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BOUNDARY LIMIT THEORY FOR FUNCTIONAL
LOCAL TO UNITY REGRESSION

ANNA BYKHOVSKAYA AND PETER C. B. PHILLIPS

Abstract. This paper studies functional local unit root models (FLURs) in which

the autoregressive coefficient may vary with time in the vicinity of unity. We extend

conventional local to unity (LUR) models by allowing the localizing coefficient to be a

function which characterizes departures from unity that may occur within the sample in

both stationary and explosive directions. Such models enhance the flexibility of the LUR

framework by including break point, trending, and multi-directional departures from unit

autoregressive coefficients. We study the behavior of this model as the localizing function

diverges, thereby determining the impact on the time series and on inference from the

time series as the limits of the domain of definition of the autoregressive coefficient are

approached. This boundary limit theory enables us to characterize the asymptotic form

of power functions for associated unit root tests against functional alternatives. Both

sequential and simultaneous limits (as the sample size and localizing coefficient diverge)

are developed. We find that asymptotics for the process, the autoregressive estimate, and

its t statistic have boundary limit behavior that differs from standard limit theory in both

explosive and stationary cases. Some novel features of the boundary limit theory are the

presence of a segmented limit process for the time series in the stationary direction and a

degenerate process in the explosive direction. These features have material implications

for autoregressive estimation and inference which are examined in the paper.

Keywords and phrases: Boundary asymptotics, Functional local unit root; Local to unity;

Sequential limits; Simultaneous limits; Unit root model

JEL Classification: C22, C65

1. Introduction

Time varying coefficient models have been extensively used in applied econometric work

and provide a natural mechanism for a model to evolve over time. Various approaches

have been studied in the literature, including early work originally published in 1971 by

Swamy (2012) on random coefficients, explicit parametric time series formulations (Harvey

(1990)), time varying probability measures that are implied in Bayesian autoregressions
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2 BOUNDARY LIMIT THEORY FOR FUNCTIONAL LOCAL TO UNITY REGRESSION

(Phillips and Ploberger (1994)) and recent non-parametric work using kernel regression

methods (Gao et al. (2008), Kristensen (2012), Giraitis et al. (2014)). The latter de-

velopments have emphasized the flexibility of nonparametric formulations and smooth

transition approaches of capturing temporal coefficient evolution. Both these ideas have

been used in practical econometric work. They also provide a mechanism for modeling

nonstationarity through the vehicle of nearly integrated time series without insisting on

a fixed local unit root structure, thereby accommodating departures from unity in both

stationary and explosive directions that can evolve over time ( Phillips and Yu (2011);

Greenaway-McGrevy and Phillips (2016)). Such models are called functional local unit

root models (FLURs). They were recently studied in Bykhovskaya and Phillips (2017)

in the context of point optimal unit root tests, showing how different the power envelope

can be when the departures from a unit root are time varying.

The advantage of FLUR models compared to the standard local unit root (LUR) model

(Phillips (1987), Chan and Wei (1987)) is that they explicitly allow the autoregression

coefficient θ to vary with time, while retaining proximity to a unit root. This proximity

is achieved through the specification θtn = 1 + c(t/n)
n

which involves a localizing time

varying coefficient function c( t
n
) dependent on the position of observation t within the

sample of size n. With this FLUR mechanism we can model economic and financial data

that are well described in parts of the sample as unit root processes and yet subject to

episodes of booms, busts, and recoveries at other times during the same sample period.

Bykhovskaya and Phillips (2017) developed a limit theory for the FLUR process and

analyzed some of the properties of functional point optimal unit root tests in comparison

with standard (scalar) point optimal tests, showing that the latter delivers power that is

often well below the optimal (functional) power envelope. This power deficiency of the

standard point optimal test reflects the limitation of specifications that involve constant

unidirectional departures from unity throughout the sample period when the data involves

more complex forms of behavior, such as periods of intermittent departures from a unit

root or periods of financial exuberance and collapse.

The present paper studies the same FLUR model as Bykhovskaya and Phillips (2017)

and examines behavior as the localizing function c( t
n
) diverges, thereby determining the

impact on the properties of the time series as the limits of the domain of definition of

the autoregressive coefficient are approached. This boundary limit theory enables us to

characterize the asymptotic form of power functions for associated unit root tests when the

alternatives involve time varying functional forms of differing types. The results therefore

extend the original work on boundary limit behavior of LUR models as a scalar localizing

coefficient c approaches the limits of its domain of definition. In contrast to this earlier

work, the asymptotics for the process itself, the autoregressive estimate, and its associated

t statistic are all found to have boundary limit behavior that differs from standard limit
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theory in the explosive and stationary directions. Novel features of this boundary limit

theory in the functional case are the presence of a segmented limit process for the time

series in the stationary direction, a degenerate process in the explosive direction, and

more complex function-dependent centering and standardization in the limit theory for

the autoregressive coefficient estimator. These results differ markedly from the boundary

limit theory that applies as the scalar localizing coefficient c→ ±∞ in the standard LUR

model developed in Phillips (1987).

The paper is organized as follows. Some preliminary limit theory is given in the fol-

lowing section. Section 3 develops the boundary limit theory as the localized coefficient

function c(·) → ±∞, which enables us to explore properties of the process at the li-

mits of its domain of definition. Section 4 considers some mildly integrated (Phillips and

Magdalinos (2007)) FLUR cases and the corresponding limit behavior at the boundary.

This framework is of particular interest because it enables the analysis of asymptotics as

c(·) →∞ and n →∞ jointly, which has proved to be particularly useful in the study of

uniform inference (Giraitis and Phillips (2006), Mikusheva (2007)). Implications of the

findings are discussed in Section 5. Proofs are given in the Appendix.

2. Preliminaries

To fix ideas, we consider a time series generated by the model

(1) Xt = θtnXt−1 + ut, t = 0, 1, . . . , n,

where the autoregressive coefficient θtn = exp
(
c(t/n)
n

)
≈ 1+ c(t/n)

n
, the process Xt is initia-

lized at X−1 = op(
√
n) and the disturbances ut are zero mean stationary with variance σ2

and partial sums that satisfy the functional law
∑bnrc

t=1 ut
d−−−→

n→∞
B(r), a Brownian motion

with variance ω2 = Eu2
0 + 2

∞∑
h=1

Eu0uh, primitive conditions for which are widely available

(e.g., Phillips and Solo (1992)).

Time series generated by (1) are near integrated arrays with a localizing coefficient

function c
(
t
n

)
that allows for variation in the autoregressive coefficient according to the

position in the sample while retaining proximity to unity. The model is therefore a time

varying coefficient model in the vicinity of unity. It is a particularly useful framework for

studying the effects of departures from simple unit root and LUR models to more complex

time series behavior.

Bykhovskaya and Phillips (2017) show that upon standardization the process Xt satis-

fies the mentioned below functional law with a Gaussian limit process which extends the

limit theory for LUR time series. In what follows, we confine attention to finite variance
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processes, Gaussian limit processes and functionals of them. Certain extensions to infi-

nite variance processes and stable limit processes are also possible but will not be pursued

here.

Lemma 1.

(2) n−
1
2Xbnrc −−−→

n→∞
Fc(r) := ωKc(r) = ω

∫ r

0

e
∫ r
s c(a)dadW (s),

where W is standard Brownian motion and Kc(r) satisfies the following nonlinear diffusion

equation dKc(r) = c(r)Kc(r)dr + dW (r).

When c(r) = c is constant throughout the sample, the limit process Kc(r) reduces to the

linear diffusion
∫ r

0
ec(r−s)dkdW (s) studied in Phillips (1987) and Chan and Wei (1987). In

this LUR case, locally stationary and locally explosive time series occur according to the

sign of c. Moreover, as c→ ±∞, LUR asymptotics of the centred least squares estimate

of θ and its t ratio transition to the asymptotics for stationary and explosive time series.

This transition provides a linkage between the limit theory for unit root, local unit root,

stationary, and explosive models.

The following sections explore the behavior of certain functionals of Kc(r) as c(·) ap-

proaches the limits of its domain of definition. This limit behavior is of interest because

it describes the links between near-integrated time series of the FLUR class (1) and time

series that transition between unit root, stationary, and explosive processes. Correspon-

dingly, this limit theory captures the limiting forms of the power functions of unit root

tests at the limits of the domain of definition of c(r). In particular, when c(·)→ ±∞, the

limit theory determines whether unit root tests are consistent against certain functional

alternatives to a unit root in both stationary and explosive directions and the role of

functional shape in determining power.

The fixed coefficient autoregression can be viewed as a special case of the FLUR model

with c(r) = n×const and const 6= 0. Thus, taking limits as c(·)→ ±∞ may be viewed as

delivering an approximate route to standard autoregression at least when c(r) 6= 0 for all r.

Our primary interest in the present paper, however, concerns cases in which c(r) = 0 and

c(r) 6= 0 occur over complementary subperiods, thereby allowing for finite sample episodes

of unit root and FLUR behavior within the same sample of observations. Boundary limit

theory as c(·)→ ±∞ then reveals the asymptotic impact of these subperiod extremes of

stationarity and explosiveness. As usual in multidimensional asymptotics (Phillips and

Moon, 1999), there are two possibilities: sequential and simultaneous limit theory. The

following section considers sequential limits, when first n goes to infinity and then c(·)
goes to either plus or minus infinity. This limit theory extends to the FLUR environment

the sequential asymptotics for LUR models (Phillips (1987)). Later we develop pathwise

joint limit theory that provides simultaneous asymptotics under the condition that kn =
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n/c → ±∞. These pathwise joint limits implement in the FLUR setting the concept

of mild integration/mild explosiveness that was developed in Phillips and Magdalinos

(2007).

Our discussion concentrates on the use of ordinary least squares (OLS) regression on

(1). This focus is useful because the limit theory (both as n→∞ and the boundary limit

theory where c(·)→ ±∞) shows the impact on the standard OLS estimator and associated

tests of episodes of near integration that take a general functional form of departure

from unity. The theory also provides asymptotic power function behavior of unit root

tests against such general alternatives in which there may still exist periods of unit root

behavior. The presence of near integration in the generating process of Xt is unknown and,

in practice, unknowable given that the localizing coefficient is not consistently estimable.

It is therefore of wide interest to understand the properties of standard OLS regression

under general functional departures from unity. Issues of confidence interval construction

and the potential for uniform inference in the presence of such function departures are

considered in other ongoing work (Phillips (2017)).

3. Limit distributions as c(·)→ ±∞

One advantage of the FLUR specification is that use of a localizing function c(·) rather

than a constant c in characterizing departures from unity accommodates subsample unit

root behavior whenever the localizing function is zero. As might therefore be expected,

asymptotic behavior can vary considerably depending on the specific form and properties

of c(·). Regions of zero and non-zero values of c(·) turn out to be particularly important

in the limit theory as they switch unit root behavior on and off during the sample. The

impact of such switches are naturally magnified as c(·) approaches the limits of its domain

of definition.

This section investigates the impact of switching behavior on the limit theory by consi-

dering localizing functions c(·) that switch from zero over some interval [0, r1] to non-zero

values over (r1, r2] and switch back to zero on (r2, 1] for 0 < r1 < r2 < 1. This speci-

fication enables us to study rather general forms of subperiod near integration and near

explosiveness in the data on the asymptotic behavior of FLUR autoregressions.

To capture boundary behavior we model passage to the limit c(·) → ±∞ via the

specification c(t) = c · f(t), where c is a scalar that passes to ±∞, and f(·) is a given

integrable function of constant sign, designating the direction of the departure from unity.

