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Hypothesis Testing, Specification Testing
and Model Selection Based on the MCMC

Output Using R*

Yong Li' Jun Yu? Tao Zeng®
July 9, 2018

Abstract

This chapter overviews several MCMC-based test statistics for
hypothesis testing and specification testing and MCMC-based model
selection criteria developed in recent years. The statistics for hypoth-
esis testing can be viewed as the MCMC version of the “trinity” of
test statistics based in maximum likelihood (ML), namely, the likeli-
hood ratio (LR) test, the Lagrange multiplier (LM) test and the Wald
test. The model selection criteria correspond to two predictive distri-
butions. One of them can be viewed as the MCMC version of widely
used information criterion, AIC. The asymptotic distributions of the
test statistics and model selection criteria are discussed. The test
statistics and model selection criteria are applied to several popular
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models using real data, one of which involves latent variables. The
implementation is illustrated in R with the MCMC output obtained
by R2ZWinBUGS.

JEL classification: C11, C12
Keywords: AIC; DIC; Information matrix; LR test; LM test; Markov
chain Monte Carlo; Latent variable; Wald test.

1 Introduction

In economics and finance, statistical models with increasing complexity
have been used more and more often. Typically empirical analysis of
statistical models involves calculating and maximizing the log-likelihood
function, leading to the maximum likelihood (ML) estimator. The ML es-
timator (MLE) has desirable asymptotic properties of consistency, normal-
ity and efficiency under broad conditions, facilitating hypothesis testing,
specification testing and model selection. The asymptotic normality and
efficiency of MLE make the well-known trinity of tests in ML popular
in practice, i.e., the likelihood ratio (LR) test, the Wald test, and the La-
grange Multiplier (LM) test. In addition, some specification tests, such as
the information matrix based tests, are based on MLE. Furthermore, some
widely used information criteria for model selection, such as AIC, BIC and
HQ, are based on MLE.

Unfortunately, many statistical models face with a great deal of dif-
ficulties empirically in the sense that they cannot be easily estimated by
ML. Examples include but not are restricted to latent variable models,
continuous time models, models with complicated parameter restrictions,
models in which the log-likelihood is not available in closed-form or is
unbounded, models in which parameters are not point identified, high
dimensional models for which numerical optimization is difficult to use,
models with multiple local optimum in the log-likelihood function.
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While for some of these models, alternative estimation methods, such
as GMM, can be used. These alternative methods are generally less ef-
ficient than ML. With rapidly enhanced power in computing technology,
the MCMC method has been used more and more frequently to provide
the full likelihood analysis of models. MCMC is typically regarded as a
Bayesian approach as it samples from the posterior distribution and the
posterior mean is often chosen to be the Bayesian parameter estimate.

After the MCMC output is obtained, a few questions naturally arise.
The first question is how to conduct hypothesis testing as one typically
does after MLE is used to estimate a model. The second question is how to
perform the specification test of the estimated model. The third question
is how to compare alternative models that are not necessarily nested by
each other. Hypothesis testing, specification testing and model selection
are of fundamental importance in empirical studies. Therefore, MCMC-
based answers to these questions become critically in practice. The tradi-
tional Bayesian answer to these questions is to use the gold standard, the
Bayes factors (BFs), or it variants. The BFs basically compare the posterior
model probabilities of candidate models, conditional on the data. Despite
its appeal in the statistical interpretation, BFs suffer a few serious theo-
retical and computational difficulties. For example, it is not well-defined
under improper priors. It subjects to Jeffreys-Lindley’s paradox, that is, it
tends to reject the null hypothesis even when the null is correct. For many
models, BFs are difficult to compute.

The aim of this chapter is to overview the literature on MCMC-based
statistical inference. However, we focus on test statistics and model selec-
tion criteria which can be justified in a frequentist set up, in the same way
as how the ML-based methods are justified. Since MCMC was introduced
initially as a Bayesian tool, it is not immediately obvious how to make
statistical inference based on the MCMC output in the frequentist frame-
work. The essence of the literature is to treat MCMC as a sampling method
and resort to the frequentist framework to obtain the asymptotic theory of
various statistics based on the MCMC output in repeated sampling.



The statistics for hypothesis testing developed in the literature can be
viewed as the MCMC version of the “trinity” of the tests in ML. The statis-
tics for specification testing can be viewed as the MCMC version of the
information matrix based test. One of the model selection criteria can be
viewed as the MCMC version of AIC. Their asymptotic properties of these
statistics are reviewed. The methods are illustrated using some important
models widely used in economics and finance in a real data setting. The
implementation is illustrated in R with the MCMC output obtained by
R2WinBUGS.

MCMC can be used to sample from distributions other than the pos-
terior. In a seminar paper, Chernozhukov and Hong (2003) proposed to
use MCMC to sample from quasi-posterior. Moreover, the MCMC output
may be used for other types of statistical inference. One example is to con-
struct the confidence sets for identified sets of parameters in econometric
models defined through a likelihood or a vector of moments; see Chen et
al (2016). Review of these studies are beyond of the scope of this chapter.

The chapter is organized as follows. Section 2 reviews the MCMC tech-
nique and introduces the implementation of MCMC using the R package.
We also briefly explain the inferencial approach typically adopted in the
Bayesian literature . Section 3 overviews several statistics for hypothe-
sis testing based on the MCMC output. Section 4 overviews the MCMC-
based test statistics for specification. Section 5 reviews DIC, an MCMC
version of AIC, and other related information criteria. Section 6 gives the
empirical illustrations. Section 7 concludes the chapter. R code that im-
plement our methods can be found at http://www.mysmu.edu/faculty/
yujun/Handbook_Rcode.zip.

2 MCMC and its Implementation in R

Without loss of generality, we take the latent variable models as an ex-
ample, to explain why ML is difficult to use and to describe how to ob-
tain the MCMC output. Lety = (y1,...,yn) denote the data generated
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from a probability measure Py on the probability space (€, F, Py). Let
z = (21,23, ,zn)/ be the latent variables. The latent variable model
is indexed by the some P-dimensional parameter vector, 8. Furthermore,
p(y|0) is used to denote the observed-data likelihood function, and p(y, z|0)
is denoted as the complete-data likelihood function. The relationship be-
tween these two likelihood functions is given by

p(y10) = [ p(y,2l0)dz )

In many latent variable modes, especially dynamic latent variable mod-
els, the latent variable z is often dependent on the sample size and its
dimension is the same as or larger than the number of the sample size.
When the sample size is large, the integral is high-dimensional. Often the
integral does not have a closed-form solution and cannot be reduced into
lower dimension integrals. In this case, it will be very difficult to accu-
rately approximate the integral numerically. Consequently, ML is difficult
to implement.

Now, we review the basic idea of MCMC. Let p(6) be prior distribu-
tion assigned for parameter 0. Since the observed likelihood p(y|6) is in-
tractable, it is very difficult to draw the random observations from the
posterior distribution p(0|y) directly. To deal with this difficulty, the data-
augmentation strategy (Tanner and Wong, 1987) can be applied to aug-
ment the parameter space from 6 to (6, z). As a result, the likelihood func-
tion becomes p(y|60,z) which typically is available in closed-form. The
MCMC technique, such as Gibbs sampler, draws random samples from
the joint posterior distribution p(6,z|y). More concretely, we start with
an initial value [6(0), z(o)], and then at the jth iteration, conditional on the
current values [81), z()],

(j+1) from p(0|z(]),y),

(a) generate 0
(b) generate zUtY) from p(z|8U+Y, z).

To get rid of the effect of the initial value, some random observations
are discarded as the burn-in observations. After that, the simulated ran-
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dom samples can be regarded as efficient random draws (though corre-
lated in general) from the joint posterior distribution p(8, z|y). These cor-
related random samples are the MCMC output.

Based on the MCMC output, the parameter estimate can be obtained.
For example, Bayesian estimates of 0 can be easily obtained as the sam-
ple mean of the generated random samples. Specifically, let {B(j), j =
1,2,---,]} be effective random observations generated form the joint pos-
terior distribution p(6, z|y). Then Bayesian estimates of 6 is

~ 1
6=-Y 00,
>

This estimate is justified when the loss function is quadratic.

