Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Economics School of Economics

7-2012

Statistical tests for multiple forecast comparison

Roberto MARIANO
Singapore Management University, rsmariano@smu.edu.sg

Daniel P. A. PREVE
Singapore Management University, dpreve@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research

b Part of the Econometrics Commons

Citation

MARIANO, Roberto and PREVE, Daniel P. A.. Statistical tests for multiple forecast comparison. (2012).
Journal of Econometrics. 169, (1), 123-130.

Available at: https://ink.library.smu.edu.sg/soe_research/2331

This Journal Article is brought to you for free and open access by the School of Economics at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School
Of Economics by an authorized administrator of Institutional Knowledge at Singapore Management University. For
more information, please email cherylds@smu.edu.sg.


https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/soe_research
https://ink.library.smu.edu.sg/soe
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/342?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2331&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

STATISTICAL TESTS FOR MULTIPLE FORECAST COMPARISON
ROBERTO S. MARIANO' AND DANIEL PREVE?

ABSTRACT. We consider a multivariate version of the Diebold-Mariano test for equal
predictive ability of three or more forecasting models. The Wald-type test, S, which has
a null distribution that is asymptotically chi-squared, is shown to be generally invariant
with respect to the ordering of the models being compared. Finite-sample corrections
for the test are also developed. Monte Carlo simulations indicate that S has reason-
able size properties in large samples but tends to be oversized in moderate samples.
The finite-sample correction succeeds in correcting for size, but only partially. For the
size-adjusted tests, power increases with sample size, as expected. It is speculated that
further finite-sample improvements can be achieved using Hotelling’s 72 or bootstrap
critical values.
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1. INTRODUCTION

In empirical applications it is often the case that two or more time series models are
available for forecasting a particular variable of interest. For example, in econometrics
different assumptions regarding the nature of the data generating process of an economic
variable can result in a number of different forecasting models. With forecasts from a
number of alternative models it is inevitable that the sample will show differences in
predictive ability between the different models. Consequently it is of importance to in-
vestigate how likely it is that this outcome is due to pure chance, that is, whether the
observed difference is statistically significant or not. Various tests have been proposed
to test whether one or more of a number of alternative models stand out in terms of pre-
dictive ability. See, for example, White (2000), Hansen (2005), Romano and Wolf (2005)
and Hansen et al. (2011). Diebold and Mariano (1995, DM) proposed an asymptotically
standard normally distributed test statistic for equal predictive ability (EPA) between
two alternative models. West (1996) took into account that the actual forecasts that
appear in a test statistic may depend on estimated parameters. A sizeable literature has
also developed concerning tests for nested models. See, among others, Giacomini and
White (2006), Clark and West (2006), Clark and West (2007) and McCracken (2007).

In this paper we consider a multivariate version of the DM test for EPA of two or
more non-nested forecasting models. Our framework differs from that of White (2000),
Hansen (2005) and Romano and Wolf (2005) in that we test for EPA, whereas they
test for superior predictive ability (SPA). Tests for EPA form a natural basis for more
elaborate procedures, such as the model confidence set (MCS) of Hansen et al. (2011).
As explained in Hansen et al. (2011), the MCS has a number of advantages over tests
for SPA.

A number of ‘model-free’ tests for EPA (in the sense that the models that generated
the forecasts need not be at one’s disposal), that compare the forecasts of two alternative
time series models, are available, for example, see Mariano (2002). Some commonly used
head-to-head tests are the Morgan (1939) and Granger and Newbold (1977), and the
Meese and Rogoff (1988) tests for equal mean squared errors, and Christiano’s (1989)
test for equal root mean square errors. DM used standard results to derive a test statistic
in a more general setting. In their approach, they consider two sequences of forecasts
(011, -, J1p and o1, ..., Jop say) of a scalar time series {y;}2_; and propose a conceptually
simple test to assess the expected loss associated with each of the forecast sequences.
The quality of each forecast is evaluated by some real-valued loss function g(-) of the
forecast error. Important examples of ¢ include g(z) = z? (squared loss) and g(z) = |z
(absolute loss). In this setting, the null hypothesis of EPA is E d; = 0 where

dy = g(?}u - yt) - g(ﬂzt - yt)7 (1-1)

is the ‘loss differential’ at time ¢. Under the assumption that the time series {d;} is
covariance stationary, they conclude that the statistic

d
w/

: (1.2)

o
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is asymptotically standard normally distributed under the null, where d is the sample
mean of the loss differential series and @ is a consistent estimator of the asymptotic
variance of v/ Pd, sometimes referred to as the ‘long run variance’ of d.

