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MEASURE OF LOCATION-BASED ESTIMATORS

IN SIMPLE LINEAR REGRESSION

XIJIA LIU† AND DANIEL PREVE‡

Abstract. In this paper we consider certain measure of location-based estimators (MLBEs)
for the slope parameter in a linear regression model with a single stochastic regressor. The
median-unbiased MLBEs are interesting as they can be robust to heavy-tailed samples and,
hence, preferable to the ordinary least squares estimator (LSE). Two different cases are consid-
ered as we investigate the statistical properties of the MLBEs. In the first case, the regressor
and error are assumed to follow a symmetric stable distribution. In the second, other types
of regressions, with potentially contaminated errors, are considered. For both cases the consis-
tency and exact finite-sample distributions of the MLBEs are established. Some results for the
corresponding limiting distributions are also provided. In addition, we illustrate how our results
can be extended to include certain heteroscedastic regressions. Finite-sample properties of the
MLBEs in comparison to the LSE are investigated in a simulation study.

1. Introduction

In regression analysis, an important question is how to obtain suitable estimators for the slope
parameter β in the simple linear regression

yi = α+ βxi + ui. (1)

An example of such an estimator is the LSE for β, given by

β̂LS =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
= β +

∑n
i=1(xi − x̄)(ui − ū)∑n

i=1(xi − x̄)2
, (2)

which is consistent under quite general assumptions. A justification for the LSE is provided
by the Gauss-Markow theorem which states that if the explanatory variable is non-stochastic
and the regression errors are uncorrelated random variables with zero mean and common finite
variance, then β̂LS has the minimum variance of all linear unbiased estimators for β. However,
the method of ordinary least squares is sensitive to large values of the error term. Estimators that
are robust to heavy-tailed error distributions can be obtained using nonparametric (distribution
free) techniques, an example being the Theil-Sen estimator (Sen, 1968b).

In this paper we consider robust MLBEs for the slope parameter in Equation (1) and investi-
gate their finite-sample and asymptotic properties in a parametric setting. These estimators are
based on measures of location, such as the sample median and trimmed mean. Although our
results are more general, we focus on the case where the explanatory variable, which is assumed
to be stochastic, follows a symmetric stable distribution and the error is either symmetric stable,
with the same index of stability as the explanatory variable, or a normal mixture. We also con-
sider a conditionally heteroscedastic specification. The MLBEs are similar to the estimator of

Key words and phrases. simple linear regression, robust estimators, measure of location, stable distribution,
contaminated error, finite-sample, exact distribution.
† Uppsala University. ‡ City University of Hong Kong. Address correspondence to Xijia Liu, Department

of Statistics, Uppsala University, Box 513, 751 20 Uppsala, Sweden; e-mail: xijia.liu@statistics.uu.se. We are
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Preve and Medeiros (2011) in the sense that they are order statistics of successive ratios between
the response and explanatory variable in a simple linear regression.

Regressions with symmetric stable errors have been considered by, for instance, Blattberg and
Sargent (1971) and McCulloch (1998). A stable, potentially non-normal, error distribution can
be motivated in a number of ways. For example, in economics, the error ui may be thought of as
the sum of a large number of independent, identically distributed (i.i.d.) stable random variables
(say, decisions of investors). If the stability assumption is relaxed, in view of the generalized
central limit theorem, then the distribution of ui will be approximately stable. There is a
large amount of evidence suggesting that many economic variables are best described by stable
distributions with infinite variances. Classical examples include common stock price changes
and changes in other speculative prices, cf. Mandelbrot (1963) and Fama (1965).1

For an example of an MLBE, consider the incomplete pairwise-slope estimator for β based on
a sample of size n

β̂PS = med
{ y2 − y1

x2 − x1
,
y4 − y3

x4 − x3
, . . . ,

y2k − y2k−1

x2k − x2k−1

}
(3)

= β + med{z1, z2, . . . , zk},
where

zi =
u2i − u2i−1

x2i − x2i−1
,

and med{z1, z2, . . . , zk} is the sample median of z1, z2, . . . , zk.
2 If the zi are i.i.d. continuous

random variables, standard results for order statistics show that the exact distribution of β̂PS−β
when k is odd can be expressed in terms of the incomplete beta function

G(z; k) =
[
Fz(z)

]r+1
r∑
s=0

(
r + s

r

)[
1− Fz(z)

]s
=

Γ(k + 1)

Γ(r + 1)Γ(r + 1)

∫ Fz(z)

0
tr(1− t)rdt, (4)

where Γ(·) is the gamma function, Fz(·) is the cdf of the zi and k = 2r + 1.3 See, for example,
David and Nagaraja (2003, p. 10). The incomplete beta function has been tabled extensively and
can easily be evaluated using standard mathematical software packages such as Mathematica
and Matlab. Another example of an MLBE that we will consider is

β̂UF = med
{ y1 − µy
x1 − µx

,
y2 − µy
x2 − µx

, . . . ,
yn − µy
xn − µx

}
, (5)

where µy and µx are location parameters of the yi and xi, respectively. We will sometimes refer
to this estimator as unfeasible as it requires both µy and µx to be known, which for most cases
will not be realistic (cf. the b(α) estimators of Blattberg and Sargent, 1971).

