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Abstract

This paper proposes a novel Lasso-based approach to handle unobserved parameter hetero-
geneity and cross-section dependence in nonstationary panel models. In particular, a penalized
principal component (PPC) method is developed to estimate group-specific long-run relationships
and unobserved common factors and jointly to identify the unknown group membership. The PPC
estimators are shown to be consistent under weakly dependent innovation processes. But they suf-
fer an asymptotically non-negligible bias from correlations between the nonstationary regressors
and unobserved stationary common factors and/or the equation errors. To remedy these short-
comings we provide three bias-correction procedures under which the estimators are re-centered
about zero as both dimensions (N and T') of the panel tend to infinity. We establish a mixed
normal limit theory for the estimators of the group-specific long-run coefficients, which permits
inference using standard test statistics. Simulations suggest good finite sample performance. An
empirical application applies the methodology to study international R&D spillovers and the re-
sults offer a convincing explanation for the growth convergence puzzle through the heterogeneous

impact of R&D spillovers.
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1 Introduction

Nonstationary panel models have been extensively used in empirical analyses. Their asymptotic
properties are well explored in classical settings when assumptions of common coefficients and inde-
pendence across individuals are in place. Although these assumptions offer efficient estimation and
simplify asymptotic theory, they are often hard to meet in real-world economic problems. On the one
hand, researchers often face the issue of unobserved parameter heterogeneity in empirical models; see
the study of the “convergence clubs” (e.g., Durlauf and Johnson (1995), Quah (1997), Phillips and
Sul (2009)), the relation between income and democracy (e.g., Acemoglu et al. (2008) and Lu and Su
(2017)), and the “resource curse” (e.g., Van der Ploeg (2011)). On the other hand, globalization and
international spillovers give rise to a new challenge — the presence of cross-section dependence. In
general, ignoring these two features may lead to biased or even inconsistent estimators in nonstation-
ary panels, which can severely distort the reliability of classical methods. The goal of this paper is to
study efficient estimation (in terms of convergence rates) and inference in nonstationary panel data
models by allowing for the presence of both unobserved parameter heterogeneity and cross-section
dependence.

Specifically, we consider a nonstationary panel data model with latent group structures and
unobserved common factors. First, we assume that the long-run cointegration relationships associated
with the observables are heterogeneous across different groups and homogeneous within a group. The
latent grouped patterns offer flexible parameter settings by allowing for different slope coefficients
across groups and remain parsimonious and efficient by pooling the cross-section observations within
a group in the estimation procedure. Moreover, there is often economic intuition for considering
grouped patterns in long-run relationships. For example, long-run equilibria in the growth regressions
typically share some common features within a subsample, such as developing or developed countries,
but reveal distinct patterns across subsamples. We also allow for stationary regressors and their
parameters are completely heterogeneous. Second, we employ factor structures to model cross-
section dependence. In our nonstationary panel model we consider both unobserved stationary and
nonstationary common factors. For example, both oil price shocks and global technology innovations
affect GDP levels in all countries. Similarly, both stock market shocks and macro-economic news
affect security prices. But it is hard to tell whether these shock processes are stationary or not. In
general, our framework allows us to fit more complex features to the data in empirical applications
and offers flexibility so that the methods encourage the data to reveal latent features that may not
be immediately apparent.

We take advantage of a growing literature on Classifier-Lasso (C-Lasso) techniques and models
with interactive fixed effects (IFEs); see, e.g., Bai (2009), Su, Shi, and Phillips (2016a, SSP hereafter),
Qian and Su (2016), Moon and Weidner (2017), Su and Ju (2018), Miao et al. (2020), among others.
We propose a penalized principal component (PPC) method, which can be regarded as an iterative

procedure between penalized regression and principal component analysis (PCA). In the first step, we



introduce the unobserved nonstationary common factors into the PPC-based objective function and
iteratively solve a regularized least-squares problem and an eigen-decomposition problem to obtain
the C-Lasso estimators of the group-specific long-run coefficients and the nonstationary factors and
factor loadings. We can do this simply because the presence of unobserved stationary common factors
will not affect the consistency of the long-run coefficient estimators while neglecting the unobserved
nonstationary factors would lead to inconsistency of such estimators due to the induced spurious
regression. Note that the individual’s group membership is also estimated at this stage. In the
second step, we can explore the first-stage residuals to estimate the unobserved stationary factors
and factor loadings. In the third step, we introduce three bias-correction procedures to obtain the
bias-corrected estimators of the group-specific coefficients.

Our theoretical results are concerned with developing a limit theory for Lasso-type estimators
in the present model setting which allows for stationary, nonstationary variates, and various coin-
tegrating linkages. The presence of unobserved common factors complicates the asymptotic analy-
sis in several ways. First, we establish preliminary rates of convergence for the estimators of the
group-specific long-run coefficients and the unobserved nonstationary common factors. To show
classification consistency, we also prove several uniform convergence results with the involvement of
unobserved common factors. Given these uniform results, we show that all individuals are classified
into the correct group with probability approaching one (w.p.a.1). The group-specific estimators en-
joy the oracle property in the latent group literature, so that the three bias-corrected estimators are
asymptotically equivalent to the corresponding infeasible ones that are obtained with full knowledge
of the individual group identities.

Since our model allows for both contemporaneous and serial correlation in the errors, nonsta-
tionary regressors, and unobserved common factors, the usual endogeneity bias in nonstationary
panels is present, originating in two primary sources. The first bias is commonly noted in nonsta-
tionary panels due to the weak dependence between the errors and nonstationary regressors (e.g.,
Phillips and Moon (1999)). As expected, the unobserved nonstationary common factors enter into
the bias formula. The second bias arises from the presence of unobserved stationary common factors
that can be correlated with the nonstationary regressors. We show that stationary common factors
complicate the asymptotic biases and covariance structures but do not affect the consistency of the
long-run coefficient estimators. Based on the bias formula we can employ the Phillips and Hansen
(1990) fully-modified OLS (FM-OLS) procedure to achieve bias correction. Further, we explore a
continuous-updating mechanism to obtain continuously updated Lasso (Cup-Lasso) estimators of
the group-specific parameters, in which procedure we update the estimators of the individual’s group
membership, and the unobserved nonstationary and stationary common factor components. With
these modifications our estimators are centered on zero and achieve the \/N T consistency rate that
usually applies in homogeneous nonstationary panel models. Lastly, we establish a mixed normal
limit theory for the bias-corrected group-specific long-run estimators, which validates the use of t,

Wald, and F statistics for inference.



In the above analyses we assume that the numbers of groups and common factors are known. For
practical work we propose three information criteria to determine the number of groups, the number
of nonstationary common factors and stationary common factors, respectively. These information
criteria are shown to select the correct numbers of groups and common factors w.p.a.l.

We illustrate the use of our methods by studying potentially heterogeneous behavior in the
international R&D spillover model using a sample of OECD countries for the period 1971-2004. As
in earlier work by Coe and Helpman (1995) we regress total factor productivity (TFP) on domestic
R&D capital stock and foreign R&D capital stock. Coe and Helpman assume all countries obey a
common linear specification and ignore the presence of common shocks across countries. In seeking
greater flexibility, our methods allow parameters to vary across countries but with certain latent
group structures and model the common shocks through the use of IFEs. Our latent group structural
model is consistent with the fact that cross-country productivity may exhibit multiple long-run steady
states. As a result, our methods reveal different spillover patterns than those discovered in Coe and
Helpman (1995).

Specifically, our empirical analysis yields two key findings. First, we confirm positive technology
spillovers in the pooled sample by allowing for the presence of common factors. This finding implies
overall convergence behavior in technology growth through direct R&D spillovers when controlling for
the unobserved global technology trend. Second, the group-specific estimates identify heterogeneous
spillover patterns across countries and indicate the existence of two types of R&D spillovers — positive
technology spillovers and negative market rivalry effects in the country-level data. This corroborates
the findings of Bloom et al. (2013) who also found two types of R&D spillovers from firm-level
data. Based on the empirically determined group patterns, we classify the OECD countries into
three groups designated as Convergence, Divergence, and Balance. The major sources of technology
change in the Convergence group come from positive technology diffusion and, as a result, the catch-
up effects through technology diffusion favor the growth convergence hypothesis. Conversely, when
market rivalry effects dominate technology spillovers, we observe overall negative R&D spillovers. For
these countries, technology growth relies on domestic innovations and exhibits divergence behavior.
Our findings therefore explain the growth convergence puzzle through heterogeneous behavior in
R&D spillovers.

A major contribution of this paper is to offer a practical approach that accommodates both
unobserved heterogeneity and cross-section dependence in nonstationary panels. We provide consis-
tent and efficient estimators of group-specific long-run relationships for the observables even when
individual group membership is unknown. The penalization method borrows from the C-Lasso for-
mulation in SSP (2016a), but is modified here by using the principal component method to account
for cross-section dependence simultaneously. Various papers account for unobserved heterogeneity
in large dimensional panel models by clustering and grouping; see, e.g., Bonhomme and Manresa
(2015) on grouped fixed effects, Qian and Su (2016) on structural changes, and Ando and Bai (2016)

on grouped factor models. But almost all the literature focuses on stationary panel data models.



Recently, Huang et al. (2020) have considered latent group patterns in cointegrated panels but they
do not allow for cross-section dependence.

Our theoretical results also contribute to two strands of the literature on cointegrated panels and
factor models. First, it is noted that the average and common long-run estimators permit normal
asymptotic distributions, whereas the heterogeneous and time-series long-run estimators have a non-
standard limit theory; see, e.g., Phillips and Moon (1999), Kao and Chiang (2001), and Pedroni
(2004). In our context, due to the presence of the common components, we maintain the simplicity
of asymptotic mixed normality under grouped parameter heterogeneity. Second, there is a growing
literature using factor models to capture cross-section dependence under the large N and large T’
settings; see, e.g., Bai and Ng (2002, 2004), Phillips and Sul (2003), Pesaran (2006), Bai (2009),
and Moon and Weidner (2017). Compared with existing work, our approach accommodates both
stationary and nonstationary common factors and provides a corresponding limit theory for inference.
Our asymptotic theory therefore applies to more general forms of nonstationary panel data models
with internally grouped but unknown patterns of behavior and to models of this type with both
stationary and nonstationary common factors.

The rest of the paper is structured as follows. Section 2 introduces a nonstationary panel model
with latent group structures and cross-section dependence and proposes a penalized principal compo-
nent method for estimation. Section 3 explains the main assumptions and establishes the asymptotic
properties of the three Lasso-type estimators. Section 4 reports the Monte Carlo simulation results.
Section 5 applies the methodology to study heterogeneous cross country behavior in R&D spillovers.
Section 6 concludes. The proofs of the main results are given in the online supplement that also
contains some additional discussions and simulation results.

NOTATION. We write integrals such as fol W (s)ds simply as [W and define Q'/2 to be any
matrix such that Q = (QY2)(QY2). BM(Q) denotes Brownian motion with covariance matrix €.
For any m X n real matrix A, we write its Frobenius norm, spectral norm and transpose as [|A]l,
| Al|sp, and A’, respectively. When A is symmetric, we use fi,,(A) and pi,(A) to denote its largest
and smallest eigenvalues, respectively. Let P4 = A(A’A)~'A’ and My = I — Py, where A’A is of
full rank, and I is an identity matrix. Let 0,x1 denote a p x 1 vector of zeros, I a b x b identity
matrix, and 1{-} an indicator function. Let M denote a generic positive constant whose values can
vary in different locations. We use “p.d.” and “p.s.d.” to abbreviate “positive definite” and “positive
semidefinite,” respectively. The operator 2, denotes convergence in probability, = weak convergence,
a.s. almost surely, and the floor function |z| to denote the largest integer less than or equal to z.

Unless indicated otherwise, we use (IV,T) — oo to signify that N and T pass to infinity jointly.

2 Model and Estimation

This section introduces a nonstationary panel model with latent group structures and unobserved

common factors. A penalized principal component method is then proposed to estimate the parame-



ters of the model and the unobserved group structure.

2.1 Model setup

We start by considering a panel cointegration model with both nonstationary and stationary regres-
sors. Assume that for individuals i = 1,..., N, we observe {yit,mut,xg,it}f:l where x1;; denotes
nonstationary regressors of order one (I(1) process) and x2;: denotes stationary ones (I(0) process),
such that
or 0
Yit = B1,;%1,it + Ba,iT2t + €t
! ’ : (2.1)
T1,it = T1,it—1 T Eit,
where y;; is a scalar, 5(1),1‘ is a p1 X 1 vector of parameters that is associated with the long-run
cointegration relationship, 85, is a pa X 1 vector of parameters that may capture the short-run
dynamics, and e;; has zero mean and finite long-run variance. We assume that the error terms e;

are cross-sectionally dependent due to the presence of some unobserved common factors, specified as
eir = M [ + wir = AV Ty + A% for + wit, (2.2)

where f? is an 7 x 1 vector of unobserved common factors that contains an 71 x 1 vector of non-
stationary factors fY; of order one (I(1) process) and an 73 x 1 vector of stationary factors £9, (I(0)
process), A = (A, \Y))is an r x 1 vector of factor loadings, and wu;; is the idiosyncratic component of
e;¢ with zero mean and finite long-run variance. For simplicity, u;; is assumed to be cross-sectionally
independent so that the cross-section dependence among the e;; only arises from the common factors
12, and E(ejpej) = E(A?'f?f?’)\g) # 0 in general.

In addition, we introduce latent group structures in 5?,17 which are heterogeneous across different

groups and homogeneous within a group:

ad ifi € GY

a9 ifieGY

where 042 # oY for any j # k, Uszng ={1,2,...,N}, and GgﬂG? = ¢ for any j # k. Let
Nj = #Gj denote the cardinality of the set Gg. For the moment in this section, we assume that the
number of groups, K, is known and fixed, but each individual’s group membership is unknown. In
Section 3.7, we propose an information criterion to determine the number of groups.

There are three main complications in this panel cointegration model. First, least-squares estima-
tors that ignore the factor component are inconsistent due to the presence of nonstationary common
factors. Noting that the components {/\(1)2 fo N fO, > 1} are still I(1) processes in general when

r1 > 1, the least-squares estimators of 5(1),¢ and Bg’i from the time series regression of y;; on 1 i



and w9 4 suffer from spurious regression. For this reason, we must take account of the nonstationary
factor component to obtain consistent estimators of the slope coefficients. Therefore, our panel la-
tent factor cointegration model is more general than the traditional panel cointegration model: the
cointegration vector here is (1, — (1):7;, )\(l)fi) and the equilibrium errors {y;; — 5(1)f¢531,it 2> 1)
are stationary whereas standard cointegrating equilibrium errors do not involve unobserved factors
such as f¥,. Second, even though Bai et al. (2009) study a homogeneous panel cointegration model
with nonstationary common factors, it is a big further step to establish desirable asymptotic proper-
ties of the group-specific long-run coefficient estimators and to recover unobserved group identities.
Due to the presence of common factors, the grouping C-Lasso algorithm and derivation of the oracle
property are considerably more difficult than that those of SSP (2016a).! Third, both unobserved
group structures and common factors complicate the non-negligible asymptotic bias in the long-run
estimators arising from endogeneity and serial correlations. An effective new bias-correction proce-
dure is then needed to re-center the limit distributions around zero to facilitate inference. All these
complications call for a new estimation methodology and asymptotic theory.

In the next subsection, we introduce the estimation procedure based on the level equations in
(2.1). A natural question (raised by a referee) is why not proceed to first difference the data and use

an estimation procedure based on the first-differenced equation
Ayie = BYiAT1 it + B AT 50 + AGA T + AGA fa + Auge, (2.4)

where, e.g., Ayt = yit — yit—1. To appreciate the importance of working on the level equations in

(2.1), we make two remarks.

Remark 2.1. Let e; = (€}y,....,e}p), x1; = (x;ﬂ.l, ...,ajgﬂ-T)’ and M;; = It — xy; (zéleo azgl for
[ =1, 2. If the error terms e;; are independent across individuals such that the common components
are absent in (2.2), we can run time series OLS estimation of y;+ on (2 ;, 3 ;) for each i to obtain
the OLS estimators (ngﬁgl) of ( (1)51‘7 3’1) It is well known that the OLS estimator Bl,i is super-
consistent and robust to problems such as omitted (stationary) regressors, serial correlations, and
endogeneity (see Phillips (1995), which also allowed for cointegrated regressors in a VAR setting).
For simplicity, we review the asymptotic properties of Bl,i and BZ,i by assuming E(z2+) = 0. Then,

under some standard conditions that ensure proper behavior of %33,1,@‘371713 %$/27i$27i, and %x’17ix2,i,

!The oracle property in the latent group literature is that the group-specific estimators are asymptotically equivalent
to the corresponding infeasible estimators that are obtained by knowing all individual group identities.



inter alia, we have

~ 1 -1 1 1
T(Brs—B8Y:) = <_$/11M213712> =21 i Maiei = <—$Ilze731z> Tmll,iMQ,iei +op(1),
& 0 L - L, 1, - 1,
vT (62’i a ’32”) = | pr2idiea ﬁ“’liMMei = \ a2 | Rt +op(1),
1 1
=y Maje; = Op(1) and —=a5,; My ze; = Oy (1) as T — oo,

T T 2L

where we use the facts that

Lo 1, 1/1, 1, 1, 1, Ou(T-1
ﬁ%,i 2Ll = ﬁ%,ﬂ?lﬂ‘_f Txl,z’@,i sz,zwli T%,ﬂ?l,i _ﬁxl,ixlﬂ—’_ p(T),
1 1 1 /1 1 171 1 _
fx/Q,Z'Ml,ixzi = fxé,ixz,i -7 <f$/2,i$1,i> (ﬁfci,ﬂLi) (fﬂﬁﬁﬂw) = fﬂcé,if@,ﬁOP(T b,

—1
s 1 _ 1., 1 (1, 1 . 1,0 N W -1
and similarly 7x9;M e; = TLo € — 7T (waa:l,o (ﬁxlyim’i) (Tml’ie,) = 79,6 + Op(T™).

The above results imply different convergence rates for 3;; and BQZ In particular, 8, ; is super-
consistent regardless of the properties of I(0) regressors or the endogeneity caused by the correlation
between {Axy i} and {e;}. If one further assumes orthogonality conditions on the stationary regres-

sors that ensure %xéjei = op (1), then we also have

. 1 11
T(By:—BY,) = (ﬁiﬂﬁﬂl,i) Tfnll,iei+0P(1)-

In this case, we have the asymptotic independence between BM and 5’21 In the presence of the
factor structure in (2.2), we can continue to obtain super-consistent estimators of 5(1),1‘ and consistent
estimators of 5(2],1‘ even if {Azy;} and {e;} are contemporaneously correlated. These appealing
properties are completely lost if one works on the first-differenced data. See the next remark.
Remark 2.2. In the absence of the factor structure in (2.2), we have the following first-differenced
equation:
Ayt = 5?:1A$1,1t + Bgfiﬁiﬂz,it + Augy. (2.5)

Apparently, the OLS estimator of ( (1)’ it 8’ ;) based on the time series regression of Ay; on (Ax] ;,, Az} ;)
is inconsistent if E [Azy 4Auy] # 0 (or E[Axg ;s Auy] # 0), not to mention the super-consistency of
the estimator of /3(1),1'- Since we allow for correlation between {Az1;} and {Au;}, estimation based
on (2.5) inevitably leads to inconsistency. This inconsistency of OLS-type estimators of ( [1):7;, 3’2)

continues to hold in (2.4) even when PCA is used to handle the factor components.



To proceed with the development of level equation estimation in (2.1), let

o = (Oél,...,OéK), /@ = (517 "'aﬁN)> Bl = (/6[,17 "'aﬁl,N)? A= ()‘1a "'aAN)/
Al = ()\11, ...,)\ZN)/, F= (fl, ...,fT)/, and ﬂ = (Flh ...,F}T), where [ = 1,2.

The true values of o, 3, 3;, A, A, F, and Fj are denoted o, 3, B?, A% AV FO and Flo. We also use
af, Y, ?71, Bgyi, A = (AN and £2 = (fY%, £ to denote the true values of o, Bis Bis Bois Ni =
(M AS;), and fy = (f1;, fb)'. Interest focuses primarily on establishing each individual’s group
identity and on consistent estimation of the group-specific long-run relationships «j in the presence

of stationary regressors and both unobserved stationary and nonstationary common factors.

2.2 Penalized principal component estimation

In this subsection we propose an iterative PPC-based procedure to jointly estimate the long-run
cointegrating coefficients f3; ;, the short-run parameters 3, ; and unobserved common factors f;, and

to identify the group structure in these long-run relationships. Combining (2.1)-(2.2) yields
Yit = ﬁ?{ﬂl,it + Bgfﬂzit + A(l);f?t + )‘géfgt + Uit (2.6)
or in vector observation form:
yi = 2B + FPAY + FRAS + wy = w1380 + 02,089 + FYAY + FRAS; + i, (27)

where y; = (Yi1, - ¥ir), T1.4, T2, FY, FY and u; are similarly defined, and z; = (21,4, v2,).

Ideally, one might attempt to estimate both the stationary and nonstationary common compo-
nents along with the parameters of interest, 3;; and 3,,. But due to the fact that the stationary
components and nonstationary components behave differently and require different normalization
rules, it is difficult to study the asymptotic properties of the resulting joint estimators. Nevertheless,
as mentioned above, one can obtain least square estimators of 3 ; and 3, ; by taking into account
the nonstationary factor component and ignoring the stationary factor component. As we discussed
in the model setup, the estimators of the coefficients of the nonstationary regressors still achieve
consistency regardless of endogeneity, serial correlation or the presence of stationary regressors, and
the estimators of the coefficients of the stationary regressors are consistent under some orthogonality

2 Lastly, we estimate the stationary common component from the resultant residuals.

conditions.
This motivates the following sequential approach to estimate the unknown parameters in the model.
We first estimate the nonstationary factor component along with 3, ; and 3, ;, then estimate the
stationary factor component along with 5 ; from the resultant residuals. The step-wise procedure is

as follows.

2We require the stationary regressors to be uncorrelated with the stationary common factors, factor loadings and
error terms (c.f., Phillips (1995) and Bai et al.(2009)).



Step 1. We estimate (3, F1, A1) by minimizing the following least squares (LS) objective function:

N

SSR(B, Fi, A1) = ) (i — 2B — Fidu) (i — 2B — Fid) (2.8)
=1

under the constraints that 2F1F1 = I,, and A{A; is diagonal. It is well known that the LS

estimator (ﬁi, F1) is the solution to the following set of nonlinear equations:
- N . -1,
Bi = <51 ir Ba 7,) = <$‘M‘ wz) i M yi, (2.9)

T2 Z ‘7:7“61)

AVinr = F, (2.10)

where My = I — %Flﬁl’, %F{ﬁ’l = I,,, and ‘717NT is a diagonal matrix consisting of the r;
largest eigenvalues of the matrix inside the square brackets in (2.10), arranged in decreasing
order. The LS estimator of A; = (A11,...,A\1n)" is given by A = (:\11, ...,5\1N)’ where ;\/M =
2 (s —2;3;)' F1. Tt is easy to verify that &AjA; = 2F’[NT2 SN (i — xiB;) (i — iB;) Fi] =
T2F{Fi\ViNT = ViNT.

Step 2. Using the initial estimates of BZ and F as starting values, we employ the methodology of SSP
(2016a) by minimizing the following PPC criterion function to obtain estimates of (3, a, F1) :

A N K
QN7 (B, 1) = Qur(Br. Ba,F1) + Z:: H1 181 — o) (2.11)

where QNT(BLBzaFl) Tz Zz 1 ( — I 151 J 9U2,1'52,z'),MF1 (yi - l‘l,zﬂu - 9U2,152,z‘) , and
A = AN,T) is a tuning parameter. Minimizing the PPC criterion function in (2.11) pro-
duces the C-Lasso estimators (3;, ax, F1) of (8;, ar, Fi) where Fy = (fi1,...., fir) and B; =
(B,“,B/QZ)’ Note that

. 1 N . . N .
FIWVINT = |5 > (Wi — 21481, — 22,i82,) (Wi — #1601 — ©2,iB2,)" | F1, (2.12)
NT2 ) ) ) 3
i—1

where %F {F 1 = I, and Vi y7 is a diagonal matrix consisting of the 1 largest eigenvalues of the

matrix inside the square brackets in (2.12), arranged in decreasing order. The PPC estimator
o A 3 3 N 5 5\ E

Of A1 = ()\11, veey )\1N)/ 1S given by A1 = ()\11, veny )\1N)/ where )\11- = %(yz _{L'Liﬂl,i — $277;,327i)/F1.

Define the resulting estimated groups

Gp={i€{1,2,.,N}: By, =dy} for k=1,... K. (2.13)
. . > A kal . . . . A A/
Step 3. Given the estimates Bl,i’ ag, and Fp, we obtain the cointegration residuals 7;; = vy — 51,1'131,# —
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5\/1Z f11. Based on the consistency in estimation of the nonstationary part, we have 7 = A F9+
Bgfi1:27it + ui¢ + vy where vy signifies the estimation error from the early stages. Then we can
employ the standard procedure in stationary panel models with interactive fixed effects, see
Bai (2009), Moon and Weidner (2017). The LS estimator of (BM,FQ) is the solution to the

following set of nonlinear equations:

y 1
Bai= <$l27iMp2962,z‘> :L"z,iijz, (2.14)

. 1 X
Vo Nt = NT ;(ﬂ — 22,iB9,)(Fi — 2iB9,) | Fa, (2.15)

where %FQIFQ = I, and Vo n7 is a diagonal matrix consisting of the ro largest eigenvalues of

the matrix inside the square brackets in (2.15), arranged in decreasing order.

Let Bl = ([3171, ‘--:Bl,N) and & = (&, ..., ax) for [ = 1,2. We will study the asymptotic properties
of BM, ag, and Fy in Section 3.2 and the classification consistency of the group structure in Section
3.3. Noting that &; has an asymptotic bias, we will propose various methods to correct its bias in
Section 3.4. The asymptotic properties of B2,i and Fg may also be studied but they are not the focus
of the present paper.

3 Asymptotic Theory

3.1 Main assumptions

We introduce the main assumptions used to study the asymptotic properties of the estimators Bl,
&, and F1. Let Qi o0(F1) = 757 ;Mp 21, Q1(F1) = diag(Q1.00(F1), ..., QNaa(F1)), and

1 / 1 / 1 /
vretiiMrriien FEr Mpzigae o g Mt NvaN
1 / 1 / 1 /
vrElioMriian o Mizigae 0 gEriiMeTiNaN
Q2(F1) = : : , . ;
1 ! 1 ! 1 !
WJBLNMFllBl.laNl WJBLNMF1$1,2ULN2 W-’El,NMlel,NaNN

where F} satisfies %F{Fl =I,, and a;j = A?g(%A?’A?)_l)\%. Note that Q2(F}) is an Np; X Np; ma-
trix. Let C = o(A°, F), the sigma algebra generated by the common factors and factor loadings. Let
M denote a generic constant that may vary across occurrences. Define wir = (wit, €y, AfYr, £, T 1)
and let Q; = 3>°°°  E(wj;jwjy), be the long-run covariance matrix of {w;}. We also define the

contemporaneous variance matrix ¥; = E(w;w],) and the one-sided long-run covariance matrix
A; = Z;’;O E(wiowz/-j) =T + ;. Note that ; =I", + I'; + ;. Conformably with w;, €; and A; are
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partitioned as follows

M1 Q2 N3 Qg Qasy A1 A1z Az A Arsy
Qo1 Qa2 oz Qog; Coasy Agi; Ao Aog; Aoggy Aosy
Q= Q31 Q32 Q33 Q3q Q35 | and Ay = | Ag1; Asza; Azz Asg Asgy
Qa1 N2 Nz Qs Qs Agiy Dazi Az Ags Agsy
Q15 s25 W53 Dsas Oss Asi; Asai Aszy Asai Assg

Partition ¥; correspondingly. Let p = p; + pa. Let S1,.52,53, S4, and S5 denote, respectively, the
Ix(I+p+r),prx(1+p+r),r1x(1+p+7), rax (1+p+r) and p2 X (1+p+7) selection matrices
for which S1w;: = i, Sowsr = €4¢, Szwst = Aflot, Siw;ip = fgt and Sswi; = xt. Let Saz = (55, 55),
a (p1+71) x (14 p+r) selection matrix. We assume without loss of generality that x; has zero
mean.?
We make the following assumptions on {wj:} and {\;}.

Assumption 3.1 (i) For each i , {wi,t > 1} is a linear process: wix = ¢;(L)vit = Y 220 Vit
where vy = (vzt,vzt,v,{ll v{zl,vﬁfl)/ is a (L+p+r)x1 random vector that is i.i.d. over t with
zero mean and variance matriz I qppr; supys; maxi<i<n E(|lvg]|?11€) < M, where ¢ > 4 and e

is an arbitrarily small positive constant; v, v, vtf 1, vth, and v;? are mutually independent; and

(v, v, v are independent across i.
(i) supy>1 maxi<i<n Y ;2 jk||q§ij\| < oo for some k> 2, and S2382; S5 has full rank uniformly
(tii) (uit,e;t,:n’zl-t) are independent across i conditional on C.
(iv) B(wauis) = 0 and B(xg i1 fS) = 0 for s > t.
(v) N is independent of vjr for all i, j,and t.
Following Phillips and Solo (1992, PS hereafter), we assume that {w;,t > 1} is a linear process

in Assumption 3.1(i). For later reference, we partition the matrix operator ¢;(L) conformably with

wj; as follows:

SrU(L)  oi(L)  ¢T(L)  @i(L) er(L) ¢;"(L) ¢ (L) 0 0 ;"
¢"(L) ¢ (L) ;" (L) ¢(L) ;7 (L) ¢;"(L) ¢ (L) ¢ (L) ¢ (L) &7
oi(L)=| o""(L) " (L) ¢"TH(L) MP(L) ML) |=| 0 0 ¢"NL) MRy 0
¢'f2u(L) ¢f28(L) ¢f2f1 (L) ¢f2f2(L) ¢f2w2(L) 0 0 ¢.f2f1(L) ¢f2f2(L) 0
¢7(L) (L) ¢ (L) ¢ (L) 672" (L) ¢7*(L) ¢7*(L) ¢ (L) ¢, (Lz ¢)?212 (L)
3.1

¢'2(L), ¢2°(L) and ¢2*2(L) are all matrices of zeros. Moreover, we assume that qﬁ“fl( L)y=0

for I = 1,2. This assumption indicates that there exists no serial or contemporaneous correlation

3If BE(w2,i) = v2; # 0, we can rewrite the model (2.6) with the inclusion of an intercept, such that y;; = p; +
,B(l)fixl,it + ,Bgfixgyit + AV + A% 9 + wie, where a3 ;; = 22,4 — v2; has zero mean and p; = ﬁg:ivzi.
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between the regression error u;; and (A ff)t' , gt’ ) . In Assumption 3.1(iv), we also require the stationary
regressors to be sequentially exogenous to simplify the asymptotic analysis. These conditions ensure
the consistency of the initial estimators of 37 ;’s and impose some restrictions on ¢}'"*(L), ¢7*"(L)
and qbfo ?(L). For the consistency of the estimators of Bgyi’s, we further require that the stationary
regressors are uncorrelated with the stationary common factors as in Assumption 3.1(iv).

The moment condition in Assumption 3.1(i) is needed to ensure the validity of the functional
central limit theorem for the weakly dependent linear process {w;}. We apply the Beveridge and
Nelson (1981, BN hereafter) decomposition

wit = ¢;(L)vie + Wir—1 — Wi, (3.2)
where Wi = > 222 &ijvi,t_j and &ij =D o ji1 Pis- Assumption 3.1(ii) imposes a uniform k-summability
condition on the coefficient matrix ¢;; that ensures 3 >2 ||(ESZJ||I€ < 00 by Lemma 2.1 in PS, thereby
assuring the validity of (3.2). This condition further implies that w;; behaves like a stationary process
with a finite kth moment. The second part of Assumption 3.1(ii) rules out potential cointegration
relationships among the variables in (21 ;, 9. Assumption 3.1(iii) allows (ust, €l 5 ;1) to be cross-
sectionally dependent, but they become independent across i given C. By saying that “(u,e;) are
cross-sectionally dependent but they become independent across ¢ given C,” we mean that cross-
section dependence among {(u;,¢e;)}, if it exists, only comes from the sigma algebra generated by
the common factors and factor loadings, C = o(A?, F?). Unconditionally, we allow for cross-section
dependence among {(u;t,€;¢)}. Assumption 3.1(v) ensures that the factor loadings are independent
of the generalization of the error processes over t and across i. Assumption 3.1 validates the following

multivariate invariance principle for partial sums of w;;
1 .
—= sz’t = B;(-) = BM;(;) as T — oo for all 1,

where B; = (By;, BS;, Bs, By, BL,) is a (1 + p+ ) x 1 vector Brownian motion with a covariance

matrix €2;.

Assumption 3.2 (i) As N — oo, +A”A° 25y > 0and AYAY = Op (N1/2). SUp y>1 MaX1<i<N A
< ¢y < oo.

(i3) B AfL]297¢ < M and B f9,||?4¢ < M for some € > 0, ¢ > 4 and for all t . As T — oo,
%Zle oY <, | BsBY and %23:1 O 2 %4y > 0, where By is an ri-vector of Brownian
motions with a long-run covariance matrix 33 > 0.

(iii) Let vy (s,t) = % Zf\il E(upuis) and &y = + Zfil[uituis — E(uituis)]. Then supy>qsuprsq
max < t<1 N?BlEg[* < M and supysysuppsy T~ Y0 S50 [vn(s D)2 < M.

(iv) We consider the linear combinations of the nonstationary regressors xy ;b1 ; where by; is a
p1 x 1 vector. Let by = (b11,....,b1n), F1 € F1 and 71 = (71, i), where Fy = {Fy € RT>™:

%F_{Fl = I, } and my; is an 1 X 1 real vector. Let Xibs = x1:b1; — Flo/\cl)i. We assume
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(a) There does not exist (by, Fi,m1) € RPN x F) x RVX™ wjith by = (b1,1, ..., b1,n) # 0 such

that we can write

A,
$1,ib1,i = (Flo, Fl) li a.s. Vi; (33)

T

(b) There exists a constant ¢ > 0 such that
N 1N
. /!
min w | == Xibi Xib, | = cicNT W.p.a.l; (3.4)
{breRr N lbyP=cnr}, £~ (NT2 ; R 1)

(c) There exists a constant ppy, > 0 such that P (pip, (Q1(FY) — Q2(FY)) > cpmin) =
1—o(N7Y).

(v) There exist constant bounds {cy,C2} such that 0 < ¢y < MiNi<i<N fmin (E(xgzta:ézt)> <
MaX1<i<N Hmax (E(M,z‘tx/z,it)) < & < o0

Assumption 3.2(i)-(iii) imposes some standard moment conditions in the factor literature; see,
e.g., Bai and Ng (2002, 2004). Assumption 3.2(i) indicates that the stationary factor loadings and
the nonstationary factor loadings can only be weakly correlated, which facilitates derivations. As-
sumption 3.2(iii) imposes conditions on the error process {u;:}, which are adapted from Bai (2003)
and allow for weak forms of cross-section and serial dependence in the error processes. Assumption
3.2(iv.a) is the key identification condition that will be satisfied provided no linear combinations of
Z1,4 can be written as a pure factor structure with 2r; factors for all 7. In particular, if there exists

a combination (by, F1, 1) such that
ll,ixLit = A(l);f?t + i f1e for all (i,t),

then we must have by = 0 and 7, f1; = =AY £ for all (i,¢). This condition does not rule out
common regressors in the model. For example, we can consider the simplest case where r; = 1 and
x14 = w14 i3 I(1). As long as A}; varies across i and z;; is not proportional to fY, (z1; and f7,
are not collinear in the general case), Assumption 3.2(iv.a) can still hold. See the Online Appendix
C for more details. Assumption 3.2(iv.b) is used to establish the preliminary consistent rates in
Theorem 3.1(i) below and it is in the same spirit as Assumption 4(ii.a) in Moon and Weidner (2017).
Assumption 3.2(iv.c) is used to establish the uniform classification consistency in Theorem 3.3 below.
It assumes Q1 (FY) — Q2(FY) is positive definite in the limit. Assumption 3.2(v) is required for the
identification of B%i and apparently it allows for the presence of both common stationary regressors

and time-invariant regressors in o ;.

Assumption 3.3 (i) For each k =1, ..., Ko, N;/N — 71, € (0,1) as N — co.
(1) ming<pj<K Hozg — 049-” > ¢, for some fixed c, > 0.
(iii) As (N,T) — oo, N/T? — ¢1 € [0,00) and T/N? — c3 € [0, 00).
w) Let dy = loglogT. As (N,T) — oo, \WT — 0, \TN=Y4d:2/ (logT)'™ — oo, and
(i) glog 7/ (log
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dZNYIT=1 % (log T) ¢ — 0.

Assumptions 3.3(i)-(ii) were used in SSP (2016a). Assumption 3.3(i) implies that each group has
an asymptotically non-negligible number of individuals as N — oo and Assumption 3.3(ii) requires
the separability of group-specific parameters. Similar conditions are assumed in the panel literature
with latent group patterns, e.g., Bonhomme and Manresa (2015), Ando and Bai (2016), SSP (2016a),
and Su and Ju (2018). Assumption 3.3(iii)-(iv) imposes conditions to control the relative rates at
which N and T pass to infinity. They require that N pass to infinity at a rate faster than 7%/2
but slower than T2. The involvement of the factor dr is due to the law of iterated logarithm. One
can verify that the permissible range of values for A that satisfy Assumption 3.3(iv) is A oc T~ for
a € (%,%) for ¢ > 4.

3.2 Preliminary rates of convergence

. . 2
Let by = f;; — ﬁ“forl—l 2, 67 = min(v/N,T), Cyr = min(v/N, VT), nlNT_NZZ 1 ,

and Hy = (FAY AO)( FY Fl)V1 ~r- The following theorem establishes consistency of B, i 62 0> nd
£

Theorem 3.1 Suppose that Assumptions 3.1-3.2 hold. Then
(i) & Sila I1Bra = B4l = Op((T/d}) /%),
(i) | Pe, - Pro|| = On((x /a2,
(iti) 7| By — FYHi| = Op(niny + T71/2Cxp).