Under some regularity conditions, it is well documented in the litera-
ture (see, for example, Gelman et al (2013)) that the posterior distribution
has a limiting normal distribution given by

n -1
o 19%Inp(8ly)
-0y~ N (0[ o000 , (2)
where 8 is the posterior mode (i.e., 8 = arg maxIn p(8]y)) and
0)p(6
p(8ly) = L 10)p(6)

~ [p(ylo)p(6)de’

Furthermore, under extra regularity conditions, when p(8) = O,(1), Li, et
al (2017b) showed that the relationship between the posterior mean 6 and
the posterior mode 8 can be expressed as

0=0+0,(n"), (3)

— 9% In 6
Var(6ly) = [——ae’;(ey,’ )

+0,(n2). (4)

The large sample properties in (2), (8) and (@) provide the fountainhead
from which all the methods reviewed in this chapter springs.
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In practice, however, MCMC procedures are not easy to implement
using nonconventional software that is not widely available among re-
searchers and practitioners. Therefore, it is practically important to find
efficient software packages which can free the researchers from tedious
programming and debugging. For this purpose, under the R language en-
vironment, Sturtz, et al (2005) introduced a so-called R2WinBUGS pack-
age combined with a free software WinBUGS] .4 to obtain the MCMC out-
put. Ris an extremely powerful language and environment for statistical
computation and graphics which is available free of charge. WinBUGS
is a user-friendly software package that implements the Gibbs sampler.
It does sampling-based posterior computations for a variety of statistical
models such as random effects, generalized linear, proportional hazards,
latent variable, and frailty models. The latest version of WinBUGS is Win-
BUGS1.4 which was developed by the medical Research Council Biostatis-
tics Unit and the department of Epidemiology and Public Health of the
Imperial College School of Medicine at St Mary’s Hospital. It is available
free of charge at http://www.mrc-bsu.cam.ac.uk/bugs/. An introduction to this
software can be found in Spiegelhalter, et al. (2003).

In this paper, using the R language, we implement R2ZWinBUGS to get
the MCMC outputs and then use R to compute the test statistics and the in-
formation criteria discussed below. The R code can be downloaded online
where the detailed explanation for R commands is provided line by line in
the R scripts by us. For more details about R2ZWinBUGS and WinBUGS1 4,
one can refer to Sturtz, et al (2005) and Spiegelhalter, et al (2003). Special
tailored R packages to obtain the MCMC output to fit particular statistical
models, are also available. For example, the R package named MCMC-
Pack was developed by Martin and Quinn (2005). Our R code to compute
the test statistics and the information criteria discussed below may be also
applied to the MCMC output generated by MCMCPack.



3 Hypothesis Testing based on the MCMC out-
put

3.1 Hypothesis testing under decision theory

Assume that a statistical model M = {p(y|0)} is used to fit the data.
The P-dimensional parameter vector 0 can be divided into two parts 6 =
(¢',¢')’ where ¢ € © denote a vector of p-dimensional parameter of in-
terest and ¢ € ¥ a vector of g-dimensional nuisance parameter. We are
interested in knowing whether or not # is equal to some value to verify a
particular theory. Hence, the point null hypothesis problem can be written
* Hy: ¢=19

Loz ®
In this section, we discuss the hypothesis testing problem from a decision
viewpoint.

Consider a decision problem whose decision space has two statistical
decisions, to accept Hy (name it dg) or to reject Hy (name it d;). We may
specify a loss function denoted by {L[d;, (6, ¢)],i = 0,1} to measure the
consequence of the statistical decision d;. Let p(8, ¢|y) be the posterior
distribution with some given prior p(¢, ), and T(y, ¢9) be a test statistic
for hypothesis testing which is a function of the data y. When the expected
posterior loss of accepting Hy is sufficiently larger than the expected pos-
terior loss of rejecting Hy, i.e.,

T(y,80) = [ [ {Lldo, (8, 9)) = Lle, (8, 9)]} p(®, ply)dody > c 0,

we can say that the statistical decision of accepting Hy might be inappro-
priate with some confidence so that the statistical decision to reject Hp can
be done naturally. For more details about hypothesis testing under deci-
sion theory, one can refer to Bernardo and Rueda (2002) and Bernardo and
Smith (2006).

In practice, it is enough to specify the net loss function denoted by
AL[Hy, (8,¢)] = Lldo, (9, 9)] — L[d1, (8, )]. Hence, the test statistic can
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be rewritten as

T(y,80) = [ [ ALIHo, (8,9)]p(8, ¥ly)dody = Eg, (ALIHo, (8,)).

3.2 The choice of loss function for hypothesis testing

In the subsection, we review the loss functions for the purpose of con-
structing hypothesis test statistics. We show that the BFs correspond to
the discrete loss function that takes values of 0 and 1. To overcome the
shortcomings of BFs, alterative continuous loss functions have been pro-
posed in the literature to construct new test statistics based on the MCMC
output. There is a more fundamental difference between these new test
statistics and the BFs. The new test statistics are justified in a frequentist
setup, that is, by assuming that y comes out of the data generating process
in a repeated experiment whereas BFs is justified in a Bayesian setup, that
is, the decision is made conditional on y.

3.2.1 BFs and 0 — 1 loss function

If the 0-1 loss function is used, that is,
0 ifd="1 1 if ¢ =1
[dOI( I )] = . ’ E[dll (19/ lIJ)] = . ’
1 if ¢ # 9o 0 ifd#d
the net loss function AL[Hy, (9, ¢)] is given by
1 ifd="4d
1 ifo#dy

Hence, the test statistic based on this discrete loss function is given by

AL[Hy, (8,9)] = {_

T(y,80) = [ [ ALIHo, (8,9)]p(8, yly)dody

_ plyld, ¢)p(d, ¢)

where p(y) = [o [¢ P(¥]8,9)p(8, )dddep is the marginal likelihood.
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In general, a positive probability w is assigned to the event ¢ = &, such
that a reasonable prior for ¢ with a discrete support at ¢y can be given by

. w ifl?ZﬂO
p(d) = {(1—w)7r(19) ifo#0

where 77(¢) is a prior distribution. Hence, the test statistic under this dis-
crete prior distribution can be expressed as

o= [ / AL b (0.4 <yw,p42>y§w,¢>dﬂd¢
_ /P |ﬂo, ﬁo, dl,le/ / p(yl8, llg,)w %) dody
_ 4 Y|190, 1P|19o) (0 =do) p(yld, ¢)p(p|8)p(8)
_ / A dddy + / / s dddy
p Y|l’0/ 1P|1’0) p(yld, ¥)p(p|8)(1 —w)m(8)
/ dddy + / / 5 dody,

where p(1|?) is the conditional prior distribution.
From this formula, we can see that the decision criterion can be made
as

Reject Hy iff qu p(y|® = 8, p)wp(p|8 = 9)dy
< Jo Je P(y|8, ®)p(9|8)(1 — w)p(d)dodyp.

To represent the prior ignorance, in practice, the probability w is set to 1/2
and the criterion becomes:

Jyp(y|8 = B0, 9)p(¢|d = do)dp _ mg
Jo Je p(yI8, w)p(p[8)m(8)dddyp  m

where {my, k = 0,1} are marginal likelihoods. By is the well-known BF
defined as the ratio of the marginal likelihoods (Kass and Rafety, 1995).
Although BF is intuitively appealing and has a strong probabilistic in-

Reject Hyiff By = <1,

terpretation, it is known to suffer from some theoretical and computational
difficulties. First, when a subjective prior 77(¢) is not available, Jeffreys’
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prior or reference prior (Jeffreys, 1961; Bernardo and Smith, 2006) are often
used to reflect the lack of prior information. Jeffreys’ prior and reference
prior are generally improper. It follows that 77(¢) = Cf(#), where f(#) is
a nonintegrable function, and C is an arbitrary positive constant. In this
case, the BF can be expressed as

_ 1 Jer(ylg, Bo)p(¢8o)dy
Cfo o P(yI8, 9)p(p[8)f(8)dddy’

Clearly, the BF is ill-defined since it depends on the arbitrary constant, C.

B

Second, to address the ill-defined problem of BF under the improper
prior, a proper prior 77(#) with a large variance (that is a vague prior) has
been proposed to represent the prior ignorance. While in this case the BF is
well-defined, it has a tendency to favor the null hypothesis even when the
null hypothesis is correct, giving rise to the notorious Jeffreys-Lindley’s
paradox; see Poirier (1995), Robert (1993, 2001). Jeffreys-Lindley’s para-
dox leads to researchers to find variations to the BE. Examples include
partial Bayes factor (O’'Hagan, 1991), the intrinsic Bayes factor (Berger and
Pericchi, 1996), and the fractional Bayes factor (O’Hagan, 1994). These vari-
ants basically split the data y into a training sample and a testing sample.
The training sample is used to update an uninformative prior to obtain an
informative prior. Unfortunately, they suffer from more or less arbitrary
choices of training samples, weights for averaging training samples, and
fractions, respectively.