The model therefore has the form (1) with time varying coefficient

(3) θtn =


1, t ≤ τ1 = bnr1c,
1 + cf(t/n)

n
, t ∈ (τ1, τ2], τ2 = bnr2c

1, t > τ2,
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where the function f(·) is zero outside [r1, r2], integrable on [r1, r2], and strictly positive

on (r1, r2). Simple examples include level partial departures from unity such as f(x) =

1 {x ∈ [r1, r2]}, triangular departures such as f(x) = (x − r1)1 {x ∈ [r1, r̄]} + r̄−r1
r̄−r2 (x −

r2)1 {x ∈ (r̄, r2]} or various smooth variants of such functions.

Using (3) and iterative back-substitution for Xt in (1) we have the solution

Xt =

{
X−1 +

t∑
s=0

us

}
1 {t ≤ τ1}+

{
t−τ1−1∑
j=0

ut−j

j−1∏
l=0

θt−l,n +Xτ1

t−τ1−1∏
l=0

θt−l,n

}
1 {t ∈ (τ1, τ2]}

+

{
t∑

s=τ2+1

us +Xτ2

}
1 {t > τ2} ,

showing the presence of two periods of unit root behavior that occur at the start and at

the end of the sample. Intermediate between these periods is an episode in which the

process evolves with a time varying parameter in the vicinity of unity.

The following subsections examine limit behavior in two boundary cases corresponding

to stationary (c < 0) and explosive (c > 0) departures from unity as the extent of the

departure |c| → ∞ while retaining the same functional form for the localizing coefficient

function f(·). Sequential limits are used in the following three theorems and these limits

employ the notation (−c, n)seq → ∞ for limits in which n → ∞ followed by c → −∞,

and similarly (c, n)seq →∞ denotes limits in which n→∞ followed by c→∞. We look

first at the stationary boundary.

3.1. Sequential limits when c(·)→ −∞.

Theorem 1. The standardized process
Xbnrc√

n
, the least squares estimate θ̂OLS of θtn, and

the associated t-ratio centered on unity have the following limit behavior under sequential

limits in which n→∞ followed by c→ −∞:

(4)
Xbnrc√
n

d−−−−−−−−→
(−c,n)seq→∞

Ba(r)× 1 {0 ≤ r ≤ r1}+Bb(r)× 1 {r2 < r ≤ 1} ,

n

(
θ̂OLS − 1−

∫ 1

0
cf(r)F 2

c (r)dr

n
∫ 1

0
F 2
c (r)dr

)
d−−−−−−−−→

(−c,n)seq→∞

∫ r1
0
Ba(r)dBa(r) +

∫ 1

r2
Bb(r)dBb(r) + λ∫ r1

0
Ba(r)2dr +

∫ 1

r2
Bb(r)2dr

,(5)

n
(
θ̂OLS − 1

)
d−−−−−−−−→

(−c,n)seq→∞

∫ 1

r2
Bb(r)dBb(r) + λ− 1

2
ω2r2∫ r1

0
Ba(r)2dr +

∫ 1

r2
Bb(r)2dr

,(6)
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(7) tθ̂OLS

d−−−−−−−−→
(−c,n)seq→∞

∫ 1

r2
Bb(r)dBb(r) + λ− 1

2
ω2r2

σ
(∫ r1

0
Ba(r)2dr +

∫ 1

r2
Bb(r)2dr

)1/2
,

where Ba and Bb are independent Brownian motions with variance ω2, and λ =
1
2

(ω2 − σ2).

The limit (4) is a segmented Brownian motion process which vanishes on the interval

where f(r) > 0 and has independent Brownian motion segments on the intervals [0, r1]

and (r2, 1] where the localizing function f(r) = 0. When the one-sided long run covariance

λ = 0, the limit distribution of the random-centred least squares estimate θ̂OLS given by

(5) has the simpler form

n

(
θ̂OLS − 1−

∫ 1

0
cf(r)F 2

c (r)dr

n
∫ 1

0
F 2
c (r)dr

)
d−−−−−−−−→

(−c,n)seq→∞

∫ r1
0
Ba(r)dBa(r) +

∫ 1

r2
Bb(r)dBb(r)∫ r1

0
Ba(r)2dr +

∫ 1

r2
Bb(r)2dr

,

which we call a segmented unit root limit distribution because of the excision of the

subperiod [r1, r2] in the numerator and denominator integrals. When r1 = 1 or r2 = 0

there is no episode of near integration and this distribution corresponds to the standard

unit root distribution. As is apparent from the form of (5), the OLS estimate θ̂OLS has

random centering that involves the component
∫ 1

0
cf(r)F 2

c (r)dr/
∫ 1

0
F 2
c (r)dr. As shown in

the proof, when c → −∞, this centering can be replaced by unit centering, but with

an impact on the limit distribution as evident in the form of the limit density for the

(non-random) unit-centred density given in (6).

Figure 1 shows the asymptotic density of the unit-centred (6) OLS estimate n(θ̂OLS−1)

for λ = 0, ω = 1, r1 = 1/3, r2 = 2/3 along with the densities of the corresponding

segmented (5) and standard unit root densities for comparison. All these densities are

skewed and have a typical unit root distributional shape with a long left tail. The standard

unit root density has the largest skewness and most dispersion, the segmented unit root

has the least skewness and dispersion, and the unit-centred OLS density is the most left

shifted, showing how miscentering accentuates the downward bias in the limit distribution.

These shapes become more distinct as r1 → 0 and r2 → 1.

These results reveal the substantial impact that FLUR specifications have on near

unit root limit theory. In the standard LUR model as the localizing scalar parameter

c → −∞, the correctly centred and scaled OLS estimate has a boundary limit normal

distribution that correctly reproduces the standard stationary case limit theory. This

uniformity in the limit theory plays an important role in the construction of uniform

inference procedures (Mikusheva (2007);Mikusheva (2012);Phillips (2014)). In the FLUR

model, the boundary limit theory has greater complexity that reflects features of the
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Figure 1. Densities of the OLS estimate, unit root, and segmented unit

root for λ = 0, ω = 1, r1 = 1/3, r2 = 2/3.

localizing coefficient function even in the limit as c → −∞ and this no longer generally

reproduces the stationary limit theory. In particular, the form of the localizing coefficient

function plays a role in correct centering of the distribution, when this centering is random.

When there are episodes of unit root behavior in the process, these episodes continue to

impact the limit theory at the boundary.

The boundary limits (6) and (7) show that both the coefficient-based and t-ratio unit

root tests are inconsistent against the alternative of breaks that involve subperiods of

stationarity. When there are subperiods of unit root behavior in the data, the tests do

not diverge and therefore fail to detect the existence of stationary episodes in the sample

with probability one as c→ −∞.

3.2. Sequential limits when c(·)→∞.

Theorem 2. Upon appropriate standardization, the process
Xbnrc√

n
, the least squares es-

timate θ̂OLS of θtn, and the associated t-ratio centered on unity have the following limit

behavior under sequential limits in which n→∞ followed by c→∞:

(8)
(
e
−c
∫ r2
r1

f(a)da
) Xbnrc√

n

d−−−−−−−→
(c,n)seq→∞

Ba(r1)× 1 {r2 ≤ r ≤ 1} ,

(9) e
c
∫ r2
r1

f(a)da
n

(
θ̂OLS − 1−

∫ 1

0
cf(r)F 2

c (r)dr

n
∫ 1

0
F 2
c (r)dr

)
d−−−−−−−→

(c,n)seq→∞

1√
r1(1− r2)

C,

(10) n
(
θ̂OLS − 1

)
d−−−−−−−→

(c,n)seq→∞

1

2(1− r2)
,
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(11) e
−c
∫ r2
r1

f(a)da
tθ̂OLS

d−−−−−−−→
(c,n)seq→∞

ω
√
r1

2σ
√

1− r2

|N (0, 1)|,

where Ba is a Brownian motion with variance ω2, and C is standard Cauchy.

As shown in the proof of the theorem in (44), the limit behavior of Xbnrc as n → ∞
has the form

Xbnrc√
n
→ Fc(r) =


Ba(r), r ≤ r1,

Jc(r; r1), r1 < r ≤ r2,

Bb(r) + Jc(r2; r1), r2 < r ≤ 1;

with independent Brownian motion components Ba ⊥ Bb and nonlinear diffusion compo-

nent

Jc(r; r1) =

∫ r

0

ec
∫ r
s f(a)dadB(s) = e

c
∫ r
r1
f(a)da

Ba(r1) +

∫ r

r1

ec
∫ r
s f(a)dadB(s).

As c → ∞ the FLUR period of explosive behavior dominates through the presence of

Jc(r; r1). In particular, we have Xbnrc ∼
√
ne

c
∫ r
r1
f(a)da

Ba(r1) × 1 {r1 ≤ r ≤ r2} and, as

in (8), Xbnrc ∼
√
ne

c
∫ r2
r1

f(a)da
Ba(r1) × 1 {r2 ≤ r ≤ 1} , showing that the process diverges

exponentially from the level
√
nBa(r1) when r > r1 Thus, over the period [0, r1] the

standardized process n−1/2Xbnrc evolves as a unit root process and reaches the limit value

Ba(r1) at r = r1, at which point a break occurs in the generating mechanism and the

process evolves in an explosive FLUR way that inflates the initial condition reached at

r = r1. This behavior continues until r = r2 when unit root behavior re-commences but

from an explosive initial condition given by Jc(r2; r1).

Correspondingly from (9), an appropriately centred OLS estimate θ̂OLS has an explosive

rate of convergence with rate e
c
∫ r2
r1

f(a)da × n. In this case, the centering is the random

quantity 1 +
∫ 1

0
cf(r)F 2

c (r)dr/n
∫ 1

0
F 2
c (r)dr, which depends on the scale coefficient c, the

function f (·) and the stochastic process Fc(r). When c → ∞, as shown in the proof of

the theorem, the random component of this centering element approaches a constant,

satisfying

(12)

∫ 1

0
cf(r)F 2

c (r)dr∫ 1

0
F 2
c (r)dr

d−−−→
c→∞

1

2(1− r2)
,

which leads to (10). Thus, the coefficient-based unit root test n
(
θ̂OLS − 1

)
= Op (1) as

(c, n)seq →∞ and therefore the test fails to diverge in the presence of an internal subperiod

(r1, r2] of explosive behavior in the FLUR model even at the boundary as c→∞. However,

because the limit 1
2(1−r2)

> 0, the test does have non-trivial power at the boundary limit

c→∞ and test power continues to increase as r2 → 1 and the period of explosive behavior

expands in the sample. This result provides analytic confirmation of the simulation results

in Evans (1991) that showed how full sample period unit root tests performed poorly in
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the detection of periodically collapsing bubbles within sample. On the other hand, as

shown in Phillips, Wu and Yu (2011), recursive unit root tests are consistent against

such subperiod explosive alternatives. Recursive mechanisms of detection therefore have

considerable advantage in this context, particularly in the presence of multiple bubbles

(Phillips et al. (2015a), Phillips et al. (2015b) ).

Note that the limit theory (9) for the centred OLS estimate is a scaled Cauchy distri-

bution. Importantly, the scale coefficient {r1(1− r2)}−1/2 diverges when either r1 → 0

or r2 → 1. This is explained by the fact that the convergence rate changes as the limits

of the region of explosive behavior are reached. Such cases involve different asymptotics

and different rates of convergence that account for the shape behavior of the functional

coefficient f (·) at the limits of the domain of definition. They are reported in detail in

ongoing work (Phillips (2017)) and one such result is given in Theorem 5 in the following

section.

Interestingly, the asymptotic distribution of θ̂OLS is degenerate when centered on unity,

as evident in the limit of the coefficient-based unit root test (10). Moreover, it is insuffi-

cient to simply recenter again using the constant 1
2(1−r2)

. In fact, in the spirit of the proof

of Theorem 2, we can show that when f(r2) > 0,

cn

(
θ̂OLS − 1− 1

2(1− r2)n

)
d−−−−−−−→

(c,n)seq→∞

−1

4(1− r2)2f(r2)
,

leading to a further degenerate distribution. The limit theory requires more precise ap-

proximation than (12) of the random centering that is present in (9). Our next theorem

gives the correct non-degenerate asymptotics with deterministic centering.