Theorem 3.1(i) establishes the preliminary mean-square consistency of {B“} Theorem 3.1(ii)
shows that the spaces spanned by the columns of Fy and FY are asymptotically the same. Theorem
3.1(iii) indicates that the true factor F{ can only be identified up to a nonsingular rotation matrix Hj.
Compared with Bai and Ng (2004) and Bai et al. (2009), our results allow for heterogeneous slope
coeflicients, stationary regressors and unobserved stationary and nonstationary common factors.

The following theorem establishes the rate of convergence for the individual and group-specific

estimators, as well as for the estimated factors up to rotation.

Theorem 3.2 Suppose that Assumptions 3.1-8.2 hold. Then
(i) % Zz’]\il 181, — 5(1),1‘\\2 = Op(drT™?),
(ii) Bri = B3 = Op(dy*T 1+ \) and By, — B3, = Op(dy*T V2 + N7VV2) fori=1,.., N,
(iii) (Grys s Gry) — (0, ) = Op(d1T/2T*1) for some suitable permutation (& 1y, ..., &(x))
Of (6[1, ceey &K);
(iv) T~ Fy — FOH || = Op(d*T—1 + (NT)"Y/?).

Theorem 3.2(i) establishes the mean-square convergence for the estimators of 5[1)71» while Theorem
3.2(ii) studies the preliminary point-wise convergence of B 1, and BQZ The usual super consistency of

nonstationary estimators Bl,i is preserved if A = O(T~!) despite the fact that we ignore unobserved
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stationary common factors and allow for correlation between u; and (f, f{{). Theorem 3.2(iii)
indicates that the group-specific parameters, af, ...,a?(, can be consistently estimated. Theorem
3.2(iv) updates the convergence rate of the unobserved nonstationary factors in Theorem 3.1(iii).

For notational simplicity, hereafter we simply write &y, for & () as the consistent estimator of 042.

3.3 Classification consistency

We now study classification consistency. Define
EkNT,i ={i¢ lez € Gg} and FkNT’Z- ={i¢ G2|i e (;k}7

where ¢ = 1,..., N and k = 1,...K. Let EkNT = UieékEkNTi and FkNT = Uz‘eékaNTi' The events
Exnt and Fjnp mimic type I and type II errors in statistical tests. Following SSP (2016a), we say
that a classification method is individually consistent if P(Exn7;) — 0 as (N,T) — oo for each
i€ Gg and k=1,...,K, and P(FkNT’i) — 0 as (N,T) — oo for each i € Gg and k=1,...,. K. Itis
uniformly consistent if P(UI_| Epnr) — 0 and P(UE_ Fynr) — 0 as (N, T) — oo.

The following theorem establishes uniform classification consistency.

Theorem 3.3 Suppose that Assumptions 3.1-3.8 hold. Then
(i) PO Egnr) < 32 P(Ervr) — 0 as (N, T) — oo,
(ii) P(UR, Fint) < Y2y P(Finr) — 0 as (N, T) — oo

Theorem 3.3 implies uniform classification consistency — all individuals within a certain group,
say G%, can be simultaneously and correctly classified into the same group (denoted Gk) w.p.a.l.
Conversely, all individuals that are classified into the same group, say Gr. simultaneously belong to
the same group (GY) w.p.a.l. Let Nj, = #Gy. One can easily show that P(G), = GY) — 1 so that
P(N, = N;,) — 1.

Note that Theorem 3.3 is an asymptotic result. It does not ensure that all individuals can
be classified into one of the estimated groups when T is not large or A is not sufficiently big if
we stick to the classification rule in (2.13). In practice, we classify i € Gy, if 31,1 = ¢, for some
k=1,.,K, and i € Gy for some | = 1,..,K if ||B;; — &l| = min{||By; — a1ll, ... |[Br; — axl|}
and Zszl I{BM = &i} = 0. Since Theorem 3.3 ensures Eszl P(BM =da) — las (N,T) — o0
uniformly in ¢, we can ignore such a modification in large samples in subsequent theoretical analyses

and restrict our attention to the classification rule in (2.13) to avoid confusion.
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3.4 Oracle properties and post-Lasso and Cup-Lasso estimators

We examine the oracle properties of the three Lasso-type estimators. To proceed, we add some
notation. For k =1, ..., K, we define

N
Uk}NT = \/_T Z fL'l %MFO ('U;Z + F2)\ Z U] + F2 )\27 alj s
i€GY Jj=1

N T
Bint1 = ;Bk,iNT,l = ﬁ Z (ZZ 1{t =5} —s,1{s < t}) Agy 4,

€GO \t=1 s=1

N
1
Bint2 = Y Brinte=——= Y Ec(21:) MpoFy | A, — Z/\zj% :
i=1 VT '

i€GY
Vint = $l(1) ZZ{}% Vitol) = [1{t = s} = sas1 {s < 1}] Ly} 61(1)' 5"
Ego t=1 s=1
+\/NLT i Ec (z),)1{i € Gg} - % Z aijBe (] ;) Mpou;
k2 =1 jeG?
1
+m ZO [1,; — Bc (21,)] Mpo F3 Ay,
ieGy,
where s = fI (F'FY) ™ iy, 5as = 1{t = s} — sas, 03 = (v, 05, 052'), Vite = 3 ot Be (1) =

R L A R R R (O A o
B, 9 (1) = ( o1 (L) ) - ( 6 (L) 65 (L) ¢52(L) ) ST 00 5T Ot

o . —d; 1 / . 1 / )
and ¢ is a vector of ones. Let Q1n7 —dlag(m > i€Go fﬂl,iMF{)l'Lw o N TE ) e :rLiMFlo:rl’Z>
_ 1 / . — —
and QaNT ki = FovT2 2ic? Djec? T1iMpoxyjaij for k1 =1,.., K. Let Qnr = Qint — Q2N

Q11— Q2,11 —Q2,12 . —Q2,1K
Qant11 - QanTiK
, . , —Q2.21 Qr2— Q222 ... —Q22K
Qant = : . : and Qo = ) ) )
QanT K1 - QaNT,KK ' ' . '
—Q2,K1 —Q2x2 ... Qurx — Q2KK

where Q1 = limy_ NL;C Ziegg Ec (f B%Béi) , Q2.1 = limy o0 _N}Vk Ziecg ZjeG? aijlBe (f BZZBéJ) ’
- -1
and Bo; = By; — [ Ba;BS ([ BsBj) ~ Bs.
Let & = (d:l? ,dK) Let UNT = (U{NT, ceey U;(NT)/7 BNT = (BiNT’ .. .,B/K-NT)/, VNT =
(VllNT7 o VI/( NT)/ and Bynt = Byt + BinT2. The following theorem reports the Bahadur-type

representation and asymptotic distribution of vec(é& — a?).

Theorem 3.4 Suppose that assumptions 3.1-3.8 hold. Let &y, be obtained by solving (2.11). Then
(i) VNTvec(& — a®) = VDN Qn-Unt + 0p(1) = VDN Qny (Ve + Br) + 0p(1),
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(ii) VNTvec(& — a®) — VDN QypBnr = MN (0, DoQy Q") as (N, T) —
where Dy :diag(Nﬁl, ey NﬂK) ®Ip1, Dy :diag(Tl . TK) ®Ip1, Qo = hm(NT)ﬂoo QNT, and QnT =
Var(VNT\C’) .

Theorem 3.4 indicates that V7 and By7 are associated with the asymptotic variance and bias
of &j. The decomposition Bynt = Bpnt1 + Bint2 indicates two sources of the bias. The first
bias term Bjn7,1 results from the contemporaneous correlation between (21, fir) and u; and the
serial correlation among the innovation processes {w;}. Apparently, the presence of unobserved
nonstationary factors f7, complicates the formula for B, Nt through the term s¢,. The second bias
term Byn7 2 is due to the presence of the unobserved stationary factors fgt. In the special case where
neither f{)t nor fgt is present in the model, we have Bynyr = Byt = ﬁ ZieGg Aoy ;. This is
the usual asymptotic bias term for panel cointegration regression that is associated with the effects
of the one-sided long-run covariance (c.f., Phillips (1995) and Phillips and Moon (1999)). The ith
element of Viyr is independent across ¢ conditional on C and E¢ (Vyr) = 0. This makes it possible
for us to derive a version of the conditional central limit theorem for Vi and establish the limiting
mixed normal (MN) distribution of the estimators & in Theorem 3.4(ii).

As shown in the proof of Theorem 3.4, the asymptotic bias term Byt is Op(y/Ni), which implies
the T-consistency of the C-Lasso estimators &i. To obtain the V' NT-rate of convergence, we need

to remove the asymptotic bias by constructing consistent estimates of Byr.

3.4.1 Bias correction, fully modified and continuous updating procedures

A bc
G )
and the fully-modified continuously updated post-Lasso

Three types of bias-corrected estimators are considered: the bias-corrected post-Lasso estimator &
the fully-modified post-Lasso estimator aém
(Cup-Lasso) estimator & C: P whose definitions are given below.

Following Phillips and Hansen (1990) and Phillips (1995), we first construct consistent time series

estimators of the long-run covariance matrix €); and the one-sided long-run covariance matrix A; by

T-1 j T— )
j=—T+1 7=0

where w(-) is a kernel function, J is a bandwidth parameter, and I';(j) = %ZZ:{ Wi ¢4 W05, with
Wit = (Uit, AT 4y, A fi fét,xéﬂ-t)’ . We partition {; and A; conformably with ;. For example, Ajl,i
denotes a submatrix of A; given by SinSl’ for j,1 =1,...,5.

We make the following assumption on the kernel function and bandwidth.
Assumption 3.4 (i) The kernel function w(:): R — [=1,1] is a twice continuously differen-
tiable symmetric function such that [* w(z)?*dz < oo, w(0) = 1, w(z) = 0 for |z| > 1, and
lim, . w(z)/(1 = |z[)? = ¢ > 0 for some q € (0, 00).

(ii) As (N,T) — oo, N/J* — 0 and J/T — 0.
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We modify the variable y;; with the following transformation to correct for endogeneity:
St 5. -1
Uit = Yit — 12,09 ;AT1 51 (3.5)

This would lead to the modified equation g;; = BY Tt + 521$2 it + AUFY 4+ A S, + 4, where

St !
uit = Ut — 912,2‘9221‘A$1,it- Define
o s
Afy ;= Auzi — 12,055, A02. (3.6)

Note that (3.5) and (3.6) help to correct for endogeneity and for serial correlation, respectively. Let
95 = (93}, .-, G5) and A21 = AB/@"

We can obtain the bias-corrected post-Lasso estimator & bc , the fully modified post-Lasso esti-
mator ozfé , F1 and Fy by iteratively solving the following equatlons (3.8) to (3.10)
k

vec <dlg> = vec (&) — \/ QNT (BNTl + Bnr 2) (3.7)

-1

&fé’:: Zac“M T1, lez X —T@( kNT1+BkNT2> , (3.8)
i€Gy, i€Gy,
. 1 & ; -
FVinT = | 5 Do - xl,z‘dfé — 22,if2,) (5 — @1 zaf@ —22if5,) | 11, (3.9)
L k=1ieq,
BVant = |57 Z Z (9i — fUl.i@g: — 289, — F1 A1) (i — $1,i@féT — x2if9; — F1A1)' | Fa,
L k=1ieq,

(3.10)

where BNTJ = (BiNTlv'" E.,KNTZ)/ for I = 1, 2, BkNTJ = ﬁzze@c (Zthl Zi,:l f{ts> Aglﬂg,

BkNTQ = ﬁ Zzeck (Zt 125 1%ts> Agy 1/\217 BkNTl = \/]]A\-[_kT Zzegk (Zt 1 Zs 1 %ts> ;1 i
Sas = 1{t = s} — su, 51 = Fl(FJF) os = Flufis/T? Mo = Aoy — szzl Aojaij, and Gij =
;\;i(%f\’lAl)_lﬂlj. Here the definitions of Fj, VinT, Fy, and Vo, Ny are similar to those defined
above.

We obtain the fully modified Cup-Lasso estimators ézglp by iteratively solving (2.11), and (3.8)
0 (3.10), where we also update the group structure estimates {Gy}. Note that F1, Vi n7, Fb, Va N,

and the factor loading estimates {5\“, 5\2Z} are also updated continuously in the procedure to obtain
~ Cup
G -
Let &me = (&gm, dem) and &" = (dgu’) ACGUP ). We establish the limiting distribution of
1
the bias-corrected post-Lasso estimators a , the fully modified post-Lasso estimators al é and the

Cup-Lasso estimators &° G P in the followmg theorem.
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Theorem 3.5 Suppose that assumptions 3.1-3.4 hold. Let “b? be obtained by iteratively solving
(3.7), (3.9)-(3.10); let & Afm be obtained by iteratively solving (3 8)-(3.10); and let & AC“p be obtained
by iteratively solving (2.11) and (3.8)-(3.10). Then as (N,T) — oo,

(i) VNTvec(a; — o) = MN(0, DoQy'Q0Q5"),

(i) VNTvec(&l" — a®) = MN(0, DoQy' 5 Qq"),

(iti)VNTvec(&g" — a) = MN(0, DoQy ' Q5 QyY),
where QEJF = limy 700 QET, Q}T :Var(V§T|C) , VJT is defined in the proof of Theorem 8.5, and
Do and Qg are as defined in Theorem 3.4.

Theorem 3.5 indicates that all three types of estimators achieve the v/NT-rate of convergence
and have a mixed normal limit distribution. Asymptotic ¢-tests and Wald tests may be constructed
as usual, provided that one can obtain suitable estimates of Qg, Qn7, and QET. We can estimate
Qo by Qo = Ql NT — Qg ~NT where Ql N7 and Qg ~T are analogously defined as Q1n7 and Qont with
Ny, Gg, FY, and AY replaced by Ny, Gi, F1, and Ay, respectively. We can also show that Qyr and

Q}T can be consistently estimated by

lA) N T T N
A NK I oax oA A S5/
Qnr = NT2 ZZX ths ;ktu;(s ZBiNTBiNT>
i=1 t=1 s=1 =1
D N T T
A+ ZNK *+o +/
W = S DD D> XX, ZB@NTBM’
i=1 t=1 s=1
where X;; = ( ’“t, s Kzt) X/ k.t 1s the tth row ofX;”, X;” = Mg, xlll{z € Gk} ~ deGk a;j Mp, w15,

Dy =diag (N e R V@1, Bint = (Bl ANT s BKZNT) By, ANT = = By zNT1+Bk 4NT,2 Bk iNT,1 =
\/N_kT (thl 25:1%t3> Ao11{i € Gi}, Brinta = m (thl S %ts) Aguidoil{i € Gyil,
- A fm A N F e (.. Bt —(BY Rt/ p+ Bt

Uy = Yi — @y, 10 — Po@2,i — Ay fu for i € Gr, Biyp = (B] ANt - Bre int)'s By, z'NT = Bk,iNT,l +

s -+ _ 1 T t 2 axt ~ fm ~ ]
By int,2, Bk,z’NT,l ~ T (Zt:l Py %ts> 21 zl{l S Gk:} and yzt — oy, 'z it — BoiT2,it —

5\,11 flt for i € Gj,. See the proof of Lemma A.11(ix) in the Online Supplement. Given these estimates,
it is standard to conduct inference on elements of a.
3.5 The case of incidental time trends

In the above analysis, we assume that there are no deterministic linear time trends in the y-equation
and the nonstationary regressors and common factors are pure unit root processes without drifts.

This subsection relaxes these restrictions to incorporate the deterministic components into our panel
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latent factor cointegration model. Here we consider the following model:

Yit = 1 + pit + B + B ima + At + Ao S + it
T1it = P15 T T1it—1 + E1its ) (3.11)
fie = pt + fra +€{1»

wherei=1,...,N,t=1,...,T, u; denotes the intercept or individual fixed effects and p,t denotes the
incidental linear time trends. We allow for the presence of drifts y; in the I(1) regressors {1}
and drift ¢/t in the I(1) common factor {f1;}. The remaining variables are defined as before.

We first discuss the presence of an intercept u,; alone in the y—equation. In this case, as discussed
in Section 3.1, pu; could be related to the non-zero means of the stationary regressors and stationary
common factors. For example, if E(xg;) = vy # 0, we can rewritten the model (2.7) with the
inclusion of an intercept, such that y; = p; + ,B?fixl,,-t + Bgfiac;it + A0 4 ALY 4 i, where
:U;’it = X2, — U2; has zero mean and p; = ngivm-. In this case, we can employ the within-group

demeaned transformation to eliminate the individual fixed effects to obtain
Git = B @1t + By @2, + NSl + Noy fay + i,

where ¥;: = yir — % Zthl Yit, and T1 i¢, T2,it, flt, fgt, and @ are analogously defined. The PPC-based

estimation procedure is identical to that of Section 2.2 and implemented on the demeaned data.
Second, when we have both individual effects and incidental time trends, we can similarly employ

the within-group detrended data to eliminate both individual fixed effects and incidental time trends.

Specifically, we consider the detrended model:
Yit = ﬂiyiitl,it + 5/2,1‘3.32,115 + )\/1071]0% + A/Q(Tzfgt + U,

where 9;t, ©1,5¢, T2,it, f1t, fgt, and ;; are linearly detrended versions of y;s, 1,t, T2,it, fit, fot, and .
We can then apply the estimation procedure used in Section 2.2 with the dotted variables replacing
the original variables.

To gain a better understanding of the incidental linear time trends in (3.11), we observe that

t
T14t = T140 + py it + Z E1is = T1i0 + it + 204, (3.12)
s=1

where *f?,it = 22:1 €1,is 1S a pure unit root process. In nonstationary time series, the reformation
in (3.12) reveals that nonstationary panel data with incidental parameters are composed of two
components: (1) stochastic trends represented by l‘?i7t; and (2) incidental time trends p, ;t. The
incidental parameters j;; can be interpreted as the individual-specific components of the linear

deterministic trend. Similarly, the nonstationary common factors f{)t can be decomposed into the
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stochastic trend component and the deterministic trend component, such that f?t = fio + pl1t +
et el

In general, the asymptotic properties of the resulting Lasso-type estimators will be modified by
changing the Brownian motion to the corresponding demeaned or detrended version in the respective
limit distributions. Specifically, for the detrended case we can define xr =diag(1,771), g; = (1,t)",
and g(r) = (1,7)". Let t = |T'r], the integer part of Tr for r € [0,1]. Then as T — oo, kpgr — g(r)
uniformly in r € [0, 1]. By the functional central limit theorem and continuous mapping theorem, we

have
1 1 T T -1
ﬁ"tl,iLTrj :ﬁ L1\ Tr) — ;fﬂusgé (2%92) gt

1 T T -1
0 0 / !
= 7= | Tirr] T le,isgs (Z 95%) gt
\/T s=1 s=1

0 T T -1
i 1 x[l),isﬁ J 1 Z’% oy Krg
= - = =rTds | = T T T

\/T T s=1 T AT s=1 i t
-1

= ) - [ Butwtan (f lg<u>g<u>’du) o(r) = BL,(r)

where By;(-) is as defined above Assumption 3.2, and B7,(-) is a detrended Brownian motion obtained
by the Ls [0, 1] projection residual of By;(r) on g(r). Following the analysis in Sections 3.1-3.4, we can
show the demeaned or detrended residuals, such as (@, A&y i, A f?t, fgt,d:g?it), satisfy Assumption
3.1-3.2 and Theorems 3.1-3.3 continue to hold with the demeaned data and detrended data. The
limiting distributions in Theorem 3.4-3.5 are modified by replacing the random processes Bi;, Ba;
and B3 by the demeaned or detrended Brownian motions. The asymptotic bias and variance can be
estimated from the detrended or demeaned data. In short, the mixed normal limit theory is preserved

for the group-specific long-run estimators, which permits inference using standard test statistics.

3.6 Estimating the number of unobserved factors

Our analysis has so far assumed that the numbers of nonstationary and stationary factors, r1 and rq,
are known. We also note the nonstationary factors play a key role in the PPC estimation. We notice
that the presence of stationary factors does not affect the consistency of nonstationary coefficients
estimates despite its introduction of a second-order endogeneity bias. Thus, we consider a two-step
approach to determine ry and ro. In the first step, we introduce an information criterion to determine
the number of unobserved nonstationary factors, r1, without any information about the unobserved
stationary factors. In the second step, we propose another information criterion to the resultant
residuals to obtain the number of stationary factors, ro. Below, we use r1 and ro to denote a generic

number of nonstationary factors and stationary factors, respectively. Their true values are denoted

22



as 70 and 79, which are assumed to be bounded above by a finite integer ryax.

In the first step, we estimate the number of unobserved nonstationary factors, r¥, consistently

based on the level data. Let Fj* be a matrix of T' X r; nonstationary factors and A}} be an r; x 1
vector of nonstationary factor loadings. Let A7Y = (A]1,...,A]}). Given the preliminary consistent

estimators of 3 ; and (35 ; based on rmax nonstationary factors, we consider the following minimization

problem:
N T
frr Am ; 1 A 5 AT £r1)2
£ = arg min Y > (it — Brwrie — Bagwaie — N 1),
A1 F71 NT ¢ ) ’
1 =1 t=1
st. F{VF'/T? = I,, and A7A” is diagonal.
. ~ A A A QT QT . ~
Given F' = (f{1,..., fi)’; we can solve for AT' = (A\{1,..., A\;y)" as a function of F|* by least squares

regression. We suppress the dependence of A7* on F]* and define Vi(r1, F]*) = = SN ST (i —

Bluxl,it — B;J’iﬂzit — 5\5/ Aftl)z. Then we consider the information criterion:
ICy(r1) = log Vi(ry, F{*) + 191 (N, T), (3.13)

where g1(N,T) is a penalty function. Let 7y = argming<,, <p,.. [C1(r1). We add the following

condition.
Assumption 3.5 As (N,T) — oo, g1(N, T)% — 0 and g1(N,T) — .

The conditions on g1 (N, T) differ from the conventional conditions for the penalty function used
in information criteria in the stationary framework (e.g., g2(N,7T) in Assumption 3.6 below). In
particular, we now require that g;(N,T) diverge to infinity rather than converge to zero. The
intuition for this requirement is that the mean squared residual, V;(r, F{ 1), does not have a finite
probability limit when the number of nonstationary common factors is under-specified. We can show
that logl%TVl(rl, F{ ) convergeos in probability to a positive constant when 0 < r; < r. By contrast,
we have Vi (ry, FI*) — Vi (r9, Fi1) = Op(1) when 1 > 79,

0

The following theorem shows that the use of 1C1(r1) determines rj consistently.
Theorem 3.6 If Assumptions 3.1-8.3 and 3.5 hold, then P(f1 = 1) — 1 as (N,T) — oo.

Once we obtain a consistent estimate of 77, we can also obtain a consistent estimator of the
number of unobserved stationary factors, 73, from the resultant residuals based on standard methods

in Bai and Ng (2002). In the second step, the resultant residual takes the form:
~ A~/ Al Al A
Fit = Yit — B1,%71it — B2t — Aifue, t=1,..,7T, (3.14)

where 7, = )\gfi fgt + ui + v and vy accounts for the asymptotically negligible estimation error from

the early stages. Since the true dimension 7“8 is unknown, we start with a model with 7, unobserved
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common factors. Let F3? be a matrix of T' X 7 nonstationary factors and )\gf be an r9 X 1 vector

of nonstationary factor loadings. Let AL' = (A2, ..., A\}%).We consider the following minimization

problem:
F”,A”} = arg min — NP2 f52)2,
.7 -om . 30
s.t. Fy?' Fy?/T? = I, and ALY AL is diagonal,
where F3? = (f52,..., f32) and A} = (Mg s Agnr)'s and BM, 3272-, ;\lliflt are consistently estimated

based on 71 nonstationary factors from the first step. It is easy to show that the [3171- are T -
consistent and 3272- are /1 -consistent under appropriate orthogonality conditions, which suffices for
our purpose. It is well known that given FQTQ, we can solve A2 = Arz(ﬁgZ) from the least squares
regression as a function of F32. Then we can define Va(rg, F32) = ~+ SN ST (i — )\7;/ 2)2,

Following Bai and Ng (2002) we consider the information criterion
ICQ(T) = log ‘/Q(T%FQQ) +T292(N7 T)7 (315)

where g2(N,T) is a penalty function. Let 7o = arg minp<,<... IC2(r). We add the next assumption.
Assumption 3.6 As (N,T) — 00, go(N,T) — 0 and C%1.92(N,T) — oo, where Cyr = min(v/N,V/T).

Assumption 3.6 is common in the literature. It requires that g2(/V,T) pass to zero at a certain
rate so that both over- and under-fitted models can be eliminated asymptotically. The following

theorem demonstrates that we can apply I1C3(r2) to estimate 79 consistently.
Theorem 3.7 If Assumptions 3.1-3.3 and 3.6 hold, then P(7o =19) — 1 as (N,T) — oo.
In the simulations and applications, we simply follow Bai and Ng (2002) and Bai (2004) and set

N+T
“NT

91(N,T) = arg2(N,T) and g2(N,T) =

log(CNT) or N+T10 ( NT >

NT N+T

where ar = We first estimate the number of unobserved nonstationary factors by 71 based

T
4loglogT'*
on level data, and next estimate the number of unobserved stationary factors by 75 based on the

resultant residuals from the first step.

3.7 Determination of the number of groups

We propose a BIC-type information criterion to determine the number of groups, K. We assume
that the true number of groups, Kj, is bounded from above by a finite integer Kpax.

By minimizing the criterion function in (2.11), we obtain estimates BM(K, A), 3271-(K, A), ap (K, ),
5\11-(K, A), and flt(K A) of Blz, Bgz, a?, A, and 9, in which we make the dependence of the
estimates ,8171-, ,Bu, g, A1, and fi; on (K, A) explicit. Let Gr(K,\) = {i € {1,2,..., N} : BM(K, A) =
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ap(K,\)} for k= 1,..., K, and G(K, ) = {G1(K, \),...,Gg(K,\)}. Let & 6" ) denote the Cup-

Lasso estimate of ag. Define

K T
- ]\[i Z Z Z [yzt — @CUP )Zﬂl,it — Blgyil‘zyit — S\Z(K, )\)/ft(K, A) 2
k=liec (K

A) t=1
Following SSP (2016a) and Lu and Su (2016), we consider the following information criterion:
ICy(K,\) = log Va(K) + pK gs(N, T), (3.16)

where g3(N,T) is a penalty function. Let K()\) = arg minj<g<g,,.. [C3(K, \).
Let ) = (GK 1,.-.GK i) be any K- partition of the set of individual index {1,2,..., N}. De-

fine Jé = 37 SR ZzeGKk Zt 1yie — (K N FLit ~ Blg T2t — Ai( K, N fii (K, \)?, where
{ACGUII;MﬁZ,i(g(K )7 All(g(K )7 flt( )} is analogously defined as {Ang(Ky)\)’ B2,i(K7 )‘)7 Ali(K7 )‘)7

flt(K, A)} with {Gk(K, A)} being replaced by {G 1. }. Let 00 =plim(n 7)o ﬁ Zf\il Zz’eGg Zthl[yit_

or or 0r £012
oy T1i — By, — Ajjf1y]* Define

(NT)~/2 when there are neither stationary regressors nor unobserved common factors,

T—1/2 when there are stationary regressors but no unobserved common factors,
VNT = . '
N~1/2 when there are common nonstationary factors but no stationary factors or regressors,

\C&lT in other cases.

and note that vy7 indicates the effect of estimating the nonstationary panel on the use of IC5(K, \)
under four different scenarios.

We add the following assumption.

Assumption 3.7 (i) As (N,T) — oo, mini<k <k, inf g eg, 6’2(,{) Lg% > ol
(ii) As (N,T) — oo, g3(N,T) — 0 and g3(N,T)/v31 — 0.

Assumption 3.7(i) requires that all under-fitted models yield asymptotic mean square errors larger
than O’%, which is delivered by the true model. Assumption 3.7(ii) imposes typical conditions on the
penalty function gs3(N,T"), requiring that it cannot shrink to zero too fast or too slowly.

The following theorem justifies the validity of using IC3 to determine the number of groups.

Theorem 3.8 Suppose that Assumptions 3.1-3.4 and 3.7 hold. Then P(K(\) = Ky) — 1 as
(N, T) — 0

Theorem 3.8 indicates that as long as A satisfies Assumption 3.3(iv) and g3(N,T') satisfies As-
sumption 3.7(ii), we have infi<x<k, ... k2K, [C3(K, ) > IC3(Ko, \) as (N,T) — oco. Consequently,
the minimizer of IC3(K, \) with respect to K equals Ky w.p.a.l for a variety of choices of A. In
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practice, we can further choose A over a finite grid of values to minimize IC3(K ()), \). The next

section provides details.

4 Monte Carlo Simulations

In this section we conduct simulations to evaluate the finite sample performance of the C-Lasso
procedure, the bias-corrected post-Lasso, the fully-modified post-Lasso regression, and the Cup-
Lasso estimators with and without unobserved factors, stationary regressors and incidental time
trends. For comparison, we also consider the Lasso-type estimators using first-differenced data,
which is proposed for stationary panels with interactive fixed effects. Note that the method proposed
by Su and Ju (2018) requires the regressors to be predetermined. In general, their method is not
suitable for the first-differenced data in panel cointegration models with both contemporaneous and
serial correlations. Before estimation, we evaluate the performance of the information criteria for

determining the number of unobserved common factors and groups.

4.1 Data generating processes

We consider five data generating processes (DGPs) with stationary and/or nonstationary unobserved
common factors. The observations in each of these DGPs are drawn from three groups with N7 : N :
N3 =0.3:0.4:0.3. There are four combinations of sample sizes, with N = 50,100 and T = 40, 80.
Data are generated based on the following design. For ¢ =1,..., Nand t=1,...,T,

Yit = Wi + pit + BT + Bo i + caXyifie + caXg; far + wit
T1it = f; + -1+ Ei : (4.1)
fie = plt + freo +

For DGPs 1-4 below, we do not allow for stationary regressors so that ps = 0 and wir = (wit, €y, A fiy, f5)
are generated from the linear process: w; = Z;‘io ¢;jvit—j, where ¢;; = L(j)QY2, L(j) = 1 or 5735,
025 Q12 U3 Or1xp
Q Q Q Q
Q=| """ 2o I = (08 o oY v~ iid. N(0,1,,4q) for i = 1,..., N,
Orix1 Opyxpy 233 Sl3g
Orox1 Opyxpy 243 gy
and (v, v/} ~iid. N(0,1,,1y,). The factor loadings A; = (Xi;, Ap;) are iid. A ~ N(py, Iryiry)
and gy = 0.1 ¢(p, 4ry)x1 With ¢4 an a x 1 vector of ones. The long-run slope coefficients 3, ; exhibit

the group structure in (2.3) for K = 3 and the true values for the group-specific parameters are

(a0, ) 04\ (1\ [16
b 16) ' \1/) \oa) )"

We allow for stationary regressors in DGP 5 and incidental linear time trends in DGP 6 below.
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Endogeneity and serial correlations in the system are controlled by ¢;; and the non-zero block
matrices in 2. The parameters ¢; and co control the importance of unobserved common factors. The
estimates of long-run covariance matrices are obtained by using the Fejér kernel with the bandwidth
set at 10.* The maximum number of iterations for Cup-Lasso regression is set to 20. All simulation

results are obtained from 500 replications.

DGP 1. We consider a panel cointegration model with nonstationary regressors and unobserved
stationary common factors such that p1 =2, po =0, 71 =0, and ro = 2. Let cog = 0.5, y; = p; =
c1 =0, and P = O2x1. There is neither contemporaneous correlation nor serial correlation among

Osx1 Ia
DGP 2. The DGP is similar to DGP 1 except that we now introduce contemporaneous corre-

the errors where L(j) =1 and Q =

0.2,0.2
lations among the errors by setting ¢;; = OY/2 with Q9 = 0%, = (0.2,0.2), oy = ( ) and

0.2,0.2
1 02
Qg = Qs = .
22 44 (().2 1)

DGP 3. We consider a panel latent factor cointegration model with both nonstationary regressors
and unobserved nonstationary common factors, such that p; = 2, po =0, r;1 = 2, and ro = 0. Let
ca=1,p;,=p;=0,and py,; = puft = 0351. We allow for general forms of weak dependence among
0.2,0.2

the errors where ¢;; = FTQN2 Q= Q) = (0_270'2>7 Q3 = <02 0

) and 922 == 933 =

1 02

02 1
DGP 4. We consider a panel latent factor cointegration model with both nonstationary regressors

and mixed unobserved common factors such that p; = 2, po = 0, r; = 2, and ro = 1. Let ¢; = 1,

c2 =0.5, u; =p; =0, and p; ; = puft = 091. We allow for general forms of weak dependence among

0.2,0.2
the errors where ¢,; = G732 Oy = Ny = QY = Q3 = QY3 = (0.2,0.2>, Qo3 = ( ),

0.2,0.2
1 02 -, .
Qoo = Q33 = 02 1 and (g4 = 1. In addition, we allow for weak correlation among the factor
1 0 2/VN
loadings with \; = (\;, Ay;)’ ~ i.i.d. N(0.1-3,€)), where Q) = 0 1 2/VN |.

2/VN 2/vV/N 1

DGP 5. We consider a panel latent factor cointegration model with mixed regressors and
mixed unobserved common factors such that p;1 = 2, po = 1, 711 = 2, and 7o = 1. Let ¢; = 1,
c2 = 0.5, u; = p; =0, and py; = pft = 09y1. The settings of the errors are the same as in DGP

4. For the stationary regressors and associated coefficients, we generate zo ;4 ~ ii.d. N(0,1) and

'Findings based on other kernels (the quadratic spectral kernel and Parzen kernel) and other choices of bandwidth
are similar and are not reported
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Bai ~ N(0.5,1).

DGP 6. We consider a panel latent factor cointegration model with unobserved nonstationary
common factors and incidental deterministic trends such that p; =1 =2 and ps = r9 = 0. We set
c1 = 1. For the incidental time trends, we generate (;, p;, 17 ; ") ~iid. N(0,Ig). The errors are
generated as in DGP 3.

4.2 Estimating the number of unobserved factors

We assess the performance of the two information criteria proposed in Section 3.6 before determining
the number of groups and running the PPC-based estimation procedure. We first obtain the pre-
liminary time-series estimates of both nonstationary and stationary slope coefficients 3, ; and 8y,
by setting the number of nonstationary factors r1 = rmax. We choose the BIC-type penalty function
g1(N,T) = m g2(N,T') to determine the number (r;) of unobserved nonstationary factors and
g2(N,T) = &L log(NN—fT) to determine the number (r2) of unobserved stationary factors. Note that
r? = 0,0, 2, 2, 2, and 2 for DGPs 1-6, respectively and 7§ = 2, 2, 0, 1, 1, and 0 for DGPs 1-6,
respectively.

Table 1 displays the probability that a particular factor number from 0 to 4 is selected according
to the information criteria proposed for the level data and the resultant residual data based on
500 replications. For the level data, the precision for selecting the number of nonstationary factors
generally increases and approaches 1 in all DGPs as both N and T become larger. For DGPs 3-6,
the performance in the case of N =50 and T = 80 slightly deteriorates in comparison with the case
N =50 and T = 40. Similar phenomenon may occur in the use of information criteria for stationary
factor models.

For the resultant residual data, the probabilities for selecting the number of stationary factors
are influenced by the results in nonstationary factors. In general, it preserves similar finite sample
performance as the level data. As both N and T increase, the probabilities of selecting the number
of stationary factors approach 1 in all DGPs. In general, the simulation results show that the two

information criteria work fairly well in finite samples.

4.3 Determination of the number of groups

The results above show that the information criteria (ICy(r;) and ICs(r2)) in Section 3.6 are useful
in determining the number of nonstationary and stationary factors. We emphasize that these infor-
mation criteria do not require the knowledge of the latent group structure or even the number of
groups.