Last but not least, for the latent variable model and many other mod-
els, calculation of the marginal likelihood My, k = 0,1 often involves in-
tractable high-dimensional integrals, and, as a result, BFs are generally
very difficult to calculate; see Han and Carlin (2001) for an excellent re-
view of methods for calculating the BFs from the MCMC output.

3.2.2 Bernardo and Rueda (2002) and the KL loss function

Bernardo and Rueda (2002, BR hereafter) pointed out that if ¢ is a con-
tinuous parameter, hypothesis testing forces the use of a non-regular (not
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absolutely continuous) ‘sharp” prior concentrating a positive probability
mass so that the null hypothesis Hy must have a strictly positive prior
probability. This non-regular prior structure leads to the theoretical diffi-
culties of BFs. To overcome these difficulties, Bernardo and Rueda (2002)
suggested using a continuous loss function based on the Kullback-Leibler
(KL) divergence to replace the discrete loss function, i.e.,

KL[p(),q0)] = [ px)in 220,

where p(x) and g(x) are any two regular probability density functions.
Then, the corresponding hypothesis test statistic can be given by:

Tsr (y,%0) = Eg|y (min {KL [p(y|9, 9), p(y|do, ¥)], KL [p(y[8o, 9), p(y[8, 9)]}) -

While Tgr (y, #9) is well-defined under improper priors, since the KL
divergence function often does not have a closed-form expression, Tpr (y, %)
is difficult to compute for the latent variable model. Moreover, BR sug-
gested choosing threshold values based on the normal distribution to im-
plement the test. The rationale for basing threshold values on the nor-
mal distribution conceivably comes from the fact that many test statistics
are asymptotically normally distributed. Therefore, BR’s approach is not
Bayesian as the sampling distribution of the test statistic is used and it is
based on the idea of repeated sampling, not conditional on y.

3.2.3 Liand Yu (2012) and the O loss function

To address the computational problem in Tgg (y, 6p), Li and Yu (2012, LY
hereafter) proposed a loss function based on the Q function used in the EM
algorithm (Dempster, Laird and Rubin, 1977) to replace the KL divergence
function. For any two points such as 6; and 6, defined in the parameter
space, the Q function can be expressed as

Q (61/0,) = E, g, [In ply,/61)].
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Compared with the observed data likelihood function p(y|6), the Q func-
tion is easier to evaluate for the latent variable model. Let 8y = (8, ¢), Li
and Yu (2012) defined a new continuous net loss function as:

AL(8,00) = {Q(6,0) — Q(60,0)} + {Q(60,00) — Q(6,60)},

and proposed a MCMC-based test statistic as:
TLy(y, 90) = Ee‘y [A[, (9, 190)] .

While Ty (y, 6p) is well-defined under improper priors and easy to
compute for the latent variable model, one still needs to specify some
threshold values. Again, threshold values lack of rigorous statistical justi-
fications. Importantly, the need to specify some threshold values suggests
that LY’s approach is not Bayesian.

3.24 Li, Zeng and Yu (2014) and LR-type loss function

To address the problem in choosing threshold values, Li et al (2014, LZY
hereafter) introduced another net continuous loss function based on the
deviance function (Spiegelhalter, et al, 2002) given by

AL[Ho, (8,9)] =2Inp(y|d, ) — 2In p(y|do, ).

The corresponding test statistic is

Tizv(y,00) =2 [ [Inp(y18,9) ~ Inp(y180, )] p(2, gly)dody.  (6)

Since the likelihood function p(y|#, ¢) is often intractable for the latent
variable model, to achieve computational tractability, under some regu-
larity conditions, Li, et al (2014) developed an asymptotically equivalent
form for Ty zy(y, %), i-e.,

Tiz(y,80) = 2D+2[np(3,§) —Inp(dl80)] —2 [ Inp(8]y)p(6ly)de
~ [p+a-ul-L5 (@)v2(0)]], )

13



where 6 = (9, ¢)’ is the posterior mean of 6 under Hy, and

D= [ (@20 [£,, (5i(y.218)] } b

with 8, = (1—b)0, +b0,forb € [0,1],0. = (8o, ¢)’, S(y, z|0) = (y,z|6)/80,
S1(-) being the subvector of S(y, z|0) corresponding to @, V7 ( _) = [(
P)(p — )|y, Hy], the submatrix of V(8) corresponding to ¢, and L ( (1[1)
P Inp(y, p|do)/dpoy’.

To compute T}, (y,#) , one mainly needs to evaluate the second
derivative of In p(y|#). The well-known Louis formula by Louis (1982)
suggests

Fplo) _ g o (P00
2000’ zly 3006’

3%In(y, z|0 )

— £y { ot b s(y,2l0)siy,2lo) |
_EZ‘YrB{S(y’Z|6)}Ez|y,9{s(y'z|9)}//

where all the expectations are taken with respect to the conditional distri-

v

} + Var,, 9 {S(y, z[0)}

bution of z given y and 6. Hence, we can use the following formula to
calculate the second derivative of the observed-data likelihood function,

211 Z /
Eayo { ol 4 s(y,2l0)5iy,200) |

9696’
~ Ly [P0 g6 i0)s(y, 20010)
I = 9606’ 4 4 ’
1 alnp(y,z0)|0)
z|y6{s y12|9 ZS Yy z - 7;1 00 ’

]

where {z(j),j =1,2,---,]} are the MCMC samples of z.

Since T zy is the posterior mean of the difference in deviance, T2y
and Tj,, can be understood as the MCMC version of LR test. Li, et al
(2014) pointed out that the proposed test statistic appeals in four aspects.
First, they are well-defined under improper priors. Second, they don’t
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suffer from Jeffreys-Lindley’s paradox and, hence, can be used under non-
informative vague priors. Third, at least, T}, is not difficult to compute.
For the latent variable model, T}, (y, #9) only involves the second deriva-
tive which is not very difficult to evaluate from the MCMC output.

Finally, under some mild regularity conditions, when the likelihood
information dominates the prior information, Li, et al (2014) proved that
under the null hypothesis

Tizy(y, 80) ~ € :1111/2(90)]11(30)11%{2(90): €—

P+ - tl-L) (B)V()], ®)
Tizy(y,80) ~ € :Uifz(@o)ln(90)11%{2(90): €—

[P+q —tf[—L(()i)(é)sz(é)]] , €)

where e is a standard multivariate normal variate, 8 = (do, 9,)) the true
value of 6, J(6y) the Fisher information matrix given by

J(60) = - [ ~L (G0)p(yI60)dy,

IJ(6p) the inverse of J(6y), J11(60) and 1J;;(60p) the submatrices of J(6p)
and IJ(6p), respectively, corresponding to #. The asymptotic distributions
given in (8) and (9) are obtained under the assumptions of repeated sam-
pling and the diverged sample size. Clearly, the set up is also in the fre-
quentist domain. A drawback of the test is that it is not asymptotically
pivotal because the asymptotic distribution depends on some unknown
population parameters.

3.2.5 Li, Li and Yu (2015) and LM-type loss function

To address the non-pivotal problem in the test statistic of Li et al (2014), Li,
et al (2015) proposed to use a quadratic loss function given by

AL[Hy, 0] = (8 — 9)'Cys(80) (8 — 8), (10)
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where

C(6) = s(0)s(6)’,s(0) = LW,

and s(0) the score function of 6, Cys(0) is the submatrix of C(0) corre-
sponding to # and is semi-positive definite, 8y = (¥, $,) is the posterior
mean of ¢ under Hy, 0 is the posterior mean of 6 under H;. Based on this
quadratic loss, naturally, the test statistic is given by

Toiv(y,d0) = | AL[Ho 0]p(6ly)do = [ (8—3)'Cao(B0) (8 — B)p(6ly)de,
(11)
where p(6|y) is the posterior distribution of 6 under H;.
To compute Ty (y, ¥) , one mainly needs to evaluate the first deriva-
tive of In p(y|6). For the latent variable model, In p(y|6) is often intractable.
Under the EM algorithm (Dempster et al, 1977), it can be shown that

dnp(y|6) _
0 Erly015(y,20)} ZS y 2 7

i dln p(y,z|0)
= 20
where {z(j),j =1,2,---,]} are the MCMC samples of z.

