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Abstract

We study Random Social Choice Functions (or RSCFs) in a standard ordinal mech-

anism design model. We introduce a new preference domain called a hybrid domain

which includes as special cases as the complete domain and the single-peaked domain.

We characterize the class of unanimous and strategy-proof RSCFs on these domains

and refer to them as Restricted Probabilistic Fixed Ballot Rules (or RPFBRs). These

RSCFs are not necessarily decomposable, i.e., cannot be written as a convex combina-

tion of their deterministic counterparts. We identify a necessary and sufficient condition

under which decomposability holds for anonymous RPFBRs. Finally, we provide an

axiomatic justification of hybrid domains and show that every connected domain satis-

fying some mild conditions is a hybrid domain where the RPFBR characterization still

prevails.
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1 Introduction

Two familiar preference domains in the literature on mechanism design in voting environ-

ments are the complete domain and the domain of single-peaked preferences. The complete

domain arises naturally when there are no a priori restrictions on preferences. The classic

results of Gibbard (1973), Satterthwaite (1975) and Gibbard (1977) apply here. According

to them, requiring strategy-proofness forces the mechanism to be a dictatorship in the de-

terministic case and to be a random dictatorship in the probabilistic case. Single-peaked

preferences on the other hand, require more structure on the set of alternatives. However,

they arise naturally in a variety of situations such as preference aggregation (Black, 1948),

strategic voting (Moulin, 1980), public facility allocation (Bochet and Gordon, 2012), fair

division (Sprumont, 1991) and assignment (Bade, 2019). The single-peaked domain also

admits well-behaved strategy-proof social choice functions. In this paper, we propose a flex-

ible preference domain that admits both the complete domain and the single-peaked domain

as special cases. We call them hybrid domains and completely characterize unanimous and

strategy-proof random social choice functions (or RSCFs) over the hybrid domains. We refer

to these random social choice functions as Restricted Probabilistic Fixed Ballots Rules (or

RPFBRs) and analyze their salient properties. Finally, we provide an axiomatic justification

of hybrid domains and show that all domains that satisfy some richness properties must be

hybrid.

We briefly recall the definition of single-peaked preferences. The set of alternatives is a

finite set A = {a1, a2, . . . , am} which is endowed with the prior order a1 ≺ a2 ≺ · · · ≺ am.

A preference ordering over A is single-peaked if there exists a unique top-ranked alternative,

say ak, such that preferences decline when alternatives move “farther away” from ak. For

instance, if “ar ≺ as ≺ ak or ak ≺ as ≺ ar” , then as is strictly preferred to ar. A preference

is hybrid if there exist threshold alternatives ak and ak with ak ≺ ak such that preferences

over the alternatives in the interval between ak and ak are “unrestricted” relative to each

other, while preferences over other alternatives retain features of single-peakedness. Thus,

the set A can be decomposed into three parts: left interval L = {a1, . . . , ak}, right interval

R = {ak, . . . , am} and middle interval M = {ak, . . . , ak}. Formally, a preference is (k, k)-

hybrid if the following holds: (i) for a voter whose best alternative lies in L (respectively

in R), preferences over alternatives in the set L ∪ R are conventionally single-peaked, while

preferences over alternatives in M are arbitrary subject to the restriction that the best

alternative in M is the left threshold ak (respectively, right threshold ak), and (ii) for a voter

whose peak lies in M , preferences restricted to L ∪ R are single-peaked but arbitrary over

M . Observe that if k = 1 and k = m, then preferences are unrestricted, while the case where

k − k = 1 coincides with the case of single-peaked preferences.

A (k, k)-hybrid preference is a preference ordering which is single-peaked everywhere

except over the alternatives in the middle interval. Consider the location of candidates
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in the forthcoming Democratic party primary elections in the USA, in the usual political

left-right spectrum. It is clear that candidates such as Sanders and Warren belong to the

left, while others such as Biden (perhaps) belong to the right. However, there are several

candidates who cannot easily be ordered in this manner. The typical reason is that they are

left on some issues and right on others. Hybrid preferences treat these candidates as ones

belonging to the middle part, and the hybrid domain reflects the reversals in the relative

rankings of these alternatives that arise from the underlying multidimensional issues. A more

general way to model departures from single-peaked preferences would be to consider several

intervals of alternatives where single-peakedness fails. However, as suggested by Theorem 3,

this complicates the analysis significantly without adding substantial new insights.

We study unanimous and strategy-proof RSCFs on hybrid domains. A RSCF associates

a lottery over alternatives to each profile of preferences. Randomization is a way to resolve

conflicts of interest by ensuring a measure of ex-ante fairness in the collective decision process.

More importantly, it has recently been shown that randomization significantly enlarges the

scope of designing well-behaved mechanisms, e.g., the compromise RSCF of Chatterji et al.

(2014) and the maximal-lottery mechanism of Brandl et al. (2016).

In order to define the notion of strategy-proofness, we follow the standard approach of

Gibbard (1977). For every voter, truthfully revealing her preference ordering must yield a

lottery that stochastically dominates the lottery arising from any unilateral misrepresentation

of preferences according to the sincere preference. Unanimity is a weak efficiency requirement

which says that the alternative that is unanimously best at a preference profile is selected

with probability one.

The main theorem of the paper shows that a RSCF defined on the (k, k)-hybrid domain

is unanimous and strategy-proof if and only if it is a RPFBR (see Theorem 1). A RPFBR

is a special case of a Probabilistic Fixed Ballot Rule (or PFBR) introduced by Ehlers et al.

(2002). A PFBR is specified by a collection of probability distributions βS, where S is a

coalition of voters, over the set of alternatives. We formally call βS a probabilistic ballot. If

k−k = 1, then a RPFBR reduces to a PFBR. However, if k−k > 1, then a RPFBR requires

an additional restriction on the probabilistic ballots: each voter i has a fixed probability

weight εi such that the probability of the right interval R according to βS is the total weight∑
i∈S εi of the voters in S and that of the left interval L is the total weight

∑
i/∈S εi of the

voters outside S.

We use our characterization result to investigate the the following classical decompos-

ability question on these domains: Can every unanimous and strategy-proof RSCF be de-

composed as a mixture of finitely many deterministic unanimous and strategy-proof social

choice functions? Decomposability holds on several well-known domains, for instance the

complete domain (Gibbard, 1977) and the single-peaked domains (Peters et al., 2014; Pycia

and Ünver, 2015). Thus, decomposability holds for the cases when k−k = 1 or k−k = m−1.

Surprisingly, it does not hold for any intermediate values of k and k. In other words, random-
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ization non-trivially expands the scope for designing strategy-proof mechanisms. We identify

a necessary and sufficient condition for decomposability under an additional assumption of

anonymity, which requires the RSCF be non-sensitive to the identities of voters (see Theorem

2). We further observe that non-decomposable RPFBRs dominate almost all decomposable

RPFBRs in recognizing social compromises.

Finally, we formally demonstrate the salience of hybrid domains. We consider connected

domains, where connectedness is a property of a graph that is induced by the domain.

Essentially, connectedness ensures the existence of a path from one preference to another by

a sequence of specific preference switches. Connected domains have been used extensively

in the literature on strategic social choice (e.g. Monjardet, 2009; Sato, 2013; Puppe, 2018).

According to Theorem 3, every connected domain that satisfies the weak no-restoration

property of Sato (2013) and includes two completely reversed preferences must be a hybrid

domain over which the RPFBR characterization still holds. An important feature of this

result is that the condition on the domain does not specify an underlying structure of single-

peakedness or threshold alternatives. These are derived endogenously from our hypotheses.

The paper is organized as follows. Section 1.1 reviews the literature, while Section 2 sets

out the model and definitions. Section 3 and 4 introduce hybrid preferences and RPFBRs,

respectively. Section 5 presents the main characterization result as well as the result on

decomposability. Section 6 provides an axiomatic justification for hybrid domains.

1.1 Relationship with the Literature

The analysis of strategy-proof deterministic social choice functions on single-peaked domains

was initiated by Moulin (1980) and developed further by Barberà et al. (1993), Ching (1997)

and Weymark (2011). In the deterministic setting, Nehring and Puppe (2007), Chatterji

et al. (2013), Reffgen (2015), Chatterji and Massó (2018), Achuthankutty and Roy (2018)

and Bonifacio and Massó (2019) analyze the structure of unanimous and strategy-proof social

choice functions on domains closely related to single-peakedness.

The structure of unanimous and strategy-proof RSCFs on single-peaked domains was

first studied by Ehlers et al. (2002). They considered the case where the set of alternatives

is an interval in the real line and characterized the unanimous and strategy-proof RSCFs in

terms of probabilistic fixed ballot rules. Recently, Roy and Sadhukhan (2018) strengthen the

characterization result on a single-peaked domain which does not require maximal cardinal-

ity. Characterizations of unanimous and strategy-proof RSCFs as convex combinations of

counterpart deterministic social choice functions were provided by Peters et al. (2014) and

Pycia and Ünver (2015).

Recently, Peters et al. (2019) have considered the case where the set of alternatives is

endowed with a graph structure. Single-peakedness is defined w.r.t. such graphs as in

Demange (1982) and Chatterji et al. (2013). Peters et al. (2019) investigate the structure of
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unanimous and strategy-proof RSCFs. Their characterization result (Theorem 5.6 of Peters

et al. (2019)) implies our Theorem 1 for a special graph structure. However, the extension

of our result in Theorem 3 is more general than their result since we do not assume a

prespecified graph over the set of alternatives. In particular, our result covers many domains

that are excluded by theirs. Finally, we emphasize that the motivation, formulation, and

proof techniques in the two papers are completely different.

2 Preliminaries

Let A = {a1, a2, . . . , am} be a finite set of alternatives with m ≥ 3. Let N = {1, 2, . . . , n} be

a finite set of voters with n ≥ 2. Each voter i has a preference ordering Pi (i.e., a complete,

transitive and antisymmetric binary relation) over the alternatives. We interpret asPiat as

“as is strictly preferred to at according to Pi”. For each 1 ≤ k ≤ m, rk(Pi) denotes the kth

ranked alternative in Pi. We use the following notational convention: Pi = (ak as at · · · )
refers to a preference ordering where ak is first-ranked, as is second-ranked, and at is third-

ranked, while the rest of the rankings in Pi are arbitrary.

We denote the set of all preference orderings by P, which we call the complete domain.

A domain D is a subset of P. We say that two distinct preferences Pi, P
′
i ∈ D are adjacent,

denoted Pi ∼ P ′i , if there exist as, at ∈ A such that (i) rk(Pi) = rk+1(P ′i ) = as and rk(P
′
i ) =

rk+1(Pi) = at for some 1 ≤ k ≤ m− 1, and (ii) rl(Pi) = rl(P
′
i ) for all l /∈ {k, k+ 1}. In other

words, alternatives as and at are consecutively ranked in both Pi and P ′i and are swapped

between the two preferences, while the ordering of all remaining alternatives is unchanged.

In this case, we say alternatives as and at are locally switched between Pi and P ′i . Given

distinct Pi, P
′
i ∈ D, a sequence of preferences {P k

i }tk=1 ⊆ D is called a path connecting Pi
and P ′i if P 1

i = Pi, P
t
i = P ′i and P k

i ∼ P k+1
i for all k = 1, . . . , t − 1. Two preferences Pi, P

′
i

are completely reversed if for all as, at ∈ A, we have [asPiat]⇔ [atP
′
ias].

A domain D is minimally rich if for each ak ∈ A, there exists a preference Pi ∈ D such

that r1(Pi) = ak. Throughout the paper, we assume the domain in question is minimally rich.

A preference profile is an n-tuple of preferences, i.e., P = (P1, P2, . . . , Pn) = (Pi, P−i) ∈ Dn.

Let ∆(A) denote the space of all lotteries over A. An element λ ∈ ∆(A) is a lottery or a

probability distribution over A, where λ(ak) denotes the probability received by alternative

ak. For notational convenience, we let eak denote the degenerate lottery where alternative

ak receives probability one. A Random Social Choice Function (or RSCF) is a map

ϕ : Dn → ∆(A) which associates each preference profile to a lottery. Let ϕak(P ) denote the

probability assigned to ak by ϕ at the preference profile P . If a RSCF selects a degenerate

lottery at every preference profile, it is called a Deterministic Social Choice Function

(or DSCF). More formally, a DSCF is a mapping f : Dn → A.

In this paper, we impose two basic axioms on RSCFs: unanimity and strategy-proofness.

A RSCF ϕ : Dn → ∆(A) is unanimous if for all P ∈ Dn and ak ∈ A, [r1(Pi) = ak for all i ∈
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N ] ⇒ [ϕ(P ) = eak ]. We adopt the first-order stochastic dominance notion of strategy-

proofness proposed by Gibbard (1977). This requires the lottery from truthtelling stochas-

tically dominate the lottery obtained by any misrepresentation by any voter at any possible

profile of other voters’ preferences. Formally, a RSCF ϕ : Dn → ∆(A) is strategy-proof

if for all i ∈ N,Pi, P ′i ∈ D and P−i ∈ Dn−1, ϕ(Pi, P−i) stochastically dominates ϕ(P ′i , P−i)

according to Pi, i.e.,
∑k

t=1 ϕrt(Pi)(Pi, P−i) ≥
∑k

t=1 ϕrt(Pi)(P
′
i , P−i) for all k = 1, . . . ,m. In

addition, a RSCF ϕ : Dn → ∆(A) satisfies the tops-only property if for all P, P ′ ∈ Dn,

we have [r1(Pi) = r1(P ′i ) for all i ∈ N ] ⇒ [ϕ(P ) = ϕ(P ′)]. In other words, the tops-only

property ensures that the social outcome at each preference profile depends only on the

first-ranked alternatives at that preference profile.

An important class of unanimous and strategy-proof RSCFs is the class of random dicta-

torships. Formally, a RSCF ϕ : Dn → ∆(A) is a random dictatorship if there exists a“dic-

tatorial coefficient” εi ≥ 0 for each i ∈ N with
∑

i∈N εi = 1 such that ϕ(P ) =
∑

i∈N εi er1(Pi)

for all P ∈ Dn. In particular, if εi = 1 for some i ∈ N , the random dictatorship degenerates

to a dictatorship. It is evident that every random dictatorship is a mixture (equivalently,

a convex combination) of dictatorships. Gibbard (1977) showed that every unanimous and

strategy-proof RSCF on the complete domain P is a random dictatorship.

An important restricted domain is the domain of single-peaked preferences (Black, 1948;

Moulin, 1980). A preference Pi is single-peaked w.r.t. a prior order ≺ over A if for all

as, at ∈ A, we have [as ≺ at ≺ r1(Pi) or r1(Pi) ≺ at ≺ as] ⇒ [atPias]. Let D≺ denote the

single-peaked domain which contains all single-peaked preferences w.r.t. ≺. Whenever

we do not mention the prior order ≺, we assume that it is the natural order, ak−1 ≺ ak for

all k = 2, . . . ,m. For notational convenience, let as � at denote either as ≺ at or as = at,

and [as, at] = {ak ∈ A : as � ak � at} denote the set of alternatives between as and at on

≺, provided as � at. Note that the single-peaked domain D≺ contains a pair of completely

reversed preferences P i = (a1 · · · ak−1 ak · · · am) and P i = (am · · · ak ak−1 · · · a1).1

3 Hybrid Domains

Hybrid domains are supersets of single-peaked domains where single-peakedness may be

violated over a subset of alternatives that lie in the “middle” of the alternative set. We use

the term “hybrid” to emphasize the coexistence of such violations, with other features of

single-peakedness.

Consider the natural order ≺ over A. Fix two alternatives ak and ak with ak ≺ ak, which

we refer to as the left threshold and the right threshold, respectively. We define three subsets

of A using these two thresholds: Left Interval L = [a1, ak], Right Interval R = [ak, am]

1The notation P i = (a1 · · · ak−1 ak · · · am) and P i = (am · · · ak ak−1 · · · a1) denote the preferences P i
and P i where ak−1P iak and akP iak−1 for all k = 2, . . . ,m.
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and Middle Interval M = [ak, ak].
2 In what follows, we present the structure of preference

orderings in a hybrid domain.

Consider a preference ordering whose peak belongs to M (see the first diagram of Figure

1). The ranking of the alternatives in M is completely arbitrary, while the ranking of the

alternatives in L and R follows the conventional single-peakedness restriction w.r.t. ≺. In

other words, the only restriction that the preference ordering satisfies is that preference

declines as one moves from ak towards a1, or from ak towards am. Note that this allows some

alternatives in L or R be ranked above some alternatives in M .

Next, consider a preference ordering whose peak belongs to L (see the second diagram

of Figure 1). The ranking of the alternatives in L and R follows single-peakedness w.r.t. ≺.

In other words, preference declines as one moves from the peak towards a1 or ak, or moves

from ak towards am. Furthermore, all alternatives in M are ranked below ak in an arbitrary

manner. Notice that an alternative in R may be ranked above some alternative in M , but

can never be ranked above ak. For a preference ordering with the peak in R, the restriction

is analogous.

b bb b
a1 amak ak

b
ak

rPi

r r
b bb b

a1 amak ak

b
ak

rPi

r r

Figure 1: A graphic illustration of hybrid preference orderings

The formal definition of hybrid domains is given below.

Definition 1 Let ≺ be the natural order over A and let 1 ≤ k < k ≤ m. A preference Pi
is called (k, k)-hybrid if the following two conditions are satisfied:

(i) For all ar, as ∈ L or ar, as ∈ R, [ar ≺ as ≺ r1(Pi) or r1(Pi) ≺ as ≺ ar]⇒ [asPiar].

(ii) [r1(Pi) ∈ L]⇒ [akPiar for all ar ∈M with ar 6= ak ] and

[r1(Pi) ∈ R]⇒ [akPias for all as ∈M with as 6= ak ].

Let DH(k, k) denote the (k, k)-hybrid domain which contains all (k, k)-hybrid prefer-

ence orderings. Note that D≺ ⊆ DH(k, k) for all 1 ≤ k < k ≤ m, and DH(k′, k
′
) ⊆ DH(k, k)

for all k ≤ k′ < k
′ ≤ k.

Now, we explain the relation of hybrid domains with five important preference domains

studied in the literature.

2Note that L ∩M = {ak}, R ∩M = {ak} and L ∩R = ∅.
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The single-peaked domain: Consider a hybrid domain DH(k, k) with k − k = 1. This

means M = {ak, ak} and L ∪R = A. Then, conditions (i) and (ii) of Definition 1 boil down

to the single-peakedness restriction (see the first diagram of Figure 2), and consequently,

DH(k, k) coincides with the single-peaked domain D≺.

