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INTERNATIONAL ECONOMIC REVIEW
Vol. 53, No. 4, November 2012

PEER TRANSPARENCY IN TEAMS: DOES IT HELP OR HINDER INCENTIVES?**

BY PARIMAL KANTI BAG AND NONA PEPITO1

National University of Singapore, Singapore; ESSEC Business School, Singapore

In a joint project involving two players of a two-round effort investment game with complementary efforts, trans-
parency, by allowing players to observe each other’s efforts, achieves at least as much, and sometimes more, collective
and individual efforts relative to a nontransparent environment. Without transparency multiple equilibria can arise,
and transparency eliminates the inferior equilibria. When full cooperation arises only under transparency, it occurs
gradually: No worker sinks in the maximum amount of effort in the first round, preferring instead to smooth out
contributions over time. If the players’ efforts are substitutes, transparency makes no difference to equilibrium efforts.

1. INTRODUCTION

Joint projects in teams based on voluntary contributions of efforts are vulnerable to free-
riding. In formulating incentives, an organization may influence its members’ effort decisions
through careful design of the structure of contributions implying how much the members know
about each other’s efforts. This type of knowledge can be facilitated by an appropriate work
environment, such as an open space work floor or regular reporting of actual working hours.
We aim to show how transparency in effort contributions within a team may (or may not) help
to mitigate shirking and foster cooperation. Empirical evidence certainly point to the relevance
of this kind of transparency as a key determinant of productive efficiency (Teasley et al., 2002;
Heywood and Jirjahn, 2004; Falk and Ichino, 2006).

When efforts are observable during a project’s live phase (i.e., in a transparent environment),
team members play a repeated contribution game. On the other hand, when efforts cannot
be observed (i.e., a nontransparent environment), the project is a simultaneous move game.
The repeated contribution game expands the players’ strategy sets relative to a simultaneous
move game because later period actions can be conditioned on the history. The additional
strategies can create new equilibria that are not available under the simultaneous move game,
or remove existing equilibria of the simultaneous move game by introducing strategies that lead
to profitable deviations. By enlarging or shrinking the equilibrium set or by simply altering it,
does observability of interim efforts induce more overall efforts or fewer efforts? Which game
form is better? With this being the focal point of our query, we will explore the relationships
between transparency, team production technology, and incentives.

In teams, repeated games and dynamic public good settings, the general issue of transparency
(i.e., observability/disclosure of actions) and its incentive implications have been studied by sev-
eral authors. See Che and Yoo (2001), Lockwood and Thomas (2002), Andreoni and Samuelson
(2006), among others, in the context of dynamic/repeated games, Mohnen et al. (2008) and Win-
ter (2010) in the context of repeated and sequential contribution team projects, and Admati and
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1258 BAG AND PEPITO

Perry (1991) and Marx and Matthews (2000), among others, in dynamic voluntary contribution
pure public good settings.2

Our article is closer to the peer transparency problems of Mohnen et al. (2008) and Winter
(2010). Mohnen et al. consider a team of two workers exerting efforts over two rounds, with the
total output equaling the sum of efforts by the workers (i.e., the technology is one of perfect
substitutes). The workers are paid identical remunerations—a fixed wage plus bonus—with the
latter being a positive fraction of the team output. When the workers are averse to inequality
of efforts, allowing the contribution game to be transparent by making each other’s first-round
efforts observable improves the overall contribution and output relative to when the workers
cannot observe the first-round efforts. Further, if the workers’ utility functions are modified
by dropping the inequity aversion component, then transparency makes no difference to the
equilibrium efforts and output. Thus in their model the benefits of transparency are realized
largely due to the workers’ distaste for inequity.

In the context of a team project, Winter (2010) asks when more information among peers
about each other’s efforts (IIE or “internal information about effort’ measuring transparency)
makes it easier for the principal to provide incentives so that all agents exert “effort” (called
the INI outcome).3 The agents can either exert effort or shirk as a one-off effort investment
decision, and each agent’s effort choice is made at different points of time although an agent
may or may not observe the past decisions by the earlier agents. With an acyclic binary order,
k, on the agents reflecting an IIE,4 if any two IIEs, say k1 and k2, can be compared in the
manner k1 is “richer” than k2,5 then k1 is said to be more transparent than k2. Then, defining
a project to exhibit complementarity (substitution) if an agent’s effort is marginally more
(less) effective in improving the project’s probability of success as the set of other agents who
also exert effort expands, the article makes several interesting observations: (i) If a project
satisfies complementarity, then it is less costly to induce INI the more transparent the IIE; (ii)
a sequential architecture in which each agent observes his immediate predecessor’s effort is
the most transparent IIE; and (iii) if the project exhibits substitution, transparency is no longer
important, i.e., neutral, in inducing INI.

We complement and extend the analysis of Mohnen et al. (2008) and Winter (2010) by
studying a team setting with some plausible and important model features not considered by
these authors. There is a project consisting of two tasks. Two workers work over two rounds on
one task each, and in each round a worker may choose to put in zero, one, or two units of effort
with total efforts over two rounds not exceeding two units. The project outcome materializes
only at the end of the second round. The project’s success probability is increasing in the

2 Some of the other works on strategic disclosure (or nondisclosure) of information about peers include workers’
ability differentiation through incentive/uniform wage contracts (Fang and Moscarini, 2005), outsiders learning about
experts’ ability through individual votes cast in committee decisions (Levy, 2007), how cheap-talk undermines trans-
parency of contributions in discrete public good games (Agastya, 2009), among others. In a related paper (Bag and
Pepito, 2011), we consider a team problem consisting of multiple tasks with strong complementarities and where the
team members assigned to different tasks make multiple attempts to succeed. Our main concern there is whether the
project manager should disclose interim outcomes of tasks to motivate efforts. We show that commitment to disclose
outcomes has countervailing implications: A team member’s success encourages another to exert efforts, whereas fail-
ure dampens effort incentives.

There is also a parallel literature on tournaments (Lizzeri et al., 2003; Gershkov and Perry, 2009; Aoyagi, 2010,
among others), where the focus is on interim performance evaluations (or feedback) to incentivize player efforts.
Transparency in teams is very different from feedback for two reasons: (i) because of the public good nature of the
players’ rewards, in contrast to tournaments where the reward is of the winner-take-all variety and (ii) interim efforts
do not directly translate into rewards whereas in tournaments rewards are a function of interim performance.

3 Winter (2006) analyzes the problem of incentive provision in a team where its members exert efforts sequentially
toward a joint project, whereas Winter (2004) studies another team problem where the agents move simultaneously.
On incentive design with complementarities across tasks but in a principal–agent setting (instead of team setting), see
MacDonald and Marx (2001).

4 An ordering of peers in the form of i1 k i2 k...k ir indicates that peer i1 knows peer i2’s effort, i2 knows i3’s effort,
and so on.

5 That is, i k2 j would imply i k1 j but not necessarily the other way around.
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total efforts invested in each task. The project exhibits complementarity (substitutability) if the
incremental success probability due to additional efforts in a task is increasing (decreasing) in
the efforts invested in the other task. Each worker receives a common reward v > 0 if the project
is successful and receives zero otherwise; rewards cannot be conditioned on efforts, as the latter
might not be verifiable. Two alternative work environments are considered: In a transparent
(or open-floor) environment first-round efforts are publicly observed by each worker before
each chooses respective second-round efforts; in a nontransparent (or closed-door) environment
efforts are not observed.

Among the modeling differences, ours consider more general technologies than the one
analyzed by Mohnen et al. (general complementary/substitution technologies vs. perfect sub-
stitution technology) but the workers’ preferences are standard utilitarian without any concern
for equity. Different from Winter (2010), we allow for repeated efforts by the players (i.e., work-
ers). and thus transparency in our setting not only allows a player to influence another player’s
future play through his own action today but also by conveying his likely actions/response the
next round.6 This intertemporal coordination in players’ actions through public observation of
both players’ past actions demands more complicated strategic considerations compared to the
one-off effort investment decision model of Winter. So the relationships between transparency,
technologies, and incentive provision need further scrutiny.

We show the following results. Under complementary technology, with player rewards ex-
ogenous, the transparent environment is weakly better than the nontransparent environment
(Propositions 2 and 3) in the following sense: The best Nash equilibrium efforts pair in the
nontransparent environment entailing partial or full cooperation by the players can be uniquely
implemented in subgame-perfect equilibrium in the transparent environment by eliminating
any other inferior Nash equilibrium; in addition, we show that when shirking (i.e., (0, 0)) is the
unique Nash equilibrium, under certain conditions the maximal efforts equilibrium or some
form of cooperation (i.e., (2, 2) or (2, 1)) can be achieved with transparency. Further, when full
cooperation is induced only under observability of efforts, it involves each worker putting in one
unit of effort in the first round followed by another unit of effort in the second round. Thus, full
cooperation might be achieved at best gradually—transparency allows workers to make observ-
able partial commitments in the first round and complete the project successfully by supplying
the remaining efforts in the second round (Proposition 2).7,8 Based on the weak-dominance
result in Proposition 3, we further show that when the principal determines the rewards opti-
mally, compared to nontransparency, the principal can achieve weak or unique implementation
of full cooperation at no more and possibly lower overall costs in a transparent environment
(Proposition 4). All these results are derived assuming symmetric players, but it should also
become clear that the related intuitions are applicable more generally; see Proposition 5 and
the discussion in Section 3.5. Finally, we show that if the technology exhibits substitutability in
efforts and effort costs are linear, transparency is neutral in terms of equilibrium efforts induced
(Propositions 6 and 7).9

The weak-dominance property of transparency in our setup, although similar to the main
theoretical result of Mohnen et al., is due to different underlying reasons. First, as our results
show, the workers’ inequity aversion is not necessary for explaining why organizations may
favor transparency; in our setup the dominance (of transparency) obtains mainly due to the
complementary nature of the production technology.10 This enriches the possibilities under

6 In Winter (2010), the structure of IIE rules out mutual knowledge of efforts, as there is a fixed timing structure
according to which the agents make their investment decisions.

7 Besides a number of papers mentioned earlier, some of the other works on gradualism are Bagnoli and Lipman
(1989), Fershtman and Nitzan (1991), and Gale (2001).

8 These results we obtain assuming effort costs are linear. For increasing marginal costs, both weak dominance and
gradualism hold, but the uniqueness of equilibrium involving partial or full cooperation may not be guaranteed under
transparency.

9 Elsewhere Pepito (2010) has shown that for increasing marginal costs of effort, transparency is harmful.
10 Knez and Simester (2001) and Gould and Winter (2009) document the positive impact of peer efforts due to

complementarity between team members’ roles—the former is a case study on the performance of Continental Airlines
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which organizations may favor a transparent work arrangement beyond the environment studied
by Mohnen et al. The contrast between complementary and substitution technologies with their
differing implications (for transparency) is similar to Winter’s (2010) result. But unlike in
Winter’s paper, the players in our setting receive identical rewards, so there is no discrimination
among team members (according to one’s position in the sequential efforts chain).

Another point may be noted here. In a public good setting with perfect substitutability in
contributions, Varian (1994) made the observation that if agents contribute sequentially, instead
of simultaneously, the free-riding problem gets worse—total contribution in a sequential move
game is never more and possibly less than in a simultaneous move game.11 As Winter (2010)
has shown, if an external authority can give discriminatory rewards to the contributors of a joint
project, then even though such projects exhibit public good features, sequential game performs
better than a simultaneous move game when player efforts are complementary. And we show
that, in joint projects, the domination over the simultaneous move format can be extended to the
repeated contributions format. So unlike in the sequential move game of Varian, observability
of contributions is distinctly a positive aspect for complementary production technology.

The model is presented next. In Sections 3 and 4, we derive our main results on transparency.
Section 5 concludes. Proofs of the main results are in the Appendix. Supporting Information
available online contains omitted proofs and additional results.

2. THE MODEL

A team of two identical risk-neutral members, henceforth players, engage in a joint project
involving two tasks, with one player responsible for one task each. The probability of the
project’s success depends on the players’ aggregate effort profile over a horizon of two rounds.