The proposed test can be viewed as the MCMC version of LM test. To

see the link, let the LM statistic (Breusch and Pagan, 1980) be
LM = 5,(80) | ~TL{3 (9) | 50(8o),

where 8y = (8, ;) is the MLE of 8 under the null hypothesis, s5(8) is
subvector of s(0) corresponding to ¢, ILyg(6) is the submatrix of IL(6) cor-
responding to #,, IL(?) (8) is the inverse matrix of L(2)(8) := 8%1n p(y|6)/0606'.
Under some regularity assumptions, when the null hypothesis is true and

the likelihood dominates the prior, Li, et al (2015) showed that

Ty (y, 80) = LM +0,(1) 5 2%(p).

The test statistic Ty (y, 90) has a few nice properties. For example, it
is well-defined under an improper prior and immune to Jeffreys-Lindley’s
paradox. In addition, for the latent variable model it is not difficult to com-
pute with the EM algorithm. Finally, it follows a pivotal )(%, asymptotically,
and hence, it is easy to obtain threshold values.
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3.2.6 Li, Li, Yu and Zeng (2017) and Wald-type loss function

Although the test statistic proposed by Li, et al (2015) is convenient to
calculate and has some good properties, it requires the MCMC output to
be obtained twice, one under Hj and the other under H;. Based on another
quadratic loss function, Li, et al (2017) proposed a test statistic which is
only by-product of the MCMC output under Hj, and hence, is easier to
compute.

Let the posterior covariance matrix under the alterative hypothesis be

V(@) = E[(0-8)(0—8)ly,Hi] = [(6—8)(0—8)'p(6ly)de,

where 0 is the posterior mean of 6 under the alternative hypothesis Hj. Li,
et al (2017) proposed the following net loss function for hypothesis testing

a1 —1
AL[Ho, 0] = (¢ — o) [V4s(8)] " (8 —B0),
where V() is the submatrix of V(8) corresponding to #, [V ()] s
the inverse matrix of V(0). Then, the test statistic can be established as

follows:

Triyz(y, do) = / (8 —80) [Vss(8)] " (8 —80) p(Bly)ds.  (12)

To see the link between T}y (y, #9) and the Wald statistic, define the
Wald statistic by (Engle, 1983)

A -~ 71 A
Wald = (0ML — 190), [_ILI%)(GML)] (0ML - 190)/,

where 0y, = (8L, Py ) is the ML estimate of 6. Under some regularity
assumptions, when the null hypothesis is true and the likelihood domi-
nates the prior, Li, et al (2017) showed that

d
Tryz(y, o) = Wald + 0, (1) = x*(p).

This is why T ryz(y, 89) may be viewed as a MCMC version of the Wald
test.
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It can be seen that Ty ;yz(y, #) shared some nice properties with the
test of Li, et al (2015). First, it is well-defined under improper prior dis-
tributions and avoids Jeffreys-Lindley’s paradox. Second, the asymptotic
distribution is pivotal so that the threshold values can be easily obtained
from the x?(p) distribution. Most importantly, it is only by-product of the
posterior output under Hj, and hence, is easier to compute.

Table [1| summarize the MCMC-based trinity of the tests and their key
properties. It is important to emphasize that although they are constructed
from the MCMC output which contains random draw from the Bayesian
posterior distribution, the statistical inference made by the three tests is
not conditional on the data. Instead, the justification of the three tests is
done in a frequentist framework, requiring repeated sampling from the
DGP and an asymptotic argument.

4 Specification Testing based on the MCMC Out-
put

Detection of specification problems in economics has been a major con-
cern. After ML is applied to estimate the model, several specification tests
may be used, including the information matrix test of White (1982), the
IOS and IOS,4 tests of Presnell and Boos (2004). Recently, Li, et al (2017)
proposed a specification test based on the MCMC output which can assess
the validity of the model specification and can tell the source of model mis-
specification if the null model is rejected.

Let model P be a collection of candidate models indexed by parameters
6 whose dimension is q. Let Pg denote P indexed by 6. We say the model
P is correctly specified if there exists 0, such that Py € Pyp.

Arguably the best known specification test is based on the information
matrix proposed by White (1982). For iid case, let p(y|68) denote the likeli-
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hood function of Model P(-) and

(y, 0) := alnp(y|e)/ae h(y,8) := 0*In p(y|0) /9606,
)i= [ h(y,0)p(yle)dy, 1(6) := [ s(y,0)s'(y,0)p(yle)dy
Let d(y,0) := vech [h(y, 0) +s(y,0)s'(y, 0)], where vech is the column-

wise vectorization with the upper portion excluded. Let the ML-based
sample counterparts of H(0) and J(60) be

Hy (Om) ==Y _h(ye,0m1), Jn (Bmr) :==)_s (v, 0mr) 8" (ve, Omr) -
n n =

Let D, (éML) = %Z?:l d (]/t/ éML) and Dn (éML) =dD, (éML) /00. If the
model is correctly specified, then H(0) + J(0) = 0. White (1982) proposed
the following information matrix test

IMT = nDn (BML) V (GML) Dn (GML) (13)

where

~ 1& ~ A
Vi (BmL) = E th (OpmrL) vt (BML)/;

vi (Omr) = d (ye, Omr) — Du (0aar) B, (Baar) s (ve, Baar) -

He then showed that IMT-% X? as n — oo under the null hypothesis.
Presnell and Boos (2004) proposed an alternative test — the “in-and-
out” likelihood ratio (IOS) test for models with i.i.d. observations,

[Ty P (ve, (?Z(\ZI)L; — té {lnP (vl0pmz) —Inp (yt’ QE\?L)} ’

I0S =1n
=1 P (F/tz Oz

where ég\?L be the MLE of 8 when the t-th observation, y;, is deleted from

the whole sample. They showed that the asymptotic form of I0S is

I0S4 = tr [ ot (Bm) T (BML)] (14)
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and I0S — 10S,4 = o, (n71/2). Like IMT, IOS, also compares H, (61)
with J, (@ML), but in a ratio form instead of an additive form. Under the
null hypothesis, IOS 4 LA g and n'/? (I0S4 — q) converges to a normal dis-
tribution with zero mean and finite variance. It is well documented in the
literature that the asymptotic distributions poorly approximate their finite
sample counterparts for IMT, I0S, and 10S4. As a result, they all suffer
from serious bias distortions if the critical values for testing are based on
the asymptotic distributions. The poor finite sample performance of these
tests is not surprising as the asymptotic theory is derived based on the
convergence of the sample high order moments, whose speed is slow. To
reduce the size distortion of these tests, bootstrap methods have been pro-
posed to obtain the critical values. Unfortunately, bootstrap methods are
computationally demanding.
For weakly dependent data, let y' := (y1,...,y:) and

dlnp (y'|6 0’Inp (y'|0
3(v,0) = ag ! hiy0) - aea<e' !

s:(0) :=s (y',0) —s (yffl,e) ,h(0) =h(y,0) —h (yH,e) ,
. (8) = % i st (0)s;(0), H, () :== % iht (0).
t=1 t=1

and V () = [ (6—8)(6—0) p(6]y)ds, a natural MCMC-based infor-
mative matrix test statistic can be defined as:

BIMT = tr [nV (8) §. (8)] = n [ (6-8)'. (8) (6—8) p (6ly)d6, (15)

Under some mild regularity conditions, Li, et al (2017) showed that
under the null hypothesis, n'/? (BIMT/q — 1) has the same asymptotic
distribution as 1n!/2 (I0S4/q — 1). Hence, BIMT may be regarded as the
MCMC-based version of IOS4. Unfortunately but not surprisingly, BIMT
inherits the size distortion problem of I0S 4 and bootstrap methods must
be used.