The complete domain: Consider the hybrid domain D(k, k) with k − k = m − 1 (equiv-

alently, k = 1 and k = m). This means L = {ak}, R = {ak}, and M = A. Then, both

the conditions of Definition 1 become vacuous. In other words, no restriction is imposed on

the preference orderings (see the second diagram of Figure 2) in DH(1,m), and consequently,

DH(1,m) becomes the complete domain P.

b bb
a1 amak

rPi r
r
at

r
r
as

b
ak

b
a1

b
am

rPi

Figure 2: Two hybrid preferences with k − k = 1 and k − k = m− 1

Multiple single-peaked domains: Hybrid domains generalize the notion of multiple

single-peaked domains introduced by Reffgen (2015). Let Ω = {≺r}sr=1, s ≥ 2 be a col-

lection of linear orders over A. For each order ≺r in Ω, let the single-peaked domain w.r.t.

≺r be denoted by D≺r . Then, the union DΩ = ∪sr=1D≺r is called the multiple single-peaked

domain w.r.t. Ω.3

One can first identify the maximum common left part LΩ of all orders {≺r}sr=1 over A,

and relabel all alternatives of LΩ = {a1, . . . , ak} (if LΩ 6= ∅), i.e., for all orders ≺r in Ω, after

relabeling, either a1 ≺r · · · ≺r ak ≺r ap for all ap ∈ A\LΩ, or ap ≺r ak ≺r · · · ≺r a1 for all

ap ∈ A\LΩ holds. Second, one can symmetrically identify and relabel the maximum common

right part RΩ = {ak, . . . , am} ⊆ A\LΩ of all orders {≺r}sr=1 over A (if RΩ 6= ∅) and finally

arbitrarily relabel all remaining alternatives as ak+1, . . . , ak+1. We correspondingly relabel

all alternatives in the preferences of DΩ. Then, after setting ak and ak as two thresholds, it is

clear that each preference ordering in DΩ is (k, k)-hybrid.4 Usually, DΩ is “strictly” contained

in DH(k, k). This will be illustrated in the following example.

Note that by definition, a multiple single-peaked domain cannot be a single-peaked do-

main, whereas a hybrid domain can be single-peaked for a suitable choice of thresholds (when

k − k = 1).

3If two orders ≺1 and ≺2 are completely reversed, the two single-peaked domains D≺1
and D≺2

become

identical. Therefore, we assume that there is no pair of orders in Ω that are completely reversed.
4As Ω contains at least two orders and no pair of orders are completely reversed, it must be the case that

k − k > 1 when LΩ 6= ∅ and RΩ 6= ∅. If LΩ = ∅ and RΩ 6= ∅, then DΩ is (1, k)-hybrid, while if LΩ 6= ∅
and RΩ = ∅, then DΩ is (k,m)-hybrid. If both LΩ and RΩ are empty sets, then DΩ ⊆ P = DH(1,m) and

DΩ 6⊆ DH(k, k) for any other k and k.
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Multidimensional single-peaked domains in voting under constraints: We provide

an example to show that hybrid preferences arise from a model of voting under constraints

studied in Barberà et al. (1995).

Let X = X1 × X2, X1 = {1, 2, 3, 4, 5} and X2 = {1, 2, 3}, where both X1 and X2

are ordered according to the natural order, denoted by <1 and <2. A preference Pi, with

r1(Pi) = x, is multidimensional single-peaked over X w.r.t. <1 and <2 if for all y, z ∈ X,

we have [zk ≤k yk ≤k xk or xk ≤k yk ≤k zk for both k = 1, 2] ⇒ [yPiz]. Meanwhile, let

A = {a1, a2, a3, a4, a5, a6} ⊂ X be the set of feasible alternatives, which are depicted by the

black nodes in Figure 3 below.c c s c cs s c s sc c s c c
1 2 3 4 5

1

2

3

a1 a2

a3

a4

a5 a6

Figure 3: The Cartesian product of <1 and <2

Note that in a multidimensional single-peaked preference, (i) if a1 is first-ranked, then

a2 must be second-ranked within A, and a5 is preferred to a6; if a2 is first-ranked, then

a5 is preferred to a6, and (ii) if a3 is first-ranked, then a2 is better than a1, and a5 is

better than a6. Analogous preference restrictions over the ranking of feasible alternatives are

observed for multidimensional single-peaked preferences with peaks a6, a5 and a4. These two

observations coincide with the two preference restrictions in the definition of the (2, 5)-hybrid

domain DH(2, 5) if we rearrange all feasible alternatives according to the natural order ≺.

In conclusion, when we restrict attention to all multidimensional single-peaked preferences

whose peaks are feasible, the domain of induced preferences over the feasible alternatives is

identical to DH(2, 5).

We may alternatively extract the two linear orders≺1= (a1a2a3a4a5a6) and≺2= (a1a2a4a3a5a6)

over feasible alternatives from Figure 3, and induce the multiple single-peaked domain

D≺1 ∪ D≺2 . Notice that D≺1 ∪ D≺2 is strictly contained in DH(2, 5). For instance, a3 and

a4 are always ranked above a5 and a6 in every preference of D≺1 ∪ D≺2 that has peak a1,

whereas we can identify a particular multidimensional single-peaked preference with peak a1

that induces the preference ordering over feasible alternatives as (a1a2a5a6a3a4).

This illustrates the additional flexibility that a hybrid domain affords, and may be useful

for formulations (for example, political economy or public goods location models) that seek to

reduce a model where the underlying issues are multidimensional, to one where the preference

restriction is generated via a one dimensional order over alternatives.

Semi-single-peaked domains: The notion of semi-single-peaked domains was introduced

by Chatterji et al. (2013). Consider the natural order ≺ and fix one threshold alternative.

The semi-single-peakedness restriction on a preference requires that (i) the usual single-

peakedness restriction prevail in the interval between the peak and the threshold, and (ii)
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each alternative located beyond the threshold be ranked below the threshold.

One can extend the semi-single-peakedness notion by adding more thresholds and re-

quiring preferences to be semi-single-peaked w.r.t. each threshold alternative. In particular,

suppose that there are two distinct thresholds ak and ak with ak ≺ ak. Consider a preference

Pi with ak � r1(Pi) � ak. If Pi is (k, k)-hybrid, then the usual single-peakedness restriction

prevails on the left and right intervals, and no restriction is imposed on the ranking of the

alternatives in the middle interval (see the first diagram of Figure 4). On the contrary, if Pi
is semi-single-peaked w.r.t. both ak and ak, then the single-peakedness restriction prevails

on the middle interval but fails on the left and right intervals (see the second diagram of

Figure 4). Thus, the notions of hybrid preferences and semi-single-peaked preferences are

not entirely compatible with each other.

Chatterji et al. (2013) show that under a mild domain richness condition, semi-single-

peakedness is necessary and sufficient for the existence of a unanimous, anonymous, tops-only

and strategy-proof DSCF.5 This, in particular, implies that when k−k > 1, the (k, k)-hybrid

domain cannot admit such a well-behaved strategy-proof DSCF.

b bb b
a1 amak ak

b
ak

rPi

r r
b bb b

a1 amak ak

b
ak

rPi

r r

Figure 4: A hybrid preference v.s. a semi-single-peaked preference

4 Restricted Probabilistic Fixed Ballot Rules

In this section, we introduce the notion of Restricted Probabilistic Fixed Ballot Rules (or

RPFBRs). Ehlers et al. (2002) introduce the notion of Probabilistic Fixed Ballot Rules (or

PFBR); RPFBRs are special cases of these rules.

A PFBR ϕ is based on a collection of parameters (βS)S⊆N , called probabilistic ballots.

Each probabilistic ballot βS, which is associated to the coalition S ⊆ N , is a probability

distribution on A satisfying the following two properties.

• Ballot unanimity: βN assigns probability 1 to am, and β∅ assigns probability 1 to a1.

5Recently, Chatterji and Massó (2018) introduce the semilattice single-peaked domain which significantly

generalizes semi-single-peakedness, and Bonifacio and Massó (2019) characterize all unanimous, anonymous,

tops-only and strategy-proof DSCFs on the semilattice single-peaked domain.
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• Monotonicity: probabilities according to βS move towards right as S gets bigger, i.e.,

βS([ak, am]) ≤ βT ([ak, am]) for all S ⊂ T and all ak ∈ A.6

For an example, suppose that there are two agents {1, 2} and four alternatives {a1, a2, a3, a4}.
Then, a choice of probabilistic ballots could be β∅ = (1, 0, 0, 0), β{1} = (0.5, 0.2, 0.1, 0.2),

β{2} = (0.4, 0.3, 0.2, 0.1) and βN = (0, 0, 0, 1). Here, we denote by (x, y, w, z) a probability

distribution where a1, a2, a3 and a4 receive probabilities x, y, w and z, respectively.

A PFBR ϕ w.r.t. a collection of probabilistic ballots (βS)S⊆N works as follows. For

each 1 ≤ k ≤ m, let S(k, P ) = {i ∈ N : ak � r1(Pi)} be the set of agents whose

peaks are not to the left of ak. Consider an arbitrary preference profile P and an arbi-

trary alternative ak. We induce the probabilities βS(k,P )([ak, am]) and βS(k+1,P )([ak+1, am]).

If ak = am, then set βS(m+1,P )([am+1, am]) = 0. The probability of the alternative ak selected

at the preference profile P is defined as the difference between these two probabilities, i.e.,

ϕak(P ) = βS(k,P )([ak, am]) − βS(k+1,P )([ak+1, am]).7 For an example, consider the PFBR ϕ

w.r.t. the parameters presented in the predecessor paragraph. Consider a preference profile

P = (P1, P2) where r1(P1) = a2 and r1(P2) = a4. Then, we calculate

ϕa1(P ) = βS(1,P )([a1, a4])− βS(2,P )([a2, a4]) = βN([a1, a4])− βN([a2, a4]) = 0,

ϕa2(P ) = βS(2,P )([a2, a4])− βS(3,P )([a3, a4]) = βN([a2, a4])− β{2}([a3, a4]) = 1− 0.3 = 0.7,

ϕa3(P ) = βS(3,P )([a3, a4])− βS(4,P )([a4, a4]) = β{2}([a3, a4])− β{2}([a4, a4]) = 0.3− 0.1 = 0.2, and

ϕa4(P ) = βS(4,P )([a4, a4])− 0 = β{2}([a4, a4]) = 0.1.

Clearly, the PFBR satisfies the tops-only property.

It is worth mentioning that the probabilistic ballot βS for a coalition S ⊆ N represents

the outcome of ϕ at the “boundary profile” where agents in S have the preference P i =

(am · · · ak ak−1 · · · a1), while the others have the preference P i = (a1 · · · ak−1 ak · · · am).

For ease of presentation, we call such a preference profile a S-boundary profile.8 If a PFBR

ϕ is unanimous, then it follows that β∅ assigns probability 1 to a1 and βN assigns probability

1 to am, which in turn implies ballot unanimity. In what follows, we argue that if ϕ is

strategy-proof, then (βS)S⊆N must be monotonic. Consider a proper subset S ⊂ N and

i ∈ N \ S. Let P and P ′ be the S-boundary and S ∪ {i}-boundary profiles, respectively. In

other words, only agent i changes her preference P i in the S ∪ {i}-boundary profile to P i.

Strategy-proofness of ϕ implies that the probability of each upper contour set of P i is weakly

increased from ϕ(P ) to ϕ(P ′). Since the interval [ak, am] coincides with the upper contour set

6For a subset B of A, we denote the probability of B according to βS by βS(B).
7Since S(k + 1, P ) ⊆ S(k, P ) and [ak+1, am] ⊂ [ak, am], monotonicity ensures ϕak(P ) =

βS(k,P )([ak, am])−βS(k+1,P )([ak+1, am]) ≥ 0. Moreover, note that
∑m
k=1 ϕak(P ) =

∑m
k=1 βS(k,P )([ak, am])−

βS(k+1,P )([ak+1, am]) = βS(1,P )([a1, am]) = 1. Therefore, ϕ(P ) ∈ ∆(A) and ϕ is a well defined RSCF.
8Note that for every S ⊆ N , there is a unique S-boundary profile.

11



of ak at P i, it follows that βS([ak, am]) ≤ βS∪{i}([ak, am]). Monotonicity of (βS)S⊆N follows

from the repeated application of this argument.

Note that the outcome of a PFBR at any preference profile is uniquely determined by

its outcomes at boundary profiles. It is shown in Ehlers et al. (2002) that every PFBR is

unanimous and strategy-proof on the single-peaked domain. Thus, unanimity and strategy-

proofness of a PFBR at every preference profile can be ensured by imposing those only on

the boundary profiles.

The deterministic versions of PFBRs can be obtained by additionally requiring the prob-

abilistic ballots be degenerate, i.e., βS(ak) ∈ {0, 1} for all S ⊆ N and ak ∈ A. These DSCFs

were introduced by Moulin (1980); we refer to these as Fixed Ballot Rules (or FBRs).9 Moulin

(1980) showed that a DSCF is unanimous, tops-only and strategy-proof on the single-peaked

domain if and only if it is an FBR. It can be easily verified that an arbitrary mixture of FBRs

is unanimous and strategy-proof on the single-peaked domain, and is a PFBR. Theorem 3

of Peters et al. (2014) and Theorem 5 of Pycia and Ünver (2015) prove that the converse is

also true.

Below, we present the formal definition of PFBRs.

Definition 2 A RSCF ϕ : Dn → ∆(A) is called a Probabilistic Fixed Ballot Rule (or

PFBR) if there exists a collection of probabilistic ballots (βS)S⊆N satisfying ballot unanimity

and monotonicity such that for all P ∈ Dn and ak ∈ A, we have

ϕak(P ) = βS(k,P )([ak, am])− βS(k+1,P )([ak+1, am]),

where βS(m+1,P )([am+1, am]) = 0.

We are now ready to present the notion of RPFBRs. The structure of a (k, k)-RPFBR

depends on the values of k and k. If k−k = 1, then the (k, k)-RPFBR is the same as a PFBR.

However, if k − k > 1, then the (k, k)-RPFBR is a PFBR whose probabilistic ballots satisfy

the following additional restriction: for each agent i ∈ N , there is a “conditional dictatorial

coefficient” εi ≥ 0 with
∑

i∈N εi = 1 such that for all S ⊆ N , βS([ak, am]) =
∑

i∈S εi and

βS([a1, ak]) =
∑

i∈N\S εi. Note that this, in particular, means that no βS assigns positive

probability to an alternative that lies (strictly) between ak and ak, i.e., βS(ak) = 0 for all

S ⊆ N and ak ∈ [ak+1, ak−1]. In what follows, we present an example of a RPFBR.

Example 1 Let N = {1, 2, 3} and A = {a1, a2, a3, a4, a5}. Take k = 2 and k = 4, and con-

sider the (2, 4)-hybrid domain DH(2, 4). Let ε1 = ε2 = ε3 = 1
3
. Consider the 8 probabilistic

ballots in Table 1, where both ballot unanimity and monotonicity can be easily verified. Note

9Moulin (1980) called these Augmented Median Voter Rules, while Barberà et al. (1993) called these

Generalized Median Voter Schemes. For an FBR ϕ, the subtraction form in Definition 2 can be simplified to

a max-min form (see Definition 10.3 in Nisan et al., 2007). Moulin (1980) originally defined an augmented

median voter rule in the min-max form which can be equivalently translated to a max-min form.
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that they also satisfy the property that βS([a4, a5]) =
∑

i∈S εi and βS([a1, a2]) =
∑

i∈N\S εi
for all S ⊆ N . Therefore, the PFBR w.r.t. these probabilistic ballots is a (2, 4)-RPFBR. �

β∅ β{1} β{2} β{3} β{1,2} β{1,3} β{2,3} βN

a1 1 1/3 1/3 1/3 1/3 1/3 1/3 0

a2 0 1/3 1/3 1/3 0 0 0 0

a3 0 0 0 0 0 0 0 0

a4 0 0 0 0 1/3 1/3 1/3 0

a5 0 1/3 1/3 1/3 1/3 1/3 1/3 1

Table 1: The probabilistic ballots (βS)S⊆N

Below, we present a formal definition of RPFBRs.

Definition 3 Let 1 ≤ k < k ≤ m. A PFBR ϕ w.r.t. probabilistic ballots (βS)S⊆N is called

a (k, k)-Restricted Probabilistic Fixed Ballots Rule (or (k, k)-RPFBR) if k− k > 1

implies that for each i ∈ N , there exists εi ≥ 0 with
∑

i∈N εi = 1 such that for all S ⊆ N ,

βS([ak, am]) =
∑

i∈S εi and βS([a1, ak]) =
∑

i∈N\S εi.

It is worth mentioning that when k−k > 1, at the preference profiles where all peaks are in

the middle interval M = [ak, ak], a (k, k)-RPFBR behaves like a random dictatorship where

each agent i’s dictatorial coefficient is εi. More formally, if ϕ is a (k, k)-RPFBR, then ϕ(P ) =∑
i∈N εi er1(Pi) for all preference profile P such that r1(Pi) ∈ [ak, ak] for all i ∈ N . Therefore,

in the extreme case where k = 1 and k = m, the (1,m)-RPFBR reduces to a random

dictatorship. For ease of presentation, we call the condition satisfied by the probabilistic

ballots (βS)S⊆N in Definition 3 the constrained random-dictatorship condition.

5 A Characterization of Unanimous and Strategy-proof

RSCFs on Hybrid Domains

In this section, we provide a characterization of unanimous and strategy-proof RSCFs on

hybrid domains. Theorem 1 says that a RSCF ϕ is unanimous and strategy-proof on the

(k, k)-hybrid domain if and only if it is a (k, k)-RPFBR. Ehlers et al. (2002) consider the

case of continuum of alternatives (for instance, the interval [0, 1]) and show that a RSCF

is unanimous and strategy-proof on the single-peaked domain if and only if it is a PFBR.

Since when k − k = 1, the (k, k)-hybrid domain boils down to the single-peaked domain

and the (k, k)-RPFBR becomes a PFBR, Theorem 1 implies their result in the case of finite

alternatives.

