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Abstract

We quantify the supply-side determinants of quality specialization across space. Specifically, we

complement the quality specialization literature in international trade and study how larger cities

specialize in higher-quality goods within a country. In our general equilibrium model, firms in larger

cities produce goods with higher quality, because agglomeration benefits accrue more to skilled

workers who are also more efficient in upgrading quality. Two channels are at work in our model.

The first channel is through the treatment effect of agglomeration, such that firms become more

productive if they locate in a larger city. The second channel works through sorting, in that more pro-

ductive firms receive higher agglomeration benefits and endogenously sort into larger cities. These

two effects are further mitigated by the increasing skill premium with respect to city size, though

the latter is dominated in the spatial equilibrium. Using firm-level data from China, we structurally

estimate the model and find that product quality is on average 23% higher in big cities than that of

small cities. We further find that agglomeration forces account for half of the quality difference in

big cities while sorting of firms accounts for another half. A counterfactual policy to relax land use

regulation in housing production raises the quality of goods produced in big cities by 5.5% and (in-

direct) welfare of all residents by 6.2% through reallocation of economic activities across space.
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1. Introduction

Firms in big cities specialize in high-quality products (Dingel, 2017; Saito and Matuura, 2016). One

explanation formalizes the insight of “Linder hypothesis” to rationalize this empirical regularity. It

builds on the so-called “home-market effect” and hypothesizes that local demand in big cities is bi-

ased towards high-quality goods because demand for quality rises with income (Dingel, 2017; Picard

and Okubo, 2012; Picard, 2015) . Another explanation complements the demand-based conjecture

and focuses on the productivity advantage of firms in big cities (Saito and Matuura, 2016). Firms be-

come more productive in a big city, and this creates more room for costly quality upgrading. These hy-

potheses have provided important insights. However, none of them allows free mobility and touches

on sorting behavior which are critical in the spatial context, since individuals and firms are freely mo-

bile within a country and are free to choose their location.1 In this sense, a supply-side explanation of

the spatial pattern of quality specialization is underdeveloped, because the movement of factors and

firms are what distinguish spatial models from international trade models.

Moreover, performing counterfactual experiments in a fully specified general equilibrium model

is lacking in the existing literature on the spatial pattern of quality specialization which either only

develops theoretical models or presents reduced-form evidence. This is important because the pat-

tern of quality specialization provides an additional channel of gains from inter-city trade and also

gains from agglomeration. Hence, it is desirable to develop quantitative models that are capable of

quantifying the welfare effects of spatial policies through the channel of quality specialization. Our

paper partly fills this gap.

In this paper, we provide a supply-side explanation for the quality specialization pattern across

cities. The main feature of our approach is that more productive firms endogenously sort into larger

cities because they receive more benefits from agglomeration. As a consequence, firms in big cities

specialize in high-quality products because of two reasons. First, agglomeration benefits are such that

their productivity is higher in larger cities. Second, firms that sorted into larger cities are also more

productive firms. Quantifying the extent to which how much each channel has influenced quality

specialization pattern is the main contribution that our paper aims to deliver. To our knowledge, our

paper is the first to investigate such supply-side explanations in a general equilibrium quantitative

model.

We develop a general equilibrium model with endogenous quality choice, endogenous spatial

sorting of firms, and endogenous city formation. More productive firms upgrade the quality of their

products because the marginal cost of production is lower and leaves more room for choosing high

quality. This is reminiscent of the quality upgrading literature in international trade that focuses on

heterogeneous firms (Feenstra and Romalis, 2014; Antoniades, 2015; Fan et al., 2017). Different from

these literature that assume labor as the only factor in the production, we employ a flexible produc-

1One exception is the line of work done in Picard and Okubo (2012) and Picard (2015). However, the sorting behavior in their
models is related to demand-based factors instead of the productivity advantage provided by agglomeration. Furthermore, the
individuals in their model are immobile across regions.



3

tion function that uses capital, unskilled labor, and skilled labor as inputs which is partly similar to

the production function in Fieler et al. (2018). The production structure implies that skill intensity

increases with quality choices. This assumption makes the identification of the quality-upgrading pa-

rameter easier and more transparent. As a consequence, there is no need to rely on any unit-price in-

formation in identifying the quality upgrading parameter which could be potentially biased. Though

we do have access to both quantity and price information from the custom data, we only use this

information to perform out-of-sample test to examine the empirical fit of our model.

Modeling endogenous spatial sorting in a quantitative framework is not a trivial task and can be

computationally daunting. To deal with this issue, we import the spatial sorting framework developed

in Gaubert (2018) to aid our investigation. We posit that firm productivity is a composite term of its

innate efficiency and the size of the city it locates in. Firms are heterogeneous in their inherent effi-

ciency. City size boosts firm productivity through two channels. The first channel is the standard ag-

glomeration benefit, while the second is a log-supermodular term such that firms with a higher innate

efficiency receive more benefit from agglomeration. The computational advantage of this framework

is that city size is a sufficient statistic for the production and sorting decisions of firms. We generalize

Gaubert’s insight into an environment with two types of labor and quality choices. To offer a clear

demonstration of how city size alone is a sufficient statistic, we first develop the benchmark model in

an environment with costless trade. This also has the advantage that only supply-side factors are in

play when we quantify the distribution of quality across space.

Apart from sorting, we also model the endogenous formation of cities which is a byproduct of

factor demand from firms, in the sense that factor markets must be cleared locally. In our model,

producing high-quality products requires hiring more skilled workers. The quantitative implication

of this feature is entirely different from the existing literature such as Dingel (2017). In Dingel’s paper,

which quantifies the relative importance of the home-market effect and the factor abundance on

the choice of quality, factor abundance is exogenously given for each CBSA area. In contrast, our

model assumes a spatial no-arbitrage condition such that each individual must derive the same utility

regardless of his location. Together with the local labor market clearing conditions, this will pin down

the endogenous factor supply in each city. In this sense, our supply-side story is entirely different

from that of Dingel’s and is more general.

We structurally estimate our model using plant-level data from the Chinese Manufacturing Cen-

sus. In particular, we calibrate part of the parameters using prior estimates from the literature, as

these parameters are standard and have been well-studied in the past. For all other parameters that

are relevant to quality upgrading and firm sorting, we structurally estimate them using an SMM es-

timator. The intuition is to search over parameter space to minimize the weighted distance between

model-generated moments that are directly governed by those parameters and the corresponding

empirical moments. We find that product quality is on average 23% higher in big cities than that

of small cities. There is also substantial sectoral heterogeneity in the quality specialization pattern

and the quality difference could be as high as 60% in some sectors. In addition, we decompose the
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channels and find that quantitatively firm sorting account for half of the quality specialization pattern

across cities while traditional agglomeration forces account for another half.

Finally, we quantify the general equilibrium impact of a supply-side spatial policy, which is fre-

quently used in developing economies such as China, using the estimated model. This counterfactual

examines policies that restrict land use in the production of housing. This policy directly affects the

distribution of wages across space as housing is the congestion force in the model. Consequently, ag-

glomeration is weakened due to the congested land market and firms produce goods with lower qual-

ity. We find an indirect welfare benefit of 6.2% in a counterfactual where we relax land use regulations

by 20%. Furthermore, average quality across cities decreases by 5.5%. In sum, these counterfactuals

are highly relevant to developing economics such as China. The policy implications and quantifying

the welfare effect of these spatial policies through the lens of quality specialization are significant and

non-trivial.

2. Related Literature

The present study is related to several strands of literature in urban economics and international

trade. First, our work is related to the spatial literature on the benefits of agglomeration (Davis and

Dingel, 2019; Gaubert, 2018; Tian, 2018; Handbury and Weinstein, 2015; Behrens et al., 2014; Combes

et al., 2012; Albouy, 2012; Duranton and Puga, 2004; Rosenthal and Strange, 2004; Glaeser et al., 2001;

Glaeser, 1999; Glaeser et al., 1992). Our paper complements this literature by studying an additional

margin of gains from agglomeration, that is the productivity advantage of big cities also enable firms

to upgrade their product quality. As metioned earlier, our work is not the first in the literature to study

such effect. Under a reduced-form partial equilibirum framework, Saito and Matuura (2016) show

that firms upgrade product quality in a larger city using the universe of Japanese firm-level data. In

comparison to their paper, our work is the first attempt that structurally estimates a quantitative spa-

tial equilibrium model focusing on quality. Our model is able to quantify the general equilibrium

effect, perform welfare analysis, and study relevant counterfactuals. Our equilibrium model is also

tractable and explicitly models firm sorting which can be a concern of endogeneity in empirical stud-

ies. In particular, we quantify the exact degree how each channel affects quality specialization pattern

across space.

Our paper is also relevant to a literature in urban economics that focuses on explaining skill pre-

mia and skill compositions across cities (Davis and Dingel, 2019, 2017; Glaeser and Maré, 2001; Baum-

Snow and Pavan, 2012, 2013; Baum-Snow et al., 2018; Moretti, 2013; Diamond, 2016; De La Roca and

Puga, 2017; Combes et al., 2008; Dingel et al., 2019; Davis et al., 2018; Behrens and Robert-Nicoud,

2015; Farrokhi and Jinkins, 2019; Lindley and Machin, 2016; Hendricks, 2011; Bacolod et al., 2009;

Chor, 2005; D’Costa and Overman, 2014; Florida et al., 2012; Ma and Tang, 2018; Jiao and Tian, 2019;

Ciccone and Hall, 1996). The consensus of the literature was that a spatial equilibrium model that im-
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poses a no-arbitrage or free-mobility condition, which requires all individuals to receive same utility

across cities, would only imply a constant skill premium in city size (Black et al., 2009). A recent litera-

ture pioneered by Davis and Dingel (2019) provide evidences that skill premia are in fact rising in city

size and they reconcile the puzzle using an inframarginal learning effect under the assumption that

there is a continuum of workers heterogeneous in their ability. Our work complements this literature.

In particular, we show that even with two skill types of workers, our model is able to generate rising

skill premia across cities. Two elements are essential. First, we assume that there are two separate

residential housing markets in each city and we microfound this assumption using a within-city sort-

ing model with non-homothetic preference. Second, given that there are two housing markets, rising

skill premium is then a consequence of increasing skill composition, which is in turn a result of skill-

biased agglomeration benefits and incentive to hire more skilled workers for quality upgrading. In

sum, our model argue that skill premia are higher in larger cities partly because there are more skilled

workers in big cities for quality upgrading purposes. Congestion forces in the two housing markets

then ensure that skill premium rises in city size.

Furthermore, our work is related to the literature in international trade that studies the quality spe-

cialization across countries which focuses on both the demand side (Piveteau and Smagghue, 2019;

Dingel, 2017; Fajgelbaum et al., 2011, 2015; Hallak, 2006, 2010; Choi et al., 2009) and the supply side

explanations (Fieler et al., 2018; Dingel, 2017; Faber and Fally, 2017; Fan et al., 2017; Antoniades, 2015;

Feenstra and Romalis, 2014; Hallak and Sivadasan, 2013; Kugler and Verhoogen, 2012; Crozet et al.,

2012; Khandelwal, 2010; Verhoogen, 2008; Schott, 2004; Hummels and Skiba, 2004). Our work is re-

lated to this literature in the sense that we complement the supply-side understanding of quality spe-

cialization pattern in a narrower definition of space, that is we narrow the definition of space from

across countries to within a country and study the quality specialization pattern across cities. Similar

to the international trade literature, we focus on the idea that higher productivity of heterogeneous

firms enable costly quality upgrading. In addition, we also focus on the effect of firm sorting and scale

effect (agglomeration) on quality specialization across space which is absent in the trade literature.

We hope that our work can shed some light on how sorting and scaling effects of multinational firms

and foreign direct investment affect the choice of quality across countries.

3. Stylized Facts

In this section, we present some stylized facts on quality specialization across Chinese cities and how

it correlates with firm heterogeneity and agglomeration. We first document that firms produce higher-

quality goods in big cities, after controlling for comparative advantage, product-specific time shocks,

city-specific time trends, and other city-time specific characteristics. Next, we show that more pro-

ductive firms would specialize in higher-quality products. Together, these two sets of facts lay down

the basic elements of our model and pave the way for our structural estimation that disentangles the
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endogenous economic forces in equilibrium. Lastly, we show that producing high-quality goods is

strongly correlated with employing more skilled labor. This fact will be useful in the design of identi-

fication strategy in our empirical structural estimation.

3.1 Data and Measurement

We merge two databases that contain firm-level information on sales and output separately. The first

dataset is the Annual Survey of the Industrial Firms (ASIF). This dataset contains information on vari-

ous firm-level characteristics such as sales, profits, taxes, investment, intermediate input expenditure,

labor expenditure, and education level of workers. The second dataset is the Industrial Firms Prod-

uct Quantity Database (IFPQD).2 This dataset contains information on the physical quantity of firm

output, and it has been used in other literature to measure product quality Fan et al. (2018). These

two datasets both cover the universe of Chinese manufacturing firms and use the same firm identi-

fication.3 4 While we use both datasets to construct the stylized facts, only the first dataset is used

in the structural estimation. We only exploit the information in the second dataset to evaluate the

out-of-sample performance of our structural model.

We measure product quality following two approaches in the international trade literature. The

first approach exploits information on the unit price of products, which are readily available in trade

data, to measure the quality of goods (Schott, 2004; Hummels and Klenow, 2005; Hallak, 2006). The

intuition is that a higher-quality good commands a higher price, hence unit values are reasonable

proxies for product quality, all else equal. In contrast, the second approach focuses on the market

share of a product and measures product quality using a nested logit demand system (Khandelwal,

2010; Amiti and Khandelwal, 2013). The idea is that unit values may fail to reflect quality differences,

as there may be other confounding factors such as production costs that are driving the price differ-

ences. Market shares in turn capture the vertical component of quality differences, in the sense that a

higher-quality good would have a greater market share conditional on the same price. We follow both

approaches to construct measures for quality and use them in our empirical specifications. More

details on our measurement of product quality can be found in Appendix A.

To provide a measure of firm productivity in the second stylized fact, we implement production

function estimation using the canonical methods in the empirical industrial organization literature.

In particular, we first employ the semiparamteric control function approach in Olley and Pakes (1996)

to obtain a baseline measure of firm productivity. Next, we check for the robustness of our estimates

using Levinsohn and Petrin (2003) and Ackerberg et al. (2015) which address the zero investment and

control function collinearity problems.5

2We are extremely grateful to Yao Amber Li for her suggestions of this dataset.
3We confirm that this is true as both datasets also report the firm names, addresses, and names of corporate representatives.
4Note, however, that our sample only covers the single-product firms. The reason is that the ASIF dataset only reports the

sales of the entire firm while the IFPQD dataset reports the quantity information of each 5-digit product that the firm produces.
Since we need to construct unit price at the product level, we only include single-product firms in computing prices.

5We implement all production function estimations using a Stata module prodest (Rovigatti and Mollisi, 2018).
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Note, however, the above measure of firm productivity does not correspond to the “innate effi-

ciency” that we define in the structural model. The reasons are as follows. There are abundant evi-

dences suggesting that firms become more productive in larger cities and hence a positive “treatment

effect” of agglomeration on firm productivity. As such, the estimates we obtain are ex post measures of

productivity after the treatment of agglomeration, and they are different from the “innate efficiency”

of firms . Including this measure in our empirical specification would have subsumed all the interac-

tions between firm heterogeneity and agglomeration. Moreover, there is no easy way to filter out such

treatment effect of agglomeration. Consider a regression of the productivity measures on city size.

Ideally, this regression would have filtered out all the explanatory power city size has on productivity.

However, this regression also filters out the effect of firm sorting, in the sense that firms that are more

innately efficient also endogenously choose to locate in big cities (Gaubert, 2018; Tian, 2018). Hence,

we will focus on a subsample of “moving firms”, which choose to relocate in another city, to establish

our stylized facts on how firm heterogeneity and agglomeration are related to quality specialization

across Chinese cities.