Next, we focus on the performance of the information criterion (IC3(K,\)) for determining the
number of groups by assuming that the number of unobserved factors is known. We follow SSP
(2016a) and set g3(N,T) = 2log(min(N,T))/min(N,T) and A = c,T~3/* with ¢, = 0.05, 0.1, 0.2,

0.4. Note that g3(V,T) satisfies the two restrictions in Assumption 3.7. Due to space limitations, we
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Table 1: Frequency for selecting 1,72 = 0, 1,2, 3, 4 nonstationary and stationary factors

Level Data Resultant Residual Data

N T 7“1:07’1:17’1:27’1:37’1:47“2:07“2:17’2:27“2:37’2:4

DGP1 50 40 1 0 0 0 0 0 0 1 0 0

50 80 1 0 0 0 0 0 0 1 0 0

100 40 1 0 0 0 0 0 0 1 0 0

100 80 1 0 0 0 0 0 0 1 0 0

1000 1000 1 0 0 0 0 0 0 1 0 0

DGP 2 50 40 1 0 0 0 0 0 0 1 0 0

50 80 1 0 0 0 0 0 0 1 0 0

100 40 1 0 0 0 0 0 0 1 0 0

100 80 1 0 0 0 0 0 0 1 0 0

1000 1000 1 0 0 0 0 0 0 1 0 0

DGP 3 50 40 0 0.014 0.93 0.054 0.002 | 0.984 0.014 0 0.002 0
50 80 0.016 0.048 0.92 0.016 0 0.932 0.004 0.002 0 0.012

100 40 0 0 0.998 0.002 0 1 0 0 0 0

100 80 0 0 0.988 0.012 0 1 0 0 0 0

1000 1000 O 0 1 0 0 1 0 0 0 0
DGP 4 50 40 0.004 0.074 0.908 0.014 0 0.002 0.920 0.042 0.014 0.014
50 80 0.042 0.114 0.836 0.008 0 0 0.844 0 0.012 0.016

100 40 0 0.008 0.988 0.004 0 0.002 0.990 0.006 0.002 0

100 80 0 0.004 0.996 0 0 0 0.996 0.002 0.002 0

1000 1000 O 0 1 0 0 0 1 0 0 0
DGP5 50 40 0.010 0.086 0.892 0.012 0 0 0.900 0.052 0.016 0.012
50 80 0.044 0.134 0.818 0.004 0 0 0.822 0.004 0.014 0.014

100 40 0 0.008 0.984 0.008 0 0.004 0.988 0.008 0 0
100 80 0 0.004 0.996 0 0 0 0.996 0.002 0 0.002

1000 1000 0 0 1 0 0 0 1 0 0 0
DGP 6 50 40 0.004 0.022 0.974 0 0 0.974 0.02 0.004 0 0.002
50 80 0.082 0.036 0.882 0 0 0.882 0.014 0.006 0.006 0.008

100 40 0 0.002 0.998 0 0 0.998 0.002 0 0 0

100 80 0 0 1 0 0 1 0 0 0 0

1000 1000 O 0 1 0 0 1 0 0 0 0
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Table 2: Frequency for selecting K = 1,2, ...,6 groups

N T 1 2 3 4 5 6
DGP 1 50 40 0 0 1 0 0 0
50 80 0 0 1 0 0 0
100 40 0 0 1 0 0 0
100 80 0 0 1 0 0 0
DGP 2 50 40 0 0 0.992 0.008 0 0
50 80 0 0 1 0 0 0
100 40 0 0 0.996 0.004 0 0
100 80 0 0 1 0 0 0
DGP 3 50 40 0 0 0.996 0.002 0.002 0
50 80 0 0 0.996 0.002 0.002 0
100 40 0 0 0.996 0.004 0 0
100 80 0 0 1 0 0 0
DGP 4 50 40 0 0 0.99 0.01 0 0
50 80 0 0 0.992 0.008 0 0
100 40 0 0 0.996 0.004 0 0
100 80 0 0 1 0 0 0
DGP 5 50 40 0 0 0.998 0.002 0 0
50 80 0 0 1 0 0 0
100 40 0 0 1 0 0 0
100 80 0 0 0.996 0 0 0.004
DGP 6 50 40 0 0 1 0 0 0
50 80 0 0 1 0 0 0
100 40 0 0 1 0 0 0
100 80 0 0 1 0 0 0

only report the outcomes for ¢y = 0.1 based on 500 replications for each DGP in Table 2 as the other
choices of ¢y produce similar results. Recall that the true number of groups is 3 in all DGPs. Table
2 displays the probability that a particular group number from 1 to 6 is selected according to 1Cs.
The probabilities are higher than 99% in all cases and tend to unity when 7T increases to 80. This

indicates good finite sample performance of the criterion IC3 in determining the number of groups.

4.4 Classification and point estimation

We now examine the performance of classification and estimation when we have a priori knowledge of
the numbers of groups and unobserved common factors. Table 3 compares finite sample performance
between our estimators obtained from the level data and the estimators obtained from the first-
differenced data for DGPs 1-2. The latter are obtained by implementing the method of Su and Ju
(2018) for stationary models. Tables 4-5 report classification and point estimation results for DGPs

3-6 and check the sensitivity of classification and estimation performance for different \’s. Here, we
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set A = ex\T—3/* where ¢, = {0.05,0.1,0.2,0.4}. Due to space constraints, we only report results
for ¢y = 0.1 in DGPs 1-2 and ¢y, = 0.1,0.2 in DGPs 3-6. The focus of our analysis is the latent
group patterns in nonstationary slope coefficients. For aj = (ozlyk, agyk)' we only report results for
the estimation of the first nonstationary slope coefficient a4, in each DGP.

For comparison, Table 3 summarizes group classification and estimation results from both the level
data and first-differenced data. Tables 4-5 only report the corresponding results for the level data.
Columns 4 and 9 in Table 3 and Columns 4 and 8 in Tables 4-5 report the percentage of correct
classification over the N cross-section units, calculated as % EkK:‘)l il l{ﬁ%i = oY}, averaged
over the 500 replications. Columns 5-7 and 10-11 in Table 3 and Columns 5-7 and 9-11 in Tables
4-5 summarize estimation performance in terms of root-mean-squared error (RMSE), bias (Bias),
and 95% coverage probability (% coverage). For simplicity, we define the weighted average RMSE as
% Zle NRMSE(éy 1) with éq 1, being the estimate of aj ;. We define the weighted average bias
and 95% coverage probability analogously. For comparison, we report the estimation and inference
results based on the estimates of the C-Lasso, bias-corrected post-Lasso, fully-modified post-Lasso
and Cup-Lasso methods defined in Section 3.4. We also report estimation and inference results for
the oracle estimates that are obtained by utilizing the true group structures {Gg}.

For brevity, we only summarize the main findings in Tables 3. First, when there is no endogeneity
issue in DGP 1, both level data and first-differenced data lead to consistent estimation and there
is no bias in the C-Lasso estimation. In terms of RMSEs, there is a considerable convergence rate
advantage to use level data, where the estimators of the nonstationary slope coefficients enjoy super-
consistency—+/NT-consistency, which is in contrast with the v/NT-consistency of the estimators
in the first-differenced model. The correct classification results generally approach 100% in both
cases. Second, when there is endogeneity in DGP 2, the first-differencing approach does not lead to
consistent estimation. For the first-differenced data, there is no evidence of consistency in terms of
RMSE and Bias. However, the PPC-based estimators obtained from the level data generally show
good finite sample performance with the bias of the C-Lasso estimator being approximately halved
as T doubles.

The classification and estimation are reported in Tables 4-5 below and will now be discussed. In
these tables, we first notice that the results with different c)’s are similar, indicating some robustness
in our algorithm to the choice of the tuning parameter A. Second, the correct classification percentage
approaches 100% when T increases. As expected, the correct classification percentages for the Cup-
Lasso estimates are higher than those of the C-Lasso and post-Lasso estimates in all cases. This
outcome suggests that iterations do help in finite samples to achieve better classification. Third,
regarding parameter estimation Tables 3-5 show that the fully-modified procedure works slightly
better than the direct bias-correction procedure. For DGP 2, the endogeneity bias issue is not very
serious in the C-Lasso estimate since we only introduce contemporaneous correlation among the
errors, nonstationary regressors, and stationary common factors. The two post-Lasso estimates and

the Cup-Lasso estimates are found to perform as well as the oracle estimates in terms of RMSE, bias
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Table 3: Classification and point estimation of a; for DGPs 1-2

Level Data First-Differenced Data
N T % Correct  RMSE Bias  %Coverage % Correct  RMSE Bias
classification classification
DGP 1
50 40 C-Lasso 99.98 0.0085 0.0002 90.90 C-Lasso 99.92 0.0340 -0.0007
post-Lasso®® 99.98 0.0083 0.0002 90.42 C-Lasso BC 99.92 0.0340 -0.0007
post-Lasso/™ 99.98 0.0083 0.0002 90.24 Post-Lasso 99.92 0.0309 -0.0006
Cup-Lasso 99.98 0.0083 0.0002 90.24 Post-Lasso BC 99.92 0.0308 -0.0006
Oracle - 0.0082 0.0002 90.18 Oracle - 0.0309 -0.0004
50 80 C-Lasso 100.00 0.0040 0.0001 91.90 C-Lasso 100.00 0.0223 0.0002
post-Lasso®® 100.00 0.0040 0.0001 91.60 C-Lasso BC 100.00 0.0223 0.0002
post-Lasso/™ 100.00 0.0040 0.0001 91.52 Post-Lasso 100.00 0.0207 0.0004
Cup-Lasso 100.00 0.0040 0.0001 91.52 Post-Lasso BC 100.00 0.0207 0.0004
Oracle - 0.0040 0.0001 90.68 Oracle - 0.0207 0.0004
100 40 C-Lasso 99.99 0.0057 -0.0001 93.14 C-Lasso 99.95 0.0234 0.0004
post-Lasso®® 99.99 0.0056 0.0000 92.82 C-Lasso BC 99.95 0.0234 0.0004
post-Lasso/™ 99.99 0.0056 0.0000 93.06 Post-Lasso 99.95 0.0202 0.0004
Cup-Lasso 99.99 0.0056 0.0000 93.06 Post-Lasso BC 99.95 0.0202 0.0004
Oracle - 0.0056 0.0000 93.66 Oracle - 0.0202 0.0004
100 80 C-Lasso 100.00 0.0029 -0.0001 92.04 C-Lasso 100.00 0.0162 0.0011
post-Lasso®® 100.00 0.0028 0.0000 93.08 C-Lasso BC 100.00 0.0162 0.0011
post-Lasso/™ 100.00 0.0028 0.0000 93.08 Post-Lasso 100.00 0.0142 0.0010
Cup-Lasso 100.00 0.0028 0.0000 93.08 Post-Lasso BC 100.00 0.0142 0.0010
Oracle - 0.0028 0.0000 93.08 Oracle - 0.0142 0.0010
DGP 2
50 40 C-Lasso 99.98 0.0098 0.0054 83.42 C-Lasso 99.75 0.0981 0.0918
post-Lasso®® 99.98 0.0081 0.0004 91.12 C-Lasso BC 99.75 0.0980 0.0918
post-Lasso/™ 99.98 0.0080 0.0005 91.00 Post-Lasso 99.75 0.0974 0.0922
Cup-Lasso 99.98 0.0080 0.0005 91.00 Post-Lasso BC 99.75 0.0974 0.0922
Oracle - 0.0079 0.0005 91.00 Oracle - 0.0976 0.0924
50 80 C-Lasso 100.00 0.0048 0.0026 84.12 C-Lasso 99.99 0.0974 0.0947
post-Lasso®® 100.00 0.0039 0.0001 91.32 C-Lasso BC 99.99 0.0974 0.0947
post-Lasso/™ 100.00 0.0038 0.0002 92.04 Post-Lasso 99.99 0.0972 0.0949
Cup-Lasso 100.00 0.0038 0.0002 92.04 Post-Lasso BC 99.99 0.0972 0.0949
Oracle - 0.0038 0.0002 92.04 Oracle - 0.0972 0.0948
100 40 C-Lasso 99.97 0.0075 0.0050 79.48 C-Lasso 99.79 0.0960 0.0931
post-Lasso®® 99.97 0.0056 0.0002 92.30 C-Lasso BC 99.79 0.0960 0.0931
post-Lasso/™ 99.97 0.0055 0.0003 92.60 Post-Lasso 99.79 0.0962 0.0940
Cup-Lasso 99.97 0.0055 0.0003 92.60 Post-Lasso BC 99.79 0.0962 0.0940
Oracle - 0.0054 0.0002 92.60 Oracle - 0.0961 0.0938
100 80 C-Lasso 100.00 0.0037 0.0024 80.04 C-Lasso 100.00 0.0969 0.0955
post-Lasso®® 100.00 0.0028 0.0000 92.24 C-Lasso BC 100.00 0.0969 0.0955
post-Lasso/™ 100.00 0.0027 0.0001 92.60 Post-Lasso 100.00 0.0969 0.0958
Cup-Lasso 100.00 0.0027 0.0001 92.60 Post-Lasso BC 100.00 0.0969 0.0958
Oracle - 0.0027 0.0001 92.60 Oracle - 0.0969 0.0958
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and coverage probability. For DGPs 3-6, the performance of the C-Lasso estimates is poorer due
to the presence of unobserved nonstationary common factors. In addition, the Cup-Lasso estimates
generally outperform the two post-Lasso estimates due to the updated group classification results.
In DGP 5, we show that the presence of stationary regressors does not affect the finite sample
performance of our estimates for nonstationary slope coefficients. We introduce incidental time trends
in DGP 6 and show that our PPC-based estimation procedure work fairly well with the detrended
data. In addition, the finite sample performance of the long-run estimates preserves similar patterns.
In general, the finite sample performance of the Cup-Lasso estimators is close to that of the oracle
estimates, which corroborates the oracle efficiency of the Cup-Lasso estimates. Accordingly, we
recommend for practical implementation the use of Cup-Lasso estimates for both estimation and

inference.

5 An Empirical Application to the Growth Convergence Puzzle

A longstanding leading question in the economic growth literature is whether national economies
exhibit convergence across countries over time. A benchmark model in the literature is the interna-
tional R&D spillover model proposed by Coe and Helpman (1995) who empirically identified positive
technology spillover effects. Since technological progress is a primary source of economic growth,
positive R&D spillovers are regarded as a force of convergence that activates through the channel
of technology catch-up. Notwithstanding the strength and relevance of this argument, two potential
problems have been identified in the Coe and Helpman study. First, the study fails to distinguish two
distinct types of spillover effects: positive technology spillovers and negative market rivalry effects
(Bloom et al., 2013). Second, the research does not account for unobserved common patterns across
countries, such as financial crisis shocks and technological progress. These two issues may lead to
biased or even inconsistent estimates for the parameters of interest — see, e.g., Griffith and Reenen
(2004), Coe et al. (2009, CHH hereafter), and Ertur and Musolesi (2017).

In this section we apply our model and methodology to re-investigate this issue by allowing
for heterogeneous convergence behavior through the channel of technology diffusion and unobserved
common patterns across countries. In particular, we impose latent group structures on the long-run
relationships between technological change, domestic R&D stock, foreign R&D stock, and human
capital, at the same time capturing any common patterns of behavior via the use of unobserved
factors. Interestingly, we find two directions of R&D spillover — positive technology spillovers and
negative market rivalry effects, which help to explain the economic convergence puzzle through the

channel of technology growth.

5.1 International R&D spillover model

We introduce two linear specifications for the international R&D spillover model. Following the

standard growth literature, we define the total factor productivity (TFP) as the Solow residual,
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Table 4: Classification and point estimation of a; for DGPs 3-4

C\ 0.1 0.2

N T % Correct RMSE Bias % Coverage % Correct RMSE Bias % Coverage

classification classification

DGP 3

50 40 C-Lasso 98.42 0.0420 0.0155 65.36 98.26 0.0443 0.0143 65.88
post-Lasso®® 98.42 0.0305 0.0028 91.62 98.26 0.0311 0.0029 91.74
pOSt-LaSSOfm 98.42 0.0305 0.0028 92.20 98.26 0.0311 0.0030 92.14
Cup-Lasso 100.00 0.0112 0.0021 90.28 99.98 0.0112 0.0021 90.28
Oracle - 0.0110 0.0021 90.28 - 0.0110 0.0021 90.28

50 80 C-Lasso 99.34 0.0283 0.0072 60.60 99.31 0.0285 0.0073 60.44
post-Lasso®® 99.34 0.0188 0.0009 91.34 99.31 0.0173 0.0014 91.74
post-Lasso/™ 99.34 0.0188 0.0014 91.28 99.31 0.0172 0.0018 91.62
Cup-Lasso 100.00 0.0050 0.0009 90.44 100.00 0.0050 0.0009 90.44
Oracle - 0.0050 0.0009 90.44 - 0.0050 0.0009 90.44

100 40 C-Lasso 98.66 0.0281 0.0135 52.88 98.49 0.0300 0.0125 54.64
post-Lasso®® 98.66 0.0225 0.0027 89.72 98.49 0.0222 0.0033 89.86
post-Lasso/™ 98.66 0.0226 0.0027 90.10 98.49 0.0223 0.0034 90.26
Cup-Lasso 100.00 0.0073 0.0025 89.78 99.98 0.0073 0.0025 89.78
Oracle - 0.0073 0.0025 89.78 - 0.0073 0.0025 89.78

100 80 C-Lasso 99.41 0.0184 0.0069 49.68 99.38 0.0194 0.0064 48.78
post-Lasso®® 99.41 0.0188 0.0009 92.72 99.38 0.0190 0.0009 92.84
post-Lasso/™ 99.41 0.0188 0.0014 93.08 99.38 0.0190 0.0013 93.20
Cup-Lasso 100.00 0.0035 0.0010 93.12 100.00 0.0035 0.0010 93.12
Oracle - 0.0035 0.0010 93.12 - 0.0035 0.0010 93.12

DGP 4

50 40 C-Lasso 98.22 0.0479 0.0145 70.70 98.07 0.0511 0.0133 71.44
post-Lasso®® 98.22 0.0337 0.0022 91.64 98.07 0.0335 0.0020 91.48
post-Lasso/™ 98.22 0.0338 0.0024 91.44 98.07 0.0335 0.0022 91.18
Cup-Lasso 99.97 0.0137 0.0015 89.98 99.93 0.0137 0.0015 90.10
Oracle - 0.0136 0.0015 89.96 - 0.0136 0.0015 89.96

50 80 C-Lasso 99.10 0.0454 0.0089 67.04 99.09 0.0451 0.0082 65.94
post-Lasso®® 99.10 0.0310 0.0008 91.52 99.09 0.0313 0.0007 91.40
post-Lasso/™ 99.10 0.0310 0.0012 91.14 99.09 0.0313 0.0012 91.02
Cup-Lasso 100.00 0.0065 0.0007 90.58 100.00 0.0065 0.0007 90.58
Oracle - 0.0065 0.0007 90.58 - 0.0065 0.0007 90.58

100 40 C-Lasso 98.44 0.0319 0.0140 62.60 98.28 0.0355 0.0130 62.82
pOSt-LaSSObC 98.44 0.0277 0.0024 91.16 98.28 0.0282 0.0021 90.92
post-Lasso/™ 98.44 0.0279 0.0026 90.94 98.28 0.0283 0.0023 90.72
Cup-Lasso 99.97 0.0095 0.0021 91.12 99.94 0.0096 0.0021 91.22
Oracle - 0.0095 0.0021 91.12 - 0.0095 0.0021 91.12

100 80 C-Lasso 99.45 0.0198 0.0073 56.66 99.43 0.0216 0.0070 56.32
pOSt-LaSSObC 99.45 0.0167 0.0007 92.62 99.43 0.0165 0.0006 92.66
pOSt-LaSSOfm 99.45 0.0167 0.0011 92.70 99.43 0.0165 0.0011 92.88
Cup-Lasso 100.00 0.0047 0.0006 93.00 100.00 0.0047 0.0006 93.00
Oracle - 0.0047 0.0006 93.00 - 0.0047 0.0006 93.00
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Table 5: Classification and point estimation of a; for DGPs 5-6

C\ 0.1 0.2

N T % Correct RMSE Bias % Coverage % Correct RMSE Bias % Coverage

classification classification

DGP 5

50 40 C-Lasso 98.01 0.0538 0.0165 63.74 97.78 0.0585 0.0150 63.60
post-Lasso®® 98.01 0.0365 0.0028 91.46 97.78 0.0391 0.0033 91.28
post—LaSSOfm 98.01 0.0364 0.0029 91.96 97.78 0.0390 0.0034 91.78
Cup-Lasso 99.98 0.0112 0.0026 90.80 99.96 0.0114 0.0025 90.80
Oracle 0.0111 0.0026 90.72 0.0111 0.0026 90.72

50 80 C-Lasso 99.33 0.0254 0.0074 60.48 99.31 0.0278 0.0071 60.28
post-Lasso®® 99.33 0.0223 0.0009 91.66 99.31 0.0220 0.0009 91.86
post-Lassofm 99.33 0.0223 0.0014 92.12 99.31 0.0219 0.0014 92.32
Cup-Lasso 100.00 0.0051 0.0010 91.92 100.00 0.0051 0.0010 91.92
Oracle 0.0051 0.0010 90.98 0.0051 0.0010 90.98

100 40 C-Lasso 98.72 0.0292 0.0133 53.10 98.57 0.0309 0.0126 54.30
post-Lasso®® 98.72 0.0245 0.0029 89.00 98.57 0.0252 0.0032 89.32
post-Lasso/™ 98.72 0.0246 0.0031 89.44 98.57 0.0252 0.0034 89.80
Cup-Lasso 100.00 0.0076 0.0027 89.64 99.99 0.0076 0.0027 89.64
Oracle 0.0076 0.0027 90.68 0.0076 0.0027 90.68

100 80 C-Lasso 99.34 0.0184 0.0075 48.18 99.29 0.0203 0.0068 49.24
post-Lasso®® 99.34 0.0177 0.0008 91.04 99.29 0.0187 0.0008 91.06
post-Lasso/™ 99.34 0.0178 0.0013 91.44 99.29 0.0187 0.0013 91.40
Cup-Lasso 100.00 0.0036 0.0011 91.54 100.00 0.0036 0.0011 91.54
Oracle 0.0036 0.0011 91.54 0.0036 0.0011 91.54

DGP 6

50 40 C-Lasso 99.90 0.0322 0.0244 61.72 99.90 0.0308 0.0227 64.06
post-Lasso®® 99.90 0.0233 -0.0100 87.76 99.90 0.0233 -0.0100 87.76
post-Lasso/™ 99.90 0.0176 0.0014 91.42 99.90 0.0177 0.0014 91.42
Cup-Lasso 99.99 0.0172 0.0015 91.40 99.99 0.0172 0.0014 91.40
Oracle 0.0172 0.0014 89.08 0.0172 0.0014 89.08

50 80 C-Lasso 99.98 0.0167 0.0128 62.20 99.98 0.0164 0.0119 63.64
post-Lassob® 99.98 0.0125 -0.0079 86.18 99.98 0.0125 -0.0079 86.18
post-Lasso/™ 99.98 0.0082 0.0008 93.58 99.98 0.0082 0.0008 93.58
Cup-Lasso 100.00 0.0081 0.0009 93.58 100.00 0.0081 0.0009 93.58
Oracle 0.0081 0.0009 91.54 0.0081 0.0009 91.54

100 40 C-Lasso 99.94 0.0277 0.0236 41.88 99.94 0.0264 0.0222 45.64
pOSt—LaSSObC 99.94 0.0176 -0.0103 82.98 99.94 0.0175 -0.0102 83.10
post—Lassofm 99.94 0.0122 0.0013 93.42 99.94 0.0122 0.0014 93.42
Cup-Lasso 100.00 0.0120 0.0013 93.30 99.99 0.0120 0.0013 93.24
Oracle 0.0120 0.0013 91.68 0.0120 0.0013 91.68

100 80 C-Lasso 99.94 0.0125 0.0097 50.38 99.94 0.0124 0.0093 51.56
pOSt—LaSSObC 99.94 0.0104 -0.0077 73.66 99.94 0.0104 -0.0077 73.66
post—LaSSOfm 99.94 0.0061 0.0004 93.50 99.94 0.0060 0.0004 93.44
Cup-Lasso 100.00 0.0050 0.0004 93.44 100.00 0.0050 0.0004 93.44
Oracle 0.0050 0.0004 95.06 0.0050 0.0004 95.06
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which is often regarded as a measure of technology change. That is, log(T'F P) = log(Y) —6log(K) —
(1 —0)log(L), where Y, L, and K denotes final output, labor force, capital stock, respectively, and
0 is the share of capital in GDP. In the first place, domestic R&D investment is a major source of
technology change that stimulates innovation. Second, trade in intermediate goods enables a country
to gain access to inputs available throughout the rest of the world. In this respect, foreign R&D
stocks from a country’s trading partners affect TFP by directly enhancing the transfer of R&D. Coe
and Helpman (1995) empirically identify two sources of technology growth — innovation and catch-up

effects — by running the following regression:
log(Fy) = p; + i log(sglt) + 5f log(sﬁ) + Ui,

where 4 is the country index, ¢ is the year index, p,; are the unobserved individual fixed effects,
F is total factor productivity, s% is real domestic R&D capital stock, and s/ is real foreign R&D
capital stock. We follow their specification on the international R&D spillover model and introduce

unobserved common patterns to obtain
log(Fy) = B log(sf) + B] log(s],) + Aifs + wi, (5.1)

where f; denotes the unobserved technology trends or global financial shocks, and the fixed effects p,
are absorbed into the factor structure. We shall assume that the slope vector 5, = ( ?, 5{ ) exhibits
the latent group structures studied in this paper. This specification is important because the latent
group structures on B{ allow us to study the two types of spillover effects discussed above — positive
technology spillovers and negative market rivalry effects, respectively.

In addition, we consider the following specification
-\ — B4 d f f h ) ’ ‘
log(Fyt) = 57 log(siy) + B; log(s;y) + By log(hit) + Aife + wit. (5.2)

where h;; denotes human capital for country ¢ in year t. Human capital accounts for innovation
outside the R&D sector and other aspects of human capital not captured by formal R&D. Engelbrecht
(1997) finds that human capital affects TFP directly as a factor of production and as a channel for
international technology diffusion associated with catch-up effects across countries. As above, we
allow the slope vector 5, = (B;i, ﬁzf , B?)’ to exhibit latent group structures.

CHH further extend the analysis to include institutional variables. In particular, they use various
proxies for institutions to test if the estimated parameters on domestic and foreign R&D capital
and on human capital vary among countries. For example, they first define the dummy variables
(high and low) for some institutional variables and then consider their interaction with log(s%) in
order to provide sub-sample regression results for the above two specifications. Their results suggest
that institutional differences introduce heterogeneous impacts on both innovation effects and R&D

spillovers. In general, CHH employ observed institution variables to group countries into different
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subsamples and reveal heterogeneous degrees of R&D spillover effects from institutional differences.

Instead of using observed characteristics, such as institution variables, our PPC-based method
allows us to analyze parameter heterogeneity empirically by encouraging the data to reveal latent
features that may not be immediately apparent. In particular, the latent group structures on slope
coefficients allow us to study potentially different impacts of innovation and catch-up effects. We
can also analyze two opposite spillover effects — positive technology spillovers and negative market
rivalry effects, respectively. These features of the methodology help us explain the growth convergence

puzzle by means of different aspects of technological diffusion.

5.2 Data

We use the same dataset as CHH. This dataset is similar to that used in Coe and Helpman (1995)
and is expanded to include two more countries and annual observations. It contains observations for
log(Fyt), log(sd), log(sf;), and log(h;t) for 24 OECD countries from 1971-2004. The bilateral import-
weighted R&D variable S/~ from trading partners is a measure of foreign R&D stock. Human
capital is measured by years of schooling. In CHH, the relevant variables are pre-tested for unit roots
and cointegration. All variables we consider have a unit root, i.e., all are non-stationary. We refer
the readers directly to CHH for details on the definition and construction of these variables, and for

summary statistics of the data.

5.3 Empirical results

We first determine the number of unobserved factors and the number of groups as was done in the
simulation exercises. Then we report the results for the estimation of the group structures and

group-specific parameters.

5.3.1 Estimation of the number of factors

Before running the PPC-based estimation procedure, we employ the information criteria IC; and
IC5 in Section 3.6 to estimate the number of unobserved factors. Following the simulation design,
we set g1(N,T) = mgg(]\f, T) and go(N,T) = &FE log(NN—fT). Based on the results for level

data and resultant residuals, we obtain the estimates 71 = 1 and 7o = 0. That is, we find a single

nonstationary common factor and zero stationary common factors in the data. We fix 1 = 1 and

rg = 0 in the following empirical analysis.

5.3.2 Determination of the number of groups

As in the simulations, we set g3(N,T) = £ log(min(N, 7))/ min(N,T) and X = exT—3/%. We use the
following tuning parameter settings: ¢y = 0.1, 0.2, 0.4, 0.6, 0.8. Table 7 reports the information
criterion IC3 as a function of the number of groups under these tuning parameters. Following the

majority rule, we find that the information criterion suggests three groups for both model (5.1) and
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Table 6: Information criterion for the determination of the number of groups
Model (5.1) Model (5.2)

\ e 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8
-4.830 -4.807 -4.790 -4.776 -4.773 -4.680 -4.668 -4.671 -4.671 -4.669
-6.387 -5.545 -5.366 -5.234 -5.210 -4.671 -4.655 -4.430 -4.430 -4.429
-6.259 -6.235 -6.229 -6.206 -6.213 -4.871 -5.058 -4.869 -4.835 -4.218
-6.072 -6.099 -6.090 -6.177 -6.116 -4.865 -4.759 -4.783 -4.572 -4.784
-5.957 -5.974 -5.896 -5.951 -5.861 -4.528 -4.631 -4.526 -4.720 -4.137
-5.785 -5.706 -5.757 -5.814 -5.807 -4.255  -4.398 -4.261 -4.158 -3.701

@OT%OO[\DHN

model (5.2). Note that IC3 achieves the minimal values for both model specifications when ¢y = 0.2.

Therefore, we set K = 3 and ¢, = 0.2 in subsequent analyses.

5.3.3 Estimation results

For both model specifications, we employ the pooled fully modified OLS (FM-OLS) estimates un-
der the homogeneity assumption and the Cup-Lasso estimates with one unobserved nonstationary
common factor. Note that we also allow for one unobserved nonstationary factor to obtain the FM-
OLS estimates. Table 6 reports the main results for these two estimates along with the fixed effects
estimates of CHH.

In model (5.1), we have two explanatory variables (log(s?) and log(s/)). We summarize some
of the more interesting findings from Table 7. First, a comparison between the estimates in CHH
and those obtained by pooled FM-OLS suggests that the estimate of the coefficient of log(s?) in
CHH is similar to our pooled FM-OLS estimate, whereas the estimate of the coefficient of log(s)
decreases substantially after introducing one unobserved nonstationary factor in the model. This
seems to suggest that direct spillover effects are partially offset by unobserved global technology
patterns. Noting that our asymptotic variance estimation allows for both serial correlation and
heteroskedasticity and appears more conservative than that of CHH, this difference explains why the
standard errors (s.e.) of our estimates are much larger than those in CHH. Second, once we allow
for latent group structures among the slope coefficients, our PPC estimation helps to identify quite
different behavior in the estimates of the effects of both domestic R&D stock and foreign R&D stock:
for Group 1, we observe the largest effect of domestic R&D stock, but the estimate on foreign R&D
is negative; for Groups 2 and 3, the coefficient estimates on both domestic and foreign R&D stocks
are positive. In addition, both estimates for Group 2 are larger than those for Group 3, but the
estimates of the coefficient of foreign R&D stocks in Groups 2 and 3 are not statistically significant
even at the 10% level.

The above findings from our PPC estimate have some interesting implications. First, the negative
estimate on foreign R&D in Group 1 indicates that negative market rivalry effects dominate the
technology spillovers for countries inside Group 1. Therefore, technology change in those countries

relies mainly on innovations from domestic R&D stock. Moreover, this result implies that countries
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Table 7: PPC estimation results

Model (5.1)
Slope coeflicients Pooled Pooled Group 1 Group 2 Group 3
CHH2009 FM-OLS Cup-Lasso Cup-Lasso  Cup-Lasso
log(s%) 0.095%** 0.099%** 0.289%** 0.1017%** 0.058%*
(0.005) (0.027) (0.046) (0.023) (0.028)
log(s/) 0.213%%* 0.121%%* -0.147%%* 0.120 0.086
(0.014) (0.044) (0.057) (0.099) (0.068)
Model (5.2)
Slope coefficients Pooled Pooled Group 1 Group 2 Group 3
CHH2009 FM-OLS Cup-Lasso Cup-Lasso Cup-Lasso
log(s?) 0.098*** 0.054** 0.464*** 0.055%** -0.104%**
(0.016) (0.023) (0.064) (0.021) (0.027)
log(s/) 0.035%** 0.121%* -0.413%* 0.022 0.219%**
(0.011) (0.048) (0.138) (0.061) (0.063)
log(h) 0.725*** 0.615%*** 1.405%* 0.550%** 0.567***
(0.087) (0.138) (0.564) (0.158) (0.130)

Note: Standard errors are in parentheses. ***, ** and * denote significance at the 1%, 5%,
and 10% levels, respectively.

in Group 1 do not favor convergence through the technological change channel. We call this the
“Divergence” group. Second, technology change for countries in Group 2 comes from balanced sources
— the innovation effects from domestic R&D stock and the catch-up effects from technology spillovers,
and interestingly, the magnitudes of those estimates are similar. From this perspective, countries in
Group 2 favor the growth convergence hypothesis. We refer to this group as the “Balance” group.
Last, the technology change in Group 3 is mainly determined by foreign R&D stock and we refer to
Group 3 as the “Convergence” group, which also favors the growth convergence hypothesis.

In model (5.2), we introduce an additional regressor — human capital, which is regarded as another
source of technology change. Our results from the pooled FM-OLS estimates confirm that human
capital is one of the main sources of productivity growth and there exist direct technology spillovers in
the full sample. When using our PPC estimation methods, we find similar heterogeneous behavior for
model (5.2) as that for model (5.1). We can still classify countries into three groups and define them
as groups of Divergence, Balance-Human capital, and Convergence, respectively. For the Divergence
group (Group 1), technology growth relies on innovations and human capital and countries in Group 1
suffer from strong negative market rivalry effects. For Group 2, referred to as Balance-Human capital,
the estimates of the effect of foreign R&D are not significant at the 10% level, and technology growth
still benefits from the innovations and indirect catch-up effects from human capital. For Group 3,
referred to as Convergence, countries benefit directly from the dominating technology spillovers. In

general, the divergence behavior is more statistically significant than the convergence behavior.
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Table 8: Group classification results

Model (5.1)
Group 1 “Divergence” (N; =T)
Austria Denmark France Germany New Zealand
Norway United States
Group 2 “Balance” (N2 =7)
Canada Ireland Israel South Korea Netherlands
Portugal United Kingdom
Group 3 “Convergence” (N3 = 10)

Australia Belgium Finland  Greece Iceland
Italy Japan Spain Sweden Switzerland
Model (5.2)

Group 1 “Divergence ” (N1 = 2)
Ireland United States
Group 2 “Balance-Human capital 7 (Ny = 16)
Austria Belgium Denmark Finland Iceland
Israel Ttaly Japan South Korea Netherlands
New Zealand Norway Portugal Spain Sweden

Switzerland

Group 3 “Convergence” (N3 = 6)
Australia Canada France Germany Greece
United Kingdom

5.3.4 Classification results

Table 8 reports the group classification results. We summarize several interesting findings. First,
based on the results for model (5.1), there are typically two types of countries in the Divergence
group — “Leaders” and “Losers”. Countries like France, Germany, the United States are already at
the global technology frontiers, and they own 61.1% of R&D stock in our sample. By contrast, the
remaining countries in Group 1 account for only 1.5% of R&D stock in our sample. Second, most
OECD countries are classified into Groups 2 and 3 when model (5.2) is used. We also notice that
four of the seven countries in the G7 are classified in the convergence group, viz., Canada, France,
Germany and the United Kingdom. These findings confirm those in Keller (2004) who finds that
the major sources of technical change leading to productivity growth in OECD countries are not
domestic but come from aboard through the channel of international technology diffusion.

In summary, we re-estimate Coe and Helpman’s model by using the pooled FM-OLS and the
PPC-based method with one unobserved global nonstationary factor. The pooled FM-OLS esti-
mates confirm the international R&D spillovers after allowing for an unobserved global factor. In
addition, our Cup-Lasso estimates show heterogeneous behavior in innovations and catch-up effects.
To the best of our knowledge, this finding is the first to empirically identify two types of technol-
ogy spillovers at the country level. Further, these results build an empirical connection between

the “Club convergence” theory (Quah (1996, 1997)) and the conditional convergence model (Barro
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and Sala-i-Martin (1997)). Consequently, economic growth patterns do vary across countries— some

exhibit convergence while others do not.

6 Conclusion

The primary theoretical contribution of this paper is to develop a novel approach that handles un-
observed parameter heterogeneity and cross-section dependence in nonstationary panel models with
latent cointegrating structures. We assume that cross-section dependence is captured by unobserved
common factors which may be stationary and nonstationary. In general, penalized least squares es-
timators are inconsistent due to variable omission and the induced spurious regression problem from
the presence of unobserved nonstationary factors. We propose an iterative procedure based on the
penalized principal component method, which provides consistent and efficient estimators for long-
run cointegration relationships under cross-section dependence. Lasso-type estimators are shown to
have a mixed normal asymptotic distribution after bias correction. This property facilitates the use
of conventional testing procedures using t, Wald, and F statistics for inference. A secondary contribu-
tion of the paper is to employ these methods in an empirical application that provides new findings to
explain the growth convergence puzzle through the heterogeneous behavior of R&D spillover effects.

Several interesting topics for future research emerge. First, we do not allow the regressors to
share a similar factor structure as the dependent variable in our model. If the regressors are assumed
to exhibit factor structures, it seems possible to control for the unobserved common factors via the
cross-sectional averages of the dependent and independent variables and then one can extend the
common correlated effects (CCE) estimation of Pesaran (2006) to our framework. Second, as a
referee remarked, the factor loadings (especially those of the nonstationary factors) may also exhibit
a latent group structure, which may or may not be identical to those among the slope coefficients
{B?’i}. If the factor loadings are not required to share the same latent group structure as {ﬁ?z} ,
we can estimate the model as in the current paper and then estimate the latent group structure in
the estimated factor loadings, say by applying the sequential binary segmentation algorithm of Wang

and Su (2020). Formal analysis of these topics is left for future research.
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This online supplement is composed of five parts. Appendix A contains the proofs of the main
results in the paper. Appendix B contains the proofs of the technical lemmas stated and used
in Appendix A. Appendix C discusses the identification of /3(1),1'- Appendix D contains the detailed
procedure for the proposed method in the paper. Appendix E reports some additional simulation
results. Let max; = max;<;<y and min; = minj<;<y .

A  Proof of the Main Results in Section 3

This Appendix provides the proofs of Theorems 3.1-3.8 in the paper. These results rely on some sub-
sidiary technical lemmas whose proofs are provided in the Additional Online Supplement (Appendix
B).

To proceed, we define some notation.

() Let 11 — (FAVAY) (2 FVE) Vi hy and Ha = ($AYAD) (F9E) iy,

(ii) Let bl = (bl,la ---»bl,N) and i)l = (Bl,h "'ai)l,N)v Where bm‘ = Bl,i — B?J and lA)M = Bl,i — ﬂ?’l fOI"
i=1,..,Nand [ =1,2.

(iii) Let 77l2NT = % sz\il ||bl7i||2 for I = 1,2, Q?VT =% , Ont = min(\/N, \/T)a
INT = min(\/_ T), and Yy = NY4T1(log T)1Jr6 for some € > 0.

(IV) Let Qz Tr — szl ZM L1, szm (Fl) szl ZMlelza and szw Ql,a:a:(Flo)

(v) Without loss of generahty, we set 21,50 = 0 and x3 ;0 = 0 throughout the appendix.

To prove Theorem 3.1, we need the following four lemmas.

Lemma A.1 Suppose that Assumption 3.1 hold. Then for each i =1,..., N,
(i) g2 ;Mpo1; = [ BB,
(ZZ) %xll,iMFloui = f (BQ'L — TF{L-Bg) dB1; + (AQLZ‘ — W;Aglﬂ'),
where By; = By; — [ BoiBY ([ BaB4) ™ By and m; = ([ BsBS) ™' [ BsBb;.