Theorem 1 Let 1 ≤ k < k ≤ m. A RSCF ϕ :
[
DH(k, k)

]n → ∆(A) is unanimous and

strategy-proof if and only if it is a (k, k)-RPFBR.
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We present a formal proof of Theorem 1 in Appendix A. Here, we provide an intuitive

explanation. The “if part” of the theorem, i.e., the fact that every RPFBR on a hybrid

domain is unanimous and strategy-proof, intuitively follows from the observations: (i) the

(k, k)-hybrid domain satisfies single-peakedness on the intervals [a1, ak] and [ak, am], and (ii)

the RPFBR behaves like a PFBR over these intervals. For the “only-if part”, we first show

how in a two-voter setting a PFBR fails to satisfy strategy-proofness on the (k, k)-hybrid

domain if any of its probabilistic ballots assigns a positive probability to some alternative in

the interval [ak+1, ak−1].

Consider the model with two agents. Suppose that some probabilistic ballot of ϕ, say

β{2}, assigns a strictly positive probability to some alternative ak ∈ [ak+1, ak−1]. First, by

the definition of the (k, k)-hybrid domain, there is a preference where a1 is the first-ranked

alternative and ak is preferred to ak. Correspondingly, consider a preference profile where

agent 1 has such a preference and the first-ranked alternative of agent 2 is ak. By the defini-

tion of PFBR, the probability of ak at this profile equals β{2}(ak), which is strictly positive

by our assumption. However, using unanimity agent 1 can manipulate by misreporting a

preference that has ak as the first-ranked alternative.10

An important point to note is that the aforementioned argument only indicates that a

PFBR which is strategy-proof on the (k, k)-hybrid domain is a (k, k)-RPFBR. In order to

complete the verification of the “only-if part”, a crucial step in the proof of Theorem 1 is to

show that every unanimous and strategy-proof RSCF on the hybrid domain is some PFBR.

5.1 Decomposability of anonymous RPFBRs

In this section, we investigate the decomposability property of RSCFs. We say that a

unanimous and strategy-proof RSCF is decomposable if it can be expressed as a mixture

(equivalently, a convex combination) of finitely many unanimous and strategy-proof DSCFs.

Formally, a unanimous and strategy-proof RSCF ϕ : Dn → ∆(A) is decomposable if there

exist finitely many unanimous and strategy-proof DSCFs fk : Dn → A, k = 1, . . . , q and

weights α1, . . . , αq > 0 with
∑q

k=1 α
k = 1, such that ϕ(P ) =

∑q
k=1 α

k efk(P ) for all P ∈ Dn.

Decomposability is an important property of RSCFs and has been widely investigated in a

large class of domains (e.g., Gibbard, 1977; Peters et al., 2014; Pycia and Ünver, 2015; Gaurav

et al., 2017). As mentioned earlier, when k− k = 1, the (k, k)-hybrid domain coincides with

the single-peaked domain, and the (k, k)-RPFBR becomes a PRBR. It is shown in Peters

et al. (2014) and Pycia and Ünver (2015) that every PFBR is a mixture of their deterministic

counterparts. In the other extreme case where k− k = m− 1, every (k, k)-RPFBR becomes

10Note that the strength of unanimity reduces considerably as the number of agents increases. So, the

argument presented above does not extend straightforwardly to the case of arbitrary number of agents. We

provide these details in our formal proof.
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a random dictatorship, which is, by definition, a mixture of dictatorships. Thus, a (k, k)-

RPFBR is decomposable when k−k = 1 or k−k = m−1. However, for the remaining cases

1 < k − k < m− 1, we observe that decomposability fails in some RPFBRs (see Example 2

below). A complete characterization of decomposable RPFBRs in the general case, appears

to be difficult.11 In this section, we investigate the decomposition of anonymous RPFBRs

for the remaining cases 1 < k − k < m− 1.12

Formally, a RSCF ϕ : Dn → ∆(A) is anonymous if for all permutations σ : N → N and

profile (P1, . . . , Pn) ∈ Dn, we have ϕ(P1, . . . , Pn) = ϕ(Pσ(1), . . . , Pσ(n)). More specifically, one

can easily verify that a (k, k)-RPFBR ϕ :
[
DH(k, k)

]n → ∆(A) is anonymous if and only if

all probabilistic ballots are invariant to the size of coalitions, i.e., for all nonempty S, S ′ ⊆ N

with |S| = |S ′|, we have βS = βS′ . For instance, recall the probabilistic ballots in Table 1.

The corresponding RPFBR is anonymous.

We next provide a necessary and sufficient condition, per-capita monotonicity, for the de-

composition of all anonymous RPFBRs. Consider a (k, k)-RPFBR ϕ w.r.t. the probabilistic

ballots (βS)S⊆N . Recall the left interval L = [a1, ak] and the right interval R = [ak, am]. This

condition imposes two restrictions that strengthen the monotonicity requirement between the

probabilistic ballots of two nonempty coalitions S, S ′ ⊂ N with S ⊂ S ′. The first restriction

says that the average probability,
βS′
|S′| , of any interval [at, am] in R for the coalition S ′ is at

least as much as the counterpart for the coalition S, i.e., for all at ∈ R,
βS′ ([at,am])

|S′| ≥ βS([at,am])
|S| .

The second restriction is the analogue of the first one. Here, we consider any interval [a1, as]

in L and the respective complements of S ′ and S. Recall from the constrained random-

dictatorship condition that the probabilities βN\S′([a1, as]) and βN\S([a1, as]) are related to

the conditional dictatorial coefficients of voters in S ′ and S respectively. We require here

that the average probability
βN\S′ ([a1,as])

|S′| be weakly higher than
βN\S([a1,as])

|S| .

Definition 4 A RPFBR ϕ :
[
DH(k, k)

]n → ∆(A) satisfies per-capita monotonicity if,

for all nonempty S ⊂ S ′ ⊂ N , at ∈ R and as ∈ L, we have

βS′([at, am])

|S ′|
≥ βJ([at, am])

|S|
and

βN\S′([a1, as])

|S ′|
≥
βN\S([a1, as])

|S|
.

Our main theorem of this section says that per-capita monotonicity is both necessary

and sufficient for the decomposability of anonymous RPFBRs. The proof of Theorem 2 is

contained in Appendix B.

11In the general case, we show that every two-voter (k, k)-RPFBR is unconditionally decomposable, and

provide a necessary condition for the decomposition of a (k, k)-RPFBR with more than two voters. These

results are available in the Supplementary Material to this paper.
12It is important to mention that in the case 1 < k − k < m − 1, Theorem 1 implies that there exists no

anonymous, unanimous and strategy-proof DSCFs on the (k, k)-hybrid domain. Therefore, the decomposition

of an anonymous (k, k)-RPFBR (if it exists) is a mixture of finitely many unanimous and strategy-proof

DSCFs, all of which violate anonymity.
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Theorem 2 Let 1 < k−k < m−1. Then, an anonymous (k, k)-RPFBR ϕ :
[
DH(k, k)

]n →
∆(A) is decomposable if and only if it satisfies per-capita monotonicity.

To conclude this section, we observe using an example that a non-decomposable RPFBR

may dominate a decomposable one in terms of admitting“social compromises”. This indicates

that randomization enhances possibilities for economic design in a meaningful way, since

the non-decomposable RPFBRs we characterize may allow for more flexibility in assigning

probabilities to compromise alternatives.

Example 2 Let N = {1, 2, 3} and A = {a1, a2, a3, a4, a5}. Recall the (2, 4)-hybrid domain

DH(2, 4) and the probabilistic ballots (βS)S⊆N in Table 1. It is easy to verify that (βS)S⊆N
satisfy ballot unanimity, monotonicity and the constrained random-dictatorship condition

when the conditional dictatorial coefficients are ε1 = ε2 = ε3 = 1
3
, and are invariant to

the size of coalitions. Therefore, the PFBR ϕ :
[
DH(2, 4)

]3 → ∆(A) w.r.t. (βS)S⊆N is an

anonymous (2, 4)-RPFBR. Furthermore, it can be verified that ϕ is not decomposable as it

fails to satisfy per-capita monotonicity, i.e.,
β{1,2}(a5)

|{1,2}| = 1
6
< 1

3
=

β{1}(a5)

|{1}| .

Consider now a random dictatorship, φ(P ) =
∑

i∈N
1
3
er1(Pi) for all P ∈ [DH(2, 4)]3. We

show that ϕ dominates φ in admitting “social compromises”. Formally, we recognize an

alternative ak as a social compromise alternative at a preference profile P if some voters

disagree on the peaks, and all voters agree on ak as the second best.

First, as a random dictatorship, φ at every preference profile assigns zero probability to

any alternative that is not first-ranked in any voter’s preference, and therefore admits no

social compromise. However, we notice that for all profile P ∈ [DH(2, 4)]3, whenever a social

compromise alternative ak arises, the probability of ak in ϕ is at least as much as that in φ,

i.e., ϕak(P ) ≥ φak(P ),13 and at some profile P ∈ [DH(2, 4)]3 which has a social compromise

alternative, ϕ assigns strictly higher probability to the social compromise alternative than φ.

Indeed, consider a preference profile P ∈ [DH(2, 4)]3 such that r1(P1) = a3 6= a5 = r1(P2) =

r1(P3) and r2(P1) = r2(P2) = r2(P3) = a4; we have ϕa4(P ) = 1
3
> 0 = φa4(P ). Thus a non-

decomposable anonymous RPFBR may dominate a decomposable one in terms of admitting

social compromises.14 �

13It is possible that both ϕ and φ assign zero probability to the social compromise alternative at the same

preference profile. For instance, consider a preference profile P ∈ [DH(2, 4)]
3

such that r1(P1) = a2 6= a4 =

r1(P2) = r1(P3) and r2(P1) = r2(P2) = r2(P3) = a3. Then, ϕa3(P ) = φa3(P ) = 0.
14In the Supplementary Material to this paper, we provide a general analysis on social compromises which

(i) characterizes all RPFBRs that are dominated in admitting social compromises, and (ii) identifies a

condition under which an anonymous decomposable RPFBR is dominated in admitting social compromises

by an anonymous non-decomposable RPFBR.
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6 The Salience of Hybrid Domains and RPFBRs

Our purpose in this section is two-fold. We first propose an axiomatic justification of hybrid

domains. Specifically, we show that any domain that satisfies certain “connectedness” and

“richness” properties must be contained in a hybrid domain (say the (k, k)-hybrid domain).

Secondly, and more importantly, the set of unanimous and strategy-proof RSCFs on this

domain is precisely the set of unanimous and strategy-proof RSCFs on the (k, k)-hybrid

domain, i.e., (k, k)-RPFBRs. Thus, the set of unanimous and strategy-proof RSCFs on such

a domain is the set of RPFBRs associated with the minimal hybrid domain in which it is

embedded.

Recall the notions of adjacency and path introduced in the beginning of Section 2. A

domain is said connected if every pair of two distinct preferences is connected by a path in

the domain. We restrict attention to a class of connected domains which in addition satisfies

the weak no-restoration property of Sato (2013).

Definition 5 A domain D satisfies the weak no-restoration property if for all distinct

Pi, P
′
i ∈ D and ap, aq ∈ A, there exists a path {P k

i }tk=1 ⊆ D connecting Pi and P ′i such that

we have

[apP
k∗

i aq and aqP
k∗+1
i ap for some 1 ≤ k∗ < t]

⇒ [apP
k
i aq for all k = 1, . . . , k∗, and aqP

l
i ap for all l = k∗ + 1, . . . , t].

Evidently, the weak no-restoration property implies connectedness, and suggests that

according to each pair of alternatives ap and aq, one path can be constructed in the domain

to reconcile the difference of Pi and P ′i shortly in the manner that the relative ranking of ap
and aq is switched for at most once on the path. In particular, if ap and aq are identically

ranked in Pi and P ′i , then their relative ranking does not change along the path.

Proposition 3.2 of Sato (2013) shows that the weak no-restoration property is necessary

for all DSCFs which only forbid misrepresentations of preferences that are adjacent to the

sincere one, to retain strategy-proofness. The weak no-restoration property is satisfied by

many important voting domains in the literature, e.g., the complete domain, the single-

peaked domain and some multiple single-peaked domains, and also covers our hybrid domains

(see the proof of Fact 1 in Appendix D).

Our last result establishes two features of domains that satisfy the weak no-restoration

property and include two completely reversed preferences. The first is that every such domain

is a subset of some hybrid domain. The second is that every unanimous and strategy-proof

RSCF on such a domain is a RPFBR. The proof Theorem 3 is available in Appendix C.
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Theorem 3 Let domain D satisfy the weak no-restoration property and contain two com-

pletely reversed preferences. Then, there exist 1 ≤ k < k ≤ m such that D ⊆ DH(k, k) and

D * DH(k′, k
′
) where k′ > k or k

′
< k. Moreover, a RSCF ϕ : Dn → ∆(A) is unanimous

and strategy-proof if and only if it is a (k, k)-RPFBR, where k and k are as described above.
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Appendix

A Proof of Theorem 1

When k − k = 1, DH(k, k) = D≺, and then Theorem 1 follows from Theorem 4.1 and Proposition 5.2 of

Ehlers et al. (2002). Henceforth, we assume k − k > 1.

(Sufficiency part) Let ϕ :
[
DH(k, k)

]n → ∆(A) be a (k, k)-RPFBR. First, ballot unanimity implies that

ϕ is unanimous. We next show strategy-proofness of ϕ in two steps. In the first step, we introduce a

notion weaker than strategy-proofness, local strategy-proofness, which only requires a RSCF be immune to

the misrepresentation of preferences that are adjacent to the sincere one.15 Fact 1 below shows that every

locally strategy-proof RSCF on DH(k, k) is strategy-proof. In the second step, we show that ϕ is locally

strategy-proof.

Fact 1 Every locally strategy-proof RSCF on DH(k, k) is strategy-proof.

By Theorem 1 of Cho (2018), to prove Fact 1, it suffices to show that DH(k, k) satisfies the no-restoration

property of Sato (2013). Therefore, the verification of Fact 1 is independent of RPFBR ϕ, and for ease of

presentation, is delegated to Appendix D.

Now, to complete the verification, we show that ϕ is locally strategy-proof. Fixing i ∈ N , Pi, P
′
i ∈

DH(k, k) with Pi ∼ P ′i and P−i ∈
[
DH(k, k)

]n−1
, we show that ϕ(Pi, P−i) stochastically dominates ϕ(P ′i , P−i)

according to Pi. Let r1(Pi) = as and r1(P ′i ) = at. Evidently, if as = at, the tops-only property implies

ϕ(Pi, P−i) = ϕ(P ′i , P−i). Next, assume as 6= at. Then, Pi ∼ P ′i implies r1(Pi) = r2(P ′i ) = as, r1(P ′i ) =

r2(Pi) = at and rk(Pi) = rk(P ′i ) for all k /∈ {1, 2}. Thus, to show local strategy-proofness, it suffices to show

the following condition:

ϕas(Pi, P−i) ≥ ϕas(P ′i , P−i) or ϕat(Pi, P−i) ≤ ϕat(P ′i , P−i), and

ϕak(Pi, P−i) = ϕak(P ′i , P−i) for all ak /∈ {as, at}.
(#)

By the definition of DH(k, k), Pi ∼ P ′i implies one of the following three cases: (i) as, at ∈ L and

at ∈ {as−1, as+1}, (ii) as, at ∈ R and at ∈ {as−1, as+1}, and (iii) as, at ∈ M . Note that the first two cases

are symmetric. Therefore, we focus on cases (i) and (iii).

Claim 1: In case (i), condition (#) holds.

If at = as−1, then we know S(s, (Pi, P−i)) ⊃ S(s, (P ′i , P−i)) and S(k, (Pi, P−i)) = S(k, (P ′i , P−i)) for all

ak ∈ A\{as}, and derive

ϕas(Pi, P−i) = βS(s,(Pi,P−i))([as, am])− βS(s+1,(Pi,P−i))([as+1, am])

≥ βS(s,(P ′i ,P−i))
([as, am])− βS(s+1,(P ′i ,P−i))

([as+1, am]) by monotonicity

= ϕas(P
′
i , P−i),

and for all ak /∈ {as−1, as},

ϕak(Pi, P−i) = βS(k,(Pi,P−i))([ak, am])− βS(k+1,(Pi,P−i))([ak+1, am])

= βS(k,(P ′i ,P−i))
([ak, am])− βS(k+1,(P ′i ,P−i))

([ak+1, am]) = ϕak(P ′i , P−i).

15Formally, a RSCF ϕ : Dn → ∆(A) is locally strategy-proof if for all i ∈ N , Pi, P
′
i ∈ D with Pi ∼ P ′i

and P−i ∈ Dn−1, ϕ(Pi, P−i) stochastically dominates ϕ(P ′i , P−i) according to Pi.
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If at = as+1, then we know S(s+ 1, (Pi, P−i)) ⊂ S(s+ 1, (P ′i , P−i)) and S(k, (Pi, P−i)) = S(k, (P ′i , P−i))

for all ak ∈ A\{as+1}, and derive

ϕas+1(Pi, P−i) = βS(s+1,(Pi,P−i))9([as+1, am])− βS(s+2,(Pi,P−i))([as+2, am])

≤ βS(s+1,(P ′i ,P−i))
([as+1, am])− βS(s+2,(P ′i ,P−i))

([as+2, am]) by monotonicity

= ϕas+1
(P ′i , P−i).

and for all ak /∈ {as, as+1},

ϕak(Pi, P−i) = βS(k,(Pi,P−i))([ak, am])− βS(k+1,(Pi,P−i))([ak+1, am])

= βS(k,(P ′i ,P−i))
([ak, am])− βS(k+1,(P ′i ,P−i))

([ak+1, am]) = ϕak(P ′i , P−i).

This completes the verification of the claim.

Claim 2: In case (iii), condition (#) holds.

We assume at ≺ as. The verification related to the situation as ≺ at is symmetric, and we hence omit

it. First, note that S(ak, (Pi, P−i)) = S(ak, (P
′
i , P−i)) for all ak ∈ A with ak � at or as ≺ ak. Then, for each

ak ∈ A with ak ≺ at or as ≺ ak, we have

ϕak(Pi, P−i) = βS(k,(Pi,P−i))([ak, am])− βS(k+1,(Pi,P−i))([ak+1, am])

= βS(k,(P ′i ,P−i))
([ak, am])− βS(k+1,(P ′i ,P−i))

([ak+1, am]) = ϕak(P ′i , P−i).