Harvey et al. (1997, HLN) addressed the finite-sample properties of the DM statistic.
Under the additional assumption that all autocovariances of {d;} beyond some lag length
q are zero such that

w=0)+2) ~(h),

where 7(h) is the hth autocovariance, they propose a finite-sample correction of the DM
test based on an approximately unbiased estimator of the variance of d. HLN argue
that their assumption for the autocovariances can be motivated by the fact that for
optimal n-step-ahead forecasts the sequence of forecast errors follows a moving average
(MA) process of order (n — 1), and that this result can be expected to hold at least
approximately for many sets of forecasts.

The rest of the paper is organized as follows. In Section 2 we consider a multivariate
version of the DM test for EPA and show that it is invariant with respect to the ordering
of the alternative forecasting models for a wide range of covariance matrix estimators. In
Section 3 we show that the finite-sample correction of HLN for the DM test extends to our
multivariate setting. Section 4 reports various simulation results and Section 5 concludes.
In the later section we briefly discuss issues of parameter estimation uncertainty and how
to proceed once the null hypothesis of EPA has been rejected. Mathematical proofs are
collected in the Appendix. An extended Appendix available on request from the authors
contains some results mentioned in the text but omitted from the paper to save space.

2. A MULTIVARIATE VERSION OF THE DM TEST

In this paper, we consider the setting where we have a small number of non-nested
forecasting models, say, in the single digits, that are to be compared in terms of a general
loss function. Like the DM test, the test we consider is model-free. That is, in contrast to
West (1996), we only assume that the information at the disposal of an analyst consists of
time series of forecasts and actual values of the predictand. The models that generated
the forecasts, and their associated estimators, are potentially unknown. For example,
this situation arises when financial institutions provide forecasts without disclosing the
models that generated the forecasts or in judgmental forecasting where the forecaster
may use non-time series information to improve the forecasts (see Lawrence et al. 2006
for a review of judgmental forecasting techniques).

We are interested to know whether all of the models perform equally well in terms of
a specific loss function. Let

{ezt}:{gzt_yt}a 1= 177k+1

be k + 1 time series of forecast errors from k + 1 alternative models, and let g : R -+ R
denote some specified loss function. For example, the y;; could be moving average, or
filter, rules. We wish to test the hypothesis that

Eglen) = Eglex) = ... = Eg(ertie), (2.1)
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in other words, that all alternative models have EPA under the loss function g. An
equivalent way of stating hypothesis (2.1) is Eg(ej;) = Eg(eji1,) for all j = 1,... k.
Define

djr = gejr) — g(€j414), G =1,..k (2.2)
and consider the k loss differential series {d;;} and vector
dt = (dlty"'7dkt)/7 t= 07:l:17:l:27 (23)

Under hypothesis (2.1) £Ed; = 0. Hence, it is natural to base a test for EPA on the
vector of observed sample means,

. 1 &
d= ; d,. (2.4)
Suppose that {d;} is covariance stationary with Wold representation
dt =K + € + \Illet_l + \Ilget_g + ... (25)

In this setting
VP(d — p) % Ny(0,9),

as P — oo under well-known conditions, where

Q=T(0)+ i [T(h) +T'(h)], (2.6)

is the long run variance and
I'(h)=E(d,—p)(diep —p)’, h=0,1,2,...

are the (auto)covariance matrices of {d;}. Thus, the following proposition holds, provid-
ing a multivariate version of the DM test.

Proposition 1. Suppose that €2 is nonsingular, then
P(d—p)Q ' (d—p) 5 X,
as P — oo and the Wald statistic
S=PdQ d,

where 0 is a consistent estimator of 2, has a limiting chi-square distribution with k
degrees of freedom under the null hypothesis of EPA (u =0).

