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LINEAR PROGRAMMING-BASED ESTIMATORS IN NONNEGATIVE

AUTOREGRESSION

DANIEL PREVE†

FEBRUARY 19, 2014

Abstract. This note studies robust estimation of the autoregressive (AR) parameter in a non-
linear, nonnegative AR model. It is shown that a linear programming estimator (LPE), con-
sidered by Nielsen and Shephard (2003) among others, remains consistent under severe model
misspecification. Consequently, the LPE can be used to seek sources of misspecification and
to isolate certain trend, seasonal or cyclical components. Simple and quite general conditions
under which the LPE is strongly consistent in the presence of heavy-tailed, serially correlated,
heteroskedastic disturbances are given, and a brief review of the literature on LP-based esti-
mators in nonnegative autoregression is presented. Finite-sample properties of the LPE are
investigated in a small scale simulation study.

1. Introduction

In the last decades, nonlinear and nonstationary time series analysis have gained much at-
tention. This attention is mainly motivated by evidence that many real life time series are
non-Gaussian with a structure that evolves over time. For example, many economic time series
are known to show nonlinear features such as cycles, asymmetries, time irreversibility, jumps,
thresholds, heteroskedasticity and combinations thereof. This note considers robust estimation
in a (potentially) misspecified nonlinear, nonnegative autoregressive model, that may be a useful
tool for describing the behavior of a broad class of nonnegative time series.

For nonlinear time series models it is common to assume that the disturbances are i.i.d.
with zero-mean and finite variance. Recently, however, there has been considerable interest in
nonnegative models. See, e.g., Abraham and Balakrishna (1999), Engle (2002), Tsai and Chan
(2006), Lanne (2006) and Shephard and Sheppard (2010). The motivation to consider such mod-
els comes from the need to account for the nonnegative nature of certain time series. Examples
from finance include variables such as prices, bid-ask spreads, trade volumes, trade durations and
realized volatilities and bipower variations (Barndorff-Nielsen and Shephard, 2004). This note
considers a nonlinear, nonnegative autoregressive model driven by nonnegative disturbances.
More specifically, it considers robust estimation of the AR parameter β in the autoregression

yt = βf(yt−1, . . . , yt−s) + ut, (1)
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2 DANIEL PREVE

with nonnegative (possibly) misspecified disturbances ut. Potential distributions for ut include
lognormal, gamma, uniform, Weibull, inverse Gaussian, Pareto and mixtures of them. In some
applications, robust estimation of the AR parameter is of interest in its own right. One example
is point forecasting, as described in Preve et al. (2010). Another is seeking sources of model
misspecification. In recognition of this fact, this note focuses explicitly on the robust estimation
of β in (1). If the function f is known, a natural estimator for β given the sample y1, . . . , yn
and the nonnegativity of the disturbances is

β̂n = min

{
ys+1

f(ys, . . . , y1)
, . . . ,

yn
f(yn−1, . . . , yn−s)

}
. (2)

This estimator has been used to estimate β in certain restricted first-order autoregressive, AR(1),
models (e.g. Anděl, 1989b; Datta and McCormick, 1995; Nielsen and Shephard, 2003). An early
reference of the autoregression in (1) is Bell and Smith (1986), who considers the linear AR(1)
specification f(yt−1, . . . , yt−s) = yt−1 to model water pollution and the accompanying estimator
in (2) for estimation.1 The estimator in (2) can, under some additional conditions, be viewed as
the solution to the linear programming problem of maximizing the objective function g(β) = β
subject to the n− s linear constraints yt−βf(yt−1, . . . , yt−s) ≥ 0 (cf. Feigin and Resnick, 1994).
Because of this, we will refer to it as a LP-based estimator or LPE. As it happens, (2) is also the
(on y1, . . . , ys) conditional maximum likelihood estimator (MLE) for β when the disturbances

are exponentially distributed (cf. Anděl, 1989a). What is interesting, however, is that β̂n is a
strongly consistent estimator of β for a wide range of disturbance distributions, thus the LPE
is also a quasi-MLE.

In all of the above references the disturbances are assumed to be i.i.d.. To the authors
knowledge, there has so far been no attempt to investigate the statistical properties of LP-based
estimators in a non i.i.d. time series setting. This is the focus of the present study.