Lemma A.2 Suppose that Assumptions 8.1-3.2 hold. Let W; = (:L‘LZ‘,FIO) and dp = loglogT, as in
Assumption 3. Then for any fixed small constant c € (0,1/2),

(1) lim Supp_, o0 fmax <%W’W> < (1+ ¢)pmax @-S-

(#1) Uminfr oo fimin <dT W’W> > CPmin O-S-,

(#43) im supp_, o fhmax <W$1 iMFoxl,i> < (14 ¢)pmax @S-,
(iv) liminfp_, o0 fin <T2 2 i Mpow, Z) > Pmin/2 @.5..

Lemma A.3 Suppose that Assumptions 3.1-3.2 hold. Then
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Lemma A.4 Suppose that Assumptzons 8.1-3.2 hold. Then
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where b = (by,ba), F1 is defined in Assumption 3.2(iv), and u} is defined in Lemma A.3.

Proof of Theorem 3.1. (i) Let Qi N7 (81, Bo. F1) = 75 (yi — $1,i51,i —22,ifa;) Mpy (yi — 1,01, —
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where Sy7(81, F1) = & SN, Sinr(B1 F1) and Op((T/dr)~/?) holds uniformly in (84, B8s, I1)
such that FlFl = I,, and % ||b||> < M by Lemma A.4(i)-(iii) and the fact that T2 ZZ 1u*’PFou
Op((T/dr)~ 1/2). It follows that
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Then by (A.2) and (A.3) and the fact that QJ[\(,’:,)J(BI,BQ, d,ﬁ'l) - Q%&;\(B?,ﬂg, a®, FY) <0, we have
1L,
Snr(By, Fr) = = N72 Z 21ib1s — FYAY) My, (w11 — FPAY) = Op((T/dr)~'/?). (A.4)

Let x; 5, = 1401, — FOX),. Noting that tr(AB) > Zthl i (A) pp_siq (B) for any two T' x T sym-

metric p.s.d. matrices A and B where {y, (-)};_, represent descending ordered eigenvalues (e.g.,
Bernstein (2005, p.326)) and M, is a projection matrix with rank 7" — rq, we have
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Combining (A.4) and (A.6) and applying the Cauchy-Schwarz inequality, we have
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which, in conjunction with (A.6), further implies that # Zf\il /\%FP,Mﬁ’l FOX. = Op((T/d3) /).
Then Op((T/d3.) /%) =tr[(Fz FY Mg, FO) (3 AYAD)] > tr(F FY Mg, F) i (37 AYAD). Tt follows that
tr(%F{)’MﬁlFf) = Op((T/d3)7/2) as pmim(FAYAY) is bounded away from zero in probability by
Assumption 3.2(i). As in Bai (2009, p.1265), this implies that

FY'Mg FY FYR) FYE E{FY
T2 ToT2 T2 72

= Op((T/d}) ), (A7)

and 1 S B Fy s asymptotically invertible by the fact that 1 > FYFY is asymptotically invertible from
Assumptlon 3.2(ii). (A.7) implies that F1PF0F1 I, = Op((T/d%«)_l/2), which further implies

2
that || Py, — Pr|| = 2t(11, — & F{Prp Fr) = Op((T/d)71/2).

(iii) We want to establish the consistency of the estimated factor space F1, which extends the
results of Bai and Ng (2004) and Bai (2009). Our model allows for heterogeneous slope coefficients
in both nonstationary and stationary regressors and unobserved stationary common factors. Here
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we don’t need the consistency of 3277; but require that Zf\; L 1B2,4]|? < M for some sufficiently large
constant M w.p.a.l (which can be proved as in Su and Ju (2018)). Note that F} satisfies

T2 Z —2if;)(yi — wiBy)' | Fr = F\Vinr. (A.8)
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max; ¢ E(||z2.4]*) = op (1) + O (1) = Op (1) by Lemma S1.2(iii) in Su, Shi and Phillips (2016, SSPb
hereafter). Similarly, for I; and I,

1 0] 1] P e R P

pin < BEUEL o g {2 S| {25 L optrr,

L & 1A g o {%i Haf\\?}m{%énél,in?}m _ oy (ﬁnm),
where we use the fact that ‘FTOH < ”};10” + # ”\};2;” = Op(1). For I, we have

%||16|| = % HNT?FOAO/&EH < J% <% )y > (% HFOH> J% |AY4|| = Op(T~Y2N1/2),
where @ = (41, ..., uy)" and we have used the fact that = NT HAO’UH = Op(1) and - HZZ 1A?b’ T2 ’

= Op(1) by Assumption 3.1(iv) and straightforward calculations. Analogously, we can show that
%HI7H = OP(T71/2N71/2). For Ig, Ig = ﬁ Zfil <uzu; — uib’mx’m — wz,ibz,iu; + .’L'27ib27ibl27i$,2’l-> Fl =
Ig1 + Ig o + Ig 3 + Ig 4. For Ig 1,

1 1

uuF1

2 (Hfs(a)ll + )1,

where v, (s,t) and &, are defined in Assumption 3.2(iii). Note that || Is(a)|| = T3(T2 ZST:1 1 /1511%)

<12
(TS S (s 02) = Op(T3) and |[15(0) | = TN -T2 S, | ] D@ 2N £ S,
1€5:11%) = Op(T~2N~1) by the fact that T~ S22 ST |lyn (s, 1)[|> < M by Assumption 3.2(iii) (see
also Lemma 1(i) in Bai and Ng (2002)) and that E(||¢,,|*) < N~2M under Assumption 3.2(iii). Then
s 1]l = Op(N~Y2T7=1 4 T=3/2). For Iy, we have

12, N
1 [EEx T 2 1o Jlual?
”[82“ STES T NZ”b il N; T

Similarly, we have L[Igs]| = Op(T~') and L|Iga]| < % ozl UL S™N 15y 12
Op(T~1). Then, we have %|/Is|| = Op(T~1). For Iy and I1o, we have

T 2 T 2
T3 yn(s.t)fi]| + T3> &aufis
s=1 s=1

T
2
t=1

1
ﬁ”fs,l\\z

1 L|[ED)? | F1| || AYAS

Tl = HNTzFQOAO’AOFQO/F H T” T’ | 1”' = Op(T™"), and

1 N 1 ||F I FO 3 AO’AO -
7ol ?H—NTZF{)A(I)’ABFQO’FIH Wias a H\/_H HTII | = ol _ Op((NT)/2),



where A%g = Op(1) by Assumption 3.2(i). Analogously, we have 7| I11]| = Op((NT)~/2). In sum,
we have shown that % HFIHfl — F{JH = Op(nnT + Tfl/zc']}}). Then (iv) follows. B

To prove Theorem 3.2 we need the following two lemmas.

Lemma A.5 Suppose that Assumptions 3.1-3.2 hold. Let 4] = u; + FQO)\gi — $277;ZA)27Z‘. Then

(i) HP — Ppoll = Op(myr + T2CNT),

(1) 772NT 1{/ 511 ”32 il* = OP(T_I/QCJ?T + TdT?ﬁNT)»

(iii) LFY (Fy — FYHy) = Op(Tyyr + 5NT +T-VACY?),

(iv) $F{(Fy — F?Hn Op(Tnyyr + 63 + T7VAC?),

(v) %ﬂ’{’(ﬁ’lel — ) = Op(VTiy N + 5NT) for each i =1,...,N.
Lemma A.6 Suppose that Assumptions 3.1-3.2 hold. Let Ry; = %$’17i(PF{) — Ppl)@;‘, Ry =
e Mp FON; —xi 0000 @ i M w1 jagiby e 3500 aigeh :Mpuj, Rai = i Y5m aija;(Pro—
P )uj, and Ry = %x’lviMFloﬂf — Zjvzl a;j@y ;Mpou;. Then

(i) Rii = Op(sinT) for each i =1,..,N, and N"'S°N | | Rui|* = Op(drsiyy),

(ii) Rai = Op(sant) for each i =1,..,N, and N~ SN ||Ry|* = Op(drs3nr),

(iii) Rsi = Op(sinT) for each i =1,..,N, and N~ "N | Rsi|* = Op(drsing),

(iv) Ry; = Op(T™Y) for each i =1,...,N, and N~*S°N | |Ryl|* = Op(drT—?),
T 20 nr + T Oy and oy = T_5/4C;7%r/2 + T2 g + drming + T3

where ¢iNT =

Proof of Theorem 3.2. (i) Based on the sub-differential calculus, a necessary condition for 3 1,5 32’1-
g, and Fy to minimize the objective function (2.11) is, for each 4 = 1,..., N, that 0,, , belongs to
the sub—difﬁerential of Q?‘\}éﬂ((,ﬁl,ﬁma, F1) with respect to (3 ; (vesp. ay) evaluated at {BM}, {3271},
{ax} and Fy. That is, for each i = 1,..., N and k =1, ..., K, we have

K
2 - N
Op1r = _ﬁ a MF1< - zﬁlz $2z/32z +)‘Z€zj H Hﬂl,i -y, (A.9)

J=1 I=11#j

where &;; = Hgil if |81, — éyll # 0 and ||é]| < 1if ||B1; — @5l = 0. Noting that y; — 21,5 ; —

$2,iB27i = $1,zb1,z + FlHl 1)\“ + ﬂ: + (Flo — FlHl_l))\?i, ’fb;k = u; + on)\gz — $2,ig2,i (Ag) implies that

R N 1 N 1 R
Qinbii = ﬁx’17iMﬁ,luf + ﬁx“ 7 PPN Ze” H 181 — aull, (A.10)
] 1 I=1,1#7

which can be rewritten as
1 N
Qizabri = NTZ Z af/LZ-Mlel,jaiijj + R, (A.11)
j=1

where R; = Ry;+ Ro;— R3;+ Ry _AR5i’ R1;, Roj, R3; and Ry; are defined in the statement of Lemma A.6,
and Rs; = 5 310 €55 [[/21 1z |B1i—ul|- By Lemma A.6(i)-(iv), we have that Y,y % Yoy | Rul* =



Op(TYdrn? yr + dT771NT + dTT* ). In addition, we can show that = ZZ LIRsi]12 = 0p (M) . 1
follows that + S | || Ri||> = Op(T “ldrniyy + dininy +drT T+ A%),

Let Q4 dlag(Ql’m, . QN zz) and Q- as an Np; x Np; matrix with typical blocks NT2 ) Mg w1 jaij,
such that
1 ! 1 !
W‘rl,lMﬁ‘lelall W.’L'LlMﬁl.’L'Lgalg s NT2 371 1M 371 Na1N
1 ! 1 !
Q W$172Mﬁ1$171a21 le,QMﬁlxl,2a22 e Wl‘l 2M 1'1 NAo2N
2 = . .
NTQQTI NM .’L‘l 1aN1 NTQQTI NM I 2aN2 e NTQQTI NM 371 NAONN

Let R = (R}, ..., Ry)'. Then (A.11) implies that (Q; — Q2)vec(b;) = R. Tt follows that
I A A . . . . ESE:
IRIP = tr (vee(br)'(Q1 — Q2)'(@1 = Qa)vec(5)) = b1 [1tun (Q1 — @)

By Assumption 3.2(iv) and Lemma A.5(i), we can readily show that p,;,(Q1 — Q2) > prin/2 > 0
w.p.a.1. Then 7jyy = NHbl”2 < Pmm i 1 IR\ = Op(T~ driiyg + 3y + drT =2 + A?). This
implies that +[[b1[? = + SN, HbMH? Op (drT=2 4+ X\?).

Next, we want to strengthen the last result to the stronger version: + Zfil 61,112 = Op(drT—2).

Let 3, = 39 —l—dl/zT_lv, where v = (v1,...,uy) is a p; X N matrix. Let v =vec(v). We want to show
that for any given €* > 0, there exists a large constant L = L(e*) such that for sufficiently large N
and 7" we have

. 1/2— e ~ T A n *
P{12N1n|f 2=L NT(ﬁl+d/ T 12}7/327a7F1)>Q1\}¥(ﬁ?7/3(2)7a07F1)} >1-—¢,
N Zi=1 IVill"=

regardless of the property of ,32, Fy and &. This implies that w.p.a.l there is a local minimum
By = (By, .., By) such that £+ S°N || ,]|2 = Op(T2). Note that

T2 [Q?\}?(ﬁl + d;“/2T_1U>B27&7 Fl) - Q?\}?(ﬁ?:ﬁ%v aO, Fl)]

d1/2 N d1/2 5 )
> % ; ( 17:2 ’U .I'l 'LM ajll,ivi - T le 1MF1 <F10 - FlHl))\g_)Z T Zml 'LMFA‘l “:)
N
dr 1
— N 2 ﬁ .’L'l ZM .’L'l Zv’b
1/2

N
T gv T R J: u} gaaz *ZL“Z)'—Lga"I‘,-M*U'
2i + lz NT 1701, By b1,V NT < 1 (VRS Wil IR

]:

= Dint — 2DanT,

where Ry = 75} Mg FON) — = Zjvzl :L"I’Z-Mplxl,jaijl;j + = Zjvzl a;jzy ;Mp uj as defined in
Lemma A.6. By Assumptlon 3.2(iv) and Lemma A.5(iv), Din7 = dWTv’le > Ay i (Q1) N ||
drpminN " [0]* /2 w.p.a.1. Note that [Doyr| < {£ SN, [[vil|*}/2 321, (Danty)'/?, where Doy =



v i 1 Ral, D2NT,2 = g i |20, My, @112, Danrs = g Soien 2oy llasgah ;M w1 b 112,
and Dont4 = m SN Zjvzl @iy ;M ujH2 By Lemmas A.6(i)-(ii) and A.5(i), we can show
that Donpy = T20p(I~52C + T2y + d3aptyp + T263%) = op(1), and Dayra < 2557V
||l (Mp, —Mpo)ii|*+ 22y > || 32 Mpoi}||* = TOp(niNp+T ' Cy7)+op(1) = op(1). Next,

1 1 2
Davra < - N3T2ZZH%H oMz b4

=1 j=1
T? L orpo - ||371,jH2 0|2 1 < 02 2 Ll 12
<~ [um (ﬁAl M)| e s I e I e N;Hbmu
T2
=< 0p (1)Op (1) Op(1)0p (1) Op (drT2+X*) =op (1),
where we use the fact that max1<j<N % = Op (1) by Lemma A.2(i), max;<j<n H)\?jHQ =0p (1)

by Assumption 3.2(i), and s ZZ 1 H)\ H |z14]|> = Op (1) by Markov inequality and %HB;LHQ =
Op (drT~2 4+ X?) . Similarly, we have by Lemma A.5(i),

1 1 2
D2NT4_d N3T2 ZZH“Z]H H@‘le UJH

=1 j=1
1 AVAY . 2 , 2
< e (5] b S 1 I (ot~ e+ et
=—OP( Ty +T'CN5) + 1 =0p(1).

dr

It follows that |Donr| = dpN—1/2 llv||[op (1). Then Dynr dominates Doy for sufficiently large
L. That is, T2 [Q?{;{F{(ﬁl + d;ﬂT*lv,BQ,&,FI) — Q?{;{ﬁ(,@?,ﬁg,ao,ﬁl)] > 0 for sufficiently large L.
Consequently, the result in (i) follows.

(ii) We study the probability bound for each term on the right side of (A.10). For the first term,
we have by Lemma A.6(i) and straightforward calculations

1 / A~k
< Hﬁxl,iMFloui

33/1@(MF1 - MF{J)@Z(

1
il
= Op(T™") + Op(T 2y yp + TIONY) = Op(T7H). (A.12)

For the second term, we can readily apply Lemmas A.6(ii), A.5(i) and A.3(iii), and Theorem 3.2(i)
to obtain

N
1 1 . 1
HTQQE“ < 1Baill + || 57 D 71 wsbsas | + || 5 2 21Mp, uag
J=1 j=1

= OP(T75/4CJ:7;“/2 + T~ Y20, Nyp + deniyy + T~ YonT) + Op(niyy) + Op(drT ™)
= Op(drT™Y). (A.13)



The third term is Op (A). By Lemma A.5(i), fpi, (722} Mg z) = Mmm(%:p’l’iMFloxLi) +op(1).
Noting that (%J}/LiMF{)J}Li)_l is the principal px p submatrix Of (FZW/W;) L, ﬂmin(%l‘ll’iMFlofﬁLi)
umin(%ﬂfi' W;), and the last object is bounded away from zero w.p.a.l. It follows that IA)M =
Op(drT~' + \) for i = 1,2, ..., N.

Note that B% = <x’21MF1:L‘21> xh Mp (yi — 71 zﬁll) and

—1
’b2’LH_H $21M $2Z> xQzM wlzblz

1

1
’ + Hfﬂcé,iMplFlo)\?i

b

Iz

By the proof of Lemma A.5(ii) and Assumption 3.2(v), we can show that H T, Mp 2,)” ! H <M
sp

uniformly in ¢ w.p.a.1. Note that ||Pz — Ppo|| = Op(miyr+T 1200h) = Op(d;/2T_1 +(NT)~1/?)

and similarly = Hﬁlel - FPH = Op(d;,/zT—l + (NT)~%/2) by Theorem 3.1(iii) and Lemma A.5(i).

Thus

<Hl 22, H [[ui + F9A|

—T VT VT

= Op(T™V2) + Op(di*T~" + (NT)V/?) = op(T*W),

x,2,iMF10 (u; + FSAY,)

1

1 010 1 o1 0110 12 lz2,ll 1 -
foé,z‘MﬁlFl ALl = foé,iMpl(FlH1 —FP)MNG|| ST / T2 T HF H, Fl H H)‘
= T'V20p(dy*T~" + (NT)"Y/2) = Op(d/*T~/2 +- N~V/2),
1 1 2l lzill 75
| bt aniin] <| gttt 1wt + L2 |2, - g | oy

=Op(drT™" + A) + Op(drT ™" + (NT)"/?)op (1) = Op(drT ™" + N),

where & 1‘21MF0 (ui+F9N,) = 1:2 Z(upLFé))\QZ)%—T T T = TIJQZ (uz + Fg)\gi)+
Op(T~1) = Op(T~/?) by Assumption 3.1(v). It follows that Hégl = Op(le/QT_l/2 + N~1/2) for
i=1,2,..,N.

(iii) Let Pnr (81, ) = % Zz']il Hszl Hﬁu—ak” and ény () = H Hﬁl J — o | +H£(=_12 HBL@'—
apll x 189 — ekl + ... + T, 189 ; — | By SSP (2016a), we have that as (N,T) — oo,

175 F7 <F{”F10>*1 FY(u +F9N3) 1
T

< &inr()|1B1; — Bl

L K
H ||51,z' —ogl| - H HB(I),i - OékH
k=1 k=1

where & y7(c) < Crnr(a)(1+2]13,,—BY|) and Cxnr(er) = maxy<i< v maxi<o<p<i—1 [ [ chsllBYi—
|| K71 = max; <)< maxy<s<h<ro-1 [Tieq crslla? — ag|®~1=% = O(1) with ¢, being finite inte-



gers. It follows that as (N,T) — oo

|Pnr(By, @) — Pyr(8Y, @) < Crnr(a Z 1b1,6ll + 2Cx N ( Z 1B1,4]|2

=1

1/2
< Crnr(a { ZHbMHQ} + Op(drT %) = Op(d*TY). (A.14)

y (A.14) and the fact that Py7(8),a?) = 0 and that Py7(B;,é1) — Pyr(B1,a?) < 0. we have

~

’U

0> 1, &1) — Pyr(By, ) = Pur(8Y, &) — Par(8Y, a) + Op(dy>T )

—~

NT

K
H 182, — él| + Op(dj/*T 1)

2|H
=~ L7

z|z

K
Ny Nk . 1/2,
o= o+ 22 TT e — ol + .+ 25 T e — ol + Om(@T ). (419
1 N o k=1

e
Il

By Assumption 3.3(i), Ny/N — 7, € (0,1) for each &k = 1,...K. So (A.15) implies that Hszl |l —
Q|| = Op(dy> T~ for I = 1,...K. Tt follows that (1), .., &(x)) — (o, ..., a%) = Op(dy*T~1).
(iv) By Theorem 3.1(iii) and Theorem 3.2(i), we have %Hﬁ’l—F{)Hl | = Op(d;pnlNT—l—T_lDC&lT) =
Op(d}*T=1 + (NT)"1/2).m
To prove Theorem 3.3 we use the following two lemmas.
Lemma A.7 Suppose that Assumptions 3.1-3.8 hold. Then for any ¢ > 0,
(i) P <max1§z‘§N ‘ > C¢NT> =o(N71),
(ZZ) P (maxlSiSN ‘ > CdTwNT> = O(Nfl).
Lemma A.8 Suppose that Assumptions 8.1-8.8 hold. Then for any ¢ > 0,
(i) P <maX1§i§N (| Rail| > Cd%r/ (minr +T2CNT) (Yn + T2 (log T)? )) o(N71),
(Zl) P (maxlgiSN ||R21|| > Cd;ﬂ/ §2NT) = 0<N71),
(m) P (maxlgiSN ||R3z|| > Cd;ﬂ/2§1NT) = 0<N71),
(i) P (maxi<i<n ||Rail| > cdrp ) = o(N71),
(v) P (maxiicn ||Brs — 82, \ > ¢ (Wyr + Aog T)/?) ) = o(N~Y) for any ¢ > 0,
(vi) P <% ity HBlz - 5?,1 > cdipdir | = o(N™1) for any € >0,

1,7 0
ﬁ$1,z’Mp1F1

1 ../ %
T2 LY ;U

1,7 ~ %
ﬁ.’L‘LiMploui

> Cle/Q(nlNT + Tﬁl/?C&%)) =o(N™1),
> c(log T)3(d*T-1/2 + C;T)) = o(N71).

(UZZ) P (maxlggN‘
(viii) P (maX1§z‘§N HBW — B9,
Proof of Theorem 3.3. (i) Fix £ € {1,...,K}. By the consistency of & and Bl,iv we have

Bl,i —a o —aY # 0 for all i € GY and | # k. Now, suppose that ||B“ — éy|| # 0 for some i € GY.
Then the first order condition (with respect to (; ;) for the minimization of the objective function

10



(2.8) implies that

2 R 2 2 2
T MFOU* =+ T:L{l,l(MFP — MF )u — _xl ZM Fl)\ T2f]31

T
I )\Ckz . N .
21 Mg, @1+ T (B — éu) +TA Z €ij H 181, — éull
181, — ak“

Jj=lj#k  I=1l#j

OP1><1 - zM m1 ZT(&k - 042)

10+ AZZ A3z + A4z + A5Z + AGZa say,

where é;; are defined in the proof of Theorem 3.2(i), ¢éx; = Hl]i1715£k HBM = Hllil,l;ék: |ad —

af|| > 0 for i € GY by Assumption 3.3(ii). Let ¥Un7 = 1 np + MlogT)/2. Let ¢ denote a generic
constant that may vary across lines. By Lemma A.8(v)-(vi), we have

)zo(N andP( ZHB“— 0

(maxHBM - s cd%w?w) =o(N7Y).
1€G9

(A.16)
This, in conjunction with the proof of Theorem 3.2(i)-(iii), implies that
P(||lax — Y| > cdripnr) = o( N) and P(m% ki — ¢ > c/2) = o(N 7). (A.17)
1€Gy

By (A.16)-(A.17) and the fact that max;c o %:B’“MFl 2 ; < cdrpmay 5., P (maxl-eGg
=o(N~1) and P <maxi€Gg Agi

Ayl > Cd%rTTPNT)
> cAT\IJNT) = o(N~1). By Lemmas A.7(ii), A.8(i), and A.8(vii),

we have P (maxiecn [ Aull > eTdriyg ) = o(N1), P (maxieey | Asill > edi/*(Tnyyr + TV2CRY))
= o(N71), and P (maxicay [ Aaill > edif* (T g + TY2CRY) (U + T-2(10gT)) ) = o(N7Y).

For As;, we have

e 2 2 ~ 2 /\é]ﬂ

B — o) As; = (B, — ag) —x'.MAf‘_*_A— B

( 1,3 ) ? ( 1, ) T2 1Lt vl HBL ()lkH ( 10 )
> 2Qi 20T ||Brs — kl|* + TAékil|Brs — Gl > TN By s — éuk.

Combining the above results yields P(Zx y7) = 1 — o( N~1), where
e {m s < edsf® (Tour + TV2CE ) (vr +T72(108 T>‘°’>}
e

N {ma)()< || Ass]| < cle/2(Tn1NT +T1/QCX,%F)} N {ma%c | ki — c%! < 02/2}
1€GY, 1€Gy

i€G?

N {max HAM < chTTwNT} N {max HA&- < c)\T\IINT} .
i€GY

11



Then conditional on Zix7, we have that uniformly in ¢ € Gg,

’ 511 — ) (Ag; + Az + Agi + As; + Agy)

Z) 511 ay,)' As;

{CT)‘Ck —-¢ <TdT/ MmNt + Tl/gdéﬂ/QCﬁT + TNy + )\T‘I’NT> } HBLZ‘ — G|

— ‘ — ) (Ag; + Az + Ay + Agy)

ZCT}‘CkHﬁl,i — agll/2,

where the last inequality follows by the fact that le/ 2?71 ~nr+TY 2le/ 20]?,1T + Td2p yp + N[ N7
= o(T\) for sufficiently large (N,T) by Assumption 3. 3(1V). It follows that

P(EkNT,z‘) =P(i ¢ Gk‘z = Gg) = P(Ali = Ag; + Agi + Agi + As; + A&)
<P (’(Bl,i — b)) Ayi| > (B — 6u) Asi — (Br,; — ) (Agi + Agi + Ay + Ab’i))
< P(||Ag]| > ¢TAS /4, Znr) + o(NTH =0 as (N, T) —

where the last inequality follows because T'A > T'dp1 npr by Assumption 3.3(iv). Consequently, we
can conclude that w.p.a.1, 8 ; — & must be in a position where ||3; ; — oy is not differentiable with

respect to 3; for any i € G9. That is, P(Hﬁl i — ol =0Ji € GO) =1-0o(N"1)as (N,T) —

For uniform consistency, we have that P(U EkNT) < Zk 1 (EkNT) < Zszl ZieG% P(E’kNT’i) <
Nmaxj<i<y P(|Ait]| > ¢TA/4) + o(1) — 0 as (N, T) — oo.This completes the proof of (i). Then
the proof of (ii) directly follows SSP (2016a) and is therefore omitted. W

To prove Theorem 3.4, we use the following two lemmas.

Lemma A.9 Suppose that Assumptions 3.1-8.8 hold. Then for any k=1,..., K,
‘ 0 N 2 1 1 N

(i) NleQ Zieék xll,iMﬁlF{))‘li - Nlez Zieék ¥ i1 i Mg w1 jaijbyy — N T2 Zieék N D=1

N _ _
it i Mp U = Jo7m Liec, & 2jmr G Mg FEAS; + op (NPT,
(i1) _Nk1T2 Zieék xll,iMﬁlxl,i = _NleQ ZieG% :L'ILiMFloxLi +op(1),

N

(111) ﬁ Yict oM, [( , FO)\SZ-) - % > i (uj + FQOAgj)aij] = Ugrnt + 0p(1),

(iv) Nsz Yic, ¥ Zjec:, 21, Mp 1505 = §1m ey ¥ 2ojecy T1iMpozjai + op(l),

(U) NkT2 ZieGk xl,z’ Fl$2ﬂb2,l - OP(N_1/2T_1)'

Lemma A.10 Suppose that Assumptions 3.1-3.3 hold. Then
. d

(i) @nr = Qo.

(ZZ) Uint = VinT + BenT + Op(l) fork=1,..., K,

(iii) VN1 4N (0,90) conditional on C where Qo = imy 700 QNT-

Proof of Theorem 3.4. (i) To study of the oracle property of the C-Lasso estimator, we invoke
the sub-differential calculus. A necessary and sufficient condition for {;;} and {ax} to minimize
the objective function in (2.11) is that for each i = 1,..., N (resp. k =1, ..., K), the null vector 0p, x1

belongs to the sub-differential of Q?{}?(,@l,ﬁm a,Fl) with respect to 3y, (resp. i) evaluated at

12



{BM} and {d&x}. That is, for each i = 1,..., N and k =1, ..., K, we have

K K
2 A - .
OP1><1 - _lel,i*]\4p1 (y I 161 i T2 7,621 N Z H Hﬁl,i - al”? (A18)
J=1  I=Ll#j
P K
Opix1 = 3 e I 1B —al, (A.19)
=1 =1,k
where é;; = ”gil—:z” if |8; — aj|| # 0 and ||&;] < 1 if ||f5’1Z — &j|| = 0. First, we observe that

181, — éxll = 0 for any i € Gy, by the definition of Gy, implying that §y, — & — of —af # 0
for any i € G, and [ 7& k by Assumption 3.3(ii). It follows that ||é;| < 1 for any i € Gy and
e —_ B 7aj Oék

U7 Bl Taa &

K ; .
Zieék Zj:l,j;ék €ij Hl:l,l;ﬁj Hﬁl,z — | = Zigék Zj 1,55k % Hz 1,l#j [[éur — éul| = Op,x1, and

w.p.a.l for any i € G and j # k. This further implies that w.p.a.1

K

N
Opix1 = ek | 81— aull

i=1  1=1l#k

K K K K
=3 e [ Naw—aull+ > e J] WBi—all+ D> D e [[ oy —aul

icCp  1=Ll#k icGo  I=Ll#k j=Li#kie,  I1=1i#k
K K
= > e [] law—al+d en [I 15—l (A.20)
ieG,  =L1Fk icGo  I=L1#k

Then by (A.18)-(A.20) we have

NkT2 Z L zM ( - Zak — T2 1182 )i Z Cik H ||B1 g al” - O101><1 (A21)

ZEGk lGGo I=1,l#k

Noting that 1{i € G} = 1{i € G} + 1{i € G}, \ G} — 1{i € GY\ Gy} and y; —x“ak—kxuﬁgﬂ-
FONY, + F9NS, + u; when i € GY, we have

NTQZ Flyz*NTQZ@“u le,BJrNTQZa:“ Flo)‘(l)i NT2Z$ A

zeGk 1€Gk zeGk zeGk
1 1

0 / 0 ! 0

x! 7210+ g Z 7 Mz x1:07, — —— Z T Me x50

NkT2 Z 1 z 2k NkTQ . 1,54 Fy ,Zﬁl,z NkTQ ) 13+ 1%k

ieGY z‘eGk\GO i€GI\Gy
0 00
Tg Z i Mp w25 ; + T2 Z ;Mg FY N + T2 Z 2y Mp, (u; + FRA%).
ZEGk ZEGk ZEGk
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Combining (A.21) and (A.22) yields

NTQZ.I']_,LM x11< k—ak NT2Z$1,L F]Q)\?,L NT2Z$1,L 2 uZ+F2>\ )
16Gk ZEGk ZEGk

+ Cig — Cop, + C3 — Cup,, (A.23)

where Cy = ﬁ Zieék\Gg $/1,¢Mp1$1,i5(1),m Cor = ﬁ Ziecg\ék x’LiMFl:L‘LZ-ag, Csp = ﬁ Zieéo ik
X Hl[;,l;ék ||Bll — & and Oy, = ﬁ D ict, x/LZ-MleulA)g?i. By Theorem 3.3 and Lemmas S1.11-
S1.12 in Su et al. (2016b), we have P(N'Y2T||Cii| > €) < P(Finr) — 0, P(NV2T||Cor|| > €) <
P(Epnt) — 0, and P(NY2T | Car|| > €) < Y4, Yieqn Pli € Goli € GY) < zf 1 Diey P(Eent) =
o(1). Tt follows that ||C1—Cor+Csi|| = op(N~/2T—1). By Lemma A.9 (v), || o T >icey, T1iMp, o.iba 4|
— op(N~1/27~1). We have By Lemma A.9(i), we have as g —0

NkT2 Z 'y Mp, Flo/\ N T2 Z lezM wljawbld NkT2 Z Zawwl M, uj

ieGy, ieG, J=1 ieG, J=1
NkTQ Z Za’uxl M, F3A3; +op(N S, (A.24)
7«6Gk .7 1

In addition,

NkT2 Z Zwl M xl’ja”bl’J Ny, T2 Z Z Z @i Mp, w1 jaij (G —af)+op(N 2T

ZGGk J=1 ZGGk l IJGGZ
(A.25)

by Theorem 3.3. Let QinT :diag(ﬁ Zz’eél @ zM Ty, ﬁ Zz’eéK :L"“Mle11> and QQNT
is a Kp; x Kp; matrix with typical blocks WkT ZiGGk Zjeél aijx’l’iMplej such that

NN1T2 ZzeGl decl awxl Mpxrg, - NN1T2 ZzeGl ZJGGK %xl iMp, 1
A NN2T2 ity ZyeGl aijey ;Mg xrg, NN2T2 D ieCs Z]EGK aijzy ;M 1,5,
Qont = .

NNKT2 ZzeGK Z;eél aijxy ;M 0 IR NNKT2 ZzeGK ZJGGK aijxy ;M 1 T1,j

Combining (A.23)—(A.25), we have \/NTvec( a—al) = (QlNT—QAQNT)ilx/DNKﬁNT—FOP(l), where
the kth element of Uy is
LN

II,iMﬁl (uz + FQO)\ — N

uj +F20/\ )

and Dy g :diag(Nﬂl, - N_]\;)®Ip1‘ By Lemma A.9(ii)-(iv), we have that Oint—OQant = Qnr+op(1),
Unt = Unr + op(1), where Uyr and Q7 are defined in Theorem 3.4. Then we have v NTvec( é& —
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o) = Q;\}T\/DNKUNT—&—Op(l). By Lemma A.10(ii), we have Uyy7—Brnt1—Bint 2 = Vinr+op (1),
where Vin7 and Byyt = BinT,1 + BinT2 are defined in Theorem 3.4. Thus,

VNTvec(& — a°) = Qi v/ Dk (Vir + Byr) + op(1), (A.26)

where Vyr = (V{yps -, Vieyr)' and Byt = (Bl y7s - Brenr)'-

(ii) By Lemma A.10 (i) and (iii), @nr <, Qo and Vyr <, N(0,€p) conditional C. This result, in
conjunction with (A.26), implies that v NTvec(&—a®)—/DnrQniBNT 4, MN(0, DoQqy *Q0Q5 ).
|

To prove Theorem 3.5 we use the following lemma.

Lemma A.11 Suppose that Assumptions 3.1-8.3 hold. Then, as (N,T) — oo,
(i) 1 FiAui — FOX | = Op(v/ Tty ) + Op(Cib),
(ii) =l F2 — F9Ha|l = Op(Ciy),
(ii1) Zh= Sic, (P2 — H’1>\°») = op(1),
(iv) & Hmm FON,|| = op(Oh),
(v) \/;— Zzgé’k(A21i - Azl i) =op(1),
(1) 7% i T G =2 1 <13 = 0p(1),
(vit) \/— Z,LGGO (A24,)\2@ A24Z/\21) =op(1),
(viih) g Sieo Sty e [Bas1 {s < 8} Aoy idoi — a1 {s < 1} Agahg] = op(1),
(iz) Qnp = QNT - 0p( ) and Q. = Qfp +op(1),
where Xgi =\, -+ Z 2jaw

Proof of Theorem 3.5. ( ) We first consider the bias-corrected post-Lasso estimators vec(é& Ig) By
construction and Theorem 3.4, we have

\/7Tvec(“bAc - a%
= \/7Tvec( A% — &) 4+ VNTvec(a — o)
_ A—1 (7 :
= VDnkQypVnt + DNk {QNT Byt + BnT2) — QNnp(BNT1 + ByT2)| +o0p(1).

It suffices to show that \/]_VTvec(ézlgf —af = \/DNKQ]_VITVNT + op(1) by showing that (il) OinT —

Qanr = Qnr + 0p(1), (i2) Byra = By + op(1), and (i3) Byrz = Byra + op(1). (i1) holds by
Lemma A.9 (ii) and (iv). For (i2), it suffices to show that Byyr1—Brnr1 = op (1) fork =1, ..., K. By
Theorem 3.3 and using arguments like those in the proof of Lemma A.9(ii), we can readily show that

Binty = Benratop(1), where Binra = 7= Yicao Bori= 7807 Yieas Dimt Damr Fs1 {5 <t} Mg
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It follows that

1 1
Binta — Bunra = o Z (Ao1; — A1) — —— 1{s <t} [%tsAm i — 50921 +op(1)
GGO NkT zGGg t=1 s=1
) AN
:\/—N_ Z (Ag1, — A1) — T Z Z sl {s < t} Z (Ao1; — Aa1y)
t=1 s=1 0
k zeG’,C ZEG
N
k .
—TZZ(%tS—%tS)]_{S<t} ZAQlZ +0P 1)
=1 s=1 Zec;o

=BinT1 (1) + Benr (2) + Brnt,1 (3) + op(1).