The situation we have in mind is one where the number of alternative models, k+1, is
small relative to the sample size, P, so that the k£ x k covariance matrix 2 can be reliably
estimated (cf. Hansen 2005 and Hansen et al. 2011), and where the models are non-nested
to avoid a potential non-chi-square limiting distribution (cf. McCracken 2007). Typically
2 would be consistently estimated using a heteroskedasticity and autocorrelation con-
sistent (HAC) covariance matrix estimator. The S statistic of Proposition 1 is along the
lines of that considered by West et al. (1993) and West and Cho (1995), among others.

By construction, any reordering of the alternative models, and hence of the k£ + 1
time series of forecast errors, alters the dynamics of d; in (2.3). The next proposition
gives conditions under which the limiting null distribution of S, and the test value, is
unaffected by reordering.
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Proposition 2. Suppose that Q s of the form

>

Q=T(0)+ Y w(h,m)[L(h) +T'(h)],

h=1
where m(P) is an integer-valued truncation point, k(-,-) is a real-valued kernel weight
and T'(h) is the sample covariance matric at lag h. Then the S statistic of Proposition 1

is invariant to any permutation (reordering) of the alternative models.

That is, for each permutation of the models, we get the same limiting x3 distribution
under the null of EPA. Moreover, when computing S, we get the same test value for all
permutations of the models (regardless of whether the null is true or not).

In view of Proposition 2 invariance holds quite generally. For example, invariance
holds for test statistics S using the Newey and West (1987) estimator, Andrews (1991)
estimators and the truncated estimator in (3.1). Invariance also holds for nonsingular
transformations of any ordering, such as the chi-square test considered in Hubrich and
West (2010) which looks at the vector of loss differentials relative to one of the forecasting
procedures.

3. A FINITE-SAMPLE CORRECTION

In this section we provide a modified test with potentially better finite-sample prop-
erties than the S statistic presented in the previous section. In so doing, we show that
the finite-sample correction of HLN for the DM test extends to our multivariate setting.

Following HLN, we now assume further that {d;} can be represented by a finite gth
order vector moving average process. In this setting I'(h) in (2.6) equals 0 for every
h > q and €2 can be consistently estimated by the truncated estimator

Q=T(0)+ Y [T(h) +T'(1)], (3.1)
where
P(h) = 113 S (di—d)(dy s —d)Y, h=01,2,.

is the sample covariance matrix at lag h. The modified test S. (S corrected) relies
on the use of an approximately unbiased estimator of the variance of d. Here are the
assumptions under which the result holds.

Assumption 1. {d;} is a vector MA(q) process,

q
di=p+e+ Z Ve,

=1

where { €} is a (iid) vector white noise process with mean zero, positive definite covariance
matriz and bounded fourth moments.
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It can be shown that, under Assumption 1, the ezact variance of d is

P—h

PVardzI‘(O)%-ij( Iz

h=1

) [T(h) + T'(n)]. (3.2)

A large sample approximation for (3.2) is given by €2. As the sample size P goes to
infinity, the variance of v/Pd tends to €. In our multivariate version of the DM test
we estimate Vard by P12, In finite samples, however, P~1Q) is biased when the trun-
cated estimator is used. This happens since ET'(h) is different from (E2)T(h). For
illustration, consider the simple setting when ¢ = 0. Then

E(P7'Q) = P72(P — 1)T(0),

which is different from Vard = P~T'(0). It is because of this reason that HLN derive
an approximate bias correction of P~1€2 for the univariate case, k = 1, when {d;} is a
scalar MA(q) process. The next proposition shows that the finite-sample correction of
HLN for the DM test extends also to our multivariate setting, k > 1.

Proposition 3. Under Assumption 1, if P > q, an approzimately unbiased estimator of
Vard is given by

(cP)~'Q, (3.3)
where S is the truncated estimator and

P—1-2¢+ P! 1
. q; qlq+1) (3.4)

The error in the approzimation is of order O(P~3). The finite-sample corrected version
(3.3) of P~ leads to the modified test statistic

S. = ¢S,

where S is the test statistic of Proposition 1.

Even if the observed loss-differential series is not generated by a vector MA(q) process,
the simple truncated model can be expected to provide a reasonably good approximation
to the true underlying process if it is of the stationary VARMA type. In this case ¢ in
(3.4) is a lag length beyond which we are willing to assume that the correlation between
d; and d;_, is essentially zero. In practical applications the value of ¢ may be assessed
empirically, for example, as described in Tiao and Box (1981). A test at significance
level o can be conducted by rejecting the null hypothesis of EPA whenever S, > X%,lfm
where xj ,_, is the (1 — ) quantile of a xj distribution.