In each round, players simultaneously decide on how much effort to put in. Denote player i’s
(i = 1, 2) sequence of effort choices by {eit}2

t=1, and his overall effort ei1 + ei2 by ei ∈ Ei = {0, 1, 2}.
Let p(ei, ej) be the project’s success probability. The cost to player i of performing his task is c
per unit of effort, c > 0. If the project succeeds, both players receive a common reward v > 0;
otherwise, they receive nothing. The payoff to player i ( = 1, 2), given his overall effort ei and
player j’s overall effort ej (j �= i, j = 1, 2), is

ui(ei, ej ) = p(ei, ej )v − cei.(1)

The efforts are irreversible: Shirking by player i (ei = 0) means {eit}2
t=1 = {0, 0}, partial cooper-

ation by player i (ei = 1) means either {eit}2
t=1 = {1, 0} or {eit}2

t=1 = {0, 1}, and full cooperation by
player i (ei = 2) implies any of the following: {eit}2

t=1 = {2, 0}, {eit}2
t=1 = {0, 2}, or {eit}2

t=1 = {1, 1}.
So a player can choose full cooperation either by making a single contribution of two units of
effort early or late in the game or by contributing gradually, one unit of effort in each round.

The success probability function p(ei, ej) has the following properties:

A1. p(2, 2) = 1 and p(0, 0) > 0;
A2. Symmetry: p(ei, ej) = p(ej, ei); and
A3. Monotonicity: For given ej, p(ei, ej) is (strictly) increasing in ei.

The above three properties will be maintained throughout the article. We specify a fourth
property to define complementary technology, our main focus in Section 3:

A4. General Complementarity: For any ej ∈ {0, 1}, p(1, e′
j ) − p(0, e′

j ) > p(1, ej ) − p(0, ej )
and p(2, e′

j ) − p(1, e′
j ) > p(2, ej ) − p(1, ej ), where e′

j > ej .

in 1995, and the latter is a panel data analysis of the performance of baseball players. Gould and Winter also show
negative peer effect when the players are substitutes.

11 Bag and Roy (2008) show that if agents contribute repeatedly to a public good and have incomplete information
about each other’s valuations, expected total contribution may be higher relative to a simultaneous contribution game.
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FIGURE 1

SIMULTANEOUS MOVE GAME GN

So, although the project succeeds for certain if and only if both players exert the maximum
amount of effort, there is still some chance of success if players shirk or cooperate only partially.
We have specified complementarity in a general form, requiring only that any additional effort
by player i is more effective (in terms of incremental probability of success) the more cooperative
player j is.12 This formulation admits perfectly complementary technology, p(ei, ej) = p(ei)p(ej),
where p(ei) and p(ej) are the individual tasks’ success probabilities. Also note that symmetry and
monotonicity are very natural and weak assumptions; further, for complementary technology,
we do not require any further curvature restriction on the success probability function: p(., .)
can be concave or convex in each effort component (i.e., incremental probability of success is
decreasing or increasing).13

Finally, v can be interpreted in two ways—as the players’ valuation for the project or their
compensation as set by a principal, with v being common knowledge. The principal can condition
the rewards only on the outcome and not directly on the efforts; in fact, the principal need not
necessarily observe the efforts. Since players are identical, v1 = v2 = v. The paper’s main
insights do not depend on the identical players assumption. Most of the analysis will be carried
out assuming v to be exogenous. Later on v will be solved to minimize the principal’s costs of
inducing full (or partial) cooperation.

We will consider two effort investment games. In one version, players are able to observe first-
round effort choices in an interim stage before making second-round effort decisions, whereas
in the other version players are unable to observe first-round actions. Observability of efforts
(or the lack of it) may be due to the principal designing a suitable work environment or because
of direct reporting. Following others studying similar environments, we term the observable
effort case transparent and the one with nonobservable actions nontransparent.

Most of our analysis in this article will be carried out under the assumptions of constant
per-unit cost of effort and symmetric players, as specified above. Toward the end of Section 3
we address, separately, how changing to increasing marginal costs (of effort) might alter the
results and the case of nonidentical players.

3. BENEFIT OF TRANSPARENCY: COMPLEMENTARY EFFORTS

3.1. Unobservable Contributions. In the nontransparent environment, the players’ overall
efforts are determined by the Nash equilibrium (or NE) of the following simultaneous move
game (see Figure 1): Denote this one-shot game by GN, any pure strategy profile (e1, e2) of GN

by eN, and any pure strategy NE, (e∗
1, e∗

2) of GN, by e∗
N. Also, denote the set of pure strategy NE

of GN by EN.

LEMMA 1. With effort complementarities, the game GN has no asymmetric pure strategy Nash
equilibrium.

12 The incremental gain (in probability of success) from own effort is assumed to be strictly increasing in the other
player’s effort, to eliminate equilibrium involving asymmetric efforts under nontransparency. A similar assumption will
be made for the substitution technology in Section 4 for consistency in modeling.

13 However, in Section 4 with players’ efforts acting as perfect substitutes, the success probability function will be
strictly concave. See footnote 22.
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The intuition derives from the fact that a player’s marginal benefit from effort is increasing
in the other player’s effort. This means, if (1, 0) is an NE so that putting in one unit of effort is
(weakly) better than putting in zero effort for player 1, the same comparison holds true strictly
for player 2 given that player 1 puts in one unit of effort. Thus, player 2 should like to deviate
and (1, 0) cannot be an NE. The same intuition applies for other asymmetric strategies.

In view of Lemma 1, in the one-shot game we focus on symmetric pure strategy
equilibrium:

PROPOSITION 1 (ONE-SHOT NASH EQUILIBRIUM). Assume complementary technology. In the
one-shot game GN (i.e., with unobservable contributions), the pure strategy Nash equilibrium (or
equilibria) can be characterized as follows:

• (0, 0) ∈ EN if and only if

c ≥ max{(p(1, 0) − p(0, 0))v, [(p(2, 0) − p(0, 0))v]/2};

• (1, 1) ∈ EN if and only if

(p(2, 1) − p(1, 1))v ≤ c ≤ (p(1, 1) − p(0, 1))v;

• (2, 2) ∈ EN if and only if

c ≤ min{(1 − p(1, 2))v, [(1 − p(0, 2))v]/2}.

Note that the above is a characterization result. In the Supporting Information, we show
that there always exists a pure strategy Nash equilibrium. It follows therefore that there are no
“gaps,” and there may even be some overlaps in the equilibrium ranges of c (i.e., for given
p(·, ·) and v, certain values of c yield multiple equilibria).

3.2. Observable Contributions. The effort investment game proceeds as follows:
Round 1: Players simultaneously choose their efforts ei1 ∈ Ei1 = {0, 1, 2}, i = 1, 2.
Interim period: Players’ first-round decisions are revealed. Denote the set of possible observed

effort levels e1 = (e11, e21) by H, so

H = {
(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)

}
.

Round 2: Players make their effort decisions simultaneously, having observed each other’s
first-round effort choices. Denote player i’s set of admissible second-round effort choices by
Ei2. Since overall effort ei cannot exceed 2,

Ei2 =

⎧⎪⎨
⎪⎩

{0, 1, 2} if ei1 = 0;

{0, 1} if ei1 = 1;

{0} if ei1 = 2.

(2)

At the end of Round 2, the project concludes. Both players receive reward v if the project is
successful. If the project fails, they both receive 0.

With observability, the joint project induces an imperfect information, repeated contribution
game in which players move simultaneously in each round. This belongs to a class of games
known as multistage games with observed actions, as in Fudenberg and Tirole (1991). The
extensive form, denoted by GT , appears in Figure 2.
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The payoffs in each continuation game of GT are in terms of the second-round incremental
gains relative to those yielded by the pair of first-round observed effort levels, e1. For example,
suppose that both players choose one unit of effort in the first round. This restricts the set of
admissible actions for players 1 and 2 to E12 = E22 = {0, 1}, resulting in a continuation game with
the strategy space S2 = {0, 1} × {0, 1}. (In general, the strategy space of any continuation game
is S2 = E12 × E22.) Denote player i’s interim payoff, i.e., payoff generated by observed effort
levels e1 = (e11, e21), by ûi1(ei1, ej1)14 and incremental gains following second-round actions (ei2,
ej2) by ûi2(ei2, ej2|e1) = ui(ei1 + ei2, ej1 + ej2) − ûi1(ei1, ej1).

Therefore, player i’s payoffs in the continuation game following e1 = (1, 1) are

ûi2(ei2, ej2|(1, 1)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if ei2 = 0, ej2 = 0;

(p(1, 2) − p(1, 1))v if ei2 = 0, ej2 = 1;

(p(2, 1) − p(1, 1))v − c if ei2 = 1, ej2 = 0;

(1 − p(1, 1))v − c if ei2 = 1, ej2 = 1.

Payoffs for the other continuation games are computed in the same way.
One specific continuation game is worth noting here—the game following (0, 0) efforts in the

first round—which is same as the one-shot game GN except that all the payoffs are subtracted
by p(0, 0)v. For later use, we treat these two games as identical, given that the players’ strategic
decisions will be the same.

Equilibrium of GT . Corresponding to GT , any pure strategy subgame-perfect equilibrium
(or SPE) will be denoted by (e∗

11, e∗
21; e∗

12(e∗
11, e∗

21), e∗
22(e∗

11, e∗
21)), or in short, e∗

T . To be precise,
equilibrium second-round strategies should be more general functions of any first-round effort
decisions and not just of (e∗

11, e∗
21). To establish a particular strategy profile as SPE, we will verify

the Nash equilibrium property both along the equilibrium path and also following unilateral
first-round deviations by either player (i.e., in the continuation games following (e11, e∗

21) and
(e∗

11, e21), where e11 �= e∗
11 and e21 �= e∗

21).15 The verification of Nash equilibrium following joint
deviations in the first round will not be necessary unless the players’ strategies for the particular
subgames are explicitly described in the strategy profile. Note that not specifying the continu-
ation strategies in joint deviation subgames is not a serious omission as one can always specify
a profile of Nash equilibrium strategies (which always exist for our games) appropriate for the
subgame.

Corresponding to e∗
T , the aggregate effort profile is (e∗

11 + e∗
12, e∗

21 + e∗
22). Denote the set of

equilibrium aggregate effort profiles of GT by ET .
Given the extensive-form representation in Figure 2, we now want to evaluate how the

overall equilibrium efforts will change when efforts are made transparent. In particular, take
an equilibrium (or equilibria) that arises in the one-shot game; from Proposition 1 we see
that this equilibrium (or equilibria) results if and only if certain conditions hold. Taking these
conditions as given, we then examine the setting with repeated, observable contributions and
determine which overall efforts result (or do not result) in an SPE under these conditions.
Detailed characterization of the various equilibria under transparency and their comparison
with the equilibria under nontransparency appear in the Supporting Information.

Below we present one special type of equilibrium under observability to show how trans-
parency can sometimes be critical to achieving full cooperation and ensuring the project’s
success.

14 Interim payoffs are calculated assuming that the players will exert no further effort in Round 2.
15 We need to check a player’s deviation incentive only one at a time, instead of consecutive deviations in the first and

the second round, due to the “one-stage deviation principle for finite-horizon games” of Fudenberg and Tirole (1991;
see their Theorem 4.1).
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PROPOSITION 2 (GRADUALISM: NECESSARY AND SUFFICIENT CONDITIONS). Suppose a joint
project satisfies general complementarity.

(a) (i) If (2, 2) �∈ EN, then the only way (2, 2) ∈ ET is through gradualism, i.e.,
(e∗

11, e∗
21; e∗

12, e∗
22) = (1, 1; 1, 1).

(ii) (2, 2) ∈ ET \ EN only when EN = {(0, 0)}.
(b) Suppose EN = {(0, 0)}, which occurs if and only if

p(0, 0)v ≥ max{p(1, 0)v − c, p(2, 0)v − 2c},
p(1, 1)v − c < p(0, 1)v,

and v − 2c < max{p(0, 2)v, p(1, 2)v − c}.

Then (2, 2) ∈ ET (through gradualism) if and only if

⎧⎪⎨
⎪⎩

v − 2c ≥ p(1, 2)v − c,

p(0, 1)v − c ≥ p(0, 2)v − 2c, and

v − 2c ≥ p(0, 1)v.