Due to this size distortion problem, Li, et al used a technique of Fan
et al (2015) to construct a new specification test statistic. In particular,
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they propose to expand p(y|0), the model in concern, to a larger model
denoted by p (y|61) where 0 = (6/, GiE>/ with 0 being a gg-dimensional
vector. So the expanded model p (y|01) nests the original model p (y|0).
It is assume that if the specification p (y|0) is correct, then the true value
of O is zero. The final specification test statistic of Li et al (2017) has the
form of

BMT = tr {Cg (y, (6,0, = 0)) V£ (6.) } + vVn(BIMT/q—1)%,  (16)

where Cg (y, (6,0 = 0)) is the submatrix of C (y,6;) corresponding to
Or evaluated at (6,0r = 0) and Vg (0y) is the submatrix of Vg (6;) corre-
sponding to O evaluated at 6, and

dln 0
sty.00) = “REYP cy,00) < s (y,005 (v,00)

\% (éL) = E [(BL — éL) (OL — éL)/ |y] = / (BL — éL) (BL — éL)/ p(6L|y)d6L,

with 0 being the posterior mean of 6] in the expanded model. It can be
seen that BIMT is used as the power enhancement function.
Under a set of regularity conditions, Li et al showed that if the model

is correctly specified, BMT-% X2 (gp); but if the model is misspecified with
q* # q, then

tr{Ck (v, (8,0e = 0)) Ve (81) } = Vi (4"/q = 1)* +0,(v/n), BMT ~ Oy (v/n),

where g% = tr [—H (071 (6*)] with 6% being the pseudo true value of
0, where

H(6') : = lim H,(0) and](8):= lim J, (6"),
i (0) = [.(0) p(y)dy, H, (0) := [ FL, (6) p(y)dy,

BMT has several nice properties. First, compared with IM, IOS, and I0Sy4,
BMT is based on the MCMC output. When the likelihood function is dif-
ficult to optimize but the MCMC draws from the posterior distribution
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are available, BMT is easier to compute than IM, I0S, and IOS,4. Second,
when /n(BIMT/g — 1)? does not have the size distortion problem, it is
most likely that BMT will not suffer from size distortion. As a result, no
bootstrap method is needed and intensive computational effort is avoided.

5 Model Selection based on the MCMC output

Model selection is a very important statistical decision in practice. Many
important and widely used information criteria have been proposed to
select from candidate models in the literature. Examples include AIC,
BIC, and HQ. Most of them require that MLE is available. The most well-
known model selection criterion based on the MCMC output is DIC of
Spiegelhalter, et al (2002). DIC is constructed based on the posterior distri-
bution of the log-likelihood or the deviance, and has several desirable fea-
tures. Firstly, DIC is simple to calculate from the MCMC output when the
likelihood function is available in closed-form. Secondly, DIC is applicable
to a wide range of statistical models. Third, unlike BFs, DIC is not subject
to Jeffreys-Lindley’s paradox and can be defined under improper priors.
In this section, we first review the DIC for models when the asymptotic
theory for ML is applicable, paying particular attention to the asymptotic
justification of DIC. We also discuss how to obtain DICs when there are
latent variables. In both cases, the loss function is the plug-in predictive
loss. We also discuss the information criteria when the loss function is the
Bayesian predictive loss.

5.1 DIC for regular models

We first review DIC for regular models, that is, when the asymptotic the-
ory given by (2), (3) and (@) holds true. Spiegelhalter, et al (2002) proposed
the DIC for Bayesian model comparison. The criterion is based on the
deviance

D(6) = —2Inp(y|6),
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and takes the form of
DIC = D(0) + 2Pp, (17)

where Pp, used to measure the model complexity and also known as “ef-
fective number of parameters”, is defined as the difference between the
posterior mean of the deviance and the deviance evaluated at the poste-
rior mean of the parameters:

Pp = D(6) — D(8) = —2/[1n p(y|6) —Inp(y|®)]p(6ly)d6,  (18)

with 0 being the posterior mean of 6.

Under some regularity conditions, Li, et al (2017) gives a rigorous decision-
theoretic justification. Let g(y) be the data generating process of y, y.p =
(Y1,reps ==+ +Ynrep) denote the future replicate data with y. Hence, the
plug-in predictive distribution based on replicate data is
—2Inp (yrep|6(y)) where 8(y) is the posterior mean under the data y.
Consider the plug-in predictive distribution p (ye,|0(y)) in the following
KL divergence

g (yrep) ]

KL [g (Yrep) /P (Yreplén (Y)ﬂ - Eymp [ln p <Yrep|én (Y))

= Eyrep [hlg (Yrep)] + Eyrep [_ lnp (yV@P‘é”(Y))} :

The smaller this KL divergence, the better the candidate model in predict-
ing g(yrep)- Since g(yrep) is the true DGP and Ey,,, (In g(yrep)) is indepen-
dent with candidate models, it is dropped from the above equation. Li, et
al (2017) showed that DIC is an unbiased estimator of EyEy,,, [=2Inp (yrep|0(y))]
asymptotically, i.e., EyEy,,, [-2Inp (yrp|0)] = Ey (DIC) 4 0(1). The key
assumptions to obtain the asymptotic unbiasedness include that the can-
didate models are good approximation to the true DGP, the consistency
and asymptotic normality of MLE, and the expression for the asymptotic
variance of MLE. For details, see Li, et al (2017).

The above decision-theoretic justification to DIC is that DIC selects
a model that asymptotically minimizes the risk, which is the expected
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KL divergence between the DGP and the plug-in predictive distribution
p (Yrep|0(y)) where the expectation is taken with respect to the DGP. A
key difference between AIC and DIC is that the plug-in predictive distri-
bution is based on different estimators. In AIC, the ML estimate, 8 ML(Y),
is used while in DIC the Bayesian posterior mean, 6(y), is used.

When In p(y|0) has a closed-form expression, it can be seen that DIC
is trivial to compute from the MCMC output. DIC has been incorpo-
rated into a Bayesian software, WinBUGS. This explains why DIC has been
widely used in practice for model selection.

5.2 Bayesian predictive distribution as the loss function

Unfortunately, the plug-in predictive distribution is not invariant to pa-
rameterization. As a result, DIC is sensitive to parameterization. Alterna-
tively, we may use the Bayesian predictive distribution as a loss function.
The Bayesian predictive distribution is not only a full proper predictive
distribution, but also invariant to reparameterization.

Let p(yreply,) be the Bayesian predictive distribution, that is,

preply) = [ plyrepl0)p(0ly)do.
The KL divergence based on the Bayesian predictive distribution is given
by
KL [g (yrep) - (yreply)] = Eys, (Ing (yrep)) = Eyiey (Inp (yreply)) - (19)

Li, et al (2017) obtained the information criterion based on the Bayesian
predictive distribution as

DIC?” = D (8) + (1+In2)Pp. (20)
Under some regularity assumptions, Li, et al showed that DICP? is an un-
biased estimator of EyEy,,, [=21In p (yreply)]| asymptotically, ie., EyEy,,, [=2Inp (yreply)] =

Ey (DICB P ) +0(1). Clearly, DICB? is as easy to compute as DIC. Since DIC
is monitored in WinBUGS, no additional effort is needed for calculating
DICP?,
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5.3 Integrated DIC for latent variable models

Unfortunately, not all models are regular. A well-known non-regular model
in economics is a class of models with incidental parameters which leads
to the incidental parameter problem. In this class of models, the infor-
mation about the incidental parameters stops accumulating after a finite
number of observations have been taken; see Neyman and Scott (1948)
and Lancaster (2000) for details about the incidental parameter problem.

As shown in Gelman, et al (2013), the incidental parameter problem
can lead that the ML estimator is inconsistent and Bayesian large sample
theory becomes invalid. When this is the case, the asymptotic justification
of DIC does not hold because of the failure of these standard asymptotic
theory.

In general, the latent variable model given in (1) does not have inci-
dental parameters and hence the incidental parameter problem is not ap-
plicable. As explained earlier, for many latent variable models, the like-
lihood function is very difficult to be accurately approximate, rendering
ML difficult to implement. To facilitate the posterior analysis, the data-
augmentation strategy of Tanner and Wong (1987) is often used to aug-
ment the parameter space to (6,z), changing the likelihood function to
p(y|6,z) which typically has a closed-form expression. Denote the sam-
ple mean of z, 8 by z, §, obtained from the MCMC output. Applying DIC
developed earlier to the data-augmented MCMC output leads to

DICP4 = D(z,8)+2P54, (21)

P54 = D(z,0) — D(z0)
= —2 [Inp(ylz,0) ~Inp(ylz,0)]p(z bly)dzds,  (22)

where D(z,0) = —2Inp(y|z, 0) which is typically available in closed-
form. This way of calculating DIC is monitored and implemented in Win-
BUGS, following the suggestion of Spiegelhalter, et al (2002). Clearly the
use of data augmentation not only facilitates MCMC sampling, but also
makes DIC easier to calculate from the MCMC output.
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Unfortunately, the data augmentation technique introduces incidental
parameters to the model which lead to the incidental parameter problem.
This is because, as discussed before, in many latent variable models, the
latent variable z is often dependent on the sample size and its dimen-
sion is the same as or larger than the number of the sample size. As a
result, the model becomes non-regular after the parameter space is ex-
panded to (6,z). In particular, the ML estimator of z is typically incon-
sistent and the Bayesian large sample theory is invalid for z. Although
data augmentation makes DIC easy to calculate, it invalidates the asymp-
totic justification of DIC. DIC based on the data augmentation technique,
as calculated in (21) and (22), is no longer asymptotically unbiased esti-
mator of EyEy,., [=2Inp (yrp|0(y))]. As a result, for the latent variable
model, DIC, as how it is currently monitored and implemented in Win-
BUGS, should not be used.