In general ¢ will tend to be less than 1, implying a downward correction of S to obtain
S.. Thus the test S will tend to be oversized, rejecting a true null hypothesis more often
than the nominal size of the test. In deriving ¢ in the Appendix, terms of order P~!
were retained in the approximation of ET'(h) as written out in (A.4). We can use the
last two terms in (A.3) to include terms of order P~2 to get an even finer finite-sample
correction. Further Monte Carlo studies, extending the one in Section 4 below, can shed
light on potential additional gains when the finite-sample correction is pushed to higher
orders of magnitude.
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4. MONTE CARLO RESULTS

To explore whether the behavior of S can be improved by the suggested finite-sample
correction we also perform a Monte Carlo study. The study investigates the size and
power properties of the test statistics S and S, using the truncated estimator. All the
reported experiments share a common initial state of the generator for pseudo random
number generation and are carried out using MATLAB.!

For ease of exposition, we consider the simple case when the process generating the
vector loss differential series {d;}{, is a k-dimensional MA(q) with Gaussian noise,
di=p+e+Y ! Pe ;. Contemporaneously correlated realizations €;_, ..., €1, ..., €p
of iid (pseudo) random vectors are drawn from a multivariate normal distribution, €; ~
Ni(0,%). X is the contemporaneous correlation matrix given by ¥ = p1—(p—1)I, where
1 and I are k x k unity and identity matrices, respectively, and 0 < p < 1. ¥; = )’A,
where A is a k x k diagonal matrix with nonzero entries a;; = 1/4/7, implying that
Vard;; > Vard;;;, with equality if and only if ¢ = 0. The parameter p is 0 and different
from O in the size and power experiments, respectively. We consider sample sizes of
P =100, 500 and 1000.

Size Results. Table 1 reports empirical sizes of the test statistics S and S. at the
asymptotic significance level a = 0.1. Each table entry is based on 100 000 Monte Carlo
replications and rounded to three decimal places. For £k =1 S, is the HLN test statistic.
For ¢ = 0 the bias correction of S, is exact. It is seen that the proposed test S can be
quite seriously oversized in moderate samples and that this problem becomes more acute
as k and/or ¢ increase. It seems clear that the modified test adjusts for this problem. In
all experiments, the modified test S. performs better than .S, although it also tends to
be oversized. For example, when k = ¢ =2, p =19 = 0.9 and P = 100 the empirical sizes
of S and S, are 0.142 and 0.130, respectively. Even for sample sizes as large as P = 1000
the S statistic benefits noticeably from the finite-sample correction, as reflected by the
results for S.. Thus, the finite-sample modification for the test S provides important
(although not complete) size corrections.

Power Results. Since there are significant size-distortions in finite-samples, power
comparison is carried out adjusting for size. To this end, empirical critical values
are calculated using the simulated samples in the size study. More specifically, let
S1ys -+ 590000 ---» S(100000) be the ordered sample from one of the Monte Carlo experi-
ments in the size study. Then a a = 0.1 empirical critical value for S is given by S(go000)-
Similarly, if ¢ > 0, the corresponding critical value for the modified test S. = ¢S is given
by 05(90000).2 This shows that S and S. have the same size-adjusted power. That is,
using empirical critical values, the probabilities that S and S, will correctly lead to the
rejection of a false null hypothesis are the same.

In the power experiments we let y; = r — 1 if 5 = 1 and zero if j > 1, which is
consistent with that Eg(e;;) = rEg(ejp1,) if 7 = 1 and Eglej) = Eglejr1y) = 1
otherwise. Hence, for r > 1 this is consistent with that the predictive ability of the first

IMATLAB code for generating Tables 1-2 can be downloaded from
http://www.mysmu.edu/staff/danielpreve.
2By (3.4), a sufficient condition for ¢ to be greater than zero is that P > 2q + 1.
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TABLE 1. Empirical sizes: Each table entry (based on 100000 Monte Carlo replications) reports the frequency of the simulations in
which the true null of EPA is rejected at the asymptotic significance level o = 0.1. The process generating a loss differential series of length
P is a k-dimensional MA(q) with Gaussian noise. The parameter p controls the contemporaneous correlation of the noise. The parameter
9 controls the strength of the serial correlation. S. is the finite-sample corrected version of the original test S.