Next, given at ≺ ak ≺ as, we know ak ≺ ak ≺ ak and ak ≺ ak+1 � ak. Then, Definition 3 implies

that for all S ⊆ N , βS([ak, am]) =
∑
j∈S εj = βS([ak+1, am]). Moreover, note that S(k, (Pi, P−i))\S(k +

1, (Pi, P−i)) = {j ∈ N\{i} : r1(Pj) = ak} = S(k, (P ′i , P−i))\S(k + 1, (P ′i , P−i)). Therefore, we have

ϕak(Pi, P−i) = βS(k,(Pi,P−i))([ak, am])− βS(k+1,(Pi,P−i))([ak+1, am])

=
∑

j∈S(k,(Pi,P−i))\S(k+1,(Pi,P−i))
εj

=
∑

j∈S(k,(P ′i ,P−i))\S(k+1,(P ′i ,P−i))
εj

= βS(k,(P ′i ,P−i))
([ak, am])− βS(k+1,(P ′i ,P−i))

([ak+1, am]) = ϕak(P ′i , P−i).

Overall, we have ϕak(Pi, P−i) = ϕak(P ′i , P−i) for all ak /∈ {as, at}. Last, since at ≺ as implies S(s, (Pi, P−i)) ⊃
S(s, (P ′i , P−i)) and S(as+1, (Pi, P−i)) = S(as+1, (P

′
i , P−i)), we have

ϕas(Pi, P−i) = βS(s,(Pi,P−i))([as, am])− βS(s+1,(Pi,P−i))([as+1, am])

≥ βS(s,(P ′i ,P−i))
([as, am])− βS(s+1,(P ′i ,P−i))

([as+1, am]) by monotonicity

= ϕas(P
′
i , P−i).

This completes the verification of the claim.

Therefore, ϕ is locally strategy-proof, as required. This hence completes the verification of the sufficiency

part of Theorem 1.

(Necessity part) Let ϕ :
[
DH(k, k)

]n → ∆(A) be a unanimous and strategy-proof RSCF. Since D≺ ⊆
DH(k, k), we can elicit a unanimous and strategy-proof RSCF φ : [D≺]n → ∆(A) such that φ(P ) = ϕ(P )

for all P ∈ [D≺]n. First, Theorem 3 of Peters et al. (2014) or Theorem 5 of Pycia and Ünver (2015) and

Proposition 3 of Moulin (1980) together imply that φ is a mixture of finitely many FBRs. Then, it follows
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immediately that φ is a PFBR. Let (βS)S⊆N be the probabilistic ballots of φ. Evidently, (βS)S⊆N satisfies

ballot unanimity and monotonicity. Next, by the proof of Fact 1 and Proposition 1 of Chatterji and Zeng

(2018), we know that ϕ satisfies the tops-only property. Last, since both D≺ and DH(k, k) are minimally rich,

the tops-only property of ϕ implies that ϕ is also a PFBR and inherits φ’s probabilistic ballots (βS)S⊆N .

Therefore, for all P ∈
[
DH(k, k)

]n
and ak ∈ A, we have ϕak(P ) = βS(k,P )([ak, am])− βS(k+1,P )([ak+1, am]),

where βS(m+1,P )([am+1, am]) = 0. To complete the proof, we show that ϕ is a (k, k)-RPFBR.

Let D =
{
Pi ∈ DH(k, k) : r1(Pi) ∈M

}
denote the subdomain of hybrid preferences whose peaks are in

M . Since |M | ≥ 3 and D has no restriction on the ranking of alternatives in M , according to the random

dictatorship characterization theorem of Gibbard (1977), we easily infer that there exists a “conditional

dictatorial coefficient” εi ≥ 0 for each i ∈ N with
∑
i∈N εi = 1 such that ϕ(P ) =

∑
i∈N εi er1(Pi) for all

P ∈
[
DH(k, k)

]n
with r1(Pi) ∈M for all i ∈ N .

Fix an arbitrary coalition S ⊆ N . We first show βS([ak, am]) =
∑
j∈S εj . We construct a profile

P ∈
[
DH(k, k)

]n
where every voter of S has the preference with the peak ak and all other voters have

the preference with the peak ak. Thus, S = S(k, P ) and ϕ(P ) =
∑
j∈S εj eak +

∑
j∈N\S εj eak . We then

have βS([ak, am]) = βS(k,P )([ak, am]) =
∑m
k=k

[
βS(k,P )([ak, am]−βS(k+1,P )([ak+1, am])

]
=
∑m
k=k ϕak(P ) =

ϕak(P ∗) =
∑
j∈S εj .

Last, we show βS([a1, ak]) =
∑
j∈N\S εj . Since βS([a1, ak]) = 1 − βS([ak, am]) − βS([ak+1, ak−1]) =∑

j∈N\S εj − βS([ak+1, ak−1]), it suffices to show βS(ak) = 0 for all ak ∈ [ak+1, ak−1]. Given ak ≺ ak ≺ ak,

since S(k, P ) = S = S(k + 1, P ), we have βS(ak) = βS([ak, am]) − βS([ak+1, am]) = βS(k,P )([ak, am]) −
βS(k+1,P )([ak+1, am]) = ϕak(P ) = 0, as required. This completes the verification of the necessity part of

Theorem 1.

B Proof of Theorem 2

We first show the sufficiency part of Theorem 2, and then turn to proving the necessity part. Before

proceeding the proof, we formally introduce the deterministic version of a (k, k)-RPFBR, which we call a

(k, k)-Restricted Fixed Ballot Rule (or (k, k)-RFBR).

Definition 6 A DSCF f :
[
DH(k, k)

]n → ∆(A) is called a (k, k)-Restricted Fixed Ballot Rule (or

(k, k)-RFBR) if it is an FBR, i.e., there exists a collection of deterministic ballots (bS)S⊆N satisfying ballot

unanimity, i.e., bN = am and b∅ = a1, and monotonicity, i.e., [S ⊂ T ⊆ N ] ⇒ [bS � bT ], such that

for all P ∈
[
DH(k, k)

]n
, we have f(P ) = max

S⊆N
≺
(

min
j∈S
≺ (r1(Pj), bS

))
, and in addition, (bS)S⊆N satisfy the

constrained dictatorship condition, i.e., k − k > 1 implies that there exists i ∈ N such that [i ∈ S] ⇒
[bS ∈ R] and [i /∈ S]⇒ [bS ∈ L].

(Sufficiency part) Fixing an anonymous (k, k)-RPFBR ϕ :
[
DH(k, k)

]n → ∆(A), assume that ϕ satisfy

per-capita monotonicity. Let (βS)S⊆N be the corresponding probabilistic ballots. By anonymity and the

constrained random-dictatorship condition, βS = βS′ for all nonempty S, S′ ⊆ N with |S| = |S′|, and each

voter has the conditional dictatorial coefficient 1
n . We are going to decompose ϕ as a mixture of finitely

many (k, k)-RFBRs.

We provide some new notation which will be repeatedly used in the proof. Given S ⊆ N , let supp(βS) =

{ak ∈ A : βS(ak) > 0} denote the support of βS . Given S ⊆ N with S 6= ∅ and N\S 6= ∅, the constrained

random-dictatorship condition implies supp(βS) ∩R 6= ∅ and supp(βS) ∩ L 6= ∅. Hence, we define

b̂RS = min≺
(
supp(βS) ∩R

)
and b̂LS = max≺

(
supp(βS) ∩ L

)
.
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Evidently, b̂LS ≺ b̂RS . Moreover, let b̂RN = am and let b̂L∅ = a1. It is evident that (i) βN (b̂RN ) = 1 and β∅(b̂
L
∅ ) = 1,

and (ii) for all nonempty S ⊂ N , βS(b̂RS ) > 0, βS(b̂LS) > 0 and βS(ak) = 0 for all ak ∈ A with b̂LS ≺ ak ≺ b̂RS .

Note that anonymity of ϕ implies b̂RS = b̂RS′ and b̂LS = b̂LS′ for all nonempty S, S′ ⊆ N with |S| = |S′|.

Lemma 1 For all nonempty S ⊂ S′ ⊆ N , we have b̂RS � b̂RS′ .

Proof : If S′ = N , it is evident that b̂RS � am = b̂RS′ . Next, let S′ ⊂ N . Suppose b̂RS � b̂RS′ . We then have
βS′ ([b̂

R
S ,am])
|S′| ≤ βS′ ([ak,am])−βS′ (b̂

R
S′ )

|S′| < |S′|/n
|S′| = 1

n =
βS([ak,am])

|S| =
βS([b̂RS ,am])

|S| , which contradicts per-capita

monotonicity. �

Lemma 2 For all S ⊂ S′ ⊂ N , we have b̂LS � b̂LS′ .

Proof : If S = ∅, it is evident that b̂LS = a1 � b̂LS′ . Next, let S 6= ∅. Suppose b̂LS � b̂LS′ . For notational

convenience, let Ŝ = N\S and Ŝ′ = N\S′. Thus, Ŝ 6= ∅, Ŝ′ 6= ∅, Ŝ ⊃ Ŝ′ and b̂L
N\Ŝ = b̂LS � b̂LS′ = b̂L

N\Ŝ′ . We

then have
βN\Ŝ([a1,b̂

L
N\Ŝ′ ])

|Ŝ| ≤
βN\Ŝ([a1,ak])−βN\Ŝ(b̂L

N\Ŝ)

|Ŝ| < |Ŝ|/n
|Ŝ| = 1

n =
βN\Ŝ′ ([a1,ak])

|Ŝ′| =
βN\Ŝ′ ([a1,b̂

L
N\Ŝ′ ])

|Ŝ′| , which

contradicts per-capita monotonicity. �

Given an arbitrary i ∈ N , we construct deterministic ballots (biS)S⊆N :

biS = b̂RS and biN\S = b̂LN\S for all S ⊆ N with i ∈ S.

Since biN = b̂RN = am and bi∅ = b̂LN\N = b̂L∅ = a1, ballot unanimity is satisfied. Next, we show monotonicity is

satisfied. Fix S ⊂ S′ ⊂ N . If i ∈ S, then i ∈ S′, and Lemma 1 implies biS = b̂RS � b̂RS′ = biS′ . If i /∈ S′, then

i /∈ S, and Lemma 2 implies biS = biN\[N\S] = b̂LN\[N\S] = b̂LS � b̂LS′ = b̂LN\[N\S′] = biN\[N\S′] = biS′ . If i ∈ S′\S,

then biS ∈ L and biS′ ∈ R, and hence biS ≺ biS′ . Overall, biS � biS′ , as required. Correspondingly, let f i be the

FBR w.r.t. the deterministic ballots (biS)S⊆N . Moreover, given S ⊆ N , we have [i ∈ S]⇒ [biS = b̂RS ∈ R], and

[i ∈ N\S]⇒
[
biS = biN\[N\S] = b̂LN\[N\S] ∈ L

]
which meet the constrained dictatorship condition. Therefore,

f i is a (k, k)-RFBR which is strategy-proof on DH(k, k) by Theorem 1.

Next, we mix all (k, k)-RFBRs (f i)i∈N with the equal weight 1
n , and construct the (k, k)-RPFBR:

φ(P ) =
∑
i∈N

1

n
efi(P ) for all P ∈

[
DH(k, k)

]n
.

Let (γS)S⊆N denote the corresponding probabilistic ballots, which obviously satisfies ballot unanimity, mono-

tonicity and the constrained random-dictatorship condition. We make two observations on (γS)S⊆N : (1)

γS =
∑
i∈N

1
nebiS = 1

n

∑
i∈S eb̂RS

+ 1
n

∑
i∈N\S eb̂LS

= |S|
n eb̂RS

+ n−|S|
n eb̂LS

for all S ⊆ N , and (2) φ is anonymous.

Given distinct S, S′ ⊆ N with |S| = |S′|, anonymity of ϕ implies eb̂RS
= eb̂R

S′
and eb̂LS

= eb̂L
S′

. We then have

γS = 1
neb̂RS

+ n−|S|
n eb̂LS

= 1
neb̂R

S′
+ n−|S′|

n eb̂L
S′

= γS′ , as required.

Furthermore, we identify the real number:

α = min
S⊂N :S 6=∅

(
min

(βS(b̂RS )

|S|
,
βS(b̂LS)

n− |S|

))
.

Evidently, 0 < α ≤ βS(b̂RS )
|S| for all nonempty S ⊂ N . Moreover, given a nonempty S ⊂ N , the constrained

random-dictatorship condition implies α ≤ βS(b̂RS )
|S| ≤

∑
j∈S

1
n

|S| = 1
n .
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Lemma 3 We have α = 1
n if and only if |supp(βS)| = 2 for all nonempty S ⊂ N . Moreover, if α = 1

n , then

ϕ(P ) = φ(P ) for all P ∈
[
DH(k, k)

]n
, and hence ϕ is decomposable.

Proof : First, assume |supp(βS)| = 2 for all nonempty S ⊂ N . Thus, for all nonempty S ⊂ N , we know

supp(βS) = {b̂RS , b̂LS}, βS(b̂RS ) = |S|
n and βS(b̂LS) = n−|S|

n by the constrained random-dictatorship condition.

Consequently, α = 1
n by definition.

Next, assume α = 1
n . Fix an arbitrary nonempty S ⊂ N . By definition,

βS(b̂RS )
|S| ≥ α = 1

n and
βS(b̂LS )
n−|S| ≥

α = 1
n . Meanwhile, the constrained random-dictatorship condition implies βS(b̂RS ) ≤ |S|n and βS(b̂LS) ≤ n−|S|

n .

Therefore, βS(b̂RS ) = |S|
n and βS(b̂LS) = n−|S|

n , and hence |supp(βS)| = 2.

Furthermore, note that (i) βN = eam = γN and β∅ = eam = γ∅, and (ii) for all nonempty S ⊂ N ,

βS = |S|
n eb̂RS

+ n−|S|
n eb̂LS

=
∑
i∈N

1
nebiS = γS . Therefore, ϕ(P ) = φ(P ) for all P ∈

[
DH(k, k)

]n
, and hence, ϕ

is decomposable. �

Henceforth, we assume 0 < α < 1
n , and define the following

β̂S =
βS − αnγS

1− αn
=
βS − α|S|eb̂RS − α(n− |S|)eb̂LS

1− αn
for all S ⊆ N, and

ψ(P ) =
ϕ(P )− αnφ(P )

1− αn
for all P ∈

[
DH(k, k)

]n
.

It is easy to show that β̂S ∈ ∆(A) for each S ⊆ N . Hence, (β̂S)S⊆N are probabilistic ballots. It is

evident that (β̂S)S⊆N satisfy ballot unanimity. Since both ϕ and φ are anonymous, ψ is also anonymous

by construction. Next, let each voter have the conditional dictatorial coefficient 1
n . We show that (β̂S)S⊆N

satisfy the constrained random-dictatorship condition. Given nonempty S ⊂ N , we have β̂S([ak, am]) =
βS([ak,am])−α|S|

1−αn =
|S|
n −α|S|
1−αn = |S|

n and β̂S([a1, ak]) =
βS([a1,ak])−α(n−|S|)

1−αn =
n−|S|
n −α(n−|S|)

1−αn = n−|S|
n , as re-

quired. Next, we show that ψ is a PFBR w.r.t. (β̂S)S⊆N . Given P ∈
[
DH(k, k)

]n
and ak ∈ A, we have

ψak(P ) =
ϕak (P )−αnφak (P )

1−αn =
(βS(k,P )([ak,am])−βS(k+1,P )([ak+1,am]))−αn(γS(k,P )([ak,am])−γS(k+1,P )([ak+1,am]))

1−αn =
βS(k,P )([ak,am])−αnγS(k,P )([ak,am])

1−αn −βS(k+1,P )([ak+1,am])−αnγS(k+1,P )([ak+1,am])

1−αn = β̂S(k,P )([ak, am])−β̂S(k+1,P )([ak+1, am]),

as required.

The next two lemmas show that (β̂S)S⊆N satisfy monotonicity and ψ satisfies per-capita monotonicity

respectively. Hence, we conclude that ψ is an anonymous (k, k)-RPFBR and satisfies per-capita monotonicity.

Lemma 4 Probabilistic ballots (β̂S)S⊆N satisfy monotonicity.

Proof : Given S ⊂ S′ ⊆ N , if S = ∅ or S′ = N , monotonicity holds evidently. We hence assume S 6= ∅ and

S′ 6= N . We first identify b̂LS � b̂LS′ � ak ≺ ak � b̂RS � b̂RS′ by Lemmas 1 and 2. We assume w.l.o.g. that

|S′| = |S| + 1. Given at ∈ A, we have five cases: (1) b̂RS′ ≺ at, (2) b̂RS ≺ at � b̂RS′ , (3) b̂LS′ ≺ at � b̂RS , (4)

b̂LS ≺ at � b̂LS′ , and (5) at � b̂LS . We show β̂S′([at, am]) ≥ β̂S([at, am]) in each case.

First, in either case (1) or case (5), β̂S′([at, am])− β̂S([at, am]) = βS′ ([at,am])−βS([at,am])
1−αn ≥ 0.

In case (2), β̂S′([at, am])−β̂S([at, am]) = βS′ ([at,am])−α|S′|−βS([at,am])
1−αn ≥

|S′|
n −α(|S′|)−

[
βS([b̂RS ,am])−βS(b̂RS )

]
1−αn =

|S|+1
n −α(|S|+1)− |S|N +βS(b̂RS )

1−αn =
( 1
n−α)+|S|

(
βS(b̂RS )

|S| −α
)

1−αn > 0, where the first inequality follows from b̂LS ≺ at � b̂LS′
and the constrained random dictatorship condition of ϕ, and the last inequality follows from the hypothesis

α < 1
n and the definition of α.

In case (3), β̂S′([at, am]) − β̂S([at, am]) = βS′ ([at,am])−α|S′|−[βS([at,am])−α|S|]
1−αn =

|S′|
n −α|S

′|−(
|S|
n −α|S|)

1−αn =
1
n−α
1−αn > 0.
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Last, in case (4), we have β̂S′([at, am]) − β̂S([at, am]) =
βS′ ([at,am])−α|S′|−α(n−|S′|)−

[
βS([at,am])−α|S|

]
1−αn =

|S′|
n +βS′ ([at,ak])−α(n−|S|)−

[
|S|
n +βS([at,ak])

]
1−αn ≥

1
n+βS′ (b̂

L
S′ )−α(n−|S′|+1)

1−αn =
( 1
n−α)+(n−|S′|)

(
β
S′ (b̂

L
S′ )

n−|S′| −α
)

1−αn > 0, where

the first inequality follows from b̂RS ≺ at � b̂RS′ and the constrained random dictatorship condition of ϕ, and

the last inequality follows from the hypothesis α < 1
n and the definition of α.