Theorem 3. If f(r) ≥ C > 0 for all r ∈ [r1, r2], the OLS estimate θ̂OLS has the following

limiting Cauchy distribution after appropriate deterministic centering and scaling

(13)

e
c
∫ r2
r1

f(a)da
n

θ̂OLS − 1− 1− e−2c
∫ r2
r1

f(a)da

2n
(

1− r2 +
∫ r2
r1
e−2c

∫ r2
r f(a)dadr

)
 d−−−−−−−→

(c,n)seq→∞

C√
3r1(1− r2)

.

Intriguingly, Theorems 2 and 3 both lead to very similar Cauchy limit distributions.

The only difference besides the recentering is the numerical coefficient 1√
3

in Theorem 3.

The explanation for this simple scalar difference in the limits lies in the replacement of

a random centering in (9) with accurate non-random centering in (13). The intuition is

as follows: in Theorem 2 the centered statistic (9) has additional variability because of

the random centering, which leads to larger dispersion in the Cauchy limit theory than

in Theorem 3 where the centering is constant and dispersion decreases.



BOUNDARY LIMIT THEORY FOR FUNCTIONAL LOCAL TO UNITY REGRESSION 11

As is apparent in the proof of Theorem 3, the reason for the specific numerical constant
1√
3

is that adjustment of the centering produces a demeaned Brownian motion in the limit

theory rather than a Brownian motion, with a corresponding reduction in the variance of

the numerator. In particular, in Theorem 2 the limit distribution is governed by the ratio
Bb(1)−Bb(r2)
(1−r2)Ba(r1)

, whereas in Theorem 3 the governing ratio is

(14)
Bb(1)−Bb(r2)− 1

1−r2

∫ 1

r2
Bb(r)dr

(1− r2)Ba(r1)
.

The numerator in (14) is the demeaned form of the Brownian motion differential Bb(1)−
Bb(r2) and, correspondingly, the numerator variance reduces by the scale factor 1

3
, thereby

leading to the numerical coefficient 1/
√

3 which appears in (13).

4. Mild FLUR Models and Simultaneous Asymptotics

The models considered so far in the paper all follow (1) with a time varying coefficient

in the local vicinity of unity that has the generalized LUR form θtn = 1 + c(t/n)
n

. In order

to widen the vicinity of unity under analysis, this section considers coefficients θtn that

pass to unity at a slower rate O(k−1
n ) than O(n−1) where kn → ∞ and kn

n
→ 0. The

autoregressive coefficients have the form

(15) θtn = 1 +
c(t/n)

kn
,

for some fixed function c(·). The formulation (15) falls in the class of mildly integra-

ted/mildly explosive processes considered by Phillips and Magdalinos (2007). With this

specification, wider departures from unity may be considered and it is possible to develop

simultaneous asymptotics where the parameters (|c(·)|, n) may jointly pass to infinity. In

this passage to infinity what matters is the ratio kn = n
|c(·)| and, as above, we assume that

1
kn

+ kn
n
→ 0. For example, we may have kn = nα with α ∈ (0, 1) or kn = n/ log n.

Since the parameter setting (15) leads to autoregressive coefficients that are ‘closer’

asymptotically to the stationary zone than those of the FLUR model when c(·) < 0, it is

convenient to develop the limit theory under stationary martingale difference errors {ut},
a setting that is better suited to that context (Phillips and Magdalinos (2007); Giraitis and

Phillips (2006)). Further, the functions c(·) permitted in this section correspond to some

of those used in Phillips (2017). Specifically, we assume the function c(·) 6= 0 on [0, 1].

More precisely, in the explosive case where c(·) > 0 we assume c(·) is non-zero in some

fixed regions of the origin and unity, so that the FLUR process is active in those regions.

As will become clear in the following analysis, behavior in those regions is particularly

important in the explosive case because they play a significant role in the behavior of the

time series and, in consequence, the limit theory also. Finally, it is convenient to set the

initial condition in (1) at t = 0 and assume that X0 = op(
√
kn), which rules out initial
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condition effects, although this condition may be relaxed as in Phillips and Magdalinos

(2009) with some attendant differences in the asymptotics.

Models such as (1) with time varying autoregressive coefficients of the form (15) are

mildly integrated/explosive functional local unit root (MIFLUR, MEFLUR) models. As

will become clear, MEFLUR specifications lead to asymptotics where there are depen-

dencies on specific function values, such as the origination and end point values c(0), c(1)

as well as the function c(·) over its full domain [0, 1].

For the MEFLUR case we also consider a second specification for the coefficient function

in place of (15), viz.,

(16) θtn = 1 +
c(t/kn)

kn
,

where θtn converges to unity at the slower rate O(k−1
n ) and the time varying coefficient

function c(·) is now scaled consonantly in 1/kn units rather than 1/n units. In this case,

the limit theory depends on the coefficient function c(·) over its entire domain, which is

now [0,∞), and c(·) is accordingly assumed to be integrable over this domain.

4.1. Mildly Explosive FLUR. We start from the first specification (15) of θtn with

c(·) > 0. Solving the system yields

(17) Xt = θtnXt−1 + ut =
t∑

j=1

e
1
kn

t−j∑
l=1

c( t−l+1
n )

uj + e
1
kn

t∑
j=1

c( j
n)
X0.

It is convenient to construct the two standardized processes (without employing array

notation)

(18) X̃t =
Xt

e
1
kn

t∑
j=1

c( j
n)

=
t∑

j=1

uj

e
1
kn

t∑
l=t−j+1

c( t−l+1
n )

+X0,

and Ỹt =
∑t

j=1 uje
− 1

kn

∑t
`=j c( `

n).

The time series X̃t upweights early innovations {uj : j = 1, 2, ...} because of the smaller

number of components that enter the summation
∑t

`=t−j+1 c
(
t−`+1
n

)
in the exponent when

the index j is small. In a similar way, the time series Ỹt downweights early innovations

{uj : j = 1, 2, ...} because of the larger number of components that enter the summation∑t
`=j c

(
`
n

)
in the exponent. The process X̃t is therefore weighted in favor of the origination

point of the observations, and Ỹt, as a mirror image, is weighted in favor of the terminal

point t of the observations in the sum. The limit theory when t ≥ kn → ∞ as n → ∞
for these two standardized processes is given in the following theorem which reveals the

importance of the endpoint conditions.
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Theorem 4. If there exists ε > 0 such that for all r ∈ [0, ε] ∪ [1− ε, 1], c(r) ≥ C > 0,

then for all r ∈ (0, 1] as 1
kn

+ kn
n
→ 0

(19)
1√
kn
X̃bnrc

d−−−→
n→∞

Xc(0) =d N
(

0,
σ2

2c(0)

)
,

(20)
1√
kn
Ỹbnrc

d−−−→
n→∞

Yc(1) =d N

(
0,

σ2

2c (1)

)
,

and the limit variates Xc(0) and Yc(1) are independent.

Thus, the standardized process X̃bnrc/
√
kn tends for all r ∈ (0, 1] to the same random

variable Xc(0) whose distribution depends on c(0) and no other value of the function c(·).
The explanation is that since c(·) > 0 the time series Xt is explosive, which means that

initial shocks and initial conditions are magnified, as is apparent in the solution (17).

More particularly, the coefficient exp
{

1
kn

∑t−j
l=1 c

(
t−l+1
n

)}
is positive and increasing as j

decreases, so that in (17), the early shocks {u1, u2, ...} have the largest coefficients and

the greatest impact on Xt comes from the early part of the series. Correspondingly,

the standardized process X̃t in (18) is dominated by the early kn elements of the series,

which leads to the common central limit theorem given in Theorem 4 for 1√
kn
X̃bnrc, whose

variance involves only c(0) rather than the full function c(·). Analogous mirror-image

intuition applies to the standardized process Ỹbnrc/
√
kn where the terminal kn elements of

the series lead to a common limit theory that depends on the end point c(1) rather than

the full function c(·).
Next we turn to the limit behavior of the autoregressive coefficient estimate θ̂OLS. After

suitable centering and scaling we obtain the following result.

Theorem 5. Suppose c (r) is integrable over [0, 1] and c (r) ≥ C > 0 for all r ∈ [0, ε] ∪
[1− ε, 1] for some ε > 0. Then, as 1

kn
+ kn

n
→ 0, the least squares estimate θ̂OLS has the

following common limit theory with random and deterministic centering

(21) kne
n
kn

∫ 1
0 c(a)da

θ̂OLS − 1−

n∑
t=1

c(t/n)
kn

X2
t−1

n∑
t=1

X2
t−1

 d−−−→
n→∞

2
√
c(0)c(1)C,

(22) kne
n
kn

∫ 1
0 c(a)da

θ̂OLS − 1−

n∑
t=1

c(t/n)e
− 2

kn

n∑
j=t

c(j/n)

kn
n∑
t=1

e
− 2

kn

n∑
j=t

c(j/n)

 d−−−→
n→∞

2
√
c(0)c(1)C,

where C is a standard Cauchy variate.
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The proof of Theorem 5 is lengthy and involves complex calculations which are given

in full in the proof in the Appendix. Importantly, although (21) and (22) differ in terms

of their respective centering, the limit distribution behavior remains the same. As shown

in the proof, the random centering quantity
∑n

t=1 c(t/n)X2
t−1

kn
∑n

t=1X
2
t−1

that appears in (21) equals∑n
t=1 c(t/n)e

− 2
kn

∑n
j=t c(j/n)

kn
∑n

t=1 e
− 2

kn

∑n
j=t

c(j/n)
plus a random component of smaller order that is too small to

affect centering but which, as shown in the proof, still comes into play in calculating the

limit behavior of the rescaled and recentred estimator. As the result shows, the random

centering can be replaced by a deterministic centering that is still dependent on the sample

size but without affecting the Cauchy limit distribution or the scale of this distribution.

Further, as 1
kn

+ kn
n
→ 0 we find that

(23)

∑n
t=1 c(t/n)e−

2
kn

∑n
j=t c(j/n)∑n

t=1 e
− 2

kn

∑n
j=t c(j/n)

=
1
n

∑n
t=1 c(t/n)e−

2n
kn

1
n

∑n
j=t c(j/n)

1
n

∑n
t=1 e

− 2n
kn

1
n

∑n
j=t c(j/n)

→ c(1),

giving a simple limiting form of the re-centering element (23). This simple form can-

not, however, be used directly in the limit theory (22) because the exponential rate of

convergence kne
n
kn

∫ 1
0 c(a)da plays a key role in defining those components that drive the

asymptotics, as explained in the proof of Theorem 5 .

Observing that θ2
nn − 1 = 2c(1)

kn
{1 + o (1)}, θ2

1n − 1 = 2c(0)
kn
{1 + o (1)} and Πn

t=1θtn ∼
ek
−1
n Σn

t=1c( t
n) ∼ e

n
kn

∫ 1
0 c(a)da, we may write (22) in the equivalent form

(24)
Πn
t=1θtn

[(θ2
nn − 1)(θ2

1n − 1)]
1
2

θ̂OLS − 1−

n∑
t=1

c(t/n)e
− 2

kn

n∑
j=t

c(j/n)

kn
n∑
t=1

e
− 2

kn

n∑
j=t

c(j/n)

 d−−−→
n→∞

C,

which is suggestive of earlier work in simpler cases of explosive process autoregression.