Now consider any estimator β̂ for β that can be decomposed into β̂ = β+med{z1, z2, . . . , zk},
where the zi are i.i.d. continuous random variables with zero median and k is odd. Then, in
view of Equation (4), it is readily shown that the median of β̂ − β is zero also. Hence, β̂ is
a median-unbiased estimator for β. If, in addition, the density of the zi is symmetric about
zero, then so is that of β̂ − β. This tells us that the distribution of β̂ is centered about the

1See also the extensive bibliography on stable distributions compiled by J. P. Nolan, downloadable at
http://academic2.american.edu/∼jpnolan.
2The estimator β̂PS is incomplete in the sense that it uses k = bn/2c differences, where bn/2c represents the
integer part of n/2, instead of n(n− 1)/2 (cf. Sen, 1968b).
3The corresponding expression when k is even is given in Desu and Rodine (1969).
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unknown parameter β. Furthermore, if the median of zi is unique (in general, the median may
be an interval instead of a single number), then the sample median is a consistent estimator

for the population median (e.g. Jiang, 2010, p. 5) and β̂ converges in probability to β as k
tends to infinity. Of course, as an alternative to the sample median, one could instead use a
symmetrically trimmed mean in equations (3) and (5), cf. Section 5. Such an estimator could
potentially have a higher asymptotic relative efficiency (ARE), see Oosterhoff (1994). The main
focus of this note is to establish different conditions under which equations (3) and (5) are
consistent, median-unbiased estimators with exact distributions that can be expressed in terms
of Equation (4), and exact densities that are symmetric about β.

The remainder of this paper is organized as follows. In Section 2 we establish the consistency
and exact finite-sample distribution of the MLBEs given by equations (3) and (5) in a symmetric
stable regression. In doing so, we give conditions under which the median of the ratio of two
independent symmetric stable random variables is unique and zero. In Section 3 we discuss how
our results can be extended to include other types of regressions, with potentially contaminated
errors. In Section 4 we illustrate how these results can be further extended to include certain
types of conditionally heteroscedastic regressions. Section 5 reports the simulation results of a
Monte Carlo study comparing the finite-sample performance of the MLBEs to each other, and
to the LSE. In this study, we also consider feasible versions of (5). Section 6 concludes the
paper. Mathematical proofs are collected in the Appendix. An extended Appendix available on
request from the authors contains some results mentioned in the text but omitted from the note
to save space.

2. A Symmetric Stable Regression

We will initially assume that both the explanatory variable and error in (1) are symmetric
stable random variables. This also ensures that the response variable is symmetric stable. More
specifically, for this specification both the unconditional and the (on xi) conditional distribution
of yi follow a symmetric stable distribution, such as the normal or Cauchy distributions. As we
shall see, although the conditional mean of yi may not exist, the conditional median of yi always
exists for this specification.

The distribution of a stable random variable is described by four parameters, here denoted
by a, b, c and d. The parameter a, the index of stability, is confined to the interval (0, 2].
The skewness parameter b is confined to [−1, 1]. The scale parameter c > 0, and the location
parameter d can take on any real value. There exists a number of different parametrizations for
symmetric stable distributions. Here we will use the S(a, b, c, d) parametrization in Definition
1.7 of Nolan (2012).

For the remainder of this section, we will focus our attention on the class of symmetric stable
random variables. This class may be defined by the characteristic function,

ϕ(t) = E (eitv) = e−c
a|t|a+idt, (6)

where t is a real number. A random variable v is S(a, 0, c, d) distributed if its characteristic
function is given by (6). While there is no general closed form expression for the density of
a symmetric stable random variable, a great deal is known about their theoretical properties.
Lemma 1 in the Appendix (given here without a proof) lists a selected few of these. The reader
is referred to Nolan (2012), Nolan (2003) and Zolotarev (1986) for details.

There are only two known cases for which closed form expressions for the density of an
S(a, 0, c, d) distributed random variable exists. These are the Gaussian (a = 2) and Cauchy
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Figure 1. Densities of four S(a, 0, 1, d) distributed random variables, with com-
mon location parameter d = 2. Tails become progressively heavier as a decreases.

(a = 1) densities, where the latter is given by

1

π

c

c2 + (v − d)2
, −∞ < v <∞.

In general, all we have is integral representations of the density. Figure 1 shows the densities
of four symmetric stable random variables with different indexes of stability.4

Assumption 1 holds throughout the section.

Assumption 1. Let yi (i = 1, 2, . . . , n) be given by (1), with median µy. Suppose that

(i) the xi are independent S(a, 0, cx, µx),
(ii) the ui are independent S(a, 0, cu, 0),

(iii) for each i, xi and ui are mutually independent,
(iv) the sample size is odd, n = 2k + 1.

Here a < 2 is a typical setting in which the, on the explanatory variable, conditional mean
and variance of the LSE for β may not exist. For example, if a = 1 the conditional distribution
of (2) is Cauchy.

Proposition 1. Let G(·) be given by (4). Under Assumption 1,

(i) if µy and µx are known, β̂UF
p→ β as n → ∞ and the exact distribution of (5) is given

by P (β̂UF − β ≤ z) = G(z;n), with

Fz(z) =

∫ (cx/cu)z

−∞

∫ ∞
−∞
|t|f(st)f(t)dtds,

where f(·) is the density of an S(a, 0, 1, 0) distributed random variable. For each k, the

density of β̂UF − β is symmetric about zero.

4Figure 1 was generated using the Matlab function stblpdf of M. Veillette, downloadable at
http://math.bu.edu/people/mveillet/research.html.



MEASURE OF LOCATION-BASED ESTIMATORS IN SIMPLE LINEAR REGRESSION 5

(ii) if k = 2r + 1 is odd, β̂PS
p→ β as n → ∞ and the exact distribution of (3) is given by

P (β̂PS − β ≤ z) = G(z; k), with Fz(z) as in (i). For each r, the density of β̂PS − β is
symmetric about zero.