p=1=05 p=0514=09 p=09,9 =05 p=1b=09
q Test P =100 P =500 P = 1000 P =100 P =500 P = 1000 P =100 P =500 P = 1000 P =100 P =500 P = 1000

0 S 0.105 0.101 0.101 0.105 0.101 0.101 0.105 0.101 0.101 0.105 0.101 0.101
Se 0.103 0.101 0.100 0.103 0.101 0.100 0.103 0.101 0.100 0.103 0.101 0.100
1S 0.112 0.103 0.101 0.111 0.103 0.101 0.112 0.103 0.101 0.111 0.103 0.101
Se 0.107 0.102 0.101 0.106 0.102 0.101 0.107 0.102 0.101 0.106 0.102 0.101
2 S 0.120 0.105 0.103 0.120 0.105 0.102 0.120 0.105 0.103 0.120 0.105 0.102
Se 0.111 0.103 0.102 0.111 0.103 0.101 0.111 0.103 0.102 0.111 0.103 0.101
3 S5 0.131 0.107 0.103 0.129 0.107 0.103 0.131 0.107 0.103 0.129 0.107 0.103
Se 0.118 0.105 0.102 0.116 0.104 0.102 0.118 0.105 0.102 0.116 0.104 0.102
4 S 0.142 0.109 0.104 0.139 0.108 0.104 0.142 0.109 0.104 0.139 0.108 0.104
Se 0.125 0.105 0.103 0.122 0.105 0.102 0.125 0.105 0.103 0.122 0.105 0.102
0 S 0.110 0.101 0.102 0.110 0.101 0.102 0.110 0.101 0.102 0.110 0.101 0.102
Se 0.108 0.101 0.102 0.108 0.101 0.102 0.108 0.101 0.102 0.108 0.101 0.102
1 S 0.126 0.104 0.103 0.125 0.104 0.103 0.126 0.104 0.103 0.125 0.104 0.103
Se 0.118 0.103 0.102 0.118 0.103 0.102 0.118 0.103 0.102 0.117 0.103 0.102
2 S 0.144 0.108 0.105 0.142 0.108 0.105 0.144 0.108 0.105 0.142 0.108 0.105
Se 0.132 0.105 0.104 0.130 0.105 0.104 0.132 0.105 0.104 0.130 0.105 0.104
3 S 0.166 0.112 0.107 0.161 0.111 0.107 0.167 0.112 0.107 0.162 0.111 0.107
Se 0.148 0.108 0.105 0.143 0.108 0.105 0.148 0.109 0.105 0.143 0.108 0.105
4 S 0.188 0.116 0.109 0.181 0.114 0.108 0.189 0.115 0.109 0.181 0.114 0.108
Se 0.165 0.111 0.107 0.156 0.110 0.106 0.165 0.111 0.107 0.157 0.110 0.106
0 S 0.116 0.103 0.102 0.116 0.103 0.102 0.116 0.103 0.102 0.116 0.103 0.102
Se 0.113 0.102 0.101 0.113 0.102 0.101 0.113 0.102 0.101 0.113 0.102 0.101
1S 0.141 0.109 0.104 0.140 0.108 0.104 0.142 0.108 0.104 0.141 0.108 0.104
Se 0.133 0.107 0.103 0.131 0.107 0.103 0.133 0.107 0.103 0.132 0.107 0.103
2 S 0.172 0.113 0.107 0.168 0.113 0.107 0.174 0.113 0.107 0.169 0.113 0.107
Se 0.156 0.111 0.106 0.152 0.110 0.105 0.157 0.110 0.106 0.153 0.110 0.105
3 S 0.209 0.120 0.109 0.198 0.118 0.109 0.210 0.120 0.110 0.199 0.118 0.109
Se 0.185 0.115 0.107 0.174 0.114 0.107 0.187 0.115 0.108 0.175 0.114 0.107
4 S5 0.251 0.126 0.113 0.232 0.124 0.112 0.252 0.126 0.113 0.233 0.124 0.112
Se 0.219 0.121 0.110 0.200 0.118 0.110 0.221 0.121 0.110 0.201 0.119 0.109
0 S 0.123 0.104 0.103 0.123 0.104 0.103 0.123 0.104 0.103 0.123 0.104 0.103
Se 0.120 0.104 0.103 0.120 0.104 0.103 0.120 0.104 0.103 0.120 0.104 0.103
1 S 0.159 0.111 0.107 0.156 0.111 0.107 0.161 0.112 0.107 0.158 0.111 0.107
Se 0.148 0.109 0.106 0.146 0.109 0.106 0.150 0.110 0.106 0.147 0.109 0.106
2 S 0.205 0.119 0.110 0.197 0.118 0.109 0.208 0.119 0.110 0.199 0.118 0.109
Se 0.185 0.116 0.108 0.177 0.115 0.108 0.188 0.116 0.108 0.180 0.115 0.108
3 S 0.263 0.126 0.114 0.244 0.125 0.113 0.266 0.126 0.114 0.246 0.125 0.113
Se 0.233 0.121 0.112 0.213 0.120 0.110 0.236 0.122 0.112 0.216 0.120 0.111
4 S 0.327 0.136 0.118 0.292 0.133 0.116 0.329 0.137 0.118 0.296 0.133 0.117
Se 0.290 0.130 0.115 0.254 0.127 0.113 0.292 0.130 0.115 0.258 0.127 0.114
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model is lower than the others under g(-), ensuring that the null hypothesis of EPA is
false. Table 2 reports size-adjusted rejection frequencies of the test S (and hence also
S.) for r = 1.25. In general, power decreases in ¢ and v and increases in P.