In particular, (24) shows that, upon suitable standardization which in this cases relies on

the time varying autoregressive coefficient, central limit theory holds for autoregressive

estimation in the functional LUR with the same Cauchy limit theory as holds in (i) the

fixed coefficient explosive case under Gaussian innovations with no invariance principle,

and (ii) in the mildly explosive case under central limit theory (Phillips and Magdali-

nos (2007)). Importantly, both the convergence rate and the centering depend on the

functional coefficient c(·) throughout the [0, 1] interval.

In the special case where c (·) = c > 0 is constant and θtn = 1 + c
kn

=: θn for all

t = 1, ..., n, (24) reduces to the form

(25)
θnn

θ2
n − 1

(
θ̂OLS − 1− c

kn

)
d−−−→

n→∞
C,
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the result obtained originally in Phillips and Magdalinos (2007) for a constant mildly

explosive process Xt with autoregressive coefficient θ = 1 + c
kn

for which θ2n
n ∼ e

2n
kn
c. In

that case the convergence rate of (25) is θnn
θ2n−1

∼ kn
2c
e

n
kn
c. The limit theory given in (24)

then specializes to this earlier theory as 1
kn

+ kn
n
→ 0.

In the present case, the primary implication of a functional localizing coefficient is to

adjust the rate of convergence in (22) to embody the aggregate impact of the function

c (·) over its full domain via the integral
∫ 1

0
c (a) da, so that the standardization factor

is kne
2n
kn

∫ 1
0 c(a)da rather than kne

2n
kn
c. It is then the accumulative (mild FLUR) departure

from unity that determines the convergence rate of the estimator θ̂. Interestingly, a se-

condary implication of the new limit theory in (22) is that the limit random variable

2
√
c(0)c(1)C depends explicitly on the behavior of the localizing function at the origina-

tion and termination dates via the pair (c (0) , c(1)) . This dependence is a consequence of

the magnification of early and late shocks that takes place in the limiting process described

above for a mildly explosive time series. The re-standardization by [(θ2
nn − 1)(θ2

1n − 1)]
1
2

in (24) adjusts for these initial and terminal effects and the dependence is eliminated.

Next consider the second specification (16) with c(·) > 0. In this case, time is measured

in 1/kn units rather than 1/n units in the localizing coefficient function c(·) and since
n
kn
→∞ the domain of the function is [0,∞), leading to the following limit theory for the

standardized process when c(·) > 0 is integrable over [0,∞)]

(26)
1√
kn
X̃bnrc

d−−−→
n→∞

Xc,∞ =d N
(

0, σ2

∫ ∞
0

e−2
∫ a
0 c(p)dpda

)
.

The limit in (26) remains the same random variable for all values of r, just as in Theorem

4 above. But in the present case, as is clear from (26), the limit variance depends on

function values c(·) > 0 over the full domain [0,∞) rather than the single function value

c(0) at the origin.

We may also consider the case where the standardized time series is measured in seg-

ments of length O(kn) rather than length O(n). The framework then matches the usual

FLUR model of Bykhovskaya and Phillips (2017) but over a much wider (infinite) domain.

More specifically, when we focus on the process Xt with t = bknrc instead of t = bnrc,
we have the following limit theory for the standardized process 1√

kn
X̃bknrc.

(27)
1√
kn
X̃bknrc

d−−−→
n→∞

Xc,r =d σ

∫ r

0

e−
∫ a
0 c(p)dpdW (a).

Importantly, in (27) the domain of r is the half line [0,∞), thereby accommodating limit

behavior of the process Xt for t ≥ kn. Thus, the limit Xc,∞ in (26) may be interpreted

as the limit of the stochastic process Xc,r as r → ∞. The covariance kernel of Xc,r is

γ(r, s) = σ2
∫ min(r,s)

0
e−2

∫ a
0 c(p)dpda, which reduces to the usual expression for the covariance
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kernel of a linear diffusion when c(·) is constant or to that of a Brownian motion when

c(·) = 0.

4.2. Mildly stationary FLUR. We focus on the first specification (15). As shown

below, this formulation leads to a limit process for a standardized version of Xt=bnrc

where there is explicit dependence on the localizing function value c(r) at the sample

fraction r corresponding to the sample point t. This outcome differs from (19) and (20)

in the mildly explosive case where there is dependence on the end point values c(0) and

c(1).

Suppose that c(·) ≤ −C < 0. By (17) we have the representation

Xt =
t∑

j=1

e
1
kn

t−j∑
l=1

c( t−l+1
n )

uj + e
1
kn

t∑
j=1

c(j/n)

X0.

and the following limit theory then holds for Xt after suitable standardization.

Theorem 6. Given any fixed r ∈ (0, 1] for which c(r) ≤ −C < 0, then as n→∞

(28)
1√
kn
Xbnrc

fdd−−−→
n→∞

Xc(r) =d N
(

0,
σ2

−2c(r)

)
, r ∈ (0, 1].

Different values of r lead to independent random variables.

Importantly, (28) gives a finite dimensional limit distribution for each fixed r, not a

functional law. This is signified in (28) by the affix ‘fdd’ in place of weak convergence

over [0, 1]. As the theorem indicates, the limit variates Xr and Xs are independent for all

r 6= s. While the limit random variable Xr exists for each fixed r, the limiting stochastic

process Xr on r ∈ (0, 1] has pathological path properties because the independence of

arbitrarily adjacent components Xr and Xs implies a degree of local variability that is

unrealizable.

5. Some Implications of Boundary Limit Theory

Local unit root limit theory enabled analysis of the power properties of unit root tests

and helped explore the passage to stationary and explosive behavior by examining boun-

dary behavior in the asymptotics. The LUR methodology has since been used extensively

in the econometric analysis of tests in unit root models, cointegrated systems, and pre-

dictive regression. In FLUR models, departures from unity allow for functional, time

dependent forms that vary over the sample period. Correspondingly, in FLUR specificati-

ons both the limit theory and the asymptotic power properties involve richer possibilities

that accommodate realistic empirical situations where unit root behavior may be interrup-

ted by episodes of near-stationary or near-explosive behavior in the data. The passages

to stationary and explosive behavior at the boundary of functional specifications become
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similarly more complex and have implications for practical work with inference for time

series data.

This paper has explored these implications in autoregressions when no allowance is

made for time variation in the parameters in estimation and inference, as happens in

practice when an investigator proceeds with parametric autoregression and standard tes-

ting procedures in ignorance of the greater complexity of the generating mechanism. In

moving to the stationary boundary as might be expected in a time varying environment,

the dominating component of the limit theory is any remaining nonstationary episode in

the data. For the process itself, for the autoregressive estimate, and for unit root test

statistics, the boundary asymptotics depend on the interval that defines this episode, lea-

ding to a form of segmented unit root limit theory. These results differ significantly from

those of LUR boundary asymptotics which are well known to lead to standard normal

asymptotics at the stationary boundary (Phillips (1987); Giraitis and Phillips (2006);

Mikusheva (2007)). The implication is that functional departures from unity can have a

major effect on limit theory and test performance.

Likewise, moving to the explosive boundary produces material changes in the asympto-

tics. In this case, the dominating component of the limit theory comes from the explosive

episode in the data. Again, the boundary limit theory depends on the region that defi-

nes the episode. In the explosive direction, the boundary limit theory is centred in the

explosive region. But while unit root tests have non-trivial power at the boundary they

are not consistent, which partly explains the poor performance of right-sided unit root

tests in the detection of periodic episodes of bubbles and the need for recursive regression

methods of detection which have greater sensitivity to local departures from unity.

Functional local alternatives such as those considered here in the unit root context

obviously have wider applications in statistical limit theory and power function analysis

beyond those of unit root models, although there seems to have been little use or mention

of them in the literature to date. They are also useful in the construction of functional

point-optimal test procedures, where there are potential gains from the consideration of

explicit functional alternatives rather than fixed alternatives. For instance, Bykhovskaya

and Phillips (2017) examine some of the implications of functional departures for unit root

testing with a focus on the properties of point optimal procedures. A further application

of these boundary asymptotics that is relevant to empirical work is the impact of local

time variation of the type considered here on uniform inference in autoregression. That

subject is investigated in other ongoing work (Phillips (2017)).
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6. Appendix

Proof of Theorem 1.

Proof. From (2) and with long run variance ω2 =
∞∑

h=−∞
Euouh, we deduce that the limit

process for Xt as n→∞ has the following segmented form

Xbnrc√
n

d−−−→
n→∞

ωKc(r) = Fc(r) =


Ba(r), r ≤ r1,

Jc(r; r1), r1 < r ≤ r2,

Bb(r) + Jc(r2; r1), r2 < r ≤ 1;

with Ba, Bb = BM(ω), Ba ⊥ Bb and

Jc(r; r1) =

∫ r

0

e
∫ r
s cf(a)dadB(s) =

∫ r1

0

e
∫ r
r1
cf(a)da

dB(s) +

∫ r

r1

e
∫ r
s cf(a)dadB(s)

= e
c
∫ r
r1
f(a)da

Ba(r1) +

∫ r

r1

ec
∫ r
s f(a)dadB(s).

Because f(·) is strictly positive on (r1, r2), we know that
∫ r
s
f(a)da > 0 for all s >

r1, r > s. Thus, ec
∫ r
s f(a)da → 0 monotonically in s as c → −∞, so that Jc(r; r1) → 0

as c → −∞ for r ∈ (r1, r2]. Therefore, the limit process Fc(r) in (2) converges to

F−(r) = Ba(r)× 1 {0 ≤ r ≤ r1}+Bb(r)× 1 {r2 < r ≤ 1} .
We may now calculate the limit distribution of the OLS estimate θ̂OLS =

∑n
t=0XtXt−1∑n
t=0X

2
t−1

in sequential asymptotics as n passes to infinity followed by c passing to minus infinity,

which we write as (−c, n)seq. →∞. Write

(29) n
(
θ̂OLS − 1

)
=

1
n

n∑
t=0

Xt−1∆Xt

1
n2

n∑
t=0

X2
t−1

=

1
n

n∑
t=0

Xt−1ut

1
n2

n∑
t=0

X2
t−1

+

1
n

n∑
t=0

cf(t/n)
n

X2
t−1

1
n2

n∑
t=0

X2
t−1

,

and note from Lemma 1 that we may deduce the joint weak convergence

1

n2

n∑
t=0

X2
t−1

d−−−→
n→∞

∫ 1

0

F 2
c (r)dr,

1

n2

n∑
t=0

cf(t/n)X2
t−1

d−−−→
n→∞

∫ 1

0

cf(r)F 2
c (r)dr = ω2

∫ r2

r1

cf(r)K2
c (r)dr.

To calculate the limit of 1
n

∑n
t=0Xt−1ut in the numerator of the first member of 29, square

(1), sum over t, and scale by n, giving

n−1X2
n = n−1

∑
t

ut + 2n−1
∑
t

Xt−1ut + 2n−1
∑
t

cf(t/n)

n
X2
t−1 +Op

(
n−0.5

)
,
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so that

n−1

n∑
t=0

Xt−1ut
d−−−→

n→∞
ω2K2

c (1)/2− σ2/2− ω2

∫ 1

0

cf(r)K2
c (r)dr.

Stochastic differentiation of K2
c (r) gives K2

c (r) = r+2
∫ r

0
cf(r)K2

c (r)dr+2
∫ r

0
Kc(r)dW (r),

from which we deduce that n−1
n∑
t=0

Xt−1ut
d−−−→

n→∞
ω2
∫ 1

0
Kc(r)dW (r) + λ, where λ =

∞∑
h=1

Euouh = 1
2
(ω2−σ2), B(r) = Ba(r)×1 {0 ≤ r ≤ r1}+B(r)×1 {r1 < r ≤ r2}+Bb(r)×

1 {r2 < r ≤ 1} . Thus, as n→∞ we find that

n

(
θ̂OLS − 1−

∫ r2
r1
cf(r)F 2

c (r)dr

n
∫ 1

0
Fc(r)2dr

)
−−−→
n→∞

∫ 1

0
Fc(r)dB(r) + λ∫ 1

0
Fc(r)2dr

,

(30) n
(
θ̂OLS − 1

)
−−−→
n→∞

∫ 1

0
Fc(r)dB(r) + λ+

∫ r2
r1
cf(r)F 2

c (r)dr∫ 1

0
Fc(r)2dr

.