The proof of the first part of Proposition 1 relies on Lemma 3 in the Appendix, which shows
that the median of the ratio of two independent S(a, 0, 1, 0) distributed random variables is
unique and zero. Although there is no closed form expression for Fz(z) in Proposition 1 in
general, just like the normal distribution, the cdf can be efficiently and accurately evaluated
using numerical integration (Nolan, 1997). The values of a, cx and cu are not needed to estimate
the slope parameter β, but would be to construct confidence intervals. In practice, these nuisance
parameters can be estimated using the explanatory variable and the residuals ε̂i = yi−β̂xi, where
εi = α+ ui, and consistent estimators for the index of stability and scale parameters of a stable
distribution. See Fama and Roll (1971), McCulloch (1986) and more recently Garcia, Renault
and Veredas (2011) for examples of consistent estimators for stable distributions.

We end this section with two examples of Fz(z) in Proposition 1. Table 1 reports results
for different symmetric stable ratio distributions. We consider Cauchy (a = 1) and Gaussian
(a = 2) distributions for the error and explanatory variable. For the latter specification, Fz(z)

is the cdf of a Cauchy distribution. Here the limiting distribution of β̂UF (and β̂PS) is normal.5

The asymptotic variance of the ordinary least squares (and maximum likelihood) estimator for

β is σ2
u/σ

2
x whereas that of β̂UF is (π/2)2σ2

u/σ
2
x. Hence, the ARE of this MLBE with respect

to the, asymptotically efficient, LSE is (2/π)2 ≈ 0.405 for the Gaussian specification. For the
Cauchy specification, Fz(z) is an integral which, for computational purposes, can be expressed
in terms of the polylogarithm (dilogarithm) function.

Table 1. Symmetric stable ratio distributions (a = 1, 2).

Distribution Distribution Ratio Distribution Ratio Distribution
ui xi zi = ui/(xi − µx) zi = (u2i − u2i−1)/(x2i − x2i−1)

S(1, 0, cu, 0) S(1, 0, cx, µx) Fz(z) = 1
π2

∫ (cx/cu)z

−∞
ln(t2)

t2−1
dt Fz(z) = 1

π2

∫ (cx/cu)z

−∞
ln(t2)

t2−1
dt

Cauchy Cauchy

S(2, 0, σu/
√

2, 0) S(2, 0, σx/
√

2, µx) Fz(z) = 1
2

+ 1
π

arctan
(
σx
σu
z
)

Fz(z) = 1
2

+ 1
π

arctan
(
σx
σu
z
)

Gaussian Gaussian

3. A Contaminated Normal Regression

So far we have restricted our analysis to symmetric stable random variables. In this section
we outline how our results can be extended to include other types of regressions, with potentially
contaminated errors. As an important special case, we derive the exact distributions of (3) and
(5) in a contaminated normal regression.

The regression we consider is {
yi = α+ βxi + ui
ui = (1− bi)vi + bi

√
γvi

(7)

where xi is normally distributed, bi is Bernoulli distributed with success parameter p, vi is
normally distributed with mean zero and variance σ2

v , γ > 1, and xi, bi and vi are mutually

5Cf. Proposition 2, with p = 0.
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independent. For this specification,

E(ui) = 0, E(u2
i ) = [1 + (γ − 1)p]σ2

v , (8)

and the density of ui is symmetric about zero. The contamination parameters p and γ are
potentially unknown. Here a ‘small’ value of p and a ‘large’ value of γ is a typical setting in which
the finite-sample performance of the LSE for β may be poor. For p = 0 there is no contamination
and (7) is a special case of (1), with xi ∼ S(2, 0, σx/

√
2, µx) and ui ∼ S(2, 0, σv/

√
2, 0).

Assumption 2 holds throughout the section.

Assumption 2. Let yi (i = 1, 2, . . . , n) be given by (7), with µy = E(yi). Suppose that

(i) the xi are independent N (µx, σ
2
x),

(ii) the bi are independent Bernoulli distributed, with success parameter p,
(iii) the vi are independent N (0, σ2

v) and γ > 1,
(iv) for each i, xi, bi and vi are mutually independent,
(v) the sample size is odd, n = 2k + 1.

Here both the finite-sample and limiting distributions of β̂UF and β̂PS can be obtained.

Proposition 2. Let G(·) be given by (4). Under Assumption 2,

(i) if µy and µx are known, β̂UF
p→ β as n → ∞ and the exact distribution of (5) is given

by P (β̂UF − β ≤ z) = G(z;n), with

Fz(z) = (1− p)Fr(z) + pFr(z/
√
γ), Fr(z) =

1

2
+

1

π
arctan

(σx
σv
z
)
.

For each k, the density of β̂UF − β is symmetric about zero. The limiting distribution of
β̂UF is normal,

√
n(β̂UF − β)

d→ N
(
0, [4f2

z (0)]−1
)
, fz(0) =

[
1 +

(
1−√γ
√
γ

)
p

]
σx
πσv

.

(ii) if k = 2r + 1 is odd, β̂PS
p→ β as n → ∞ and the exact distribution of (3) is given by

P (β̂PS − β ≤ z) = G(z; k), with

Fz(z) = (1− p)2Fr(z) + 2p(1− p)Fr(
√

2/(γ + 1)z) + p2Fr(z/
√
γ),

and Fr(z) as in (i). For each r, the density of β̂PS − β is symmetric about zero. The

limiting distribution of β̂PS is normal,

√
n(β̂PS − β)

d→ N (0, [4f2
z (0)]−1), fz(0) =

[
(1− p)2 + 2p(1− p)

√
2

γ + 1
+

p2

√
γ

]
σx
πσv

.

By the proof of Proposition 2, it is clear that similar results can be obtained for higher order
mixtures and for a wide variety of cases where xi and/or vi are non-normally distributed, with
finite first and second moments, and the density of vi is symmetric about zero.