Remarks. In their paper, HLN argue that a further intuitively reasonable modification
of the DM test is to compare (1.2) and their modified statistic, respectively, with critical
values from the Student’s ¢ distribution with (P —1) degrees of freedom, rather than from
a standard normal distribution. In an extensive simulation study, including heavy-tailed
forecast error distributions, the authors conclude that both of their proposed modifica-
tions of the DM test are worth making in finite samples. Along the lines of HLN, a
further modification of the tests S and S. is to compare the statistics %S and %Sc,
respectively, with critical values from Hotelling’s 72 distribution with parameters k and
(P — 1), rather than from the x? distribution. Similar to HLN, such an approach can
be motivated by the observation that the exact finite-sample distribution of %S is
T?*(k, P — 1) in the case when d,...,dp are independent multivariate normal random
vectors with common distribution N, (0, %) and Q = I'(0). See, for example, Corollary
3.5.1.1 in Mardia et al. (2000). The potential gains of such an approach is the subject of
further studies.

Finally, it is important to acknowledge a limitation of the tests that we employ in this
section. While the truncated estimator, (3.1), used when computing S and S, is HAC,
it need not be positive semidefinite (PSD) in finite samples if ¢ > 0 (Newey and West,
1987). This property may interfere with hypothesis testing. In our Monte Carlo study
this became apparent in small samples. For example, in the most extreme experiment
(k=q=4,p=09,¢v =0.5 and P = 100) the number of negative S statistics were
633 (0.6%). In recognition of this, it would be interesting to compare results for the two
tests studied with results for a third test using one of the PSD estimators discussed in
the Summary and Concluding Remarks section below, in a more extensive Monte Carlo
study which also includes non-Gaussian loss differentials.

5. SUMMARY AND CONCLUDING REMARKS

In this paper, we considered a multivariate version of the DM test for EPA and showed
that it is invariant with respect to the ordering of the alternative forecasting models for
a wide range of covariance matrix estimators. The test statistic S has an asymptotic x3
distribution under the null hypothesis of EPA. Additionally, we showed that the finite-
sample correction of HLN for the DM test extends to our multivariate setting, resulting
in the modified test S.. Simulations indicated that the S statistic using the truncated
estimator, (3.1), has reasonable size properties for a small number of alternative models
and large samples, and that improved finite-sample properties are obtained by correcting
the test for finite-sample bias in the estimated variance of d. This suggests that a natural
environment for S (and S.) is when a large number of forecasts from a small number
of non-nested alternative models are available for comparison. It was speculated that
further finite-sample improvements can be achieved using Hotelling’s T? critical values.