We can prove BkNT’l = Binr1+op(1) by showing that Bynr1 (1) = op (1) for [ = 1,2, 3. Noting that

FELSL s (s <) < A L ST [ Ful| || = 0 (1) and g ey Aors = 0p (1),
these results would follow by Lemma A.11(v)-(vi). To show (i3), we first observe that

BNt = FT%E (@h,:1C) Mpo 5 | A ZAQJ%

1 -0 1 -0

:W Z E (ZL',17Z|C) F20>\21 — m Z & ($/1’1|C) PF{)FQO)\Qz = Bk:NT721 - BkNT,QQa
! ieGY e

where Ay, = A3; — & Y301 Ajaig. Let ¢/ 172 = (9201(L), ¢7272(1)), 67712 = (657 (L), 67 (L)) =

(651 (L), ¢ ( )), and ’Uflf2 = (v fl', vl"'Y. Note that ej; = w§y = ¢ (L) vig+e5° (L) vf+¢;7 (L) v

+¢°1 (L) Ufl + ¢ (L) ?. By the BN decomposition and the independence of {v}{*} and {v; N2y
we have

f20t =Sqwiy = ¢f2fl (L)Ugl + ¢f2f2 (L)ng = ¢f2,f1f2 (L)Uglfz

:¢f2’f1f2(1)vflf2 + SqWit—1 — SaWit,
t

Ec (x1,44) =E¢ (Sg Z wzm> = Z <¢§f1 (L) vf,% + (;Sz?f2 (L) UTJE) — ¢z—:,f1f2 (L) th1f2

m=1

:¢§7f1f2 (1 )‘/tflfQ + SoEe (i — i) -

where %flfz = (thl/, thzl)’ = (anzl v,{%', Zm 1 Ufrf ) wy and Wy are defined in Assumption 3.1.
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1 <0
Let Binro1 = 75 Dieqo S2 D ore0 D oin0 Pigr P 1SiAg;- Tt follows that
BinT21 — BZNT 21

\/_ > Z oIS (L) Vet s ([0 \/_ ZSQZZ%W;JSA%

GGO t=1 GGO r=0 [=0

v Ly g (1) (Ve o1y

GGO t=1

\/]Tk Z So {T Z (Ec Wit+1) Wy Zﬁbz z+1¢zl) Sitai — T Zd’@ l+1¢zl5’4)‘21

i€GY =0
T

T
- _ 1 ~ _
Z (EC Wio) f1f2 ¢f2,f1f2( ) — ¢i,0¢i(1)/54,1) )‘gi + - ZEC (y) U{1f2/¢f2’f1f2(1)/)\gi
t=1

=1

T
_ 1 _
__E (Z ) wiTSz,l)‘gi + fEC (wi1) ngSz,l)‘gi}

1

rZ@f r282{RZ%1+RZT2+R o+ Bl R+ Rl o} S5

where we use the fact that ¢’ flfz( 1) ¢/ 2(1) = Sy¢, (1), (1) S, by construction and that
Z;?io Z?io ¢i,l+r¢;,l =¢; (1) ¢ (1 ) Zl 0 Pi l+1¢zl+¢z 0®;(1)". Following the proof of Lemma A.7 in
HJS, we can show thatﬁ ZieG% S2R¢T,1S4)‘2i =op(l) for i =1,...,6 and ﬁ Zz’eGg E(Q{%) = 0.
It follows that Binro1 = Bjiyro + op(l) = \/;N_k ZieGg A24,i5\gi + op(1). Analogously, we have
BinT22 = Bjing29 + 0r (1), Where Biyr oy = ﬁ ZieGg T ZtT:1 22:1 sas{s < t}S2 320> 0%
¢i,l+r¢;,lszllj‘gi' Let Bynro = Binror — Benr2o- Then

Bint2 = Z ; Z Z (s =t} —sa:1{s < 1}) 52 Z Z Di1r P, 154N

zeGg t=1 s=1 r=0 [=0
t
— ef fzf1 cf f2f2
*—ZZ%SZZ (¢ief + 60 ) = > %
t=1 s=1 r=0 [=0 eGO
1N 1
_ 50
=T 2D = D Daida
T t=1 s=1 N i€GY

By Theorem 3.3 and using arguments as used in the proof of Lemma A.9(ii), we can readily show
that Bynr2 = Brnr2 + op(1), where Byyro = \/LN_IC Ziecg % Zthl Zizl st1sQ24 i \2;. Thus we can
prove that BNT’Q = Bn12 +op(1) by showing Bynr2 = N op(1) for k =1,..., K. Note that
3 * Ao\ 30 T T A&

Bint2—Bgnro = \/lek ZieG%(A247i>‘2i_A24,i>‘2i) - \/J%T Ziecg Dot D1 L{s <t} [PasDogidai—
%tsA24,i5\gi] =op(1) —op(1) = op(1) by Lemma A.11(vii)-(viii). Consequently, Byn12 — BpnT2 =
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op(1). In sum, we have \/NTvec(&béc —al) = \/DNKQIV}VNT +op(1).
(ii) For the fully-modified post-Lasso estimators dém, we first consider the asymptotic distribution

for the infeasible version of the fully modified post-Lasso estimator aG Noting that yz =1 7Jozk +
3727152,1 + FOXY, + FON), +uf, by (A.23) and (A.24) and Theorem 3.3, we have

fm 0
T2 Zx“M 21,4(G Gk_ak) NkTQZ LiMp (u +F2)‘ T2 Zw
ZGGk ZGGO ZGGk
1 1
Biyr, — ——— N7Y2r=h (A27)

- m ENT,1 mTBk:NTQ + op(

Combining (A.25), (A.27) and Lemma A.9(i) yields

NkT2 Z xy My xlz(aék —af) NkTZ Z Zfﬁlz £,%1,j@ijb1;

en ieG, J=1
1 N
o My [ - 5 e | 4o 3 Mg | 0 wa
k ZGGO j=1 zGGO
1 + 1 N‘1/2T‘1).

- \/mTBkNT’l - \/MTBkNT,Q + OP(

By (A.25) and Lemma A.10 (i)-(iii), we have \/_Tvec —ao) = (QlNT—QgNT)_l\/M[(U}\‘,}—F
UJ{?T) _B]TIT,l — Bnr2] +op(1) =D QNTVNT + Op( ), where

N
Ulq:J]rVT Z M F9 ul — Z zyu )
zGGO Jj=1
| X
Ulf,zNT Z xleFO on N Zaing )
eGO j=1
] T T
Vivea = == >0 S0l S0 (e (Vi ™) = [t = s} = 51 {s <0} Ty | 0] (1)'S™,
7 NiT i€GY t=1 s=1

1
E (21,/C) 1{i € Gy Mo Z aUT (#,41C) MFOU
jEGO

1
VkJJrVT,2 = VN, Z
=1

Z [z1,; — Be (z1,0)] MF0F2 A%
ieGY

1
Vints = INT
k

and U,j Nt = U, ,?TVT + U IszT and VJVT = V,;]“VTI + V,;]“VTQ + VkNT,3 are the kth block-elements of
Up and Vibp, respectively. We have a new error process wjt = (u}, Az} ity A f1gs for, 75 ;)" whose

partial sum satisfies the multivariate invariance prlnmple —= Zt 1wl = B = BM(Q). Following
the proof of Lemma A.10(iii) (see also Theorem 9 in Phllhps and Moon, 1999), we can show that
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Var 4N (0,9f) conditional on C where Qf = limy, 700 Q7 and QF, =Var(Vy|C) . Then we
have

\/NTvec(dém —a 4, MN (0, DOQO_IQS_QEI)-
Next, we show that dém is asymptotically equivalent to &ém by showing that VN T( o ém) =
op (1). Note that

‘/NT(dfm &ém) =V Dnk [(QlNT — Qont) N Uy + B]J'\_TTJ + Bn12) — Qur ( N7t BNT 1+ BNT 2)} .

Then it suffices to show (iil) QlNT — QQNT = Qnr + op(1), (ii2) BNT1 = BNT1 + op(1),(ii3)

UJJ\?T = UJJ\?T + op(1), and (ii4) BNT’Q = Bn12 + op(1). (iil) and (ii4) have been established in the
proof of part (i) of the theorem. For (ii2), we can apply arguments analogous to those used in the

proof of Lemma A.11(v) to establish that E¢ Hﬁ 2 il (Q — Q) ‘ =Op(%+ %) =op (1) . Since

2
A = op (1). The latter

Img —

= Apmi — leﬂ-Q;n%Am,i, this implies that ‘

1
VN Zie@k( 21, — A )
further implies that BX]Tl = B, + op(1). For (ii3) we can apply Theorem 3 to show that
T+ +
Uent = Ugnr
—[Tut + +
=UiNr = Uing + Ui = Upir

N
\/LTZ /11 Ai _%Z \/LTZ ,11 ; ZCLUU —|—0p )

i€Gy, 1€Gg

\/mTZ /Mpl(af—uf ZZ T, F1< —uj)aij%—oP(l)

i€Gy eGO J=1
1 Lo -
=N ;} T Az, <912,i922i - QlZ,iQ22i) \/MT Z i Py Az (Qu’i 0y — 912,1'92%)
el
1 N
——— —1 A A -1
- VN,NT Z lelviMﬁlel’j (QUJQﬂj - 912,3'9223') ai; +op(1)
i€GY j=1

=UU; +UUy + UUs + op(1),

jut 1 ! . + _ LN T Ut
where Uinr = 737 ZieG% zy Mg, (uZ N D1 awuj> and U — U = op(1) by Lemma

A.9(iii). Following the proof of Lemma A.11(v), we can show that UU; = op(1) for { =1, 2, 3. Then
(ii3) follows. This completes the proof of (ii).
(iii) The proof is analogous to that of (ii) and is omitted. W

To prove Theorems 3.6-3.7 we use the following two lemmas.

Lemma A.12 Suppose that Assumptz’ons 8.1-8.3 and 3.6 hold. Then

(i) For any 1 <1y <19, V1(7“17 ') — V1(7”17F0HT1) Op(VT),

(ii) For any 1 < ry < 79, pl1nr111r1f(1\7’T)_,0o drT[Vi(ry, FPHY) — Vi(ry, FY)] = dy, for some
dr, >0,

~ ~ 2.0
(iii) For any m0 < 71 < Tmax, Vi(ry, FY*) — Vi(rd, fl) = Op(1),
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where Vi (r1, FOHY) is defined analogously to Vi(ri, FI*) with FT* replaced by FYHT*, and H}* =
(N IAO/AO) (T ZFO/FTI).
Lemma A.13 Suppose that Assumptions 8.1-3.3 and 3.5 hold. Then

(i) For any 1 <1y <719, Va(ra, F52) — Va(rg, FYH?) = Op(Cyt),

(i) For each o with 0 < ry < rg, there exist a positive number ¢, such that plim inf(N7T)_)oo[‘/2(’l"2, F20H2T2)
_‘/2(7“27 )] = Cr,

(iii) For any fixed ro, with 7“8 <719 < Tmax, Vg(rg, 2) — Vg( 0 FTQ) OP(CK;%«),
where Va(ro, FYHY?) is defined analogously to Va(ra, Fy? ) with Fy? replaced by FOHY?, Hy? = (N~'AYAY)
X (TVFYF32).
Proof of Theorem 3.6. Noting that [Cy(r1)—[C1(r) = Vi(ry, F{)=Vi(r{, £ D (0—r1)g1 (N, T),
it suffices to show that P (Vl(rl,ﬁ’l”) Vl(rl,FTl) (r) —r1)g1(N, T)) — 0 as (N,T) — oo when

ry # r?. First, when r < r?, we consider the decomposition

N AT.O N 7,0
Vi(r, BTV = V(e EYY) = [Va(ry, BT — V1<n,FPH?>] + Vi(ry, FYHTY) = Vi(rY, FPHY)
+ (0, FOHY — Vi, B{Y) = DViy + DVig + DVis.

By Lemma A.12, DV; 1 = Op(T"/?), DV; 2 is of exact probability order Op(T/loglog T), and DV} 3 =
Op (1). It follows that

A~ A 0
P(ICy (1) < IC1 (1)) = P (Vi(re, F{) = V(13 1) < (1§ = r1)ga (N, T)) = 0

as g1(N,T) (loglogT) /T — 0 under Assumption 3. 6

Next, for r1 > 79, we have Vi (ry, F/*) — V4 (r0, F} ) = Op(1) for 71 > 7 by Lemma A.12(iii),
and (r1 — r9)g1(N,T) — oo by Assumptlon 3.6. ThlS implies that P(IC1(r1) — IC1(r?) < 0) =

A~ ~ 0
P(Vi(ri, F{*) = Vi(r9, Fy) < (1) = r1)g1(N,T)) — 0 as N,T — co. B

Proof of Theorem 3.7. Noting that ICy(r2)— ICg(rg) = Va(rg, F52)=Va(rY, FTZ) (r9—r32)g2(N, T),
it suffices to show that P (‘/2(7“2,1:_12712) Va(r§, F, ) < (r9 —72)g2(N, T)) — 0 as (N,T) — oo when

ry # r9. We consider the under- and over-fitted models, respectively. When 0 < ro < 7J, we make
the following decomposition:

]

TO
Va(re, F32) — Va(r3, Fy2) =[Vi(ra, F32) — Vi(ra, FY Hy?)) + [Vi(re, FOHY?) — Vi(ry, FYHy?)]
'f‘ 0
+ Vi(rS, FYHy?) — Vi (13, Fy?)] = DV + DVao + DVas.

DV, = Op(Cyp) forl = 1,3 by Lemma A.13(i). Noting that Vi (re, FY Hy?) = Vi(ra, FY), plim inf (v 7)—o0
DVis = ¢, when ry < r§ by Lemma A.13(ii). It follows that P(IC2(r2) < IC3(r9)) — 0 as
gl(N T) — 0 as (N,T) — oo under Assumption 3.6.

Now, we consider the case where rJ < 79 < rmay. Note that C%p[Va(re, F32) — Va(r9, Fy? )] =
Op(1) and C%1(ra —19)g2(N, T) > C%792(N, T) — oo by Lemma A.13(iii) and Assumption 3.6, we

have P(ICy(rg) < ICo(r9)) = P(Va(rg, F3?) — V3 (TQ,F;) (r9 —r9)g2(N,T)) — 0 as (N,T) — oo
[}

To prove Theorem 3.8 we use the following lemma.
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Lemma A.14 Suppose that Assumptwns 3.1-3.3 and 3.7 hold. Then maxi,<K<Kmax ’UG(K N
52

9 &Ko, ,\)‘ OP(VNT) where UG(KA) = NT Zk 12'L€Gk(K)‘) Zt 1 Wit — UP('K/\)an 521362 it —
/\11(K, ) flt(K, N2 and vy is defined in Section 3.6.

Proof of Theorem 3.8. First, we show that

1C5(Ko, A) = log[V3(Ko)| + pKogs(N,T)
1 Ko T N ) ) )
= log NT Z Z Z [yit - @g (o ) it B.i2,it — Ai(Ko, A) f1e(Ko, A)] +op(1)

We consider the cases of under- and over-fitted models separately. When 1 < K < K, for G&) =
(GK,].a ceey GK,K) we have

K T
V3(K) :% > > [yzt —alm it~ By i (G(K, X)) ma — Ma(K, A fro(K A) 2

k=1icGy(K.N\) =1
1 K T 9
i _E'E’E' —afm™ e B (G "o — A (GEN £ (GUE)
> 1<III%1<HK0 G(K)eg y NT = o |:yzt aGKk it 62,1(G(Ka A)) T2,it )\11(G ) flt(G )]

= min inf &QG(K) .
1<K <Ko GU) egUK)

By Assumption 3.7 and Slutsky’s lemma, we can demonstrate

> ~2 p 2 2 .
\Juin IC3(K, ) 1<r11}1<nK0G(1g1€fG log(67,x)) +pKgs(N,T) = log(c”) > log(oj)

It follows that P(min1<K<K0 IC3(K /\) > ICg(KQ, )) — 1.

When Ky < K < Kpax, we can show that NT[ GUEN) &é(Ko,)\)] = Op(1) when there are no sta-
tionary regressors, unobserved common factors, or endogeneity in 1 j, T'[6 2G (K )\) Aé (Ko )\)] =0Op(1)

~ 2 _
Pqk N 7Gx, ,\)]
Op(1) when there are nonstationary factors but no stationary regressors or factors, and C NT[ 2

G(K,)\)
A2G(K /\)] Op(1) otherwise. Then by Lemma 14,

when there are stationary regressors but no unobserved common factors, N [

P | min IC3(K,\) > ICg(KO,)\)>

<K€/C
=P ( mln I/NTlog &2 (K)\)/ é(Ko)\)) + I/;\/zTQS(N, T)(K — Kp) > O)

A2 ~2 —2

P min N0 ~ ouon)/ oy T VNN T = Ko) > 0)
—1 as (N,T) — o0

where KT ={K : Ko < K < Kpax}.
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B Proofs of the lemmas in Appendix A
Proof of Lemma A.1. (i) By Lemma 2.1(c) in Park and Phillips (1988), we can show that

1, 1, 1,
ﬁxl,iMFloxl,i = ﬁ“’l,ﬂl,i - ﬁxl,ipploxl,i

1 T 1 T 1 T -1 1 T
= Z T1,it @) 5y — 73 Z 1, fif (ﬁ Z f?J?{) 73 Z Fowl
t=1 t=1 t=1 =1

-1
= /Bm‘Béi —/BziBé </ B3B§> /B3B§z' = /B%Béia
where Bgi = Bgi — fBngé (f BgBé)_l Bg.

(ii) By Lemma 2.1(e) in Park and Phillips (1988), we can show that

1, 1 1
—2' Moow;, =—x u; — =2 . Prou;
Txl,l FlouZ Tw171u1 Txl,l Flou'L

s 1 — 1 — R
=7 > @i — T2 > wiaf (ﬁ > fftf?{) T > Fua
=1 =1 =1 =1

1
= (/ BoidBy; + A21,z‘> — /B%Bé </ B3B§> </ BsdBy; + A317i>

=/ (Bai — m;B3) dB1; + (Ao1,; — miAs1,4),

where m; = ( 1l B3B§)71 | BsBb;, Agi; and Az ; are the one-sided long-run variances, defined above
Assumption 3.1. H

Proof of Lemma A.2. (i) This follows from Lemma A.3(i) in Huang, Jin, and Su (2020, HJS
hereafter).
(ii) This follows from Donsker and Varadhan (1977, eqn (4.6) on p.751) and Lai and Wei (1982

,.eqn (3.23) on p.163).

mlviM 01, 1T W!W;

(111) Note that Hmax <l—dj§112_> < Hmax (%) < Hmax (W) where Mmax(MF{)) = 1. Then
the result follows from Lemma A.3(i) in HJS.

-1 _
(iv) Noting that (%x’“M F{)J:M) is the principal p; X p; submatrix of (% w/! Wl) ! , we have
by (i)

dr , -1 dr - dr - -1
Hmax ﬁxl,iMF{)zlﬂﬁ < Pmax EW’LWZ = | Mmin EWZWZ S2pmin

by the inclusion principle (see, e.g., Corollary 8.4.6 in Bernstein (2005)). It follows that

-1
dr dr -
Hmin (ﬁxll,zMF{)$17l> = { [Mmax (ﬁx/l,zMFPxLZ) > pmin/2' u

Remark. By Lemma 2.1(c) in Park and Phillips (1988), the continuous mapping theorem and
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the inversion formula for partitioned matrix,

_ ~ o~ -1 ~ o~ -1
(1 W,W>1:> (fBgiBéi fBgiBé) Y (S BaBy) ~ (S BuBl)
2V -

~ o~ -1 ~ o~ —1
[ BsBy; [ BsBj i ([ BuBy)  (JBeBY) i () BuiBy,)

where m; is defined in the statement of Lemma A.1.

Y

Proof of Lemma A.3. (i) Note that lezMFo:L‘“ =

that + SN, = Op(T~2) and £ TN, (

2T Ui — %x’l,iPFloui. It suffices to show

/ .
T ;Ui
T2

2
= Op(drT~2). Note that

ﬁxupploui

N
2 1
NT4 Ztr T1,T) ZPFO’LL{LL Pro) < NTE Ztr w127 ;) (ug Prou;)

-1 N
$17i$1,i FP,Fl
N
1
Ny 2

1 N
NT? > H"”/“PF?“Z‘
=1

Flo’ U

where we use the fact that the limit of 2111 F isp.d. a.s. and maxZ Hmax (w) = Og.s. (1) by Lemma

dpT?
. 07
‘rl’iuz F Uj

A.2(i). The result in (i) follows provided %Zf\il s = Op(T72) and sz 1|

Op(T~?). Noting that 1t = 22:1 git + T1,i0 = S2 22:1 wis and f) = S3 Zs:l w;s, 1t 1s sufficient
to prove either of these two claims. Here we show the former one. Note that

2

N 2 N,z t 2
L9y LEPH RS o]
N T -1 1 Z 2
/ / —
Zl S2 T2 ; ; wlsfwztSl S2ﬁ ; witwitSl = 2D1 -+ 2D2.

By the panel BN-decomposition, we have w;; = ¢;(1)vy + Wi—1 — Wi, where Wy = Z;io (Nbijvi’t_j
and (Eﬁij =Y e j+1Pis- Then by the Cauchy-Schwarz inequality

2 2

N
2
D1<N
=1

t—1

T
1 - -
S23 > (E wis) (Wit—1 — Wit)' S
=1

1 T t—1
S2r5 > (Z wz’s) v ;(1)'S]
t=1 \s=1

= 2(D11+ D12), say.

Let z;; = So (Z 3 wls> vl,¢;(1)'S and F; ¢ = o(vit, vit—1,...), the sigma-field generated by the series
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{vis, s < t}. Since E(zi|Fit—1) = 0, we have
T

DI

N T
_NT4ZZE”ZZtH2 %Zzt:O(Tﬂ

=1 t=1 i=1 t=1

E(Dy) = ~ Z

=1

where the inequality follows by the fact that B||zy||? < CE HZS 1 Wis EHUMP < Ct. Then Dy =

Op(T~?) by the Markov inequality. For Djs, we have

T-1

52T2 Z Wis Z Wit—1 — Wir) S

= t=s+1

_ 2
1 ~/ /!
T2 E wl'swissl
s=1

Dy =

2

IN

= 2(Di2,1 + D1232), say.

T-1
S ]‘ ~/ Sl
273 E WisWipo7
s=1

Under Assumption 3.1(i)-(ii) and Phillips and Solo (1992), we have E|jwy||* < C' < co. By similar
arguments in the proof of Lemma A.2. in HJS, we can show Dig; = Op(T~2). It’s easy to show
Digp = OP(T*Q). Thus D = Op(T*Q). For D5, we have

’ﬂ |

2 2 c X T
5 T22E<TZIIwnIIZ> < 5 2 3 3wl

T
1
S2 ﬁ E witwét Sl
t=1

1 N
E(D;) = NZE
=1

<T72)7

I
S

where the second inequality comes from the Cauchy-Schwarz inequality. It implies that Dy =

2 2
= O(T7?%) and + Zf\;l ‘ %xlzuz = Op(T72) by

Op(T~2). Consequently, + ZfilE H%gv’“uZ

the Markov inequality. This completes the proof of (i).
(ii) Note that

11 2 3 2 1 2 1 2
NZ Tgxl ZMFOU’ < NZ <HT2$1 zMFOUz + HTQ% ZMFOFQ)\ + Hﬁ*xll,iMFfmlini )
i=1 i=1
= 3 +11+11I),
2
where recall that f9, = Syw;.. For I, we have I = LN A2 Mpou;|| = Op(drT—2) by the result
2t N Zui=1 || T2 Vit FY y

in part (i). By arguments analogous to those used in the proof of part (i) and using F20)\gi in place

2
iy MpoF9AY; || = Op(drT~?). For I11, we have

of u;, we can show that 1] = + SN ‘

IT]T < max xllz‘MFPfBZ,z Z l1bo||? = T~INY(1og T)(1+)/2)
7 b

1
T2

2
%’xll,iMF{)$2,iH = OP(T_INl/q(]og T)(H'e)/?)
by similar analysis as used in the proof of Lemma A.3(i) in HJS. Then the result in (ii) follows.

uniformly in 4 ||ba I < M, where we use the fact that max; ‘
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(iii) Note that

N N
1 1
7z D M| Svems D (Uﬂﬁﬁ,wjain + Hﬂfi,Z-PFPUjaz‘j )
j=1 j=1
1/2 1/2
N / N
1 Ty ;Uj 1 2
D 53 e
7j=1 7=1
1/2 1/2
FYFONT I B | 1 Q|| Fuy || 1 on, o
:OP(T_l) + OP(T_l) = OP(T_l),
o 112
where we use the fact that — Zj 1 leZ:J =O0p(T7?), & Z] ) ) FPu; 2| = 0p(T7?), %x’lelo =
[ BBy 4+ op(1) = Op(1) by Lemma A.1(i), and %ijl laij||> = Op(1) by Assumption 3.2(i).
Similarly, we can show that SN Hﬁ Zjvzl xll,iMpl()ujaij = Op(T™Y).

(iv) Noting that Hffll,iMF{)xLi

=tr(Mppxy i) ;Mpopwyiwy ;) <tr(zyiah jMpowy iz ;) < tr(zyiah
1 <N
N Din1
2

= Op(1). Using the panel BN decom-

2 2
by the fact that iy, (Mpo) =1, we have + Zf\il H%m’“MFP:E“ <

! _ !
T1,7 ;) = Hxl,ﬂl,i

‘ 1

T2 x’“x“
position x1 i+ = Sa(¢;(1) Zizl Vis + Wio — i) and Cauchy-Schwarz inequality, we have

2
1N ||
. It suffices to show that + > ;1 ‘ 72X %1,

1 N 1 2 3 N 1 T t t 2
rON EEN IS i O D M LI
i=1 t=1 s=1 I=1
3 N 1 T t 2
N Z T2 Z Z Sadi(1)vis(Wio — Wir)' Sy
t=1 s=1

2
E3(D1+D2+D3).

g |
+ Z T2 >~ Sa(tbio — i) (Wio — Wit)' Sh
-1 =1

For Dy, we have Dy < £ Zfil E {% S Hztszl viSH2} << Zfil A STt = 0(1), where we use
the fact E HZi:l viSHQ < Ct. Similarly, we can show that Dy = O(T~ 1) and D3 = O(T~2). Tt follows

hat = SN ||t M ‘_op(1). m
that 5 >0, ||7z21 i Mpozril| = Op(1).

Proof of Lemma A.4. (i) Note that

H NT?2 ZbllezMFl U; TQ Zblz L1,iU; T2 ZbllezPFl U;
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For the first term, we have

b
N- 1||b||2<MHNT Z 11 1'L

< N sup <||NT2 Zblz 1zul

b, 2t FONY,
1 bl2< A1 NT2 Z 1L 1z 2
L 1/2
< sup b2 —~
N-tbjesy T {NZH H } {N = }
LE 1 mn
+—= ax[[Ag  sup 4= Hbull2 ;
VI VT " N-1[bl2<M NZ Z
2
1 il w2l 2 1 2
TETET TPUUT voben NZHb“H N;Hbm”

= O0p(T™Y) + Op(T7Y?) + Op(T~2\/dy) = Op(T~V/%\/dr),

1
— by .zl .x9 iba;
1,i01,442,3024
+ || 37 2 it mabe,
=1

)

1/2

331 Zuz

where we use the fact that max; [|A;|| = Op(1) by Assumption 3.2(i), + ~ ZZ 1 =0p(1) as

shown in the proof of Lemma A.3(i), max; ~—= Hxl il = = Op(v/dr) by Lemma A.2(i), and max; ”%_7,3_\\ =

Op(1) by an application of Lemma S1.2(iii) in Su, Shi and Phillips (2016b, SSPb hereafter). For the
second term, we have

N
1
sup sup NTZ Z by 1931 PR
FeF N—1|b|2<M ;

< sup
FieF1 N— 1Hb\|2<M

1
W Z bl Z:El ZFlleQ ZbQ i
=1

N
1
‘NT‘* Zbl i zFlFlul NTA Zbl i zFlFl 0/\81‘
=1

)

1 [P - 1 & P
1 14 2 Ui

< — sup max sup — E b1 -~ E

VT rer, T 00 T y- 1||b2<M{N — e } {N‘ T }

=1
1/2 N 1/2
e [EP [ 2 1 |12
+—= sup —5— 101l -~ ’
VT rer, T T N- 1||b||2<M Z : NZZ_; T?

1/2

1/2 N
1 23— [ , ) )
+ sup max —— max by L boi
VT ren T2 0T J_meiNZ”M 7 2 e
=Op(T T-1/2 /dT +O0p(T 1/2 + Op( T-1/2 /dT 71/2\/_T ),

This proves (i).
(ii)-(iii) The proofs of (ii) and (iii) are analogous to that of (i) and are therefore omitted. W
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Proof of Lemma A.5. (i) We make the following decomposition

1. - _
Py —Ppy = Pp — Proy, = ﬁFlF{ — FYH, (H|FYFYH,) ™ H{FY

1 - . 1 .
= ﬁ(F1 — FYHy)(Fy — FYHy) — ﬁ(F1 — FYH)H|FY
1 —1
T2F10H1( Fl Hl) T2F1 Hy I, — <T2H FO’F0H> H{FIO/
= P1+ P2+ P3+Pa, say. (B.1)

By Theorem 3.1(iii), [|p1]| = Op (niyr + T~ 'Cy7) and |||l = |3 = Op(niny +T7/?Cyp). In
addition, noting that

1 1 /o)
I, —ﬁH’FO’FOHH - H—2 F{F1 —H’FO’F0H>H
A~ ~ /
< _FH ) (Fl - FOH>H 42 H% (Fl - F0H> FOHH

= OP (771NT +T7'CN5) + Op(mnt + 712041,

4 N _ _
<Y Bl = Op(nyny + T7YV2CH)).

(ii) By taking the sub-differential of Q?‘\;jlf(,@_l, B4, o, F1) with respect to fy;, for each : =1,...,. N

p p K 5 171K p A
and k = 1,..., K, we have Op, ., = —%mll,iMﬁl (Wi = w101 —T2,iB2,4) + A D50 €5 [ 1121 125 181, —dull,
where é;; is as defined in the proof of Theorem 3.2. From this, we can derive that

(miaians) | {|m

“1
<T2$1 zMﬁ’lei) = [:U’min(% M L 1 Z)] L By (1) and Assumption Az(l)v :U’min(%xll,i
sp
/

Mg x1;) = ,umin(TL i Mpoxy, i) +op (d} uniformly in i. Then

Ipall = Op(nynp + T~ Y2C3L). Tt follows that HPFI ~ Pro

b1 < x My FPNY;

T2

[+l=

~oa}.

sp

Note that

d - -
H <T—Tz$/1 zMlel i H ',z'MF;ﬂUl,z‘) +op(1) < 4pp,
sp
by Lemma A.2(iv) w.p.a.l. It follows that
1
max 1b1i]| < Op (dr) maX{HT2$1 Mp 05 H T2$1 M Fl AN+ C’)\} .

In addition, it is easy to show that max; %:ﬂ’“M uy

| = T2 max; 7 ||o14]| max; =7 [|a7]| =
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Op(dy/*T=1/2) and

1 . [zl 12
max || ot Mg FONY|| = max | o Mg (FHT = F)) §Cmax—T‘

i T

-

1
T2
VdrOp(nint + T_1/2C]§1T)-

Thus, we have max; ||ZA)11|| = dTOp(allT/?T*l/2 + dl/27)1NT +A).
. -1
Note that 8, ; = <JJ/21MF1$2@> 13/2 MF1 (yi — 71 z51 ) and

1 -1
<T:B2ZM $21>
S

-1
(FohiMpyw2a) | = onin (G M, 2.0)] ™ oy (2 My 2.) = o (2 M)
sp

+op (1) = Mmin<%x2,i$2,z‘) +op (1) uniformly in 4, and min; Mmm<%$2 ;&2,i) is bounded away from zero
w.p.a.l by Assumption 3.2(v). It follows that max; H(Tx2 Mp x2:)” Hsp = Op (1) and

1
Lo, ZM Tl zbl )

Y +| 72

1
’ + Hfﬂcé,iMplFlo)\?i

b

1
P

Note that

1L 1N (11 2 1 2 1 2
NZ||bQ7i||2 < Op (1)N {H?x'QZMpl (ui—l—F?O)\gi) +H M, Fl)\ —i—H a:QlM by }
i— i=1

= Op (1) {Ill—i-llg—i-][g}, say.

Then we have
2 L1 2 9 X 2
Ih <4 > TxIQ,iMFIO (ui + F5A5)|| + N > Tﬂﬁ’a,i(Ppl — Ppo) (ui + F323,)
i=1 i=1
N 2 N 0/ porpoN L por 040y ||?
S 3 2 |7 i + B NZ: & T
2 N 0
xQ,i 1 U; +F2 )\2,L' 2

=1
=0p(T™ ")+ T_20P(N2/q (log 7)) + Op(ning + T_101T/2T) = Op(miyr +T71),

where we use the result in (i) and the fact that max; %HZL‘IQZFPH = op(N'4 (log T)(1+€)/2) by argu-
ments as used in the proof of Lemma A.2(i) in HJS. For 1/5, we have
LI i : Lo il
[Ty = == > || Zh M (FLH = FN|| < max [ ‘FlH .y H <>l
i=1 —
=O0p (T771NT + C'NT)

By arguments as used in the proof of Lemma A.2(i) in HJS, max; = op(N' (log T)(1+6)/2).

1. .
T2 i Mpoty
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max T:U'QJ-ME:ULZ < max %xlzz’MF{)xl,i + max %J}/Q,i(Ppl—PFo)l‘Li
_ op(NYI (log T) /2 1 1/2 ax e ;H ma ||Tl2/z2|| H Py
— op(N/1(10g T) 9" 4 \/TdrOp(nyyy + T~*CR}) = op (T'/?)
and
2 2 N
H3<—ZH xh Mp, 1,ib1 < max 2, Mp 1 NZ||b1,i||2:OP(Tn%NT)'
i=1

2
= d%Op(dTTfl +
drn?yr + A).] Tt follows that n3y, = & SN |bosl|? = Op(T7Y2CW T + Tl y).
(iii) By the proof of Theorem 3.1(iii), we have FyVi yp = Iy + ...+ 11 + = SV FPA?iA(f;F{)/ﬁ'l,
where the I; are defined in the proof of Theorem 3.1(iii). It follows that +F(Fy — FYHy) =
L(FYL 4 oo+ FY L)V A ~N7: Where we recall that Hy = (%A?’A?)(%FP’}E)VQ\%T. It remains to
study the probablhstlc order of £FY'I; for | = 1,2,...,11. For £ F{'I; and % F{I5, we have

[Alternatively, we can show that IT3 < max; by NZZ 1 H My 1

PO AN Jlall? 1
DAL, D NZIIb P = Op(Tdrrsy), and

y HFO'Fln [ Y NS e R P 2
L <r I ) NZHbuII Z — Op(Trune).

For +F{'I3, we have

1
SIFn) < T

i 2y 1/2
'LL

)

N 1/2 N
Lo | FP]l [z14ll ) 1 2o
G LD L

B 112 1 10 2 ~rF 0 2 ~
whore & 32 [ s ([ o )  Noting hat = i b, wo
have

N ||~ ¢ 2 N 2 2 N
1 u;(Fl — F10H1) 2 H ~ 0 2 1 ||’LLZ|| max; ||{IZQZH 1 ~ 2
S A S 3 D | o | 2 H — A2 N 16y
N; T = it N; T T N; 21

= Op(Tniyy + CK/?T)U + OP(T71/2C&% + Tniny)] = Op(Tniny + CKIQT)-

~—
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In addition,

| N
¥
i=1

~7 170 |2 0 /10 (12
i Fy u Iy Lo Iy

T

IN
2|

+ 1b2,:11®

21 N
= S U
=1

/ FO
) = Op(1) + max Tl
i T

o (15

p(1) + 0op(N*9(log T))Op (T72CR L, + T nr)-

|
Q

1/2 _ /2
Then %HF{J,IESH = dT/ mnrlOp(Tinr + CN%“) + op(N?9(log T)'*)Op (T 1/2CNCIF + Tning)] =
op(Tnynr). For #FY1y and £ FI5, we have

Lo R IEL e 1 L Nwm2m
T | FY' 1| < I =7 m?XH)\@' | N Z 161,41 Z = Op(TnnT),

. 1/2
1 Fi 14 FO/ 2 1 A
ﬁwmxhﬁn”’% ZH i NZWW — On (T,
i=1

For L FOIg, L FO'I5| < H B F{)’FOA?a;F{)HIH + Hﬁ SN RO RO\ (fy — F10H1)H =Dy +
D>. For D1, we have
> || Hq

By analysis as used to obtain (B.8) in Bai (2004, p.172), Hﬁ Ziil Zf 1 )\?uztng - OP(N_l/Q),
In addition,

L N L X
NT SO N ua i NT > A w0 i f1
=1

1
i< 7 it
T2 i=1 t=1

TR 4 1NA21/2 1 & 2
Hﬁ ; APb ;$2,itf?£ <C {N ; Hbz,¢ } T ;$2,itfﬂf = Op (N2nT) -
So D1 = Op (nont + N_1/2) . For Dy, we have
Dy < HFlo'FO NT;;)\UUM flt Hlflt)
<\/?;2 17| {%i“flt‘Hlfﬂ’f}I/Q - 2y 1/2
t=1

T _ _ 1 _
=\ NOP(l)OP(nlNT +T72C5)0p (1) = \/ NOP(ﬁnlNT +Cyr)-

It follows that & || FIs|| = Op(\/T/Nniny+N"12+n557). Similarly, we can show that || F{' I7|| =
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Op(v/T/Nnynp +N~Y2). Next, £ FV Iy = £FY (Isy + Iss + Is3 + Isa). For 2FY 15, we have

T

T
Z Z f{sf?t(’YN(s’ t) + gst)
t=1 s

=1

1 1
T||F10/18,1|| =73

T T T T
1 N
Sﬁ ZZf{sflot’YN(s’t) +ﬁ ZZ flS Hlfls fltgst Hlf fltgst
t=1 s=1 t=1 s=1 t=1 s=1
=I+11+111.