(3)

(c) Finally, if EN = {(0, 0)} and (3) hold, then (0, 0) ∈ ET .

Gradual cooperation requires that each player finds it optimal to make the remaining con-
tribution in the second round if both have already made partial contributions in the first round
(the first condition in (3)). It also entails that no player has an incentive to deviate from this
sequence of partial contributions (the second and third conditions in (3)).

The first condition in (3) and the uniqueness of e∗
N = (0, 0) imply that p(0, 2)v > v − 2c, which

together with the third condition in (3) yields p(0, 2)v > v − 2c > p(0, 0)v. In other words,
full cooperation Pareto-dominates shirking, though the latter prevails when there is no way to
observe the ongoing contributions. There is mutual interest in cooperating, but it is not in any
player’s individual interest to cooperate. In this setting, making efforts observable encourages
full cooperation. However, since efforts are irreversible, sinking two units of effort in the first
round is risky, as the other player can exert zero effort in both rounds, get p(0, 0)v > v − 2c, and
go unpunished. (The only way to punish him would be for the cooperating player to move back
to shirking, which is not possible.) Therefore, although transparency induces cooperation, it
can only do so using partial commitments, i.e., gradually. The result is similar to the gradualism
result of Lockwood and Thomas (2002). Earlier, an empirical literature (Ichino and Maggi, 2000;
Mas and Moretti, 2009) had pointed out the role of reciprocity in organizations, attributing it
to behavioral effects. Our result shows that reciprocity can be explained on the grounds of pure
rationality and selfishness.

Thus gradualism is one way for transparency to make a difference when, without it, only the
worst (i.e., shirking) would have been realized. This may lead to a distinct cost advantage for a
principal who wants to design reward incentives to uniquely implement full cooperation, as we
will see in Proposition 4. Proposition 2 also prompts the question whether a similar domination
could be achieved but without realizing full cooperation. In the Supporting Information we
verify that indeed this is possible, sometimes by achieving overall equilibrium efforts of (2, 1) in
the transparent environment whereas (0, 0) is the only equilibrium under nontransparency.16

EXAMPLE. We now construct an example to illustrate Proposition 2, where full cooperation is
induced only under transparency. Figure 3 is derived using perfectly complementary technology,

16 When (2, 1) obtains, it is more likely that (0, 0) will be eliminated, which is a strict improvement, in contrast to the
case of weak improvement when (2, 2) occurs along with (0, 0) (Proposition 2(c)).
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FIGURE 3

(0, 0) UNIQUE e∗
N , AND (2, 2) SUPPORTED IN SPE

p(e1, e2) = p(e1)p(e2), where for i = 1, 2,

p(ei) =

⎧⎪⎨
⎪⎩

α if ei = 0;

β if ei = 1;

1 if ei = 2.

Given this specification, p(0, 2) = α, p(1, 2) = β, p(0, 1) = αβ, and p(1, 1) = β2. The figure plots
the payoffs against β and identifies the values of β such that the payoffs satisfy conditions (3)
for a profile of the remaining parameters, (α = 1

5 , v = 2.4, c = 1).17 Further, e∗
N = (0, 0) since

for all β ∈ (0, 1), α2v > 0, αβv − c < 0, and αv − 2c < 0 (i.e., p(0, 0)v > 0, p(1, 0)v − c < 0, and
p(2, 0)v − 2c < 0). To verify uniqueness of e∗

N = (0, 0), first note that (1, 1) is not an NE since
p(0, 1)v > p(1, 1)v − c (because αv > β2v − c), and (2, 2) is not an NE because p(0, 2)v > v −
2c (follows from (3)), and there is no other pure strategy equilibrium (by Lemma 1).

Let us now denote the value of β at which v − 2c = βv − c by β1. In this example, β1 = 7
12 ,

and we see that, for the given parameter values of (α, v, c), all the conditions (i.e., (3) as well as
uniqueness of e∗

N = (0, 0)) are simultaneously satisfied for β ∈ ( 1
5 , 7

12

]
.

Next we develop the other main results on the performance of transparency vis-à-vis non-
transparency for implementation of better effort profiles and the related optimal incentive
costs. We begin with the claim that by allowing players to observe each other’s efforts during
the project’s active phase, the principal would do no worse and possibly do better. For example,
if full cooperation is an equilibrium in the one-shot game but not necessarily unique, then full
cooperation must be the only equilibrium in the extensive-form game.

Define the set of outcomes inferior to eN = (e1, e2) by

IeN = {(ẽ1, ẽ2) | ẽ1 < e1 or ẽ2 < e2}.

Note that by this definition, (2, 0) and (0, 2) are inferior to the effort pair (1, 1).
We look at two cases: when partial cooperation is a one-shot equilibrium, and when full

cooperation is a one-shot equilibrium.

17 The figure has been generated in Mathematica.
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LEMMA 2. Suppose that (1, 1) ∈ EN. Then under transparency overall efforts that entail shirk-
ing by any player cannot arise in an SPE.

LEMMA 3. Suppose that (2, 2) ∈ EN. Then under transparency overall efforts where any player
exerts less than two units of effort cannot arise in an SPE.

Thus, making efforts observable eliminates all outcomes inferior to the “best” one-shot equi-
librium possible where “best” is interpreted in terms of total team efforts.18 But still elimination
does not establish superiority of transparency. We must show that the best one-shot equilibrium,
or perhaps a better effort profile, can be supported as a pure strategy SPE of the extensive-form
game under transparency. The following proposition achieves this objective.

PROPOSITION 3 (BENEFICIAL TRANSPARENCY). Suppose a joint project involves two complemen-
tary tasks. Then transparency dominates over nontransparency in the following sense. Equilibrium
(or equilibria) in the nontransparent environment entailing partial or full cooperation by both
players is weakly improved upon in a unique equilibrium in the transparent environment by
retaining the best equilibrium and at the same time by eliminating all inferior effort profiles (i.e.,
ones in which at least one player exerts lower effort). Moreover, under appropriate conditions,
when shirking (i.e., (0,0)) is a unique equilibrium under nontransparency, with transparency it is
possible to achieve full cooperation by both players but not partial cooperation.

Thus, when there are multiple one-shot equilibria, the weak dominance of transparency is
achieved through (i) preservation of the best one-shot equilibrium and (ii) the elimination
of all potential inferior outcomes (including inferior one-shot equilibria). When the one-shot
equilibrium is unique and involves cooperation (partial or full), overall equilibrium efforts
under transparency coincide with the efforts under nontransparency. Finally, when shirking is
the unique one-shot equilibrium, transparency improves upon nontransparency by making full
cooperation possible (under certain conditions) through partial commitments.

As already mentioned in Section 1, relative to nontransparency, the expanded strategies
under transparency have the potential to result in additional equilibria and equally they could
eliminate some one-shot equilibrium. Proposition 3 confirms both these predictions to be true,
but what is interesting is the uniform impact of the two effects to make transparency superior
in terms of effort incentives (not only are inferior outcomes eliminated, but a strictly superior
outcome may emerge). For an intuition note that with complementary efforts whenever there
are multiple equilibria in the one-shot game, the equilibria can be strictly Pareto-ranked from
the players’ point of view with the equilibrium involving highest symmetric efforts dominating
the lower symmetric efforts equilibrium (or equilibria). This allows a player to be unilaterally
aggressive to play his “best” one-shot equilibrium effort in the first round under observability.
The unique best response of the other player, then, is to choose aggregate efforts over two
rounds to correspond to his best one-shot NE. Thus, any player, through an aggressive play,
can eliminate all inferior effort pairs (not just inferior NE) from being supported in SPE. By
a similar logic, due to complementarity, observability (of efforts) can generate strictly higher
efforts than is possible under nonobservability. Later on we will see that if, instead, the efforts
are substitutes, transparency is either neutral or sometimes even harmful.

Another aspect worth emphasizing is that, whereas equilibrium selection using the criterion
of Pareto domination may seem a valid reason not to worry about the inferior equilibria (in the
case of multiple equilibria under nontransparency), the problem of miscoordination in team
settings is a very reasonable concern that gets worse as the team size becomes large. And with
the introduction of slight risk aversion on the part of the players (in our treatment players are
risk neutral in monetary rewards), nontransparency is likely to tilt the balance toward lower

18 This will also yield the highest chance of the project’s success given that the one-shot game induces only symmetric
NE.
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efforts equilibria. Transparency fully resolves this coordination problem by eliminating the
inferior equilibria.19

3.3. The Case of Increasing Marginal Costs. So far our analysis has been based on the
assumption of linear effort costs. We now briefly discuss possible modification of the main
result if effort costs are convex: The cost of exerting the second unit of effort within the same
round is c + δ, δ > 0, i.e., the marginal cost of effort is increasing within a round.

With the change in effort costs, our previous intuition in favor of transparency gets somewhat
weakened. After all, due to increasing marginal costs players are strongly discouraged against
sinking in two units of effort within a single round. This gives fewer options to contribute two
units of effort in both the transparent and the nontransparent environments, as the players
should like to space out their effort contributions over the two rounds. In the nontransparent
environment this lack of options is of no real consequence, because the players can shift their
contributions across the two rounds privately. But in the transparent environment, this creates
a perverse incentive among the players to withhold individual contributions in the first round,
thereby credibly conveying to the other player that pushing up contribution in a later round
would be unlikely (this effect is the principal reason why transparency is potentially harmful
in the substitution technology case). So players may well end up in a bad coordination under
transparency with reduced first-round efforts and lower aggregate efforts. We show that, in
our three efforts setup, such a harmful effect never arises and transparency continues to be
(weakly) better than nontransparency. The main difference, compared to the linear effort costs
case, is that we can no longer guarantee the uniqueness of the overall equilibrium efforts in the
extensive-form game. The formal analysis is developed in the Supporting Information.

3.4. Optimal Rewards. So far we have not considered the question of optimal incentives:
What should be the minimal rewards to induce a particular pair of aggregate efforts with and
without transparency? Does transparency lower the cost of incentives to the principal? One can
well infer the answer from Proposition 3. Suppose that, given p( ·, ·) and c, the principal wishes
to set rewards such that full cooperation is the unique equilibrium with nontransparency. To
minimize cost, he chooses the minimum of the set of feasible v values for which this is possible.
But Proposition 3 implies that this minimum reward, as well as all feasible values for v that
implement full cooperation as only one of multiple equilibria under nontransparency, induces
full cooperation as the unique equilibrium under transparency. In other words, transparency
expands the feasible range of v values for the principal: this may bring down the principal’s
optimal cost and can never increase it.20

We verify the above claim using formal derivations (in the Supporting Information) that
provide, given a complete breakdown of the cost parameter c in an ascending order (for any
given value of v and the project technology p(e1, e2)), the list of various equilibria under the
two arrangements, nontransparency and transparency. Based on this formal verification, we can
make the following general observation:

PROPOSITION 4 (IMPLEMENTATION COSTS). Consider the same joint project characterized by
general complementarity as in Proposition 3. Then full cooperation by both players, i.e., overall
efforts (2,2), can be uniquely (or weakly) implemented under transparency for a reward that
is no more and possibly less than the minimal reward needed for unique (respectively, weak)
implementation under nontransparency.

19 For example, in the case where e∗
N = (0, 0), e∗

N = (1, 1), and e∗
N �= (2, 2), transparency allows any player to con-

fidently sink in one unit of effort early on regardless of whether the other player chooses zero effort or one, because
when the other player observes his move it will be in his best interest to match it (if he has not already done so). Since
this decision by any player will always be matched by the other player, a situation where one player partially cooperates
and the other player shirks cannot arise with observability.

20 The same assertion can be made also for “weak” implementation.
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A result similar to Proposition 4 can be stated also for implementation of partial cooperation.
Whether the principal targets full cooperation or partial cooperation should depend, of course,
on the available budget.

3.5. Nonidentical Players. Although our analysis in this article is carried out for identical
players, we will argue that the main economic intuitions should apply more generally. Consider
nonidentical players—they may differ either in terms of the impact of their efforts on the
project’s success probability (i.e., p(·, ·) is not necessarily symmetric so that A2 does not hold) or
in effort costs (c1 may differ from c2, as opposed to c1 = c2 = c) or both. We will, however, retain
the other assumptions, A1, A3, and A4.21 Also, we consider only the case of identical rewards,
v1 = v2 = v; qualitatively, the treatment of differential rewards follows similar reasoning.