The limits of
∫ 1

0
Fc(r)dB(r) + λ and

∫ 1

0
Fc(r)

2dr as c→ −∞ are straightforward and we

find the following centered limit theory in the boundary asymptotics

n

(
θ̂OLS − 1−

∫ r2
r1
cf(r)F 2

c (r)dr

n
∫ 1

0
Fc(r)2dr

)

−−−−−−−−→
(−c,n)seq.→∞

∫ r1
0
Ba(r)dBa(r) +

∫ 1

r2
Bb(r)dBb(r) + λ∫ r1

0
Ba(r)2dr +

∫ 1

r2
Bb(r)2dr

.

(31)

Note that the centering of the limit theory for θ̂ in (31) is stochastic and involves the

weighted quantity
∫ r2
r1
cf(r)F 2

c (r)dr whose limit behavior is complicated. We proceed to

calculate this limit to develop a non random centering in place of (31).

c

∫ r2

r1

f(r)F 2
c (r)dr = ω2c

∫ r2

r1

f(r)

(
e
c
∫ r
r1
f(a)da

W a(r1) +

∫ r

r1

ec
∫ r
s f(a)dadW (s)

)2

dr

= ω2cW a(r1)2

∫ r2

r1

f(r)e
2c
∫ r
r1
f(a)da

dr

+ 2ω2cW a(r1)

∫ r2

r1

f(r)e
c
∫ r
r1
f(a)da

∫ r

r1

ec
∫ r
s f(a)dadW (s)dr

+ ω2c

∫ r2

r1

f(r)

(∫ r

r1

ec
∫ r
s f(a)dadW (s)

)2

dr.

(32)

We evaluate the limit of each of the three terms in Eq. (32). First, denoting ∂r := ∂
∂r

,
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ω2cW a(r1)2

∫ r2

r1

f(r)e
2c
∫ r
r1
f(a)da

dr = ω2cW a(r1)2

∫ r2

r1

∂r

(
1

2c
e

2c
∫ r
r1
f(a)da

)
dr

= ω2W a(r1)2 1

2

(
e

2c
∫ r2
r1

f(a)da − 1
)

d−−−−→
c→−∞

−1

2
Ba(r1)2.

(33)

The second term has mean

E
[
2cW a(r1)

∫ r2

r1

f(r)e
c
∫ r
r1
f(a)da

∫ r

r1

ec
∫ r
s f(a)dadW (s)dr

]
= 0,

as W a and W are independent. We now show that the variance of this term converges to

zero as c→ −∞, so that the term tends in probability to zero. We have

E
[
2cW a(r1)

∫ r2

r1

f(r)e
c
∫ r
r1
f(a)da

∫ r

r1

ec
∫ r
s f(a)dadW (s)dr

]2

= 4r1c
2E
[∫ r2

r1

f(r)e
c
∫ r
r1
f(a)da

∫ r

r1

ec
∫ r
s f(a)dadW (s)dr

]2

= 4r1c
2E
[∫ r2

r1

∫ r2

s

f(r)e
c
∫ r
r1
f(a)da

ec
∫ r
s f(a)dadrdW (s)

]2

= 4r1c
2

∫ r2

r1

(∫ r2

s

f(r)e
c
∫ r
r1
f(a)da

ec
∫ r
s f(a)dadr

)2

ds

= 4r1c
2

∫ r2

r1

(
1

2c

(
e
c
∫ r2
r1

f(a)da+c
∫ r2
s f(a)da − ec

∫ s
r1
f(a)da

))2

ds

= r1

∫ r2

r1

(
e

2c
∫ r2
r1

f(a)da+2c
∫ r2
s f(a)da

+ e
2c
∫ s
r1
f(a)da − 2e

2c
∫ r2
r1

f(a)da
)
dr −−−−→

c→−∞
0,

(34)

and hence

(35) 2ω2cW a(r1)

∫ r2

r1

f(r)e
c
∫ r
r1
f(a)da

∫ r

r1

ec
∫ r
s f(a)dadW (s)dr

p−−−−→
c→−∞

0.

We are left with the third term. As with the second term, we show that the variance

converges to zero, and thus the whole term converges to the limit of its expectation. We
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first calculate this limit as follows

E

ω2c

∫ r2

r1

f(r)

 r∫
r1

ec
∫ r
s f(a)dadW (s)

2

dr


= ω2c

∫ r2

r1

f(r)E
[∫ r

r1

ec
∫ r
s f(a)dadW (s)

]2

dr = ω2c

∫ r2

r1

f(r)

∫ r

r1

e2c
∫ r
s f(a)dadsdr

= ω2c

∫ r2

r1

∫ r2

s

f(r)e
2c

r∫
s
f(a)da

drds =
ω2

2

∫ r2

r1

(
e2c

∫ r2
s f(a)da − 1

)
ds

=
ω2

2

∫ r2

r1

e
2c

r2∫
s
f(a)da

ds− ω2

2
(r2 − r1) −−−−→

c→−∞
−ω

2

2
(r2 − r1).

(36)

We proceed to show that the variance of the third term goes to zero. We use the fact that

for a stochastic process ξt with finite second moments we have

V
∫ r2

r1

ξtdt = E

 r2∫
r1

ξtdt

2

−
(
E
∫ r2

r1

ξtdt

)2

= E
(∫ r2

r1

ξtdt

∫ r2

r1

ξsds

)
− E

∫ r2

r1

ξtdtE
∫ r2

r1

ξsds

=

∫ r2

r1

∫ r2

r1

E (ξtξs) dsdt−
∫ r2

r1

∫ r2

r1

(Eξt) (Eξs) dsdt =

∫ r2

r1

∫ r2

r1

cov (ξt, ξs) dsdt.

Therefore,

V

[
c

∫ r2

r1

f(r)

(∫ r

r1

ec
∫ r
s f(a)dadW (s)

)2

dr

]

= c2

∫ r2

r1

∫ r2

r1

f(r)f(r′)cov


(∫ r

r1

ec
∫ r
s f(a)dadW (s)

)2

,

(∫ r′

r1

ec
∫ r′
s f(a)dadW (s)

)2
 dr′dr.

(37)

For this calculation, we need the covariance between two squared normal variables with

zero mean. By Isselis’s theorem, if ξr, ξr′ are normally distributed (possible dependent)

with zero mean, then

cov(ξ2
r , ξ

2
r′) ≡ Eξ2

rξ
2
r′ − Eξ2

rEξ2
r′ = 2 (Eξrξr′)2 .
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Thus, we can rewrite Eq. (37) as

V

[
c

∫ r2

r1

f(r)

(∫ r

r1

ec
∫ r
s f(a)dadW (s)

)2

dr

]

= 2c2

∫ r2

r1

∫ r2

r1

f(r)f(r′)

(
E
∫ r

r1

ec
∫ r
s f(a)dadW (s)

∫ r′

r1

ec
∫ r′
s f(a)dadW (s)

)2

dr′dr

= 2c2

∫ r2

r1

∫ r2

r1

f(r)f(r′)

(∫ min(r,r′)

r1

ec
∫ r
s f(a)daec

∫ r′
s f(a)dads

)2

dr′dr

= 4c2

∫ r2

r1

∫ r

r1

f(r)f(r′)e2c
∫ r
r′ f(a)da

(∫ r′

r1

e2c
∫ r′
s f(a)dads

)2

dr′dr

(38)

= 4c2

∫ r2

r1

∫ r

r1

∫ r′

r1

∫ r′

r1

f(r)f(r′)e2c
∫ r
r′ f(a)dae2c

∫ r′
s f(a)dae2c

∫ r′
s′ f(a)dads′dsdr′dr

= 4c2

∫ r2

r1

∫ r2

s

∫ r2

r′

(∫ r′

r1

e2c
∫ r′
s′ f(a)dads′

)
f(r)e2c

∫ r
r′ f(a)dadrf(r′)e2c

∫ r′
s f(a)dadr′ds

= 2c

∫ r2

r1

∫ r2

s

(∫ r′

r1

e2c
∫ r′
s′ f(a)dads′

)(
e2c

∫ r2
r′ f(a)da − 1

)
f(r′)e2c

∫ r′
s f(a)dadr′ds

= 2c

∫ r2

r1

∫ r2

r1

∫ r2

max(s,s′)

e2c
∫ r′
s′ f(a)da

(
e2c

∫ r2
r′ f(a)da − 1

)
f(r′)e2c

∫ r′
s f(a)dadr′ds′ds,

(39)

with

2c

∫ r2

r1

∫ r2

r1

∫ r2

max(s,s′)

e2c
∫ r′
s′ f(a)daf(r′)e2c

∫ r2
r′ f(a)dae2c

∫ r′
s f(a)dadr′ds′ds

=

∫ r2

r1

∫ r2

r1

e
2c

r2∫
s
f(a)da

(
e2c

∫ r2
s′ f(a)da − e2c

∫max(s,s′)
s′ f(a)da

)
ds′ds

=

(∫ r2

r1

e2c
∫ r2
s f(a)dads

)2

−
∫ r2

r1

e2c
∫ r2
s f(a)da

 s∫
r1

e2c
∫ s
s′ f(a)dads′ +

∫ r2

s

ds′

 ds

=

(∫ r2

r1

e2c
∫ r2
s f(a)dads

)2

−
∫ r2

r1

∫ s

r1

e2c
∫ r2
s′ f(a)dads′ds−

∫ r2

r1

(r2 − s)e2c
∫ r2
s f(a)dads,

(40)



BOUNDARY LIMIT THEORY FOR FUNCTIONAL LOCAL TO UNITY REGRESSION 23

and

2c

∫ r2

r1

∫ r2

r1

∫ r2

max(s,s′)

e2c
∫ r′
s′ f(a)daf(r′)e2c

∫ r′
s f(a)dadr′ds′ds

=
1

2

∫ r2

r1

∫ r2

r1

e2c
r2∫
s′
f(a)da+2c

∫ r2
s f(a)da

− e2c
∫max(s,s′)
s′ f(a)da+2c

∫max(s,s′)
s f(a)da

 ds′ds

=
1

2

(∫ r2

r1

e2c
∫ r2
s f(a)dads

)2

−
∫ r2

r1

∫ s

r1

e2c
∫ s
s′ f(a)dads′ds.

(41)

Using (40) and (41) in (39) gives

V

[
c

∫ r2

r1

f(r)

(∫ r

r1

ec
∫ r
s f(a)dadW (s)

)2

dr

]

=
1

2

(∫ r2

r1

e2c
∫ r2
s f(a)dads

)2

−
∫ r2

r1

∫ s

r1

e2c
∫ r2
s′ f(a)dads′ds−

∫ r2

r1

(r2 − s)e2c
∫ r2
s f(a)dads

+

∫ r2

r1

∫ s

r1

e2c
∫ s
s′ f(a)dads′ds −−−−→

c→−∞
0,

(42)

as each term goes to zero. It follows that

(43) ω2c

∫ r2

r1

f(r)

(∫ r

r1

ec
∫ r
s f(a)dadW (s)

)2

dr
p−−−−→

c→−∞
−ω

2

2
(r2 − r1).

and using 33, (35), and (43) in (32), we obtain∫ r2

r1

cf(r)F 2
c (r)dr

d−−−−→
c→−∞

−1

2

(
ω2(r2 − r1) +Ba(r1)2

)
.