3.2 Empirical Evidence

Stylized Fact 1: Firms produce higher-quality products in big cities, and this pattern is robust to

adding an extensive set of controls.

Econometric Design

We now establish the first of these stylized facts, that firms in larger cities produce goods with higher

quality. We largely follow Chor (2005) and Chor and Manova (2012) in adopting an extensive set of

fixed effects to filter out omitted variables as much as possible. Exploiting the variation in product

quality measures across cities in a given sector and year, we estimate the following specification:

qijkt = β1 lnCitySizeit + γ′Xit +Dgt +Di × t+ εijkt (3.1)

where qijkt is a measure for quality of goods produced by firm j from city i in sector k, and lnCitySizeit

is the natural log of employment size of city i during year t. Standard errors are clustered by city to ac-

count for possible correlations of idiosyncratic noises within each region. The results are qualitatively

similar if the standard errors are clustered at the city-sector level. The main coefficient of interest is

β1, which captures the effect of city size on average quality of goods produced in the city. We expect

β1 > 0, so that agglomeration induces firms to produce goods with higher quality, on average.

The city-time specific vector Xit controls for other possible determinants of product quality be-

sides agglomeration. First, we control for skill premium,which is defined as the ratio between wages

of skilled labor and that of unskilled labor, in a given city i and year t. This variable determines the rel-

ative price of skilled labor, and hence partly determines the relative cost of producing higher-quality
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products (Fieler et al., 2018; Dingel, 2017). We expect that it should be negatively correlated with

product quality. However, given that we only have data on skill premium across cities in one year,

this variable will be city-specific, and it will be subsumed by city-industry fixed effects. Next, we in-

clude a set of measures on the demand faced by the firms across cities. In particular, we focus on

non-homothetic demand which is documented extensively in the international trade literature (Fa-

jgelbaum et al., 2011, 2015; Dingel, 2017) as an important determinant of product quality. To do so, we

construct measures on both domestic and foreign non-homothetic demand. We proxy the domestic

non-homothetic demand measure by using the average income of markets weighted by trade cost for

each city. Importantly, we use the trade cost estimates from Ma and Tang (2019) which are based on

various modes of transportation network and realistic geography in China. For foreign measures, we

include a firm-level control which indicates whether a firm is exporting in a given year.6 We expect

these coefficients to be positive, because firms that are closer to high-income cities and firms that are

exporting should specialize in producing goods with higher quality.

To control for omitted variable bias, we include a battery of fixed effects as well as city-specific

time trends in the specification. Ideally, we should include Dig which are the city-product specific

fixed effects. These control for comparative advantage patterns across space (Chor, 2010), which may

confound the correlation between quality and city size.7 One possible reason could be that big cities

in China are mostly located in the coastal regions. These regions may be endowed with time-invariant

comparative advantage in producing higher-quality products because they are natural manufacturing

hubs for exports to destinations with higher income. However, given the limitation of our sample size,

we would not have meaningful variation in identifying city-product specific fixed effects which are

close to one-hundred thousand in number.

Instead, we choose to include product-year fixed effects, Dgt. These control for product-specific

shocks that may affect quality choices. In particular, they subsume and control for any technological

progress in the industries, for the changes in availability of high-quality inputs in each sector, and for

times-series variation in export demand of different products.

Lastly, we control for linear city-specific time trends, Di × t, that may affect quality. These control

for the possibility that the correlation we observe is driven by the time-series variation in some other

unobservable variable which affects both city size and product quality. Possible scenarios could be

either about the massive urbanization due to the commercialization of housing markets or the state-

owned enterprise reform in the beginning of 2000s. They also help to capture any time trend such as

the trend in the availability of high-quality inputs or increasing product entry, which are usually more

prevalent in big cities. The results are qualitatively similar if we include a quadratic term to control

for non-linear time trends.
6To further examine the heterogeneous effects, we also add an interactive term with the natural log of firm export value. To

avoid log of zeros, we take the log of 1 + Export.
7Similar strategies have been employed in other papers to control for comparative advantage pattern. Chor and Manova

(2012) include country-sector fixed effects to control for comparative advantage that may affect pattern of exports. Wang and
Li (2017) use the interactions between country and industry characteristics to identify how ICT acts as a source of comparative
advantage.
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In sum, our specification includes an extensive set of controls and fixed effects that allow us to

establish a robust correlation between city size and product quality. First, we control for several other

factors which may affect product quality choices. Second, the set of fixed effects we include is close

to exhaustive with the exception of city-time fixed effects. We could not include these as they will

subsume all the effects that city size (lnCitySizeit) has on product quality. As a result, any omitted

variable that is city-time specific may confound our estimate. We partly address this concern by in-

cluding city-specific time trends as well as city-time specific variation in non-homethetic demand.

Together, these controls should allay concerns regarding omitted variable bias.

Note, however, the current specification does not allow us to establish causality between city size

and quality choices for two reasons. First, there are potential concerns that more productive firms will

sort into big cities (Gaubert, 2018). Moreover, as we will document later, more productive firms tend

to produce higher-quality goods. Hence, it could be that firms in big cities produce higher-quality

goods not because there is a treatment effect of agglomeration, but rather due to the fact that more

productive firms choose to locate in big cities. Second, there are also concerns about reverse causality.

Under a costly trade setting, the availability of high-quality goods may induce people to agglomerate.

Given these concerns, our regression merely establishes a robust correlation between city size and

average quality. Without a credible identification strategy, we cannot disentangle the endogenous

economic forces at work. These questions are left to be answered in our structural estimation.

Results

We report the regressions in Table 1. As expected, the coefficients for city size are both economically

and statistically significant across all three proxies for product quality except for market shares. Our

estimates for column (1) and (3) imply that on average product quality becomes 7% larger when a

city grows double in size. This result also echoes our spatial equilibrium of the structurally-estimated

quantitative model in Section 6, in which we find that product quality is about 23% higher in a big

city about 4 times as large as a small city. In contrast, our reduced-form estimates here would have

suggested that this number is 28% (=4×7%), which is close to that of the structural model. The results

in this table reinforce our confidence in the structural model.

Stylized Fact 2: More productive firms tend to specialize in producing goods with higher quality.

Econometric Design

We now establish the second stylized fact and answer the question that to what extent firm hetero-

geneity matters in shaping the quality specialization pattern. The quality literature in international

trade has supplied ample evidences that more productive firms choose to produce goods with higher

quality because higher productivity provides more room for quality upgrading. However, most ev-

idences in the trade literature focus on exporters with few papers examining the firms in the non-
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Table 1: Firms in larger cities produce higher-quality goods

Dependent Variable Log of Prices Log of Market Shares Estimated Quality

(1) (2) (3)

City Size 0.070*** 0.028 0.066***

(0.017) (0.028) (0.025)

Market Access 0.033 0.575*** 0.756***

(0.068) (0.010) (0.115)

Export Status 0.107*** 0.671*** 0.397***

(0.019) (0.034) (0.022)

City FE×Time trend Yes Yes Yes

Product-Year FE Yes Yes Yes

City Clustered SE Yes Yes Yes

R2 0.861 0.389 0.908

N 313,242 313,407 313,240

Note: “Estimated Quality” is based on Khandelwal (2010). “City Size” is the log of employment
size in a prefecture. “Market Access” is the log of the sum of prefectures’ GDP per capita weighted
by trade costs. ”Export Status” is an exporter dummy. “Product” is defined as five-digit Chinese
Product Classification. All regressions include a constant term. * p<0.1, ** p<0.05, *** p<0.01.
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international universe. One exception is Saito and Matuura (2016) which estimate product quality

using Japanese manufacturing census. Although our measurement of quality largely follows the trade

literature and hence is similar to Saito and Matuura (2016), our empirical design is different and com-

plements their approach. In particular, we explicitly estimate the production function and regress

proxies for quality on our productivity estimates. Key to our identification is an exhaustive set of fixed

effects which include city-time fixed effectsDit, city-industry fixed effectsDik, and product-time fixed

effects Dgt. To this end, we estimate the following econometric specification:

qijkt = β1zijkt + α1t{j = exporter}+Dgt +Di × t+ εijkt (3.2)

where qijkt is a proxy for quality of goods produced by firm j from city i in sector k. zijkt is the produc-

tivity estimate of firms. We cluster standard errors at the city level, but the results are similar under

clustering by city-industry. The main coefficients of interest is β1, which captures the extent to which

heterogeneity in firm productivity shapes the choice of quality. We expect the sign to be positive, as

firms that are more productive would be able to afford costly quality upgrading. To filter out the omit-

ted variables as much as possible, we also include an exhaustive set of fixed effects which is similar to

our previous specification.

Results

We report the regressions in Table 2. All our estimates are economically and statistically significant,

although the magnitude varies across the three measures. Taken literally, the coefficients for produc-

tivity would suggest that a firm that is twice more efficient would have specialized in products that are

10.6% higher in unit price, 31.7% larger in market share, and 41.0% higher in quality. Although these

are economically large coefficients, we cannot distinguish the forces at work. In our structural model,

productivity estimates are an ex-post result of firm sorting and treatment effect of agglomeration.

Without a clear identification strategy, it’s impossible to know how much each force has contributed

to the observed quality specialization pattern. We will address these questions in our structural esti-

mation.

Stylized Fact 3: Firms that produce high-quality goods also employ more skilled labor.

Lastly, we document an empirical relationship between quality of goods that a firm produces and the

ratio of skilled labor that it hires. Intuitively, firms that want to upgrade their product quality should

employ more skilled labor, because it takes more research engineers as well as skilful technicians to

design and manufacture higher-quality products. In addition, production of quality is also costly,

in the sense that it takes more workers whether skilled or unskilled to upgrade quality. Therefore,

we expect that more productive firms are more likely to produce higher-quality goods, and they also

employ relatively more skilled workers because their productivity advantage leaves more room for
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Table 2: More productive firms specialize in higher-quality products

Dependent variable Log of Prices Log of Market Shares Estimated Quality

(1) (2) (3)

TFP 0.106*** 0.317*** 0.410***

(0.007) (0.008) (0.006)

Export Status 0.116*** 0.638*** 0.370***

(0.019) (0.032) (0.021)

Market Access -0.056 0.295*** 0.399***

(0.064) (0.110) (0.104)

City FE×Time Trend Yes Yes Yes

Product-Year FE Yes Yes Yes

City Clustered SE Yes Yes Yes

R2 0.863 0.426 0.934

N 217,749 217,750 217,748

Note: “Estimated Quality” is based on Khandelwal (2010). “City Size” is the log of employment
size in a prefecture. “Market Access” is the log of the sum of prefectures’ GDP per capita weighted
by trade costs. ”Export Status” is an exporter dummy. “Product” is defined as five-digit Chinese
Product Classification. All regressions include a constant term. * p<0.1, ** p<0.05, *** p<0.01.
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costly quality upgrading.

The data are consistent with our prior. We show this in several scatter plots based on the following

specification.

yijk,2004 = βzijk,2004 + α12004{j = exporter}+Dik +Dg + εijk,2004 (3.3)

where yijk,2004 is an outcome variable such as skill intensity or product quality of firm j in sector k

from city i in year 2004. zijk,2004 is the productivity estimate of the same firm in 2004, and Dik is

a city-sector specific fixed effects that control for comparative advantage pattern over space. Note

that we only include data in 2004, because the dataset only contains information on education of

employees during that year. As such, all time-specific fixed effects disappear, and we replace them

with city-industry fixed effects and product fixed effects.

First, we show that firms that produce high-quality goods also employ more skilled workers. To this

end, we extract the residuals from the regressions in specification (3.3) but excluding the productivity

control variable (zijkt). As such, we have two sets of residuals. Each set will separately correspond

to the ones extracted from the regression that uses product quality or skill intensity as the outcome

variable. Then, we scatter-plot these residuals in panel A of Figure 1. The vertical axis corresponds to

the residuals from the product quality regression while the horizontal axis corresponds to the resid-

uals from the skill intensity regression, both excluding the productivity control variable. The results

are largely consistent with our prior. Firms that specialize in higher-quality products also tend to hire

more skilled workers in our sample. This partly motivates our structural estimation where we heavily

use empirical moments on skill intensity to identify the quality-related parameters.

Next, we document an empirical correlation suggesting that this pattern is actually driven by het-

erogeneity in firm productivity. In particular, we further extract a set of residuals from regressing

productivity estimates of firms on the set of control variables (except for productivity variable itself)

in specification (3.3). We then plot these residuals against the set of residuals from the regressions in

the previous section. The results show that both skill intensity and quality are related to firm produc-

tivity. This further motivates our structural model as we use empirical moments on firm size which is

a result of higher productivity to jointly identify the parameters.

In sum, we have shown that product quality that a firm chooses is positively correlated with the

skill intensity a firm employs. This pattern is also related to firm heterogeneity, in the sense that both

variable are positively correlated with productivity estimates. As such, this stylized fact motivates our

choice of moments in the structural estimation of the spatial-equilibrium model.
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Figure 1: Firms specialize in higher-quality goods also employ more skilled workers

Note: Observations are in 2004, the only year when the educational levels of firms’ employees are
available. ”Skill Intensity” is defined as the ratio of college-graduated workers to total workers of a
firm. ”Price” and ”Skill Intensity” are taken log in the regressions. All regressions include a constant
term. Standard errors are clustered at prefecture-industry level.

4. The Model

4.1 Housing Sector

We build our model based on the framework in Gaubert (2018). There are a number of ex-ante iden-

tical “sites” which are treated as cities. Each city consists of two separate areas, downtown (D) and

suburb (S). Each area is endowed with a fixed amount of land normalized to 1. To introduce con-

gestion forces that prevent the indefinite growth of a city, we follow Gaubert (2018) in assuming that

housing is constructed using land which in fixed supply and workers,

H = Λh
(

lu
1− h

)1−h
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where H is the amount of housing production, Λ is the amound of land input, lu is the amount of

unskilled labor input, and h is the intensity of land in building houses. This assumption of using

inelastic land supply as a congestion force is well-established in the literature, see Helpman (1998),

Monte et al. (2018), Rossi-Hansberg (2005), and Ahlfeldt et al. (2015).

4.2 Demand

There are two types of workers in this economy: skilled and unskilled. We denote these types by

ζ ∈ {s, u}. The preferences are assumed to be homogeneous across all workers regardless of their

types. In particular, we assume a three-tier utility structure. In the top tier, an individual has Stone-

Geary preference for consumption C and housing H ,

U =

(
C

α

)α(
H − h̄
1− α

)1−α

where h̄ is the minimum floor space an individual need to survive, and C is a Cobb-Douglas aggrega-

tor across traded goods from S sectors,

C =

S∏
j=1

C
βj
j , with

S∑
j=1

βj = 1.

In the bottom tier, Cj is a CES aggregator over varieties ϕ within a sector j. Up to now, the demand

structure is identical to those in Gaubert (2018) except that we used Stone-Geary preference in the

top-tier utility. To introduce quality in this quantitative framework, we incorporate preference for

quality such that the bottom-tier utility function is

Cj =

[∫
Φ(ω, q)

1
σj cs(ω)

σj−1

σj dω

] σj
σj−1

where Φ(ω, q) is a preference shifter for variety ω with quality q, and σs is elasticity of substitution

across varieties in sector j. We further assume that Φ(·) is increasing in q so that consumers value

products with higher quality. Given our assumption of Stone-Geary preference in the outer layer, the

expenditure share of high-quality goods will be increasing in income.

4.3 Housing Sector and Wage Premium

We index cities by the sizes of skilled and unskilled labor (Ls, Lu). Conditional on living in a city

(Ls, Lu), a type-ζ worker will inelastically supply a unit of labor and earn wage wζ(Ls, Lu). Given the

city she is in and the wage she earns, a worker chooses the amount of consumption composite C and

housing H to maximize her utility, subject to the budget constraint PC + pH(Ls, Lu)H = wζ(Ls, Lu).