4. A Heteroscedastic Regression

In this section we illustrate how our results can be extended to include certain types of
conditionally heteroscedastic regressions. The regression we consider is{

yi = α+ βxi + ui
ui = λ(xi)vi

(9)

with e.g. λ(x) = (x−µx)2, λ(x) = |x−µx| or λ(x) = 1. We will assume that the distribution of the
i.i.d. vi is symmetric about zero, which implies that the distribution of the ui is also symmetric



MEASURE OF LOCATION-BASED ESTIMATORS IN SIMPLE LINEAR REGRESSION 7

about zero.6 For ease of exposition, we consider β̂UF and note that similar results can be obtained
for β̂PS . Of course, λ(x) = x−µx is trivial. Here µy = α+βµx and β̂UF = β+med{v1, v2, . . . , vn},
assuming all expectations exist. Thus, in this case the distribution of β̂UF − β when n is odd
is given by G(z;n) with Fz(z) = Fv(z), where Fv(·) is the cdf of the vi. For another example,
suppose λ(x) = (x−µx)2 and the xi and vi are independentN (µx, σ

2
x) andN (0, σ2

v), respectively.

In this case, the distribution of β̂UF − β = (xi − µx)vi is a product normal distribution 7. Then
similar results can be derived, since (xi − µx)vi is symmetric about zero and has a unique
median8.

5. Simulation Study

In this section we report simulation results concerning the estimation of the slope parameter
β = 3 in the regression yi = 7 + 3xi + ui (i = 1, 2, . . . , n). We consider sample sizes of
n = 27, 55, 111, 223 and 447 to ensure that both n and bn/2c are odd numbers, cf. assumptions 1
and 2, where b·c is the integer part function. These sample sizes are used to illustrate the relation
between k and r in propositions 1–2. We emphasize that the consistency of the estimators that
we consider does not rely on the values of n or k, however, our exact distributional results
in sections 2 through 4 do. Table 2 shows simulation results for various specifications of the
explanatory variable and error. We report the empirical bias and mean squared error (MSE)

of the estimators β̂UF , β̂FE , β̂PS and β̂LS . The estimator β̂FE , described below, is a feasible
version of β̂UF . Each table entry is based on 1 000 000 simulated samples. and rounded to
three decimal places. Symmetric stable pseudo-random numbers were generated using Theorem
1.19 (a) in Nolan (2012). All of the reported experiments share a common initial state of the
generator for pseudo-random number generation and were carried out using R.

Symmetric Stable Regression. Panels A-D of Table 2 report simulation results when the
xi and ui are i.i.d. S(a, 0, 1, 1) and S(a, 0, 1, 0), respectively, for a = 1, 1.25, 1.5 and 1.75. To

estimate the location parameters µy and µx when constructing a feasible version of β̂UF for the
symmetric stable regression in Section 2 we use the symmetrically trimmed mean

µ̂x = 1
bnp2c−bnp1c

bnp2c∑
i=bnp1c+1

x(i),

with p1 = 0.25 and p2 = 1 − p1. Here x(1) ≤ x(2) ≤ . . . ≤ x(n) is the ordered sample of size n.
The proportions p1 and 1 − p2 represent the proportion of the sample trimmed at either ends.
According to Fama and Roll (1968), the symmetrically trimmed mean performs very well over
the entire range 1 ≤ a ≤ 2 for this choice of p1 and p2. In all four experiments, the bias and
MSE of β̂UF and β̂FE is reasonable. β̂PS also performs reasonably well, but has a much larger
MSE. As expected, the performance of β̂LS is unacceptable for values of a close to 1.

Contaminated Normal Regression. Panels E-F of Table 2 report simulation results when
the errors ui = (1 − bi)vi + bi

√
γvi are contaminated normal. In these two experiments the xi

and vi are i.i.d. N (1, 1) and N (0, 1), respectively, and the bi are i.i.d. Bernoulli with success
parameter p = 0.05 and 0.1. The contamination parameter γ = 36, implying that the error
variance, given by (8), is 2.75 for p = 0.05 and 4.5 for p = 0.1. To estimate µy and µx when

constructing a feasible version of β̂UF for the contaminated normal regression in Section 3 we

6See Lamma 2
7For this see Claim 5
8For this see Claim 5
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use the sample mean, µ̂x = n−1
∑n

i=1 xi. In both experiments, the results indicate that the

MSE of β̂UF and β̂FE is considerably smaller than that of β̂LS . However, the MSE of β̂PS is
considerably higher than that of the LSE.

Heteroscedastic Regression. Finally, panels G-H of Table 2 report simulation results when
the errors ui = λ(xi)vi are conditionally heteroscedastic. We consider the last example of Section
4, where λ(x) = (x − µx)2, when the xi and vi are i.i.d. N (1, σ2

x) and N (0, 1), respectively, for

σ2
x = 1 and 2. To estimate µy and µx when constructing a feasible version of β̂UF we use the

sample mean. In general, the bias of the MLBEs is similar in magnitude to that of the LSE,
however, the MLBEs appear to have a much smaller MSE.

6. Conclusions and Extensions

In this note we have established the consistency and exact finite-sample distributions of two
median-unbiased MLBEs for the slope parameter in a simple linear regression model when (1) the
explanatory variable and error are symmetric stable random variables, and (2) the explanatory
variable is normal and the error is contaminated normal. These exact distributions may be used
for statistical inference. In addition, we have illustrated how our results can be extended to
include certain heteroscedastic regressions. Our simulation results indicated that the MLBEs
can have superior finite-sample properties compared to the LSE.

Because of their robustness and ease of computation, along the lines of Hinich and Talwar
(1975), β̂PS or β̂FE can also be used as a starting point for a more sophisticated method. For
example, in the context of numerical maximum likelihood estimation in a symmetric stable linear
regression, to search for a global optimum, β̂PS (or β̂FE) could be used as an easily computable
starting point for the numerical method.9 A well chosen starting point may lead to a drastic
decrease in computational time.10 Kadiyala and Murthy (1977), for example, use β̂LS as a
starting point. In light of our simulation results, this is a poor choice.