Our claim is that the main reason why transparency dominates nontransparency is because
the Nash equilibria in the one-shot game can be Pareto ranked, due to complementarity of
players’ efforts. Roughly, compared to one NE, if another NE involves higher efforts by at
least one player and that leads to a higher chance of project success (and so is preferred by
the authority) while also improving the players’ net payoffs, the players should like to play the
second equilibrium and move away from the first under transparency: The player who strictly
gains can take the initiative by putting in the corresponding amount of (possibly higher) efforts
in the first round that is observed by the other player, who, in turn, would reciprocate, as there
is nothing to lose and there may be gain.

The above intuition tells us why with multiple Nash equilibria in the one-shot game, the infe-
rior equilibria should not arise under transparency. On the other hand, the intuition for gradual-
ism in Proposition 2 does not depend on player symmetry. So combined with the Pareto ranking
property, the weak dominance of transparency under complementary technology should con-
tinue to hold in the heterogeneous players case. Below we formally present the Pareto-ranking
result.

PROPOSITION 5 (PARETO RANKING OF NASH EQUILIBRIA: NONIDENTICAL PLAYERS). Consider a
joint project characterized by general complementarity except that now the players are hetero-
geneous either in terms of the impact of their efforts on success probability or in effort costs
(or both). Then, whenever, under nontransparency, there are multiple Nash equilibria yielding
different overall chances of success, the equilibria can be (weakly) Pareto ranked, with the players
preferring the equilibrium with a higher success probability.

4. SUBSTITUTION TECHNOLOGY: A NEUTRALITY RESULT

In this section, we consider team projects with player efforts primarily as substitutes. The main
objective is to see how the change from complementary to substitution technology impacts on
the effect of transparency on team members’ efforts.

To formalize, let the project’s success probability inherit properties A1–A3 from the previous
section and satisfy the following property:

A4′. General Substitutability: For any ej ∈ {0, 1}, p(1, e′
j ) − p(0, e′

j ) < p(1, ej ) − p(0, ej ) and
p(2, e′

j ) − p(1, e′
j ) < p(2, ej ) − p(1, ej ), where e′

j > ej .

That is, the incremental probability of project success due to an extra unit of effort by a player
is decreasing in the other player’s effort.22 We continue to assume linear effort costs. At the
end we discuss the likely changes in results if one assumes increasing marginal costs.

21 The analysis in the next section should also generalize, although we do not verify this.
22 It is easy to check that in the perfect substitution case, p(e1, e2) = p(e1 + e2), the general substitutability property

implies p(1) − p(0) > p(2) − p(1) > p(3) − p(2) > p(4) − p(3) > 0, i.e., p(e1, e2) is strictly concave separately in each
player’s effort.
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4.1. Unobservable Contributions. Denote the one-shot simultaneous move game represent-
ing the effort contributions over two rounds without observability by �N ; note that it takes the
same form as Figure 1. The NE of this game will be denoted by e∗

N. There always exists a pure
strategy NE in �N (proof available online). In the Appendix we also establish the following
result:

LEMMA 4. In the normal-form game �N, multiple symmetric pure strategy Nash equilibria
cannot arise. That is, any e∗

N = (e, e) must be a unique equilibrium.

The intuition relies on a player’s marginal benefit from effort being decreasing in the other
player’s effort. This means, if (1, 1) is an NE, so that putting in one unit of effort is (weakly)
better than putting in zero effort for a player, this comparison holds true strictly if the other
player puts in zero effort. Hence (0, 0) cannot be an NE. The same intuition applies negating
(1, 1) and (2, 2) both being NE.

Note that whereas for complementary technology one-shot equilibrium is necessarily sym-
metric, for substitution technology one-shot equilibrium can be asymmetric. Moreover, an
asymmetric equilibrium can arise along with a symmetric one-shot equilibrium.23

4.2. Observable Contributions. When first-round efforts are observable, the extensive form
is as in Figure 2. Denote the extensive-form game under substitution technology by �T , any
(pure strategy) SPE of this game by e∗

T , and the continuation game following e1 = (e11, e21) by
�T |(e11,e21).

With player efforts as substitutes (instead of complements), free-riding becomes a more
serious problem under either contribution format, with and without transparency, because one
player’s slack can be more easily picked up by another player. But then a player cannot easily
free ride by simply putting in low effort in the first round because this effort reduction can be
made up for by the same player by putting in more effort in the second round, given linear costs
of effort. So how substitutability in efforts affects the players’ overall effort incentives under
the two formats is not a priori clear.

Our next result shows that, unlike in the complementary technology case, when efforts are
substitutes, transparency cannot eliminate inferior efforts equilibrium if there are multiple
equilibria under nontransparency.

PROPOSITION 6. Suppose a joint project satisfies general effort substitutability. Any NE efforts
pair (e∗

1, e∗
2) under nontransparency can be supported as an SPE of the effort contribution game

under transparency, with the strategy profile eT = (e∗
1, e∗

2; 0, 0).

The next result shows that any overall effort profile achievable under transparency can also
be replicated in the one-shot game under nontransparency:

PROPOSITION 7. Suppose a joint project satisfies general effort substitutability. If under
transparency eT = (e∗

11, e∗
21; e∗

12(e∗
11, e∗

21), e∗
22(e∗

11, e∗
21)) is an SPE, then the aggregate efforts pair

eN = (e∗
1, e∗

2), where e∗
1 = e∗

11 + e∗
12 and e∗

2 = e∗
21 + e∗

22, is an NE of the effort contribution game
under nontransparency.

Thus, Propositions 6 and 7 together establish, in contrast to our findings in Section 3, a
form of “neutrality of transparency” when player efforts are substitutes and effort costs are
linear: Effort observability is neither gainful nor harmful for inducing efforts. The result further

23 For example, suppose that v − 2c > p(1, 2)v − c and v − 2c = p(0, 2)v, such that e∗
N = (2, 2). By Lemma 4, we know

that e∗
N �= (1, 1) and e∗

N �= (0, 0). However, v − 2c > p(1, 2)v − c and v − 2c = p(0, 2)v imply that, using A4′ and A2,
p(0, 2)v − 2c > p(2, 1)v − c and p(0, 2)v − 2c > p(0, 0)v. Together with the fact that v − 2c = p(0, 2)v, these conditions
imply that e∗

N = (0, 2).
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implies that if one were to explicitly design incentives to implement full cooperation (or partial
cooperation), the optimal reward, v, will be identical with and without transparency.

To understand the intuitions behind the neutrality result, one must ask in what ways can
observability of efforts make a difference. On the positive side, first observability could allow
players, through gradualism, to coordinate on full cooperation (Proposition 2), but this advan-
tage disappears with effort substitutability because more effort by one player decreases the
incremental benefit from extra effort by the other player. (That is, complementarity in efforts
is necessary for the special advantage of gradualism.) Second, although observability enables a
player to put in high early efforts unilaterally and eliminate any Pareto-inferior equilibrium in
the complementary technology case, with substitution high early efforts by one player do not
improve incremental benefits from others’ efforts, so there is no added incentive to reciprocate.
This denies transparency any edge over nontransparency in terms of effort inducement. On the
negative side, effort observability would normally allow a player, moving early, to commit to a
low contribution so that others moving late must shore up their contributions, a threat especially
meaningful under effort substitutability. But this threat loses its bite when the same player who
contributed low early can make it up later on—again transparency makes no difference.

Related to the last point above, in a sequential voluntary contribution public good game,
Varian (1994) showed that total contribution under observability of contributions is often
less than (and never exceeds) the total contribution under nonobservability. In our setup, the
fact that in the last round both players get to move a second time, combined with the fact
that marginal cost of effort is constant, completely nullifies the extra free-riding opportunity
associated with an early move, and observability makes no difference. But if marginal cost of
effort is increasing, low contribution in the early round will have a commitment value similar to
Varian’s setup because to make it up in the second round will push up the player’s effort costs
at an increasing rate, making observability of efforts harmful (from the organization’s point
of view).24 This result is demonstrated in Pepito (2010) in a continuous efforts formulation of
a two-player, two-round repeated efforts joint project game, assuming the players’ efforts are
substitutes.

Also as we discussed in the Introduction, our neutrality property of transparency is similar
to Winter (2010)’s result. The important difference between Winter’s setup and ours is that a
player in our model may choose nonzero efforts over multiple rounds, giving rise to a repeated
efforts contribution game, whereas in Winter’s analysis a player gets to exert effort (or shirk)
only once, so that the effort investment game is mostly sequential in nature (late movers observe
the early movers’ efforts and not the other way around).25

5. CONCLUSION

Transparency is an important subject of debate in public economics and its applications
in team settings. Samuelsonian formulation of public goods, in a majority of models, takes
substitutability of contributions in public good’s production as a starting point, with the
free-rider problem as the main challenge. Team productions in organizations, on the other
hand, may exhibit a large degree of complementarity, whereas the benefits of team performance
are similar to a public good.

To see how the article adds to the literature on transparency, in Table 1 we present a
summary of the main features and results of our model and three related papers. Our model has
the following attributes: joint (or team) project, repeated contribution of efforts, self-interested
utilitarian contributors (whose preferences we describe as “standard preferences”), complete
information, and the two types of production technologies—complementary and substitutes.

24 A similar contrast can be found between the dynamic contribution game of Admati and Perry (1991), which
assumes sequential contributions, and the repeated contribution game of Marx and Matthews (2000), which assumes
simultaneous contributions within each round.

25 In Winter’s setup, in some of the stages more than one worker may move (simultaneously), in which case they do
not observe each other’s efforts, but the late movers do observe the early movers’ efforts.
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TABLE 1
ALTERNATIVE RELATED MODELS OF TRANSPARENCY

This Article Mohnen et al. Winter [2010] Varian

complete info. complete complete/incomplete complete

effort effort effort public
contr. contr. contr. good

repeat repeat mainly sequential
contr. contr. sequential;

simult. in some
stages

standard inequity standard standard
preferences aversion# preferences preferences

complementary tech.; substitution; complementary; substitution;
transparency adv. transparency adv. transparency adv. transparency disadv.

substitution tech.; #change to substitution;
transparency std. pref. transparency –
neutrala ⇒ transparency neutral

neutral

aTrue for linear costs; for convex costs, transparency harmful (Pepito, 2010).

Of the papers listed in Table 1, Varian (1994) is in pure public good setting. Winter’s (2010) is
in a team setting (similar to ours) analyzing the architecture of information (i.e., how different
peers are positioned in the observability-of-efforts chain) and its implications for what should
be the right kind of team (function-based or process-based) from the optimal design viewpoint.
Except for Mohnen et al. (2008), all the papers listed assume standard utilitarian agents; Mohnen
et al. consider the implications when agents view an inequitable distribution of the burden of
contribution with extra aversion beyond the direct utility-of-rewards calculations.