It was remarked that although (3.1), used when computing the tests in the Monte
Carlo study, is a HAC estimator of 2 it has the drawback that it need not be PSD
in finite samples. If a PSD estimator of €2 is required and it is known that the ¥; in
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(2.5) are zero after lag ¢, one can use the consistent and by construction PSD long run
variance estimators discussed in Section 2 of West (2008). In the more general case in
which the order ¢ is taken to be unknown, or is infinite, one can instead use a HAC
estimator where the truncation point tends to infinity at a suitable rate. In all cases one
can also use bootstrap critical values, along the lines of Corradi and Swanson (2006) and
Corradi and Swanson (2007). We conjecture that bootstrapping can further improve the
finite sample behavior of S. The potential gains of such bootstrap schemes is the subject
of further studies.

Parameter Estimation Uncertainty. In order to compare the out-of-sample predic-
tive ability when one or more of the alternative models are parametric, the time series
{y,} 4" is split into two subsamples. The first R observations are used for model esti-
mation and the last P observations is the hold-back sample used for forecast evaluation.
Typically a recursive scheme is used, where the size of the sample used for estimation
successively increases as new forecasts are made.?

West (1996) observed that if any of the models are parametric (1.1) depend on es-
timated parameters such that the limiting distribution of (1.2) may not be standard
normal. West showed how to adjust for the effects of parameter estimation error when
conducting inference.* West also showed that asymptotic irrelevance holds quite gener-
ally whenever limp g .o, P/R = 0.° For related results, see also McCracken (2000) and
Corradi et al. (2001). In this case asymptotic inference does not require adjusting for
parameter estimation error and the limiting null distribution of (1.2) is standard normal.

If one or more of the alternative models is parametric, it is our reading of West (1996)
and McCracken (2000) that asymptotic irrelevance holds quite generally for the tests
S and S. whenever P/R — 0 as P and R tend to infinity. In this case asymptotic
inference does not require adjusting for parameter estimation error and the limiting null
distribution of S (and S,) is x3.

As pointed out by, for example, McCracken (2007) the results in DM and West (1996)
may not apply if the alternative models are nested. In this case the numerator and de-
nominator of (1.2) may vanish asymptotically in a way such that the limiting distribution
is non-normal %

Giacomini and White (2006) considered an asymptotic framework, where R is bounded
and P — oo, that justifies the use of the DM test in the case of nested or non-nested
parametric models. As noted by a referee, it appears that this framework can be used
to ensure that the limiting null distribution of S (and S.) is x? in the case where the
alternative models are parametric and potentially nested.

Rejection of the Null of EPA. In practice, a rejection of the null hypothesis using
S or S. only suggests that one or more of the alternative models stand out in terms

3Some other commonly used schemes are the rolling and fixed schemes.

4The adjustment requires that the models and their associated estimators are known. In addition, its
calculations may be quite involved.

In other words, the contribution of parameter estimation error vanishes asymptotically if P grows at a
slower rate than R.

6If one model nests the other, smaller and correctly specified, model and parameters are estimated
consistently as R — oo.
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of predictive ability. It is usually of interest to identify these models. The following
multistep procedure, which is along the lines of Hansen et al. (2011), can be used to
eliminate models with poor sample performance. In step one, test the null of EPA using
S or S, at level a. In step two, stop if the null is accepted. If not, use an elimination
rule to remove one of the alternative models and repeat the procedure in step one for
the remaining models.

As suggested by a second referee, an elimination rule can be based on the DM statistic
n (1.2). More specifically, define s; = d;//@u/P (i = 1,...,k), where @& is the ith
diagonal element of Q, and let j = argmax; |s;|. Suppose that ¢ : R — R*. Then, in
view of (2.2), eliminate model j if the value of s; is positive. Otherwise, eliminate model
Jj+1

APPENDIX A. PROOFS

Lemma 1. Suppose that B is a nonsingular k x k matriz and let

—l—Z/fhm f‘ f‘;(h)],
h=1
where
1 <& 1<
I,(h) == Bd, —d,)(Bd, , —d,) andd, = — S Bd,.
() Ptzh:—H( t )( t—h )Cm P; t