Notice that consumption composite C and ideal price index P are not tied to city size, because we
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assume that trade cost is absent in order to abstract away from any home-market effect.

Consider the partial equilibrium in the housing sector. Landlords, who own the land in a city, will

take the general equilibrium prices as given and develop houses according to the following supply

equation,

H(Ls, Lu) =

[
pH(Ls, Lu)

wu(Ls, Lu)

] 1−h
h

whereH(Ls, Lu) is the total amount of houses supplied by the landlords in a city with Ls skilled labor

and Lu unskilled labor. For the demand side, given our assumption of Stone-Geary preference and

the fact that there are two areas in a city, there will be within-city sorting pattern if we assume that

the housing price in downtown is higher than that of in suburb (e.g., because amenity is higher in the

city center). In the appendix, we supply a microfoundation for such sorting behavior which is built

on a random utility model. For simplicity matter, we assume that there will be perfect sorting such

that skilled workers sort into downtown and unskilled workers sort into the suburb. Given the general

equilibrium prices, workers’ utility maximization problem entails that the demand for houses and

consumption composite by worker types are

hs =
(1− α)(ws − pDH h̄)

pDH
+ h̄, cs =

α(ws − pDH h̄)

P
; hu =

(1− α)(wu − pSH h̄)

pSH
+ h̄, cu =

α(wu − pSH h̄)

P

where (pDH , p
S
H) are the housing prices, and we suppress the notations of city sizes for simplicity matter.

Equating the housing supply with the housing demand in each area will pin down the house price in

each city,

Ls

[
(1− α)

ws(Ls, Lu)− pDH(Ls, Lu)h̄

pDH(Ls, Lu)
+ h̄

]
=

[
pDH(Ls, Lu)

wu(Ls, Lu)

] 1−h
h

, (4.1)

Lu

[
(1− α)

wu(Ls, Lu)− pSH(Ls, Lu)h̄

pSH(Ls, Lu)
+ h̄

]
=

[
pSH(Ls, Lu)

wu(Ls, Lu)

] 1−h
h

. (4.2)

Note that the equations above implicitly define (pDH , p
S
H) as a function of (Ls, Lu) conditional on

wages. Substituting the housing prices (pDH , p
S
H) back to the utility function for both types of workers,

we have

Ūs =

(
ws − pDH h̄

P

)α(
ws − pDH h̄

pDH

)1−α

, (4.3)

Ūu =

(
wu − pSH h̄

P

)α(
wu − pSH h̄

pSH

)1−α

. (4.4)

where Ūs and Ūu are constants since workers are freely mobile across space. Hence, the wages and

house prices (ws, wu, p
D
H , p

S
H) of a particular city are jointly pinned down by equations (4.1), (4.2), (4.3),

and (4.4) as a function of the city index/city size (Ls, Lu). That is, (Ls, Lu) are sufficient statistics to

characterize the wages and house prices in a city, conditional on general equilibrium constants Ūs, Ūu,

and P . We establish the following proposition on the behavior of our model by applying the implicit

function theorem and the Cramer’s rule to the system of equations.
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Proposition 1. House prices and wages are increasing in city size, while skill premium is proportional

to the relative skill labor size across cities if necessary housing is sufficiently small in comparison to the

general equilibrium price index, in the sense that,

dpDH
dLs

> 0,
dpDH
dLu

> 0,
dpSH
dLu

> 0;
dws
dLs

> 0,
dws
dLu

> 0,
dwu
dLu

> 0;
dws/wu
dL

∝ Ls
Lu

.

Intuitively, house prices are higher in larger cities because of the congestion force of fixed land

supply. In turn, wages must also be higher in larger cities to compensate for the higher living costs.

The skill premium is positively related to the skill composition of a city and is unclear ex ante if it

increases with city size. Empirically, it is increasing with respect to city size such that skill premium is

higher in larger cities (Davis and Dingel, 2019; Diamond, 2016; Ma and Tang, 2018). Accommodating

this empirical regularity is critical for our quantitative exercise, as quality choices of firms will be

affected by the skill premium in our model.

4.4 Production and Quality

Similar to Gaubert (2018), we assume that a firm with innate productivity z uses capital and labor to

produce a variety with quality q in sector j of a city (Ls, Lu) with total population L = Ls + Lu. In

particular, we assume that the production function is

yj(z, L.q; sj) = kγj `(q, ϕ)1−γj

where ϕ ≡ ϕ(z, L, q; sj) is a labor-augmenting firm productivity that will be explained in the next

section and ` is the effective labor composite that combines high-skill and low-skill local labor imper-

fectly

` =

[
χu(q, ϕ)

1
σL `

σL−1

σL
u + λ

1
σL χs(q, ϕ)

1
σL `

σL−1

σL
s

] σL
σL−1

.

The interpretation of our specification of the production function is as follows. σL > 1 measures

the degree of substitution between skilled labor and unskilled labor. λdenotes the relative importance

of effective skilled labor in the production. χu(q, ϕ) and χs(q, ϕ) capture the productivity of workers

in a firm of productivity ϕ(z, L, q; sj) to produce outputs with quality q. In particular, we assume that

∂χζ(q, ϕ)/∂q < 0 so that firms find it costly to upgrade product quality. We also assume ∂χζ(q, ϕ)/∂ϕ >

0 and χs(q, ϕ)/χu(q, ϕ) is increasing in ϕ, so that more productive firms face lower marignal cost and

also employ more skilled labor.8 In addition, we follow Fieler et al. (2018) in assuming that to produce

a variety with higher quality q, a firm has to employ relatively more skilled workers. Taking the ratio

over the factor demand of two labor types, the expression for skill intensity can be written as

`∗s(z, Ls, Lu)

`∗u(z, Ls, Lu)
= λ

χs(q, ϕ)

χu(q, ϕ)

[
ws(Ls, Lu)

wu(Ls, Lu)

]−σL
,

8In the empirical implementation, however, we allow that χs(q, ϕ)/χu(q, ϕ) can be decreasing in ϕ
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which is increasing in the importance of skilled labor, increasing in the targeted level of quality as long

as skilled workers are relatively more productive in higher quality output χs(q, ϕ)/χs(q, ϕ) > 0, in-

creasing in the productivity of the firm ϕ, and decreasing in skill premium in the located city (Ls, Lu).

Holding everything else constant and without considering the agglomeration effect on productivity,

firms tend to choose a lower skill intensity in a larger city since skill premium is higher in big cites.

In addition, we assume that there is a fixed cost for quality upgrading fqq which is increasing in

the choice of quality q. Denote the optimal choice of factors as (k∗, `∗s, `
∗
u), the total profit of a firm z

producing variety of quality q in sector j of a city (Ls, Lu) is then

π(k∗, `∗s, `
∗
u;Ls, Lu, q) = r∗j (z, Ls, Lu)− [rk∗ + ws(Ls, Lu)`∗s + wu(Ls, Lu)`∗u]− fqq

4.5 Productivity and Agglomeration

Following Gaubert (2018), we assume that productivityϕ(z, L, q; sj) of a firm z located in a city (Ls, Lu)

is increasing in the innate efficiency z. There is also local agglomeration externality related to the total

size of labor in the located city. The key assumption to generate sorting pattern due to agglomeration

is that ϕ(·) presents a strong complementarity between agglomeration and innate efficiency, where sj

captures the sectoral heterogeneity of the log-supermodular forces.

Assumption 1. ϕ(z, L, q; sj) is strictly log-supermodular in the size of labor L = Ls + Lu and firm

innate efficiency z, and is twice differentiable such that

∂2 logϕ(z, L; sj)

∂L∂z
> 0.

Our assumption that ϕ is only related to the total labor size L = Ls + Lu but not the skill com-

position is too strong and ad-hoc. However, we are only able to do this because there is no prior

structural estimates on the traditional agglomeration parameters and the log-supermodular forces

for both skilled and unskilled population size in the literature. In addition, we lack the city infor-

mation to implement a proper structural estimation for these parameters. Nevertheless, we will also

examine two extensions of our benchmark model and make sure that the quantitative implications

are not too different from our benchmark model. The first extension is that we assume the benefits

associated with agglomeration is solely from skilled labor. In the second extension, the agglomeration

forces associated with skilled labor will be larger than that of unskilled labor. The emphasis on skilled

labor is well grounded in the literature.

4.6 Entry and Location Choice

We assume that in order to enter into production, firms pay fE fixed cost in terms of the final con-

sumption composite. After entry, they draw an innate efficiency z from a distribution F (·). Once they

draw the innate efficiency, they will choose a city (Ls, Lu) to produce goods with quality q of their
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choosing.

4.7 Firm’s Problem

Formally defined, the firm’s problem is to choose optimal amount of factors, level of quality, and labor

sizes of a city (k∗, `∗s, `
∗
u, q
∗, L∗s, L

∗
u), in order to maximize its profits. To analyze the optimal behaviors

of firms, we break down their decisions into three steps. In the first step, we assume that conditional

on demand, quality, and the city it locates in, a firm optimally chooses the amount of factors (k∗, `∗s, `
∗
u)

to maximize profit. Given the assumptions and the CES preference, we can show that the consumer

demand for variety z with quality q is

cdj (z; q) = Φj(z, q)

[
pj(z; q)

Pj

]−σj Xj

Pj

where Xj is the aggregate expenditure on sector-j good and Pj is the sectoral ideal price index

Pj =

[∫
Φj(z

′; q′)pj(z
′; q′)1−σjdz′

] 1
1−σj

From the cost minimization problem, the input cost function for producing one unit of output is

κj(z; q) =
rγjw1−γj

γ
γj
j (1− γj)1−γj

where w(q, ϕ, Ls, Lu) =
[
χu(q, ϕ)wu(Ls, Lu)1−σL + λχs(q, ϕ)ws(Ls, Lu)1−σL

] 1
1−σL .

Given the input cost function, the firm’s problem is then to set prices that maximizes its operational

profit,

max
pj

πj(z; q) = [pj(z; q)− κj(z; q)]︸ ︷︷ ︸
per uint profit

[
pj(z; q)

Pj

]−σj Φj(z, q)Xj

Pj︸ ︷︷ ︸
demand

Since the market structure is monopolistic and the preference is CES, firm pricing must that it charges

a constant markup σj
σj−1 over the unit input cost. Substituting this into the operational profit function,

we have

π∗j (z; q, Ls, Lu) =
1

σj

[
σjκj(z; q)

σj − 1

]1−σj
Φj(z, q)P

σj−1
j Xj

= Υ1j
Φj(z, q)

w(q, ϕ, Ls, Lu)(1−γj)(σj−1)
P
σj−1
j Xj

where Υ1j collects the sector-specific constants,

Υ1j = σ
−σj
j

[
(σj − 1)γ

γj
j (1− γj)1−γjr−γj

]σj−1
.
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In the second step, conditional on the city size of location, firms optimally choose product quality

to maximize their profits q∗ = argmax
q≥0

π∗j (z; q, Ls, Lu)− fqq, where π∗j (z; q, Ls, Lu) is the optimal profit

computed in the first step and fqq captures the fixed costs of quality upgrading. From the first-order

condition, the optimal level of quality q∗ chosen by firm z is characterized by the following equation,

π∗j (z; q, Ls, Lu)

 1

Φj(z, q)

∂Φj(z, q)

∂q︸ ︷︷ ︸
∆ in sales due to higher q

− (1− γj)(σj − 1)

w(q, ϕ, Ls, Lu)

∂w(q, ϕ, Ls, Lu)

∂q︸ ︷︷ ︸
∆ in cost due to quality upgrading

 = fq

In practice, we will only be able to solve for the optimal quality choices numerically if fq = 0. To see

this, note that one must know all the general equilibrium quantities in order to solve for the individual

optimal choices above. However, the general equilibrium quantities can only be known after solving

for the individual choices. This poses an insurmountable computational burden. To circumvent this

issue, we set fq ≈ 0 which is supported by the empirical estimate of 4.7 × 10−5 in Fieler et al. (2018)

using Colombian data, so that the first-order condition reduces to

1

Φj(z, q)

∂Φj(z, q)

∂q
− (1− γj)(σj − 1)

w(q, ϕ, Ls, Lu)

∂w(q, ϕ, Ls, Lu)

∂q
= 0.

Solving the reduced first-order condition only requires information on the choice of city sizes

(Ls, Lu) and is independent of the general equilibrium quantities. This is essentially the key feature

in Gaubert (2018) that makes a quantitative model computationally feasible. Invoking the implicit

function theorem and the second-order condition for maximizing π with respect to q, we can assess

the impact of changes in firm efficiency z on the quality choice q∗. Proposition 2 summarizes our

findings.

Proposition 2. Conditional on the cities that the firms are located in and the parameterization of

ϕ(z, L; sj), optimal choice of quality increases with firm innate efficiency z such that ∂q
∗

∂z > 0.

Similarly, we can also show that conditional on city size, firm’s choice of quality will be increasing

in the size of cities. We state this result more formally in Proposition 3.

Proposition 3. Conditional on its innate efficiency, a firm will choose a higher quality in a larger city

if the increase in city size induces the firm to hire more skilled workers, in the sense that,

∂q∗

∂L
> 0, if and only if

∂χs/∂L

χs/L
− ∂χu/∂L

χu/L
> (σL − 1)

(
∂ws/∂L

ws/L
− ∂ws/∂L

ws/L

)
.

4.8 Firm Sorting to Cities

In the third step, firms choose their location to maximize operation profits.

(Ls, Lu) = argmax
Ls≥0;Lu≥0

π∗j (z; q, Ls, Lu),
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where π∗j (z; q, Ls, Lu) is the optimal profit that a firm z earns in a city of size (Ls, Lu). Maximizing

this profit is then equivalent to maximize w(q, ϕ, Ls, Lu)(1−γj)(1−σj). The first-order conditions with

respect to Ls and Lu are

∂w(q, ϕ, Ls, Lu)

∂ϕ(z, L; sj)

∂ϕ(z, L; sj)

∂Ls
≥ ∂w(q, ϕ, Ls, Lu)

∂Ls

∂w(q, ϕ, Ls, Lu)

∂ϕ(z, L; sj)

∂ϕ(z, L; sj)

∂Lu
≥ ∂w(q, ϕ, Ls, Lu)

∂Lu

which implicitly determine the optimal choice of city size in equilibrium. Note that, we do not im-

pose any binding first-order condition because of two reasons. First, depending on the set of available

cities, optimal solution may not be available for choosing. Second, by our parameterization of the

productivity term, the benefits from agglomeration are the same for skilled labor zie and unskilled la-

bor size, ∂ϕ/∂Ls = ∂ϕ/∂Lu. Optimal choices of city size by firms then require that the agglomeration

benefit to be equated with marginal cost which is how a larger city size will push up the house price

and hence wages. However, it often is the case that the size of skilled workers will have a different

impact on wages than that of unskilled labor. It is entirely possible that one effect will dominate an-

other and firms will want to choose a city with a larger size of one particular type of population to reap

the agglomeration benefit while avoiding a city with more costly production. However, the optimal

choices made by firms in the partial equilibrium will be inconsistent with the general equilibrium

quantities, in particular, the local labor market clearing conditions. Regardless the firm’s choice of

city size, the wages for the type of labor that has a higher impact on marginal cost will not be zero in

any city. Thus, in such cities, the supply will not meet the factor demand for skilled labor. General

equilibrium forces will adjust to make sure that the local labor markets clear.

Nevertheless, it is clear that firms with higher innate efficiency will choose a larger city in our

model. The proof of this statement relates to arriving at a contradiction if we assume otherwise. We

summarize this claim in the following proposition.