APPENDIX

PROOF OF LEMMA 1. Suppose without loss of generality e∗
N = (e∗

1, e∗
2), where e∗

1 > e∗
2. Let

e∗
1 − e∗

2 = 
e ∈ {1, 2}. Then it must be that

p(e∗
1, e∗

2) − ce∗
1 ≥ p(e∗

1 − 
e, e∗
2) − c[e∗

1 − 
e](A.1)

and p(e∗
2, e∗

1) − ce∗
2 ≥ p(e∗

2 + 
e, e∗
1) − c[e∗

2 + 
e].(A.2)

From (A.1) we see that p(e∗
1, e∗

2 + 
e) − ce∗
1 > p(e∗

1 − 
e, e∗
2 + 
e) − c[e∗

1 − 
e], by A4. But
this implies that p(e∗

2 + 
e, e∗
1) − c[e∗

2 + 
e] > p(e∗
2, e∗

1) − ce∗
2, contradicting (A.2). �

PROOF OF PROPOSITION 1. Equilibrium (e∗
1, e∗

2) = (0, 0) occurs if and only if p(0, 0)v ≥ p(1,
0)v − c and p(0, 0)v ≥ p(2, 0)v − 2c, i.e., c ≥ max {(p(1, 0) − p(0, 0))v, [(p(2, 0) − p(0, 0))v]/2},
which is satisfied for high c values. Equilibrium (e∗

1, e∗
2) = (1, 1) occurs if and only if p(1, 1)v −

c ≥ p(0, 1)v and p(1, 1)v − c ≥ p(2, 1)v − 2c, i.e., (p(2, 1) − p(1, 1))v ≤ c ≤ (p(1, 1) − p(0, 1))v.
Finally, equilibrium (e∗

1, e∗
2) = (2, 2) occurs if and only if v − 2c ≥ p(1, 2)v − c and v − 2c ≥ p(0,

2)v, i.e., c ≤ min{(1 − p(1, 2))v, [(1 − p(0, 2))v]/2}, which is clearly satisfied for low values of c.
�

PROOF OF PROPOSITION 2. (a) (i) First we claim that full cooperation cannot be achieved in
the extensive-form game through (0, 0; 2, 2) or (2, 2; 0, 0). The first case implies that (2, 2) is an



PEER TRANSPARENCY IN TEAMS 1273

NE in the continuation game following e1 = (0, 0), contradicting our hypothesis that (2, 2) �= e∗
N

(recall, the continuation game following e1 = (0, 0) is simply GN). The second case cannot be
supported in equilibrium, as any player i would have an incentive to deviate from ei1 = 2 to
either ei1 = 1 or ei1 = 0, because full cooperation is not an equilibrium in the one-shot game:
In the extensive form i can deviate the same way as he would have done in the one-shot game,
first by deviating in the first round (as in the one-shot game) and then putting in zero effort in
the second round.

Next consider full cooperation of the form (2, 1; 0, 1) or (1, 2; 1, 0) and each player collecting a
payoff of v − 2c overall. Since (2, 2) �= e∗

N, at least one of the following must hold (see Figure 1):

p(0, 2)v > v − 2c,(A.3)

p(1, 2)v − c > v − 2c.(A.4)

But then the player who is considering cooperating gradually in the extensive-form game (say,
player 1) can either shirk in both rounds and obtain an overall payoff p(0, 2)v that exceeds v −
2c, or partially cooperate in the first round and shirk in the second round to receive p(1, 2)v −
c that exceeds v − 2c; one of these profitable deviations must be possible, by (A.3) and (A.4).
Thus, neither (2, 1; 0, 1) nor (1, 2; 1, 0) can be sustained as SPE.

Then consider (0, 1; 2, 1) (or similarly (1, 0; 1, 2)) as an equilibrium possibility. It is easy to
see that there is a profitable deviation for player 1 in the second round, given that one of (A.3)
and (A.4) must be true.

The above eliminations leave us with gradual cooperation, i.e. (1, 1; 1, 1), as the only equilib-
rium possibility.

(ii) In the extensive form, (e∗
12(1, 1), e∗

22(1, 1)) = (1, 1) if and only if (1 − p(1, 1))v − c ≥ (p(1,
2) − p(1, 1))v (see Figure 2), i.e.,

v − 2c ≥ p(1, 2)v − c.

Further, since (2, 2) �= e∗
N, (A.3) must apply given that v − 2c ≥ p(1, 2)v − c. Condition (A.3)

and v − 2c ≥ p(1, 2)v − c (an implication of gradualism) imply that

(p(1, 2) − p(0, 2))v < c,

or that (p(1, 1) − p(0, 1)) < c, by A4. Therefore, e∗
N �= (1, 1), by Proposition 1.

(b) Refer to Figure 1. Clearly, e∗
N = (0, 0) is unique if and only if

p(0, 0)v ≥ max{p(1, 0)v − c, p(2, 0)v − 2c},(A.5)

p(1, 1)v − c < max{p(0, 1)v, p(2, 1)v − 2c},(A.6)

and v − 2c < max{p(0, 2)v, p(1, 2)v − c}.(A.7)

Note that for (A.6) and (A.7) to hold simultaneously, it must be that

max{p(0, 1)v, p(2, 1)v − 2c} = p(0, 1)v.

Suppose not, so that max {p(0, 1)v, p(2, 1)v − 2c} = p(2, 1)v − 2c. Then this condition together
with (A.6) would imply that p(1, 1)v − c < p(2, 1)v − 2c and p(0, 1)v < p(2, 1)v − 2c, or
that (using A4) c < [1 − p(1, 2)]v and c <

[1−p(0,2)]v
2 , respectively. But by Proposition 1 these
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conditions imply that e∗
N = (2, 2), a contradiction. Therefore, e∗

N = (0, 0) is unique if and only
if conditions (A.5), (A.7), and

p(1, 1)v − c < max{p(0, 1)v, p(2, 1)v − 2c} = p(0, 1)v(A.8)

hold.

A.1. Sufficiency proof. We claim that if (3) holds, then e∗
T = (1, 1; 1, 1), i.e.,

• (e∗
i2(1, 1), e∗

j2(1, 1)) = (1, 1) and
• there is no profitable unilateral deviation for any player in Round 1 from e1 = (1, 1).

We are going to show that the following strategies will form an SPE:

1. In the first round, e∗
i1 = 1 for each player i and

2. In the second round, for i = 1, 2,

e∗
i2 =

⎧⎪⎨
⎪⎩

0 if e1 = (ẽi1, ẽj1) and ẽi1 �= 1;

0 if e1 = (1, 0);

1 if e1 = (1, ẽj1) and ẽj1 > 0.

(A.9)

By the first condition in (3), (1 − p(1, 1))v − c ≥ (p(1, 2) − p(1, 1))v; hence
(e∗

i2(1, 1), e∗
j2(1, 1)) = (1, 1). Now we show that there is no profitable unilateral deviation in

Round 1.
The strategy profile in the posited equilibrium, (1, 1; 1, 1), yields a payoff to player 1 of

u1(1, 1; 1, 1) = v − 2c. Suppose he lowers his first-round contribution to e11 = 0. Then in the
continuation game, (A.9) recommends (e12, e22) = (0, 0). To verify that it is an NE, first note
that choosing e22 = 0 is player 2’s best response to e12 = 0 by the second condition in (3). Also,
note that if (A.7) and the first condition in (3) simultaneously apply, it must be that

p(0, 2)v > v − 2c and p(0, 2)v > p(1, 2)v − c,(A.10)

which in turn implies, by A4, that

p(0, 1)v > p(2, 1)v − 2c and p(0, 1)v > p(1, 1)v − c.(A.11)

By (A.11), player 1 choosing e12 = 0 is a best response to e22 = 0, verifying NE. Now, by the
third condition in (3), u1(0, 1; 0, 0) = p(0, 1)v ≤ v − 2c = u1(1, 1; 1, 1), so player 1 will not
find the deviation in the first round profitable (and, by symmetry, the same is true of player
2). Finally, suppose player 1 increases his contribution to e11 = 2. Then the first condition in
(3) implies that e22 = 1, as recommended in (A.9), is a best response by player 2. Player 1’s
deviation thus results in the payoff u1(2, 1; 0, 1) = v − 2c = u1(1, 1; 1, 1), which is clearly not
profitable. Similarly, player 2 will not deviate in Round 1.

Finally we show that (A.9) corresponds to NE following joint deviations, i.e., in the subgames
following e1 = (0, 0), e1 = (2, 0), e1 = (0, 2), and e1 = (2, 2). Suppose players lower first-round
contributions to ei1 = 0, i = 1, 2. Note that the resulting continuation game is identical to the
one-shot game GN and that e∗

N = (0, 0); therefore e12 = 0 and e22 = 0, as recommended by
(A.9), form an NE. Next, suppose that player 1 raises his first-round contribution to e11 = 2
whereas player 2 lowers his contribution to e21 = 0. Then by condition (A.10) (that must hold
if (A.7) and the first condition in (3) simultaneously apply, as established above), player 2’s
best response is e22 = 0; this is consistent with (A.9). (By symmetry, the same argument holds
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for player 1 following e1 = (0, 2).) Finally, if both raise their first-round contributions to 2, no
further contributions are possible, exactly as (A.9) specifies.

A.2. Necessity proof. Note that for (e∗
i2(1, 1), e∗

j2(1, 1)) = (1, 1) to arise, it must be that (1 −
p(1, 1))v − c ≥ (p(1, 2) − p(1, 1))v, i.e., v − 2c ≥ p(1, 2)v − c. This is the first condition in (3).

Next, note that in the subgame following (0, 1), conditions (A.10) and (A.11) (that follow
from (A.7), the first condition in (3) and A4, as established above) imply that e21 = 0 is player 1’s
strictly dominant strategy. This then leaves only two possible NE in this subgame: (0, 0) and (0,
1). If player 2 chooses e22 = 1, then player 1’s payoff is u1(0, 1; 0, 1) = p(0, 2)v >︸︷︷︸

by (A.10)

v − 2c =

u1(1, 1; 1, 1), making the deviation profitable. Therefore, the deviation is unprofitable only if (0,
0) is played following e1 = (0, 1) (i.e., only if player 2 chooses e22 = 0 given that e12 = 0, or that
p(0, 1)v − c ≥ p(0, 2)v − 2c) and u1(0, 1; 0, 0) = p(0, 1)v − c ≤ v − 2c = u1(1, 1; 1, 1). Thus, the
second and third conditions in (3) follow.

(c) Shirking in the one-shot game implies that (e∗
12(0, 0), e∗

22(0, 0)) = (0, 0). So for (0, 0; 0, 0)
to be an SPE, we must rule out deviations in the first round. In the proposed SPE, any player i,
say player 2, will receive u2(0, 0; 0, 0) = p(0, 0)v. Consider the possibility of player 2 deviating
to e21 = 1. As argued earlier (under Sufficiency), (e12, e22) = (0, 0) is an NE following (0, 1); this
yields to player 2 the payoff u2(0, 1; 0, 0) = p(0, 1)v − c ≤︸︷︷︸

(e∗
N=(0,0))

p(0, 0)v = u2(0, 0; 0, 0), so the

deviation is not gainful. Suppose now that player 2 deviates by choosing e21 = 2; by condition
(A.10) (which follows from (A.7) and the first condition in (3)), player 1 will choose e12 = 0.
The deviation results in the payoff u2(0, 2; 0, 0) = p(0, 2)v − 2c ≤︸︷︷︸

(e∗
N=(0,0))

p(0, 0)v = u2(0, 0; 0, 0),

and, hence, is not gainful. Therefore, e∗
T = (0, 0; 0, 0). �

PROOF OF LEMMA 2. Let e∗
N = (1, 1), and by definition I(1,1) = {

(0, 0), (1, 0), (0, 1), (2, 0),
(0, 2)

}
. By Proposition 1,

(p(1, 1) − p(0, 1))v − c ≥ 0(A.12)

and (p(2, 1) − p(1, 1))v ≤ c.(A.13)

Fix any (ẽ1, ẽ2) ∈ I(1,1) \ (0, 0). By Lemma 1, such (ẽ1, ẽ2) cannot be an SPE with the strategy
profile (0, 0; ẽ1, ẽ2). This is so because the continuation game following e1 = (0, 0) is strategically
equivalent to the one-shot game GN.

Consider elimination of overall efforts (1, 0). Since (0, 0; 1, 0) cannot be an SPE, what
remains to be shown is that (1, 0; 0, 0) is not subgame-perfect. Player 1’s payoff u1(1, 0; 0, 0) =
p(1, 0)v − c, but then player 1 can deviate in Round 1 to e11 = 0 whereas player 2 chooses e21

= 0, and with (1, 1) being an NE in the continuation game (because e∗
N = (1, 1)) player 1 will

receive an overall payoff of u1(0, 0; 1, 1) = p(1, 1)v − c. Thus, player 1 would benefit (p(1, 1)v −
c > p(1, 0)v − c, by A3), ruling out (1, 0; 0, 0) as an SPE. So, under transparency, overall efforts
of (1, 0), and by symmetry (0, 1), cannot be supported in equilibrium.