We have aimed for clarity at the expense of generality. For example, results analogous to
those of Proposition 1 can be obtained for the slope parameters in a general, symmetric stable,
linear regression with two or more statistically independent explanatory variables. For another
example, it appears that our results can be extended to allow for serially correlated errors using
existing results for m-dependent samples (e.g. Sen, 1968a).11 Finally, results analogous to those
of propositions 1 and 2 can be obtained for a simple unit root process, yt = yt−1 + ut, with
symmetric stable or contaminated normal errors. This is work in progress.

APPENDIX

The following lemmas are applied in the proof of Propositions 1–2.

Lemma 1 (Properties of Symmetric Stable Variates). If v ∼ S(a, 0, cv, dv) and w ∼ S(a, 0, cw, dw)
are independent, then

(i) v is absolutely continuous, with a continuous and unimodal density,

9In view of Lemma 1, a starting point for α (the regression intercept) given a sample of size n = 2k + 1 could

then be α̂PS = y(k+1)− β̂PSx(k+1). More generally, α can be estimated by the sample median of the PS residuals

ε̂i = yi − β̂PSxi (cf. Hettmansperger, McKean and Sheather, 1997).
10Maximum likelihood estimation of the general linear regression model with symmetric stable errors has been
considered by Kadiyala and Murthy (1977) and Barmi and Nelson (1997), among others. In most cases there
is no closed form expression for the MLE (McCulloch, 1998). The maximization of the likelihood function then
imposes a high computational burden even for small to moderate sample sizes.
11A sequence u1, u2, . . . of random variables is said to be m-dependent if and only if ui and ui+k are pairwise
independent for all k > m. In the special case when m = 0, m-dependence reduces to independence.
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(ii) the density of v is symmetric about dv, and the support of v is (−∞,∞),
(iii) if 1 < a ≤ 2, the mean of v is finite and equal to dv,
(iv) if 0 < a < 2, the variance of v does not exist,
(v) for any α 6= 0 and real β, α+ βv ∼ S(a, 0, |β|cv, α+ βdv),

(vi) v + w ∼ S(a, 0, c, dv + dw), where ca = cav + caw.

Lemma 2 (Symmetric Product and Ratio Distributions). Suppose v and w are two independent
absolutely continuous random variables, and v is symmetrically distributed about zero. Then,
the product p = vw and ratio r = v/w are absolutely continuous and symmetrically distributed
about zero, with pdf’s

fp(p) =

∫ ∞
−∞

1

|t|
fv(p/t)fw(t)dt and fr(r) =

∫ ∞
−∞
|t|fv(rt)fw(t)dt, (10)

where fv(·) and fw(·) are the pdf’s of v and w, respectively.

Proof. By theorems 3.1 and 7.1 in Curtiss (1941), the cdf’s of p and r are absolutely continuous.
Moreover, the pdf’s of p and r exist almost everywhere and are given by (10). Since v is
symmetrically distributed about zero, fv(s) = fv(−s) for all real s. The result now follows by
noting that fp(p) = fp(−p) and fr(r) = fr(−r) for all real p and r. �

Remark 1. Lemma 2 holds for v symmetrically distributed about zero, but not for v symmetri-
cally distributed about θ 6= 0, fv(θ + s) = fv(θ − s) for all real s.

Lemma 3 (Uniqueness of the Median of a Ratio of Symmetric Stable Variates). Suppose that
v ∼ S(a, 0, 1, 0) and w ∼ S(a, 0, 1, 0) are independent, then the median of r = v/w is unique
and zero.

Proof. Let ε > 0 be arbitrary. By Lemma 2, the density of r is symmetric about zero. Hence,
to show that the median is not an interval, it is enough to show that∫ ε

0
fr(t)dt = Fr(ε)− Fr(0) = Fr(ε)− 1

2 > 0.

For a = 2 the ratio is standard Cauchy, hence, Fr(ε) − 1
2 = 1

π arctan(ε) > 0. For 0 < a < 2
Theorem 1 in Shcolnick (1985) gives

r
d
= xy, y =

[
sin
(
πa
2 z
)

sin
(
πa
2 (1− z)

)] 1
a

where x ∼ S(1, 0, 1, 0) and y are independent,
d
= denotes equality in distribution, and z is

uniformly distributed on (0, 1). Hence,

P (0 < r < ε) = P (0 < xy < ε) ≥ P (0 < x < ε, 0 < y < 1) = P (0 < x < ε)P (0 < y < 1).

As x is standard Cauchy, P (0 < x < ε) = 1
π arctan(ε). Next we show that P (0 < y < 1) = 1/2.

Since P (0 < z < 1) = 1, we only consider solutions 0 < z < 1 to 0 < y(z) < 1. For this subset,
0 < y < 1 if and only if

sin
(
πa
2 (1− z)

)
− sin

(
πa
2 z
)

= 2 cos
(
πa
4

)
sin
(
πa
4 −

πa
2 z
)
> 0.

It follows that P (0 < y < 1) = P (0 < z < 1/2) = 1/2. Thus,

Fr(ε)− 1
2 = P (0 < r < ε) ≥ 1

2π arctan(ε) > 0.

�
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Lemma 4 (Symmetric Ratio Mixture Distribution). Suppose that

z = (1− b) v
w

+ b
√
γ
v

w
,

where b is Bernoulli distributed with success parameter p, v and w are independent absolutely
continuous random variables, v is symmetrically distributed about zero and γ > 0. Then the
ratio mixture z is absolutely continuous and symmetrically distributed about zero, with pdf

fz(z) = (1− p)fr(z) + p(1/
√
γ)fr(z/

√
γ),

where fr(·) is the ratio density of Lemma 2.