To address this problem, Li, et al (2017b) introduced an integrated DIC
(IDIC) which integrates the latent variable out of the deviance and the
penalty term. IDIC is given by

IDIC = D(6) + 2P}, (23)

where
PL =t {I()V (D)}, (24)
and

21n _ ) N
1(0) = —%a(gfm,vw) —E[(6-0)(6-9)'ly|.

Li, etal (2017b) showed that under regularity conditions, IDIC is an asymp-
totically unbiased estimator of EyEy,,, [=21np (yrep|8(y))].

Similarly, if the loss function the Bayesian predictive distribution, one
may obtain an alternative information criterion, which is IDIC BP by Li, et
al (2017b) and is defined as

IDICPP = D(8) + (1 +1n2)P}, (25)
As shown in Li, et al (2017), EyEy,, (~2Inp (yrply)) = Ey [IDICP?| +
o(1).

27



54 Computing IDIC for latent variable models

For the latent variable model, In p(y|6) generally does not have an analyt-
ical expression. As a result, computing In p(y|8) and P} is not trivial, in
sharp contrast to the quantities in and (22). Li, et al (2017b) introduced
a very general approach to computing IDIC.

Let
p(y,z|6,b) = p(ylz,6)'p(z|6)
p(y18,6) = [ ply2ld,b)dz = [ p(ylz,0)p(zl0)dz,
. p(y.28,b) _ plylz,8)p(z/9)
PER OO =S m e i)
so that
p18,1) = [ p(ylz,8)p(zld)dz = [ p(y,2l8)dz = p(yd),
p(y18,0) = [ p(ylz,0)p(zld)dz = [ p(z|d)dz =
v a1 P@YID) _ pylz,0)p(I8) _ p(ylz 8)p(zld)
PEY O =S me ) w1 ) p(y19)
v a0 P@YIB0) _ p(ylz 0 p(d) _ pld) _ o
ey e =m0 — o o1 MY

Using the path sampling technique of Gelman and Meng (1998), Li, et
al showed that

Inp(y|f) —In1 =

f(1) 1alnf(b)
1f(o) /0 b Y

1
/ E, .5, Inp(yl2,8)] dbi= /0 u(b)db, (26)
where f(b) = p(y|0,b) such that (1) = p(y|6) and f(0) =
In many cases, fol u(b)db in 1) does not have an analytical solution.

Following Gelman and Meng (1998), we can numerically approximate it
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using the trapezoidal rule. In particular, we can choose a set of fixed grids
{bs) = £15_, such that by =0 < by <bp <---<biy =1, and then
approximate the integral by

Inp(y|6) ~ 1( +Z (1)>.

Since In p(y|z, 6) often has an analytical expression, In p(y|0) can be con-
veniently obtained using the above formula.

To compute P}, it mainly needs to evaluate the second derivative of
In p(y|6). Again, the well-known Louis formula suggests that

azlnp(ylﬂ) _ {821n(y,z|6)
9096’ zly 0096’

3%In(y, z|0 /
Eayo { o 1 s(y,210)5(y,210) |

—E,,0{5(y,2|0)}E, ; g{S(y.2[0)}"

} + Var,, g {S(y,z[0)}

Hence, we can use the following formula to calculate the second derivative
of the observed-data likelihood function,

9*In(y, z|6 /
o | o2l iy, 2j0)s(y,2l0) |

9606

N 1i azln(y,z(j)\9)+5( z1]0)S(y, z™ |6)
= 9006’ g g |
E,y0{S(y,zl0)} 25 Y.

where {z(f),j =1,2,---,]} are the MCMC samples.
The main difference between DIC, given in (17) and (18), and IDIC,
givenin (23) and (24), lies in Pp and PIID. To compute Pp, we need to evalu-

ate Eg, . [In p(yl0))] ~ % 2]1:1 Inp (y]B(j )>. For the latent variable models,
without knowing the analytical form of In p(y|6), computing % 2]121 Inp (y\ 6U )>
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is very expensive since one has to evaluate In p (y|6(j )) for J times with |

being large. To compute PL in IDIC, one only needs to compute the second
derivative once.

Two well-known classes of latent variable models are the linear Gaus-
sian state space model and the nonlinear non-Gaussian state space model.
For these two classes of models, some recursive algorithms, such as the
Kalman filter and particle filter algorithms, can be used to facilitate the
computation of IDIC. There are existing R packages to implement the Kalman
filter and particle filter algorithms; see Tusell (2011). Hence, the proposed
method here can be combined with these R packages.

6 Empirical Illustrations

In this section, we illustrate the proposed test statistics and model selection
criteria using three popular examples in economics and finance. The first
example contains asset pricing models with a t error distributions. The
likelihood functions of these models not only have the analytical form,
but also can be rewritten as in the latent variable form. These two al-
ternative ways of rewritting the models allow us to check the problem
in DIC with data augmentation. The second example contains stochastic
volatility models, where the volatility is latent. In the second example, the
analytical expression of the observed data likelihood does not exist.

6.1 Statistical inference in asset pricing models

Asset pricing models are one of important models in modern finance.
There models generally assume that the return distribution is normal. Un-
fortunately, there has been overwhelming empirical evidence against nor-
mality for asset returns, which have led researchers to investigate asset
pricing models with heavy-tailed distributions. Zhou (1993) and Kan and
Zhou (2003) suggested to use the multivariate t distribution to replace the
multivariate normal distribution. Moreover, on the basis of the efficient
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market theory, the asset excess premium should not be statistically differ-
ent from zero. At last, the multivariate t distribution can be rewritten as
scale-mixture framework to become a latent variable model. Hence, we
consider the following six asset pricing models:

Model 1: Ry = B'F; + €;,€; ~ N[0, Z];
Model 2 : Ry = a + B'F; + €1, ~ N[0, X];
Model 3: Ry = B'F; + €1, €1 ~ [0, L, v];

Model 4 : Ry = B'Fi +et,e; ~ N(0,Z/wy), wp ~T (%9 ’

Model 5: Ry = & + B'F; + €1, ~ t[0,L,];

Model 6 : R; = a + B'Fy + €1, €1 ~ N(0,Z/wy), w; ~ T (g g) ,
where R; is the excess return of portfolio at period t with N x 1 dimension,
F; a K x 1 vector of factor portfolio excess returns, « a N x 1 vector of
intercepts, B a N x K vector of scaled covariances, €; the random error,
t=1,2,---,n. For convenience, we restrict X to be a diagonal matrix and
v to be a known constant as v = 3. It is noted that Model 4 is the scale-
mixture distributional representation of Model 3, and Model 5 is the scale
mixture distributional representation of Model 6.

Monthly returns of 25 portfolios, constructed at the end of each June,
are the intersections of 5 portfolios formed on size (market equity, ME) and
5 portfolios formed on the ratio of book equity to market equity (BE/ME).
The Fama/French'’s three factors, market excess return, SMB (Small Minus
Big), HML (High Minus Low) are used as the explanatory factors (Fama
and French, 1993). The sample period is from July 1926 to July 2011, so
that N = 25, n = 1021. The data are freely available from the data library
of Kenneth French/[T]

Making inference for the asset pricing models has attracted a consider-
able amount of attentions in the empirical asset pricing literature. Avramov
and Zhou (2010) provided an excellent review of the literature on Bayesian
portfolio analysis. As to Bayesian inference, we need specify the prior

http:/ /mba.tuck.dartmouth.edu/pages/faculty /ken.french/data_library.html
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distributions for parameters. Here, to represent the prior ignorance, we
assign some vague conjugate prior distributions, that is,

a; ~ N[0,100], B;; ~ N[0,100], ¢;; ' ~ T'[0.01,0.01].