Next consider overall efforts (2, 0). We know that (0, 0; 2, 0) cannot be an SPE. Consider
then the strategies (2, 0; 0, 0). By (A.12) and invoking A2 and A4, (p(2, 1) − p(2, 0))v − c > 0,
so following (2, 0) player 2 will gain by choosing e22 = 1 over e22 = 0 (see Figure 2). Therefore,
(e∗

12(2, 0), e∗
22(2, 0)) �= (0, 0); hence (2, 0; 0, 0) is not an SPE. Finally, consider (1, 0; 1, 0). By

(A.13) and invoking A4, (p(2, 0) − p(1, 0))v − c < 0: If following (1, 0) player 2 chooses e22 =
0, player 1 would choose e12 = 0 instead of e12 = 1, so (1, 0) cannot be an NE following (1, 0);
this rules out (1, 0; 1, 0) as an SPE. Thus, overall efforts (2, 0), and by symmetry (0, 2), cannot
be supported in equilibrium.
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Finally, consider overall efforts (0, 0). There are two subcases to be considered.
If e∗

N �= (0, 0), then by the following result we claim that overall efforts of (0, 0) cannot arise
in equilibrium of GT . This lemma will also be used to prove subsequent results.

LEMMA A.1. If (0, 0) �= e∗
N, then (0, 0) �= e∗

T .

PROOF. See Supporting Information.
Alternatively suppose e∗

N = (0, 0), in addition to e∗
N = (1, 1). We claim that here too overall

efforts of (0, 0) cannot be supported in equilibrium of GT . To see this, note that by (A.12) and
(A.13) and invoking A2, we can conclude that (0, 1) is an NE in the continuation game following
e1 = (1, 0) (see Figure 2). Moreover, using (A.12) directly and invoking A3, we see that u1(1,
0; 0, 1) = p(1, 1)v − c ≥ p(0, 1)v > p(0, 0)v = u1(0, 0; 0, 0). This shows that first-round efforts
(0, 0) cannot be supported as part of an equilibrium in the extensive-form game, since player
1 (in fact, any player) would have an incentive to undertake a first-round unilateral deviation
by choosing e11 = 1, which will be followed up in Round 2 by (0, 1) as an NE. Therefore, once
again overall efforts, (0, 0), cannot be supported in equilibrium of GT .

This completes the proof that overall efforts in I(1,1) cannot be supported in SPE. �

PROOF OF LEMMA 3. Let e∗
N = (2, 2), and by definition

I(2,2) = {
(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (1, 2), (2, 1), (1, 1)

}
.

By Proposition 1,

(1 − p(1, 2))v − c ≥ 0(A.14)

and (1 − p(0, 2))v − 2c ≥ 0.(A.15)

Fix any (ẽ1, ẽ2) ∈ I(2,2) \ {(0, 0), (1, 1)}. By Lemma 1, such (ẽ1, ẽ2) cannot be supported in
an SPE with the strategy profile (0, 0; ẽ1, ẽ2); the continuation game following e1 = (0, 0) is
strategically equivalent to the one-shot game GN. Note that, by construction ẽ1 �= ẽ2.

Consider elimination of overall efforts (1, 0). Since (0, 0; 1, 0) cannot be an SPE, what
remains to be shown is that (1, 0; 0, 0) is not subgame-perfect. Player 1’s payoff is u1(1, 0; 0, 0) =
p(1, 0)v − c, but then player 1 can deviate in Round 1 to e11 = 0 whereas player 2 chooses
e21 = 0, and with (2, 2) being an NE in the continuation game (because e∗

N = (2, 2)) player 1
will receive an overall payoff of u1(0, 0; 2, 2) = v − 2c. This makes player 1 better off since

u1(0, 0; 2, 2) = v − 2c ≥︸︷︷︸
by (A.14)

p(1, 2)v − c >︸︷︷︸
by A3

p(1, 0)v − c = u1(1, 0; 0, 0).

Therefore, overall efforts (1, 0), and by symmetry (0, 1), cannot be supported in SPE.
Consider overall efforts (2, 0). Aside from (0, 0; 2, 0), which we already argued cannot be an

SPE, these efforts can also arise via the strategy profiles (2, 0; 0, 0) and (1, 0; 1, 0). First consider
(2, 0; 0, 0) in which player 1 receives p(2, 0)v − 2c. But then player 1 can deviate in Round 1 to
e11 = 0, following which (e12, e22) = (2, 2) is an NE in the continuation game (since e∗

N = (2, 2))
and player 1 receives a higher payoff, u1(0, 0; 2, 2) = v − 2c. Hence (2, 0; 0, 0) is not an SPE.

Consider next the strategy profile (1, 0; 1, 0). Again, similar to the case just analyzed, player
1 can deviate in Round 1 to e11 = 0, following which (e12, e22) = (2, 2) realizes and player 1
is strictly better off compared to his payoff of u1(1, 0; 1, 0) = p(2, 0)v − 2c. Hence (1, 0; 1, 0)
cannot be an SPE.
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Thus, overall efforts (2, 0), and by symmetry (0, 2), cannot be supported in SPE.
Consider overall efforts (1, 1). We claim that overall efforts (1, 1) cannot be supported in an

SPE. Corresponding to overall efforts (1, 1), the strategy profile in the extensive form is one of
the following: (0, 0; 1, 1), (1, 1; 0, 0), (1, 0; 0, 1), or (0, 1; 1, 0). Each of these profiles yields player
1 a payoff of p(1, 1)v − c, and since v − 2c ≥ p(1, 2)v − c (recall, e∗

N = (2, 2)) it follows, using
A3, that v − 2c > p(1, 1)v − c. It is now easy to see that none of the strategy profiles will be
SPE: Given a first-round deviation by player 1 to e11 = 2, in Round 2 player 2 choosing an effort
such that overall efforts are (2, 2) is an NE. This would result in a payoff of v − 2c to player
1, which exceeds his payoff p(1, 1)v − c in the posited equilibrium. Thus, under transparency,
overall efforts of (1, 1) cannot be supported in equilibrium.

Consider overall efforts (2, 1). The strategy profiles that yield these overall efforts are (2, 1; 0,
0), (2, 0; 0, 1), (1, 1; 1, 0), (1, 0; 1, 1), (0, 1; 2, 0), and (0, 0; 2, 1). Note that in each of these profiles
player 1 receives a payoff of p(2, 1)v − 2c. First, it has already been established at the beginning
that the strategy profile (0, 0; 2, 1) cannot be an SPE. Next, examine the strategy profiles (2,
1; 0, 0) and (2, 0; 0, 1). Neither of these strategy profiles will be an SPE: Given a first-round
deviation by player 1 to e11 = 1 in either strategy profile, (e12, e22) = (1, 2 − e21) is an NE in the
continuation game that follows (since e∗

N = (2, 2)), which results in a payoff of u1(1, 1; 1, 1) =
u1(1, 0; 1, 2) = v − 2c ≥ p(2, 1)v − c > p(2, 1)v − 2c (the first inequality follows from (A.14)
and applying A2). Now consider the strategy profile (1, 1; 1, 0). For (1, 0) to be an NE following
e1 = (1, 1), and given that e∗

N = (2, 2) (in particular, note condition (A.14) and property A2),
the following conditions must hold (see Figure 2):

Player 1’s best-response: 0 ≤ (p(2, 1) − p(1, 1))v − c(A.16)

Player 2’s best-response: (p(2, 1) − p(1, 1))v = (1 − p(1, 1))v − c
i.e., 0 = (1 − p(2, 1))v − c.

(A.17)

However, these conditions are inconsistent, given A4 and A2. Therefore, (e∗
12(1, 1), e∗

22(1, 1)) �=
(1, 0), and (1, 1; 1, 0) is not an SPE. Moreover, note that conditions (A.16) and (A.17) must
also hold for (2, 0) to be an NE following e1 = (0, 1) and for (1, 1) to be an NE follow-
ing e1 = (1, 0). Since these conditions are inconsistent, then (e∗

12(0, 1), e∗
22(0, 1)) �= (2, 0) and

(e∗
12(1, 0), e∗

22(1, 0)) �= (1, 1), and the strategy profiles (0, 1; 2, 0) and (1, 0; 1, 1) are not SPE.
Therefore, none of the strategy profiles yielding overall efforts (2, 1), and by symmetry (1, 2),
can be SPE.

What is left now is to show that overall efforts of (0, 0) cannot be supported in an SPE. There
are three subcases to be considered.

First consider the subcase where e∗
N �= (0, 0). By Lemma 1, overall efforts (0, 0) cannot arise

in an SPE.
Next, suppose e∗

N = (2, 2), e∗
N = (0, 0), and e∗

N �= (1, 1). Although (0, 0) is clearly an NE in
the continuation game following e1 = (0, 0), (0, 0; 0, 0) cannot be sustained as an equilibrium
in the overall game since a first-round unilateral deviation to e11 = 2 by player 1 is gainful:

u1(2, 0; 0, 2) = v − 2c ≥︸︷︷︸
by (A.15)

p(0, 2)v > p(0, 0)v = u1(0, 0; 0, 0),

thus ruling out overall efforts of (0, 0) in an equilibrium of GT .
Finally, consider the subcase where all symmetric equilibria arise in the one-shot game. By

Lemma 2, overall efforts of (0, 0) cannot be supported in an equilibrium of GT . �

PROOF OF PROPOSITION 3. We divide the proof into three parts.
1. First suppose that e∗

N = (1, 1) but e∗
N �= (2, 2); this equilibrium may be unique, or there

could be another equilibrium e∗
N = (0, 0). Then, we show that the overall efforts (1, 1) can
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be supported as an SPE in the extensive-form game, and the equilibrium (in terms of overall
efforts) will be unique.

By Proposition 1, e∗
N = (1, 1) if and only if

(p(2, 1) − p(1, 1))v ≤ c ≤ (p(1, 1) − p(0, 1))v.(A.18)

Consider the strategy profile (1, 0; 0, 1). By condition (A.18), we know that (0, 1) is an NE in
the continuation game following first-round efforts (1, 0).

Coming back to Round 1, suppose player 1 unilaterally deviates to e11 = 0. Since e∗
N = (1, 1),

and the continuation game following e1 = (0, 0) is simply GN, therefore (e∗
12(0, 0), e∗

22(0, 0)) =
(1, 1). This yields the payoff p(1, 1)v − c to player 1, the same as his payoff before the deviation.
Hence, deviation to e11 = 0 is not gainful for player 1.

Moreover, since e∗
N �= (2, 2), if player 1 deviates unilaterally in Round 1 by choosing

e11 = 2, then player 2 will not choose e22 = 2. Specifically, player 2 will choose e22 = 1 in
strict preference over e22 = 0: the right-hand side (weak) inequality in (A.18) implies that
(p(2, 1) − p(2, 0))v − c > 0, by A2 and A4. Consequently, this deviation is not gainful for
player 1 since, by (A.18), u1(2, 0; 0, 1) = p(2, 1)v − 2c ≤ p(1, 1)v − c = u1(1, 0; 0, 1). Thus, there
is no profitable deviation for player 1.

There is also no profitable deviation for player 2 in Round 1. To see this, suppose player 2
deviates in Round 1 to e21 = 2. Then by our argument in the previous paragraph but the players’
roles reversed, in the continuation game player 1 will choose e12 = 0, and

u2(1, 2; 0, 0) = p(1, 2)v − 2c ≤︸︷︷︸
(e∗

N=(1,1))

p(1, 1)v − c = u2(1, 0; 0, 1).

Next, suppose player 2 deviates to e21 = 1. Then (e12, e22) = (0, 0) is an NE in the continuation
game following e1 = (1, 1), since (p(2, 1) − p(1, 1))v ≤ c (by (A.18)). Thus, u2(1, 1; 0, 0) = p(1,
1)v − c = u2(1, 0; 0, 1).