Proof.

fz(z) =
1∑

k=0

fz,b(z, k) =
1∑

k=0

(1− p)1−kpkfz|b=k(z)

= (1− p)fr(z) + p(1/
√
γ)fr(z/

√
γ),

where we have used Lemma 2 and that the pdf of h =
√
γv is (1/

√
γ)fv(h/

√
γ), which is

symmetric about zero. Since fr(r) = fr(−r) for all real r, the result now follows by noting that
fz(z) = fz(−z) for all real z. �

Proof of Proposition 1. First we will show that

zi =
y2i − y2i−1

x2i − x2i−1
− β d

=
yi − µy
xi − µx

− β d
=
(
cu
cx

)
ri, (11)

where ri is the ratio of two independent S(a, 0, 1, 0) random variables. Since µy = α+ βµx, we
have

yi − µy
xi − µx

=
β(xi − µx) + ui

xi − µx
= β +

ui
xi − µx

.

In view of Lemma 1,
ui

xi − µx
d
=
vi
wi

d
=
(
cu
cx

)
ri,

where vi and wi are independent S(a, 0, cu, 0) and S(a, 0, cx, 0) variates, respectively. Similarly,

y2i − y2i−1

x2i − x2i−1
= β +

u2i − u2i−1

x2i − x2i−1
,

where
u2i − u2i−1

x2i − x2i−1

d
=
vi
wi

d
=
(
cu
cx

)
ri,

and vi and wi here are independent S(a, 0, 21/acu, 0) and S(a, 0, 21/acx, 0) variates, respectively.
This shows (11). By Lemma 2, the pdf of ri is symmetric about zero and the cdf of ri is given
by

Fr(r) =

∫ r

−∞

∫ ∞
−∞
|t|f(st)f(t)dtds,

where f(·) is the pdf of a S(a, 0, 1, 0) variate. Hence, the density of zi is symmetric about zero
and the distribution of zi is given by

Fz(z) = Fr(cxz/cu) =

∫ (cx/cu)z

−∞

∫ ∞
−∞
|t|f(st)f(t)dtds.

It follows that P (β̂PS − β ≤ z) = P (z(r+1) ≤ z), where k = 2r + 1 and z(r+1) is the sample
median of the i.i.d. sequence {z1, z2, . . . , zk}. Standard results for order statistics gives us the
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exact distribution of z(r+1) in terms of Fz(z). The consistency of β̂PS follows from Lemma 3.
This proves (ii). The proof of (i) is analogous. �

Proof of Proposition 2. Since µy = α+ βµx, we have

yi − µy
xi − µx

=
β(xi − µx) + ui

xi − µx
= β + zi,

where
zi = (1− bi)ri + bi

√
γri,

and ri = vi/(xi − µx). It follows that P (β̂UF − β ≤ z) = P (z(k+1) ≤ z), where n = 2k + 1 and
z(k+1) is the sample median of the i.i.d. sequence {z1, z2, . . . , zn}. By Lemma 4, the pdf of zi is
symmetric about zero, and the cdf of zi is given by

Fz(z) =

∫ z

−∞
fz(t)dt = (1− p)Fr(z) + pFr(z/

√
γ),

where Fr(·), the cdf of ri, can be obtained using Lemma 2. For the particular case when both
xi and vi are assumed to be normal, ri is S(1, 0, σv/σx, 0) distributed, with

Fr(z) =
1

2
+

1

π
arctan

(σx
σv
z
)
.

Hence, since Fz is strictly increasing, the unique solution to Fz(ξ) = 1/2 is ξ = 0. Standard
results for order statistics gives us the exact distribution of z(k+1) in terms of Fz(z). This proves
the first part of (i). For the second part, note that the continuous pdf fz(z) of zi is given by

F ′z(z) =
(1− p)
π

σv
σx

(σvσx )2 + z2
+
p

π

√
γσv
σx(√γσv

σx

)2
+ z2

,

with

fz(0) =

[
1 +

(
1−√γ
√
γ

)
p

]
σx
πσv

.

Since also the derivative of fz(z) is continuous, standard results (Cramér, 1946, p. 369) gives us
the limiting distribution in terms of fz(0),

√
n(β̂UF − β) =

√
nz(k+1)

d→ N (0, [4f2
z (0)]−1).

This proves the second part of (i). The proof of (ii) is analogous. �
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EXTENDED APPENDIX

Claim 1 (Section 1: Paragraph 5). Suppose that the estimator β̂ for β can be decomposed

into β̂ = β + med{z1, z2, . . . , zk}, where the zi are i.i.d. continuous random variables with zero
median. Then,

(i) the median of β̂ − β is zero (i.e. β̂ is median-unbiased) and

(ii) if, in addition, the density of zi is symmetric about zero, then so is the density of β̂− β.

Proof. Let C = Γ(k + 1)/[Γ(r + 1)]2 . Then, in view of (4), since Fz(0) = 1/2

G(0; k) = C

∫ 1/2

0
tr(1− t)rdt s=1−t

= −C
∫ 1/2

1
(1− s)rsrds = C

∫ 1

1/2
sr(1− s)rds.

Seeing that the sum of the first and last integral is one, it follows that G(0; k) = 1/2. This
proves (i). For the proof of (ii), note that Fz(z) = 1− Fz(−z) as the density of zi is symmetric
about zero. Hence,

G(z; k) = C

∫ Fz(z)

0
tr(1− t)rdt = C

∫ 1−Fz(−z)

0
tr(1− t)rdt s=1−t

= −C
∫ Fz(−z)

1
(1− s)rsrds

= C

∫ 1

Fz(−z)
sr(1− s)rds = 1− C

∫ Fz(−z)

0
sr(1− s)rds = 1−G(−z; k).