For I and 11, we apply Assumption 3.2(iii) to obtain

L L s
SﬁtZZO‘fls

=1 s=1

T
1 1 A
< — ) —
>~ 2T{ fls
s=1

wm@WWM

9 T 1 T 9 T B
lrgtgﬁgp;!vzv(s,t)\+ﬁ;\\fﬂ\\ 113;%;\%(3,15)]} = Op(T7Y),

and
LI ) , 1/2 Lo 1/2
; 2
{3 h-mal 1} {HT ]
s=1 t=1 s=1 t=1
|7 ] g

T H ]} H OP(N71/2) = N71/2OP(771NT + T71/20]§%F)7

where we use the fact that 7 Z T S Eeql? = O(N1) under Assumption 3.2(iii) and Theorem

3.1(iii). Noting that F HflSH < Cs? and max,; E|¢4]° < CN~1, we have

(P RS A K

t=1 s=1 t=1 s=1

1TT
FZZ <1t

T
212 1 ~1/2
gcnﬁx{mgﬂy} ﬁ§1:3—o(zv /2y

Then I1] < T Fr e He )l = Op (NY/2) .1t follows that & || FY'Is1]| = Op(N =2, v
+T7 14+ N~ 1/2). For T||F1’I872||, we have

1
FIEY Is,| NWZ uibh i i F

. 1/2 N 1/2
1 b Bl (1 LY L 2

< = 72,67 21 E Ll W 1 il E bo

A S N < T2 N £ 1624

=1

= 7! op (Nl/q (log T)(HGW) Op (1) Op (nanT) = 0P (TﬁlNl/q (log T)(HE)/Z 772NT>

31



where we use the fact that
1 ! T 1 / 0 1 / - 0
aXTH%,z‘FIH < maX—H%iFlHlH+maX_H952i(F1—F1Hl)H

< max—||:n21F1 || H1|l + \/_max ’Fl — F10H1H

—= bl |
= OP(Nl/q (IOgT)(HG)/Q)—k\/_Op (ynp + T /20&%) :OP(Nl/q (logT)(HeW)

by arguments as used in the proof of Lemma A.2(i) in HJS and the result in Theorem 3.1(iii).
Similarly, we have &||F{Q'Is 3]| = Op(T~* N/ (log 7)1+, or) and

1 ah I FO,,| 1
< e 2 [ 2] ZHb P

1
ZIF Tl =

N
1 A A .
NT3 Z FV'g,iby b 2
=1
= op(T'N¥7(log )" n3y ).

It follows that & || F¥'Is[| = Op(T " +N~12)40p <T*1[N1/q (log )2 o+ N2/4 (log T) ) 13 NT]) .
For LYy,

HFO’I I <

1 ||F10/F2|| HAO’AO <||f§’F1 [l |

T
= OP( NIOpP() + Op(VT N + Crp)] = T Op(1 + VT nr),

1 .
+E8) 1A - o)

0/ 70
where we use Theorem 3.1(iii) and the fact that ”Fl—TFzH

the proof of Lemma A.3(i). For £F Iy,

= Op(1) by similar arguments as used in

1 .
THF V' Tol| = 3||F0/F0A0/A8f20/F1||
[FPED| [|AYAS]] ([ E5ED | [
T2 v N T
—0p(N7Y2) [0p(1) + Op(myr + T™2CRE)| = Op(NTY2).

SOP(N—I/Q) ‘

1 4
+ £ 1A - o) )

Similarly, we can show that 4[| FY'I11|| = Op(N~1/2). Combining the above results and noting that
VTdrnnyt = o(1) by the proof of Theorem 3.1(iii), we obtain %Flo’(ﬁl — FYHy) = Op(Tnynr +
Snp + nant) = Op(TnNr + Oy + T*1/4CX,1T/2) and the conclusion in (ii) follows.

(iv) By (ii) and Theorem 3.1(iii),

H FI(Fy — FOHY) <—HF1 F1H1H I Hi = H (FI—F{)Hl)H

= Op(Tiiinr + CN3) + Op(Tniny + O + T7YACKH) = Op(Tniyr + 3 + T~YC?).

(v) Note that ~a/(FyHy ' — FY) = 44/ [I1 + ... + [11]G1 = &(J1 + ... + J11), where G1 =
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A\ —1 _
(%FP’E) (LAYA9) ™. Note that |Gy|| = Op(1). For .Ji,

~ %/ 71 I T
uk I szibl,ixl,@'FlGl H

1 -
THJ1|| = WZ

[l ||F1H | T ||2
<VT|Gy H\/k— T max . leb ilI> = 0p(VTdrniny),

where L2l < JJ_U + —2—||)\ ”x“H |bo.|| = Op(1). For Jo and Js, we have

%
1 1 ~ s/ 7 07 07 -
?||J2H < N3 Uy, 21,3013 F1 F1G1H
N 1/2 N 1/2
HFO/FIH HﬁkH 0 H2 1 29 -
<VT||Gy || =25 \/T ax || A7 NZ N;Hbu” = Op(VTnyn1),

and

N 1/2 N o, |12 1/2
1 1 N S 1 || H 1] 1 il
Tl < 2 [[iossbudiFiGa| < Gl 7 max = NZ”b LN RO b

; =1

=1
dr
=0Op ( ?UlNT) Op(l + TdTnlNT) = OP(\/—nlNT)

@k ||?
T

< 35X, (Iarrm? + 5 | £ - rom]) -
Op(1) + Op(Tniyr + CN7) = Op(1 + T2 yp). For Jy, Js, and Jg, we have

1 N
< 577 2|
G IR 0y {% 5 lol? }1/2 {% 3 HBM\P}W = Op(minr),
=1 =1
sl < < i)
o L AL, T {% ﬁl ||z31,i|r2}1/2 {% i Jel” }1/2 = Op(vdrming),

5 1 N
where we use the fact that % > ;°;

1
T||J4||

iy PO, B Gl H

IN

ki~ 3T
Uy, uibl7ix17iF1G1 H

IN

33



and

N
1 * 700~/ 7
76l < NT3 Z:: ay FEN 0 F Gy
*/FO
k 0~ / _ -1
< ||G1||— ( NTZA W FP|| || Hy || + NTZA — FYHy) )—OP<T )-
For J7,
N
1 A*/~ or i or AIAO
7l < NT3 Z:: N FY' F1 Gy NTZ U\

Op (1) = Op((NT) "2+ N71),

1 T N
< |5 e
t=1 1

where we use the fact that

1 T N 1 T N . ooy
' WT 2 2 M| = | 2 2 Mo | | 2 2 M M
e t=1i=1 =1 i=1
1 LK A
NT Z Z Agaithika,i = Op((NT)™ /2 + N~1y;
t=1 i=1

see, e.g., eq (B.1) in Bai (2003, p.164). For Jg and Jg, we can show that

1 R 1 Y
THJ8||<{HN—Z il FOH, | + N_Z il (Fy — FYH)) }||G1||
N ]l 1 o [fi]
{ Z I+ [ - o Sk N 3 }‘Gl”
=O0p(T™ )+T_1/20P(771NT+T_1/2CX11T):OP( Yinine +T7Y,

and

T [l Joll =7 ay FOAYAJFY 1y Gy

e

( ol 1B, LE2 SN B

Gl

+ ||bo gl

VT VT
=T7'0p(1+ VTninr),

2,6l [ 2] HAg,Ag
vT VT N

where we use the fact that H%FSIFIH = H%FQO'FPH HH1H+H%F20’(F1 - FloHl)H = Op(1)+VTOp(ni N

34



_|_T*1/2C’;[§1) = Op(l + \/TUINT)- For Jyig and Jq1,

a FOAY ASFY 1 Gy

T | Jiol| = T HW

U (el IS ISR e HF”“ HAW Bh o
“TVN\ VT VT r Z
= T71N71/2OP(1 + ﬁnlNT)? and
1 ke ~
7 Il = % kuk’FgAg’A?Ff’FlGl
U (el 2] IEFRN sy deeall [[F3)] ' AZAR || ' Py 172
< + A + [|b,i | —2 Gi|| =0 /2,
—m<ﬁﬁ e vl | I L ek

Combining the above results yields the conclusion in (v). W

Proof of Lemma A.6. We only prove the first part of (i)-(iv) as the second part can be shown

analogously by the repeated use of the fact that max; H“}lﬂ 0] P(le/ 2).
(i) By the decomposition in (B.1),

1 . 1 A
Ry = ﬁxll,iajﬁ’l — PF{)Hl) o T2331 i(P1 + D2+ P3s + pa) @7 = Dy + Doy + D3 + Dy (B.2)
. . 2 -
For Dy;, wehave || Dyl = 7 ||2) ,(Fy — FOHy)(Fy — FYHy )i | < =i s || By — FYH, |qu;‘2| =

T120p(m2yp + T 1CNT) by Theorem 3.1(iii). For Dy,

T
1
|D27,H - T_Z fls Hlfls H1T2 Zfltu txl KX

2\ 1/2
| Hy |l

1 (1 & 2 1/2 11 &
<o (EZHfls—H{f?s ) =3 |7 2 Mriat
s=1 s=1 t=1

=T720p(nnp + T_l/zcﬂf%r),

2
where we use the fact that Zs 1 H (7 S fhan)zh is’ = Op(1) under Assumptions 3.1-3.2. For

Ds;, we apply Lemma A.5(v) to obtain || Ds;|| < & H%T,_QF}H 1 H(FOH — By)Yat|| || Hy|| = Op(T~Y 20yt

T—165%). Noting that I, — ZH'FYFOH = Op(nyp + T~ 1203%) by the proof of Lemma A.5(i),

Gl Lt
T2

1
1Dall < 7

| 1 Haf?

1 0/ 770
I, — <T2HF F H)

=T Op(mnp + T2 Cnp)Op(1) = OP(T71771NT+T73/201?/%“)7

FO
T2

F10' ar FO’ P,

= Op(1) and )

H FO/FO

A8 +]| 7

where we use the fact that
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Op(1) by the proofs of Lemma A.5(iv) and Lemma A.3(i). Consequently, Ry; = Op(T~Y?nnr +
T~1Cy}) and the first part of (i) directly follows.

(ii) By the proof of Theorem 3.1(iii), we have FyH; ' — FY = [I; + ... 4+ I11] Gy, where G =
.\ —1 _ .
<LFHQ (LAYAY) ™ = Op(1). Then we have 5} My FON; = zhat My (FyHT — FON), =
2t ;Mp [l + ...+ [11] G1AY; = Ly + ... + L1y Note that

. N
1 / O/FO Fl F10,F1 A?/A(l) —1)0
Lo = NT2 ;zl,iMﬁlxl,jbld)‘J T2 ( N )
o pvAS N X _
~ NT? Zml My agbig MG (S M+ Loi = o D 1M w1 by ja + Lo, and
=1
oFVR (FPR) T AT, 1 & Lrig + L
. _ /
Lt = 572 Zﬂﬁl iMp, U A~ T2 R e > wiMpujai; + Luia + Lria,
=1
) ) FO' B = b L
where Ly = = Z] 1 T Mg ybm)\z] — G\, Ly = N_7]322§V:1 1 i Mp, wa jbhaij, Lrin =
lfz ZN 1T M u])\g; Fszl G1)\1z, and a;; = A\ (% AO’AO)_l)\O It follows that Ry; = 1}2 ) M, Flo)\(l)i

N2 Z] 1Ty M, ijbl,]alJ + §r2 Zg 1 03Ty Mg vy = = L + ... + L11i, where Ly = Ly for
1=1,3,4,5,6,8,9, 10 11. FOl“LlZ,

N
_ 1 1 - .
1| = ||#1:Mp, s D w1absbh gt s PG
7j=1

ill |17 §
<Gl [ 2 T e T2 Zub P = Op(drig)

= 1. For Ls; and Ls;, we have

where we use the fact that HM 7
sp

_ FY R
[ Lol = NT2 Zﬂﬁlublu)\m =G,
1/2 1/2
. N N
Hxl | || F§'FY 1,42 1 -

—||G1||||)\@|| : 2T |25, Z 5 Nzllbl,jHQ

= j=1

= Op(T 'nyn7)
and
1/2 2y 1/2
N ~/
= || w1 = 1, | 1 u; k1
HL3Z‘}|< HG A [+ max —— ZH Lill? =) L=
; N | T

=T'0p(\/drnynr)Op(1 + ﬁnlNT) = Op(T~"/drnyyp + T_1/2d1/2772 7);
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where we use the fact that - Z

v ] < d e « frson - e -

Op(1) + TOp(n2yy + T 1Cyt). For L4,~, we have

B (1 & (e (B - BEY C M R
0 Lit "R\l 14 0 A
< el g NT;( L X911+ 1X311) llea bl

oy M, (FY = FLHY)
T2
1/2 1/2

N 1 N .
72 L3 b2
j=1 j=1

= [Op(mnr + T_I/QCK/IT) +O0p(T 2 np + T7H]0p (01 y7) = Op(Ning + T_I/QCK/ITWNT%

/ . 0
) My, F

0 i 0
< GG 4 ma AG)

k}
[\

where we use the fact that £ HF{) — FlHl_IH = Op(mnr +T7V2CL) and that

55'171'MF1F20 x’le20 l'/uFl FIFY
T2 - T2 T2 T2
@ Fy 95/1,1151 (Fy — FOH,)'FY FO/FO
T2 T2 T2 HH H

~Op(T™Y) + [Op(T ™2y yp + T CRE) + Op(T7H)| = OP<T—1/2mNT +T7Y).

For I_/5z‘ to E10i7 we have

N
- 1 . .
HL5¢H :—NT4 ' Mﬁlzujb/l,jﬁll,jFlGlAcl)i
j=1
1/2 1/2
N ~ N
! losall gl ] 1S i) ! _
< GG max S22 0 237 S lbl? e = Op(@ Vdrm ),
= ]:1
M (FQ — FLH Y ah My FY .
| Zaill < Gl 171 NT2Z( e I+ == | I ) [
I M FO_FHfl ! M ~ FO N 1/2 1/2
< 0oV (| HMp P2 B )|\ SVRFR ] ) Lo ZH B
- T T2 T2 le NT2

=T 'Op(nnr + Tﬁl/zCKrlT) +Op(T™ 2 np + T7H)] = Op(T My yp + T73/2C]?/T)7
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HE7¢JH < —= x’LiMﬁ,lngb'?jaij NT2 Z {H$1 ZMFon ]b2ja” B PF0)$2 ]sza” }
) 2 1/2 1/2
By N G i P
=T \w ™ |
j=1 j=1
1/2 1/2
reladl |, p RO B R /
+ F N Z T % 23
j=1

= T7'Op(nonr) + T 20p(nny + Tfl/zcﬁlT)OP@?QNT) = Op(T O + TPy + mine),

N
. 1 X .
HL”aQH = NTA / MPH ZujAg;FQOIFlGIA?i
RIS, - $hiF1 N
_NT3||G1H||)\ ill 2 le,iuj)‘% + 7’32 ZF,
j=1 j=1
. 1/2 1/2
N 2 N
Op (1) 1 I~ O ‘xl’l 1” 1 012
S W;%,z“ﬂ% T 1“JH N;HAQJH
:OP<T72),
1 N
1 Zsill = 5oz ||#aM i, D B FRGaAY,
j=1
N /o N
- . A~ :E17F1 Ay ~
—NT4||G1H||/\M|| > ey + | =5 Fyai; Fy
j=1 =1
. N 2 1/2 R N 9
_0p(1) ;iwmﬂ; Fi 1. F iiﬁm
=T NS T | N&| T |\NZ| T
zop(T*),
0 al A
Lo < Lie N F1F0 AYAY x5 +w’17z~F1 R\ _ On(T-2), and
N T T T
T FO| || EYFD || || AYAY /2
mefﬂwwﬂ“w1 HE AR — opav-rrory,

Similarly, we can show that || L1y ;|| = Op(N~Y2T1). Then Ry; = Op(T_5/4C;,;/2 + T V20 o +
drn3yr + T~ ) and the first part of (ii) follows.
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(iii) By Lemma A.5(i),

N
1 1,4
|Raill < ||~ D aiiwh o (Prp = Py Jus | < S | Pryp = P || 5 D e
Jj=1 —
1/2 N 1/2
U el RIS
- T1/2 F{) Fl NZ 5] NTZHUJH
j=1
= Op(T Ny + T~'Cyrp),
2 112 N
Whereweusethefactthatjsz La ZJ NZJ 1[)\ ( AYAY)~L H)\ H H(%A?’A?) 1H %ijl

H)\UH = Op (1) under Assumption 3.2(i). Then the first part of (111) follows.

(iv) As in the proof of Lemma A.3(i), we can show that Ry = Op(T~!) and N~} Zf\il | Rai|)® =
Op(drT~2). W

Proof of Lemma A.7. (i) By the proof of Lemma A.5(ii),

1, -
_-'E27Z‘Mp1x1,ib1,i

. 1
max lb2i]] < Op(1) mz‘aX{HTwé’iMFl (Uz + Fg())\gi) + HT

}

1
‘ + “Txé,iMﬁlF{)/\(l)i
= Op () {III, + III5 + III3}, say.

Note that
1 1, 1,
max T%zM < max fx27iMF1()ui + max fa:?,i(PFl — Ppo)u;
1 1 1 1
< max T:L"mul + 7 max TxlliFl (T2 FYF))™ 1TF
+ max —= \/_ | max —= \/_ s | ‘Ppl ~ Ppo
Op(T~V2(10g T)?) + T op(N?4 (log T)*+9) + Op(d)/* T~ + (NT)~/?)

op(1).

By the same token, max; < Op(T~Y2(log T)3 4+ TN (1og T)M9) = 0p (1),

1, . 17010
TEo My F5' Ay

1 ~
=My, (F1H1 - F10> A,

/
max || =y ;
1

My, FPX,

= max
K3

IN

1/2 [E2¥| oLz 0

_ T1/2N1/(QQ)Op(d;/2T*1+(NT)’1/2) =op(1l), and

L, L,
_:p27z~MF10$17¢ foi(Pﬁl — PFlo):L‘LZ-

T
= op(NY (1og 7)) 4 \/TdrOp(di/* T~ + (NT)™1/2).

1
/

max || =y, Mz x1 = max + max
i || TR R 5 5

In addition, by the proof of Lemma A.5(ii) and Theorem 3.2(i), max; ||by ;| = dTOp(d;mT_l/2 +
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le/2771NT +A) = dTOP(d;/2T*1/2 + ). It follows that

max [bail = |op(NY7 (10gT)"72) + \/TdrOp(mny + T2C5E) | max byl + o (1)

= [oP(Nl/q (log T) 92y 4 \/TdrOp(nynr + T—l/Qc;vlT)} drOp(d*T~V2 4+ X) + op (1)
= op(1).

Now, note that

' a*
P <mzax > chT>
T Ui Yt 2 YNy Yy T T2 || | chyp
<P <mzax 77 ||~ 3 )—i—P max T2 > 3 +P<ma T2 bo || > 3 >

The first term on the right hand side (rhs) of the last equation is o(N~!) by Lemma A.2(i) in HJS.
Since E ( gt)\g;) = 0, each element of fJ,\ can play the same role as u;, the second term on the rhs

is also o (N _1) . Since max; 1321H = op(1) and each element z3;; can plays the same role as w;, the
third term on the rhs is also o (N~!) . Then (i) follows.
(ii) Note that %x’leFPﬂf = 7}2 'y U7 — %xgiPF?a;. The first term is studied in (i). For the

second term, we have

2 -1 2 || p0r5 |2
. dr ol || FYa;
< d%p [umm <T2 FO’F1>} max dTIz“Q H T4z ’ :

2
where liminfr_, o0 fipin (%FP’F{)) > prin/2 a.s. and limsupp_, o Hj;%@ < (14+¢) pax @-8. by
Lemma A.2(i)-(ii). It follows that for some ¢ > 0

P (max — 1) ZPFou

> chibNT) <P <max— HFO' )

T2 | > CTI’NT) =o(N7Y),

where the equality holds by analogous arguments as used in the proof of (i). Consequently we have
P (’ L ) —o(N-1). m

T2
Proof of Lemma A.8. (i) Note that Ry; :;—%x’ll(MFl — Mpo)a;, where recall that 47 = u; +
F9X), — w9:ba;. By (B.2) and the proof of Lemma A.6(i), it suffices to study the probability
bounds for max; || Dyl where | = 1,2,3,4. Let fyyp = %Hﬁl —F10H1H. Note that ||Dy;] <

(d*72 ) o vl 7 147 |- By Lemma S1.2 (iii) in SSP(2016b), and the fact that max; ||\ ]| < e,
T

/ ~ %

by Assumption 3.2(i) and that max; ||b2|| = op (1), we can show that P(max; Llar|| > T2 (log T)?) =
o(N~1) for any ¢ > 0. By Lemma A.2(i), ﬁ |1, = Oq.s. (1) . It follows that
T

P <||D1i|| > cI*(log T)3d;/2771NT) =o(N7Y).
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1/2_ ; N
For Dai, we have || Dai|| < dif e || Hy | S s || Py
T

| . By Lemma A.2(i) in HJS, we can show that

P(max; 72 HFlo’ﬁ;‘ ‘ > cpyy) = o (N71) for any ¢ > 0. It follows that P(||Dys|| > Cle/2771NT¢NT) =

_ . 2_ FO ;
0 (V1) . Noting 1Da| < dif*mur 11 IFL LS 3], we have

P (HDSiH > CT*I/z(logT)?’d & 771NT) =o(N71).

F F
Next, | Dal| < d2 |[ Iy — (s HUFOFOm) | 12,2 L |||C|iz/1;n I

= 0q4.5. (1), %HiFP,Ff)Hl — Iy = Op(mny + T_I/QCN%F)a and P(maxz T2 HFO,AI
o(N~1), we can show that

H . Using the fact that 1/2 |zl

| > CZ/JNT) =

P <HD4z'H > Cd;“/g(nlNT + T_1/2CN1T)¢NT> =o(N71).

Noting that 0y = Op(d;pT*l) by Theorem 3.2(i) and 7 y7 = Op(ninr + T~ /2Cxh), we have

d1T/27_71NT (T2 (log T)* Ty ng + ¥y + T2 (log T)%] + (771NT + T_I/QCKI%) YN

= OP[ 1/2(1/11\{ + T (log T)? )(771NT+T71/2CJ?/1T)}'

Then we have P (mamz | Ruil| > cd (wNT + T 12(log T)3) (17 + Tfl/zCK,%F)> =o(N71).
(ii) By the proof of Lemma A.6(ii), we have ﬁxl,iMﬁlFloA(l)i = T%xl lMpl(Flel — FNY,
T%xl zMﬁl (Flﬂfl — (1 + ...+ I11) Gl) )\?i = L1; + ... + L11;. As in the proof of Lemma A.6(ii),

we have

N N
1 - 1 - -
Rgi T2 :Ul i FlF{))‘(l)% — _NT2 ZJJ/LiMpll‘ijjaji + _NT2 lel,iMﬁ’lujaji = Lli + ...+ Lllia
j=1 Jj=1

where Ly; = Ly; for | = 1,3,4,5,6,8,...,11, Ly = sz S0 @ ;M w1,;01,503; TzFlGlAh, Ly =

_ _ _ 1 N ’ ~ _ or F2 By
Lrqi+ Lri, Lryi = §m 22521 21, ;Mg 2,52 jaji and L72i = 57 Zj 129 Mg, ujAQj—T2 EPN

_ _ _ 18
suffices to study Ly; for I =1, ..., 11. For Ly;, we have || L1;|| < d;/2||G1|| H)\ H T lﬁ}gy‘!g
2
N 3z .
X+ die Hbl’jH . Noting that maxid;/—éTB 214> = Ous.(1) by Lemma A.2(i HF1H = /r,

and max; ||A};|| < & by Assumption 3.2(i) and the Bernstein inequality, it is easy to show that

3/2

P(max; HI_’MH > cdyt "3 yyp) = o(N71). Similarly, we can show that

P(max || Loi|| >edrT ™ mynr) = o(N7Y), Plmax || L[| > edr(T ™ mnr + T 2di nin)) = o(N 1),
P(max || Lai|| >edr (T nyxp + dif *ninr)) = olN 7). Plmax || Lsil| > edrT ™ myyr) = o(N 7,
maxHLﬁzH >cdp(T™ 771NT+d 12 )):O(N_l),

P( maxHLliH >cdpT 2 )=o0o(N"~ ) for 1 =17,8,9,
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and P(max; || Ly;| > cd;mN*l/QT*l) = o(N~1) for I = 10, 11. Consequently, we have P(max; || Ry;|| >
1/2 -1
CdT §2NT) = O(N )
(iii) Following the proof of Lemma A.6(iii), we have

1/2 N 1/2
1 2

|| 1 ||$1 1”
T2 T

| s 25| -

07 A 0y —
Py H L Aag)

1/2 _
Then P <maxi | Rsi| > ch/ §1NT) =o(N71).
(iv) Write Ry; = 5| Mottt — g SN a2 ;M potit = A5l Mot — < SN a2 005 4k X
i = by M pOU TN 2aj=1 Qg M pQ Uy = el g pO Uy TN 2 =1 Qe iU TN TR
N ! » i A - -1 1 N
=1 @@y ;Ppot;. By Lemma A.7(ii), P (max, ) =o(N7%). For 7= > 54

we have

1. A~k

a;i; ) 1uj,

s o < A | 5 3 s 7

Following the analysis in (i), we can show that P(max; ; 7|2} ;@ US> abyp) = o(N~1). So

N
1 - _
P | max WE aij & 05| > oy | = o(N Y.
=1

(3

Similarly, we can show that P(max; ||ﬁ Z;VZI aijay ; Prot]| > cyyr) = o(N~1). Consequently we

have P (|| Ryl > cdrnr) = o(N71). o
(v) By the proof of Theorem 3.2(i), we have (Q1—Q2)b1 = R. Let S; = (0p,xpy1s- - > Opy xprs Ip1 s Opr xcpr »
., 0py xp;) be a p1 x Np; selection matrix such that S;by = b1,;. It follows that

T 6(85:(01 — Qo) T RRY(Q1 — Qo))
AN !
= vec(S.S;) <<Q1 - Q2> ® <Q1 — Qg) > vec(RR')

Hbl,i

< [t (@1 = @2)] 7 (SISR ) = [ (@1 = Q2)] IR,

where the second equality follows from the fact that tr(A; AsAzAg) =vec(A41)' (A2 ® Aé)YeC(Agl) for

conformable matrices A1, A2, A3, and A4. By Assumption 3.2(v), we have that P(uyni, (@1 — Q2) >
Cpmin) = 1—0(N~1). By the proof of Theorem 3.2, we have R; = Ry;+ Ra;— R3;+ R4;— Rs5;. By Lemma
A.6(ii) and Lemma A.7(i)-(ii), we directly obtain that P (max; ||R1; + Ra; — Rs; + Ruil| > cony) =
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o(N~1). For || Rs;||, we have

)\ K K ) )\ K ) K )\ K K
1Bsil < 5> TI |Bra—a| <53 | II |Bri—a| = II lI8% -l +5> H 181 -
j=11=1,1#j =1 [I1=1,1#j I=1,14j J=11=1,1#
A Py
<CKNT(C¥)K)\H51,Z _CKNT(Q)K+§Z;Z g?s 8% = aul|,
J=11=1,l#j

where we use the fact )H,ﬁil ||§’1Z —ayl| — Hle HB?Z - akH‘ < Cgnr(e)(1 + 2||by4]]) in the proof

of Theorem 3.2(i). Noting that $Cxnr(a)K + 5 Zszl H{iu;ﬁj Hﬁ(l)yz' — || = O()), it follows that
for sufficiently large IV,

b1l < [t (@1 = @2)] 1242
< [,umin <Q1 - Qz)} B

)

<2 | Ry; + Roi — Rai + Rui||” + 4eX? + 4Ck yr ()2 K2 )2 Hi)l,i

[Hamin (Q1-Q2)] (20| Ri+Rsil|>+4X)
(1-4Ck NT ()2 K2)2)

That is, ||lA)1z||2 < . Combining the above results, we have

P (max b1l > ¢ (s -+ (108 7)) )

< P (x> ¢ (W + X008 T)) s (©1 = ) < e

</Lmin <Q1 - Q2> > Cpmin)

(2 HRM + Ro; — Rg; + R4iH2 > Cw%\TTprznin> + P (C)\2 > C)\2<10g T)ép%nin) + O(Nfl)

=o(N"H)+0+0o(N"1)=0o(NT1.

+P
<P

(vi) The proof closely follows that of (i)-(v) and thus omitted.

.. .. N 7 N
(Vll) By the definition of Ro;, %$/1’iMpl 1“_110)\(1)Z = Rg; + _N;“Z Zj:l wll,iMﬁ’leijjaji — _N;Q Zj:l
xy ;M £y U @i We have studied Rpg; in (ii) and it remains to analyze the last two terms. Noting that

N 1/2

1 , )
> ah Mg w1 by jag|| < dr
=1

max; [z,
NT?

sl gy

we can show that P (maxi ﬁ Z T ZM T ]bl il = dTWlNT) =0 (N_l) . Noting that

By (B.1), 722} ;Mg FPNY; = 722 (P, — Ppog, ) F} Ni = g (by + P2 + B3 + pa) FPNY; = By +
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FEs; + E3; + Ey4;. Note that

F
12s <atar Ll
) H FOIFO
|| Eai | SﬁlNT”x;zu H 1T12 - H H ?iH:

/Flt)H 1]l HF10H1H H)\(1)Z| . and

1 R
1Bl <7 ||(Fy - FPE

0 07 0
I, - (%H{FP’F{)H1> |331z\| |7 ] HH1F1 F

[
1l |51 %

| Eail| <

where 7y = % HF]‘ - FPHlH = Op(nnr +T72Cx%) by Theorem 3.1(iii), - T (Fy — FOH,) F? H

= Op(n, NT+T*16]Q}+T*5/4C’;,%/ ?) by Lemma A.5(iii), and || I, — (2 H{ FY FOH1) ™| = Op(nynp+
T~12C%) by the proof of Lemma A.5(i). Using the fact that max; ﬁ |zi]|*> = Oqs.(1) and

max; ||| <, we can use the uniform bound for each of the above four terms to obtain

o

Then (vii) follows.

> dif*(nynr + T_l/QCJ?flT)> =o(N7TH).

.’L'l ZM Fl

(viii) By the proof of Theorem 3.2, we have by; = < wh M, a:gz> %xézMFl (ui + F9AS)
%a:’%MA FPAY; + ah ;M w1 b1 . Note that gah My (ui + FXy) = Fah;Mpo (u; + F9A3;) +

+h (Pro — Pp) (ui + F9A3;) By Lemma S1.2 (iii) in SSP(2016b), we can show that

P(max sz Mpo (ui+ FAY) || > T 2(log T)?) = o(N~)
Plmas o7, (Prp — Pp) (i + FOA) | > cdf/*T 2 (log T)%) = o(N )
for any ¢ > 0. The proof follows closely that of (vii). We have
r <ma’< g My Y| > T (log T)? (mNT+T”2C&1T)> =o(N71)

_ 1., 7. 1, R 7o
Note that 4 $2 ZM 1 Zbl = Tx2’iMF{)$1,zb1,z + Tx2,z'(PF1° — PFl)beM,

a2 1) )
T T

\/—||:\E/2_’H Hx;f” HPF{) o PF1H Hi)l’i

where P (maxz- %Hx’QZFPH > CT¢NT> =o(N~1)and P (maxi b1l > ¢ (Yn7 + A(log T)€/2)> =o(N71h).
It follows that P <maxi + Hx’Qszloxlzl;“H > Cle/QTwNTC (Yn7 + A(log T)E/Z)) = o(N~1) and P{max;

, and

IN

o

1, ~
T "$2,iMF{)x17ib17i

132 i PFO — Pﬁl)l‘LibLi

Y

7]
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%|‘$/21<PF10 - Pﬁl)xln‘i)l,z‘ﬂ 2 Cd1T/2T1/2(10g T (ninr + T 2Cxp) (Unr + AMlog T)/?)} = o(N 7).
Then (viii) follows. B

Proof of Lemma A.9. (i) By Lemma A.6(ii), we have

Mg, FPAY,; ) ;Mg (FLH ' = D)), =

1= T3 xl ZMﬁ‘l [Il + ...+ IH] Gl)\?z =Ly +...+ L1,

1 _
72" -T2t
Let L;;,l = 1,...,11, be as defined in the proof of Lemma A. 6(11) Then, following the proof of
Lemma A.6(11) we can readily show that ZzGG (L1i+ Loi+ ...+ Lr2i) + Nk >ice, (Lsi+ Loi) =

Op(drm2yp + T~ 1dT/ mnr +T72) =op ( —1/2p-1 ). For L71;, we have

N Z 1t = N Z NT2 Z$1 ZMFO$2Jb2.7a1J N Z NT2 Z'xlz <PF0 - P >x2,jb2ja@]

i€ i€ =1 i€Ch =1
=l +11I.
9 1/2 9 1/2
Noto that 1] < o masasien ol { & S [bna| } { o Sica, wm S o bt}
= op (N_I/QT_I) by Lemma A.8(viii) and the fact that maxi<; j<n |la;j|| = Op (1) and that
N%g Yic, 5 Zjvzl Hm/l,z’MF{’a:leQ = Op(1). For I, we can decompose Pro — Py as in (B.1)

and use similar arguments as used in the proof of Lemma A.9(iii) below to show that [II]| =
op (N"V2T1) . Then 5= >, Lrai = op (N7V/2T71) Tt follows that

N
1 1
Z T2 $1 ’LM Fl A - N Z T2 Z ‘,'Ul ZM 'xlﬂblv]azj Nk; Z W Z x/l,lMﬁ'lu]al]

lGGk lEGk J 1 ’Leék j:1
1 b , —1/2p—1
+NkZLIOz+NkZL111+0P(N T )
1€Gy 1€Gg

_ A A FY F,
Next, we can show that NLkZzeGk Lig; = WilﬂzzeGk J:’LiMFl(FO FlH ) % lGl)\ =
op (N*1/2T*1) by using the fact that % HFlo - ﬁ'lHl_l‘ = Op(d;/QT Ly - 1/2C’NT), %A?’Ag =
Op (N —1/2) and & FY'Fy = & FYFOH + & FY'(Fy — F) Hy) = Op(T _1+T—1/2n1NT+T_1C;,1T). In

0AY A FP F 1 1 N
addltlon’ N ZZEGk ]\fk,T2 ZZEGk xl ’LM F 1 : Gl)\ - Tk ZZEG’k NTZ 2]21 :Eg-yiMFl
XFO)\Qja” It follows that

N
) 1 |
040
A Z Tzwlz M FL Ay = N > NT2 Z*’”lz A b — 5 D s 2 wiM e ey
7=1

ZGGk ZGGk ieék J=1
1 N
04,0 —1/2—1
e Z N_Z 1ZMF1F2>\2jaij+0P(N / T )
ZEGk Jj=1
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(i) Noting that 1{i € G} = 1{i € G} + 1{i € G4 \ G%} — 1{i € G\ G}}, we have

1 1
NT2 lel $1ZZNT2 Z$1Z x11+NT2 Z ml%M x“_NTQ Z xUMF1x“
icGy i€GY i€G\GY i€GI\Gy

NkT2 Z 2y i Mp 21+ Cink — Cank, say.
ZGGO

By Theorem 3.3, we have P(||Cink || > ¢(N~V2T—1)) < P(Fj n7) — Oand P(|| Cank|| > ¢(N~/2T-1))
< P(Ey, nt) — 0. It follows that

_ —1/2—1
NkT2 Z Fla,‘lz— NT2 Z a:“M $11+OP(N T )
en i€GY

_ _1 / . 1 / —_ P- .
Next, &= 7 ZZEGO 2 iMp i = Ziecg T i Mpozri + 77 ZieG% 24,i(Ppo — Pp, )w1:, where

3311 _ —
N Z s I = Op(mnr +T7 203
k

NkTQ Zx].ZPFO_P xlz HPFO_ Fl

zEk

by Lemma A.5(i). Thus & 7 Dice, T, Mp i = ﬁ ZzEGO Ty Mpoz1i +op(1).
(iii) Using the same arguments as those in the proof of (ii), we can readily show that

N
1 1
—\/MT Z :L{lﬂ;MFl ('U/Z + F2 )\ Z Uj + F2 )\ a/zj
- j:l

1€Gy

1

=Uk,NT + —F (uj + F3A9;) aij | +op(1).

N
\/_T D (Mpl . MF?) (i + F9N3) = =D

i€GY J=1

We first consider ﬁ Dieqo ¥1i(Mp, — Mpo) (ui + F9XAY;). By (B.1), \/_T Yicn @i (Mp, —
Mpo) (i + F§AS) = iy e Sican o4 1 (i + F9N) = S, D Noting that 4 HF1 - FPH1H -
Op(mint +T7V2CW%) = OP(d;PT_l + (NT)~1/2), we can show that

2\ 1/2

1 ~ 2
| D1 < {THF1—F1OH1H } TQZZ \/MT Zx“s ult—i—)\ FQOt)

= Op(dTTil + Nﬁl)Op(l) = Op(l),
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and

1 1 .
1Dz = INT Zwﬁ,iﬁ(ﬂ—FPHI)HiF{),(Ui+F§)\gi)
i€GY
- 1/2 1/2
k 2
< R B - R NTQZH ol s 3 I (i 7))
i€GY ieGy

= VN:Op(d*T™ + (NT)™/)0p (1) = 0p(1).

Similarly, we have ||Dy4|| = op(1). For D3, we can apply analogous arguments as used in the proof of
Lemma 5(v) to show that

1 1 .
Dyl = —— V== FOH (Fy — FOHY) (u; + FINS,
| Dl JNT ‘Z(]$171T2 1V Hi(F1 1 H1) (Uz 2 27,)
i€Gy,
1/2 1/2
~r 7 0 0,0 |I?
< HF1H1H N, T2 3 ol . TQ > \(Fl — FOHy) (ui+ FOAY,)
i€G? i€GY
= VNiOp (1) Op(Tdriiyy +0x7) = op(1).

It follows that ﬁ ZieGg x (Mg, — Mpo) (ui + F9A3;) = op(1). Analogously, we can show that
N
ﬁ ZieGg i (Mp — MF{’)% > je1 (uj + FQO/\gj) a;j = op(1). Then (iii) follows.