In conclusion, β̂S′([at, am]) ≥ β̂S([at, am]) for all at ∈ A. �

Lemma 5 RPFBR ψ satisfies per-capita monotonicity.

Proof : Fixing S ⊂ S′ ⊆ N , we have b̂RS � b̂RS′ and b̂LN\S′ � b̂LN\S by Lemmas 1 and 2. If S = ∅ or S′ = N ,

per-capita monotonicity holds evidently. We hence assume S 6= ∅ and S′ 6= N .

Given at ∈ R, either one of the three cases occurs: (1) b̂RS′ ≺ at, (2) b̂RS ≺ at � b̂RS′ , and (3) at � b̂RS .

In case (1), β̂S′ ([at,am])
|S′| = 1

1−αn
βS′ ([at,am])
|S′| ≥ 1

1−αn
βS([at,am])
|S| = β̂S([at,am])

|S| , where the inequality follows

from per-capita monotonicity of ϕ.

In case (2), β̂S′ ([at,am])
|S′| = 1

1−αn
βS′ ([at,am])−α|S′|

|S′| = 1
1−αn

|S′|
n −α|S

′|
|S′| = 1

1−αn ( 1
n −α) ≥ 1

1−αn
(

1
n −

βS(b̂RS )
|S|

)
=

1
1−αn

|S|
n −βS(b̂RS )

|S| = 1
1−αn

βS([ak,am])−βS(b̂RS )

|S| ≥ 1
1−αn

βS([at,am])
|S| = β̂S([at,am])

|S| , where the first inequality follows

from the definition of α and the second inequality follows from b̂RS ≺ at.
Last, in case (3), β̂S′ ([at,am])

|S′| = 1
1−αn

βS′ ([at,am])−α|S′|
|S′| = 1

(1−αn)

[
βS′ ([at,am])
|S′| − α

]
≥ 1

(1−αn)

[
βS([at,am])
|S| − α

]
= 1

1−αn
βS([ak,at])−α|S|

|S| = β̂S([at,am])
|S| , where the inequality follows from per-capita monotonicity of ϕ.

Symmetrically, given as ∈ L, either one of the three cases occurs: (i) as ≺ b̂LN\S′ , (ii) b̂LN\S′ � as ≺ b̂
L
N\S ,

and (iii) b̂LN\S � as.

In case (i),
β̂N\S′ ([a1,as])

|S′| = 1
1−αn

βN\S′ ([a1,as])

|S′| ≥ 1
1−αn

βN\S([a1,as])

|S| =
β̂N\S([a1,as])

|S| , where the inequality

follows from per-capita monotonicity of ϕ.

In case (ii),
β̂N\S′ ([a1,as])

|S′| = 1
1−αn

βN\S′ ([a1,as])−α[n−(n−|S′|)]
|S′| = 1

1−αn ( 1
n − α) ≥ 1

1−αn
(

1
n −

βN\S(b̂LN\S)

n−(n−|S|)
)

=

1
1−αn

|S|
n −βN\S(b̂LN\S)

|S| = 1
1−αn

βN\S([a1,ak])−βN\S(b̂LN\S)

|S| ≥ 1
1−αn

βN\S([a1,as])

|S| =
β̂N\S([a1,as])

|S| , where the first in-

equality follows from the definition of α and the second inequality follows from as ≺ b̂LN\S .

Last, in case (iii),
β̂N\S′ ([a1,as])

|S′| = 1
1−αn

βN\S′ ([a1,as])−α[n−(n−|S′|)]
|S′| = 1

1−αn

[
βN\S′ ([a1,as])

|S′| − α
]
≥

1
1−αn

[
βN\S([a1,as])

|S| − α
]

= 1
1−αn

βN\S([a1,as])−α[n−(n−|S|)]
|S| =

β̂N\S([a1,as])

|S| , where the inequality follows from

per-capita monotonicity of ϕ.

In conclusion, ψ satisfies per-capita monotonicity. �

The next lemma shows that the support of every ϕ’s probabilistic ballot is refined by that of ψ, and the

support of some ϕ’s probabilistic ballot is strictly refined.

Lemma 6 For all nonempty S ⊂ N , supp(β̂S) ⊆ supp(βS), and for some nonempty S∗ ⊂ N , supp(β̂S∗) ⊂
supp(βS∗).

Proof : Given nonempty S ⊂ N , since β̂S =
βS−α|S|eb̂R

S
−α(n−|S|)e

b̂L
S

1−αn , it is true that supp(β̂S) ⊆ supp(βS).

Next, by the definition of α, there exists a nonempty S∗ ⊂ N such that α =
βS∗ (b̂RS∗ )
|S∗| or α =

βS∗ (b̂LS∗ )
n−|S∗| . Hence,

either β̂S∗(b̂
R
S∗) = 0 or β̂S∗(b̂

L
S∗) = 0 holds. Therefore, supp(β̂S∗) ⊂ supp(βS∗). �
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By spirit of Lemma 6, we call ψ the refined (k, k)-RPFBR of ϕ. Now, we have (k, k)-RFBRs (f i)i∈N
and an anonymous (k, k)-RPFBR ψ which satisfies per-capita monotonicity. More importantly, the original

(k, k)-RPFBR ϕ can be specified as a mixture of (f i)i∈N and ψ, i.e., ϕ(P ) = αnφ(P ) + (1 − αn)ψ(P ) =

α
∑
i∈N efi(P ) + (1− αn)ψ(P ) for all P ∈

[
DH(k, k)

]n
.

Note that if we repeat the procedure above on the anonymous (k, k)-RPFBR ψ, we can further decom-

pose ϕ. Therefore, by repeatedly applying the procedure, we eventually can decompose ϕ as a mixture of

finitely many (k, k)-RFBRs, provided that the procedure can terminate in finite steps. In each step of the

procedure, Lemma 6 implies that the support of the refined (k, k)-RPFBR’s probabilistic ballots strictly

shrinks. Since the alternative set A is finite, it must be the case that after finite steps, the support of the

refined (k, k)-RPFBR’s every probabilistic ballot becomes a binary set. Furthermore, by Lemma 3, the re-

fined (k, k)-RPFBR becomes a mixture of n (k, k)-RFBRs. Hence, the procedure terminates, and we finish

the decomposition of ϕ. This completes the verification of the sufficiency part of Theorem 2.

(Necessity part) Fix an anonymous decomposable (k, k)-RPFBR ϕ :
[
DH(k, k)

]n → ∆(A). Let (βS)S⊆N
be the corresponding probabilistic ballots. By Theorem 1, we know that (βS)S⊆N satisfy ballot unanimity,

monotonicity and the constrained random-dictatorship condition. Moreover, anonymity of ϕ implies that

every voter has the conditional dictatorial coefficient 1
n , and βS = βS′ for all S, S′ ⊆ N with |S| = |S′|. By

decomposability and Theorem 1, we have finitely many (k, k)-RFBRs fk :
[
DH(k, k)

]n → ∆(A), k = 1 . . . , q,

and weights α1, . . . , αq > 0 with
∑q
k=1 α

k = 1 such that ϕ(P ) =
∑q
k=1 α

kefk(P ) for all P ∈
[
DH(k, k)

]n
. For

each 1 ≤ k ≤ q, let (bkS)S⊆N denote the deterministic ballots of fk. Evidently, for each 1 ≤ k ≤ q, (bkS)S⊆N
satisfy ballot unanimity, monotonicity and the constrained-dictatorship condition. For ease of presentation,

we call the voter specified in the constrained dictatorship condition of fk the constrained dictator, denoted

by ik. Moreover, let Ii =
{
k ∈ {1, . . . , q} : ik = i

}
collect the indexes of RFBRs where i is the constrained

dictator. Last, by monotonicity of both (βS)S⊆N and (bkS)S⊆N , k = 1, . . . , q, it is true that βS =
∑q
k=1 α

kebkS
for all S ⊆ N .

Lemma 7 For all i ∈ N ,
∑
k∈Ii α

k = 1
n .

Proof : Suppose that it is not true. Then, there exist i, j ∈ N such that
∑
k∈Ii α

k 6=
∑
k∈Ij α

k. Then, by

the constrained random dictatorship condition, we have β{i}([ak, am]) =
∑q
k=1 α

k1
(
bk{i} ∈ R

)
=
∑
k∈Ii α

k 6=∑
k∈Ij α

k =
∑q
k=1 α

k1
(
bk{j} ∈ R

)
= β{j}([ak, am]), which contradicts the fact β{i} = β{j}.

16 �

For each i ∈ N , let ϕi(P ) =
∑
k∈Ii α

knefk(P ) for all P ∈
[
DH(k, k)

]n
. By Lemma 7, ϕi is a mixture

of RFBRs (fk)k∈Ii according to the weights (αkn)k∈Ii , and hence is a (k, k)-RPFBR. Let (βiS)S⊆N denote

the corresponding probabilistic ballots. Evidently, (βiS)S⊆N satisfy ballot unanimity and monotonicity, and

ϕi satisfies the constrained random-dictatorship condition. Note that voter i has the conditional dictatorial

coefficient 1 in ϕi.

Lemma 8 For all S ⊆ N , βS =
∑
i∈N

1
nβ

i
S.

Proof : By the definition RPFBRs (ϕi)i∈N , we can rewrite ϕ as follows: ϕ(P ) =
∑q
k=1 α

kefk(P ) =∑
i∈N

∑
k∈Ii α

kefk(P ) =
∑
i∈N

1
n

(∑
k∈Ii α

knefk(P )

)
=
∑
i∈N

1
nϕ

i(P ) for all P ∈
[
DH(k, k)

]n
. There-

fore, βS =
∑
i∈N

1
nβ

i
S for all S ⊆ N . �

Now, for each i ∈ N , we construct another collection of probabilistic ballots (β̄iS)S⊆N by equally mixing

probabilistic ballots {(βjS)S⊆N : j ∈ N} in a particular way. Specifically, given S ⊆ N , say |S| = k, we

16The notation 1(·) denotes an indicator function.
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construct β̄iS in two steps. In the first step, we refer to each coalition S′ ⊆ N that has the same size as S, the

k corresponding probabilistic ballots (βjS′)j∈S′ and the n−k corresponding probabilistic ballots (βjS′)j∈N\S′ .

We then make two equal mixtures
∑
j∈S′

1
kβ

j
S′ and

∑
j∈N\S′

1
n−kβ

j
S′ . In the second step, we check whether

i is included in S or not. If i ∈ S, we refer to
∑
j∈S′

1
kβ

j
S′ for all Ckn = n!

k!(n−k)! subsets S′ of N that have

the same size as S, and make their equal mixture as β̄iS , i.e.,

β̄iS =
∑

S′⊆N :|S′|=k

1

Ckn

(∑
j∈S′

1

k
βjS′
)

=
1

Ckn

1

k

∑
S′⊆N :|S′|=k

∑
j∈S′

βjS′ ;

otherwise we refer to
∑
j∈N\S′

1
n−kβ

j
S′ for all Ckn = n!

k!(n−k)! subsets S′ of N that have the same size as S,

and make their equal mixture as β̄iS , i.e.,

β̄iS =
∑

S′⊆N :|S′|=k

1

Ckn

( ∑
j∈N\S′

1

n− k
βjS′
)

=
1

Ckn

1

n− k
∑

S′⊆N :|S′|=k

∑
j∈N\S′

βjS′ .

We are going to show that (β̄iS)S⊆N satisfy ballot unanimity, monotonicity and the constrained random-

dictatorship condition. First, it is easy to verify the following four statements:

(i) β̄iS ∈ ∆(A) for all S ⊆ N and i ∈ N .

(ii) (β̄iS)S⊆N satisfy ballot unanimity, i.e., β̄i∅ = 1
n

∑
S′⊆N :|S′|=0

∑
j /∈S′ β

j
S′ = 1

n

∑
j∈N β

j
∅ = ea1 and

β̄iN = 1
n

∑
S′⊆N :|S′|=n

∑
j∈S′ β

j
S′ = 1

n

∑
j∈N β

j
N = eam .

(iii) (β̄iS)S⊆N satisfy the constrained random dictatorship condition, i.e., given S ⊂ N , say |S| = k,

if i ∈ S, we have β̄iS([ak, am]) =
∑
S′⊆N :|S′|=k

1
Ckn

(∑
j∈S′

1
kβ

j
S′([ak, am])

)
= 1; otherwise, we have

β̄iS([a1, ak]) =
∑
S′⊆N :|S′|=k

1
Ckn

(∑
j∈N\S′

1
n−kβ

j
S′([a1, ak])

)
= 1.

(iv) For all nonempty S ⊂ N and distinct i, j ∈ S or i, j /∈ S, we have β̄iS = β̄jS .

Next, we focus on showing monotonicity of (β̄iS)S⊆N .

Lemma 9 Given nonempty S ⊂ N , βS =
∑
i∈N

1
n β̄

i
S.

Proof : Let |S| = k. Thus, 0 < k < n. We then have

βS =
1

Ckn

∑
S′⊆N :|S′|=k

βS′ (by anonymity)

=
1

Ckn

∑
S′⊆N :|S′|=k

∑
i∈N

1

n
βiS′ (by Lemma 8)

=
1

Ckn

1

n

∑
S′⊆N :|S′|=k

( ∑
i∈S′

βiS′ +
∑

i∈N\S′
βiS′
)

=
k

n

( 1

Ckn

1

k

∑
S′⊆N :|S′|=k

∑
i∈S′

βiS′
)

+
n− k
n

( 1

Ckn

1

n− k
∑

S′⊆N :|S′|=k

∑
i∈N\S′

βiS′
)

=
k

n
β̄iS +

n− k
n

β̄jS for some i ∈ S and some j ∈ N\S (by the definition of β̄iS and β̄jS)

=
∑
i∈S

1

n
β̄iS +

∑
j∈N\S

1

n
β̄jS (by statement (iv) above)

=
∑
i∈N

1

n
β̄iS .

This completes the verification of the lemma. �
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Lemma 10 Probabilistic ballots
(
β̄iS
)
S⊆N satisfy monotonicity.

Proof : Fix S ⊂ S′ ⊆ N . If S = ∅ or S′ = N , the condition of monotonicity holds evidently. Henceforth,

let S 6= ∅ and S′ 6= N . We assume w.l.o.g. that |S| = k and |S′| = k + 1. If S′\S = {i}, we have

β̄iS′([ak, am]) = 1 and β̄iS [a1, ak] = 1 by the constrained random-dictatorship condition, which immediately

imply the condition of monotonicity.

Next, assume i ∈ S. Then, i ∈ S′. Now, given at ∈ A, we have

β̄iS′ ([at, am])− β̄iS([at, am]) =
1

Ck+1
n

1

k + 1

∑
S̄⊆N :|S̄|=k+1

∑
j∈S̄

βj
S̄

([at, am])−
1

Ckn

1

k

∑
S̄⊆N :|S̄|=k

∑
j∈S̄

βj
S̄

([at, am])

=
1

Ck+1
n

1

k + 1

1

k

 ∑
S̄⊆N :|S̄|=k+1

(
k
∑
j∈S̄

βj
S̄

([at, am])

)
−

∑
S̄⊆N :|S̄|=k

(
(n− k)

∑
j∈S̄

βj
S̄

([at, am])

)

=
1

Ck+1
n

1

k + 1

1

k

 ∑
S̄⊆N :|S̄|=k

( ∑
ν∈N\S̄

∑
j∈S̄

βj
S̄∪{ν}([at, am])

)
−

∑
S̄⊆N :|S̄|=k

(
(n− k)

∑
j∈S̄

βj
S̄

([at, am])

)
=

1

Ck+1
n

1

k + 1

1

k

∑
S̄⊆N :|S̄|=k

∑
ν∈N\S̄

∑
j∈S̄

(
βj
S̄∪{ν}([at, am])− βj

S̄
([at, am])

)

≥0. (by monotonicity of (βjJ )J⊆N , j ∈ S̄)

Last, assume i /∈ S′. Then, i /∈ S. Now, given at ∈ A, we have

β̄iS′ ([at, am])− β̄iS([at, am])

=
1

Ck+1
n

1

n− (k + 1)

∑
S̄⊆N :|S̄|=k+1

∑
j∈N\S̄

βj
S̄

([at, am])−
1

Ckn

1

n− k
∑

S̄⊆N :|S̄|=k

∑
j∈N\S̄

βj
S̄

([at, am])

=
1

Ckn

1

n− k
1

n− (k + 1)

 ∑
S̄⊆N :|S̄|=k+1

(
(k + 1)

∑
j∈N\S̄

βj
S̄

([at, am])

)
−

∑
S̄⊆N :|S̄|=k

(
[n− (k + 1)]

∑
j∈N\S̄

βj
S̄

([at, am])

)

=
1

Ckn

1

n− k
1

n− (k + 1)

 ∑
S̄⊆N :|S̄|=k+1

(
(k + 1)

∑
j∈N\S̄

βj
S̄

([at, am])

)
−

∑
S̄⊆N :|S̄|=k+1

(∑
ν∈S̄

∑
j∈N\S̄

βj
S̄\{ν}([at, am])

)
=

1

Ckn

1

n− k
1

n− (k + 1)

∑
S̄⊆N :|S̄|=k+1

∑
ν∈S̄

∑
j∈N\S̄

[
βj
S̄

([at, am])− βj
S̄\{ν}([at, am])

]

≥0. (by monotonicity of (βjJ )J⊆N , j ∈ N\S̄)

This completes the verification of the lemma. �

Now, we are ready to show per-capita monotonicity of ϕ. Given nonempty S ⊂ S′ ⊂ N , at ∈ R and

as ∈ L, we have

βS′ ([at, am])

|S′|
−
βS([at, am])

|S|
=

∑
i∈N

1
n
β̄i
S′ ([at, am])

|S′|
−
∑
i∈N

1
n
β̄iS([at, am])

|S|
(by Lemma 9)

=

∑
i∈S′

1
n
β̄i
S′ ([at, am])

|S′|
−
∑
i∈S

1
n
β̄iS([at, am])

|S|
(by statement (iii))

=
β̄i
S′ ([at, am])− β̄iS([at, am])

n
(select i ∈ S and apply statement (iv))

≥0 (by Lemma 10), and
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βN\S′ ([a1, as])

|S′|
−
βN\S([a1, as])

|S|
=

∑
i∈N

1
n
β̄i
N\S′ ([a1, as])

|S′|
−

∑
i∈N

1
n
β̄i
N\S([a1, as])

|S|
(by Lemma 9)

=

∑
i∈S′

1
n
β̄i
N\S′ ([a1, as])

|S′|
−

∑
i∈S

1
n
β̄i
N\S([a1, as])

|S|
(by statement (iii))

=
β̄i
N\S′ ([a1, as])− β̄iN\S([a1, as])

n
(select i ∈ J and apply statement (iv))

=
β̄i
N\S([as+1, am])− β̄i

N\S′ ([as+1, am])

n

≥0. (by Lemma 10)

This completes the verification of the necessity part of Theorem 2.