Proposition 4. Firms with a higher innate efficiency will choose to locate in a larger city. That is, sup-

pose there are two firms each with innate efficiency zH and zL. Denote the firms’ choice of city size in

the general equilibrium as (LH∗s , LH∗u ) and (LL∗s , LL∗u ). Then LH∗s ≥ LL∗s and LH∗u ≥ LL∗u if zH > zL.

This proposition is essentially similar to the firm sorting behavior established in Gaubert (2018)

which we built our model upon, in the sense that firms that have a higher innate productivity will

choose to locate in a larger city.

Given the optimal factor usage decisions, quality upgrading decisions, and city choices. The rev-

enue and the factor demand of a firm z are such that

r̃∗j (z) = σjΥ1j
Φj(z, q

∗)

w(q∗, ϕ, L∗s, L
∗
u)(1−γj)(σj−1)

P
σj−1
j Xj ,

`∗s(z) = Υ2j
λχs(q

∗, ϕ)Φj(z, q
∗)

w(q∗, ϕ, L∗s, L
∗
u)(1−γj)(σj−1)+1−σLwσLs

P
σj−1
j Xj ,
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`∗u(z) = Υ2j
χu(q∗, ϕ)Φj(z, q

∗)

w(q∗, ϕ, L∗s, L
∗
u)(1−γj)(σj−1)+1−σLwσLu

P
σj−1
j Xj .

where Υ2j = (σj − 1)(1− γj)Υ1j .

Proposition 5. In equilibrium, suppose (LH∗s , LH∗u ) > (LL∗s , LL∗u ), then it must be that zH ≥ zL. In

addition, r̃∗j (zH) ≥ r̃∗j (zL) and π∗j (zH) ≥ π∗j (zL).

4.9 General Equilibrium

We follow Gaubert (2018) and Tian (2018) to define a spatial general equilibrium as follows. For-

mally, we define a spatial general equilibrium as a city size distribution {Ls, Lu}, a set of production

decisions {pj(z)} and quality choices {qj(z)} made by a mass of Mj heterogeneous firms indexed

by z in each sector j, a set of location choices {Ls,j(z), Lu,j(z)} made by firms, a set of wages for

skilled and unskilled workers in each city {ws(Ls, Lu), wu(Ls, Lu)}, a set of housing prices in each city

{pH(Ls, Lu)}, a set of price index Pj , and the utility of workers (Ūs, Ūu) such that,

1. Given wages, house prices, and price indices, skilled and unskilled workers in each city maxi-

mize their utilities.

2. Given wages and house prices, landlords maximize their profits from developing houses.

3. Given the city size distributions, firms in each sector j decide their optimal choice of locations

{Ls,j(z), Lu,j(z)} and optimal production plans {pj(z), qj(z)}.

4. Goods markets clear. That is in each sector j, aggregate demand is equal to the aggregate sec-

toral outputs

Xj = σjΥjP
σj−1
j XjMj

∫
z

Φj(z, q)

w(q, ϕ, Ls, Lu)(1−γj)(σj−1)
dFj(z).

5. Local labor markets clear. That is in each city (Ls, Lu), the markets for skilled and unskilled labor

clear, ∫ Ls

L0s

nfLs(n)dn =

S∑
j=1

Mj

∫ ∞
0

1j(Ls, Lu, z)ls(z)dFj(z), ∀Ls > L0s.

∫ Lu

L0u

nfLu(n)dn =

S∑
j=1

Mj

∫ ∞
0

1j(Ls, Lu, z)lu(z)dFj(z), ∀Lu > L0u.

6. National labor markets for skilled and unskilled labor clear. That is,

L̄s =

S∑
j=1

Υ2jP
σj−1
j XjMj

∫
z

λχs(q, ϕ)Φj(z, q)

w(q, ϕ, Ls, Lu)(σj−1)(1−γj)+1−σLwσLs
dFj(z).
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L̄u =

S∑
j=1

Υ2jP
σj−1
j XjMj

∫
z

χu(q, ϕ)Φj(z, q)

w(q, ϕ, Ls, Lu)(σj−1)(1−γj)+1−σLwσLu
dFj(z) + L̄u(1− h)(1− α).

7. Capital market clears by Walras’s Law.

8. The ex-ante expected profit of a firm is zero in each sector j, due to free entry,

fEP = Υ1jP
σj−1
j Xj

∫
z

Φj(z, q)

w(q, ϕ, Ls, Lu)(1−γj)(σj−1)
dFj(z).

9. Spatial no-arbitrage condition holds, such that each type of workers receive the same amount

of utility regardless of the city (Ls, Lu) that they are located in.

5. Parameterization and Calibration

In order to assess the quantitative behavior of the model, we first parameterize the firm productivity

term following Fieler et al. (2018) and Gaubert (2018),

logϕ(z, L; sj) = aj logL+ log(z) (1 + logL)
sj + εi,L.

We parameterize the term ϕ(z, L; sj) following Gaubert (2018). The terms are identical to her set

up, so we will just rephrase Gaubert’s interpretation of these parameters. aj would capture the tradi-

tional agglomeration forces. The second term would capture the interaction between city size L and

innate efficiency of the firm z, where sector-specific term sj governs the quantitative magnitude of

the interaction. sj > 0 would ensure the log-supermodularity in our assumption. εi,L is a term that

captures city-size and firm specific idiosyncratic shock to productivity. In particular, Gaubert assumes

that firm innate efficiency z follows a truncated log-normal distribution with mean zero and variance

νz,j , while the idiosyncratic productivity shock follows a Gumbel distribution with mean zero and

variance νφ,j .9 10 We also import these assumptions into our model.

Besides the agglomeration parameters, our model also features a set of parameters that character-

ize skill and quality choices. In particular, we parameterize χs(q, ϕ) and χu(q, ϕ) as follows,

χs(q, ϕ) = ϕλ1s exp(λ2sq); χu(q, ϕ) = ϕλ1u exp(λ2uq)

which are partly similar to the set up in Fieler et al. (2018). The interpretations of the parameters are as

follows. First, λ1s and λ1u capture how the productivity of firms accrue to skilled and unskilled work-

ers. If these parameters equal 1, then the ϕλ1s and ϕλ1u terms become the classical labor-augmenting

9The distribution for z is truncated so that log z will be non-negative.
10The assumption of Gumbel distribution can be interpreted as that each firm will draw many independent technological

shocks that follow an exponential distribution. As the firm can only adopt one direction at a time, the maximum of these shocks
would then follow a Gumbel distribution.



24

productivity. In our model, we expect that λ1s > λ1u > 0 as empirical evidences suggest that skilled

labor receives more benefit from agglomeration than unskilled labor does.

Next, λ2s and λ2u define how costly it is to produce higher-quality good using each type of labor.

We expect the sign and magnitude of these parameters to be negative and that λ2s > λ2u. Given

the exponential functional form, this implies that production of quality will reduce the productivity

of workers, and this productivity-dampening effect is stronger for unskilled workers than for skilled

workers. Intuitively, it takes longer time and more effort for workers to produce goods with higher

quality, and this is more so for unskilled workers. We choose the exponential functional form because

it would generate a skill intensity distribution that is close to the data, as similarly noted in Fieler et

al. (2018).11

5.1 Solving the Model

We now present a step-by-step description on the algorithm we used to solve the model, which is also

similar to the algorithm presented in Gaubert (2018).

1. For each sector j, we simulate 8,000 firms with 8,000×200 random variables, where 200 is the

number of cities. The simulations are then transformed to the innate efficiency of firms zi and

firm-city specific idiosyncratic shocks νi,L.

2. We then simulate an initial distribution of city size (Ls, Lu) with the smallest city not smaller

than the ones observed in the data.

3. Compute the local wages and house prices given the size of cities.

4. Given the wages and house prices, compute the entry decision, the optimal location choice, and

the optimal quality choice made by firms over a grid of 200× 200, where we discretize the choice

of quality over the interval of [0,10] with a step size of 0.05.

5. Given firm choices, compute the sectoral quantities Ẽs,j , Ẽu,j , and S̃j as follows

Ẽs,j =

∫
z

λχs(q, ϕ)Φj(z, q)

w(q, ϕ, Ls, Lu)(σj−1)(1−γj)+1−σLwσLs
dFj(z),

Ẽu,j =

∫
z

χu(q, ϕ)Φj(z, q)

w(q, ϕ, Ls, Lu)(σj−1)(1−γj)+1−σLwσLu
dFj(z),

S̃j =

∫
z

Φj(z, q)

w(q, ϕ, Ls, Lu)(1−γj)(σj−1)
dFj(z).

6. Given the sectoral quantities from step 5, compute the general equilibrium quantities {X,Pj ,Mj}
from the following system of equations that represent the goods market clearing condition, the

11Fieler et al. (2018) use a slightly more complicated functional form. Still, our choices are largely similar to theirs.
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national labor market clearing conditions, and the free-entry condition

1 = σjΥ1jP
σj−1
j MjS̃j , for all j ∈ S,

N̄u =

S∑
j=1

Υ2jP
σj−1
j βjXMjẼu,j + N̄u(1− h)(1− α),

N̄s =

S∑
j=1

Υ2jP
σj−1
j βjXMjẼs,j ,

fEP = Υ1jP
σj−1
j βjXS̃j , for all j ∈ S

7. Given the general equilibrium quantities {X,Pj ,Mj}, compute the local labor market demand

for skilled and unskilled labor.

8. If the local labor markets do not clear, then update the city size (Ls, Lu) and go to step 3. If the

local labor markets clear, then stop the algorithm and extract the relevant information.

6. Quantifying the Model

6.1 Data

The dataset we use for our structural estimation is the Annual Survey of Industrial Firms collected by

the National Bureau of Statistics of China (NBSC). In particular, we use the data in year 2004 in our

baseline quantitative analysis. The universe of firms covered in this dataset spans over all manufac-

turing firms, which include both state and non-state enterprises, that generate more than 5 million

RMB in revenue each year. The dataset reports information on the location, capital, output, taxation,

revenue, and education level of the workers in each firm. All firms are codified in 4-digit manufactur-

ing classifications and we merge the information of subsidiaries under the same legal entity, which is

the identifier that uniquely represents an enterprise in the dataset.

Following the existing literature that uses this dataset, we drop observations on firms that do not

meet the following criteria: the number of employees is more than 8 people, total assets less liquid

assets is positive, total assets minus total fixed assets is positive, total assets minus total net fixed

assets is positive, and accumulated depreciation minus current depreciation is positive. The final

sample size of manufacturing firms used in our estimation is 195,384 spanning over thirty 2-digit

Chinese Standard Industrial Classification (CSIC Rev. 2) sectors. We then concord the CSIC sectors

to 17 sectors that are similar to those used in Gaubert (2018) and Caliendo and Parro (2015). The

descriptive statistics on the value added, employment, and proportion of skilled workers with college

education are reported in Table 3. The concordance of sectors from CSIC to our definition of sectors

is detailed in Table A.1 in the appendix.

We obtain the geographic location of firms using postal code reported in the data. A city is defined
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as the prefecture unit in China. We obtain the prefecture-level population from China City Statistic

Year Book in 2004 as a proxy for city size. There are 243 cities in our firm-level dataset. In addition,

our quantitative analysis requires information on the skill composition of a city, which is defined

as the ratio of the skilled to unskilled workers. We compute this figure using the 1% sample of the

2005 Population Census which reports the interviewee’s education level and geographic location. We

define people holding bachelor degree or above as skilled workers and the rest as unskilled workers.

Due to data limitation, we use the 2000 General Population Survey for Hunan, Hubei, Jilin, Yunnan,

Shanxi and Tianjin province to proxy for skill composition in 2005.

Finally, we follow Gaubert (2018) to divide cities into 4 quartiles according to their size. Different

from Gaubert, we define big cities as those cities in the 4th quartile in comparison to the largest cities

that account for 50% of total population. In our sample, defining big cities by the 4th quartile implies

that there are 12 big cities out of 243 cities. In contrast, using Gaubert’s definition of big cities that

represent 50% of population translates to 45 big cities. We report the proportion of firms in each

sector that is located in big cities (4th quartile) in Table 3. It is evident firms from sectors such as

medical, machinery, transport and automotive, electrical, and computer are more likely to hire a high

proportion skilled workers and also more likely to locate in big cities. To further substantiate this

observation, we also plot the city size against the average skill intensity in the city in Figure 2. It is

clear that a firm’s skill employment ratio is positively associated with the city size. This effect is also

robust to industry fixed effects and controlling for other firm-level characteristics.
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Table 3: Summary Statistics

log Value Added log Employment % Skilled Workers

Sector Mean Q1 Q4 Mean Q1 Q4 Mean Q1 Q4 % in Big Cities N

Food 9.89 9.12 10.92 4.74 4.04 5.57 11.3 5.4 22.1 20.9 6,712

Textile 9.80 9.18 10.57 5.01 4.36 5.67 3.8 1.8 8.0 20.2 29,948

Leather 9.90 9.24 10.69 5.20 4.58 5.89 3.3 1.6 6.9 19.9 5,055

Wood 9.52 8.92 10.28 4.60 4.08 5.15 5.5 2.5 11.1 13.5 3,880

Furniture 9.77 9.14 10.53 4.79 4.22 5.46 6.0 3.0 12.2 31.8 2,424

Paper 9.64 9.04 10.47 4.60 4.03 5.30 6.5 3.1 13.3 31.0 12,413

Chemicals 9.93 9.21 10.88 4.32 3.69 5.11 11.9 5.6 23.5 22.3 15,969

Medical 10.12 9.31 11.08 4.87 4.25 5.58 22.7 11.9 38.6 25.7 3,801

Plastic 9.66 9.06 10.45 4.50 3.91 5.19 7.0 3.4 14.3 28.0 12,902

Minerals 9.78 9.13 10.60 4.83 4.20 5.48 6.4 2.9 13.3 17.7 16,164

Basic metals 9.96 9.23 10.93 4.50 3.91 5.22 7.4 3.6 15.0 25.5 20,518

Machinery 9.68 9.08 10.51 4.55 3.99 5.22 10.5 5.0 20.6 24.7 24,953

Transport 9.97 9.24 10.95 4.79 4.19 5.58 10.8 5.2 21.2 31.1 9,365

Electrical 9.96 9.25 10.92 4.67 4.04 5.42 10.3 5.0 20.5 30.8 12,781

Computer 10.10 9.31 11.20 5.04 4.36 5.94 13.5 6.1 30.5 38.8 10,058

Energy 10.46 9.42 11.57 5.39 4.53 6.15 22.2 12.7 34.5 15.5 5,066

Others 9.67 9.08 10.42 4.98 4.30 5.69 4.5 2.1 9.7 20.8 3,825

6.2 Moments and Identification

We structurally estimate the model sector by sector using the Simulated Method of Moments (SMM)

estimator which minimizes the weighted distance between simulated moments generated by our

model and the empirical moments in the data. The set of parameters that we wish to estimate are

Θ = {aj , sj , νR,j , νz,j , λ1s,j , λ1u,j , λ2s,j , λ2u,j}. In specific, we use the following set of 17 targeted mo-

ments to identify these parameters. In general, we want to find those moments which are sensitive

to the change in parameter value in simulation, so as to provide identification. Furthermore, these

parameters can be partitioned into two disjoint sets, Θ1 = {νR,j , νz,j} and Θ2 = Θ − Θ1. The first set

of parameters, Θ1, does not interact with any city-specific information given the setup of our model.

In contrast, the second set of parameters will interact with city-specific labor sizes. As a consequence,

the relevant simulated moments will also behave differently with different size of cities. Hence, we
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Figure 2: Correlation of skill intensity and city size
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shall adopt simulated moments by city quartiles for the second set of parameters but not for the first

set of parameters. In particular, we define city quartiles as the 25th, 50th, and 75th percentiles by city

size. The moments are reported as follows and the choices are partly similar to those in Fieler et al.