The remainder of this note is organized as follows. In Section 2 we give simple and quite
general conditions under which the LPE is a strongly consistent estimator for the AR parameter,
relaxing the assumption of i.i.d. disturbances significantly. In doing so, we also briefly review
the literature on LP-based estimators in nonnegative autoregression. Section 3 reports the
simulation results of a small scale Monte Carlo study investigating the finite-sample performance
of the LPE. Mathematical proofs are collected in the Appendix. An extended Appendix available
on request from the author contains some results mentioned in the text but omitted from the
note to save space.

2. Theoretical Results

In economics, many time series models can be written in the form yt =
∑p

i=1 βifi(yt−1, . . . , yt−s)+
ut. A recent example is Corsi’s (2009) HAR model. In this section we focus on the particular case
when p = 1 and the disturbances are nonnegative, m-dependent, heterogeneously distributed
random variables.2

The nonlinear autoregressive model we consider is{
yt = βf(yt−1, . . . , yt−s) + ut
ut = σtεt, t = s+ 1, s+ 2, . . .

where the ut are nonnegative random variables or disturbances. The model has two parts:
The first part is a (potentially) nonlinear function of lagged values of yt which, aside from the
parameter β, is taken to be known. The second part, ut, is taken to be unknown and potentially

1Bell and Smith (1986) refer to the LPE as a ‘quick and dirty’ nonparametric point estimator.
2A sequence ε1, ε2, . . . of random variables is said to be m-dependent if and only if εt and εt+k are pairwise
independent for all k > m. In the special case when m = 0, m-dependence reduces to independence.
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misspecified. In sum, the model combines a parametric part with a flexible, nonparametric part
for the additive disturbance component. In some recent work, Preve et al. (2010) use similar
types of autoregressive models to successfully forecast monthly S&P 500 realized volatility.

We now give simple and quite general conditions under which the LPE converges with prob-
ability one or almost surely (a.s.) to the AR parameter.

Condition 1. The autoregression {yt} satisfies the stochastic difference equations

yt = βf(yt−1, . . . , yt−s) + ut, t = s+ 1, s+ 2, . . .

for some function f : Rs → R with AR parameter β > 0 and (a.s.) positive initial values
y1, . . . , ys. {ut} is a sequence of nonnegative, continuous random variables.

Condition 1 includes disturbance distributions supported on [η,∞), for any (unknown) non-
negative constant η, indicating that an intercept in the model is superflous. It also allows us to
consider various mixture distributions that can account for data characteristics such as jumps.3

The next condition concerns the mapping f , which allows for various lagged or seasonal model
specifications.

Condition 2. The mapping f is known (measurable and nonstochastic) and there exist constants
c > 0 and r ∈ {1, . . . , s} such that f(y) = f(y1, . . . , yr, . . . , ys) ≥ cyr.

The requirement that f dominates some hyperplane through the origin ensures the existence
of a crude linear approximation of yt in terms of lagged values of ut at certain fixed instants
of t. Conditions 1 and 2 combined ensure the nonnegativity of {yt}. Condition 2 is met by
elementary one-variable functions such as eys , sinh ys and any polynomial in ys of degree higher
than 0 with positive coefficients. Thus, in contrast to the setting of Anděl (1989b), we allow f
to be non-monotonic.

Condition 3. The disturbance at time t is given by

ut = σtεt, t = s+ 1, s+ 2, . . .

where {σt} is a deterministic sequence of strictly positive reals of (possibly) unknown form,
and {εt} is a sequence of m-dependent, identically distributed, nonnegative continuous random
variables. m ∈ N is finite and potentially unknown.

The σt are scaling constants which express the possible heteroskedasticity. The specification
of the additive disturbance component can be motivated by the fact that it is common for the
variance of a time series to change as its level changes. Since σt as well as the distribution and
functional form of εt are unknown, the formulation is nonparametric. Condition 3 also allows
for serially correlated disturbances. Such correlation arises if omitted variables included in ut
themselves are correlated over time.