Finally, taking the limit as c→ −∞ in (30) leads to a form of segmented unit root limit

distribution as follows∫ 1

0
Fc(r)dB(r) + λ+

∫ r2
r1
cf(r)F 2

c (r)dr∫ 1

0
Fc(r)2dr

−−−−→
c→−∞

∫ r1
0
Ba(r)dBa(r) +

∫ 1

r2
Bb(r)dBb(r) + λ− 1

2
(ω2(r2 − r1) +Ba(r1)2)∫ r1

0
Ba(r)2dr +

∫ 1

r2
Bb(r)2dr

=

∫ 1

r2
Bb(r)dBb(r) + λ− ω2r2

2∫ r1
0
Ba(r)2dr +

∫ 1

r2
Bb(r)2dr

.

Using these results and working in a similar way, we can derive the boundary limit

behavior of the unit root t statistic associated with θ̂OLS, i.e.,

tθ̂OLS
=
θ̂OLS − 1

ŝθ̂OLS

:=

√
n∑
t=1

X2
t−1

(
θ̂OLS − 1

)
√

1
n

n∑
t=1

(Xt − θ̂OLSXt−1)2

.
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Since θ̂OLS = 1 +Op (n−1) = 1 + cf(t/n)/n+Op (n−1) , it follows that

n−1

n∑
t=1

(Xt − θ̂OLSXt−1)2 p−−−→
n→∞

σ2,

and we have already shown that

n
(
θ̂OLS − 1

)
d−−−→

n→∞

∫ 1

0
Fc(r)dB(r) + λ+

∫ r2
r1
cf(r)F 2

c (r)dr∫ 1

0
Fc(r)2dr

,

∫ 1

0

Fc(r)dB(r) + λ
d−−−−→

c→−∞

∫ r1

0

Ba(r)dBa(r) +

∫ 1

r2

Bb(r)dBb(r) + λ,

∫ r2

r1

cf(r)F 2
c (r)dr

d−−−−→
c→−∞

−1

2

(
ω2(r2 − r1) +Ba(r1)2

)
,

∫ 1

0

Fc(r)
2dr

d−−−−→
c→−∞

∫ r1

0

Ba(r)2dr +

∫ 1

r2

Bb(r)2dr,

Combining these limits yields the desired result

tθ̂OLS

d−−−−−−−−→
(−c,n)seq→∞

∫ r1
0
Ba(r)dBa(r) +

∫ 1

r2
Bb(r)dBb(r) + λ− 1

2
(ω2(r2 − r1) +Ba(r1)2)

σ
(∫ r1

0
Ba(r)2dr +

∫ 1

r2
Bb(r)2dr

)1/2

=

∫ 1

r2
Bb(r)dBb(r) + λ− ω2r2

2

σ
(∫ r1

0
Ba(r)2dr +

∫ 1

r2
Bb(r)2dr

)1/2
.

�

Proof of Theorem 2.

Proof. By Eq. (2), the limit process for Xt has the segmented form

(44)
Xbnrc√
n

d−−−→
n→∞

Fc(r) =


Ba(r), r ≤ r1,

Jc(r; r1), r1 < r ≤ r2,

Bb(r) + Jc(r2; r1), r2 < r ≤ 1;

with Ba ⊥ Bb and

(45) Jc(r; r1) =

∫ r

0

ec
∫ r
s f(a)dadB(s) = e

c
∫ r
r1
f(a)da

Ba(r1) +

∫ r

r1

ec
∫ r
s f(a)dadB(s).
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So

e
−c
∫ r
r1
f(a)da

Jc(r; r1) = Ba(r1) +

∫ r

r1

e
−c
∫ r
r1
f(a)da

ec
∫ r
s f(a)dadB(s)

= Ba(r1) +

∫ r

r1

e
−c
∫ s
r1
f(a)da

dB(s) = Ba(r1) + op(1).

(46)

Thus, for all r,

e
−c
∫ r2
r1

f(a)da
B(r) = e

−c
∫ r2
r1

f(a)da ×Op(1)
d−−−→

c→∞
0,

and, for all r < r2

e
−c
∫ r2
r1

f(a)da
Jc(r; r1) = e−c

∫ r2
r f(a)da (Ba(r1) + op(1))

d−−−→
c→∞

0,

while

e
−c
∫ r2
r1

f(a)da
Jc(r2; r1))

d−−−→
c→∞

Ba(r1).

Thus e
−c
∫ r2
r1

f(a)daXbnrc√
n

d−−−−−−−→
(c,n)seq→∞

Ba(r1)× 1 {r2 ≤ r ≤ 1} .

By the same argument as in the proof of Theorem 1,

n
(
θ̂OLS − 1

)
=

1
n

n∑
t=0

Xt−1ut

1
n2

n∑
t=0

X2
t−1

+

1
n

∑
t

cf(t/n)
n

X2
t−1

1
n2

∑
t

X2
t−1

d−−−→
n→∞

∫ 1

0
Fc(r)dB(r) + λ+

∫ r2
r1
cf(r)Fc(r)

2dr∫ 1

0
Fc(r)2dr

,

so that

n

(
θ̂OLS − 1−

∫ r2
r1
cf(r)Fc(r)

2dr

n
∫ 1

0
Fc(r)2dr

)
d−−−→

n→∞

∫ 1

0
Fc(r)dB(r) + λ∫ 1

0
Fc(r)2dr

.

Using Eq. (46), we can calculate the limit of the denominator
∫ 1

0
Fc(r)

2dr as c goes to

infinity. First, ∫ r1

0

Fc(r)
2dr =

∫ r1

0

(Ba(r))2 dr = Op(1).(47)
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Then,

∫ r2

r1

Fc(r)
2dr =

∫ r2

r1

Jc(r; r1)2dr =

∫ r2

r1

[
e
c
∫ r
r1
f(a)da

Ba(r1) +

∫ r

r1

ec
∫ r
s f(a)dadB(s)

]2

dr

=

∫ r2

r1

e
2c
∫ r
r1
f(a)da

[
Ba(r1) +

∫ r

r1

e
−c
∫ s
r1
f(a)da

dB(s)

]2

dr

=

∫ r2

r1

e
2c
∫ r
r1
f(a)da

(Ba(r1) + op(1))2 dr

= (Ba(r1))2

∫ r2

r1

e
2c
∫ r
r1
f(a)da

dr + op(1)

∫ r2

r1

e
2c
∫ r
r1
f(a)da

dr.

(48)

Finally, ∫ 1

r2

Fc(r)
2dr =

∫ 1

r2

(
Bb(r) + Jc(r2; r1)

)2
dr

=

∫ 1

r2

Bb(r)2dr + 2

∫ 1

r2

Bb(r)Jc(r2; r1)dr +

∫ 1

r2

Jc(r2; r1)2dr.

Hence, using Eq. (45), we have

e
−2c

∫ r2
r1

f(a)da

∫ 1

r2

Fc(r)
2dr = op(1) + 2Ba(r1)e

−c
∫ r2
r1

f(a)da

∫ 1

r2

Bb(r)dr

+ (1− r2) (Ba(r1))2 = (1− r2) (Ba(r1))2 + op(1).

(49)

Combining Eq. 47, Eq. 48, and Eq. 49 then yields

e
−2c

∫ r2
r1

f(a)da

∫ 1

0

Fc(r)
2dr = op(1) + (Ba(r1))2

∫ r2

r1

e−2c
∫ r2
r f(a)dadr

+ op(1)

∫ r2

r1

e−2c
∫ r2
r f(a)dadr + (1− r2) (Ba(r1))2

= (1− r2) (Ba(r1))2 + op(1).

(50)

In a similar way, we can analyze the first part of the numerator,
∫ 1

0
Fc(r)dB(r) + λ. Note

that ∫ 1

0

Fc(r)dB(r) =

∫ r1

0

Ba(r)dBa(r) +

∫ r2

r1

Jc(r; r1)dB(r)

+

∫ 1

r2

(
Bb(r) + Jc(r2; r1)

)
dBb(r)

=

∫ r1

0

Ba(r)dBa(r) +

∫ 1

r2

Bb(r)dBb(r)

+

∫ r2

r1

Jc(r; r1)dB(r) + Jc(r2; r1)
(
Bb(1)−Bb(r2)

)
.
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Thus,

e
−c
∫ r2
r1

f(a)da

[∫ 1

0

Fc(r)dB(r) + λ

]
= op(1) +Ba(r1)

(
Bb(1)−Bb(r2)

)
+

∫ r2

r1

e−c
∫ r2
r f(a)da (Ba(r1) + op(1)) dB(r)

= Ba(r1)
(
Bb(1)−Bb(r2)

)
+ op(1).

(51)

Combining Eq. 50 and Eq. 51, we obtain

e
−c
∫ r2
r1

f(a)da
[∫ 1

0
Fc(r)dB(r) + λ

]
e
−2c

∫ r2
r1

f(a)da ∫ 1

0
Fc(r)2dr

d−−−→
c→∞

Ba(r1)
(
Bb(1)−Bb(r2)

)
(1− r2) (Ba(r1))2

=
Bb(1)−Bb(r2)

(1− r2)Ba(r1)

=
N (0, 1− r2)

(1− r2)N (0, r1)
=

1√
r1(1− r2)

C.

Thus

e
c
∫ r2
r1

f(a)da
n

θ̂ − 1−

r2∫
r1

cf(r)Fc(r)
2dr

n
∫ 1

0
Fc(r)2dr

 d−−−−−−−→
(c,n)seq→∞

1√
r1(1− r2)

C,

leading to a scaled Cauchy distribution in the limit.

We are left to analyze the second part of the numerator,
∫ r2
r1
cf(r)Fc(r)

2dr. The analysis

is almost identical to the case c→ −∞ studied in the proof of Theorem 1. By Eq. (32),

c

∫ r2

r1

f(r)F 2
c (r)dr = ω2cW a(r1)2

r2∫
r1

f(r)e
2c
∫ r
r1
f(a)da

dr

+ 2ω2cW a(r1)

∫ r2

r1

f(r)e
c
∫ r
r1
f(a)da

∫ r

r1

ec
∫ r
s f(a)dadW (s)dr

+ ω2c

∫ r2

r1

f(r)

(∫ r

r1

ec
∫ r
s f(a)dadW (s)

)2

dr.

By Eq. 33, for the first term we have

e
−2c

∫ r2
r1

f(a)da
ω2cW a(r1)2

∫ r2

r1

f(r)e
2c

r∫
r1

f(a)da

dr

= ω2W a(r1)2 1

2

(
1− e−2c

∫ r2
r1

f(a)da
1
)

d−−−→
c→∞

1

2
Ba(r1)2.

(52)
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Next, for the second term,

Ee−2c
∫ r2
r1

f(a)da

[
2cW a(r1)

∫ r2

r1

f(r)e
c
∫ r
r1
f(a)da

∫ r

r1

ec
∫ r
s f(a)dadW (s)dr

]
= 2cEW a(r1)E

∫ r2

r1

f(r)e−c
∫ r2
r f(a)da

∫ r

r1

e
−c
(∫ s

r1
+
∫ r2
r

)
f(a)da

dW (s)dr = 0,

and by Eq 34,

E
[
e
−2c

∫ r2
r1

f(a)da
2cW a(r1)

∫ r2

r1

f(r)e
c
∫ r
r1
f(a)da

∫ r

r1

ec
∫ r
s f(a)dadW (s)dr

]2

= r1

∫ r2

r1

(
e
−2c

∫ s
r1
f(a)da

+ e
−2c

∫ r2
r1

f(a)da−2c
r2∫
s
f(a)da

− 2e
−2c

∫ r2
r1

f(a)da

)
dr −−−→

c→∞
0.