(iv) As in (ii), we can readily show that
1/2
NkT2 E Z xy ;M iMp w1 jag = NkTZ Z Z ) Mg @ jai; + op(NV, 12 .
ieG jGGk/ ZGGO jGG
Using (B.1), we obtain the following decomposition

NkTQ Z Z wlz ( MF0> T1,Qi5 = Z NkT2 Z Z ZL‘I Zplxljazj = ZD;, say.

zGGO ]GG zGGO jGG

Using arguments analogous to those in the proof of part (iii) we can readily show that Di=o p(1) for
_ 1 1

1 =1,2,3,4. Then N T2 ZzEGk ~ deGk, iMp i jai = WZieGg NZjeGg, xll,z‘MFloxl,jaij +

op(1).

sin (3 v s 1 . ! R Do — L _ / R Do
(v) Asin (ii), we can readily show that 5= 3- o @ ;Mg @2,ib2i = F7e Ziecg Y ;Mp, T2,b2i+

~1/2— > ;
op(N, /*T~1) Note that b Yicqo 4 My, 2b0i = 5w Sicqo o1 Mppwaibo,i+ 5 S 71
(M, — Mpo)xs, ib2.i. The proof is close to (i) and (iii) and thus omitted here.m
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Proof of Lemma A.10 (i) Note that Qnr = QinT — QanT, Where

Qiny = diag NT2 Z%@Mpoﬂflu U Ng T2 Z $1ZMF0$1Z ,
i€GY €GO

Qant11 - QanTik

Qant = : : , and QanT ki = NN NN.T2 Z Z a;jy i Mpowr .

i€GY jeG?
QanT K1 - QaNTKK K

It is sufficient to prove (i) by showing that Q1nr 4, Q1 and QonT 4, Q2 as (N,T) — oo by the
Cramér-Wold device, where

Q1 =diag 1gnoo—ZEc ( / Bgif?;z-). nglooN—K > Ee < / BgiB§i> :

e i€GY,
Q211 - Q2ik
Q2= : : ;
Q2,1+ Q2KK

Q21 = limy—co 77 Lieco Ljeco tijEe <f B2¢B2j) ,C=0(F% A%, and Ec (-) denotes expectation
conditional on C.
We first show QinT 4, Q1 as (NV,T) — oo. The kth block diagonal element of Q17 is given by

NkT2 Z .'L'l ZMFO.'L'l 3

ZGGO
T -1 T
1 1
5o gt 1 X etk (o) (73 seka)
ZEGO ZEGO t=1 t=1

= QirnT1 — Q2kNT 2, Say.

We first establish the sequential limit. Let (N,T),, — oo denote the sequential limit by passing
T — oo first and N — oo later. Let Z1; = Mfol,i' Denote the tth column of Z1; as 1. Then as
T — o0,

1 1

~ -1
T1/2 L1t = T1/2 L1t —

1 ! .
ZL‘l zFl (FlolFl) T1/2 f{)t = Bg; — /BQZBé </ BgBé> B3 = Bo;,
and by the continuous mapping theorem (CMT) = ] ZMF0$1 i = 732 x'llx“ = % Zthl ﬁjl,itﬁjﬁ,it

= [ Bo;Bo;. By the conditional law of large numbers with independent observations (conditional on
C), we have that as N — oo

/321327, xa hm — Z Ec [/ BmB%] .

zEGO i€GY

48



It follows that %xll,iMFlo‘/El,i LA Iimpy oo N%C ZieG% Ec [f BQZB%} as (N, T)seq — 00. To show the

above limit is also the joint distributional limit, we need to verify condition (3.9) in Phillips and
Moon (1999, hereafter PM). We do so by verifying the conditions in Theorem 1 of PM (1999) to
obtain that as (N,T) — oo

Quenr > A o > Ee /B%Béi) and

e Nk zEGO
d —1
Quivrz = lim —— Z Ec (/BgiBg </ BgB§> /B3B§i> :
GO

This implies that ﬁ Zz’eGg xll,iMF{’ffl,i LA limpy_eo N%c Zz‘eGg Ec <f B213§1> as (N, T) — oo. We
focus on the study of QixnT,1 as QirnT2 can be analogously studied.

It is easy to see that limy_, N%c Zz’eGg Ec ([ B2iBb;) is the sequential limit of Qixn7,1. We are
left to verify the four conditions in Theorem 1 of PM (1999) that ensure their equation (3.9) holds.
Let X;7 = % Zle :ULitJ:’Lit and &; = f By, B),;. Recall that M denotes a generic large constant.
Our conditions ensure that sup; supy B [|X;7||* < M. Tt follows that ~ =D cqo B ||| < M and

=~ ZzeGO E ||, 7| 1{ ||X;,7]| > Ne} = 0 for any € > 0, verifying condltlons (i) and (iii) in PM (1999)’s

Theorem 1. Tn addition, ||X; 7| = ||A; 7' for all ¢ € [0,1] by the continuos mapping theorem.
This, in conjunction with the uniform integrability of {||X; 7|} in T for all i and all ¢ € [0,1)
(implied by sup, supy B ||X;7||> < M), and the Fatou lemma, implies that E(X;7) — B(X;) and
E||X; 7' — B for all ¢ € [0,1) as T — co. Then Nik ZieGg E HXZ‘HHg < M < oo for some
¢ >0 (see, e.g., Lemma 12 in PM (1999)), which implies that NL,C ZieG% E[|X| 1 {||X;]| > Ne}] =0,
verifying condition (iv) in PM’s Theorem 1. To verify condition (ii) in PM’s Theorem 1, we apply the

Skorohod representation theorem to construct {X *T} and {X;*} in some probability space such that
X' 4 Xir, X 4 A&; for all 4, and X[ e A*, where 2 and “¥ denote equality in distribution and
almost sure convergence, respectively. Let D; p = Xy — A" Then {D; r} are uniformly integrable in
T for all i and D; 7 “% 0. By the uniform integrability of {D; 7}, for any € > 0 there exists § = § (e)
such that sup; supy E[||D; || 1{||D;r| > 6}] < e. By the almost sure convergence of D; 1 to zero
and the dominated convergence theorem, limp_,oosup; E[||D; 7| 1{||D;r| < 6}] = 0. In addition,
notice that

—ZIIE i) — B(X)|

= & Z I ( (&)

zeGO zeGO
1
< — Y Bl - & =+ ZEIIDlel
szGO ZEGO
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It follows that

hmsup— IIE (X7) — E(A)|
(NT)—>ooNk GZGO

. 1
<limsup ~ > [BI|Dir1 {||Dirll <} +E|Dir1 {|Dizl > 6}[] <0+e=e
(NT) =00 Tk o

Since € is arbitrary, we conclude that lim sup(y 7)o N%c ZieGg |E (X 1) — E(A;)|| = 0, which verifies
condition (ii) in PM (1999)’s Theorem 1.

To show QonT LA Q2 as (N,T) — oo, we also establish the sequential limit first. Note that
the (k, l)th block element of Qanr is given by Qanr ik = ﬁm ZieG% ZjeGlO aijw'l,iMFloij. As

T — 0o 2371 it = Bo J fBZiBé (f BgBé)il B3 = BQZ‘, and

) Tl/

1 1 1 . ! L
ﬁxa,iMFloxl,j T25131 Z.’L'LJ T Z <T1/2 lzt> (mxl’jt> = /BQiBQj by the CMT.

By the conditional law of large numbers for second order U-statistics with independent observations

(conditional on C),
Ec </ BQiBQj) as N — oo.

NN Z Z az]/BmBQj L NN

i€ay jea] ¥ iec? jea?

It follows that

d ~ ~
NN SR > airh ;Mpow j = Jim NNk > ayBe </321-sz> (N, T)yeq — 00.

ZGG% ]GGO zeG%yeGO

Let X1 = %aijl’/uMF{)xl,j and X;; = a;j fBgz-ng. To obtain the joint limit, we can follow the
proof of Theorem 1 in PM (1999) and find that it is sufficient to verify

(i1) lim SUP(N,T)—o0 NLN,c ZieGg ZjeG? E || Xij [l < oo,

(i2) lim SUP(N,T)—00 N+v,€ Ziecg Zjec? IE(Xijr) — B(A)| < oo,

(i3) im sup(n,7)—oo ﬁ ZieG% ZjeG? E[|| X7l L {|| x| > Ne}] =0V e >0, and

(i4) T sup(y 1) o0 787 2oica? 2ojecs B I 1{]| ]l > Ne}] =0 e > 0.

Note that {Xj;r} is uniformly integrable in 7" for all < and j. We can follow step (1a) and verify
the above conditions analogously. As a result,

d ~ o~
T o 2 a5 ayle ([ Buby,) as (41) -

zGGO ]GGO ZEGOJEGO

(ii) First, we observe that
Uent = Uty + Uler (B.3)

u o 1 1 _ 1NN fa  _ _1 1, 040
where Ugnr = 5= 2icct 721 Mpp (wi— 5 22520 wjaig) and Uplr = —5= 3 icqo 721, Mpp (F3 A —
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~ ZN FO)\QJa”) We study U}y and U,{f\,T in turn.
For Uiy, we make the decomposition

1 1
UinT POl — e Z Z ajj— xleFou,
N i€GY T JjeG? T
1 1
= \/_k Z T[xl i — Ec (‘Tl z)]MFOUZ
zEGg
1 K
\/MZ TEC( ) {ZGG ZCLUT xlj M pou;

\/sz Z% (1, — Be (21,))] Mpou

jEG?
— u U
= Ulpnt + Usiony — Usnrs 52y

We will show that Uj} yp contributes to both the asymptotic bias and variance, Ug). - contributes
to the asymptotic variance, and Uy is asymptotically negligible. We study these three terms in
turn.

For U}y, we make further decomposition:

Ulnt = \/— Z Be (21,4))u; — \/— Z (21, — Ec (xl,i)]’PF{)Ui = Ulent1 — Ulknro-

eGO eGO

Let 2}, = w10—Ee (v1,1) . Let ¢ (L) = (65 (L), 65 (L), 65" (L)), 61T (L) = (61 (L), 61= (L) , 61" (L)),

qﬁf’flh = (qﬁffl (L) ,¢ff2 (L)), vii* = (vzt,vzt,vff')l, and v{lfz = (vfll,v{“)’. Noting that ;4 = w§;, =
&5 (L) vl + ¢5° (L) v§, + 572 (L) v + gi)?fl (L) tl + ngfo (L) v{2 and by the independence of {v}{*}
and {v]'?}, we have
wir =3 (L) vl + ¢4 (L) vy + 61" (L) vj2 = o1 (L) vif®” = S"¢] (L) vif”,
Be (eir) =07 (L) v + 677 (L) u* = 67772 (L) o] 2,
eir — Be (ei) =¢5" (L) v + 65 (L) vf; + 657 (L) v = ¢ (L) vi" = S°¢] (L) vl

where

9

S (D) = ( o (1) ) _ ( (L) ¢ (L) 6™ (L) )
Z o (L) (L) 6 (D) (D) ) i

S = (1,01xp) , and 5% = (Opy 1, pyxp) - Lot Vit = (Vi Vi, Vi) = (S04 i, Sy v, ooy o)

s=1 "is’ Lus=1 "is) Lus=1 "is
and wi" = (wh, wlt,w”’) Then by the panel BN decomposition,

Wit = ¢ (1ol + 0| — 4 and Zw Wi + Bl — w4, (B.4)
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T _ 1 T 1!
where wj" = ZJ =0 (% ii—; and ¢zj ZS‘;M ¢i,s' Let B%kNT,l = JN: Zieeg S0 2120 ¢i,z+r¢i,15w

It follows that

U U
UlkNT 1 BlkNTl

\/JTkZ Zmlztult BNt

i€Gy =1
1 T
Fe 2w (3|S5 el ) 5+
kzeGO r=0 [=0
1 T 1 T—1 [e'e) -
g3 e ) o+ 7 ( e zqazm,s)
ZGGO t=1 t=1 s=0

!

1 ~ -
N ST Z (@hvi — dio) 61 (1) Z ]
s=0

1 1
_? w%x ;L’I:g/ + Twzzlxwzzoxl} Su/
=1
\/— > 5°{Qir + Rura + Rura + Rurs + Rura + Rurs + Rure} S*.

ieG

By Lemma A.7 in HJS, \/LN_;C ZieGg SRyi7;S™ = op (1) for 1 =1,2,...,6. It follows that
T

u u € 1 /LLCL’ /LLCL’ U
Uienta — BilknT1 = E Sel(1) f E " Iiyp) o1 (1)'SY +op (1).
EGO t=1

Recall that s = f{(FYFY) 7' fi, and 5 = 1{t = s} —sas. Let Biynro = 7= Yieqo S°F S

Z s L{s <t}> 020002, QSZ Lir® T/ ;5. Then, using the BN decomposition in (B.4) and following
the proof of Lemma A.7 in HJS, we can show that

T T
Utknr2 — Biknr2 = Z ZZ%MCT LUis — B
VN, 1,it Wis 1kNT,2

16G0 t:l s=1

1 1 : , w
“Um S (TEE”“[E“’” 7105 S bl )

t=1 s=1 r=0 [=0

where we use the fact that E¢ (ViTvle) = E(Vimvl) = Liyp if s < ¢t and 0 if s > t by the
independence of v};* over ¢. Then

Utent — Bixnt = Vient +op (1),
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where

Vievr == 3= 5710 ;ZZ{% (ViErol) = [1{t = s} = sl {s < 1)) Ty} 0 (1)'S™,

GGO t=1 s=1

T T
BlkNT:< ZZ {tZS}—%tsl{SSt}> ZA2117

ZEGO

since Ag1; = S°Y 220> 20 gbl l+rgbl7’l5“’ = 523 720 2120 Pigr®iy St by construction.
For U3, s We make further decomposition

Usinr = \/— % TEC i z) MFOUz \/— Z ZGO azyTEC(@’l J)MFOUz = Ugpnra—Usinras say-
S S

Apparently, Be (Usiyr,: ) = Be (Usinra) = 0 Var (UgiryC) = Op (1) and Var(Ugiyr,|C) =
Op (1) . We now show that U, NT1 and Us), NT2 are asymptotically independent of Vj;n7 conditional
on C. Note that

T
1
Vlk:NT—\/—Z S61(1) Z Vimul® — Ip) ¢l (1)'SY

gGO t:l

1
Z Seel(1) T Z Z%ts Voo — 1 {s <t} Lippll (1)'SY = Vignra — Viknra-
i€G? t=1 s=1

Let ¢; and ¢y be arbitrary nonrandom p x 1 vectors such that ||c1]| = ||cz2]| = 1. Note that

Cov (CllvlkNT,lv 4Usn7,11C)

T
1
= Ee Z 1Sa¢'|' TZ Vux ux/ Iler) ¢T( )/ u/\/_ Z TUZMFOEC (ZL‘1 z)

GGO t=1 GGO
T
= Z 4S50 (1) Z { Vit ol — Iitp) ¢3(1)'S“'U§}MF9EC (1) c2
zEGO t=1
A
N > dsel) T—ZZ { (Virrol™ — Tiyp) 61(1)'S"u }Z%erc T1ir)
zEGO t=1 s=1
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Using the BN decomposition, we can readily show that

T T T
N S 861 (1) S0 Be { (Vi — 1) ol 8%} Z (210) €2
ZEGO t=1 s=1 r—1
T T
N Z 1SE¢T Ti Z ZEC {(Vz:tm i = Il+p) ¢I( 1)’ Su,Su(bT( } Z s B (w1,r) c2 + op (1)
ieGY t=1 s=1 —
T T
:_ Z 1SS¢T TLZZ [V#I uz/¢T( ) SUIS’U¢T( } Z%STEC T zr) c2 +op (1)
zGGO t=1 s=1 r=1

!

== 3 8%l () SO [Viusl (1) 56l (1) }Z%STEC 210) s+ op (1) = op (1),

¥ ieco t=1 =1

where the first inequality follows by the BN decomposition, the second equality follows by the fact
that E (v}¥) = 0, the third inequality follows from E[Vg%;@”@( 1) S“¢T( vi*] = 0 for t # s and
the last equality follows by straightforward moment calculations. Similarly, we have

Cov (0’1 VikNT,2, ) UsknT 1 ‘C)

1 / ul
= Ec Z 56l (1) TZZ% Vol = 1{s <t} Typlol (1)'S \/—ZTuZMFoEc@u)

eGO t=1 s=1 eGO

T T
— 3 2 46l Yo D e { (Ve ~ 1{s < Ty (1) SV} Mg () o

e 1=1 s=1

T
N > dseel() )72 Z%tsEc { Vimol — 1{s < t} Ip) ¢1(1 )/Swuir} > B (21.4) c2

zeGO t,s,r =1
ASEOI (1) Y sasBe § [Vit= ol — 1{s < t} Iy 91(1)'S™ S 9] (1) %MEC (z1,1)
N GO T t
’LE ,S,T
+op (1)

N Z 1S€¢T T2 Z%ts [ Vouw u:c/ng( )Su/SU¢T }Z%TZEC x14)c2+op (1)

i€GY t,s,r =1

N > S0l (1) = st Vi ol (1) 5 0] (1w Z%ﬂEc 1) c2 +op (1) = op (1),
i€GY =1

where }, (. = ST ST 1t follows that Cov (c’l VikNT CéU;kNT,ﬂC) = op (1) . Analogously,

we can show that Cov(c’lvlkNT, c’QngNT72|C) =op (1). Then Cov(c| Vignt, U N7IC) = 0p (1).

: : o N
For U3}, p, we can readily show that Us, yp = Usy yp+op (1) where Uy = \/LN—]C Sl v ZjeG%J#
Z[z1,; — Ec (1,5)]' Mpoaiju;. By the independence of (zi,u;) across i conditional on C, we have
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g e N N

Ee (UigkNT) = Oand tr{Var (ngNT’C)} = W,CT? dict ZjeGg,j;ﬁi dine Zjleag,jl;éil aijaij, Befuj,
Mpo[z1,j, —E (21,5, [C)][z1,;—Ec (21,7)] Mpoui } = Op (N~1), where we use the fact that Be{uj, Mpo[z1,j,
—Ee (z1,5,)][z1,; — Be (21,5)]' Mpou;} is nonzero if and only if #{i,j,i1,j1} = 2 or 1. It follows that

Usfyr = Op (N7V/2) and Uy = op (1).
In sum, we have

Uint — Biknt = Vignt + Vornt +0p (1), (B.5)

1
where Vvt = Usinr = = 2ici {7 Ee (fUl z) 1{i € GY} — % Zjeco aijrEe(w) ;) } Mppu; and we
have shown that Vipnr and Vopn7 are asymptotically independent conditional on C.
Now, we study U ngT We make the decomposition

kaJZVT \/— Z Txl’LMFOFQOAQZ \/—Z Z azJTa:leFon)\

eGO jeGy
\/— Z (21, — Ec ()] MFPFQOAgi
eGO
N
Z T (¢14) 1{i € G}} Z alJT c(@) MF10F20)‘81‘
=1 ]GGO

1

VN Z N Z i w15 — Ee (xlvj)]/MFf)Fg)‘gi = Ufing + Uding — Ulinr-
Fis1 7 et

We show that Ulfli N7 and szli N7 contribute to the asymptotic variance and bias, respectively, and

Ug,iNT is asymptotically negligible. For UlfliNT, we have E[UlfliNT|C] =0, and tr [Var(UlfliNTm)] =

N%“ ZZGGO 72} O/fglMFOEC { r1i — Ee ()] [3311 — Ec (x:) /} MF{’FQO/\gi =0Op(1). For U2fl§NT7 we have

UkaNT = Bagnr. For U3kNT, we have EC[U3kNT] =0, and

1
tr [Var(Ufing 0| = e S Y am Y My (1. — ool — Belos, ) Mg N,
4,l=1 jmeG?

NkNgTz Z > aija Ay Mo Ee {[1,; — Be (21,5)] [21,; — Be (z1,5)]'} Mpo FSAS;

i,l= 1]€G0
)\O/)\O )\0/)\0 )\0/)\0 )\O/)\O
NkTg > AN - INQFQO/MFPEC{[MJ—Ec(ﬂfl,j)] (21, — Bc (1)} Mpo F3 N L= N L),
JjEG?
)\0/)\0 )\O/)\O 2 9
< | ]| [ Nm 5 I [t s e rnsllens = Be ey My
=0Op (N_l),

where the second equality follows from the independence of {z1,;} across i conditional on C, the third
equality follows the fact that a;; = 2. ()\?' N/N ) (1]3 = aj;, and the last equality follows from
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2
the fact that w3 cqo || A% ] HF20/MF10EC {[z1; — Be ()] [21,5 — Be (21,5)]'} MF{)onH = Op (1)
by straightforward moment calculations. It follows that U:{,i 7 =O0p (N -V ?) = op(1). Then

Ul3r — Baknt = Vaenr +op (1) (B.6)

where Vet = \/;N_k ZieG% % [$1,j — E¢ (xl,j)]/MF{)FQO)‘gi'
Combining (B.3), (B.5) and (B.6), we have Uynr — Bixnt — Bornt = Vinr + op (1), where
Vient = Vignt + Varnt + Vainr. This completes the proof of (ii).

(iii) We have shown asymptotic independence between Vipnr and Vopnr conditional on C. By
the same token, we can show that Vipyp is asymptotically independent of Vixnr conditional on

1 1 1 N 1 —
C. Note that V2kNT = m ZiEGg TE <$/17Z|C> MF{)Ui — —\/N_kN Zi:l ZjeG% aijTE(ZL‘ll’j|C)MF1()ui =
VornT1 — VarnT,2. We have

Cov (¢ Varnt,1, 4 Varnr|C)

1
:—NkTQ Z CllEC (.’L'll,z) MF{)uiEC {Ag;Fg’MFlo [513171‘ — E¢ (mlﬂ)]} co

(10
1€GY,

1
TN T2 Z tr {CQCIIEC (#1,:) MpoEe {Ui)\géon’MFg (21 — B (331,1')]}}
i€GY

—1 ! ! ' ! 040
:NkTQ Z tr { [VeC(CQClEC (xl,i) MFIO)} Ec {Uz b2y [1'171' — B¢ (33171‘)] }VeC(MFloFQ )\21-)} ,

(0
1€GY,

which is Op (1) but not op (1) in general unless Cov(u;, z1,i|C) = 0 or E¢ (x1,4) = 0, which we do
not assume. Similarly,

1
Cov (¢ Varnra, &pVaunr|C) = NN, T2 > D aiciBe(h ;) MppBe {uich [1; — Be (21,)]'} Mpp F3AS;,

ieGY jeG?

which is Op (1) but not op (1) in general. It follows that

3
Var (Vinr|C) = {Z Var (Vignr|C) + Cov (Vapnt, Varnt|C) + COV(V%NT,ngNﬂC)’} +op (1)
=1

= Qnrir +op(l).
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For any k # [, we have

Cov (Vint, Vint|C) =Cov (Varnt, Vant|C)

NkT2 ——Cov Z Z a;jEe :vlj)MFouZ, Z Z aiyjr B (2] 1) Mpous, |C

i=1 ]eGO i1=1 ]1EGO

1
NkN2T2 Z Z Z Z aZJaZIJIEC(xl j)MFOEC<uZ ’L1)MF0EC(x1 j1)

i=1 ]eGO i1= 1]16G0

1
=NNOT2 Z Z Z awamEc(xlj)MFoE(ul )MFoEc(acl 1) = QNTRi
k i=1 jeG? j1eG?

which is not vanishing unless E¢(x; ) = 0. Let Q7 denote that Kp; x Kp; matrix with typical
blocks Qnr i (p1 X p1) for k,1 =1,..., K. Note that Viyr = SV | ZyinT, where

T T
ZkiNT —ﬁSeng ZZ {%ts Vit um, —[1{t = s} — 24,1 {s < t}] Il+p} ¢T 's%1 {Z e }

t=1 s=1

1
+ — Ec( ) {’LEG aEcx M rou;

1 .
=+ m [37171‘ — Ec ((IZLZ‘)], MF{)FQO)\%L]. {’L c Gg}

=ZiNnT (1) + Ziint (2) + Ziint (3) -

Let VT = (Vl’NT,...,VI’{NT)' and Z;nyT = (ZLl-NT,...,Z}(,iNT)’. Note that Z;yr are independent
across i conditional on C. Let w be a nonrandom Kp; x 1 vector such that ||w| = 1. By the Cramér-
Wold device and the martingale CLT (e.g., Pollard (1984, p.171), we can show the asymptotic
normality of Viyr by showing that

N
Zl = ZIE [’W’Z’iNT|4 |C’L'71,NTi| = Op( ) and ZQ Zl }LL) ZZNT‘ — W QNTW =op (1) (B?)
= i

where Cint = 0 (C,2;;,1;), the sigma-field generated from C, z;; = (211,...,21;) and u; =
(u1,...,u;), and @y =Var(Vy7|C) by the previous calculation and the independence of Z; 1 across
1 given C.

We show the first claim (B.7) by the conditional Markov inequality. Let wj be a nonrandom
p1 %X 1 vector with |lwg| < 1. We can show that

N

Ee (21) = Z Ec Uw’Z@'NTrl |} =op (1)

=1

by showing that Zf\il Ec [\w%ZMNT [* ]} =op(l)fork=1,..,Kandl=1,2,3. We only show that
Zi]\il Ec ||w)Zk inT 3)* ]} =op (1) foreach k € {1,..., K} since we can show Zf\il E¢ ||w}.ZkiNT (O[*]
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op (1) for [ = 1,2 analogously. By the BN decomposition in (B.4), :r;rt =2y —Be (zi) = S0_, wi¥ =
qﬁj(l)Vftm + Wi — wy*. Noting that

T T
sz | Xisfoedi1{i € G}},

t:l s=1

1
Ziint (3) = INT (21,5 — Be (21,:)] Mpo F3 25,1 {i € G} }

we have

N
> Ee [|w22k,iNT 3)[* |}

i=1
L&
:—N2T4 Z Ee [whZrint (3) Ziint (3) wiwh, Ziint (3) Ziint (3) wi)
N2T4 Z Z Z Xt181Xt282Xt383Xt484f251 8;f2szf253 f254EC [wkx;rtl ItZWk w;gfbjt?,w;ruwk}

1€EGY t1,t4 815,54

A0 \O 40 R ot
N2T4 Z Z Z Xty51 Xt Xtass Xtasa S 201 A9iA% S 55 [20y N3iA2: 25, Bictr [wk:wkitztl Ty, Wk Wkl’ztg%tJ

I€EGY t1yeta 815,54

O/ 0/ 0
N2T4 Z Z Z Xt1$1Xt2$2Xt383Xt484f251 2if252 f253 2if254

I€EGY t15-5ta 81,..,54

 [vee (wrh)]' Be (@l al}) @ (@l alt,)] vee (wish)

Using the BN decomposition for :L‘m we can show that the last term has dominant term given by

0 0 0
N2T4 Z Z Z Z Z Xt151Xt282Xt383Xt454f251 2;f252f233 2§f234

ZEGO 1<t1,51<T 1<t2,50<T 1<t3,83<T 1<t4,84<T

x [vec (i)' B | (ol Virviersl (1)) @ (ol (Vv o] (1)) ] vee (wieh)
Z Z 2t1 z‘)‘ggf2t2f2t3 g;fgm [VGC (wkwk)],

ngGO t1,t2,t3,t4
E [(qﬂ( WitV ol()') @ (sl Vi Vi ol (1)) | vee (wieh)

20 207 £0
N2T4 Z Z Z Z Z Xt1s1 Xtaso Xigsg Xigsy f251 2;f252f253 2§f254

1€GY 1,51 12,52 13,53 4,54

_N2T4

x [vee (wih)] B [ (ol OVirVEol (1)) © (el Vv ol (1)) vee (wess)

where M is a generic constant that can vary across lines and the inequality follows from the Chebyshev
inequality. One can readily show that the first term is Op (N *1) . For the second term, noting that

o8



s = fif (FY Flo)*1 12, it is bounded from above by

() AﬂT8§: LA AT AT

i€GY tta ls ls

g

1 T
0 (0
Tz.fls 2,
s=1

< [B[(stvaviretay) @ (sfmvirvirslay) |
=0p (1)Op (1) Op (N71) = Op (N71),

where the last line follows because by Jensen’s inequality and the independence between { f_?t} and

{23},
NmZ S B I 18 A3 1 B8l Vi v ol (1)) @ {o] () Vi Vit sl (LI}

1€G0 t1,...5ta

—N2T8 ) E { }

zGGO

< 3 {BIAN" BIAL Bl BN BV BV B Vis|* Bl }

t1,t2,t3,ta
4

<z S B[N | 7= 3 {Eln e v}

B T
=1

ZGGO t
4

< Tl [m 3] -

ZGGO

and the last inequality follows from the fact that K[| f{)tH4] < Mt? and E[||[V¥|*] < Mt2. Conse-
quently, we have shown that Zf;l Ec [|w;€Zk7iNT (3)|4} = op (1) for each k = 1, ..., K. Analogously,

we can show that Zf\il Ee [|w§€Zk,iNT (l)|4} =op (1) for each k = 1,..., K and | = 1,2. As a result,

the first claim in (B.7) follows.
To show the second claim in (B.7), we first observe that E¢ (22) = o/ Zf\il Ec (ZinTZinp) w —

W' &nTw = 0. The claim follows if we can show that Var(Z2|C) EVar(Zi]il ' Zinr|? |C> =op(1).
By the independence of Z;yr over ¢ conditional on C, we have Var(23|C) = Z£1Var<|w’Z¢NT|2 |C> <
SN Ee (]w’ iNT|4> = op (1), where the last equality follows from in first claim in (B.7). Conse-
quently, we have Vi 4N (0,€0) conditional on C, where Qg = lim(y 7)o On7. B

Proof of Lemma A.11. (i) We first study ||[A;; — H; 'A%l Noting that )\1Z = (FlFl) 1Fle; =
A Fle; with e; = y; — x;8; = FyHy '\ + (FY — FyHY )A?Z + F9NY; + ui — x13b1; — wo.iboi, we have

H5\1i — H '

1 . .
+HﬁF{SE1,ib1,i

1. o
< HEF{(FP—FJH HAY

1. .
+H ﬁF{(uz‘ + FYA; — wa,iba )

3
= Z Eli-
=1
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By Lemma A.5(iii), we have Ey; < 2 o (FO — Flel)H H)\?ZH = Op(nlNT+T_15J§,1T+T—5/4C;,¥2).
(FY (w5 + FYAS; — w2ibo )|+ ‘(F — FYHy) (u; + FO)‘gi - xz,il;z,i)H =
OP(T_l). In addition, we can show that F3; < =5 '81 i Flel zbl i (Fl — F{)Hl),xl,ii)l,i

— Op(mn7)- Tt follows that ||Ay; — H; MY = OP(mNT + T~ ) Let ACy,; = leh FOX).. Then
by the triangle inequality

For Fs;, we have Fo; < %

IACL = || Fadss = FAY,

< H(FlHl — O,

‘FlHl Ai — H

‘ (Fy — FOHD) Ay —

Z llewll-

It is easy to show that

lewll - 1155 .
T < o [t = B I = O (VT + Cx)

FOH N
”\C/QL H lT 1HﬁH/\1i — H{ 'Y,

|csil| 1 H 0 3 —1,0
g—F—FHHHA-—H A0,
VT — T I TR T A

Consequently, we have %Hﬁlﬂlz — FO\Y) = Op(WTninr + Cpie).-

= Op(VTnny + T_1/2)>

= Op(VTniny + CKIIT?hNT)-

(i) Given the fast convergence rate of | and éy, and the established convergence rate of 6271‘ =

Op(\/drT~1/2) and Ay; in part (i), the result follows from standard factor analysis. We also assume
the stationary regressors are uncorrelated with the stationary common factors and factor loadings.

Here, we only sketch the proof. Recall that Fy satisfies the following equation: [ NT Sk el D ey (yi—
100k — 2380, — F1 i) (s — w1 6, — 2,180, — Fl/\lz) |Fy = FyVp N Note that y; — 1 jév — 22,105, — i
Fl)\lZ = F2 )\Ql—i—uZ x1,i( 0 — ak) T9 Zbg Z—i—AC’l i= F2 )\QZ—i—uZ x1,4k, where @; = u;— ACY i— T2 Zbg i
and aj, = &y — aY. Then by the proof of Theorem 3.1(iii), we have the following decomposition

K K
. 1 R - 1 N
F2‘/27NT :ﬁ Z Z :L‘Liaka?cx'qu — ﬁ Z Z ZL‘Liak)\g;FgolFQ - = Z Z Tl zaku FZ
k=1icC, k=1ieék k 1z€Gk
> FNaga) By — NT Z > g P + 7 Z FINS. il Fy
k=1icCy, k=1ieq, Ti= LieGy,
K
1 A
ST A S Y b S Y R
k= IZEGk k= 116Gk k= IZEGk

=11+. +L8+—ZF2,\

It follows that | £y — F9Ha|| = o (|| La + .+ |[Zs]|) Vo, where Ha = (A3 AD(RF Ba) V5 4
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= Op(1). One can readily show that

1,i]|? [ £
T JT N

1 I~ TK HZL‘lZH
— |7 < m 2
v bl sy T max

= OP(Tl/QN_l/leT/QQNT)a

ZHakll = Op(drTN " Ko}),

{Neru }1/2{%21@112}”

1 ~
—||L1|| <T max
\/TH 1|| = s

2

and

1 TR e ||F|| L a2 1 & 2
L E < L1, 2 L Ug = ~ 112
= Op(TY2NY2\/droNT).

Analogously, we have %HL;H = Op(TY?N~2gyr) and %Hiﬂ] = Op(TY2N-Y2\/dronr).
Since~ the remaining terms do not involve éy, we can directly obtain from Bai and Ng (2002) that
ﬁ | Li;|| = Op(Cxy) for I = 6,7,8. By the fact that &y, are the group-specific C-Lasso estimators, we
have g%, = + - 042“2 = Op(N~YT~2) before bias correction and oy = Op(N~Y21T-1)
after bias correction. Thus, we have TV2N~Y2\/dronr = o(Cyk) and ArTN 03 p = o(Cyi).
Consequently, ﬁ HFQ — F2OH2H =0p (C’;,lT) .

(iii) Noting that Ay — Hy '\, = LEN(FY — FoHy Y)AS; + @ — 21,5a5], we have

~

\/}V_k Z <;\21 — H§1A3i> < \/% Z %FQ(F FzH DAY + \/_T Z Fla; — \/_T Z F2x1 i

1€Gy, 1€Gy 1€Gy, icGy,

= El + EQ — Eg, say.

For By, we have HE1H - HF2 (F — FyH; " H A szeGk = Op(C2)0p(VR) = op(1),
where we use the fact that 7~ 1FQ(F0 F2H2 Y =0p(Cy 2) For Fs, we make the decomposition:

E T\/_ ZzeGk I—IZFO’{ZZ T\/_ ZzeGk (F2 F20H2) U; = E2 1+E22 Using @; = u;— ACl i T2 Zbgz,
we can readily show that

Epy = T\/_Z T\/_ZFO/ACM HQT\/_Z@ Lo by,
1€Gy, 1€Gy 1€Gy

= OP(T71/2) +op(1l)+ OP(T71/2) =op(1).

Using the decomposition of Py — F20H2 in (ii), we can readily show that EQ’Q = op (1). Then Fy =

61



op (1). For E3, we have

1€Gy, iEGk

HESH <{ \/NLkT Z H§F20/xu + \/NLkT Z(FQ _ F20H2)/x17i } ”&k”
- {OP(\/M) * OP(\/]Tk)} Op(ont) = op(1).

It follows that ﬁ Zieék(j\% — Hy'23) = op(1).
(iv) Noting that

~ _ 1 - N . 1 ., 1 - .
HA%—H2 179, SH?FQ’ (FQ—F2H2 1) Q. —|—H?FQ’ui —i—H?Féa:Mak
L2 0 S orr—1 0 —1/2 L o2 L2y -
< ||\t <F2 — FyH, ) [ +T Nk + || e [l

—0p(Cy2) + Op(T™Y/%) + Op(oy7) = Op(Cyk),

we have
L HFQ’X% — < L H (FQH; _ F20) PN [ HF20H2 (X% _ H;)\gi) ’
VT VT VT

By — F20H2> (X% - Hglxgi)

=7 |
VT
= Op(Cn1)Op(1) + Op(1)0Op(Cry) + Op(Cyr)Op(Cyy) = Op(CrT).
(v) Note that \%W Ziegg(Am,z — Aoy ;) = \/LN_,Q Ziegg Aoy _EC(A21,z‘)] + \/LN_,C Ziegg [EC(A21,i) -
A9y ;] = dint + dant. Following the proof of Theorem 9 of Phillips and Moon (1999), we can show
that

* 4 op(1) = Op (J/T) +op (1) = 0p (1),

1 A A
Ec |dint|? = A > Ee HA2LZ‘ — Ec(A21,)
F i€GY

A 2 A
EC(AQLZ‘) — Agl’i = Op (N/JQQ) = op (1) . It follows that ﬁ ZieG% (A21,i_

and E¢ (dfyr) < 2 ieqo
AQLZ‘) = op (1) .

(vi) We first obtain the rough probability bound. By Jensen’s inequality and Lemma A.5(iii), we
have

T

T
ZZ(%ts —s) 1{s <t}

t=1 s=1

Iz

T T 2
< Nk {ZZ (%ts - %ts)2}

t=1 s=1
=V Nil|Pg, = Proll = Op({ vV drninr Nie + N T 7'} ?).

Note that 1,y = T~ before bias correction, the last term may not be op (1) under our conditions
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n (N,T). To obtain the tight probability bound, we make the decomposition:

M=
M’ﬂ

<%ts - %ts) 1 {3 < t}

o~
Il
=

s=1

afii— S PE) T ) 145 <)

H
Il

1 s=1

-1
1 . /
{Tzf (HlH{_<T2F/F10> )f?s+ﬁ(flt—H1f?t> H{f?s
1 s=1

b 5 (Fio = HUD) + 5 (o =BG (Fio = LA } 1{s<t)

=d3nT1 + d3nT2 + d3NT,3 + d3aNT 4, SAY.

Il
*\3 5 45
M=
Mﬂ

M=
Mﬂ

t

Following the proof of Lemma A.5(i), we can readily show that d3n7; = op(1) for [ = 1,2,3,4. Then
e L S (s — ) 1{s <t} = op (1)

(vii) We first make the following decomposition

1

~ ~ -0
— Z (Aggirai — Aogiry;)
N i€GY
\/— Z A24,ij\2z' - A24,iH2H2_1/_\gi)
i€GY
\/— Z Agy; — Moy iHo)(Ngi — Hz_lj‘gi)
i€GY

(Agy — Aoy Ho)Hy 1)\1 Aoy iHy(N\yi — Hy 1)‘1 = I11 + Lo + L13.
\/—g;o , 2 ) 2 2 \/_kg;:o 52 ( 2 2 2)

Following the proof of Theorem 9 of Phillips and Moon (1999), we can show thatNLk ZieGg
= Op(% + %) and I12 = op (1) . By the Cauchy-Schwarz inequality,

R 2
Ay — A24,iH2H

1 N _1%0 2
Fk Z )\Qi—H2 )\21'
ieGY
2
2 A Lol2 . 2 1L )
Sﬁk )\Qi_HQ )\21' +MZ NZ()\QJ'G/L] H2 )\2jaz]>
i€GY ieGY J=1
2 2
2 A Lol 4 1. 4 1.
Sﬁk A2 — Hy " A, +EZ NZA2j(aij_aij) +E,Z NZ(/\m 2 Ay )ais
ieGY i€GY J=1 ieG) Jj=1
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Following the analysis in (iii), we can readily show that

N ZHM Hy ' X5,

zGGO
3 1., 3 1., P
SE Z TF2(F2 foHy! Z A Z TlaTik
ieGY i€GY ieGy

—0p(Cy7) + Op(T™Y) + Op(air) = Op(Cy7).