Condition 4. The time-varying ‘volatility factor’ σt satisfies

σ ≤
σq(i)

σq(i)+4
<∞, i = s+ 1, s+ 2, . . .

for some σ > 0, where the integers q(i), 4 are defined as q(i) = (2i − 2)(m + 1)r + r + 1,
4 = (m+ 1)r.

3For instance, ut = (1 − bt)u1t + btu2t where {bt}, {u1t} and {u2t} are independent Bernoulli, lognormal and
Pareto (potentially heavy-tailed) i.i.d. sequences, respectively.
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Condition 4 ensures that σt (viewed as a function of time) does not increase, or decrease, too
rapidly. The condition on the rate of change is very general and allows for various standard
specifications, including abrupt breaks, smooth transitions, ‘hidden’ periodicities or combina-
tions thereof, of the disturbance variance. Hence, the model is allowed to evolve over time.

The nonlinear, nonnegative autoregression implied by conditions 1–4 is flexible and nests
several models in the related literature.4 It is worth noting that, since β̂n−β = Rn where Rn =
min {ut/f(yt−1, . . . , yt−s)}nt=s+1, the LPE is positively biased and stochastically nonincreasing
in n under the conditions.

2.1. Convergence. Previous works focusing explicitly on the (stochastic) convergence of LP-
based estimators in nonnegative autoregressions include Anděl (1989a), Anděl (1989b) and An
(1992). LPEs are interesting as they can yield much more accurate estimates than traditional
methods, such as conditional least squares (LS). See, e.g., Datta et al. (1998) and Nielsen and
Shephard (2003). Like the LSE for β, the LPE is distribution free in the sense that its consistency
does not rely on a particular distributional assumption for the disturbances. However, the LPE
is sometimes superior to the LSE. For example, its rate of convergence can be faster than√
n even when β < 1.5 For instance, in the linear AR(1) with exponential disturbances the

(superconsistent) LPE converges to β at the rate of n. For another example, in contrast to the
LSE, the consistency conditions of the LPE do not involve the existence of any higher order
moments.

Here is our main result.

Proposition 1. Under conditions 1–4, if P (c1 < εt < c2) < 1 for all 0 < c1 < c2 < ∞, then

β̂n
a.s.−→ β as n→∞.

In other words, the LPE remains a consistent estimator for β if the i.i.d. disturbance assump-
tion is significantly relaxed. The convergence is almost surely (and, hence, also in probability).
Note that the additional condition of Proposition 1 is satisfied for any distribution with un-
bounded nonnegative support, and that the consistency conditions of the LPE do not involve
the existence of any moments.6 Hence, heavy-tailed disturbance distributions are also included.

2.2. Distribution. As aforementioned, the purpose of this note is not to derive the distribution
of the LPE in our setting, but rather to highlight some of its robustness properties. Nevertheless,
for completeness, we here mention some related distributional results. For the case with i.i.d.
nonnegative disturbances several results are available: Davis and McCormick (1989) derive the
limiting distribution of the LPE in a stationary AR(1) and Nielsen and Shephard (2003) derive
the exact (finite-sample) distribution of the LPE in a AR(1) with exponential disturbances.
Feigin and Resnick (1994) derive limiting distributions of LPEs in a stationary AR(p). Datta et
al. (1998) establish the limiting distribution of a LPE in an extended nonlinear autoregression.
The limited success of LPEs in applied work can be partially explained by the fact that their
asymptotic distributions depend on the (in most cases) unknown distribution of the disturbances.
To overcome this problem, Datta and McCormick (1995) and Feigin and Resnick (1997) consider
bootstrap inference for linear autoregressions via LPEs. Some robustness properties and exact

4For example, Bell and Smith’s model is obtained by choosing f(y) = y1, σt = 1 for all t, and m = 0.
5This occurs, under some additional conditions, when the exponent of regular variation of the disturbance distri-
bution at 0 or ∞ is less than 2 (Davis and McCormick, 1989; Feigin and Resnick, 1992). The rate of convergence
for the LSE is faster than

√
n only when β ≥ 1 (Phillips, 1987).