Finally, by Eq. 36 and 42,

E

[
e
−2c

∫ r2
r1

f(a)da
ω2c

∫ r2

r1

f(r)

(∫ r

r1

ec
∫ r
s f(a)dadW (s)

)2

dr

]

=
ω2

2

∫ r2

r1

e
−2c

s∫
r1

f(a)da

ds− ω2

2
(r2 − r1)e

−2c
∫ r2
r1

f(a)da −−−→
c→∞

0,

and

V

[
e
−2c

∫ r2
r1

f(a)da
c

∫ r2

r1

f(r)

(∫ r

r1

ec
∫ r
s f(a)dadW (s)

)2

dr

]

=
1

2

(∫ r2

r1

e
−2c

∫ s
r1
f(a)da

ds

)2

− e−2c
∫ r2
r1

f(a)da

∫ r2

r1

∫ s

r1

e
−2c

s′∫
r1

f(a)da

ds′ds

− e−2c
∫ r2
r1

f(a)da

∫ r2

r1

(r2 − s)e−2c
∫ s
r1
f(a)da

ds

+ e
−2c

∫ r2
r1

f(a)da

∫ r2

r1

∫ s

r1

e
−2c

(
s′∫
r1

+
∫ r2
s

)
f(a)da

ds′ds −−−→
c→∞

0.

Combining these three terms gives

(53) e
−2c

∫ r2
r1

f(a)da

∫ r2

r1

cf(r)Fc(r)
2dr

d−−−→
c→∞

1

2
Ba(r1)2.

Further, combining Eq. 50, Eq. 51, and Eq. 53, we get

e
−2c

∫ r2
r1

f(a)da
[∫ 1

0
Fc(r)dB(r) + λ+ c

∫ r2
r1
f(r)Fc(r)

2dr
]

e
−2c

∫ r2
r1

f(a)da ∫ 1

0
Fc(r)2dr

d−−−→
c→∞

1
2
Ba(r1)2

(1− r2) (Ba(r1))2 =
1

2(1− r2)
,
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so that

n
(
θ̂ − 1

)
p−−−−−−−→

(c,n)seq→∞

1

2(1− r2)
,

giving a constant in the limit.

The limit behavior of the t statistic for θ̂OLS follows as in previous results. In particular,

we have

n
(
θ̂ − 1

)
d−−−−−−−→

(c,n)seq→∞

1

2(1− r2)
,

e
−c
∫ r2
r1

f(a)da

(∫ 1

0

Fc(r)
2dr

)1/2
d−−−→

c→∞

√
1− r2|Ba(r1)|.

leading to

e
−c
∫ r2
r1

f(a)da
tθ̂OLS

d−−−−−−−→
(c,n)seq→∞

1

2(1− r2)

√
1− r2|Ba(r1)| 1

σ
=

√
r1ω

2σ
√

1− r2

|N (0, 1)|.

�

Proof of Theorem 3.

Proof. From the proof of Theorem 2, we know that e
c
∫ r
r1Jc(r; r1) = Ba(r1) + op(1). Thus,

Jc(r2; r1) has the largest stochastic order among the Jc(r; r1) for r ≤ r2. It is convenient

to rewrite Jc(r; r1) in terms of Jc(r2; r1) as

(54) Jc(r; r1) =

∫ r

0

ec
∫ r
s f(a)dadB(s) = e−c

∫ r2
r f(a)daJc(r2; r1)−

∫ r2

r

e−c
∫ s
r f(a)dadB(s),

whose first term is exponentially large and whose second term is Op(c
−0.5), since it

is Gaussian with zero mean and variance
∫ r2
r
e−2c

∫ s
r f(a)dads ≈

∫ r+ε
r

e−2c
∫ s
r f(r)dads =

1
2cf(r)

(
1− e−2cf(r)ε

)
≈ 1

2cf(r)
. Define ξr :=

∫ r2
r
e−c

∫ s
r f(a)dadB(s)

√
2cf(r) ≈ N (0, 1) and re-

write both numerator and denominator of

1∫
0

Fc(r)dB(r)+λ+
r2∫
r1

cf(r)F 2
c (r)dr

1∫
0

F 2
c (r)dr

in terms of Jc(r2; r1)

as follows.

∫ 1

0

Fc(r)dB(r) =

∫ r1

0

Ba(r)dBa(r) +

∫ r2

r1

Jc(r; r1)dB(r) +

∫ 1

r2

(
Bb(r) + Jc(r2; r1)

)
dBb(r)

= Jc(r2; r1)(Bb(1)−Bb(r2)) + Jc(r2; r1)

∫ r2

r1

e
−c

r2∫
r
f(a)da

dB(s) +Op(1),

(55)

∫ r2

r1

cf(r)F 2
c (r)dr =

r2∫
r1

cf(r)J2
c (r; r1)dr = J2

c (r2; r1)c

∫ r2

r1

f(r)e−2c
∫ r2
r f(a)dadr

− 2cJc(r2; r1)√
2c

∫ r2

r1

ξr
√
f(r)e−c

∫ r2
r f(a)dadr +

1

2

∫ r2

r1

ξ2
rdr,
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where

E
(∫ r2

r1

ξr
√
f(r)e−c

∫ r2
r f(a)dadr

)2

= E
∫ r2

r1

∫ r2

r1

ξrξt
√
f(r)f(t)e−c

∫ r2
r f(a)dae−c

∫ r2
t f(a)dadtdr

≤ 1

∫ r2

r1

∫ r2

r1

√
f(r)f(t)e−c

∫ r2
r f(a)dae−c

∫ r2
t f(a)dadtdr =

(∫ r2

r1

√
f(r)e−c

∫ r2
r f(a)dadr

)2

≈ 1

(2c)2f(r2)
.

Hence,
∫ r2
r1
ξr
√
f(r)e−c

∫ r2
r f(a)dadr = Op(1/c). Noting that c

∫ r2
r1
f(r)e−2c

∫ r2
r f(a)dadr =

1
2

(
1− e−2c

∫ r2
r1

f(a)da
)

, we then have

(56)

∫ r2

r1

cf(r)F 2
c (r)dr =

1

2

(
1− e−2c

∫ r2
r1

f(a)da
)
J2
c (r2; r1) + Jc(r2; r1)Op(1/

√
c),

and

∫ 1

0

F 2
c (r)dr =

∫ r1

0

Ba(r)2dr +

∫ r2

r1

J2
c (r; r1)dr +

∫ 1

r2

(Bb(r) + Jc(r2; r1))2dr

= J2
c (r2; r1)

∫ r2

r1

e−2c
∫ r2
r f(a)dadr − 2Jc(r2; r1)√

2c

∫ r2

r1

ξr√
f(r)

e−c
∫ r2
r f(a)dadr

+
1

2c

∫ r2

r1

ξ2
r

f(r)
dr + (1− r2)J2

c (r2; r1) + 2Jc(r2; r1)

∫ 1

r2

Bb(r)dr +Op(1)

= J2
c (r2; r1)

(
1− r2 +

∫ r2

r1

e−2c
∫ r2
r f(a)dadr

)
+ 2Jc(r2; r1)

∫ 1

r2

Bb(r)dr

+ Jc(r2; r1)Op(1/c
√
c) +Op(1),

(57)

where 1
2c

∫ r2
r1

ξ2r
f(r)

dr ≤ 1
2Cc

∫ r2
r1
ξ2
rdr = Op(1/c). Combining Eq. (55), (56), and (57), we get

1Eξrξt ≤
√
Eξ2rEξ2t =

√
1 · 1 = 1.
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∫ 1

0
Fc(r)dB(r) + λ+

∫ r2
r1
cf(r)F 2

c (r)dr∫ 1

0
F 2
c (r)dr

≈
1
2

(
1− e−2c

∫ r2
r1

f(a)da
)
J2
c (r2; r1) + Jc(r2; r1)(Bb(1)−Bb(r2))

J2
c (r2; r1)

(
1− r2 +

∫ r2
r1
e−2c

∫ r2
r f(a)dadr

)
+ 2Jc(r2; r1)

∫ 1

r2
Bb(r)dr

=

1
2

(
1− e−2c

∫ r2
r1

f(a)da
)

1− r2 +
∫ r2
r1
e−2c

∫ r2
r f(a)dadr

·

1 + (Bb(1)−Bb(r2))

1
2

1−e
−2c

r2∫
r1

f(a)da

Jc(r2;r1)

1 +
2

1∫
r2

Bb(r)dr1−r2+
∫ r2
r1

e
−2c

r2∫
r

f(a)da
dr

Jc(r2;r1)

≈
1
2

(
1− e−2c

∫ r2
r1

f(a)da
)

1− r2 +
∫ r2
r1
e−2c

∫ r2
r f(a)dadr

·

(
1 +

(Bb(1)−Bb(r2))

1
2

1− e
−2c

r2∫
r1

f(a)da

 Jc(r2; r1)

−
2
∫ 1

r2
Bb(r)dr(

1− r2 +
r2∫
r1

e−2c
∫ r2
r f(a)dadr

)
Jc(r2; r1)

)
.

(58)

Rewriting Eq. (58) and using the fact that Jc(r2; r1) = e
c
∫ r2
r1

f(a)da
Ba(r1) + Op(1), we

get

e
c
∫ r2
r1

f(a)da

∫ 1

0
Fc(r)dB(r) + λ+

∫ r2
r1
cf(r)F 2

c (r)dr∫ 1

0
F 2
c (r)dr

−
1
2

(
1− e−2c

∫ r2
r1

f(a)da
)

1− r2 +
∫ r2
r1
e−2c

∫ r2
r f(a)dadr


≈ 1

Ba(r1)

 Bb(1)−Bb(r2)

1
2

(
1− e−2c

∫ r2
r1

f(a)da
) − 2

∫ 1

r2
Bb(r)dr

1− r2 +
∫ r2
r1
e−2c

∫ r2
r f(a)dadr

 1
2

(
1− e−2c

∫ r2
r1

f(a)da
)

1− r2 +
∫ r2
r1
e−2c

∫ r2
r f(a)dadr

(59)

(60) ≈ 1

2(1− r2)Ba(r1)

(
2(Bb(1)−Bb(r2))−

2
∫ 1

r2
Bb(r)dr

1− r2

)
.

Because 2(Bb(1)− Bb(r2))−
2
∫ 1
r2
Bb(r)dr

1−r2 is Gaussian and independent of Ba(r1) the limit

variate in (60) has a Cauchy distribution. We proceed to calculate the scale coefficient of
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this distribution. The component terms in the variance of the numerator are as follows:

E
(

2(Bb(1)−Bb(r2))
2

1− r2

∫ 1

r2

Bb(r)dr

)
=

4

1− r2

EB(1− r2)

∫ 1−r2

0

B(r)dr

=
4ω2

1− r2

∫ 1−r2

0

rdr = 2(1− r2)ω2,

E
(
2(Bb(1)−Bb(r2))

)2
= 4(1− r2)ω2,

E
(

2

1− r2

∫ 1

r2

Bb(r)dr

)2

=
4

(1− r2)2

∫ 1−r2

0

∫ 1−r2

0

E(B(s)B(r))dsdr

=
4ω2

(1− r2)2

∫ 1−r2

0

∫ 1−r2

0

min(s, r)dsdr

=
4ω2

(1− r2)2

(1− r2)3

3
=

4

3
(1− r2)ω2,

so that 2(Bb(1)−Bb(r2))−
2
∫ 1
r2
Bb(r)dr

1−r2 ∼ N
(
0, 4

3
(1− r2)ω2

)
and thus

e
c
∫ r2
r1

f(a)da

∫ 1

0
Fc(r)dB(r) + λ+

∫ r2
r1
cf(r)F 2

c (r)dr∫ 1

0
F 2
c (r)dr

− 1− e−2c
∫ r2
r1

f(a)da

2
(

1− r2 +
∫ r2
r1
e−2c

∫ r2
r f(a)dadr

)


d−−−−→
c→+∞

1

2(1− r2)

√
4/3(1− r2)
√
r1

C =
1√

3r1(1− r2)
C.