Based on the R language, we use R2ZWinBUGS to get the MCMC outputs,
and draw 100,000 random observations from the posterior distributions in
each model where the first 40,000 is used as the burn-in sample, and the
next 60,000 iterations is collected with every 3th observation as effective
observations. Hence, these are 20000 effective observations.

6.1.1 Hypothesis testing for asset pricing models

In asset pricing theory, the efficient market theory suggests that the ex-
cess premium « should be zero. Hence, we can write this problem as a
hypothesis to be tested as:

H()ZDC:()XlN,HlIlX;AOXlN,

where 1y is an N-dimensional vector with unit elements. Model 6 is the
most general model which can nest other models, hence, based on this
model, we discuss the asset pricing testing problem above.

In section 4, among of those approaches, we have shown that the thresh-
old values by Bernardo and Rueda (2002) and Li and Yu (2012) are difficult
to calibrate. Hence, here, we only consider the statistics respectively de-
veloped by Li, et al (2014), Li, et al (2015) and Li, et al (2017). Based on
20000 MCMC samples, we calculate the three test statistics, T2y (y, %),
Trry(y, %) and Trryz(y, 89). We report the results in Table

Obviously, from these results, according to the critical values from )(2 (25),
under 5% significant level, all the test statistics reject the null hypothesis.
Hence, we can conclude that the mean-variance efficiency does not held
in practice. As to these test statistics, more details, one can refer to Li,
et al (2014, 2015, 2017). At last, according to the Savage-Dickey Density
Ratio approach by Verdinelli and Wasserman (1995), it can be shown that
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Table 2: Asset pricing testing in Mg

hypothesis a=0

Tizv(y, 80) | 1405191
TLLY(y/ 190) 153.5680
TLLZY (y, 190) 184.4315

BF = 1.069 which provide mild evidence to support Hy which is contrac-
tive to the results from the hypothesis testing statistics. This reason lies
that in this section, we use the vague prior to do the hypothesis testing so
that BFs suffer from the Jeffreys-Lindley’s paradox. It should be very sug-
gested to use BFs for doing hypothesis testing when the prior information
is not available. More details about the Jeffreys-Lindley’s paradox, see the
discussion by Li, et al (2015).

6.1.2 Specification testing for asset pricing models

In this subsection, we take the standard Fama-French three-factor asset
pricing model (Fama and French, 1993) that is, model 2 as an example for
illustrating the proposed approach. The standard asset pricing model is
given by

Model 2 : Rt =ua+ ,BlRmt + IBQSMBt + ﬁgHMLt + €4, € ~ N[O, Z]

where Ry, is the excess market return, SMB stands for "Small [market cap-
italization] Minus Big" and HML for "High [book-to-market ratio] Minus
Low"; they measure the historic excess returns of small caps over big caps
and of value stocks over growth stocks.

Here, for checking the model misspecification, the expanded model
can be specified as

Model 2E : Rt =+ ,BlRmt + ﬁlER%?t + ﬁstBt + ﬁ3HMLt + €4, € ~ N[O, Z]
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Hence, according to section 4, we can write this model misspecification
problem as a hypothesis to be tested as:

Ho: p1g =0, Hi:pip #0
Following section 4, the proposed test statistic can be given by
BMT = tr {Cr [y, ((a, By, By, B3, Z), B1g = 0)] Ve (8) } + V1021 (BIMT /125 — 1)?

Hence, based on 20000 effective observation drawn from the posterior dis-
tribution, we can compute the corresponding statistics which are reported
in the following table. It is noted that if the model is correctly specified,

Table 3: Results of Specification Test for Model 2

item value
BIMT 610
tr {Ce [y, (&, B, By B3, E), Brp = 0)] VE (81) } | 444
V1021(BIMT /125 — 1)? 481
BMT 925

BMT converges to x*(25) distribution. Given this x? distribution, under
0.05 significant level, the critical value is 37.65. Hence, according to the
table, we can conclude that BMT strongly reject the null hypothesis which
means that the asset price model is misspecified.

6.1.3 Model comparison for asset pricing models

We make a model comparison of these asset pricing models. Based on
20000 effective observations, we calculate DICs, and BFs. Table @ reports
Pp, P54, PL, DIC, DICE?, DICP4, IDIC and IDICB? for all six models.
Note that only My and Mg has the latent variable so that PBA and DICPA
are only reported for these two models. Furthermore, M3 and M, are
the same model with different distribution expression, M5 and Mg are the
same model with different distribution expression. Hence, as to the same
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model with different distribution expression, Pp, PLI), DIC, DIC??, IDIC
and IDICP? are equal for the same model.

From Table [, we can get some interesting finding. First, as expected,
DICP4 in Model 3 is quite different from that in Model 4 although these
two models are the same, but only have different distribution expression.
The main reason is that in Model 4, the scale-mixture specification is used
and, hence, a sequence of latent variables, {w;} are treated as parame-

ters. For the same reason, DICP4

in Model 5 is quite different from that in
Model 6. As argued earlier, this conceptual difficulty is due to lack of the
theoretical foundation. Second, DIC, DICE?, IDIC and IDIC2? do not suf-
fer from the same difficulty as DICPA, For Model 3 (and Model 5), they are
identical to those for Model 4 (and Model 6). Third, the theoretical results
show that Pp and Pé should be close to the actual number of the param-
eters, P, if the posterior distribution is well approximated by the normal
distribution and the use of uninformative priors is used. The results can
be confirmed from this table. Most importantly, we see that Pp is almost
identical to P} in all models. Not surprisingly, DIC and IDIC are almost
the same in all models and DIC?? and IDICB? are almost the same. This
confirm the theoretical result that Pp and PL can be well approximated. In
addition, all DICs provide the evidence to support Mg is the best model
for prediction among these six models.

In addition, as to Pp and PL, we need point out that in terms of the
computational cost, for Model 3 and 5, PII) can require less efforts than Pp.
The reason is that Pp involves [ In p(y|0)p(8|y)d6, which is approximated

by % 2]].:1 Inp <y| 6U )> . This quantity is much more expensive to compute
because it requires numerical evaluation of In p <y\6(j )) for | times. For

example, here, based on the 20,000 posterior random observations, one

has to evaluate In ol 20,000 times. Fortunately, as to asset pricin
Py Y p g

models, In p (y|9(j )) has closed-form. However, as to other models such
that In p(y|0) does not have analytical form, obviously, IDIC is more ad-
vantageous than DIC.
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Table 4: Model selection results for Fama-French three factor models

Model Adl AAQ A43 A44 A45 A46
# of Parameters 100 125 100 100 125 125
Pp 100 125 100 100 125 125
DIC -119842 -119880 -133088 -133088 -133202 -133202
DICBP -119872 -119918 -133118 -133118 -133240 -133240
PRA - - - 1021 - 1046
DICPA - - - -134777 - -134897
Pl 100 125 100 100 126 126
IDIC -119842 -119880 -133087 -133087 -133201 -133201
IDICBP -119873 -119918 -133118 -133118 -133240 -133240

At last, in order to check the reliability of the general computation ap-
proach by section 5.4, we take model 6 as an example. Since the likeli-
hood function In p(y|0) has analytical form, we can easily get that D(6) =
—133452. Using the approximation approach in section 5.4, we give the
approximated value of D(8), that is, D() under different grids and re-
port the results in the Table 5| From this table, it can be observed that with
the increasing grid S, the proposed approach can approximate D(0) very
well.

Table 5: The approximated value of D(8) based on section 5.4

hypothesis | D(0)
S=200 -133436
S=400 -133437
S=800 -133451
S5=900 -133452
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6.2 Statistical inference in stochastic volatility models

Stochastic volatility (SV) models are one of the important models to model
the time-varying volatility in financial econometrics. The basic SV model
is composed of two equations, one is measurement equation, the other is
state equation where the logarithmic volatility is the state variable which
is often assumed to follow an AR(1) model. The basic form can be written
as

yr = a +exp(he/2)us, ur ~ N(0,1),
hi = p+ ¢(he1 — u) + 01, 00 ~ N(0, %),

where t = 1,2,---,n, y; is the continuously compounded return, h; the
unobserved log-volatility, hp = u, u; and v; are independent for all t. In
this paper, we denote this model by M;.