6As an extreme example, consider estimating β in the linear model yt = βyt−1+ut with independent, nonnegative
stable disturbances ut ∼ S(a, b, c, d; 1), where the index of stability a < 1, the skewness parameter b = 1 and the
location parameter d ≥ 0 (cf. Lemma 1.10 in Nolan, 2012). In this case yt also follows a stable distribution with
index of stability a and, hence, no finite first moment for a suitable choice of y1.
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distributional results of the LPE in a cross-sectional setting were recently derived by Preve and
Medeiros (2011).

3. Simulation Study

In this section we report simulation results concerning the estimation of β in the autoregression
yt = βyt−1 + ut. We consider four different disturbance specifications, and the LPE and LSE as
estimators for β. The LSE is used as a simple benchmark estimator as it is well known to be
inconsistent for the AR parameter when the disturbances are serially correlated. We report the
empirical bias and mean squared error (MSE) based on 100 000 simulated samples for different
sample sizes n.

First we consider a data generating process (DGP) with linear disturbance specification

ut = εt +
m∑
i=1

ψiεt−i.

The simulation results are shown in panel A of Table 1. The second specification is nonlinear
and given by

ut = εt +
m∑
i=1

ψiεtεt−i.

The corresponding simulation results are shown in panel B of Table 1. For the last two spec-
ifications we consider DGPs with σt time-varying and follow the designs used in Section 5 of
Phillips and Xu (2005). The first specification corresponds to the case of a single abrupt change
of disturbance variance via

σt =
√
σ20 + (σ21 − σ20)1{t≥nτ},

where 1{·} is the indicator function and τ ∈ (0, 1). For the second specification heteroskedasticity
is delivered by a smooth transition function of time, via

σt =
√
σ20 + (σ21 − σ20) tn .

The simulation results are shown in panels C and D of Table 1. For all four specifications, it
is readily verified that the conditions of Proposition 1 are satisfied. Hence, the LPE is strongly
consistent for β.

4. Conclusions

The focus in this note is on estimating the AR parameter in an autoregression driven by
nonnegative disturbances using a LP-based estimator. In the previous literature the disturbances
are assumed to be i.i.d.. Sometimes, this assumption may be considered too restrictive and one
would like to relax it. In this note, we relax the i.i.d. assumption significantly by allowing for
quite general kinds of dependencies between the disturbances and show that the LPE remains
strongly consistent. In doing so, we also briefly review the literature on LP-based estimators
in nonnegative autoregression. Because of its robustness properties, the LPE can be used to
seek sources of misspecification in the disturbances of the initially specified model and to isolate
certain trend, seasonal or cyclical components. Our simulation results indicate that the LPE
can have very reasonable finite-sample properties.



6 DANIEL PREVE

Table 1. Simulation results: Each table entry, based on 100 000 simulated sam-
ples, reports the empirical bias/MSE of the LPE/LSE for β in yt = βyt−1 + ut
when the DGP is Panel A) yt = 0.8yt−1 + εt + 0.75εt−1 + 0.25εt−2, Panel B)

yt = 0.9yt−1 + εt + 0.9εtεt−1, Panel C) yt = 0.5yt−1 + εt
√

1 + (0.04− 1)1{t≥n/2},

Panel D) yt = 0.5yt−1 + εt
√

1 + 24t/n. For all four DGPs the εt are independent
standard exponentially distributed.

Panel A: Linear disturbances Panel B: Nonlinear disturbances

LPE LSE LPE LSE

n Bias MSE Bias MSE Bias MSE Bias MSE

50 0.036 0.002 0.085 0.010 0.002 0.000 -0.015 0.004

100 0.028 0.001 0.102 0.012 0.001 0.000 0.013 0.002

200 0.021 0.001 0.111 0.013 0.000 0.000 0.026 0.001

Panel C: Abrupt change Panel D: Smooth transition

LPE LSE LPE LSE

n Bias MSE Bias MSE Bias MSE Bias MSE

25 0.015 0.000 0.181 0.045 0.023 0.001 0.021 0.030

50 0.009 0.000 0.214 0.051 0.011 0.000 0.060 0.016

100 0.005 0.000 0.227 0.054 0.005 0.000 0.082 0.013
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APPENDIX

The following lemmas are applied in the proof of Proposition 1.