This proves (ii). �

Claim 2 (Section 2: Conditional Distribution of β̂LS). By (2), the LSE for β can be decomposed
into

β̂LS = β +

∑n
i=1(xi − x̄)(ui − ū)∑n

i=1(xi − x̄)2
= β + (c1 − c̄)u1 + (c2 − c̄)u2 + . . .+ (cn − c̄)un,

where

ci =
xi − x̄∑n

i=1(xi − x̄)2
.

Hence, conditional on the xi, β̂LS−β is a linear combination of independent, identically S(a, 0, cu, 0)
distributed random variables which, in view of Lemma 1, is symmetric stable with index of sta-
bility a. The claim now follows.

Claim 3 (Section 2: Results in Table 1). Since S(2, 0, σ/
√

2, µ) = N (µ, σ2), we have

ui
xi − µx

d
=
(σu
σx

)
ri,

where ri is the ratio of two independent N (0, 1) random variables. Hence, ri is C(0, 1) where
C(0, 1) denotes the standard Cauchy distribution. Similarly,

u2i − u2i−1

x2i − x2i−1

d
=
vi
wi

d
=
(σu
σx

)
ri,

where vi and wi are independent N (0, 2σ2
u) and N (0, 2σ2

x) variates, respectively. As the cdf of a
standard Cauchy variate is 1

2 + 1
π arctan(z), the results on the second row in Table 1 now follow.

To show the results on the first row, note that S(1, 0, c, µ) = C(µ, c). In view of Lemma 1,

ui
xi − µx

d
=
vi
wi

d
=
(cu
cx

)
ri,
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where vi and wi are independent C(0, cu) and C(0, cx) variates, respectively, and ri is the ratio
of two independent C(0, 1) random variables. Similarly,

u2i − u2i−1

x2i − x2i−1

d
=
vi
wi

d
=
(cu
cx

)
ri,

where vi and wi here are independent C(0, 2cu) and C(0, 2cx) variates, respectively. By Theorem
3.1 in Curtiss (1941), the density of the ratio of two independent standard Cauchy variates exists
almost everywhere and is given by

fr(r) =

∫ ∞
−∞
|t|
(

1

π

1

1 + (rt)2

)(
1

π

1

1 + t2

)
dt =

1

π2

∫ ∞
0

2t

(1 + r2t2)(1 + t2)
dt

=
1

π2

∫ ∞
0

1

(1 + r2s)(1 + s)
ds. (12)

From (12) it is readily seen that fr(r) is equal to 1/π2 for r = ±1, and is divergent for r = 0.
For r 6= ±1 partial fraction decomposition yields,

fr(r) =
1

π2

∫ ∞
0

1

(1 + r2s)(1 + s)
ds =

1

π2

∫ ∞
0

(
r2

r2−1

)
1 + r2s

−
(

1
r2−1

)
1 + s

ds

= lim
t→∞

1

π2

(
1

r2 − 1

)
ln

(
1 + r2t

1 + t

)
=

1

π2

ln(r2)

r2 − 1
.

A closer analysis shows that fr(r) is continuous at r = ±1. Hence, the ratio density fr is
continuous on (−∞, 0) and (0,∞), with a pole at zero. The results on the first row in Table 1
now follow. �

Claim 4 (Section 3: Part (ii) of Proposition 2). Since µy = α+ βµx, we have

y2i − y2i−1

x2i − x2i−1
=
β(x2i − x2i−1) + u2i − u2i−1

x2i − x2i−1
= β + zi,

where

zi =
u2i − u2i−1

x2i − x2i−1
=

(1− b2i)v2i + b2i
√
γv2i − (1− b2i−1)v2i−1 − b2i−1

√
γv2i−1

x2i − x2i−1
.

It follows that P (β̂PS − β ≤ z) = P (z(r+1) ≤ z), where k = 2r + 1 and z(r+1) is the sample
median of the i.i.d. sequence {z1, z2, . . . , zk}. The cdf of zi is given by

Fz(z) = P (zi ≤ z) =
∑
l,m

P (b2i = l, b2i−1 = m)P (zi ≤ z|b2i = l, b2i−1 = m),

where l,m = 0, 1 and

P (zi ≤ z|b2i = 0, b2i−1 = 0) = P
( v2i − v2i−1

x2i − x2i−1
≤ z
)

=
1

2
+

1

π
arctan

(σx
σv
z
)
,

P (zi ≤ z|b2i = 0, b2i−1 = 1) = P
(v2i −

√
γv2i−1

x2i − x2i−1
≤ z
)

=
1

2
+

1

π
arctan

(σx
σv

√
2

γ + 1
z
)
,

P (zi ≤ z|b2i = 1, b2i−1 = 0) = P
(√γv2i − v2i−1

x2i − x2i−1
≤ z
)

=
1

2
+

1

π
arctan

(σx
σv

√
2

γ + 1
z
)
,

P (zi ≤ z|b2i = 1, b2i−1 = 1) = P
(√γv2i −

√
γv2i−1

x2i − x2i−1
≤ z
)

=
1

2
+

1

π
arctan

(σx
σv

z
√
γ

)
.

Hence,

Fz(z) = (1− p)2Fr(z) + 2p(1− p)Fr(
√

2/(γ + 1)z) + p2Fr(z/
√
γ),
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where

Fr(z) =
1

2
+

1

π
arctan

(σx
σv
z
)
.

Since Fz is strictly increasing, the unique solution to Fz(ξ) = 1/2 is ξ = 0. Standard results for
order statistics gives us the exact distribution of z(r+1) in terms of Fz(z). This proves the first
part of (ii). For the second part, note that the continuous pdf fz(z) of zi is given by

F ′z(z) = (1− p)2fr(z) + 2p(1− p)
√

2/(γ + 1)fr(
√

2/(γ + 1)z) + (p2/
√
γ)fr(z/

√
γ),

where

fr(z) =
1

π

σv/σx
(σv/σx)2 + z2

.