An important and well documented empirical feature in many finan-
cial time series is the leverage effect (Black, 1976). Hence, following Yu
(2005), a fundamental extension of the basic SV model is to incorporate
the leverage effect. The leverage effect SV model can be defined as:

ye = a+exp (he/2)us, up ~ N(0,1)
hivr = p+¢(he—p)+0141, 901 ~ N (0, TZ)

(ot ) (0)- (5 )

and hy = p. In this model, p captures the leverage effect if p < 0. In the

with

empirical literature, there is a negative relationship between the expected
future volatility and the current return. We denote this model as M.

To carry out Bayesian analysis, following Meyer and Yu (2000), the
prior distributions are specified as follows:

& ~ N(0,100), p ~ N(0,100),
¢ ~ Beta(1,1), 1/7% ~T(0.001,0.001),p ~ Unif (—1,1)
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This type prior can be regarded as a noninformative prior to represent the
prior ignorance.

The dataset consists of 945 daily mean-corrected returns on Pound/-
Dollar exchange rates, covering the period between 01/10/81 and 28/06/85.
Here, using R language, we use R2ZWinBUGS to run MCMC to get the
outputs. After a burn-in period of 10,000 iterations, we save every 20th
value for the next 100,000 iterations to get 5,000 effective draws. The same
dataset was used in Kim, Shephard and Chib (1998) and Meyer and Yu
(2000). The posterior mean and standard error of parameters in the two
competing model are reported in Table[f] Note that the in M, the poste-
rior mean of p is very close to zero, relative to its posterior standard error.

Table 6: Posterior mean and standard error of parameters in M; and M,

M; M,
Parameter | Mean SE Mean SE
-0.6733 | 0.3282 | -0.6485 | 0.3377
0.9733 | 0.0127 | 0.9802 | 0.0138
- - -0.0575 | 0.1570
0.1698 | 0.0378 | 0.1661 | 0.0391

NS =

6.2.1 Hypothesis testing for stochastic volatility models
In this paper, the hypothesis that we are concerned can be expressed as:
Ho:p:(), H1:p7é0

Here, p is the interest parameter, the nuisance parameter is denoted by
Y= (¢t 2),0=(0,9)={p (1 ¢ 1%} Again, based on 20000 effec-
tive observation, we calculate the three test statistic, that is, Ty zy(y, 9),
Trry(y, 90) and Trryz(y, 89). We report all the results in Table

From this table, according to the critical values calibrated from their
asymptotic distribution, under 5% significant level, all three test statistics
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Table 7: Hypothesis hypothesis results for the leverage effect

hypothesis | p =0
T; ., (y, %0) | -0.6870
TLLY (y, 00) 0.1659
TLLZY(y/ 190) 1.7050

fail to reject the null hypothesis. The result is correspond with estimation
result, thatis, p = —0.0575. Furthermore, this provide enough evidence to
support that leverage effect in this exchange data is not obvious.

6.2.2 Specification testing for SV models

The dataset used here contains the daily returns on AUD/USD exchange
rates from January 2005 to December 2012. Following a suggestion of a ref-
eree, before we apply BMT to the SV model, we first test the i.i.d. normal
model with constant mean and constant variance given by

Yr =+ &, & L. N (O, (72> . (27)
An AR(1) model is used as the expanded model
Ye = o+ Pyi1+ €, & N (0, (72> . (28)

The Bayesian MCMC method is implemented to estimate the parameters
with the following vague prior

a ~ N(0,10002), B ~ N(0,1000%), 02 ~ T(0.001,0.001).

For the above two models, we draw 20,000 MCMC samples from the pos-
terior distribution and compute BMT.

The critical value of x? (1) is 6.63 at the 1% significance level. BMT is
251.52, rejecting the i.i.d. normal model. This conclusion is not surprising
as the volatility of stock returns is stochastic. However, [; is 0.2858 (i.e.,
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Jo=251.23) which is less than the critical value of x? (1). Using J; alone only

suggests that we cannot reject § = 0 in Model (28). This conclusion is also

not surprising as the weekly returns have very weak serial correlations.
Next, we change the null model to the following basic SV model,

Yyt = oa+exp (l’lt/Z) Uy, Ut Zfl\fl N (0,1) p (29)

e = ¢ (g — )+, v KN(O,1).

The expanded model is as follows,

Yy = &+ Bryi—1 +exp (hi/2) us, uy N (0,1). (30)

hy = pu+¢(h—1 —pu)+ 101, 14 L1 N(0,1).
The following vague priors are used

& ~ N(0,100), ¢ ~ Beta(1,1),
72 ~ T(0.001,0.001), By ~ N(0.5,100).

To obtain BMT, we draw 110,000 MCMC samples from the posterior
distribution and discard the first 10,000 as burning-in observations, and
store the remaining samples as effective observations in both models. In
this case, BMT=0.4279 which is less than the critical value of x? (1), sug-
gesting that the basic SV model is not misspecified.

6.2.3 Model comparison of SV models

Hence, we consider the model comparison of these two models. Since
the models are of a nonlinear non-Gaussian form and both p(y|6) are
not available in closed-form, the approach provided in Section 5 is imple-
mented to compute DICs, and the Savage Dickey density ratio (Verdinelli
and Wasserman, 1995) is implemented to calculate BFs. Hence, DIC re-
quires tedious computational efforts. Here, we only report the results of
DICP4, IDIC, P54, P}, and BFs in Table

From this table, we can get the following findings. Firstly, DICP4 and
IDIC suggest different rankings of the competing models where DICP4
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Table 8: Model selection results for My and M>

Model M, M,
P54 53.60 | 31.33
D(z,0) | 1695.40 | 1693.36
DICPA | 1802.52 | 1756.21
P 2.32 3.24
D(6) | 1837.81 | 1837.78
IDIC | 1842.50 | 1844.30
IDICBP | 1841.80 | 1843.30

BF» 0.2174

suggests that M, is better that M;, IDIC and IDICB” both suggest M;.
According to DICP4, it can be observed that M; and M, perform nearly
the same judged by the model fit term, D(z, ). However, M, reduces P?)
by 22.3 over M;. This reduction of the model complexity is the reason
why DICPA prefers M,. This result is surprising as the posterior mean
of the leverage effect is nearly zero as reported in Table [§|and not accord
with the hypothesis testing results. Obviously, as to SV models, when
the latent variable is regarded as parameters, the number of parameters
exceeds the number of observations, say n + 3 in M; and n + 4 in M;.
Hence, an important season to lead the surprising results lie that DICP4
is lack of rigorously theoretical foundation and should be cautious to be
used in practice although its computation is simple.

Secondly, IDIC and IDICB? both suggest that M; is slightly better that
M, although the difference is not large. In IDIC, Pf) is 2.32in Mj and 3.24
in My. These values are very close to the actual numbers of parameters in
the two models. It is noted that M; has one extra parameter so that this
difference is reasonable. Moreover, M; and M, perform nearly the same
judged by D(0). These findings give the reason why M; is slightly bet-
ter that M. Thirdly, BFs suggest that M is the better model, consistent
with the ranking of IDIC. This empirical example clearly demonstrates
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that IDIC is a more reliable model selection criterion that DICP4. In ad-
dition, although IDIC and IDICB? both select the basic SV model, they
imply that different predictive distribution should be used. From the the-
oretical analysis, as to predictive problem, the model selection results sug-
gest that the basic SV model with Bayesian predictive distribution should
be used because this decision can yield smallest risk asymptotically when
M;, M;, plug-in predictive distribution and Bayesian predictive distribu-
tion are candidate use.

7 Concluding Remarks

In this chapter, instead of making refinements for BFs, we overviews some
alterative approaches developed in the recent literature for hypothesis test-
ing and model selection methods. The approaches are established after the
MCMC output is available. We show that these approaches not only have
good theoretical properties, but also, do not require tedious additional
computational efforts. Hence, with the advance of MCMC techniques and
expanding computing facility, these approaches can be applied into a va-
riety of complex models, especially latent variable models.

As to the hypothesis testing, we overviews several statistics for hy-
pothesis testing which can be regarded as the MCMC version of the “trin-
ity” of test statistics widely used in the frequentist domain, namely, LR
test, LM test and the Wald test. Their asymptotic distributions are dis-
cussed based on a set of regular conditions. Furthermore, we overview
the well-known DIC and its extensions. The asymptotic property of DICs
are also discussed compared with AIC. At last, we illustrate the methods
using econometric models with real data, some of which involve latent
variables. The implementation is illustrated by R code with the MCMC
output obtained by R2ZWinBUGS.
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