(2018) and Gaubert (2018).

1. Distribution of skill intensity by city size. We compute the average skill intensity (proportion

of skilled workers employed by firms) in each quartile of cities and use these figures as the first

set of moments {m1
q}q=1,2,3,4 to identify {λ1s, λ1u, λ2s, λ2u} ∈ Θ2.

2. Distribution of value added by city size. We compute the share of total value added and average

value added by city quartiles and use them as the second set of moments {m2
q}q=1,2,3,4 to identify

{aj , sj} ∈ Θ2. Intuitively, both the agglomeration forces and the log-supermodularity forces

affect firm’s profitability in big and small cities. Therefore, value added across cities will be a

sensitive measure to changes in these parameters.

3. Distribution of firm size. We use normalized total revenue as a proxy for the size of firms. Then

we compute the normalized value added in the 25th, 50th, 75th, and 90th percentiles and use

them as the third set of moments {m3} to identify {νR,j , νz,j} ∈ Θ1. Intuitively, firm heterogene-

ity will affect the distribution of firm size. Therefore our choice of moments will be sensitive to

the changes of these parameters.

We then estimate the parameters Θ̂ by targeting the empirical moments using an SMM estimator,

minΘ̂ [m − m(Θ̂)]′W[m − m(Θ̂)], where m(Θ̂) is the vector of simulated moments from the model

under parameter values Θ̂, m is the vector of empirical moments, and W is the weighting matrix. For

the benchmark estimation, we use the identity matrix as the weighting matrix. An alternative estimate

using a generalized variance-covariance matrix W by bootstrapping the sample with replacement for
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2,000 times following Eaton et al. (2011) is reported in the appendix for robustness check purposes. In

addition, optimization involving an SMM objective is usually neither convex nor concave. Thus, we

use Simulated Annealing algorithm which is a probabilistic global algorithm for our estimation. This

algorithm is known for its accuracy and is widely used in the literature (Eaton et al., 2011; Gaubert,

2018; Antràs et al., 2017). In practice, we first search over a grid of parameters space to find an initial

combination of parameter values that produces a relatively small loss. We then use these parameter

values as the starting point and apply the annealing algorithm. This procedure speeds up our esti-

mation and is robust to our choice of initial values. Starting the annealing algorithm from another

random grid point converges to a set of similar estimates.

6.3 Structural Estimates

We will shortly update our structural estimates of the parameters with corresponding standard errors.

We did not impose any restriction on the values of the parameters in the estimation. The values of the

estimated parameters for {aj , sj , νR,j , νz,j} are similar to the prior estimates in the existing literature

such as Gaubert (2018) and Tian (2018). Our estimates for the traditional agglomeration parameter

aj and the parameter that governs the log-supermodular complementarity force sj are positive for all

sectors except for the manufacturing of plastic and food. The standard interpretation of the negative

estimates in the literature is that these are consider mature sectors and hence are associated with

different agglomeration forces Gaubert (2018).

We now discuss the estimates for {λ1s,j , λ1u,j , λ2s,j , λ2u,j}which is the set of parameters new in our

model in comparison to the literature. Our estimates suggest that the productivity advantage of big

cities is skill-biased, as the estimates are positive and λ̂1s is greater than λ̂1u in all sectors. This echos a

strand of literature which argues that agglomeration forces benefit skilled workers more, for example

because high-ability individuals learn better from idea exchange (Davis and Dingel, 2019). In par-

ticular, our estimates suggest that agglomeration disproportionately benefit skilled workers in med-

ical and computer sectors, partly due to the fact that these sectors require extensive idea exchange

among engineers and professionals. Finally, our estimates of λ̂2s and λ̂2u suggest that production of

higher-quality good is costly and requires employing more labor, since both λ̂2s and λ̂2u are negative.

Our estimates also imply that production of higher quality good is intensive in skilled labor, since

λ̂2s > λ̂2u.12

12Given our parameterization of the model, skill intensity of a firm z in a city (Ls, Lu) can be written as

`∗s(z, Ls, Lu)

`∗u(z, Ls, Lu)
= λ

χs(q, ϕ)

χu(q, ϕ)

[
ws(Ls, Lu)

wu(Ls, Lu)

]−σL
= λϕλ1s−λ1ue(λ2s−λ2u)q

[
ws(Ls, Lu)

wu(Ls, Lu)

]−σL
.

It implies to produce a higher-quality good, a firm will employ relatively more skilled labor if and only if λ2s − λ2u > 0.
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6.4 Quantitative Results

We feed our parameter estimates into the model and extract average choice of product quality of the

simulated firms by city quartiles. We find that our model generates significant quality differences

across space. On average, product quality in the big cities (the 4th quartile) is 22.9% higher than that

of the smallest cities (the 1st quartile). There is also significant sectoral heterogeneity in the quality

specialization across space. For manufacturing sectors such as medical equipment, transport and

automotive, food, and furniture, the average product quality difference between big and small cities

can be as high as 27.4% to 59.5%. We report the entire distribution of quality choices across all firms

located in different city quartiles in Figure 3.

Figure 3: Quality distribution in big vs. small cities, sector by sector
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To further assess the contribution of firm sorting and traditional agglomeration benefit in deter-

mining the quality differences across space, we follow Gaubert (2018) and consider the following re-

gression. We regress each simulated firm’s choice of quality on the size of city that it locates in with

industry fixed effect. We then repeat the exercise in a counterfactual where we shut down the sorting

of firms by setting the efficiency of every firm to the average efficiency in the benchmark model and

compute the reallocation of economic activities across space. The results are reported in Table 4. In
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column 1 where we have the full model, a 10% increase in city size translate to a 1% increase in qual-

ity. In contrast, in column 2 where sorting of firms is shut down, the effect is dampened and is only

half of the effect in the full model. This suggests that sorting of firms accounts for half of the quality

differences in big cities while traditional agglomeration forces account for the other half.

Table 4: Quality choices in different models

Dep. variable: Quality Choices

Full Model W/O Sorting

log City Size 0.094*** 0.049***

(0.001) (0.000)

Sectoral FE Yes Yes

N 85,000 85,000

R2 0.540 0.979

6.5 Goodness of Fit: Within-Sample and Out-of-Sample

We first evaluate the fit of our model by comparing the simulated moments in the model to the em-

pirical moments in the data. A summary of the results is reported in Table 5, where we aggregated

moments across sectors. We also report the goodness of fit sector by sector in Appendix D. In general,

our model fits the data well. Our model succeeds in generating a similar average skill intensity and

mean value added (both normalized by the mean) across city quartiles in comparison to the corre-

sponding statistics in the firm-level data. Our model also performs reasonably in generating a firm

size distribution and value added share that is close to the data, although our model implies a slightly

larger value added share in the big cities (4th quartile) and a larger revenue share among the biggest

cities (90th percentile).

Our model also succeeds in fitting data moments out-of-sample. First, the city-size distribution

generated by our benchmark model is able to replicate the distribution in the data. As shown in Figure

4, the city-size distribution implied by our model, which consists of the sum of firm’s factor demand

for skilled labor and unskilled labor in each city, is largely consistent with the pattern in the data.

Our calibrated city-size distribution also roughly follows Zipf’s Law with a slope of −1.3. (Zipf’s law

predicts that the slope of log rank-size regression is −1). One reason that city-size distribution in

China does not perfectly follow Zipf’s law is that the administrative boundary of each prefecture does

not fit a commute-based definition (Dingel et al., 2019). As a sensitivity check, we will also repeat our

analysis using the alternative boundary of cities based on the light-based metropolitan definition in

Dingel et al. (2019).
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Table 5: Goodness of fit for targeted moments

Quartiles & Percentiles

Moments Q1 Q2 Q3 Q4 P90

Mean skill intensity Model 0.852 1.018 0.964 1.166 -

Data 0.961 0.973 0.988 1.080 -

Mean value added Model 0.998 0.961 1.010 1.036 -

Data 0.993 0.997 0.997 1.013 -

Value added share Model 0.128 0.104 0.132 0.637 -

Data 0.209 0.207 0.292 0.293 -

Firm size (revenue) Model 0.397 0.103 0.139 0.114 0.247

Data 0.250 0.250 0.250 0.150 0.100

Figure 4: City size distribution, model and data
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7. Counterfactuals

We now evaluate the general equilibrium impact of a spatial policy that is frequently employed in

developing economies such as China. The policies that we aim to evaluate are policies that regulate

the use of land in a city such as zoning restrictions. Matching these policies to our model counterparts,

land use regulation is approximated by the land use intensity in the production of housing. Whenever

there are relatively few land use regulations, the land use intensity coefficient should be smaller as it

is easier for developers to acquire land in their housing production. In the counterfactual, we shock

the coefficient such that the coefficient for the high-end housing market becomes 20% smaller than

the original value. The resulting changes are reported in Table 6. In overall, average quality across

cities has increased by 5.5% while the aggregate welfare of all residents has increased by 20%.

Table 6: Counterfactual of relaxing land use regulations by 20%

Change in variables (%)

City quartile ∆q ∆ws ∆wu ∆pDH ∆pSH ∆P ∆W ∆W̃

Q1 - −8.3 −0.3 −47.9 2.1 - - -

Q2 - −9.0 −0.1 −49.9 0.8 - - -

Q3 - −9.7 −0.1 −51.3 0.8 - - -

Q4 - −11.7 0.6 −56.2 −2.3 - - -

Overall 5.5 −9.7 0.0 −51.3 0.4 −18.7 20.0 6.2

However, there are two channels that a relaxed land use regulation can affect welfare in our model.

The first channel is that an increase in the supply of housing directly enters individuals’ utility func-

tion. In addition, the increase in housing supply also alleviate the congestion forces and flattens the

skilled wage schedule across cities. To disentangle the two effects on welfare, we follow Gaubert (2018)

to first compute the reallocation of economic activities across space under the new intensity parame-

ter. We then hold the land intensity parameter fixed at the old value and recompute the equilibrium in

the housing market. The resulting indirect welfare effect is then the “pure” welfare effect resulted from

changes in sorting alone. The direct welfare effect from increase in housing supply is isolated through

the design of our counterfactual. We find that the indirect welfare for individuals is 6.2% higher, while

the direct welfare is 13.8% higher.
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8. Conclusion

In this paper, we study the pattern of quality specialization across Chinese cities through the lens of

firm sorting and agglomeration. Extending the framework in Gaubert (2018) with two skill types and

quality choices, we show theoretically both firm sorting and productivity advantage of agglomeration

will induce quality upgrading. We structurally estimate and quantify the model using a plant-level

dataset spanning the universe of manufacturing firms. We find that on average, product quality in

big cities is 23% higher than that of small cities. A decomposition analysis shows that sorting and

agglomeration each explains half of the quality pattern. Armed with the structural estimates, we then

evaluate a potential policy that reduces land use regulations. We find that a 20% relaxation of land

intensity induces a 5.5% increase in quality across cities and a 6.2% indirect welfare benefit. For fu-

ture work, one could further quantify the relative magnitude of both the demand and supply-side

explanations, as well as incorporating input-output linkages in the present model.
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Appendices

A. Data and Measurement

A.1 Data

We use two datasets, both of which are collected by the National Bureau of Statistics of China. The first

dataset is the Annual Survey of Industrial Firms (ASIF). This dataset provides firm-level information

on sales, profits, taxes, investment, intermediate input expenditure, labor expenditure, and education

level of workers. The second dataset is the Industrial Firms Product Quantity Database (IFPQD) which

contains information on the physical quantity of outputs produced by firms. Both datasets cover a

similar universe of firms and share the same identifier. We combine the two databases in order to

match the quantity data with the sales data. We use the data for three purposes. First, we construct an

unbalanced panel of firms using the ASIF and use them to estimate production functions of the firms,

in order to obtain an estimate of firm productivity. Second, we use both the ASIF and the IFPQD to

extract information on unit value and market share of products. These information are then used in

establishing some stylized facts on firm heterogeneity and quality specialization in Section 3. Lastly,

we use the plant-level information in the ASIF to structurally estimate a spatial-equilibrium model.

We then use the unit value information extracted from both the ASIF and the IFPQD database to

externally validate our estimated model.

We will now describe the handling of each dataset first before discussing the details on how we

match the two databases.

A.1.1 Annual Survey of Industrial Firms

The ASIF dataset we used covers a time period from 2000 to 2007. Although the ASIF dataset is also

available for recent years, the data in this time period is well-known for its high quality and have also

been the focus of many other research. This dataset covers the universe of manufacturing firms in

China with an annual gross sales more than 5 million RMB. Both state-owned and private firms are

included in the survey. We follow Brandt et al. (2012) to construct an unbalanced panel. Following

their approach, we first match the firms by their firm ID if available, or else by firm names if available,

or else by the name of legal person representative if available, or else by telephone number registered

by the firm. The attrition rate of the matching each two-consecutive years ranges from 9.2% to 23.7%

and exhibits a decreasing time trend.

A.1.2 Industrial Firms Product Quantity Database

The IFPQD dataset we used covers a similar universe of manufacturing firms from 2000 to 2007. This

dataset provides 5-digit product-level quantity information of each firm. We merge the product infor-
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mation and compute the average unit value of a firm across all products that it produces, since in our

model a firm only produce one variety and all varieties in the same sector are essentially competing

with each other. To merge the IFPQD dataset with the ASIF dataset, we match the firms by firm ID if

available, or else by firm name. The attrition rate is around 60%.

A.2 Sector Concordance

We concord the data into a two-digit sector definition that is similar to those in Gaubert (2018) and

Caliendo and Parro (2015). The reason that we do not directly use the 2-digit sector definition in

the Chinese classification is that there are several dozens of such sectors. As the estimation of each

sector takes about 1 day, it would be computationally infeasible to estimate the model at this level of

aggregation. Hence, we decided to follow the sector definition in Gaubert (2018) and Caliendo and

Parro (2015) as much as possible which is primarily based on ISIC sector classifications. The details

of our concordance is summarized in below as Table A.1 .

Table A.1: Concordance of Sectors

Number Industry Description CSIC Rev. 2

1 Food Food, beverages, and tobaccos 14-16

2 Textile Textiles and apparels 17-18

3 Leather Leather, furs, footwear, and related products 19

4 Wood Wood and products of wood, except furniture 20

5 Furniture Furniture 21

6 Paper Pulp, paper, paper products, printing, and publishing 22-24

7 Chemicals Chemical materials and chemical products 26, 28

8 Medical Medical and pharmaceutical products 27

9 Plastic Rubber and plastic products 29-30

10 Minerals Nonmetallic mineral products 31

11 Basic metals Basic metals and fabricated metals 32-34

12 Machinery Machinery and equipment 35-36

13 Transport Transport equipment and automotive 37

14 Electrical Electric equipment and machinery 39

15 Computer Computer and office machinery 40-41

16 Energy Supplying of energy 44-46

17 Others Manufacturing n.e.c. 42
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B. A Microfoundation for Within-City Worker Sorting

Suppose that in a city with Ls skilled workers and Lu unskilled workers, the wages of the workers are

ws and wu respectively. We follow our assumption in the benchmark model that the city consists of

two separated areas downtown (D) and suburb (S) each with 1 unit of land. Furthermore, assuming

that the workers have Stone-Geary preference over consumption and housing in the sense that they

must consume a minimum amount of floor space h̄,

U = v

(
C

α

)α(
H − h̄
1− α

)1−α

.

where v is a random utility component that is drawn from a Frechet distribution with a shape param-

eter θ and a scale parameter normalized to 1. The budget constraint of a worker of type ζ ∈ {s, u}who

lives in location n ∈ {D, S} is PCn + pnHH
n = wζ . Without loss of generality, we can label the areas

such that pDH ≥ pSH . The fact that house prices in the downtown area is higher than that in the suburb

area could be due to a variety of reasons such as higher amenity, transportation cost, etc (Tsivanidis,

2018; Couture et al., 2019). We omit all these factors here for simplicity. Our model for the microfoun-

dation can be considered as a special case of the within-city spatial sorting model in the literature

(Tsivanidis, 2018; Couture et al., 2019) and yield similar conclusions.