It follows that

e
c
∫ r2
r1

f(a)da
n

θ̂OLS − 1− 1− e−2c
∫ r2
r1

f(a)da

2n

(
1− r2 +

r2∫
r1

e−2c
∫ r2
r f(a)dadr

)
 d−−−−−−−−→

(n,c)seq→+∞

1√
3r1(1− r2)

C.

�

Proof of Theorem 4.

Proof. The proof of (19) follows by the martingale CLT for triangular arrays by establis-

hing the stability and Lindeberg conditions. First consider the variance of 1√
kn
X̃bnrc, for
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r ∈ (0, 1]. Using the martingale difference property of {ut}t, we have〈
1√
kn
X̃bnrc

〉
=
σ2

kn

bnrc∑
j=1

e
−
{

2
kn

∑bnrc
l=bnrc−j+1

c( bnrc−l+1
n )

}
+ o(1)

≈ σ2

∫ bnrc
kn

0

e{−2
∫ z
0 c(x

kn
n )dx}dz + o(1)

−−−→
n→∞

σ2

∫ ∞
0

e−2zc(0)dz =
σ2

2c(0)
,

(61)

which is constant. Next suppose that s > r and note the covariance〈
1√
kn
X̃bnrc,

1√
kn
X̃bnsc

〉

=
σ2

kn

bnrc∑
j=1

e
− 1

kn

(
bnrc∑

l=bnrc−j+1

c( bnrc−l+1
n )+

bnsc∑
l=bnsc−j+1

c( bnsc−l+1
n )

)
+ op(1)

≈ σ2

∫ bnrc
kn

0

e−2
∫ z
0 c(x

kn
n )dxdz + o(1)

−−−→
n→∞

σ2

∫ ∞
0

e−2zc(0)dz =
σ2

2c(0)
=

〈
1√
kn
X̃bnrc

〉
=

〈
1√
kn
X̃bnsc

〉
,

is also constant. The Lindeberg condition is established as follows. Take δ > 0, and

noting that c (a) ≥ 0 over a ∈ [0, 1] and c (a) ≥ C > 0 for all a ∈ [0, ε]∪ [1− ε, 1] for some

ε > 0, we obtain

bnrc∑
j=1

E

e
− 2

kn

∑ bnrc
l=bnrc−j+1

c( bnrc−l+1
n )u2

j

kn
1
[
|uj| > δ

√
kne

1
kn

∑ bnrc
l=bnrc−j+1

c( bnrc−l+1
n )

]
=

1

kn

bnrc∑
j=1

e−
2
kn

∑ bnrc
l=bnrc−j+1

c( bnrc−l+1
n )E

{
u2
j1
[
|uj| > δ

√
kne

1
kn

∑ bnrc
l=bnrc−j+1

c( bnrc−l+1
n )

]}

≤ 1

kn

bnrc∑
j=1

e−
2
kn

∑ bnrc
l=bnrc−j+1

c( bnrc−l+1
n ) × E

{
u2

11
[
|u1| > δ

√
kn

]}

=
1

n

n

kn

bnrc∑
j=1

e−
2n
kn

∑ bnrc
l=bnrc−j+1

c( bnrc−l+1
n ) 1

n × E
{
u2

11
[
|u1| > δ

√
kn

]}

∼ n

kn

∫ r

0

e−
2n
kn

∫ s
0 c(a)dads× E

{
u2

11
[
|u1| > δ

√
kn

]}
∼ 1

2c (0)
E
{
u2

11
[
|u1| > δ

√
kn

]}
→ 0
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since E (u2
1) <∞ and∫ r

0

e−
2n
kn

∫ s
0 c(a)dads ≈

∫ ε

0

e−
2n
kn
c(0)sds =

kn
2nc(0)

(
1− e−

2n
kn
c(0)ε
)
≈ kn

2nc(0)
.

Thus, the Lindeberg condition holds and (19) holds for all r ∈ (0, 1]. Result (20) follows

in a related way and the proof is omitted. �

Proof of Theorem 5.

Proof. The proof is similar to the line of reasoning used in the proof of Theorem 3 but the

calculations are considerably more complex. First, it is useful to re-normalize the time

series Xt as X̃t, and then rewrite everything in terms of the last observation, X̃n. Note

that

X̃t = e−
1
kn

∑t
l=1 c( t−l+1

n )Xt = e−
1
kn

∑t
j=1 c(

j
n)Xt = X0 +

t∑
j=1

e
− 1

kn

j∑
l=1

c(l/n)
uj

= X̃n −
n∑

j=t+1

e
− 1

kn

j∑
l=1

c(l/n)
uj.

(62)

We start with the decomposition
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(
θ̂OLS − 1

)
=

1
n

∑n
t=1Xt−1∆Xt

1
nkn

∑n
t=1 X

2
t−1

=
1
n

∑n
t=1

c( t
n)
kn

X2
t−1

1
nkn

∑n
t=1X

2
t−1

+
1
n

∑n
t=1Xt−1ut

1
nkn

∑n
t=1 X

2
t−1

,

and rewrite the component sums in terms of X̃n using (62). We consider each term

separately, starting with the common denominator.

(i) Denominator of (63)

Upon scaling by e−
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n), we write the denominator as
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From Theorem 4, we know that X̃n√
kn

= Op(1). It is easy to see that in the last part

of (64) the first term Dn,1 has the largest order of magnitude and the second term Dn,2

has the second largest order. More specifically, the three terms of (64) take the following

forms as 1
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(66)

and

Dn,3 =
1

n

n∑
t=1

e−
2
kn

∑n
j=t c(

j
n)

(
n∑
j=t

e
− 1

kn

j∑
l=1

c(l/n) uj√
kn

)2

≈ n

kn

∫ 1

0

e−
2n
kn

∫ 1
z c(a)da

(∫ 1

z

e−
n
kn

∫ s
0 c(a)dadB(s)

)2

dz

=
n

kn
e−

2n
kn

∫ 1
0 c(a)da

∫ 1

0

(∫ 1

z

e−
n
kn

∫ s
z c(a)dadB(s)

)2

dz

= e−
2n
kn

∫ 1
0 c(a)da

∫ 1

0

(√
n

kn

∫ 1

z

e−
n
kn

∫ s
z c(a)dadB(s)

)2

dz

= Op

(
e−

2n
kn

∫ 1
0 c(a)da

)
.

(67)
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Note that the stochastic integral representation
∫ 1

0
e−

n
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∫ 1
s c(a)da 1

2c(s)
dB(s) that appears

in the Eq. (66) relies as n→∞ on the function c(s) only in the immediate neighborhood

of the end point s = 1, so asymptotically the condition c(1) > 0 is sufficient for the

asymptotics to hold.

(ii) Numerators of (63)

Start by considering the numerator in the first term on the right side of (63). Upon

scaling by e−
2
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n), as for the denominator, and by expanding the expression in

terms of X̃n, we obtain
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(68)

By the same logic employed with the denominator, in (68) the first term has the largest

order of magnitude, and the second has the second largest order of magnitude. Note, in

particular, that
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(69)
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which has precisely the same form and consequently the same order as (66). Similar

arguments to those of the denominator apply to the other two terms in this numerator

expansion.

Next consider the numerator of the second component of (63). Scaling this term by
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The first term of (70) is approximately
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which is of smaller order than the term NB
n,1. Further, upon multiplication by

kn
n
e−

1
kn

∑n
j=1 c(

j
n) to match the scaling of the denominator and the first part of the nu-

merator, both terms of (70) are evidently of smaller order than (64) and (68). It is
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convenient to employ this standardization in what follows and let
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(iii) Bias Calculation

Combining (64), (68), and (70), we obtain the following bias expression for centering

the limit behavior of θ̂OLS
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(iv) Combining the Components of (63)

Neglecting smaller order terms according to the earlier calculations of the respective

orders of the elements of the numerator and denominator terms yields the asymptotic

approximation
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(73)

Using (65), (66), (69) and (72), this recentred and scaled estimation error has the following

explicit representation
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From Theorem 4, X̃n√
kn

d−−−→
n→∞

Xc(0) =d N (0, σ2

2c(0)
), and only early innovations with t ≈ 0

influence the limit behavior of X̃n and, hence, the denominator of (74). By contrast, the

numerator in (74) downweights early innovations and its limit behavior is governed as

n → ∞ by the right side of the unit interval, i.e. for values of t ≈ n. Thus, numerator

and denominator of (74) are independent as n → ∞, both being Gaussian in the limit.

Thus, the limit distribution of the ratio on the right side of (74) is Cauchy (C) and it

remains to calculate the correct scaling factor of this distribution, which is determined by

the respective variances of the Gaussian components.
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We may therefore simplify the representation (74) as follows
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As earlier, the representations involving
∫ 1

0
1

2c(s)
e−

n
kn

∫ 1
s c(a)dadB(s) in the above argument

rely as n→∞ on the function c(s) only in the immediate vicinity of s = 1 and c(1) > 0

suffices for the asymptotics to hold.
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We deduce the following asymptotic form of the centered estimator
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(
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∑n
t=1 c

(
t
n

)
e−

2
kn

∑n
j=t c(

j
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kn
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− 2

kn

∑n
j=t c(

j
n)

)
≈ 2e−

n
kn

∫ 1
0 c(a)da

√
c(0)c(1)C,

which leads to the limit theory

kne
n
kn

∫ 1
0 c(a)da

(
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∑n
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(
t
n

)
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2
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j
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∑n

t=1 e
− 2

kn

∑n
j=t c(

j
n)

)
d−−−→

n→∞
2
√
c(0)c(1)C,

as stated.

Finally, from (63) we have with random re-centering

kn

(
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∑n
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c(t/n)
kn

X2
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2
t−1

)
=

1
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1
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2
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.

Then, using (64), (70), and the fact that

V
(√

n

kn
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0

e−
n
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s c(a)dadB(s)

)
= σ2 n
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(
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)
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2
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as required. �

Proof of Theorem 6.

Proof. We proceed in the same manner as for Theorem 4 and apply the martingale CLT.

We first establish the stability condition for the variance of

1√
kn
Xbnrc =

1√
kn

bnrc∑
j=1

e
1
kn

bnrc−j∑
l=1

c( bnrc−l+1
n )

uj.
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which has the form〈
1√
kn
Xbnrc

〉
=
σ2

kn

bnrc∑
j=1

e
2
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bnrc−j∑
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n )

=
σ2

kn

bnrc−b
√
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(
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(76)

Note that when j ≤ bnrc − b
√
knnc, we get bnrc − j ≥ b

√
knnc, so that
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 2
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c

(
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,
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exp

{
−2
√
n/knC

}
−−−→
n→∞

0.

(77)

Now consider the second summation in (76). If j ≥ bnrc−
√
knn, we get j+1

n
≥ bnrc−

√
knn

n
≈

r, so that c
(
bnrc−l+1

n

)
≈ c(r) uniformly for l = 1, . . . , bnrc − j. Then
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(78)

Using (77) and (78) in (76) gives

(79)

〈
1√
kn
Xbnrc

〉
−−−→
n→∞

σ2

−2c(r)
.

Next observe that for n large enough and s > r, bnrc < bnsc −
√
knn, as kn goes to

infinity slower than n. Hence, for s > r the covariance〈
1√
kn
Xbnrc,

1√
kn
Xbnsc

〉
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=
σ2

kn
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In precisely the same way as earlier in the proof of theorem 4, it can be shown that the

Lindeberg condition holds, thereby giving the finite dimensional convergence
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,

and the stated result follows. �
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