Thus, overall efforts (1, 1) is supported as an SPE with (1, 0; 0, 1).
Next note that the overall efforts of (2, 2) cannot be supported in an SPE of GT , by Proposi-

tion 2(a). Moreover, by Lemma 2, none of the overall efforts that are inferior to (1, 1) can be
supported as SPE. Also, overall efforts (2, 1), and by symmetry (1, 2), cannot be supported as
SPE. To show this, consider overall efforts (2, 1), which can result from any of the following
strategy profiles: (0, 0; 2, 1), (1, 1; 1, 0), (1, 0; 1, 1), (0, 1; 2, 0), (2, 0; 0, 1), and (2, 1; 0, 0). By
Lemma 1, (e∗

12(0, 0), e∗
22(0, 0)) �= (2, 1); hence (0, 0; 2, 1) cannot be an SPE. Next, consider (1,

1; 1, 0). If (1, 0) is an NE in the continuation game following e1 = (1, 1), then by A4 and A2
respectively,

(p(2, 1) − p(1, 1))v − c ≥ 0, i.e., (1 − p(1, 2))v − c > 0(A.19)

and 0 ≥ (p(2, 2) − p(2, 1))v − c, i.e., 0 ≥ (1 − p(1, 2))v − c.(A.20)

However, these conditions are inconsistent. Therefore, (e∗
12(1, 1), e∗

22(1, 1)) �= (1, 0), and (1, 1;
1, 0) cannot be an SPE. By the same argument, the profiles (1, 0; 1, 1) and (0, 1; 2, 0) cannot be
SPE: Both (e∗

12(1, 0), e∗
22(1, 0)) = (1, 1) and (e∗

12(0, 1), e∗
22(0, 1)) = (2, 0) require that conditions

(A.19) and (A.20) simultaneously hold, which is an impossibility. Next, the strategy profile (2,
0; 0, 1) is an SPE only if (e∗

12(2, 0), e∗
22(2, 0)) = (0, 1), which in turn requires

(p(2, 1) − p(2, 0))v − c ≥ (1 − p(2, 0))v − 2c, i.e., 0 ≥ (1 − p(2, 1))v − c.

Consequently, by A2 and then A4, 0 > (p(2, 1) − p(1, 1))v − c, i.e., p(1, 1)v − c > p(2, 1)v −
2c, thus player 1 gains from a unilateral first-round deviation to e11 = 1: Following e1 = (1, 0),
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in the continuation game (0, 1) is an NE (since e∗
N = (1, 1)), and u1(1, 0; 0, 1) = p(1, 1)v −

c > p(2, 1)v − 2c = u1(2, 0; 1, 0). Therefore, (2, 0; 1, 0) cannot be an SPE. Finally, consider
the strategy profile (2, 1; 0, 0). For (e∗

12(2, 1), e∗
22(2, 1)) = (0, 0) to arise, it must be that 0 ≥

(1 − p(2, 1))v − c, which implies that, by A2 and A4, 0 > (p(2, 1) − p(1, 1))v − c, or that
p(1, 1)v − c > p(2, 1)v − 2c. But then player 1 will find unilateral deviation to e11 = 1 gainful,
because (e∗

12(1, 1), e∗
22(1, 1)) = (0, 0) (established earlier to rule out first-round deviation to

e21 = 1 from (1, 0; 0, 1)) and u1(1, 1; 0, 0) = p(1, 1)v − c > p(2, 1)v − 2c = u1(2, 1; 0, 0). Thus
(2, 1; 0, 0) cannot be an SPE either.

This achieves (weak) domination of partial cooperation in the game GN by partial cooperation
in the game GT , through elimination of all potential inferior equilibria. Moreover, this is the
only overall equilibrium efforts possible in the game GT .

2. Suppose that e∗
N = (2, 2) (possibly unique). Then in the transparent environment overall ef-

forts of (2, 2) can also be supported in an SPE. To see this, note that if e∗
N = (2, 2), then for every

e1 = (e11, e21) ∈ H, the second-round strategy profile (2 − e11, 2 − e21) is an NE in the contin-
uation game, denoted by (e∗

12(e1), e∗
22(e1)). Moreover, all strategy profiles (e1; e∗

12(e1), e∗
22(e1)),

e1 ∈ H, yield

ui(e11, e21; e∗
12(e1), e∗

22(e1)) = v − 2c for i = 1, 2.

Therefore, for each of these strategy profiles, there exists no profitable first-round deviation
for any player i, since the payoff to the deviating player is the same as what he receives by
not deviating. Thus, full cooperation is an SPE. Moreover, by Lemma 3, none of the overall
efforts that are inferior to (2, 2) can be supported in an SPE. Therefore, full cooperation in GN

is (weakly) dominated by full cooperation as the unique overall equilibrium efforts in the game
GT .

3. Finally, suppose the unique one-shot equilibrium is e∗
N = (0, 0). The following lemma

establishes that partial cooperation cannot arise in an SPE.

LEMMA A.2. If e∗
N �= (1, 1), then e∗

T �= (1, 1).

PROOF. See Supporting Information.
However, by Proposition 2(b), full cooperation can arise in equilibrium in the extensive-form

game. �
PROOF OF PROPOSITION 5. Suppose there are at least two NE, (ẽ1, ẽ2) and (e∗

1, e∗
2), and p(ẽ1, ẽ2) >

p(e∗
1, e∗

2). W.l.o.g. assume that ẽ2 > e∗
2. Then we claim that the equilibria can be Pareto-ranked

with the players no worse off, and at least one player strictly better off, in equilibrium (ẽ1, ẽ2).
By NE requirement,

[
p(ẽ1, ẽ2) − p(e∗

1, ẽ2)
]
v ≥ c1

[
ẽ1 − e∗

1

]
(A.21)

[p(ẽ1, ẽ2) − p(ẽ1, e∗
2)]v ≥ c2[ẽ2 − e∗

2](A.22)

[p(e∗
1, e∗

2) − p(ẽ1, e∗
2)]v ≥ c1[e∗

1 − ẽ1](A.23)

[p(e∗
1, e∗

2) − p(e∗
1, ẽ2)]v ≥ c2[e∗

2 − ẽ2].(A.24)
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Rewrite (A.21) to obtain

[p(ẽ1, ẽ2) − p(e∗
1, e∗

2) + p(e∗
1, e∗

2) − p(e∗
1, ẽ2)︸ ︷︷ ︸

<0, by A3

]v ≥ c1
[
ẽ1 − e∗

1

]

or [p(ẽ1, ẽ2) − p(e∗
1, e∗

2)]v > c1[ẽ1 − e∗
1]

or p(ẽ1, ẽ2)v − c1ẽ1 > p(e∗
1, e∗

2)v − c1e∗
1,

which is a strict improvement for player 1.
Next, rewrite (A.22) to obtain

[p(ẽ1, ẽ2) − p(e∗
1, e∗

2) + p(e∗
1, e∗

2) − p(ẽ1, e∗
2)]v ≥ c2[ẽ2 − e∗

2],

which, if ẽ1 ≥ e∗
1, implies, by A3,

[p(ẽ1, ẽ2) − p(e∗
1, e∗

2)]v ≥ c2[ẽ2 − e∗
2],

an improvement for player 2. So consider the possibility that ẽ1 < e∗
1. Write

[p(e∗
1, e∗

2) − p(e∗
1, ẽ2)]v = −[p(e∗

1, ẽ2) − p(e∗
1, e∗

2)]v

< −[p(ẽ1, ẽ2) − p(ẽ1, e∗
2)]v (by applying A4, since ẽ2 > e∗

2,

and ẽ1 < e∗
1)

≤ −c2[ẽ2 − e∗
2] (using (A.22))

= c2[e∗
2 − ẽ2],

violating the NE requirement (A.24). Hence, ẽ1 < e∗
1 is ruled out, completing the proof. �

PROOF OF LEMMA 4. Suppose, contrary to the claim, e∗
N = (0, 0) and e∗

N = (1, 1). Then (refer
to Figure 1) it must be that

c ≥ (p(1, 0) − p(0, 0))v(A.25)

and c ≤ (p(1, 1) − p(0, 1))v.(A.26)

However, by A4′, (A.25) implies that c > (p(1, 1) − p(0, 1))v, contradicting (A.26).
Next, suppose that e∗

N = (0, 0) and e∗
N = (2, 2). This requires that

c ≥ [(p(2, 0) − p(0, 0))v]/2(A.27)

and c ≤ [(1 − p(0, 2))v]/2.(A.28)

Condition (A.27) contradicts (A.28), since by A4′, (A.27) implies that c > [(1 − p(0, 2))v]/2.
It is also not possible for e∗

N = (1, 1) and e∗
N = (2, 2) to arise simultaneously. This would

require

(p(2, 1) − p(1, 1))v ≤ c(A.29)

and c ≤ (1 − p(1, 2))v,(A.30)

but using A4′ in (A.29) yields 1 − p(1, 2))v < c, which contradicts (A.30). �
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PROOF OF PROPOSITION 6. Let ei denote the aggregate effort of player i in �N , the game under
nontransparency. By definition, e∗

N = (e∗
1, e∗

2) satisfies

p(e∗
i , e∗

j )v − ce∗
i ≥ p(ei, e∗

j )v − cei, ∀ei, ∀i.(A.31)

Denote the first-round efforts (e11, e21) in the game with transparency by e1, and recall
that we defined (in Section 3) incremental gains from second-round actions (ei2, ej2) given
history e1, as

ûi2(ei2, ej2|e1) = ui(ei1 + ei2, ej1 + ej2) − ûi1(ei1, ej1).

We now claim that for any NE (symmetric or asymmetric) in the nontransparency game, there
is a strategy profile in the extensive-form game (under transparency) with the same aggregate
efforts that will be an equilibrium in the two-round game. Specifically, for any e∗

N = (e∗
1, e∗

2), the
following strategies form an SPE in the extensive form:

1. In the first round, e∗
i1 = e∗

i for each player i, and
2. In the second round, for i = 1, 2,

e∗
i2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if e1 = (e∗
i , ẽj );

e∗
i − ẽi if e1 = (ẽi, e∗

j ) and ẽi < e∗
i ;

e∗∗
i2 if e1 = (ẽi, e∗

j ) and ẽi > e∗
i ;

σ∗∗
i2 if e1 = (ẽi, ẽj ), ẽi �= e∗

i , and ẽj �= e∗
j ,

(A.32)

where: e∗∗
i2 = arg maxei2∈Ei2 ûi2(ei2, 0|(ẽi, ẽj )), Ei2 being player i’s set of admissible second-

round effort choices, and j �= i (the solution e∗∗
i2 exists because the action set is finite);

and (σ∗∗
12 , σ

∗∗
22 ) corresponds to some NE in the continuation game following the history

specified.

Below we verify the Nash equilibrium property of the continuation strategies—both on and
off the equilibrium path.

First, consider the second-round strategies (0, 0) following e1 = (e∗
i , e∗

j ). In the second round
player j would choose, as specified by (A.32), e∗

j2 = 0, to which we claim that player i’s best
response is also to set e∗

i2 = 0. To see this, note that i’s incremental gain in the second round
from choosing ei2 = 0 is

ûi2(0, 0|(e∗
i , e∗

j )) = [
p(e∗

i + 0, e∗
j + 0) − p(e∗

i , e∗
j )

]
v − c × 0,

whereas choosing any ei2 > 0 yields

ûi2(ei2, 0|(e∗
i , e∗

j )) = [
p(e∗

i + ei2, e∗
j + 0) − p(e∗

i , e∗
j )

]
v − cei2.

Thus,

ûi2(0, 0|(e∗
i , e∗

j )) − ûi2(ei2, 0|(e∗
i , e∗

j )) = [
p(e∗

i , e∗
j ) − p(e∗

i + ei2, e∗
j )

]
v − c

[
e∗

i − (e∗
i + ei2)

]
≥ 0 (by (A.31)).

By similar reasoning, ûj2(0, 0|(e∗
i , e∗

j )) ≥ ûj2(0, ej2|(e∗
i , e∗

j )). Therefore, (0, 0) forms an NE in the
continuation game following e1 = (e∗

i , e∗
j ).