Given these assumptions, we can show that the indirect utility of a ζ-type worker living in n is

Unζ = v
wζ − pnH h̄

(pnH)
1−α

Pα
≡ vŪnζ .

We show that in equilibrium, skilled workers sort more into downtown areas while unskilled workers

choose to live more in suburb. The intuition is that, as a consequence of the Stone-Geary preference,

richer workers will spend a smaller share of their income on housing and will be more likely choose

to live in an area with a higher housing price. The exact argument proceeds as follows.

Given the Frechet assumption, we can write the fraction of workers with wage wζ that choose to

live in the downtown area as,

πζD = Prob
{
vDŪ

D
ζ ≥ vSŪSζ

}
= Prob

{
vS ≤

ŪDζ
ŪSζ

vD

}
=

∫ ∞
0

exp

−
(
UDζ
USζ

vD

)−θ dF (vD) =
1(

ŪSζ /Ū
D
ζ

)θ
+ 1

Our goal is to show that skilled workers sort more into downtown areas than unskilled workers do, i.e.,

πsD > πuD. To show this, we first note that

πsD
πuD

=

(
ŪSu /Ū

D
u

)θ
+ 1(

ŪSs /Ū
D
s

)θ
+ 1

> 1 if and only if
ŪSu /Ū

D
u

ŪSs /Ū
D
s

> 1
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Substituting the expressions for Ūnζ , the second expression can be written as

ŪSu /Ū
D
u

ŪSs /Ū
D
s

=
ŪDs /Ū

D
u

ŪSs /Ū
S
u

=
(ws − pDH h̄)/(wu − pDH h̄)

(ws − pSH h̄)/(wu − pSH h̄)
=

(ws − pDH h̄)/(wu − pDH h̄)

(ws − pDH h̄+ ∆)/(wu − pDH h̄+ ∆)
> 1,

where the inequality is true because ∆ = pDH h̄ − pSH h̄ > 0 and ws − pDH h̄ > wu − pDH h̄. Therefore we

conclude that πsD > πuD, that is, skilled workers are more likely to live in downtown area than unskilled

workers.
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C. Proofs and Derivations

C.1 Proof of Proposition 1

We should first notice that Lu is sufficient to compute wu and pSH . Hence, we can further simplify

equations and move the LHS of relevant conditions to the RHS. The transformed expressions are

F1 ≡ Lu
[
(1− α)

wu − pSH h̄
pSH

+ h̄

]
−
[
pSH
wu

] 1−h
h

= 0

F2 ≡
(
wu − pSH h̄

) 1

Pα
1

(pSH)1−α − Ūu = 0

By implicit function theorem, we can totally differentiate these expressions by Lu and obtain

∂F1

∂wu

∂wu
∂Lu

+
∂F1

∂pSH

∂pSH
∂Lu

+
∂F1

∂Lu
= 0,

∂F2

∂wu

∂wu
∂Lu

+
∂F2

∂pSH

∂pSH
∂Lu

+
∂F2

∂Lu
= 0

We can rearrange terms and write the above system of equations in matrix form as

 ∂F1

∂wu
∂F1

∂pSH

∂F2

∂wu
∂F2

∂pSH


∂wu∂Lu

∂pSH
∂Lu

 =

− ∂F1

∂Lu

− ∂F2

∂Lu

 .
Solving the unknown partial derivatives requires to solve for the following,

∂wu∂Lu

∂pSH
∂Lu

 =

 ∂F1

∂wu
∂F1

∂pSH

∂F2

∂wu
∂F2

∂pSH


−1 − ∂F1

∂Lu

− ∂F2

∂Lu

 =
1

∂F1

∂wu
∂F2

∂pSH
− ∂F1

∂pSH

∂F2

∂wu

 ∂F2

∂pSH
− ∂F2

∂pSH

− ∂F2

∂wu
∂F1

∂wu


− ∂F1

∂Lu

− ∂F2

∂Lu


The partial derivatives can be computed as

∂F1

∂Lu
= (1− α)

wu − pSH h̄
pSH

+ h̄ > 0

∂F2

∂Lu
= 0

∂F1

∂pSH
= −Lu(1− α)wu

(pSH)2
− 1− h

h

(
pSH
wu

) 1−2h
h 1

wu
< 0

∂F2

∂pSH
= −h̄ 1

Pα
1

(pSH)1−α − (wu − pSH h̄)
1

Pα
(1− α)

1

(pSH)−α
1

(pSH)2
< 0

∂F1

∂wu
=
Lu(1− α)

pSH
+

1− h
h

[
pSH
wu

] 1−2h
h
[
pSH

(wu)2

]
> 0
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∂F2

∂wu
=

1

Pα
1

(pSH)1−α > 0

And we further have∂wu∂Lu

∂pSH
∂Lu

 =
1

∂F1

∂wu
∂F2

∂pSH
− ∂F1

∂pSH

∂F2

∂wu

 ∂F2

∂pSH
− ∂F2

∂pSH

− ∂F2

∂wu
∂F1

∂wu


− ∂F1

∂Lu

− ∂F2

∂Lu

 =
1

∂F1

∂wu
∂F2

∂pSH
− ∂F1

∂pSH

∂F2

∂wu

− ∂F2

∂pSH

∂F1

∂Lu
+ ∂F1

∂pSH

∂F2

∂Lu

∂F2

∂wu
∂F1

∂Lu
− ∂F1

∂wu
∂F2

∂Lu


Hence, it suffices to show that the fraction in front of the matrix is positive. Evaluating the expres-

sions explicitly gives the following,

∂F1

∂wu

∂F2

∂pSH
− ∂F1

∂pSH

∂F2

∂wu

=

Lu(1− α)

pSH
+

1− h
h

(
pSH
wu

) 1−2h
h
(

pSH
(wu)2

)[−h̄ 1

Pα
1

(pSH)1−α − (wu − pSH h̄)
1

Pα
(1− α)

1

(pSH)−α
1

(pSH)2

]

−

−Lu(1− α)wu
(pSH)2

− 1− h
h

(
pSH
wu

) 1−2h
h 1

wu

[ 1

Pα
1

(pSH)1−α

]

=

Lu(1− α)

pSH
+

1− h
h

(
pSH
wu

) 1−2h
h
(

pSH
(wu)2

)[−h̄ 1

Pα
1

(pSH)1−α −
(1− α)(wu − pSH h̄)

pSH

1

Pα
1

(pSH)1−α

]

−

−Lu(1− α)wu
(pSH)2

− 1− h
h

(
pSH
wu

) 1−2h
h 1

wu

[ 1

Pα
1

(pSH)1−α

]

=

Lu(1− α)wu
(pSH)2

+
1− h
h

(
pSH
wu

) 1−2h
h 1

wu
−

Lu(1− α)

pSH
+

1− h
h

(
pSH
wu

) 1−2h
h
(

pSH
(wu)2

)[h̄+
(1− α)(wu − pSH h̄)

pSH

]
× 1

Pα
1

(pSH)1−α

=

Lu(1− α)wu
(pSH)2

+
1− h
h

(
pSH
wu

) 1−2h
h 1

wu
−

Lu(1− α)

pSH
+

1− h
h

(
pSH
wu

) 1−2h
h
(

pSH
(wu)2

)[h̄+
(1− α)wu

pSH
− (1− α)h̄

]
× 1

Pα
1

(pSH)1−α

=

Lu(1− α)wu
(pSH)2

+
1− h
h

(
pSH
wu

) 1−2h
h 1

wu
−

Lu(1− α)

pSH
+

1− h
h

(
pSH
wu

) 1−2h
h
(

pSH
(wu)2

)[ (1− α)wu
pSH

+ αh̄

]
× 1

Pα
1

(pSH)1−α

=

Lu(1− α)

pSH
+

1− h
h

(
pSH
wu

) 1−2h
h
(

pSH
(wu)2

) α(wu − pSH h̄)

pSH

1

Pα
1

(pSH)1−α

+

Lu(1− α)wu
(pSH)2

+
1− h
h

(
pSH
wu

) 1−2h
h 1

wu
−

Lu(1− α)

pSH
+

1− h
h

(
pSH
wu

) 1−2h
h
(

pSH
(wu)2

) wu
pSH

 1

Pα
1

(pSH)1−α
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=

Lu(1− α)

pSH
+

1− h
h

(
pSH
wu

) 1−2h
h
(

pSH
(wu)2

)
︸ ︷︷ ︸

>0

α(wu − pSH h̄)

pSH︸ ︷︷ ︸
>0

1

Pα
1

(pSH)1−α︸ ︷︷ ︸
>0

> 0

To recap, so far we have exploited part of the equilibrium conditions and proved that ∂wu/∂Lu > 0

and ∂pSH/∂Lu > 0. We now proceed to prove the rest of the proposition related tows and pDH . Similarly,

we can write the equilibrium conditions in the following form.

F3 ≡ Ls
[
(1− α)

ws − pDH h̄
pDH

+ h̄

]
−
[
pDH
wu

] 1−h
h

= 0

F4 ≡ (ws − pDH h̄)
1

Pα
1

(pDH)1−α − Ūs = 0

Notice that wu, which is already solved as a function of Lu but not related to Ls, is included in F3. We

should first derive the relevant comparative statics related to Ls, as Ls does not influence the value of

wu. Performing implicit function theorem on this set of equilibrium conditions yields the following

∂F3

∂ws

∂ws
∂Ls

+
∂F3

∂pDH

∂pDH
∂Ls

+
∂F3

∂Ls
= 0,

∂F4

∂ws

∂ws
∂Ls

+
∂F4

∂pDH

∂pDH
∂Ls

+
∂F4

∂Ls
= 0

We can rearrange terms and write the above system of equations in matrix form as

 ∂F3

∂ws
∂F3

∂pDH

∂F4

∂ws
∂F4

∂pDH


 ∂ws∂Ls

∂pDH
∂Ls

 =

− ∂F3

∂Ls

− ∂F4

∂Ls

 .
Solving the unknown partial derivatives requires to solve for the following,

 ∂ws∂Ls

∂pDH
∂Lu

 =

 ∂F3

∂ws
∂F3

∂pDH

∂F4

∂ws
∂F4

∂pDH


−1 − ∂F3

∂Ls

− ∂F4

∂Ls

 =
1

∂F3

∂ws
∂F4

∂pDH
− ∂F3

∂pDH

∂F4

∂ws

 ∂F4

∂pDH
− ∂F3

∂pDH

− ∂F4

∂ws
∂F3

∂ws


− ∂F3

∂Ls

− ∂F4

∂Ls


which can be further evaluated to ∂ws∂Ls

∂pDH
∂Lu

 =
1

∂F3

∂ws
∂F4

∂pDH
− ∂F3

∂pDH

∂F4

∂ws

 ∂F4

∂pDH
− ∂F3

∂pDH

− ∂F4

∂ws
∂F3

∂ws


− ∂F3

∂Ls

− ∂F4

∂Ls

 =
1

∂F3

∂ws
∂F4

∂pDH
− ∂F3

∂pDH

∂F4

∂ws

 − ∂F3

∂Ls
∂F4

∂pDH
+ ∂F3

∂pDH

∂F4

∂Ls

∂F4

∂ws
∂F3

∂Ls
− ∂F3

∂ws
∂F4

∂Ls


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and the relevant partial derivatives are

∂F3

∂pDH
= −Ls(1− α)

ws
(pDH)2

− 1− h
h

(
pDH
wu

) 1=2h
h 1

wu
< 0

∂F3

∂ws
=
Ls(1− α)

pDH
> 0

∂F3

∂Ls
= (1− α)

ws − pDH h̄
pDH

+ h̄

∂F4

∂pDH
= −h̄ 1

Pα
1

(pDH)1−α − (ws − pDH h̄)
1

Pα
(1− α)

1

(pDH)−α
1

(pDH)2
< 0

∂F4

∂ws
=

1

Pα
1

(pDH)1−α > 0

∂F4

∂Ls
= 0.

Two observations are in order. First, it suffices for us to prove that the fraction is positive. Second,

everything is symmetric to our previous proof except that for the partial derivative ∂F3/∂ws, there is

one less term which is positive. Hence, given that ∂F4/∂p
D
H is negative, we know that the targeted

fraction is positive following a symmetry argument. We now continue the proof regarding to ∂ws/∂Lu

and ∂pDH/∂Lu. Similarly performing implicit function theorem again we have that

∂F3

∂ws

∂ws
∂Lu

+
∂F3

∂pDH

∂pDH
∂Lu

+
∂F3

∂wu

∂wu
∂Lu

+
∂F3

∂Ls
= 0

∂F4

∂ws

∂ws
∂Lu

+
∂F4

∂pDH

∂pDH
∂Lu

+
∂F4

∂Lu
= 0

Writing it in matrix form, we have that

 ∂F3

∂ws
∂F3

∂pDH

∂F4

∂ws
∂F4

∂pDH


 ∂ws∂Lu

∂pDH
∂Lu

 =

− ∂F3

∂Lu
− ∂F3

∂wu
∂wu
∂Lu

− ∂F4

∂Lu


Notice that this is really similar to our previous proof. Given that we have already shown ∂wu/∂Lu > 0,

we need only to show that ∂F3/∂wu > 0 which is true.

C.2 Proof of Proposition 2

We can rewrite the reduced first-order condition as

F ≡ 1

Φj(q; z)

∂Φj(q; z)

∂q
− (1− γj)(σj − 1)

w(q, ϕ, Ls, Lu)

∂w(q, ϕ, Ls, Lu)

∂q
= 0.
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Invoking the implicit function theorem, we can totally differentiate the LHS of the expression and

show the following
∂q∗

∂z
= −∂F/∂z

∂F/∂q
> 0.

The inequality is true because of the following. First, from the SOC of the profit maximization problem

with respect to q, we know that
∂F

∂q
< 0.

Hence, it suffices to show that ∂F/∂z > 0. Partially differentiating F with respect to z yields the

following,

Sign
[
∂F

∂z

]
= Sign

[
w−2 ∂w(q, ϕ)

∂z

∂w(q, ϕ)

∂q
− w−1 ∂[∂w(q, ϕ)/∂q]

∂z

]
,

where individual components of this expression evaluate to the following.

∂w(q, ϕ)

∂q
=

1

1− σL
[
χu(q, ϕ)w1−σL

u + λχs(q, ϕ)w1−σL
s

] 1
1−σL

−1
[
∂χu(q, ϕ)

∂q
w1−σL
u + λ

∂χs(q, ϕ)

∂q
w1−σL
s

]
=

1

1− σL
[
χu(q, ϕ)w1−σL

u + λχs(q, ϕ)w1−σL
s

] σL
1−σL

[
∂χu(q, ϕ)

∂q
w1−σL
u + λ

∂χs(q, ϕ)

∂q
w1−σL
s

]
=

1

1− σL
w(q, ϕ)σL

[
∂χu(q, ϕ)

∂q
w1−σL
u + λ

∂χs(q, ϕ)

∂q
w1−σL
s

]
∂w(q, ϕ)

∂z
=

1

1− σL
w(q, ϕ)σL

[
∂χu(q, ϕ)

∂z
w1−σL
u + λ

∂χs(q, ϕ)

∂z
w1−σL
s

]
Further notice that given the assume functional form of χζ(q, ϕ), we know that

∂χζ(q, ϕ)

∂z
= λ1ζϕ

λ1ζ−1 exp(λ2ζq) > 0,

and that
∂χζ(q, ϕ)

∂q
= λ2ζϕ

λ1ζ exp(λ2ζq) = λ2ζχζ(q, ϕ) < 0,

with λ2ζ < 0 and λ2s > λ2u. For simplicity sake, we denote λ2ζ as λζ hereafter. Hence the previous

partial derivatives further evaluate to

∂w(q, ϕ)

∂q
=

1

1− σL
w(q, ϕ)σL

[
λuχu(q, ϕ)w1−σL

u + λλsχs(q, ϕ)w1−σL
s

]
.