C Proof of Theorem 3

Let domain D satisfy the weak no-restoration property and contain two completely reversed preferences.

Thus, D is connected. Note that D is minimally richness. We first show that D is (k, k)-hybrid for some

unique k and k. The proof consists of Lemmas 11 - 17.

We first introduce an important new notion. A pair of distinct alternatives as, at ∈ A is said adjacent

in D, denoted as ∼ at, if there exist Pi, P
′
i ∈ D with r1(Pi) = as and r1(P ′i ) = at such that Pi ∼ P ′i .

Then, we induce a graph, denoted by GD, such that the set of vertex is A, and in the set of edges, every

pair of alternatives forms an edge if and only if they are adjacent in D. An alternative-path, denoted by

P, connecting as and at is a sequence of (non-repeated) vertices {xk}lk=1 ⊆ A such that x1 = as, xl = at
and xk ∼ xk+1 for all k = 1, . . . , l − 1. For notational convenience, let Π(as, at) denote the set of all

alternative-paths connecting as and at,
17 and 〈as, at〉 denote one alternative-path connecting as and at.

Lemma 11 Every pair of distinct alternatives as, at ∈ A is connected via an alternative-path, i.e., Π(as, at) 6= ∅.

Proof : Given Pi ∈ D with r1(Pi) = as and P ′i ∈ D with r1(P ′i ) = at by minimal richness, since D is

connected, we have a path {P ki }tk=1 ⊆ D connecting Pi and P ′i . We partition {P ki }tk=1 according to the

peaks of preferences (without rearranging preferences in the path), and elicit all preference peaks:{
P 1
i , . . . , P

k1
i

the same peak x1
,
P k1+1
i , . . . , P k2i

the same peak x2
, . . . ,

P
kq−1+1
i , . . . , P ti

the same peak xq

}
Elicit peaks−−−−−−−→ {x1, x2, . . . , xq},

where xk 6= xk+1 and xk ∼ xk+1 for all k = 1, . . . , q − 1. Note that {x1, x2, . . . , xq} may contain repetitions.

Whenever a repetition appears, we remove all alternatives strictly between the repetition and one alternative

of the repetition. For instance, if xk = xl where 1 ≤ k < l ≤ q, we remove xk, xk+1, . . . , xl−1, and refine the

sequence to {x1, . . . , xk−1, xl, . . . , xq}. By repeatedly eliminating repetitions, we finally elicit an alternative-

path {xk}pk=1 connecting as and at. �

Let P i and P i be the pair of completely reversed preferences contained in D. Assume w.l.o.g. that

P i = (a1 · · · ak−1ak · · · am) and P i = (am · · · akak−1 · · · a1). Note that the way we specify P i and P i
determines the labeling of all alternatives.

Lemma 12 Given distinct ap, as, at ∈ A, let at be included in every alternative-path of Π(ap, as). Given

Pi ∈ D, we have [r1(Pi) = ap]⇒ [atPias] and [r1(Pi) = as]⇒ [atPiap].

17In particular, if as = at, then Π(as, at) =
{
{as}

}
is a singleton set of a null alternative-path.
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Proof : Suppose that r1(Pi) = ap and asPiat. Pick an arbitrary preference P ′i ∈ D with r1(P ′i ) = as by

minimal richness. By the weak no-restoration property, there exists a path {P ki }lk=1 ⊆ D connecting Pi
and P ′i such that asP

k
i at for all k = 1, . . . , l. Thus, r1(P ki ) 6= at for all k = 1, . . . , l. According to path

{P ki }lk=1, we elicit an alternative-path 〈ap, as〉 which excludes at. This contradicts the hypothesis of the

lemma. Therefore, atPias. Symmetrically, if r1(Pi) = as, then atPiap. �

Lemma 13 Given as, at ∈ A\{a1, am} with as ∼ at, If one alternative-path of Π(a1, am) includes at, there

exists an alternative-path of Π(a1, am) including as.

Proof : Let {xk}pk=1 ∈ A and at = xη for some 1 < η < p. If as ∈ {xk}pk=1, the lemma holds evidently.

Henceforth, assume as /∈ {xk}pk=1. Note the alternative-path {a1 = x1, x2, . . . , xη = at, as} ∈ Π(a1, as), and

the alternative-path {as, at = xη, . . . , xp−1, xp = am} ∈ Π(as, am).

Since P and P i are completely reversed, either asP iat or asP iat holds. Assume w.l.o.g. that asP iat.

The verification related to asP iat is symmetric and we hence omit it. Pick an arbitrary preference Pi ∈ D
with r1(Pi) = as by minimal richness. By the weak no-restoration property, we have a path {P ki }νk=1 ⊆ D
connecting P i and Pi such that asP

k
i at for all k = 1, . . . , ν. Thus, r1(P ki ) 6= at for all k = 1, . . . , ν. According

to {P ki }νk=1, we elicit an alternative-path {yk}qk=1 ∈ Π(a1, as) such that at /∈ {yk}qk=1.

Evidently, {yk}qk=1 ∩ {xk}
p
k=1 ⊇ {a1}. If {yk}qk=1 ∩ {xk}

p
k=1 = {a1}, then the concatenated alternative-

path {a1 = y1, . . . , yq = as; at = xη, . . . , xp = am} ∈ Π(a1, am) includes as. Next, we assume {yk}qk=1 ∩
{xk}pk=1 ⊃ {a1}. We identify the alternative in {yk}qk=1 that has the maximum index and is also included

in {xk}pk=1, i.e., yk̂ = xk∗ for some 1 < k̂ < q and 1 < k∗ ≤ p and {yk̂+1, . . . , yq} ∩ {xk}
p
k=1 = ∅. Note that

at = xη, 1 < η < p and at 6= yk̂. Therefore, either 1 < k∗ < η or η < k∗ ≤ p must hold. If 1 < k∗ < η, the

concatenated alternative-path {a1 = x1, . . . , xk∗ = yk̂; yk̂+1, . . . , yq = as; at = xη, . . . , xp = am} ∈ Π(a1, am)

includes as. If η < k∗ ≤ p, the concatenated alternative-path {a1 = x1, . . . , xη = at; as = yq, . . . , yk̂+1; yk̂ =

xk∗ , . . . , xp = am} ∈ Π(a1, am) includes as. �

Lemma 14 Given as ∈ A\{a1, am}, there exists an alternative-path of Π(a1, am) including as.

Proof : Pick an arbitrary preference Pi ∈ D with r1(Pi) = as by minimal richness. Note that asP iam
and asPiam. By the weak no-restoration property, we have a path {P ki }lk=1 ⊆ D connecting P i and Pi
such that asP

k
i am for all k = 1, . . . , l. Thus, r1(P ki ) 6= am for all k = 1, . . . , l. According to {P ki }lk=1, we

elicit an alternative-path {xk}pk=1 ∈ Π(a1, as) that excludes am. Symmetrically, we have an alternative-path

{yk}qk=1 ∈ Π(as, am) that excludes a1. Thus, {xk}pk=1 ∩ {yk}
q
k=1 ⊇ {as}. If {xk}pk=1 ∩ {yk}

q
k=1 = {as}, then

the concatenated alternative-path {a1 = x1, . . . , xp = as = y1, . . . , yq = am} ∈ Π(a1, am) includes as. If

{xk}pk=1 ∩ {yk}
q
k=1 ⊃ {as}, we identify the alternative at included in both {xk}pk=1 and {yk}qk=1 with the

maximum index in {xk}pk=1 and the minimum index in {yk}qk=1, i.e., at = xk̂ = yk∗ for some 1 < k̂ < p

and 1 < k∗ < q such that {x1, . . . , xk̂−1} ∩ {yk∗+1, . . . , yq} = ∅. Thus, the concatenated alternative-path

{x1, . . . , xk̂−1, xk̂ = at = yk∗ , yk∗+1, . . . , yq} ∈ Π(a1, am) includes at, and excludes as. Furthermore, we refer

to the sub-alternative-path {at = xk̂, . . . , xp = as}, by repeatedly applying Lemma 13 step by step from at
to as along the sub-alternative-path, we eventually find an alternative-path of Π(a1, am) that includes as. �

Note that Π(a1, am) is a finite nonempty set. Hence, we label Π(a1, am) = {P1, . . . ,Pn}, and make sure

that each alternative-path of Π(a1, am) starts from a1 and ends at am. Given Pl ∈ Π(a1, am) and as, at ∈ Pl,
let 〈as, at〉Pl denote the interval between as and at on Pl.

Lemma 15 If Π(a1, am) is a singleton set, D is (k, k)-hybrid for all 1 ≤ k < k ≤ m with k − k = 1.
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Proof : Since Π(a1, am) is a singleton set, Lemma 14 implies that all alternatives must be included in a

unique alternative-path. Thus, GD must be a line and include all alternatives. More importantly, Lemma 12

implies that all preferences of D must be single-peaked w.r.t. GD. Since P i and P i are single-peaked w.r.t.

GD, it must be the case that GD is a line of {a1, a2, . . . , ak, ak+1, . . . , am} which coincides to the natural

order ≺. Hence, D ⊆ D≺ = DH(k, k) for all 1 ≤ k < k ≤ m with k − k = 1. Evidently, as DH(k′, k
′
), where

k′ > k or k
′
< k, is not well defined, D * DH(k′, k

′
). �

Henceforth, we assume that Π(a1, am) is not a singleton set. Since all alternative-paths of Π(a1, am) start

from a1 and end at am, we can identify the left maximum common part and the right maximum common

part of all alternative-paths of Π(a1, am), i.e., there exist two alternatives ak, ak ∈ A (either k ≤ k or k ≥ k
so far) such that the following three conditions are satisfied:

(i) ak, ak ∈ Pl for all Pl ∈ Π(a1, am),

(ii) 〈a1, ak〉Pl = 〈a1, ak〉Pν , and 〈ak, am〉Pl = 〈ak, am〉Pν for all Pl,Pν ∈ Π(a1, am), and

(iii) there exist no ak′ , ak′ ∈ A such that ak′ , ak′ ∈ Pl for all Pl ∈ Π(a1, am), and 〈a1, ak〉Pl ⊂ 〈a1, ak′〉Pl
or 〈ak, am〉Pl ⊂ 〈ak′ , am〉

Pl for all Pl ∈ Π(a1, am).

We claim that ak 6= ak. Otherwise, Π(a1, am) degenerates to a singleton set. Note that condition (iii)

implies that ak and ak are unique. Fix an arbitrary Pl ∈ Π(a1, am). We first claim 〈a1, ak〉Pl ∩ 〈ak, am〉Pl =

∅. Suppose not, i.e., there exists as ∈ 〈a1, ak〉Pl ∩ 〈ak, am〉Pl such that 〈a1, as〉Pl ∩ 〈as, am〉Pl = {as}.
Since ak 6= ak, we know either as 6= ak or as 6= ak. Consequently, the concatenated alternative-path

{〈a1, as〉Pl , 〈as, am〉Pl} ∈ Π(a1, am) excludes either ak or ak, which contradicts condition (i). Therefore,

〈a1, ak〉Pl ∩ 〈ak, am〉Pl = ∅. Next, we claim that 〈a1, ak〉Pl ∪ 〈ak, am〉Pl 6= A. Otherwise, condition (ii)

implies 〈a1, ak〉Pν ∪ 〈ak, am〉Pν = A for all Pν ∈ Π(a1, am), and consequently, Π(a1, am) degenerates to a

singleton set.

Lemma 16 The following two statements hold:

(i) Π(a1, ak) is a singleton set of the unique alternative-path {a1, . . . , ak, ak+1, . . . , ak}.

(ii) Π(ak, am) is a singleton set of the unique alternative-path {ak, . . . , ak, ak+1, . . . , am}.

Proof : By symmetry, we show the first statement, and omit the verification of the second statement.

First, let Π(a1, ak) be a singleton set. We show that Π(a1, ak) =
{
{a1, . . . , ak, ak+1, . . . , ak}

}
, which co-

incides to the nature order ≺ from a1 to ak. Since Π(a1, ak) is a singleton set, Lemma 12 implies that all pref-

erences of D must be single-peaked w.r.t. the unique alternative-path of Π(a1, ak). Moreover, since the com-

pletely reversed preferences P i = (a1 · · · akak+1 · · · ak · · · ak · · · am) and P i = (am · · · ak · · · ak · · · ak+1ak · · · a1)

are contained in D, this implies that the unique alternative-path of Π(a1, ak) must be {a1, . . . , ak, ak+1, . . . , ak}.
Next, we show that Π(a1, ak) is a singleton set. If a1 = ak, statement (i) holds by the definition

of Π(a1, ak). We next assume a1 6= ak. Pick an arbitrary alternative-path Pl = {a1 = x1, . . . , xv =

ak, . . . , xt = am} ∈ Π(a1, am). Given an arbitrary alternative-path 〈a1, ak〉 = {a1 = y1, . . . , yu = ak}, we

show 〈a1, ak〉 = 〈a1, ak〉Pl . Since ak = xv = yu, we can identify the alternative yk̂ = xk∗ for some 1 < k̂ ≤ u
and v ≤ k∗ ≤ t such that {y1, . . . , yk̂−1} ∩ {xk∗+1, . . . , xt} = ∅. Then, we have a concatenated alternative-

path Pν = {y1, . . . , yk̂−1, yk̂ = xk∗ , xk∗+1, . . . , xt} ∈ Π(a1, am). By condition (i) above, we know ak ∈ Pν .

Since ak /∈ {y1, . . . , yk̂−1} and ak /∈ {xk∗+1, . . . , xt}, it must be the case yk̂ = ak and xk∗ = ak. Hence,

〈a1, ak〉 = 〈a1, ak〉Pν . Last, by condition (ii) above, we have 〈a1, ak〉 = 〈a1, ak〉Pν = 〈a1, ak〉Pl . Since both

Pl and 〈a1, ak〉 are arbitrarily selected, 〈a1, ak〉 = 〈a1, ak〉Pl implies that Π(a1, ak) is a singleton set. �

Henceforth, let L = {a1, . . . , ak, ak+1, . . . , ak}, R = {ak, . . . , ak, ak+1, . . . , am} andM = {ak, . . . , ak, ak+1, . . . , ak}.
As mentioned before, we know k − k > 1.
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Lemma 17 Domain D ⊆ DH(k, k), and D * DH(k′, k
′
) where k′ > k or k

′
< k.

Proof : By Lemma 12, we know that all preferences of D are single-peaked w.r.t. the natural order ≺ on

both L and R. Therefore, the first restriction of Definition 1 is satisfied. We focus on showing the second

restriction of Definition 1.

Fix Pi ∈ D with r1(Pi) = ap ∈ L and ar ∈M\{ak}. If ap = ak, akPiar holds evidently. We next assume

ap 6= ak. By Lemma 12, to prove akPiar, it suffices to show that ak is included in every alternative-path of

Π(ap, ar). Suppose not, i.e., there exists an alternative-path 〈ap, ar〉 such that ak /∈ 〈ap, ar〉. Since ap 6= ak,

we have the alternative-path 〈a1, ap〉 = {a1, . . . , ak, ak+1, . . . , ap} which excludes ak. Next, if ar = ak, we

have the alternative-path 〈ar, am〉 = {ak, . . . , am} which excludes ak. If ar ∈ M\{ak, ak}, by Lemma 14,

we have an alternative-path Pl ∈ Π(a1, am) that includes ar. Moreover, by condition (i) above and Lemma

16, we write Pl = {a1, . . . , ak, x1, . . . , xt, ak, . . . , am} where ar = xv ∈ {x1, . . . , xt} ⊆ M\{ak, ak} for some

1 ≤ v ≤ t. Then, we have an alternative-path {ar = xv, . . . , xt, ak, . . . , am} which excludes ak. Overall, we

have an alternative-path 〈ar, am〉 that excludes ak. Now, we have three alternative-paths 〈a1, ap〉, 〈ap, ar〉
and 〈ar, am〉 which all exclude ak. By combining them and removing repeated alternatives, we can construct

an alternative-path of Π(a1, am) that excludes ak. This contradicts condition (i) above. Therefore, ak is

included in every alternative-path of Π(ap, ar), as required. Symmetrically, given Pi ∈ D with r1(Pi) ∈ R
and as ∈M\{ak}, we have akPias.

Last, recall condition (iii) above. Since ak and ak are uniquely identified, D * DH(k′, k
′
) where k′ > k

or k
′
< k. This completes the verification of the lemma, and hence proves the first part of Theorem 3. �

Now, we turn to the second part of Theorem 3. By the first part of Theorem 3, we know that D ⊆ DH(k, k)

for some 1 ≤ k < k ≤ m and D * DH(k′, k
′
) where k′ > k and k

′
< k. By the sufficiency part of Theorem 1,

it is evident that every (k, k)-RPFBR is unanimous and strategy-proof on D. Therefore, we focus on showing

that every unanimous and strategy-proof on D is a (k, k)-RPFBR. We provides four independent lemmas

which show some important properties on all unanimous and strategy-proof RSCFs defined on D. Then,

these four lemmas together enable us to complete the characterization of (k, k)-RPFBRs.

Lemma 18 Every unanimous and strategy-proof RSCF ϕ : Dn → ∆(A) satisfies the tops-only property.

Proof : Fix a unanimous and strategy-proof RSCF ϕ : Dn → ∆(A). To prove the tops-only property, it

suffices to show that for all i ∈ N , Pi, P
′
i ∈ D and P−i ∈ Dn−1, [r1(Pi) = r1(P ′i )]⇒ [ϕ(Pi, P−i) = ϕ(P ′i , P−i)].