It follows that fz(z) = fz(−z) for all real z and, hence, that the density of zi is symmetric
about zero. Since also the derivative of fz(z) is continuous, standard results gives us the limiting
distribution in terms of fz(0),

√
n(β̂PS − β) =

√
nz(r+1)

d→ N (0, [4f2
z (0)]−1),

where

fz(0) =

[
(1− p)2 + 2p(1− p)

√
2

γ + 1
+

p2

√
γ

]
σx
πσv

.

This proves the second part of (ii).

Claim 5 (Section 4: Unique median of product normal distribution). Let X and Y are inde-
pendent normal distribution with zero mean and variance σ2

x and σ2
y, and Z = XY . Then the

density of Z can be expressed by the modified Bessel function of the second kind. And the median
of Z is unique.

Proof. By Theorem 5 in Springer and Thompson (1970), the probability density function of Z
can be expressed as a Meijer G-function multiplied by a normalizing constant H, i.e.

fZ(z) = HG20
02

(
z2

4σ2
xσ

2
y

|0, 0
)

where H = (2πσxσy)
−1. By the results from Bateman and Erdelyi (1953), we know that

G20
02

(
z2

4σ2
xσ

2
y

|0, 0
)

= 2K0

(
|z|
σxσy

)
where K0 is the modified Bessel function of the second kind. Thus, the probability density

function of Z can be expressed as K0

(
|z|
σxσy

)
/πσxσy. By the results from Frank (2010), we

know that the Bessel function of the second kind K0(z) > 0 and is a monotone decreasing
function on (0,∞), and limz→0K0(z) =∞. Hence ∀ε > 0, Pr(0 < Z < ε) > 0. By the same way
in Lemma 3, this implies that the median of Z is 0 and unique since the distribution function
of Z is symmetric about 0. �

Claim 6 (Section 6: Multiple Linear Regression Extension). Let yi = α +
∑q

j=1 βjxji + ui
(i = 1, 2, . . . , n), with median µy. Suppose that

(i) the xji are independent S(a, 0, cxj , µxj ),
(ii) the ui are independent S(a, 0, cu, 0),

(iii) for each i and j, xji and ui are mutually independent,
(iv) the sample size is odd, n = 2k + 1.
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For ease of exposition, consider the extended unfeasible estimator and, for ease of notation,
denote it by

β̂j = med
{ y1 − µy
xj1 − µxj

,
y2 − µy
xj2 − µxj

, . . . ,
yn − µy
xjn − µxj

}
. (13)

Then β̂j
p→ βj as n→∞ (j = 1, . . . , q) and the exact distribution of (13) is given by

P (β̂j − βj ≤ z) =
Γ(n+ 1)

Γ(k + 1)Γ(k + 1)

∫ Fzj (z)

0
tk(1− t)kdt,

with

Fzj (z) =

∫ (cxj /cj)z

−∞

∫ ∞
−∞
|t|f(st)f(t)dtds,

where f(·) is the density of a S(a, 0, 1, 0) distributed random variable and caj = cau+
∑

m 6=j |βm|acaxm.

For each k, the density of β̂j − βj is symmetric about zero. If a = 2 the limiting distribution of

β̂j is normal,
√
n(β̂j − βj)

d→ N
(
0, [π(cj/cxj )/2]2

)
.

Proof. In view of Lemma 1, µy = α+
∑q

j=1 βjµxj , hence,

yi − µy
xji − µxj

=
β1(x1i − µx1) + . . .+ βj(xji − µxj ) + . . .+ βq(xqi − µxq) + ui

xji − µxj
= βj + zji.

Let rji denote the ratio of two independent S(a, 0, 1, 0) random variables. By assumption,

zji =

∑
m6=j βm(xmi − µxm) + ui

xji − µxj
d
=
vji
wji

d
=
(
cj
cxj

)
rji,

where vji and wji are independent S(a, 0, cj , 0) and S(a, 0, cxj , 0) variates, respectively, and
caj = cau +

∑
m 6=j |βm|acaxm . By Lemma 2, the pdf of rji is symmetric about zero and the cdf of

rji is given by

Fr(r) =

∫ r

−∞

∫ ∞
−∞
|t|f(st)f(t)dtds,

where f(·) is the pdf of a S(a, 0, 1, 0) variate. Hence, the density of zji is symmetric about zero
and the distribution of zji is given by

Fzj (z) = Fr(cxjz/cj) =

∫ (cxj /cj)z

−∞

∫ ∞
−∞
|t|f(st)f(t)dtds.

It follows that P (β̂j − βj ≤ z) = P (zj(k+1) ≤ z), where zj(k+1) is the sample median of the i.i.d.
sequence {zj1, zj2, . . . , zjn}. Standard results for order statistics gives us the exact distribution

of zj(k+1) in terms of Fzj (z). The consistency of β̂j follows from Lemma 3. This proves the first
part of the claim. For the second part, note that if a = 2 the numerator and denominator of zji
are independent Gaussian random variables. Hence, zji is Cauchy distributed with zero median,
scale parameter cj/cxj (cf. Nolan, 2012, p. 23), and cdf

Fzj (z) =
1

2
+

1

π
arctan

(cxj
cj
z
)
.

The continuous pdf fzj (z) of zji is given by

F ′zj (z) =
(cj/cxj )

π[(cj/cxj )
2 + z2]

,
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with

fzj (0) =
cxj
πcj

.

Since also the derivative of fzj (z) is continuous, standard results (Cramér, 1946, p. 369) gives
us the limiting distribution in terms of fzj (0),

√
n(β̂j − βj) =

√
nzj(k+1)

d→ N (0, [4f2
z (0)]−1).

This proves the second part of the claim. �
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