In addition, we have that the last partial derivative evaluates to the following,

∂[∂w(q, ϕ)/∂q]

∂z
=

σL
1− σL

w(q, ϕ)σL−1
[
λuχu(q, ϕ)w1−σL

u + λλsχs(q, ϕ)w1−σL
s

] ∂w(q, ϕ)

∂z

+
1

1− σL
w(q, ϕ)σL

[
λu
∂χu(q, ϕ)

∂z
w1−σL
u + λλs

∂χs(q, ϕ)

∂z
w1−σL
s

]
=

σL
(1− σL)2

w(q, ϕ)2σL−1
[
λuχu(q, ϕ)w1−σL

u + λλsχs(q, ϕ)w1−σL
s

] [∂χu(q, ϕ)

∂z
w1−σL
u + λ

∂χs(q, ϕ)

∂z
w1−σL
s

]
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+
1

1− σL
w(q, ϕ)σL

[
λu
∂χu(q, ϕ)

∂z
w1−σL
u + λλs

∂χs(q, ϕ)

∂z
w1−σL
s

]
.

Hence, the second component in our targeted expression evaluates to

w−1
∂[∂w(q,ϕ)

∂q ]

∂z
=

σL
(1− σL)2

w(q, ϕ)2σL−2
[
λuχu(q, ϕ)w1−σL

u + λλsχs(q, ϕ)w1−σL
s

] [∂χu(q, ϕ)

∂z
w1−σL
u + λ

∂χs(q, ϕ)

∂z
w1−σL
s

]
+

1

1− σL
w(q, ϕ)σL−1

[
λu
∂χu(q, ϕ)

∂z
w1−σL
u + λλs

∂χs(q, ϕ)

∂z
w1−σL
s

]
,

and the first component evaluates to

w−2 ∂w(q, ϕ)

∂z

∂w(q, ϕ)

∂q
=

1

(1− σL)2
w(q, ϕ)2σL−2

[
λuχu(q, ϕ)w1−σL

u + λλsχs(q, ϕ)w1−σL
s

]
×
[
∂χu(q, ϕ)

∂z
w1−σL
u + λ

∂χs(q, ϕ)

∂z
w1−σL
s

]
Therefore, the targeted expression evaluates to the following.

w−2 ∂w(q, ϕ)

∂z

∂w(q, ϕ)

∂q
− w−1

∂[∂w(q,ϕ)
∂q ]

∂z

=
1

1− σL
w(q, ϕ)2σL−2

[
λuχu(q, ϕ)w1−σL

u + λλsχs(q, ϕ)w1−σL
s

] [∂χu(q, ϕ)

∂z
w1−σL
u + λ

∂χs(q, ϕ)

∂z
w1−σL
s

]
− 1

1− σL
w(q, ϕ)σL−1

[
λu
∂χu(q, ϕ)

∂z
w1−σL
u + λλs

∂χs(q, ϕ)

∂z
w1−σL
s

]
=

1

1− σL
w(q, ϕ)σL−1

{
w(q, ϕ)σL−1

[
λuχu(q, ϕ)w1−σL

u + λλsχs(q, ϕ)w1−σL
s

] [∂χu(q, ϕ)

∂z
w1−σL
u + λ

∂χs(q, ϕ)

∂z
w1−σL
s

]

−
[
λu
∂χu(q, ϕ)

∂z
w1−σL
u + λλs

∂χs(q, ϕ)

∂z
w1−σL
s

]}

This implies that in order to show Sign [∂F/∂z] is positive, it suffices to show that the expression in the

curly bracket is negative given 1/(1− σL) < 0. It can be shown as follows.

w(q, ϕ)σL−1
[
λuχu(q, ϕ)w1−σL

u + λλsχs(q, ϕ)w1−σL
s

] [∂χu(q, ϕ)

∂z
w1−σL
u + λ

∂χs(q, ϕ)

∂z
w1−σL
s

]
−
[
λu
∂χu(q, ϕ)

∂z
w1−σL
u + λλs

∂χs(q, ϕ)

∂z
w1−σL
s

]
=
[
χu(q, ϕ)w1−σL

u + λχs(q, ϕ)w1−σL
s

]−1 [
λuχu(q, ϕ)w1−σL

u + λλsχs(q, ϕ)w1−σL
s

] [∂χu(q, ϕ)

∂z
w1−σL
u + λ

∂χs(q, ϕ)

∂z
w1−σL
s

]
−
[
λu
∂χu(q, ϕ)

∂z
w1−σL
u + λλs

∂χs(q, ϕ)

∂z
w1−σL
s

]
=
[
χu(q, ϕ)w1−σL

u + λχs(q, ϕ)w1−σL
s

]−1 [
λsχu(q, ϕ)w1−σL

u + λλsχs(q, ϕ)w1−σL
s

] [∂χu(q, ϕ)

∂z
w1−σL
u + λ

∂χs(q, ϕ)

∂z
w1−σL
s

]
− (λs − λu)χu(q, ϕ)w1−σL

u

[
χu(q, ϕ)w1−σL

u + λχs(q, ϕ)w1−σL
s

]−1
[
∂χu(q, ϕ)

∂z
w1−σL
u + λ

∂χs(q, ϕ)

∂z
w1−σL
s

]
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−
[
λu
∂χu(q, ϕ)

∂z
w1−σL
u + λλu

∂χs(q, ϕ)

∂z
w1−σL
s

]
− (λs − λu)λ

∂χs(q, ϕ)

∂z
w1−σL
s

=λs
[
χu(q, ϕ)w1−σL

u + λχs(q, ϕ)w1−σL
s

]−1 [
χu(q, ϕ)w1−σL

u + λχs(q, ϕ)w1−σL
s

] [∂χu(q, ϕ)

∂z
w1−σL
u + λ

∂χs(q, ϕ)

∂z
w1−σL
s

]
− (λs − λu)χu(q, ϕ)w1−σL

u

[
χu(q, ϕ)w1−σL

u + λχs(q, ϕ)w1−σL
s

]−1
[
∂χu(q, ϕ)

∂z
w1−σL
u + λ

∂χs(q, ϕ)

∂z
w1−σL
s

]
− λu

[
∂χu(q, ϕ)

∂z
w1−σL
u + λ

∂χs(q, ϕ)

∂z
w1−σL
s

]
− (λs − λu)λ

∂χs(q, ϕ)

∂z
w1−σL
s

=(λs − λu)

[
∂χu(q, ϕ)

∂z
w1−σL
u + λ

∂χs(q, ϕ)

∂z
w1−σL
s

]
− (λs − λu)λ

∂χs(q, ϕ)

∂z
w1−σL
s

− (λs − λu)
χu(q, ϕ)w1−σL

u[
χu(q, ϕ)w1−σL

u + λχs(q, ϕ)w1−σL
s

] [∂χu(q, ϕ)

∂z
w1−σL
u + λ

∂χs(q, ϕ)

∂z
w1−σL
s

]
=(λs − λu)

∂χu(q, ϕ)

∂z
w1−σL
u − (λs − λu)

χu(q, ϕ)w1−σL
u[

χu(q, ϕ)w1−σL
u + λχs(q, ϕ)w1−σL

s

] [∂χu(q, ϕ)

∂z
w1−σL
u + λ

∂χs(q, ϕ)

∂z
w1−σL
s

]
=(λs − λu)

∂χu(q, ϕ)

∂z
w1−σL
u − (λs − λu)

χu(q, ϕ)w1−σL
u[

χu(q, ϕ)w1−σL
u + λχs(q, ϕ)w1−σL

s

] ∂χu(q, ϕ)

∂z
w1−σL
u

− (λs − λu)
χu(q, ϕ)w1−σL

u[
χu(q, ϕ)w1−σL

u + λχs(q, ϕ)w1−σL
s

]λ∂χs(q, ϕ)

∂z
w1−σL
s

=(λs − λu)
∂χu(q, ϕ)

∂z
w1−σL
u − (λs − λu)

∂χu(q, ϕ)

∂z
w1−σL
u

+ (λs − λu)
λχs(q, ϕ)w1−σL

s[
χu(q, ϕ)w1−σL

u + λχs(q, ϕ)w1−σL
s

] ∂χu(q, ϕ)

∂z
w1−σL
u

− (λs − λu)
χu(q, ϕ)w1−σL

u[
χu(q, ϕ)w1−σL

u + λχs(q, ϕ)w1−σL
s

]λ∂χs(q, ϕ)

∂z
w1−σL
s

=(λs − λu)
λw1−σL

s w1−σL
u[

χu(q, ϕ)w1−σL
u + λχs(q, ϕ)w1−σL

s

] [χs(q, ϕ)
∂χu(q, ϕ)

∂z
− χu(q, ϕ)

∂χs(q, ϕ)

∂z

]
=(λs − λu)

λw1−σL
s w1−σL

u[
χu(q, ϕ)w1−σL

u + λχs(q, ϕ)w1−σL
s

] [χs(q, ϕ)
λ1uϕ

λ1u exp(λ2uq)

ϕ

∂ϕ

∂z
− χu(q, ϕ)

λ1sϕ
λ1s exp(λ2sq)

ϕ

∂ϕ

∂z

]
=(λs − λu)

λw1−σL
s w1−σL

u[
χu(q, ϕ)w1−σL

u + λχs(q, ϕ)w1−σL
s

] [χs(q, ϕ)
λ1uχu(q, ϕ)

ϕ

∂ϕ

∂z
− χu(q, ϕ)

λ1sχs(q, ϕ)

ϕ

∂ϕ

∂z

]
= (λs − λu)

λw1−σL
s w1−σL

u[
χu(q, ϕ)w1−σL

u + λχs(q, ϕ)w1−σL
s

] χs(q, ϕ)χu(q, ϕ)

ϕ

∂ϕ

∂z︸ ︷︷ ︸
>0

(λ1u − λ1s)︸ ︷︷ ︸
<0

<0.
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C.3 Proof of Proposition 3

Similar to the proof of proposition 2, we can write the reduced first-order condition as

F ≡ 1

Φ(q; z)

∂Φj(q; z)

∂q
− (1− γj)(σj − 1)

w(q, ϕ, Ls, Lu)

∂w(q, ϕ, Ls, Lu)

∂q
= 0.

Invoking the implicit function theorem, we can totally differentiate the LHS of the expression and

show the following, that for any L ∈ {Ls, Lu},

∂q∗

∂L
=
∂F/∂L

∂F/∂q
> 0.

This is true because of the following reasoning. First, given the SOC of the profit maximization prob-

lem with respect to q, we know that ∂F/∂q < 0. Hence it suffices to show that ∂F/∂L > 0. This

expression can be evaluated as

∂F

∂L
= −(1− γj)(σj − 1)

[
−w−2 ∂w

∂L

∂w

∂q
+ w−1 ∂

2w

∂L∂q

]
=

(1− γj)(σj − 1)

w

[
1

w

∂w

∂L

∂w

∂q
− ∂2w

∂L∂q

]
which implies that

Sign
(
∂F

∂L

)
= Sign

(
1

w

∂w

∂L

∂w

∂q
− ∂2w

∂L∂q

)
.

The individual components of this expression can be evaluated as

∂w

∂L
=

1

1− σL
wσL

[
∂χu
∂L

w1−σL
u + λ

∂χs
∂L

w1−σL
s

]
+ wσL

[
χuw

−σL
u

∂wu
∂L

+ λχsw
−σL
s

∂ws
∂L

]
∂w

∂q
=

1

1− σL
wσL

[
λuχuw

1−σL
u + λλsχsw

1−σL
s

]
∂2w

∂L∂q
=

σL
1− σL

wσL−1
[
λuχuw

1−σL
u + λλsχsw

1−σL
s

] ∂w
∂L

+
1

1− σL
wσL

[
λu
∂χu
∂L

w1−σL
u + λλs

∂χs
∂L

w1−σL
s

]
+ wσL

[
λuχuw

−σL
u

∂wu
∂L

+ λλsχsw
−σL
s

∂ws
∂L

]
It follows that

1

w

∂w

∂L

∂w

∂q
=

1

1− σL
wσL−1

[
λuχuw

1−σL
u + λλsχsw

1−σL
s

] 1

1− σL
wσL

[
∂χu
∂L

w1−σL
u + λ

∂χs
∂L

w1−σL
s

]
+

1

1− σL
wσL−1

[
λuχuw

1−σL
u + λλsχsw

1−σL
s

]
wσL

[
χuw

−σL
u

∂wu
∂L

+ λχsw
−σL
s

∂ws
∂L

]
=

1

(1− σL)2
w2σL−1

[
λuχuw

1−σL
u + λλsχsw

1−σL
s

] [∂χu
∂L

w1−σL
u + λ

∂χs
∂L

w1−σL
s

]
+

1

1− σL
w2σL−1

[
λuχuw

1−σL + λλsχsw
1−σL
s

] [
χuw

−σL
u

∂wu
∂L

+ λχsw
−σL
s

∂ws
∂L

]
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and that

∂2w

∂L∂q
=

σL
1− σL

wσL−1
[
λuχuw

1−σL
u + λλsχsw

1−σL
s

] ∂w
∂L

+
1

1− σL
wσL

[
λu
∂χu
∂L

w1−σL
u + λλs

∂χs
∂L

w1−σL
s

]
+ wσL

[
λuχuw

−σL
u

∂wu
∂L

+ λλsχsw
−σL
s

∂ws
∂L

]
=

σL
1− σL

wσL−1
[
λuχuw

1−σL
u + λλsχsw

1−σL
s

] 1

1− σL
wσL

[
∂χu
∂L

w1−σL
u + λ

∂χs
∂L

w1−σL
s

]
+

σL
1− σL

wσL−1
[
λuχuw

1−σL
u + λλsχsw

1−σL
s

]
wσL

[
χuw

−σL
u

∂wu
∂L

+ λχsw
−σL
s

∂ws
∂L

]
+

1

1− σL
wσL

[
λu
∂χu
∂L

w1−σL
u + λλs

∂χs
∂L

w1−σL
s

]
+ wσL

[
λuχuw

−σL
u

∂wu
∂L

+ λλsχsw
−σL
s

∂ws
∂L

]
=

σL
(1− σL)2

w2σL−1
[
λuχuw

1−σL
u + λλsχsw

1−σL
s

] [∂χu
∂L

w1−σL
u + λ

∂χs
∂L

w1−σL
s

]
+

σL
1− σL

w2σL−1
[
λuχuw

1−σL
u + λλsχsw

1−σL
s

] [
χuw

−σL
u

∂wu
∂L

+ λχsw
−σL
s

∂ws
∂L

]
+

1

1− σL
wσL

[
λu
∂χu
∂L

w1−σL
u + λλs

∂χs
∂L

w1−σL
s

]
+ wσL

[
λuχuw

−σL
u

∂wu
∂L

+ λλsχsw
−σL
s

∂ws
∂L

]

Hence, we can show that

1

w

∂w

∂q

∂w

∂L
− ∂2w

∂L∂q
=

1

1− σL
w2σL−1

[
λuχuw

1−σL
u + λλsχsw

1−σL
s

] [∂χu
∂L

w1−σL
u + λ

∂χs
∂L

w1−σL
s

]
︸ ︷︷ ︸

A

+w2σL−1
[
λuχuw

1−σL
u + λλsχsw

1−σL
s

] [
χuw

−σL
u

∂wu
∂L

+ λχsw
−σL
s

∂ws
∂L

]
︸ ︷︷ ︸

B

− 1

1− σL
wσL

[
λu
∂χu
∂L

w1−σL
u + λλs

∂χs
∂L

w1−σL
w

]
︸ ︷︷ ︸

C

−wσL
[
λuχuw

−σL
u

∂wu
∂L

+ λλsχsw
−σL
s

∂ws
∂L

]
︸ ︷︷ ︸

D

≡A+B − C −D.