We prove this in two steps. In the first step, by the proof of Theorem 1 of Chatterji and Zeng (2018),

we know that ϕ satisfies the following property: for all i ∈ N , Pi, P
′
i ∈ D with Pi ∼ P ′i and P−i ∈ Dn−1,

[r1(Pi) = r1(P ′i )] ⇒ [ϕ(Pi, P−i) = ϕ(P ′i , P−i)].
18 In the second step, we consider Pi, P

′
i ∈ D such that

r1(Pi) = r1(P ′i ) ≡ as, but Pi is not adjacent to P ′i .

First, strategy-proofness implies ϕas(Pi, P−i) = ϕas(P
′
i , P−i). Next, pick an arbitrary at ∈ A\{as}, we

show ϕat(Pi, P−i) = ϕat(P
′
i , P−i). By the weak no-restoration property, there exists a path {P ki }

q
k=1 ⊆ D

connecting Pi and P ′i such that asP
k
i at for all k = 1, . . . , q. Start from P 2

i . If r1(P 2
i ) = r1(P 1

i ), the result

in the first step implies ϕat(P
1
i , P−i) = ϕat(P

2
i , P−i). If r1(P 2

i ) = ar 6= as = r1(P 1
i ), then P 1

i ∼ P 2
i implies

r1(P 1
i ) = r2(P 2

i ) = as, r1(P 2
i ) = r2(P 1

i ) = ar and rl(P
1
i ) = rl(P

2
i ) for all l = 3, . . . ,m. Hence, it must be

the case that at = rl(P
1
i ) = rl(P

2
i ) for some 3 ≤ l ≤ m, and then strategy-proofness implies ϕat(P

1
i , P−i) =

18Chatterji and Zeng (2018) introduce the interior and exterior properties on a domain and show that they

together are sufficient for endogenizing the tops-only property on all unanimous and strategy-proof RSCFs.

The weak no-restoration property implies the exterior property, but may not be compatible with the interior

property. However, the proof of their Theorem 1 can be directly applied to show the first-step result here.
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ϕat(P
2
i , P−i). Overall, we have ϕat(P

1
i , P−i) = ϕat(P

2
i , P−i). By repeatedly applying this argument along

the path from P 2
i to P qi , we eventually have ϕat(P

k
i , P−i) = ϕat(P

k+1
i , P−i) for all k = 1, . . . , q − 1. Hence,

ϕat(Pi, P−i) = ϕat(P
′
i , P−i). Therefore, ϕ(Pi, P−i) = ϕ(P ′i , P−i), as required. �

Since D is minimally rich, the tops-only property implies that every unanimous and strategy-proof

φ : Dn → ∆(A) degenerates to a random voting scheme φ : An → ∆(A). Given an arbitrary random

voting scheme φ : An → ∆(A), we say that (i) φ is unanimous on DH(k, k) if for all (P1, . . . , PN ) ∈[
DH(k, k)

]n
, [r1(P1) = · · · = r1(Pn) = ak] ⇒ [φ(ak, . . . , ak) = eak ], and (ii) φ is strategy-proof (respec-

tively, locally strategy-proof ) on DH(k, k) if for all i ∈ N , Pi, P
′
i ∈ DH(k, k) (respectively, Pi ∼ P ′i ) and

P−i ∈
[
DH(k, k)

]n−1
, φ
(
r1(Pi), r1(P−i)

)
stochastically dominates φ

(
r1(P ′i ), r1(P−i)

)
according to Pi, where

r1(P−i) =
(
r1(P1), . . . , r1(Pi−1), r1(Pi+1), . . . , r1(Pn)

)
.

To show a unanimous and strategy-proof ϕ : Dn → ∆(A) is a (k, k)-RPFBR, by Lemma 18, Fact 1

and the necessity part of Theorem 1, it suffices to show that the corresponding random voting scheme

ϕ : An → ∆(A) is unanimous and locally strategy-proof on DH(k, k). Note that both D and DH(k, k) are

minimally rich. Consequently, since RSCF ϕ is unanimous and satisfies the tops-only property, it follows

immediately that the random voting scheme ϕ : An → ∆(A) is unanimous on DH(k, k). In the rest of the

proof, we show that every random voting scheme, which is induced from a unanimous and strategy-proof

RSCF ϕ : Dn → ∆(A), is locally strategy-proof on DH(k, k).

For notational convenience, with a little notational abuse, we write (as, at) as a two-voter preference

profile where the first voter presents a preference with peak as while the second reports a preference with

peak at. We also write (as, P−i) as an n-voter preference profile where voter i presents a preference with

peak as and P−i = (P1, . . . , Pi−1, Pi+1, . . . , Pn).

Lemma 19 (The uncompromising property) Let ϕ : Dn → ∆(A) be a unanimous and strategy-proof

RSCF. Given an alternative-path {xk}tk=1, i ∈ I and P−i ∈ Dn−1, we have ϕas(x1, P−i) = ϕas(xt, P−i) for

all as /∈ {xk}tk=1, and hence
∑t
k=1 ϕxk(x1, P−i) =

∑t
k=1 ϕxk(xt, P−i).

Proof : We start with ϕ(x1, P−i) and ϕ(x2, P−i). Since x1 ∼ x2, we have Pi ∈ Dx1 and P ′i ∈ Dx2 such

that Pi ∼ P ′i . Then, the tops-only property and strategy-proofness imply ϕas(x1, P−i) = ϕas(Pi, P−i) =

ϕas(P
′
i , P−i) = ϕas(x2, P−i) for all as /∈ {x1, x2}.

We next introduce an induction hypothesis: Given 2 < k ≤ t, for all 2 ≤ k′ < k, ϕas(x1, P−i) =

ϕas(xk′ , P−i) for all as /∈ {xl}k
′

l=1. We show ϕas(x1, P−i) = ϕas(xk, P−i) for all as /∈ {xl}kl=1. Since xk ∼
xk−1, we have Pi ∈ Dxk and P ′i ∈ Dxk−1 such that Pi ∼ P ′i . Then, the tops-only property and strategy-

proofness imply ϕas(xk, P−i) = ϕas(Pi, P−i) = ϕas(P
′
i , P−i) = ϕas(xk−1, P−i) for all as /∈ {xk−1, xk}.

Moreover, since ϕas(x1, P−i) = ϕas(xk−1, P−i) for all as /∈ {xl}k−1
l=1 by the induction hypothesis, it is true

that ϕas(x1, P−i) = ϕas(xk, P−i) for all as /∈ {xl}kl=1. This completes the verification of the induction

hypothesis. Therefore, ϕas(x1, P−i) = ϕas(xt, P−i) for all as /∈ {xk}tk=1. Then, we have
∑t
k=1 ϕxk(x1, P−i) =

1−
∑
as /∈{xk}tk=1

ϕas(x1, P−i) = 1−
∑
as /∈{xk}tk=1

ϕas(xt, P−i) =
∑t
k=1 ϕxk(xt, P−i). �

Now, we can show that if k−k = 1, every unanimous and strategy-proof ϕ : Dn → ∆(A) is a PFBR. Recall

that k− k = 1 implies D ⊆ DH(k, k) = D≺. Correspondingly, Lemma 19 degenerates to the uncompromising

property of Ehlers et al. (2002), and the random voting scheme ϕ : An → ∆(A) satisfies the uncompromising

property on D≺. Furthermore, Lemma 3.2 of Ehlers et al. (2002) implies that the random voting scheme ϕ

is strategy-proof on D≺, as required. This completes the verification of the second part of Theorem 3 in the

case k − k = 1. Henceforth, we assume k − k > 1. We first make two observations on graph GD, which will

be repeatedly used in the following-up proof.

Observation 1 Given as ∈M\{ak, ak}, there exists an alternative-path 〈ak, ak〉 ⊆M that includes as. �
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Observation 2 There exists a cycle C1 = {xk}pk=1 ⊆ M , p ≥ 3, i.e., xk ∼ xk+1 for all k = 1, . . . , p where

xp+1 = x1, such that ak ∈ C1.19 There exists a cycle C2 = {yk}qk=1 ⊆ M , q ≥ 3, i.e., yk ∼ yk+1 for all

k = 1, . . . , p− 1 where yq+1 = y1, such that ak ∈ C2. �

Lemma 20 Every unanimous and strategy-proof RSCF ϕ : Dn → ∆(A) behaves like a random dictatorship

on the subdomain D = {Pi ∈ D : r1(Pi) ∈ M}, i.e., there exists a conditional dictatorial coefficient εi ≥ 0

for each i ∈ N with
∑
i∈N εi = 1 such that ϕ(P ) =

∑
i∈N εi er1(Pi) for all P ∈ Dn.

Proof : We verify this lemma in two steps. In the first step, we restrict attention to the case n = 2, i.e.,

N = {1, 2}, and show by Claims 1 - 4 below that every two-voter unanimous and strategy-proof RSCF on

D behaves like a random dictatorship on subdomain D. In the second step, we extend the result to the case

n > 2 by adopting the Ramification Theorem of Chatterji et al. (2014).

Fix a unanimous and strategy-proof RSCF ϕ : D2 → ∆(A). By Lemma 18, ϕ satisfies the tops-only

property.

Claim 1: The following two statements hold:

(i) Given an alternative-path {zk}lk=1, we have
∑l
k=1 ϕzk(z1, zl) = 1.

(ii) Given a circle {zk}lk=1, we have ϕzs(zs, zt) + ϕzt(zs, zt) = 1 for all s 6= t.

The first statement follows immediately from unanimity and the uncompromising property. Next, con-

sider the circle {zk}lk=1. Fixing zs and zt, assume w.l.o.g. that s < t. There are two alternative-paths connect-

ing zs and zt: the clockwise alternative-path P = {zs, zs+1, . . . , zt} and the counter clockwise alternative-path

P ′ = {zs, zs−1, . . . , z1, zl, zl−1, . . . , zt}. It follows immediately from statement (i) that
∑
z∈P ϕz(zs, zt) = 1

and
∑
z∈P′ ϕz(zs, zt) = 1. Last, since P ∩ P ′ = {zs, zt}, it is true that ϕzs(zs, zt) + ϕzt(zs, zt) = 1. This

completes the verification of the claim.

Claim 2: According to the cycle C1 = {xk}pk=1 of Observation 2, ϕ behaves like a random dictatorship on the

subdomain DC1 = {Pi ∈ D : r1(Pi) ∈ C1}, i.e., there exists 0 ≤ ε ≤ 1 such that ϕ(xk, xk′) = εexk +(1−ε)exk′
for all xk, xk′ ∈ C1.

Claim 1(ii) first implies ϕx1
(x1, x2) + ϕx2

(x1, x2) = 1. Let ε = ϕx1
(x1, x2) and 1− ε = ϕx2

(x1, x2). Fix

another profile (xk, xk′). If xk = xk′ , unanimity implies ϕ(xk, xk′) = εexk + (1 − ε)exk′ . We next assume

xk 6= xk′ . There are four possible cases: (i) x1 6= xk and x2 = xk′ , (ii) x1 = xk and x2 6= xk′ , (iii) x1 6= xk,

x2 6= xk′ and (xk, xk′) 6= (x2, x1), and (iv) (xk, xk′) = (x2, x1).

Since cases (i) and (ii) are symmetric, we focus on the verification of case (i), and omit the consideration

of case (ii). We first have ϕxk(xk, x2) + ϕx2
(xk, x2) = 1 by Claim 1(ii). We next show ϕx2

(xk, x2) = 1 − ε.
Note that there exists an alternative-path in C1 that connects x1 and xk, and excludes x2. Then, according

to this alternative-path, the uncompromising property implies ϕx2(xk, x2) = ϕx2(x1, x2) = 1−ε, as required.

In case (iii), we first know either xk /∈ {x1, x2} or xk′ /∈ {x1, x2}. Assume w.l.o.g. that xk /∈ {x1, x2}.
Then, by the verification of cases (i), from (x1, x2) to (xk, x2), we have ϕ(xk, x2) = εexk + (1 − ε)ex2

.

Furthermore, by case (ii), from (xk, x2) to (xk, xk′), we eventually have ϕ(xk, xk′) = εexk + (1− ε)exk′ .
Last, in case (iv), since the cycle C1 contains at least three alternatives, we first consider the profile

(x3, x2) and have ϕ(x3, x2) = εex3 + (1 − ε)ex2 by the verification of case (i). Next, according to the

verification of case (iii), from (x3, x2) to (x2, x1), we induce ϕ(x2, x1) = εex2
+ (1 − ε)ex1

. This completes

the verification of the claim.

19By the identification of ak, we know that there exist at least two distinct alternatives of M that are

adjacent to ak in D. Then, we can identify two distinct alternative-paths in M which connect ak and ak.

From these two alternative-paths, we can elicit a cycle in M that includes ak.
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Symmetrically, according to the circle C2 of Observation 2, ϕ also mimics a random dictatorship on the

subdomain DC2 = {Pi ∈ D : r1(Pi) ∈ C2}, i.e., there exists 0 ≤ ε′ ≤ 1 such that ϕ(yk, yk′) = ε′eyk+(1−ε′)eyk′
for all yk, yk′ ∈ C2.

Claim 3: We have (i) ε = ε′, (ii) ϕ(ak, ak) = ε eak + (1− ε)eak , and (iii) ϕ(ak, ak) = ε eak + (1− ε)eak .

According to the graph GD and the two cycles C1 and C2, we can construct an alternative-path P =

{z1, z2, . . . , zl−1, zl} ⊆ M such that (i) l ≥ 3, (ii) z1, z2 ∈ C1 and ak ∈ {z1, z2}, and (iii) zl−1, zl ∈ C2
and ak ∈ {zl−1, zl}. First, Claim 2 and the uncompromising property imply ε = ϕz1(z1, z2) = ϕz1(z1, zl)

and 1 − ε = ϕz1(z2, z1) = ϕz1(zl, z1). Symmetrically, we have 1 − ε′ = ϕzl(zl−1, zl) = ϕzl(z1, zl) and

ε′ = ϕzl(zl, zl−1) = ϕzl(zl, z1). Thus, ε + 1 − ε′ = ϕz1(z1, zl) + ϕzl(z1, zl) ≤ 1 which implies ε ≤ ε′, and

1 − ε + ε′ = ϕz1(zl, z1) + ϕzl(zl, z1) ≤ 1 which implies ε ≥ ε′. Therefore, ε = ε′. This completes the

verification of statement (i).

Since statements (ii) and (iii) are symmetric, we focus on showing statement (ii) and omit the con-

sideration of statement (iii). First, by the verification of statement (i), we have ϕ(z1, zl) = ε ez1 + (1 −
ε)ezl . Second, according to P, the uncompromising property implies ϕzl(z2, zl) = ϕzl(z1, zl) = 1 − ε and

ϕzk(z2, zl) = ϕzk(z1, zl) = 0 for all 2 < k < l. Moreover, since
∑l
k=2 ϕzk(z2, zl) = 1 by Claim 1(i), we

have ϕz2(z2, zl) = 1 − ϕzl(z2, zl) = ε, and hence ϕ(z2, zl) = ε ez2 + (1 − ε)ezl . Symmetrically, we also

have ϕ(z1, zl−1) = ε ez1 + (1 − ε)ezl−1
. Recall that ak ∈ {z1, z2} and ak ∈ {zl−1, zl}. We hence con-

clude that when ak = z1 or ak = zl, ϕ(ak, ak) = ε eak + (1 − ε)eak . Last, we show that when ak = z2

and ak = zl−1, ϕ(ak, ak) = ε eak + (1 − ε)eak . According to P, the uncompromising property implies

ϕak(ak, ak) = ϕz2(z2, zl−1) = ϕz2(z2, zl) = ε and ϕak(ak, ak) = ϕzl−1
(z2, zl−1) = ϕzl−1

(z1, zl−1) = 1 − ε, as

required. This completes the verification of statement (ii), and hence proves the claim.

Claim 4: Given distinct as, at ∈M , ϕ(as, at) = ε eas + (1− ε)eat .

First, consider the situation that there exists Pl ∈ Π(a1, am) such that as, at ∈ Pl. Since as, at ∈M , the

interval [ak, ak]Pl ≡ {xk}lk=1 ⊆M must include as and at. By Claim 3, we have ϕ(x1, xl) = ε ex1
+(1−ε)exl

and ϕ(xl, x1) = ε exl + (1− ε)ex1 . Then, according to the alternative-path {xk}lk=1, by repeatedly applying

Claim 1(i) and the uncompromising property, we have ϕ(xk, xk′) = ε exk + (1 − ε)exk′ for all distinct

1 ≤ k, k′ ≤ l. Hence, ϕ(as, at) = ε eas + (1− ε)eat .
Next, consider the situation that there exists no Pl ∈ Π(a1, am) that includes both as and at. According

to Observation 1, it must be the case that as /∈ {ak, ak} and at /∈ {ak, ak}. Moreover, by Observation 1, let

{bk}lk=1 ⊆ M be an alternative-path that connects ak and ak, and includes as, and let {ck}uk=1 ⊆ M be an

alternative-path that connects ak and ak, and includes at. Evidently, as /∈ {ck}nk=1 and at /∈ {bk}lk=1. Let

as = bp and at = cq for some 1 < p < l and 1 < q < u. According to the sub-alternative-paths {b1, b2, . . . , bp}
and {c1, c2, . . . , cq}, since b1 = c1 = ak, bp /∈ {ck}uk=1 and cq /∈ {bk}lk=1, we identify 1 ≤ η < p and 1 ≤ ν < q

such that bη = cν and {bη+1, . . . , bp} ∩ {cν+1, . . . , cq} = ∅. Then, we have the concatenated alternative-path

P = {as = bp, . . . , bη = cν , . . . , cq = at} ⊆ M which connects as and at. By the verification in the first

situation, we have ϕbp(bp, bη) = ε and ϕcq (cν , cq) = 1−ε. Furthermore, according to P, the uncompromising

property implies ϕas(as, at) = ϕbp(bp, cq) = ϕbp(bp, cν) = ϕbp(bp, bη) = ε and ϕat(as, at) = ϕcq (bp, cq) =

ϕcq (bη, cq) = ϕcq (cν , cq) = 1− ε. Therefore, ϕ(as, at) = ε eas + (1− ε)eat . This completes the verification of

the claim.

In conclusion, every two-voter unanimous and strategy-proof RSCF behaves like a random dictatorship

on the subdomain D. For the general case n > 2, we adopt an induction argument.

