D (2002) The theory of incentives; the principal-agent model. Princeton University

Press, Princeton
Lazear EP, Rosen S (1981) Rank-order tournaments as optimum labor contracts. J Political Econ 89:

841–864
Malcomson JM (1984) Work incentives, hierarchy, and internal labor markets. J Political Econ 92(3):

486–507
Marinakis K, Tsoulouhas T (2009) Are tournaments optimal over piece rates under limited liability for the

principal? North Carolina State University Working Paper
Mathews T, Namoro SD (2008) Participation incentives in rank order tournaments with endogenous entry.

J Econ 95:1–23
Nalebuff BJ, Stiglitz JE (1983) Prizes and incentives: towards a general theory of compensation and com-

petition. Bell J Econ 14(1):21–43
Riis C (2010) Efficient contests. J Econ Manag Strategy 19(3):643–665
Skaperdas S, Gan L (1995) Risk aversion in contests. Econ J 105(431):951–962
Theilen B (2003) Simultaneous moral hazard and adverse selection with risk averse agents. Econ Lett

79:283–289
Tsoulouhas T (1999) Do tournaments solve the two-sided moral hazard problem? J Econ Behav Org

40(3):275–294
Tsoulouhas T (2010) Hybrid cardinal tournaments. Econ Bull 30(3):2279–2288
Tsoulouhas T, Marinakis K (2007) Tournaments with ex post heterogeneous agents. Econ Bull 4(41):1–9
Tsoulouhas T, Knoeber C, Agrawal A (2007) Contests to become CEO: incentives, selection and handicaps.

Econ Theory 30:195–221
Tsoulouhas T, Vukina T (1999) Integrator contracts with many agents and bankruptcy. Am J Agric Econ

81:61–74
Tsoulouhas T, Vukina T (2001) Regulating broiler contracts: tournaments versus fixed performance stan-

dards. Am J Agric Econ 83:1062–1073
Wu S, Roe B (2005) Behavioral and welfare effects of tournaments and fixed performance contracts: some

experimental evidence. Am J Agric Econ 87:130–146
Wu S, Roe B (2006) Tournaments, fairness, and risk. Am J Agric Econ 88:561–573

123


	A comparison of cardinal tournaments and piece rate contracts with liquidity constrained agents
	Citation

	A comparison of cardinal tournaments and piece rate contracts with liquidity constrained agents
	Abstract
	1 Introduction
	2 Model
	3 Piece rates and tournaments without liquidity constraints
	3.1 Piece rates
	3.2 Tournaments

	4 Piece rates and tournaments with liquidity constraints
	4.1 Piece rates
	4.2 Tournaments

	5 The dominant contract under liquidity constraints
	6 Piece rates and tournaments with risk-neutrality
	7 Conclusion
	Acknowledgments
	Appendix A
	Appendix B
	References