We shall evaluate the expression part-by-part. First, note that w1−σL = [χuw
1−σL
u + λχsw

1−σL
s ]. It

follows that

A− C =
1

1− σL
w2σL−1[λuχuw

1−σL
u + λλsχsw

1−σL
s ]

[
∂χu
∂L

w1−σL
u + λ

∂χs
∂L

w1−σL
s

]
− 1

1− σL
wσL

[
λu
∂χu
∂L

w1−σL
u + λλs

∂χs
∂L

w1−σL
s

]
=

1

1− σL
w2σL−1

[
λuχuw

1−σL
u + λλuχsw

1−σL
s

] [∂χu
∂L

w1−σL
u + λ

∂χs
∂L

w1−σL
s

]
+

1

1− σL
w2σL−1λ(λs − λu)χsw

1−σL
s

[
∂χu
∂L

w1−σL
u + λ

∂χs
∂L

w1−σL
s

]
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− 1

1− σL
wσL

[
λs
∂χu
∂L

w1−σL
u + λλs

∂χs
∂L

w1−σL
s

]
+

1

1− σL
wσL(λs − λu)

∂χu
∂L

w1−σL
u

=
1

1− σL
wσL(λu − λs)

[
∂χu
∂L

w1−σL
u + λ

∂χs
∂L

w1−σL
s

]
+

1

1− σL
wσL(λs − λu)

∂χu
∂L

w1−σL
u

+
1

1− σL
w2σL−1λ(λs − λu)χsw

1−σL
s

[
∂χu
∂L

w1−σL
u + λ

∂χs
∂L

w1−σL
s

]
=

1

1− σL
wσLλ(λu − λs)

∂χs
∂L

w1−σL
s +

1

1− σL
w2σL−1λ(λs − λu)χsw

1−σL
s

[
∂χu
∂L

w1−σL
u + λ

∂χs
∂L

w1−σL
s

]
=

1

1− σL
wσLλ(λu − λs)

∂χs
∂L

w1−σL
s +

1

1− σL
w2σL−1λ(λs − λu)χsw

1−σL
s

∂χu
∂L

w1−σL
u

+
1

1− σL
w2σL−1λ(λs − λu)χsw

1−σL
s λ

∂χs
∂L

w1−σL
s

=
1

1− σL
wσLλ(λu − λs)

∂χs
∂L

w1−σL
s

[
1− λχsw

1−σL
s

w1−σL

]
+

1

1− σL
w2σL−1λ(λs − λu)χsw

1−σL
s

∂χu
∂L

w1−σL
u

=
1

1− σL
wσLλ(λu − λs)

∂χs
∂L

w1−σL
s

χuw
1−σL
u

w1−σL
+

1

1− σL
w2σL−1λ(λs − λu)χsw

1−σL
s

∂χu
∂L

w1−σL
u

=
1

1− σL
wσLλ(λu − λs)

w1−σL
s w1−σL

u

w1−σL

[
χu
∂χs
∂L
− χs

∂χu
∂L

]
.

Similarly,

B −D =w2σL−1
[
λuχuw

1−σL
u + λλsχsw

1−σL
s

] [
χuw

−σL
u

∂wu
∂L

+ λχsw
−σL
s

∂ws
∂L

]
− wσL

[
λuχuw

−σL
u

∂wu
∂L

+ λλsχsw
−σL
s

∂ws
∂L

]
=w2σL−1

[
λuχuw

1−σL
u + λλuχsw

1−σL
s

] [
χuw

−σL
u

∂wu
∂L

+ λχsw
−σL
s

∂ws
∂L

]
+ w2σL−1λ(λs − λu)χsw

1−σL
s

[
χuw

−σL
u

∂wu
∂L

+ λχsw
−σL
s

∂ws
∂L

]
− wσL

[
λsχuw

−σL
u

∂wu
∂L

+ λλsχsw
−σL
s

∂ws
∂L

]
+ wσL(λs − λu)χuw

−σL
u

∂wu
∂L

=wσL(λu − λs)
[
χuw

−σL
u

∂wu
∂L

+ λχsw
−σL
s

∂ws
∂L

]
+ w2σL−1λ(λs − λu)χsw

1−σL
s

[
χuw

−σL ∂wu
∂L

+ λχsw
−σL
s

∂ws
∂L

]
+ wσL(λs − λu)χuw

−σL
u

∂wu
∂L

=wσL(λu − λs)
χuw

1−σL
u

w1−σL

[
χuw

−σL
u

∂wu
∂L

+ λχsw
−σL
s

∂ws
∂L

]
+ wσL(λs − λu)χuw

−σL
u

∂wu
∂L

=wσL(λs − λu)
λχsw

1−σL
s

w1−σL
χuw

−σL
u

∂wu
∂L

+ wσL(λu − λs)
λχuw

1−σL
u

w1−σL
χsw

−σL
s

∂ws
∂L

=wσL(λs − λu)
λχsχuw

1−σL
s w1−σL

u

w1−σL

[
1

wu

∂wu
∂L
− 1

ws

∂ws
∂L

]
It follows that

1

w

∂w

∂q

∂w

∂L
− ∂2w

∂L∂q
=A+B − C −D
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=
1

1− σL
wσLλ(λu − λs)

w1−σL
s w1−σL

u

w1−σL

[
χu
∂χs
∂L
− χs

∂χu
∂L

]
+ wσL(λs − λu)

λχsχuw
1−σL
s w1−σL

u

w1−σL

[
1

wu

∂wu
∂L
− 1

ws

∂ws
∂L

]
=

1

1− σL
wσL(λu − λs)

λχsχuw
1−σL
s w1−σL

u

w1−σL

[
1

χs

∂χs
∂L
− 1

χu

∂χu
∂L

]
+ wσL(λs − λu)

λχsχuw
1−σL
s w1−σL

u

w1−σL

[
1

wu

∂wu
∂L
− 1

ws

∂ws
∂L

]
=

1

1− σL
wσL(λs − λu)

λχsχuw
1−σL
s w1−σL

u

w1−σL

[
1

χu

∂χu
∂L
− 1

χs

∂χs
∂L

+
1− σL
wu

∂wu
∂L
− 1− σL

ws

∂ws
∂L

]
=

1

1− σL
wσL(λs − λu)

λχsχuw
1−σL
s w1−σL

u

w1−σL

[(
1

χu

∂χu
∂L
− σL − 1

wu

∂wu
∂L

)
−
(

1

χs

∂χs
∂L
− σL − 1

ws

∂ws
∂L

)]
=

1

1− σL
wσL(λu − λs)

λχsχuw
1−σL
s w1−σL

u

w1−σL︸ ︷︷ ︸
>0

[(
1

χs

∂χs
∂L
− σL − 1

ws

∂ws
∂L

)
−
(

1

χu

∂χu
∂L
− σL − 1

wu

∂wu
∂L

)]

Therefore,

Sign
[
∂q∗

∂L

]
= Sign

[
∂F

∂L

]
= Sign

[(
1

χs

∂χs
∂L
− σL − 1

ws

∂ws
∂L

)
−
(

1

χu

∂χu
∂L
− σL − 1

wu

∂wu
∂L

)]

C.4 Proof of Proposition 4

The proof is essentially the same as in Gaubert (2018), with some slight modifications. It is obvious

to see that the profit function is also strictly log supermodular in (L, z) due to our assumption on ϕ.

Consider the case where zH > zL and LHu > LLu . By the strict log-supermodularity of π, if the size

of the skill population is fixed at L̄s, then π(zH ,L̄s+L
H
u )

π(zH ,L̄s+LLu )
>

π(zL,L̄s+L
H
u )

π(zL,L̄s+LLu )
. Hence, if firm zL has a higher

profit in a city with larger skilled population (L̄s, L
H
u ) than in (L̄s, L

H
u ), then zH must also have a higher

profit in that city than the other city. Hence, LH∗u ≥ LL∗u . The proof regarding the skilled population is

similar.

C.5 Expression for Computing Wages

Given local wages, house prices of downtown area will be determined by the housing market clearing

condition

Ls

[
(1− α)

ws − pDH h̄
pDH

+ h̄

]
=

[
pDH
wu

] 1−h
h

Lsw
1−h
h

u

[
(1− α)ws + αh̄pDH

]
= (pDH)

1
h

(pDH)
1
h − αh̄Lsw

1−h
h

u pDH = (1− α)Lsw
1−h
h

u ws. (C.1)
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Similarly, the housing market clearing condition for suburb area can be simplified as

(pSH)
1
h − αh̄Luw

1−h
h

u pSH = (1− α)Luw
1
h
u . (C.2)

Recall the spatial no-arbitrage conditions for skilled and unskilled workers can be written as

Γs(p
D
H)1−α + pDH h̄ = ws, (C.3)

Γu(pSH)1−α + pSH h̄ = wu, (C.4)

where Γu = ŪuP
α, and Γs = ŪsP

α, are economic-wide constants to be pinned down in the general

equilibrium. In particular, we normalize Γu = 1 and back out the ratio Ūs/Ūu from the skill premium

in the data.

The system of four equations (C.1), (C.2), (C.3) and (C.4) contain four unknowns, which can be

exactly identified. Hence, given city size (Ls, Lu), the local wages ws, wu and house prices pDH , pSH can

be computed. We can only obtain the numerical solution for these unknowns instead of the explicit

analytical expressions because the system of equations is non-linear.

Plugging equation (C.4) into (C.2) to replace wu yields the following non-linear equation to that

pins down pSH ,

(pSH)
1
h − αh̄Luw

1−h
h

u pSH = (1− α)Luw
1
h
u

(pSH)
1
hw
− 1
h

u − αh̄Luw−1
u pSH = (1− α)Lu

(pSH)
1
h (Γu(pSH)1−α + pSH h̄)−

1
h − αh̄Lu(Γu(pSH)1−α + pSH h̄)−1pSH = (1− α)Lu

(Γu(pSH)−α + h̄)−
1
h − αh̄Lu(Γu(pSH)−α + h̄)−1 = (1− α)Lu

Given pSH , we can immediately compute unskilled worker wages according to labor mobility condition

(C.4). Pluggingwu and equation (C.3) into (C.1) yields the equation that implicitly determines housing

price for skilled labor pDH ,

(pDH)
1
hw

h−1
h

u − αh̄LspDH = (1− α)Ls(Γs(p
D
H)1−α + pDH h̄)

(pDH)
1
hw

h−1
h

u = (1− α)LsΓs(p
D
H)1−α + h̄Lsp

D
H

(pDH)
1
h−1w

h−1
h

u = h̄Ls + (1− α)LsΓs(p
D
H)−α

The skilled labor wage ws can thus be computed from equation (C.3).
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C.6 Cost Function

Recall the production function of a firm is

yj(z) = kγj `(q, ϕ)1−γj

where `(q, ϕ) =
[
χu(q, ϕ)

1
σL (`u)

σL−1

σL + λ
1
σL χs(q, ϕ)

1
σL (q`s)

σL−1

σL

] σL
σL−1

.

Since the cost function has two layers, Cobb-Douglas and CES, we solve the cost minimization prob-

lem in two steps. In the first step, we regards `(q, ϕ) as a composite labor input with price w̃. The

production function is Cobb-Douglas and thus the cost minimization problem is given by

min
`,k

r̃k + w̃`(q, ϕ)

subject to yj(z) ≤ kγj `(q, ϕ)1−γj

The Lagrangian is

L(k, `, κ; w̃, r̃, q, ϕ) = r̃k + w̃`(q, ϕ)− κ
(
yj(z)− kγj `(q, ϕ)1−γj

)
.

Take first-order conditions ofLw.r.t. `(q, ϕ) and k, we can obtain the condition in which the iso-quant

is tangent to the iso-cost,
`(q, ϕ)

k
=

1− γj
γj

(
w̃(q, ϕ)

r̃

)−1

.

Solving this equation for labor yields `(q, ϕ) =
1−γj
γj

r̃
w̃(q,ϕ)k. Then substitute `(q, ϕ) into the constraint,

y =

(
r̃

w̃(q, ϕ)

1− γj
γj

)1−γj
k

Solve for k and l in the expression of y,

k =
y(

r̃
w̃(q,ϕ)

1−γj
γj

)1−γj , l =

1−γj
γj

r̃
w̃(q,ϕ)y(

r̃
w̃(q,ϕ)

1−γj
γj

)1−γj

The costs function can be expressed as

c(w̃, r̃, y) = r̃k + w̃(q, ϕ)`(q, ϕ) = (1− γj)γj−1γ
−γj
j r̃γj ˜w(q, ϕ)

1−γj
y.

When y = 1, the cost function capture the unit cost of production.

In the second step, we characterize the costs function of the CES layer. The costs minimization
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problem of firm is such that

min
`s,`u

ws`s + wu`u

subject to ` ≤
[
χu(q, ϕ)

1
σL `

σL−1

σL
u + λ

1
σL χs(q, ϕ)

1
σL `

σL−1

σL
s

] σL
σL−1

.

The Lagrangian is

L(`s, `u; q, ϕ, ws, wu) = ws`s + wu`u − ρ

(
`−

[
χu(q, ϕ)

1
σL `

σL−1

σL
u + λ

1
σL χs(q, ϕ)

1
σL `

σL−1

σL
s

] σL
σL−1

)

Take first-order conditions of Lw.r.t. `s and `u and solve for `s

`s = λ
χs(q, ϕ)

χu(q, ϕ)

(
ws
wu

)−σL
`u.

Substituting `s into the constraint gives

`u =
χu(q, ϕ)`[

χu(q, ϕ) + λχs(q, ϕ)
(
ws
wu

)1−σL
] σL
σL−1

, `s =
λχs(q, ϕ)

(
ws
wu

)−σL
`[

χu(q, ϕ) + λχs(q, ϕ)
(
ws
wu

)1−σL
] σL
σL−1

.

The cost function for producing ` is such that

c(wu, ws, q, ϕ, `) = ws`s + wu`u =
wuχu(q, ϕ) + wsλχs(q, ϕ)

(
ws
wu

)−σL
[
χu(q, ϕ) + λχs(q, ϕ)

(
ws
wu

)1−σL
] σL
σL−1

`

=
[
χu(q, ϕ)w1−σL

u + λχs(q, ϕ)w1−σL
s

] 1
1−σL `.

The cost of producing one unit of ` is

w̃(wu, ws, q, ϕ) =
[
χu(q, ϕ)w1−σL

u + λχs(q, ϕ)w1−σL
s

] 1
1−σL .

Firms demands for skilled and unskilled labor as input are such that

`u = χu(q, ϕ)

(
wu

w̃(wu, ws, q, ϕ)

)−σL
w̃(wu, ws, q, ϕ)`,

`s = λχs(q, ϕ)

(
ws

w̃(wu, ws, q, ϕ)

)−σL
w̃(wu, ws, q, ϕ)`.

The cost function for production is

Cj(z; q, ϕ) = γ̃j r̃
γj w̃(q, ϕ, Ls, Lu)1−γj ,
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where γ̃j = (1−γj)γj−1γ
−γj
j , and w̃(q, ϕ, Ls, Lu) =

[
χu(q, ϕ)wu(Ls, Lu)1−σL + λχs(q, ϕ)ws(Ls, Lu)1−σL

] 1
1−σL .
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D. Model Fit

Figure D.1: Firm size (revenue) distribution, sector by sector
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Figure D.2: Share of value added, sector by sector
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Figure D.3: Average value added, sector by sector
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Figure D.4: Average skill intensity, sector by sector
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E. Sensitivity Analysis

Figure E.5: Quality distribution in big vs small cities, alternative weighting matrix
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