Induction Hypothesis: Given n ≥ 3, for all 2 ≤ n′ < n, every unanimous and strategy-proof ψ : Dn′ →
∆(A) behaves like a random dictatorship on the subdomain D.
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Given a unanimous and strategy-proof RSCF ϕ : Dn → ∆(A), n > 2, we show that it behaves like a

random dictatorship on the subdomain D. If n ≥ 4, the verification follows exactly from Propositions 5

and 6 of Chatterji et al. (2014). Therefore, we focus on the case n = 3, i.e., N = {1, 2, 3}. Analogous to

Propositions 4 and 6 of Chatterji et al. (2014), we split the verification into the following two parts:

1. There exists ε1, ε2, ε3 ≥ 0 with ε1 + ε2 + ε3 = 1 such that for all P ∈ D3
, we have

[Pi = Pj for some distinct i, j ∈ N ]⇒
[
ϕ(P ) = ε1 er1(P1) + ε2 er1(P2) + ε3 er1(P3)

]
.

2. For all P ∈ D3
, we have ϕ(P ) = ε1 er1(P1) + ε2 er1(P2) + ε3 er1(P3).

The second part follows exactly from Proposition 6 of Chatterji et al. (2014). Therefore, we focus on

showing the first part.20

According to ϕ, we first induce three two-voter RSCFs by merging two voters respectively: For all

P1, P2, P3 ∈ D, let ψ1(P1, P2) = ϕ(P1, P2, P2), ψ2(P1, P2) = ϕ(P1, P2, P1) and ψ3(P1, P3) = ϕ(P1, P1, P3). It

is easy to verify that all ψ1, ψ2 and ψ3 are unanimous and strategy-proof on D. Therefore, the induction

hypothesis implies that there exist 0 ≤ ε1, ε2, ε3 ≤ 1 such that for all P1, P2, P3 ∈ D, ψ1(P1, P2) = ε1 er1(P1)+

(1− ε1)er1(P2), ψ
2(P1, P2) = (1− ε2)er1(P1) + ε2 er1(P2) and ψ3(P1, P3) = (1− ε3)er1(P1) + ε3 er1(P3). Note

that to show the first part holds, it suffices to prove ε1 + ε2 + ε3 = 1.

Recall the cycle C1 = {xk}pk=1 ⊆ M in Observation 2. First, according to the three alternative-paths

{x2, x3}, {x1, x2} and {x1, xp, . . . , x4, x3} in C1, the uncompromising property implies respectively that (i)

ϕx1(x1, x2, x3) = ϕx1(x1, x2, x2) = ψ1
x1

(x1, x2) = ε1 and ϕas(x1, x2, x3) = ϕas(x1, x2, x2) = ψ1
as(x1, x2) = 0

for all as /∈ {x1, x2, x3}, (ii) ϕx3
(x1, x2, x3) = ϕx3

(x2, x2, x3) = ψ3
x3

(x2, x3) = ε3, and (iii) ϕx2
(x1, x2, x3) =

ϕx2
(x3, x2, x3) = ψ2

x2
(x3, x2) = ε2. Then, we have ε1 + ε2 + ε3 = ϕx1

(x1, x2, x3) + ϕx2
(x1, x2, x3) +

ϕx3
(x1, x2, x3) +

∑
as /∈{x1,x2,x3} ϕas(x1, x2, x3) =

∑
as∈A ϕas(x1, x2, x3) = 1, as required. This completes

the verification of the induction hypothesis, and hence proves Lemma 20. �

Lemma 21 Let ϕ : Dn → ∆(A) be a unanimous and strategy-proof RSCF. Given distinct as, at ∈ M and

P−i ∈ Dn−1, we have ϕak(as, P−i) = ϕak(at, P−i) for all ak /∈ {as, at}.

Proof : First, Lemma 18 implies that ϕ satisfies the tops-only property, and Lemma 20 implies that ϕ

mimics a random dictatorship on the subdomain D = {Pi ∈ D : r1(Pi) ∈M}.

Claim 1: The two statements hold: (i) [ak /∈ {as, at}] ⇒ [ϕak(as, P−i) = ϕak(at, P−i)], and (ii) [ak /∈
{as, at}]⇒

[
ϕak(as, P−i) = ϕak(at, P−i)

]
.

By symmetry, we focus on showing statement (i) and omit the consideration of statement (ii). Note

that if there exists an alternative-path that connects as and at and excludes ak, then the uncompromising

property implies ϕak(as, P−i) = ϕak(at, P−i). Therefore, to complete the verification, we will construct such

an alternative-path.

If as 6= ak, we pick an alternative-path 〈ak, ak〉 that includes as by Observation 1, and elicit the sub-

alternative-path 〈as, ak〉. If as = ak, we refer to 〈as, ak〉 = {as}. Thus, ak /∈ 〈as, ak〉. Similarly, we have an

alternative-path 〈ak, at〉 which excludes ak. According to 〈as, ak〉 and 〈ak, at〉, we construct an alternative-

path which connects as and at, and excludes ak, as required. This completes the verification of the claim.

Since as, at ∈M , by the verification of Claim 4 in the proof of Lemma 20, there exists an alternative-path

{xk}pk=1 ⊆M connecting as and at. The uncompromising property first implies ϕak(as, P−i) = ϕak(at, P−i)

for all ak /∈ {xk}pk=1. Therefore, to complete the proof of the lemma, it suffices to show that ϕxk(as, P−i) =

20Proposition 4 of Chatterji et al. (2014) is not applicable for the verification of the first part since they

impose an additional domain condition (see their Definition 18) which cannot be confirmed on domain D.
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ϕxk(at, P−i) for all k = 2, . . . , p−1. If xk ∈ {ak, ak}, it follows immediately from Claim 1 that ϕxk(as, P−i) =

ϕxk(at, P−i). Hence, we let Θ = {x2, . . . , xp−1}\{ak, ak} and show ϕz(as, P−i) = ϕz(at, P−i) for all z ∈ Θ.

For notational convenience, let i = n. We partition {1, . . . , n − 1} into three parts: I = {1, . . . , j},
I = {j + 1, . . . , l} and Î = {l + 1, . . . , n − 1}, and assume w.l.o.g that r1(P1), . . . , r1(Pj) ∈ L\{ak},
r1(Pj+1), . . . , r1(Pl) ∈ R\{ak} and r1(Pl+1), . . . , r1(Pn−1) ∈ M . Note that if l = 0, Lemma 20 implies

ϕz(as, P−n) = ϕz(at, P−n) for all z ∈ Θ. Next, assume l > 0. We construct the following preference profiles:

P (η) =
(
P1, . . . , Pη,

ak
{η+1,...,j} ,

ak
I
, PÎ , as

)
, η = 0, 1, . . . , j, and P (ν) =

(
PI , Pj+1, . . . , Pν ,

ak
{ν+1,...,l} , PÎ , as

)
,

ν = j + 1, . . . , l. Note that P (0) =
( ak

I ,
ak
I
, PÎ , as

)
and P (l) = (as, P−n).

Given an arbitrary 0 ≤ η < j, consider P (η) and P (η+1). Note that voter η+1 has the preference peak ak
at P (η), and has the preference peak r1(Pη+1) = ak ≺ ak at P (η+1). By Lemma 16, {ak, ak+1, . . . , ak} ⊆ L

is the unique alternative-path that connects ak and ak, and hence excludes all alternatives of Θ. Then,

the uncompromising property implies ϕz(P
(η)) = ϕz(P

(η+1)) for all z ∈ Θ. Therefore, we have ϕz(P
(0)) =

· · · = ϕz(P
(j)) for all z ∈ Θ. Next, given an arbitrary j ≤ ν < l, consider P (ν) and P (ν+1). Note that

voter ν + 1 has the preference peak ak at P (ν), and has the preference peak r1(Pν+1) = ak � ak at P (ν+1).

By Lemma 16, {ak, . . . , ak−1, ak} ⊆ R is the unique alternative-path that connects ak and ak, and hence

excludes all alternatives of Θ. Then, the uncompromising property implies ϕz(P
(ν)) = ϕz(P

(ν+1)) for all

z ∈ Θ. Therefore, we have ϕz(P
(j)) = · · · = ϕz(P

(l)) for all z ∈ Θ. In conclusion, ϕz
( ak

I ,
ak
I
, PÎ , as

)
=

ϕz(P
(0)) = · · · = ϕz(P

(l)) = ϕz(as, P−n) for all z ∈ Θ.

Symmetrically, we also derive ϕz
( ak

I ,
ak
I
, PÎ , at

)
= ϕz(at, P−n) for all z ∈ Θ. Last, since Lemma 20

implies ϕz
( ak

I ,
ak
I
, PÎ , as

)
= ϕz

( ak
I ,

ak
I
, PÎ , at

)
for all z ∈ Θ, we have ϕz(as, P−n) = ϕz(at, P−n) for all

z ∈ Θ, as required. �

Now, fixing a unanimous and strategy-proof RSCF ϕ : Dn → ∆(A), we are ready to show that the

corresponding random voting scheme ϕ : An → ∆(A) is locally strategy-proof on DH(k, k).

Fix i ∈ N , Pi, P
′
i ∈ DH(k, k) with Pi ∼ P ′i , and P−i ∈

[
DH(k, k)

]n−1
. For notational convenience, let

r1(Pi) = as, r1(P ′i ) = at and r1(Pj) = xj for all j 6= i. Let x−i = (x1, . . . , xi−1, xi+1, . . . , xn). We show

that ϕ(as, x−i) stochastically dominates ϕ(at, x−i) according to Pi. If as = at, ϕ(as, x−i) = ϕ(at, x−i),

as required. Next, assume as 6= at. Then, Pi ∼ P ′i implies r1(Pi) = r2(P ′i ) = as, r1(P ′i ) = r2(Pi) = at
and rk(Pi) = rk(P ′i ) for all k = 3, . . . ,m. To complete the verification, it suffices to show ϕas(as, x−i) ≥
ϕas(at, x−i) and ϕak(as, x−i) = ϕak(at, x−i) for all ak /∈ {as, at}. Since r1(Pi) = as, r1(P ′i ) = at and Pi ∼ P ′i ,
we know as ∼ at in DH(k, k). Then, there are three possible cases: (i) as, at ∈ L and |s−t| = 1, (ii) as, at ∈ R
and |s−t| = 1, and (iii) as, at ∈M . The first two cases are symmetric, and hence we focus on the verification

of the first case and omit the consideration of the second case. In the first case, since |s − t| = 1, it is also

true that as ∼ at in D. Hence, we have P̄i, P̄
′
i ∈ D such that r1(P̄i) = as, r1(P̄ ′i ) = at and P̄i ∼ P̄ ′i . Then,

the tops-only property and strategy-proofness of ϕ on D imply ϕas(as, x−i) = ϕas(P̄i, x−i) ≥ ϕas(P̄ ′i , x−i) =

ϕas(at, x−i), and ϕak(as, x−i) = ϕak(P̄i, x−i) = ϕak(P̄ ′i , x−i) = ϕak(at, x−i) for all ak /∈ {as, at}, as required.

Last, assume as, at ∈ M . Fixing P̄i, P̄
′
i ∈ D with r1(P̄i) = as and r1(P̄ ′i ) = at by minimal richness, we have

ϕas(as, x−i) = ϕas(P̄i, x−i) ≥ ϕas(P̄
′
i , x−i) = ϕas(at, x−i) by the tops-only property and strategy-proofness

of ϕ on D, and ϕak(as, x−i) = ϕak(at, x−i) for all ak /∈ {as, at} by Lemma 21, as required. Therefore, ϕ is

locally strategy-proof on DH(k, k). This completes the verification of the second part of Theorem 3 in the

case k − k > 1, and hence completely proves Theorem 3.

D Proof of Fact 1

We first introduce some new notation and the formal definition of the no-restoration property of Sato (2013).

Let aPi!b denote that a is contiguously preferred to b in Pi, i.e., aPib and there exists no c ∈ A such that
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aPic and cPib. Recall the notions of adjacency and path in the beginning of Section 2. A domain D satisfies

the no-restoration property if for all distinct Pi, P
′
i ∈ D, there exists a path {P ki }tk=1 ⊆ D connecting Pi

and P ′i such that for all ap, aq ∈ A, we have

[apP
k∗

i aq and aqP
k∗+1
i ap for some 1 ≤ k∗ < t]⇒ [apP

k
i aq for all k = 1, . . . , k∗, and aqP

l
i ap for all l = k∗ + 1, . . . , t].

By Theorem 1 of Cho (2018), to prove Fact 1, it suffices to show that DH(k, k) satisfies the no-restoration

property. Before proceeding the proof, we introduce an important observation on DH(k, k).

Observation 3 Given Pi ∈ DH(k, k), let r1(Pi) = as and apPi!aq (it is possible that as = ap). Let P ′′i be

a preference such that Pi ∼ P ′′i and aqP
′′
i !ap. If one of the three conditions is satisfied: (i) r1(Pi) = r1(P ′′i ),

and ap ≺ as ≺ aq or aq ≺ as ≺ ap, (ii) r1(Pi) = r1(P ′′i ) ∈M and neither both ap, aq ∈ L nor both ap, aq ∈ R,

and (iii) r1(Pi) 6= r1(P ′′i ), and either ap, aq ∈ L and |p− q| = 1, or ap, aq ∈ R and |p− q| = 1, or ap, aq ∈M ,

then P ′′i ∈ DH(k, k). �

To show that DH(k, k) satisfies the no-restoration property, it suffices to show that for every pair of

distinct preferences Pi, P
′
i ∈ DH(k, k), there exist ap, aq ∈ A and P ′′i ∈ DH(k, k) such that Pi ∼ P ′′i , apPi!aq,

aqP
′′
i !ap and aqP

′
iap. Henceforth, we fix distinct Pi, P

′
i ∈ DH(k, k), and let r1(Pi) = as and r1(P ′i ) = at.

We first assume as = at. We identify 1 < k ≤ m such that rl(Pi) = rl(P
′
i ) for all l = 1, . . . , k − 1, and

rk(Pi) 6= rk(P ′i ). Let rk(P ′i ) = aq and aq = rν(Pi) for some k < ν ≤ m. Meanwhile, let rν−1(Pi) = ap. We

generate a preference P ′′i by locally switching ap and aq in Pi. Thus, Pi ∼ P ′′i , apPi!aq, aqP
′′
i !ap and aqP

′
iap.

Note that r1(Pi) = r1(P ′′i ) = r1(P ′i ). We next show P ′′i ∈ DH(k, k). Suppose not, i.e., P ′′i /∈ DH(k, k). On

the one hand, since Pi and P ′′i share the same peak and differ exactly on the relative rankings of ap and aq,

Pi ∈ DH(k, k) and P ′′i /∈ DH(k, k) imply that aqP
′′
i ap must violate Definition 1. On the other hand, since P ′′i

and P ′i share the same peak and the same relative ranking of ap and aq, P
′
i ∈ DH(k, k) implies that aqP

′′
i ap

does not violate Definition 1. Contradiction! Therefore, P ′′i ∈ DH(k, k).

Next, we assume as ≺ at. The verification related to the situation at ≺ as is symmetric, and we hence

omit it. We consider the four possible cases: (1) as ≺ ak, (2) ak � as, (3) ak � as ≺ ak � at and (4)

ak � as ≺ at ≺ ak.

In case (1), we notice as ≺ as+1 � ak and as ≺ as+1 � at. Let as+1 = rk(Pi) for some 1 < k ≤ m

and rk−1(Pi) = ap. Thus, apPi!as+1. Since r1(Pi) = as ∈ L, apPias+1 implies ap � as by Definition 1.

Hence, we know ap � as ≺ as+1 � ak and ap � as ≺ as+1 ≺ at, which imply as+1P
′
iap by Definition 1.

By locally switching ap and as+1 in Pi, we generate a preference P ′′i . Thus, Pi ∼ P ′′i , apPi!as+1, as+1P
′′
i !ap

and as+1P
′
iap. We last show P ′′i ∈ DH(k, k). If r1(P ′′i ) = r1(Pi) = as, it is true that ap ≺ as ≺ as+1,

and Observation 3(i) then implies P ′′i ∈ DH(k, k). If r1(P ′′i ) 6= r1(Pi), it is true that r1(Pi) = as = ap and

r1(P ′′i ) = as+1, and Observation 3(iii) then implies P ′′i ∈ DH(k, k).

The verification of case (2) is similar to that of case (1), and we hence omit it.

In case (3), let ak = rk(Pi) for some 1 < k ≤ m and rk−1(Pi) = ap. Thus, apPi!ak. Since ak � as ≺ ak,

apPiak implies ap ≺ ak by Definition 1. Thus, we know either ap ≺ ak ≺ ak � at which implies akP
′
iak

and akP
′
iap by Definition 1, or ak � ap ≺ ak � at which implies akP

′
iap by Definition 1. Overall, akP

′
iap.

By locally switching ap and ak in Pi, we generate a preference P ′′i . Thus, Pi ∼ P ′′i , apPi!ak, akP
′′
i !ap and

akP
′
iap. We last show P ′′i ∈ DH(k, k). If r1(P ′′i ) = r1(Pi) = as, Observation 3(ii) implies P ′′i ∈ DH(k, k).

If r1(P ′′i ) 6= r1(Pi), it is true that r1(Pi) = as = ap and r1(P ′′i ) = ak, and Observation 3(iii) then implies

P ′′i ∈ DH(k, k).

In case (4), let at = rk(Pi) for some 1 < k ≤ m and rk−1(Pi) = ap. By locally switching ap and at in

Pi, we generate a preference P ′′i . Thus, Pi ∼ P ′′i , apPi!at, atP
′′
i !ap and atP

′
iap (recall r1(P ′i ) = at). We last

show P ′′i ∈ DH(k, k). If r1(P ′′i ) = r1(Pi) = as, Observation 3(ii) implies P ′′i ∈ DH(k, k). If r1(P ′′i ) 6= r1(Pi),

it is true that r1(Pi) = as = ap and r1(P ′′i ) = at, and Observation 3(iii) implies P ′′i ∈ DH(k, k).

In conclusion, domain DH(k, k) satisfies the no-restoration condition of Sato (2013), as required. �

38


	Restricted probabilistic fixed ballot rules and hybrid domains
	Citation

	Introduction
	Relationship with the Literature

	Preliminaries 
	Hybrid Domains 
	Restricted Probabilistic Fixed Ballot Rules 
	A Characterization of Unanimous and Strategy-proof RSCFs on Hybrid Domains 
	Decomposability of anonymous RPFBRs 

	The Salience of Hybrid Domains and RPFBRs 
	Proof of Theorem [theorem][1][]1
	Proof of Theorem [theorem][2][]2
	Proof of Theorem [theorem][3][]3 
	Proof of Fact [fact][1][]1