[fﬂ s nonsingular, then

_ A1 —
where pu, = Bp.
Proof. Since d, = Bd and

P

it follows that

Finally, because both B and Q are nonsingular,

(de — ) (. — p.)
= (d— p)B'(BOB) 'B(d —p) = (d— p)’Q (d—p).
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Proof of Proposition 2. The total number of possible permutations of the forecast
errors at time ¢ that use all k + 1 errors is equal to (k+ 1)!. Any such permutation e} is
given by the relation ej = Pe;, where P is a (k+ 1) x (k + 1) permutation matrix and
e; is the (arbitrary) ordering e; = (e, ..., ex41+)’. Denote by D the & x (k + 1) matrix

1 -1 0 0

D — 0 1 -1 ’
0
0 0 1 -1

and let the multi-variable mapping g : R¥*! — R**! be given by

g(r1)
g(x) = :
9(Tky1)

Now, any possible loss differential vector dj at time ¢ is given by the relation

d; = Dg(e;) = Dg(Pe),
for some permutation matrix P. For example, for P =1, d} is equal to d;. First we will
show that there always exists a transformation matrix B such that Bd; = d}. Next, we

will show that B is nonsingular.
It follows that, if B exists, we must have that

BDg(e;) = Dg(Pe;) = DPg(e;), (A1)

where the second equality follows since g(Px) = Pg(x). A right inverse of D is given by
the (k + 1) x k matrix

1 1 0
. .

D™= : 1 0
0 0 0
0 0 —1

Consequently, the k x k transformation matrix B = DPD™ satisfies (A.1) and Bd; = d;.
In view of Lemma 1, it only remains to show that B is nonsingular.

By Theorem A.6.2 in Mardia et al. (2000), the non-zero eigenvalues of B and the
(k+1) x (k+ 1) matrix PD™D are the same. Moreover, since P is a permutation
matrix, the number of non-zero eigenvalues of PD ™D and D™D are the same. Using
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Laplace’s formula on the last column, it is readily seen that

1 0 --- 0 -1 0

0o 1 . : —=10
D D= P (I ’

O --- 0 1 -1 0

o 0 ---0 0 O

o 0 --- 0 -1 1

has k non-zero eigenvalues. Thus, in view of the theorem, B has k£ non-zero eigenvalues.
Hence B is nonsingular. 0

Proof of Proposition 3. Following the outline of the proof in HLN, the estimator in
(3.1) can be written as

- ~ /P —h\ - ~
Q=T+ (T) [T(h) +T'(h)], (A.2)
h=1
where
3 P 1 P _
(h) = (m)r(h) =57 > (dy = d)(di—p, — dY,
t=h+1
and
P — —
> (dy—d)(dip — d)
t=h+1
P P B P B o
=) ddj ,— > dd — ) dd;,+(P—h)dd
t=h-+1 t=h+1 t=h+1
P R
= Y (ddj, — pp) — (P +h)(dd — pp)
t=h+1
h B P -
+ ) (ded' —pp)+ > (dd) — pp).
t=1 t=P—h+1

To arrive at the second equality, note that
P h
Y dd =Pdd - ) dd,
t=h+1 t=1
and

P
d;=prdd - Y  dd;.

t=h+1 t=1 t=P—h+1

[oN]
£
L

Il

(o]
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By induction in h, it is readily verified that for P > h

h P
PE[Z(dta/_HIJ’/)}:PE[ > (dd) — pp)
=1 t=P—h+1
-1 P—h
=Y (h—)T(i)+ Y _ AT +Z h—i)I'(P = h+1i).
=0

1 =1

>

%

Hence, for h =0,1,....q

ET(h) (A.3)
S e Lil(dt ~ d)(dp— )]

- ﬁE [til(dtd;_h —pp) — (P +h)(dd — py)

+ g(dtd’ — ) + t_iﬂ(dd; — )| =T() - (]]Z + Z)Vard

h—1 P—h h—1

+ﬁ[2(h—z’)I‘(i)+ZhI" )+ S (h— TP~ h+i)].

i=1 =1

The final term in (A.3) is zero if h = 0 and of order P~2 for h > 0. Thus, for h = 0,1, ....q
we have that

P+h
P—h

In view of (A.2), (A.4) and (3.2) the expected value of P~1€2 is
E(P7'9Q) (A.5)

ET(h) =T(h) - ( )Vard +O(P2) =T(h) — Vard + O(P2). (A.4)

= —[P— 1- zzq:(P—h)]\/ardjLO(P_?’)

P—-—1-2 p1 1 -
- g+ alg+ >Vaurd—i—O(P_:i).
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