Next, we look at subgames following unilateral deviations. Consider player i’s second-round
strategy following e1 = (ẽi, e∗

j ), where ẽi < e∗
i , i.e., player i deviates in the first round by reducing
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ei1. If player j chooses 0, player i cannot do better than to totally make up for his first-round
reduction in the second round, that is, choose ei2 = e∗

i − ẽi. We see this by calculating incremental
payoffs and then comparing

ûi2(e∗
i − ẽi, 0|(ẽi, e∗

j )) = [p(ẽi + (e∗
i − ẽi), e∗

j + 0) − p(ẽi, e∗
j )]v − c × (e∗

i − ẽi)

= [p(e∗
i , e∗

j ) − p(ẽi, e∗
j )]v − ce∗

i + cẽi,

ûi2(e′
i2, 0|(ẽi, e∗

j )) = [p(ẽi + e′
i2, e∗

j ) − p(ẽi, e∗
j )]v − ce′

i2, for e′
i2 �= e∗

i − ẽi;

ûi2(e∗
i − ẽi, 0|(ẽi, e∗

j )) − ûi2(e′
i2, 0|(ẽi, e∗

j )) = [p(e∗
i , e∗

j )v − ce∗
i ] − [p(ẽi + ei2, e∗

j )v − c × (ẽi + e′
i2)]

≥ 0 (by (A.31)).

On the other hand, if player i follows his continuation strategy in (A.32), player j’s second-round
action ej2 = 0 is optimal, since for any ej2 > 0,

ûj2(e∗
i − ẽi, 0|(ẽi, e∗

j )) − ûj2(e∗
i − ẽi, ej2|(ẽi, e∗

j ))

= [p(e∗
i , e∗

j ) − p(ẽi, e∗
j )]v − {[p(e∗

i , e∗
j + ej2) − p(ẽi, e∗

j )]v − cej2}
= p(e∗

i , e∗
j )v − ce∗

j − [p(e∗
i , e∗

j + ej2)v − ce∗
j − cej2]

= [p(e∗
i , e∗

j )v − ce∗
j ] − [p(e∗

i , e∗
j + ej2)v − c × (e∗

j + ej2)]

≥ 0 (by (A.31)).

Therefore, the profile (e∗
i − ẽi, 0) forms an NE in the continuation game following e1 = (ẽi, e∗

j ),
where ẽi < e∗

i .
Now consider player i’s second-round strategy following e1 = (ẽi, e∗

j ), where ẽi > e∗
i , i.e, player

i deviates in the first round by increasing ei1. If player j chooses 0, by construction (and as
specified in (A.32)) player i’s best response is e∗∗

i2 = maxei2∈Ei2 ûi2(ei2, 0|(ẽi, e∗
j )). On the other

hand, if player i follows this strategy, then player j’s second-round action ej2 = 0 is optimal. To
see this, first note that

ûj2(e∗∗
i2 , 0|(ẽi, e∗

j )) − ûj2(e∗∗
i2 , ej2|(ẽi, e∗

j ))

= [p(ẽi + e∗∗
i2 , e∗

j ) − p(ẽi, e∗
j )]v − {[p(ẽi + e∗∗

i2 , e∗
j + ej2) − p(ẽi, e∗

j )]v − cej2}
= p(ẽi + e∗∗

i2 , e∗
j )v − ce∗

j − [p(ẽi + e∗∗
i2 , e∗

j + ej2)v − ce∗
j − cej2]

= p(ẽi + e∗∗
i2 , e∗

j ) − ce∗
j − [p(ẽi + e∗∗

i2 , e∗
j + ej2)v − c × (e∗

j + ej2)], for any ej2 > 0.

Next, rewrite (A.31) as p(e∗
i , e∗

j )v − ce∗
j ≥ p(e∗

i , ej )v − cej , ∀ej. This condition implies that for
ẽj > e∗

j ,

cẽj − ce∗
j ≥ [p(e∗

i , ẽj ) − p(e∗
i , e∗

j )]v.

Therefore,

c[e∗
j + ej2] − ce∗

j ≥ [p(e∗
i , e∗

j + ej2) − p(e∗
i , e∗

j )]v

> [p(ẽi + e∗∗
i2 , e∗

j + ej2) − p(ẽi + e∗∗
i2 , e∗

j )]v

> [p(ẽi + e∗∗
i2 , e∗

j ) − p(ẽi + e∗∗
i2 , e∗

j + ej2)]v,(A.33)

where the second inequality follows from A4′. Using (A.33) we conclude that

ûj2(e∗∗
i2 , 0|(ẽi, e∗

j )) − ûj2(e∗∗
i2 , ej2|(ẽi, e∗

j )) > 0, for any ej2 > 0.
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That is, following the first-round effort profile (ẽi, e∗
j ) and given player i’s second-round action

e∗∗
i2 , player j’s best response in the second round is 0. Therefore, the profile (e∗∗

i2 , 0) forms an NE
in the continuation game following e1 = (ẽi, e∗

j ), ẽi > e∗
i .

Next, following joint deviations in the first round, (σ∗∗
12 , σ

∗∗
22 ) will be played (as recommended

in (A.32)), which by construction is an NE in the continuation game.
Let us now return to the first round and consider the overall strategies (e∗

i , e∗
j ; 0, 0). This

profile yields a payoff to player i of ui(e∗
i , e∗

j ; 0, 0) = p(e∗
i , e∗

j )v − ce∗
i . It is clear that there does

not exist any profitable unilateral first-round deviation for any player: If i lowers his first-round
contribution to ẽi < e∗

i , he receives ui(ẽi, e∗
j ; e∗

i − ẽi, 0) = p(e∗
i , e∗

j )v − ce∗
i , which is equal to his

payoff from not deviating, and if he increases it to ẽi > e∗
i , he receives ui(ẽi, e∗

j ; e∗∗
i2 , 0) = p(ẽi +

e∗∗
i2 , e∗

j )v − c[ẽi + e∗∗
i2 ] ≤ p(e∗

i , e∗
j )v − ce∗

i (by condition (A.31)); a similar argument is applicable
to player j. Therefore, e∗

T = (e∗
1, e∗

2; 0, 0). �
PROOF OF PROPOSITION 7. Suppose not so that one of the players, say player 1, would benefit

by deviating from the claimed equilibrium strategy under nontransparency. So there must be
some e1 �= e∗

1 such that

u1(e1, e∗
2) > u1(e∗

1, e∗
2)

i.e., p(e1, e∗
2)v − ce1 > p(e∗

1, e∗
2)v − ce∗

1.(A.34)

CLAIM 1. e1 ≥ e∗
11 is not possible.

To see why, let e1 = e∗
11 + e12 where e12 ∈ {0, 1, 2} with the restriction that e12 ≤ 2 − e∗

11. Now
rewrite (A.34) as

[p(e∗
11 + e12, e∗

21 + e∗
22) − p(e∗

11, e∗
21)]v − ce12 > [p(e∗

11 + e∗
12, e∗

21 + e∗
22) − p(e∗

11, e∗
21)]v − ce∗

12,

i.e., û12(e12, e∗
22|(e∗

11, e∗
21)) > û12(e∗

12, e∗
22|(e∗

11, e∗
21)),

but this contradicts the fact that (e∗
11, e∗

21; e∗
12(e∗

11, e∗
21), e∗

22(e∗
11, e∗

21)) is an SPE in the extensive-
form game under transparency.

Next consider the possibility of profitable deviation in the one-shot game (under nontrans-
parency) with e1 < e∗

11.
First note that e∗

11 ≥ 1, for deviation to a lower effort level to be feasible. Also observe
that for the SPE, e∗

T , it must be that e∗
22 ≥ 1, because otherwise profitable deviation to e1 in

the one-shot game is not consistent with the equilibrium e∗
T . (We write the strategies eT =

(e∗
11, e∗

21; e∗
12(e∗

11, e∗
21), e∗

22(e∗
11, e∗

21)) as e∗
T .)

Since (e∗
11, e∗

21; e∗
12(e∗

11, e∗
21), e∗

22(e∗
11, e∗

21)) is an SPE, the following two best-response conditions
will be satisfied:

1. (Optimality of Round 2 decisions). In the second round player 1 will not deviate from his
equilibrium effort, that is,

[p(e∗
11 + e∗

12, e∗
21 + e∗

22) − p(e∗
11, e∗

21)]v − ce∗
12

≥ [p(e∗
11 + e12, e∗

21 + e∗
22) − p(e∗

11, e∗
21)]v − ce12,

(A.35)

for any 0 ≤ e12 ≤ 2 − e∗
11. A similar condition can be stated for player 2.

2. (Optimality of Round 1 decisions). It must be that player 1 will not find deviation by
lowering his first-round effort profitable. That is, for any e11 < e∗

11,

p(e∗
11 + e∗

12, e∗
21 + e∗

22)v − c[e∗
11 + e∗

12]

≥ p(e11 + e∗
12(e11, e∗

21), e∗
21 + e∗

22(e11, e∗
21))v − c[e11 + e∗

12(e11, e∗
21)],

(A.36)



1284 BAG AND PEPITO

for all Nash equilibria, (e∗
12(e11, e∗

21), e∗
22(e11, e∗

21)), in the continuation game following
e1 = (e11, e∗

21). Again, a similar condition can be written for player 2.

Following on the optimality of first-round decisions, we further claim:

The best deviation payoff for player 1 when he lowers his first-round effort e11 below e∗
11 is same as

his original SPE payoff.

We show this result by establishing the following steps.
First, let player 1, upon deviation in Round 1, increase his second-round effort by � =

e∗
11 − e11 > 0 to e∗

12 + �, and restore his total efforts to e11 + e∗
12 + � = e∗

11 + e∗
12.

Second, with player 1’s total efforts equaling e∗
1, player 2’s best response in Round 2 continues

to be e∗
22; this follows from eT being SPE (i.e., by writing a condition for player 2 similar to

(A.35)).
Third, with total efforts by player 2 over the two rounds equaling e∗

2 (shown in the second
step), below we reconfirm that player 1’s best response in Round 2 (after Round 1 deviation to
e11) will indeed be to choose e∗

12 + �. To see this, recall (A.35), which can be written as

[p(e∗
1, e∗

2) − p(e11, e∗
21)]v − ce∗

12

≥ [p(e∗
11 + e12, e∗

2) − p(e11, e∗
21)]v − ce12, for any 0 ≤ e12 ≤ 2 − e∗

11

i.e., [p(e∗
1, e∗

2) − p(e11, e∗
21)]v − c[e∗

1 − e11] + c[e∗
1 − e11 − e∗

12]

≥ [p(e11 + ẽ12, e∗
2) − p(e11, e∗

21)]v − c[e11 + ẽ12 − e∗
11], for e11 + ẽ12 = e∗

11 + e12 ≤ 2

i.e., [p(e∗
1, e∗

2) − p(e11, e∗
21)]v − c[e∗

1 − e11]

≥ [p(e11 + ẽ12, e∗
2) − p(e11, e∗

21)]v − cẽ12 + {−c[e11 − e∗
11] − c[e∗

1 − e11 − e∗
12]},

for 0 ≤ ẽ12 ≤ 2 − e11

i.e., [p(e∗
1, e∗

2) − p(e11, e∗
21)]v − c[e∗

1 − e11] ≥ [p(e11 + ẽ12, e∗
2) − p(e11, e∗

21)]v − cẽ12,

for 0 ≤ ẽ12 ≤ 2 − e11.

(A.37)

(The last inequality is the optimality of Round 2 decision by player 2 after cutting back on
Round 1 effort.)

The second and third steps, together, establish that player 1 choosing e∗
12 + � and player

2 choosing e∗
22 form an NE in the continuation game following the deviation by player 1 in

Round 1.
Now, by (A.38),

p(e∗
1, e∗

2)v − c[e∗
1 − e11] ≥ p(e11, e∗

2)v

i.e., p(e∗
1, e∗

2)v − ce∗
1 ≥ p(e11, e∗

2)v − ce11, for any e11 < e∗
11,

contradicting (A.34).
We have thus shown that in the one-shot game under nontransparency, if player 2 chooses

e∗
2 then deviation by player 1 (as in (A.34)) is not possible. Similarly, if player 1 chooses e∗

1,
deviation by player 2 is not possible. Thus, (e∗

1, e∗
2) is an NE under nontransparency. �
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Appendix B: Omitted Proofs
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Table B.1. Improved Outcome Possibilities with Transparency
Table B.2. Improved Outcome Possibilities with Transparency: The Case of Rewards
Figure C.1. Simultaneous Move Game GI

N
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