Lemma 1. Under conditions 1-4, Rn
p→ 0⇒ β̂n

a.s.−→ β.

Proof. We will use that β̂n converges almost surely to β if and only if for every ε > 0, limn→∞ P (|β̂k−
β| < ε; k ≥ n) = 1 (Lemma 1 in Ferguson, 1996). Let ε > 0 be arbitrary. Then,

P (|β̂k − β| < ε; k ≥ n) = P (|Rk| < ε; k ≥ n) = P (|Rn| < ε)→ 1 as n→∞.

The last equality follows since {Rk} is stochastically decreasing, and the limit since Rn
p→ 0 by

assumption. �

Lemma 2. Under conditions 1-4,

ylr+1 ≥ (βc)ly1 +
l−1∑
j=0

(βc)jσ(l−j)r+1ε(l−j)r+1,

for l = 1, . . . , bn−1r c (a.s.), where b·c is the integer part function.

Proof. We proceed with a proof by induction. Without loss of generality, suppose yi = 0 for
i = (r + 1 − s), . . . , 0 if r < s. Since cyr is dominated by f(y) for yr > 0, the assertion is true
for l = 1. Suppose it is true for some positive integer k. Then, for k + 1

y(k+1)r+1 = βf(y(k+1)r, . . . , ykr+1, . . . , y(k+1)r+1−s) + σ(k+1)r+1ε(k+1)r+1

≥ βcykr+1 + σ(k+1)r+1ε(k+1)r+1 ≥ (βc)k+1y1 +

k∑
j=0

(βc)jσ(k−j+1)r+1ε(k−j+1)r+1,

where the last inequality follows by the induction assumption. �

Lemma 3. Let v and w be two nonnegative i.i.d. continuous random variables. Then, the
following two statements are equivalent:

(i) P (v > εw) = 1 for some ε > 0,
(ii) there exist c1 and c2, 0 < c1 < c2 <∞, such that P (c1 < v < c2) = 1.

Proof. See p. 2291 in Bell and Smith (1986). �

Proof of Proposition 1. By the proof of Lemma 1, it is sufficient to show that Rn
p→ 0.

Suppose that n ≥ q(s) + 34 and let ε > 0 be given. Then

P (Rn > ε) = P
(
ut > εf(yt−1, . . . , yt−s); t = s+ 1, . . . , n

)
≤ P

(
uq(i)+4 > εf(yq(i)+4−1, . . . , yq(i)+4−s); i = s+ 1, . . . , N

)
,

where

N(n) =

⌊
1

2

(
n− r − 1

4
+ 1

)⌋
.

Apparently, N ∈ [s + 1, n) and tends to infinity as n → ∞. Furthermore, by Condition 2 and
Lemma 2,

f(ylr+r, . . . , ylr+1, . . . , ylr+r+1−s) ≥ cylr+1

≥ cl+1βly1 +

l−1∑
j=0

cj+1βjσ(l−j)r+1ε(l−j)r+1

≥ cj+1βjσ(l−j)r+1ε(l−j)r+1,
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for each j ∈ {0, . . . , l− 1}. Hence, for l(i) = (2i− 1)(m+ 1) and j = m it is readily verified that

P (Rn > ε) ≤ P (σq(i)+4εq(i)+4 > εcm+1βmσq(i)εq(i); i = s+ 1, . . . , N).

Since the sequence εs+1, . . . , εn of disturbances is m-dependent, εt and εt+k are pairwise inde-
pendent for all k > m. Let wi = εq(i)+4/εq(i). Then ws+1, . . . , wN is a sequence of i.i.d. random
variables, for which the numerator and denominator of each wi are pairwise independent, and
hence

P (Rn > ε) ≤ P
(
ws+1 >

σq(s+1)

σq(s+1)+4
εcm+1βm

)
× · · ·×

P
(
wN >

σq(N)

σq(N)+4
εcm+1βm

)
≤ P (εq(s+1)+4 > εεq(s+1))

N−s

where ε = σεcm+1βm. In view of Lemma 3 and the limiting behavior of N(n) this implies that
P (|Rn| > ε) → 0 as n → ∞. Since ε > 0 was arbitrary, Rn converges in probability to zero.
�
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