2

N (3 -1 N

% Zj:1()\2j — H, Agj)aij < % Zj:l
. 2
H)\gj — HQ_l)\ng ﬁ ZZGGO Zj 103 = Op(Cy%). In addition, we can show that ﬁ Ziecg Z;VZI
2 2
[T
& 2 ey (s — aip)|| < F X0 Ao

~ _ a _1-=0 2

X_N}Vk ZieGg ijl llai; — aij|| = Op(Cy%). Consequently, we have m Ziecg Ao — Hy Mg,
Op(Cy%). This result, in conjunction with the result in (iv) and the Cauchy-Schwarz inequal-
. 2) 1/2 2y 1/2

ity, implies that ||111|| < /Ny {NLIC ZieGg A24,i — A24’iH2" } {NLIQ ZieG% }

= /N Op (7‘{32 + Jq) Op (C’;,%F) = op (1) . By arguments like those used in the proof of (ii), we can

Similarly, by the Cauchy-Schwarz inequality, NLI@ ZieGg

llai; — (Iij” Op(C 7), which implies that & Zz‘eGg

5\27; - H;lj\gl

show that 113 = op ( ) . It follows that \/LN_I@ ZieGg (A247ij\21' - A24,i5\gi) = op (1) .
(viii) We make the decomposition

T

ﬁ Z ZZ [fftsA24,i§\2i - %tsA24,z'5\gz} 1{s <t}

i€GO t=1 s=1

—— Z Z — )1 {s <t} \/LN_;C Z <A24,¢j\2¢ — A24,i5\gi>

t 1s=1 e
1 T T 1 S
+ T Z Z(%s —5)1{s <t} N Z Aoy iNg;
t=1 s=1 ZGG%

T T
1 A 2 50 _
+ T ; 2 sl {s <t} —= \/— % (A24,i)\27j - A24,z')\2i> = o1 + Io2 + Ios.

Note that Is; = op (1) by (v) and (vi), Isg = op (1) by (v) and the fact that <~ ZZGGO A24z>‘21 =
Op (1), and I23 = op (1) by (vi) and the fact that }Zt 1 Zs 12as1{s <t} = Op(1). It follows
that ﬁ et S ST s Aaaihas — s Daaihoi]1 {s <t} = op (1).

(ix) We define the following T x p1 matrices T1; = x1,; — Be (21,), Xk = MFo:plzl {z e GY }

+Mpo[Ec (z1,4) x1 {ie@}—+ deGO aijBe (w1,5)], and Xy ; = Mpowy i1 {ieG—+ Z]EGO aiMpowy ;.
Let .’{’ i and X ., denote the tth row of Xj,; and Xy, respectlvely, which is a p; x 1 vector. Let
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/
Xit = (X iy oy X ip) and Xy = (X'Lit, ,X'Kzt> . Recall that

N
1
Uent = —mp 30 ahiMip | (s + PN = 5 Dy + 9
N 1
1
— —\/MT ; MFO.%'I 7,]- {Z c G } - _JEXG’:O az]MFO.TlJ (u% —+ F20)\g7,)

N N
1
= —— ) X (wi+FA,) =) Ui,
NkT ; Z Z ' ; Z

/
where Uy inT = ﬁ Z?:l Xk, it (uit + )\g;fgt) . Let UijnT = (U{,iNT7 ey U}(,iNT) . Then

L x,.
L T VN Lt T
Uint = T Z; : (uit + A% f5) = 4 Xt (it + A% f)
ﬁxl{,z’t a

where Dyg :diag(Nﬂl, e N—J\;) ® I, which is a Kp; x Kp; diagonal matrix. Now we collect all
asymptotic non-negligible components in Uy, ny7 and define them as Zj; ny7 as follows

Zgnt = Ulpnr +Uspnr + U1f/3,NT + UQfIz,NT
;N
= Z[ — E¢ (z1,) 1{26(?,6}]\/.1}70uZ
VN.T i=1
1 XN
+ Z Ee (z),)1{i € GY N - = Z aijBe(xy ;) p Mpou;
VNI i=1 jeG? 1
N
Z w1i —Be (1)) 1{i € G} Mpo F9A,
N
x“ {ZGG }—— ZGUTEC 15) MF{Jon/\gz’
=1 jeG?

) 1
= \/_T 71 {ie GY o+ | Ec (1:1 ) 1{ie G%} N Z aijBe(z ;) Mo (wi + FS/\gi)
=1 jGGg
N
= i (i + f5A5) =D Zrane-
Z /N, N.T v ;

!/
T o :
where Zj, ;N7 = ﬁ S i1 Xt (wie + A% £ . Similarly, letting Z;yp = (Z{JNT, ey Zl[(,iNT) , we
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have

ZiNT = \/_T Z xzt Uit + )‘2zf2t)

By construction, we note that Uy n7 = Z; n1 + op(1) and U; n7 = Z; n7 + op(N 1), Recall that
Vint = Sy Ziint and Ugnr = Vinr + Big.nt + Bok nr + 0p(1). Then we have

ZiNT = ZiinT + Brint +op(N71),

where By it = Bk inT,1+BkinT,2, BrinT,1 = ﬁ <ZtT:1 St %m) Ag1;1{i € GV}, and By N2 =

/

\/—T (Zt 1 ZS 1%ts) A241)\221 {Z e@? } Define Byt = (Bi,iNT’ ...,B}QNT> . Note that Z;nr
are independent across ¢ conditional on C. Similarly, we have that Z;yr are 1ndependent across ¢ con-
ditional on C. Then we have Qnr =Var(Vyr|C) = ZZ Var(Zint| C) = ZZ 1 Var(Z;n7|C) +op (1),
where ZfVZIVar(ZiNﬂC) = Zfil[Ec (ZinTZl 1) — Ee (Zint) Ec (ZinT)']. By construction, we have
Ec (Zint) = Be (Zint + Bint) +0p(N7Y) = Binr + op(N7Y) and SN | Ec (Zinr) Ec (Zint)' =
Zij\il BinTB! 4+ op(1). Note that conditional on C the expression Z;n7Z! vy — Be (ZinTZlyr) 18
mean zero, and it is also independent across . This together with the bounded moments implies that
Var(zzjil (ZintZlny — Ee (ZintZlyr))|C) = op (1) . Thus, we have

N N
> Ee(ZinrZinr) = Y ZinrZinr +op (1)
i=1 i=1

DNK
- NT2 ZZ%” wit + A9 far) (is + A9 f35) Xfg + op (1)
t=1 s=1
N T T

= DNKZZme i 4 ML) (e 4 ALFL) + 0p (1),

i=1 t=1 s=1

By construction, we have U; n7 = Z;N7+ OP(N*I). Then we have Zi\;l ZiNTZ,ZNT = Zfil Ui,NTUi/,NT
+op(1) = Rk SN ST XX (i + A S, (uis + A% £D,) + op(1). Tt follows that

N T T N
D
NT = N]\;g( E E E XX ( u%t+>‘g;fgt) (uis +>‘(2);fgs) - E BinTBinT-
i=1 t=1 s—1 =1

Recall that QNT = NT2 Z,L 1Zt 1 Zs 1thXZSA;kta;kS Zz 1BZNTBzNT7 where th7 ;kp and
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Bi ~T are as defined in Section 3.4. We decompose ¢ N7 — QN7 as follows,

- N T T
A Dy
Onr =t = s ZZ Z Xis (@508 — (wie + A% f2y) (wis + A5 f35))
=1 t=1 s=1
) , N N
+ (DNK - DNK) ~NT2 DN KX (i + A% f5) (wis + A3 f35)
i=1 t=1 s=1
Dk N / 0/ £0 07 £0
NT? Z Z Z XX, Xz‘s) (wit 4 Agifar) (wis + A; f25)
i=1 t=1 s=1
N A A
- (Z BinT BinT — Z Bz'NTB;‘NT>
i=1 P

= QOn7i+ Qnr2 + Qnrs + QNTa.

It suffices to prove [[Qnryll,, = op(1) for I =1,2,3,4. Let cxp, be an arbitrary Kp; x 1 nonrandom

vector with ||cxp, || = 1. Note 4}, = yir — LTt — 3/271'1727’% — jxlliflt. By the triangle inequality,
, N1
’cll(l)lQNT’chpl‘ = INT2 Z Z Z C/I(pl DNKXitX;sCKm (U3t — ujuy)
i=1 t=1 s=1
, N7
: ' 78 2 2 2 e D KK serp i (87, — i)
i=1 t=1 s=1
, NroT
T NT?2 Z Z Z c/Km Dy XiXiocrp, (U5 — ) tis
i=1 t=1 s=1
1 L1 1
< N Z (T Z CKplDNKXitﬁ';t> (T Z (455 — uis) X;sCK;m)
i=1 t=1 s=1
1 N 1 T 1 T
+lx T Z CKp, Dy Xit (uzt u;kt) T Z u:sX;scKpl
N < T T
1=1 t=1 s=1
= A1+ A

1/2

A 2
Note that A1 < (% S || S DvaKaiy| (% S ||# S8 G - ) X
Op(1)op(1) = op(1) by Lemmas A.3(ii) and A.11(i), where

T T T
1 N 1 IR N
S (o) £ 3o+ om0 ()
s=1 s=1 s=1

=O0p(N 71/2)+0P( drT~'?) + Op(VTn Ny + Cy) = op(1).

<

H |

Similarly, we can show that A1z = op(1). It follows that [|Qn7.1|,, = op(1).

= op(1). By Theorem 3.3,
sp

it directly implies that P (Nk = Nk> — 1. Then it follows that |Qn72||,, = or(1).

To prove that HQNTQHSP = op(1), we need to show HﬁNK — Dyg
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To prove that [[Qn73(,, = op(1), we observe that

N T
1 % 3 * *
‘C,KPIQNT’?’CK’”‘ 'NT2 Z Z Z Chp DN K (Xiths - XitX;s) CKpy Uit Uis
i=1 t=1 s=1
N T
1 1 o L)\ (1 . /o
< N Z ( Z C,Kpl DNKXituit) (T Z Ujs (X;s - X;S) CKp1>
=1 t=1 s=1

T T
N " 1 .
P D (= ) ) (3K )| =+
t=1 s=1

2 1/2 1 N 1 T % / 2 1/2
) <N Zi:l HT Zs 1 U (X - Xis) ’ ) and
2

Note that Ag’l S (% Zi\;l H% Zle DNKXZ'{LL;;

1 N 1 T < *
~ D1 H T > im1 DN Xiguj,

A~

g Op(1). It remains to show + Zfil H% STt (Kis — X!
Xy, — Xy,

op(1) by using that %Zzzl ul <XZS - Xis)/ = %u;” : , where %u;”(f(kz — Xg,i) =

Xki— Xk

jeG aijMp x15— ZjeGO aijMFoafl 4l By

Tu*’[M x11{i € Gy} — Mpoxy,i1 {ieGY}]—
2

similar arguments to those in the proof of Lemma A.9, we can show that - ZZ 1 H T ZS 1 uls( is — Xis)

= op(1). Then Az; = op(1). Similarly, we can show that Ao = op(1 ) It follows that [Qn73|,,

Op(l).
By the proof of Theorem 3.5, we already show that By y7 — Bint = OP( ). It follows that

Brint — Braint = op(N~1). Since Qn7.4 ZAZ@'JL Bint(Bint — Bint) + SN 1 (BinT — BinT) Blnrps
we have ”QNTA”sp = Op(l). It follows that Qn7 — Qn7T = Op(l).

The proof that QET — Qf = op(1) is analogous and thus omitted. B

Proof of Lemma A.12. Let & = y; — :ELZBM To 1521 = Fl )\h + U — 11 lbll, Where u; =
+ FQO’)\gZ- — :@,ZJSQ@- with a typical element denoted as @}. Then Vi(rq, F{l) = NT Z¢ LeM i é;
and Vi(ry, FOH]) = =7 SN ,LMFOH é;. Noting that @}, behaves like a zero mean I (0) process, Bl,i

and 3271‘ are T~1- and T~1/2-consistent, respectively, when r; > rl, the proof follows from obvious
modifications to Lemmas C.2-C.4 in Bai (2004). B

Proof of Lemma A.13. Note that we determine the number of unobserved stationary factors based
on the resultant residuals

~f ~f Al A
N 0 £0
Fit = Yit — B1, 10t — Bo T2t — Aifie = Ay for + wit + vit,

7 7 A . . . .
where v;; = —(b’17i:€1,it + b'2,i3:‘27it + A fie — )\(1); fY,) signifies the parameter estimation error from early

stages. Given the preliminary consistency of Bl,i’ BQ’Z- and 5\,11 flt, and the fact that fgt is stationary,
the proof of the lemma follows from that of Lemma A.10 in Su and Ju (2018) and is omitted. W

Proof of Lemma A.14. Here we consider the case where the model contains both stationary and
nonstationary common factors as analyses of the other cases are similar to but simpler than this

case. Let F(K A) = (fl(K A), .. ,fT(K A)). Noting that é; (K) = y; — 21 l&gp(KA) %27152’1
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F(E, MK, A) = w =z [@l? = B ) — 24[Ba; — B3] + [FOA) — F(K, \)Ai(K, A)], we make

Gr(EN)
the following decomposition on &é(Ko,A) = %7 SN e (Ko) & (K) :
N ~ A
Zon = T Zu i < 3 (FOXY = F(Ko, )i, X)) (FON) — (Ko, Ao, )
r=

Z Z <&gﬁl{0)\) B Bg”) 71 AL ( E;p(Ko,/\) B Bg”)

k LieGy(Ko,N)

N
+ NL Z (52 i — B9 z)/'x/szQz (521 - gz)
N
* % Z (FO/\? = F(Ko, MAi(Ko, A >/ul NT Z Z (@2?:(}(0,/\) B ?l)/xllzuz
= k=14cG)(Ko,\)
Z S <a€“f’ _ 80 ~>/:L" (FOs = (Ko, M)Au(Eo, 1))
k Wt G (Ko,\) 1,8 1, 0, i\ 420,
k 07

N N
2 ! 2 A / R .
+ NT Z (52 i 5 z) x/Zzul + NT ; (ﬁm - Bg,i) 33/2@ (FO/\i — F(Ko, \)Ai(Ko, A))

It is easy to show that

N N
1 N 2 2 N 2 _
|R1inT| = WZ"F)‘i_FO)‘?“ < WZHFV\“_F{) ? %|| = Opr(Cy7),
i=1 i=1

9 N
A5 o
+ﬁ;"F2/\2z F5
1=

by using arguments as in the proofs of Lemmas A.5 and A.11. Similarly,

R <T
|R1 onT|  max

N
2 1
A CU; 0 —1mp—2 —1mp—1
aé:(Ko,,\) _Bk” NT?2 21 HxlllelH =TOp (N T ) =Op (N T ) :
1=
2
= Op (Tfl) .
By the Cauchy-Schwarz inequality, |Ri e¢nr| < 2{|R11n7] |R1,2NT|}1/2 = oP(C]fT). In addition, we
can show that Ry n7 = oP(CR,%) for I =4,5,7,8, and 9. It follows that &QG(KO,A) = ﬁ Zf\il uu; +
Op(Cy7)-
When K > Ko, we use 1{i € G(K,\)} = 1{i € G? }—i—l{z € Gr(K, M\G}—1{i € GO\GR(K,\)}

2
to obtain & UG(KA) SR D il (KN S |:yzt (K nTLit — 527,%2,1% — M(EN) (KN | =

by Theorem 3.5. Similarly, |Ry3n7| < max; % Hx27iH2 ﬁ i]il HBM(KO,/\) — 53,@-
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Ry inT (K) + Raont (K) — Rosnt (K) + Roant (K) , where

T
1
RoinT (K =NT Z Z Z [yzt - OécuPK/\ T1it — 52 Tt — Ni(K, ) fiu(K, /\)} ,
k=1icq0 t=1
1 T N N N 2
Roont (K = ~NT Z Z [yzt KoyFLit — P2t — Ai(KGN) fi(K, A)} ;
k=1 zeGk(K,)\)\GO t=1
1 T N ~ N 2
Ry syt (K =NT Z [yzt - a kATl ~ B2t — MK, N) fo(K, )\)} , and
k=1ieGO\Gy (K ) t=1
K N A A )
Roant (K NT Z Z [yzt - dcw Koy Tt~ B2t — Ni(K, N) fi(K, /\)}

k=Ko+1ieGy (K \) t=1

Following the proof of Lemma A.11 in Su and Ju (2018), we can show that, after some relabeling the
indices for the group-specific parameters,

agﬁf(K’A) — o =0p(N7V2T Y for k=1, ..., Ko,
P (EkNT,i) =o(1) and Y P(Finry) =o(1) for k=1,... K.
e ieGY

Then YN P (2 € Gi(K,\) for k=0, Ko +1, ,K) = 0(1), which ensures that Ry ;yr (K) = op((NT)™1)

for all I = 2,3,4. Given the consistency of &g”p (KN) for K = 1,..., Koy, we can establish the consis-
k s

tency of 5\@( K, \) and ft(K, A) as in the case where K = K. With these results, we can show that
Ryint (K) = ﬁ Zi\; L uui+0 p(C&%). The probability order for the remainder term in Ry ;7 (K)
can be improved in some cases: (1) When there are no unobserved common factor, no stationary re-
gressors and endogeneity in 1, we can show that Roin7 (K) = ﬁ Zf\il ubu; + Op((NT)™1)
by using the fact that aGk(KA) —af = Op(N7Y2T-1 for k = 1,.., Ky when K > Kp; (2)
when there is stationary regressor x; but no unobserved factor in the model, we can show that
Roant (K) = 37 Zf\; L ubu; + Op(T71); (3) when there exists common nonstationary factor but no
common stationary factor or stationary regressor xs;, RoinT (K) = NT Zl L w4+ Op(N~! +

T72) = 3 S Wi + Op(N™1). So the results in Lemma A.14 follows. M

C Discussion on the Identification of 5(1),1

In this appendix, we formally discuss the 1dentiﬁcation issue regarding the key parameter vector
of interest, namely, . Recall that 89 = (89 115 e (1)7 ~)- The major difficulty lies in the fact that

the dimensions of VeC(,BO) and vec(FY) all increase to infinity as (N,T) — oo so that the usual
identification arguments (uniform convergence along with identification uniqueness) do not apply. In
fact, for the factor matrix FY, we are not able to identify the matrix itself but instead PFlo, which
indicates the space spanned by the columns of FY. Despite these difficulties, we argue here that the
identification of the ‘},i’s is buried in the proof of Theorem 3.1 in the paper.

To proceed, recall that b = (by,bz), by = (by1,....,0i,n)" and b1 = B;; — 5?,1‘ for I = 1,2 and
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i=1,...,N. As in Bai (2009, p.1264) and Su and Ju (2018, Proof of Theorem 3.1), it is easy to argue
that the objective function cannot achieve its minimum for very large value of +|b||? so that there
is no loss of generality to restrict our attention on the case where %|/b||> < M and M is a large
positive constant that does not grow with N or T. Recall that Q}\\}g(ﬁ,a,Fl) = Qn7(B1,82,F1)

"‘% Zfil szKzl Hﬁu - O‘kH and Snt(Bq, F1) = % Zij\il S’i,NT(BI,iv F1), where
N
1 /
QNT(B1,B2,F1) = NT2 Z (yi — 21,81 — ©2,i82;) Mp (yi — 2161 — 22,82,;) and
=1
1
Sint(Brin F1) = g (@1ibri = FYAY) Mp, (21,3013 — FPAY,).

Apparently, if we have homogenous panels as in Bai (2009), then we can write b;; = Li— /B?,i =
(and similarly 3;; = 8, and ﬁgi = () to obtain

N N
1 FOM FO AOIAO 1
Sur(Bh ) =t Yokt 1o { SRS v St )
=1 =1
= b1 Aby + 1By —2b1C', (C.1)

AOIAO
where A = ﬁ Zf\il x/LiMleLi? B = (—*®lIr), C = ﬁ Zfil A?i@)MFla}l,i, and n :Vec(MFIFP) /T.

Note that we suppress the dependence of A, C' and 1 on F;. Completing the squares, we have

Snr(By, F1) = bllD (F1) by +6' B0, (C.2)
where D (Fy) = A — C'B71C, and § =7 — B~1Cb;. Then, under the key identification condition

inf i, (D (F1)) > ¢ for some constant ¢ > 0 (C.3)
Fer

where Fy = {F} € RT*": %F{Fl = I, }, we can follow Bai (2009) to first establish the consistency

of the estimator of the finite dimensional parameter ﬁlo and then establish the consistency of the
estimator of Ppo. As Bai (2009) remarks, the identification condition in (C.3) rules out common

regressors and time-invariant regressors. He discusses how to relax the condition in (C.3) to

Pnin (D (Flo)) > ¢ for some constant ¢ > 0, (C.4)

such that both time-invariant and common regressors can be allowed in the regression provided
that they do not form collinearity with the common factors or factor loadings. The discussion
essentially hinges on the analysis of the expression of Syr(8;, F1) in (C.2). As one can imagine,
similar relaxations would hold for our nonstationary panels if the slope coefficients were indeed
homogeneous.

Below we first outline the major challenges in the formal establishment of the identification
conditions and then explain how we establish the consistency result in Theorem 3.1 with the implicit
use of the identification conditions. Note that even in the stationary homogenous panel, Bai (2009)
only considers the latter directly.

By the proof of Theorem 3.1, we have

Qnr (81, B, 1) — Qnr(BY, BY, FY) = Snr(By, F1) + Op((T/dr) ),
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Where Op((T/dr)~/?) holds uniformly in (b,Fy) € {b € RWFP2)xN By ¢ RT>*m . Lppy = I,

and [/b||? < M}. Since we restrict our attention to the case where {7 ,} form into some finite K
groups, they are be regarded as umformly bounded. As a result, we can restrict the parameter space

for 3, ; and oy, to be bounded so that % LSV T, 181, — ak|| = O (1) uniformly in (8; ). Then
QN7 (B, By e F1) = Qi (8, 5, 0, FY)

N N K
1 A
= W Z[QNT,i(ﬁl,ia B F1) — Qnri(BY 4, 891 FY)] + N Z H 181 — axll
=1

=1 k=1
= Snr(By, F1) + Op((T/dr)™/?)

where we also apply the fact that A = o (T -1/ 2) under Assumption 3.3(iv) to obtain the last equality.

Apparently, S; NT(B1;, B2, F1) > 0 and it attains its unique minimum value 0 at (3 ;, F1) =
( (f,i,Ff). Similarly, Sy7(8, F1) attains its unique minimum value 0 at (81, Fy) = (89, FY). We
show that (39, F?) is the unique point at which Sy (3, F1) achieves its minimum, where uniqueness
with respect to F} is up to a rotation as in the stationary case. This is because M FOH, = M FO and

Snr(8Y, FYHy) = 0 for any nonsingular matrix H;. For ease of discussion, we assume that F € F;
(otherwise, we can always focus on its rotational version such that FYH; € Fi). Let

(B1, F{') = argmin Sy (B4, F1).
B1,F1€F

We need to show that (33, F}) = (89, FV). We consider three cases: (1) Fj = FY, (2) 8% = 37, and
(3) Fy # F{ and B} # B

In Case (1), we argue that if F}' = F?, then we must have 3; = 8. In the case of Fj = F{, we
have

N
. 1 1 . "
0 = Snr(Bi, FY) = SNT(:317F1 = =N Z T2 (z1, 14 F{))‘gi),MFP(xl,ibl,i - Flo/\(l)i)
1Y 1 :
= W > oy <ﬁ$,1,7;MF10$1,¢> b1 ;-
i=1

Consequently, we must have b’{’ i (%x’“M F{)xl,i> bi, = 0 for each i. The identification condition in
Assumption 3.2(iv) is more sufficient to ensure %:L"“M FoL1, to be uniformly asymptotically positive
definite. As a result, we must have b7 ; = 87, — B(l)’i = 0 for all 5. That is, 8% = B9.

In Case (2), we argue that if 8% = B89, then we must have I} = F{. In the case of 8% = 39, we
have

. 1 1
0= Snr(B1, FY) = Snr(B1, FY) = NZTQA iV Mpp FYAY, = tr (EFP’MF;FPNAS”AS’).

Assumption 3.2(i) ensures that %A?’ AY is asymptotically positive definite. It follows that F’ M Pl 0 =
0 or equivalently Mpx FY = 0. Then we must have F} = FY.
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Now, we consider Case (3). Suppose that F; # FY and B} # 8Y. Let x; = x1,ib] ; — FO)Y,. Then

N
1 1
O—SNT(,Bl,Fl = NZEX;MF{‘XZ (C5)

Observe that Mp:x; denotes the residual vector in the least squares projection of x; onto FY :
Xi = F1*7Tli + v; Vi

where my; = (FYFF) " Fr'x; = F¥'y,/T? and ; = Mgz x;- (C.5) implies that ©; = 0 Vi so that
z1,4b7; FO)\ = F{'m; Vi, or equivalently

* 0 * )\(1)7, .
:Z:]-;ibl,i == (Fl 7F1) Vi.

15

But by the identification condition in Assumption 3.2(iv), the above system of equations can hold
only if b} ; = 0 and Fymy; = —FY)\%, Vi (implying that F} = F and 71; = —\Y,). Thus a contradiction
arises and we cannot have Fy # F{ and 8} # 89.

D The PPC-based Estimation Procedure

In this appendix, we provide more details on the practical implementation of the PPC-based estima-
tion procedure. It consists of five steps.

1. Obtain the initial estimates. By setting 71 = rpax, We obtain the initial estimates Bl,i’ BZ,i
and F} from the following set of nonlinear equations:

- N -1
Bi = (511752 z) = (lﬂ;M” .r,) l”;Mﬁlyz‘»

F1‘~/1,NT = T2 Z 5'3151) Fl,

where My = Ip — %FlF{, %F{Fl = I,,, and V} nr is a diagonal matrix.

2. Determine the number of common factors. We separately determine the number of
nonstationary factors and stationary factors.

(a) Determine the number of nonstationary common factors by choosing 71 to minimize the
following information criterion (IC)

ICy(r1) = log Vi (r1, F*) 4 r191(N, T),

where V1<7“17F )* NT Zz 121: l(yzt /311931 zt—52z$2zt >‘lz flt) g1(N,T) = args(N,T),

and ar = 410glogT'

(b) Determine the number of stationary common factors by choosing 9 to minimize the fol-
lowing IC R
ICQ(T) = IOg ‘/Q(T% FgQ) =+ r292(N7 T)7
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R arol A R N N IR
where Va(r2, Fz ) = T va 1 Z,ir 1(7’zt >‘221 f;t) Tit = Yit — 51,1'371,# - /32,i952,z't — Mifue
and g2(N,T) = J\]va g (C%p) or g2(N,T) = N+T log (N+T) as in Bai and Ng (2002).

3. Determining the number of groups. Let A = {/\ = ch*3/4, cj = coy’ for j =0,..., J} for
some ¢y > 0 and v > 1. Given any K € {1,2,..., Kpax} and A € A, compute ICg(K(A),A),
where K (\) = argmin; < g<x,,.. IC3 (K, \) . Choose A € A such that IC3(K (), A) is minimized.
Estimate the number of group by K = minyep K (M) as recommended by Su, Shi, and Phillips
(2016a). We find in simulations ¢y = 0.05, v = 2, and J = 3 work fairly well for all DGPs

under our investigation. If K= 1, stop here and estimate a homogeneous nonstationary panel
as usual. Otherwise, move to the next step.

4. PPC-based estimation.

(a)

(d)

Given A = A(N,T) = and K > 1, #1 and 79, solve the following PPC criterion function to
obtain estimates of (3, ) :

A N K
QN (B e ) = Qur (B, o) + 5 3 [ 180, e

where QN7 (81, B2:F1) = 5z oy (i — 21,814 — $2,i52,z)/ Mp, (yi — 1,81, — ©2,iB2;) ,
and A = A\(IV,T) is a tuning parameter.

Given C-Lasso estimates (dy, Bl, 32), solve the following eigen-decomposition equation to
obtain estimates of I}

N
. 1 . . . . .
Fi\VinT = NTZ E (yi — xl,z‘ﬁu - xQ,i/BZi)(yi - wl,z‘ﬁu - x2,zﬂ2,z’), F,
i=1

where %F_{Fl = I, and V1 y7 is a diagonal matrix.
Given the estimates ,Bu,dk, and Fp, we obtain the cointegration residuals 7;; = y; —

B,LZ-J:Lﬁ - S‘/Iz‘flt' The LS estimator of (BQ’Z-,FQ) is the solution to the following set of
nonlinear equations:

where %FéFQ = I, and Vo y7 is a diagonal matrix.

Iterate above steps until convergence and obtain jointly (BM, /8271‘, g, Fl, FQ) Obtain the

C-Lasso estimates {&y} for the group-specific parameters and {@k, k=1, ,f(} for the
estimated group membership.

5. Post-Lasso estimator with bias correction.

(a)

Given the estimated groups, {G’k, k=1, ,f( }, we obtain the continuous updated esti-
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mators dgfp , Fy and B by iteratively solving the following equations:
k

-1

~fm ’
Y T > ah Mg > @1iMp i = TVNy ( Nt BkNT2> ;
1€Gy ZeGk

K
5 1 ) ) . ) )
PVinT = | 72 o> - $1,i04éT — 22,iB2,)(%i — ﬂfl,ioég: —x2,05,)" | F1,

k 116Gk
[ K
. 1 R R . o R . . R
Vo Nt = ~NT Z Z (9 — iB1.iOéféT —x2,iB2,; — F1 A1) (i — l'l,iag: — 12,9, — F1A11)'| Fh,
L k=1icG,

where BNTZ = (BiNTb B}(NTZ)/ forl =1, 2, BkNTl = ﬁ Zieék(Z?*l szl }ifts)Azli,
BkNT2 \/_T ZZEGk (Zt 1 Z =1 %ts)A24 7,)\217 BkNT 1= \/_T ZzEGk (Zt 1 Z -1 %ts)Ag—l A

%ts =1 {t = 3} His, s = flt(FlFl) fls = fltfls/T s /\21 = )\21 - N Z] 1)\2jalj7 and
aij = 5\111( LAY fh)_quj Note that Fy, V4 NT, B, Vo N7, and {5\11‘,)\2@'} are also updated

continuously in the procedure to obtain ang

k

Estimate Qnr and QTVT consistently by

D N T T N
NK / A* ~ sk » H/
E E E XZths Ujplis — E BiNTBiNT?
i=1 t=1 s=1 i=1
D N T T
NK +1
NT NT2 E E ,E :thXzs Ujy E :BzNTBzNT?
i=1 t=1 s=1

Where X, = (A’“t,..., Tit) s szt is the tth row of X;H, sz = Mp z1,1{i € G} —
N ZJGG azJM T1,5, DNK dlag( " N )®[p7 BzNT = (BMNTa ---aBK,z‘NT) 7Bk,1NT =

Brint1 + Brinto, Brinta = \/A—T Zt—l S 3as)A011{i € G1}, Brinta =

1

N, T

(Zt 125 1%tS)A24 l/\211{l € sz} Uy = yn_o‘i l’zt—ﬁz iL2, Zt_)‘lzflt fori € Gka zNT =
+/ +/ + _ Pt + _

(B1 z'NT?“"BKiNT)7 Bk ANT — Bk: ANT,1 + Bk,zNT,2v Bk,iNT,l - \/N_kT(thl 23:1 %ts)

Al Al A . ~
Ay Z1{2 c Gk} and u*+ = yzt — 04£ w10t — Bo T2t — M fie for i € Gy.

E Some Additional Simulation Results

In this appendix, we report some additional simulation results for DGPs 1-6. In addition, we follow
the editor’s suggestion and consider two additional DGPs, namely DGPs 7-8, to closely mimic the
empirical application.

E.1 Additional simulation results for DGPs 1-6

First, we consider the performance of our classification and estimation procedure for DGPs 1-6 when
N =200 and T' = 40. Here N and T differ to a larger extent than their values in Tables 3-5 in the
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paper. The results are reported in Table A.1. Comparing the results in Table A.1 with those in
Tables 3-5 suggests that our post-Lasso estimates (bias corrected or fully modified) and Cup-Lasso
estimates perform qualitatively similarly to those in Tables 3-5.

Now we consider two DGPs that mimic the data in the empirical applications where the sample
sizes, (N,T) = (24, 34), are relatively small. We now consider (N,T) = c¢-(24,34) for ¢ =1, 2, 3. By
increasing the value of ¢ from 1 to 3, we should be able to observe the improved performance of our
estimators. We generate the data as follows:

Yit = BriTrat + Boi®aie + B33, + 1N fie + it
Tit = Tit—1 + Eit ) (E.1)
fit = fie—1+ v

where i = 1,...,N, t = 1,...,T, the dimension of fi; is r1 = 1, and =y = (214, %2,)’ in DGP 7 and
Tit = ($17it,x27it,$37it)/ in DGP 8 below.

DGP 7 (Mimicking Model (5.1) in Table 7) The observations are drawn from three groups with
Ny :No:N3=7:7:10 such that N = Z?:l Nj =24c and T'= 34c for ¢ =1,2,3. Let 83, =0 and
c1 = 0.51in (E.1). The factor loadings Ay; are i.i.d. Ay; ~ N(0.1,1) and py = 0.1. Let 3; = (81, B2,)"
The long-run slope coefficients 3, exhibit the group structure in (2.3) for K = 3 and the true values
for the group-specific parameters are

0o o 0280 \ [0.101) [0.058
(041, Qg a3) = ’ )
—0.147 0.120 0.086

which are as estimated for Model (5.1) from the real empirical data in our applications. The

errors wi = (ui, &y, Afi;) are generated from the linear process wy = Z;’;O ¢;Vit—j, where
0.25 Q2 3

¢y =LAV L) =573° Q= Qu Qo Qo3 |, vie = (v’ ol Py vl ~iid. N(0,I3),
0 Oix2 Q33

and v}' ~ iid. N(0,1). Let Qo = Q5 = Q3 = (0.2,0.2), Qi3 = 0.2, Qoo = (012 03), and
Q33 = 1.

DGP 8 (Mimicking Model (5.2) in Table 7) The observations are drawn from three groups with
Ni: Ny : N3 =7:7:10 such that N = Z?Zle =24cand T = 34c for c=1,2,3. Let ¢; = 0.5 in
(E.1). The factor loadings Ay; are i.i.d. Ay; ~ N(0.1,1). Let 8; = (81, 82,4, 3,)". The long-run slope
coefficients [3; exhibit the group structure in (2.3) for K = 3 and the true values for the group-specific
parameters are

0.464 0.055 —0.104
(af,a9,a8) = | | —0.413 [, ] 0.022 ], 0.219
1.405 0.550 0.567

which are as estimated for Model (5.2) from the real empirical data in our applications. The
errors wir = (uit,ely, Af];) are generated from the linear process wi = Z;io ®;jvit—j, where
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0.25 Q9 3
d)lj = L(])Q1/2’ L(]) = j_3'5a Q= Q21 922 QQ3 y Vit = (U%‘E/’U{l/al}l{z/)/a UZ‘/& ~ 1Lid. N(0a14)7
0 Oi1x3 Qs

1 02 0.2
and vf' ~iid. N(0,1). Let Qip = Q) = Oy = (0.2,02,02), %5 =02, 0 = [02 1 02|,
02 02 1
and Q33 =1.

Table A.2 reports the simulation results for DGPs 7-8. We summarize the main findings from
Table A.2. First, the classification result is not as good as those in Tables 1-5 when (N, T) = (24, 34).
This is as expected as on average we have only 8 individuals in each group and the large sample theory
cannot work very well in such as case. But as both N and T increase, we observe that the classification
results improve quickly. Second, the Cup-Lasso estimator generally performs better than the two
post-Lasso estimators and thus it is recommended for empirical applications. In particular, as both
N and T increases, the performance of all estimators improve and the coverage of the Cup-Lasso
estimator gets closer to the oracle one.
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Table A.1 Classification and point estimation of oy in DGPs 1-6

C)\ 0.1 0.2

N T % Correct RMSE  Bias % Coverage % Correct RMSE  Bias % Coverage

classification classification

DGP 1

200 40 C-Lasso 99.99 0.0039 0.0001 93.20 99.98 0.0038 0.0001 94.92
post-Lasso®® 99.99 0.0039 0.0000 94.34 99.98 0.0039 0.0000 94.34
post-Lasso/™ 99.99 0.0039 0.0000 94.34 99.98 0.0039 0.0000 94.34
Cup-Lasso 99.99 0.0039 0.0000 94.34 99.98 0.0039 0.0000 94.34
Oracle - 0.0039 0.0000 95.10 - 0.0039 0.0000 95.10

DGP 2

200 40 C-Lasso 99.98 0.0065 0.0052 62.66 99.97 0.0060 0.0048 67.82
post—LassobC 99.98 0.0038 0.0003 93.32 99.97 0.0038 0.0003 93.32
post-Lasso/™ 99.98 0.0038 0.0003 94.34 99.97 0.0037 0.0003 94.16
Cup-Lasso 99.98 0.0038 0.0003 94.34 99.97 0.0037 0.0003 94.16
Oracle - 0.0037 0.0003 94.26 - 0.0037 0.0003 94.26

DGP 3

200 40 C-Lasso 98.73 0.0251 0.0144 40.40 98.58 0.0272 0.0133 42.60
post-Lasso®® 98.73 0.0234 0.0023 87.84 98.58 0.0233 0.0024 87.80
post-Lasso/™ 98.73 0.0234 0.0025 87.22 98.58 0.0234 0.0026 87.36
Cup-Lasso 100.00 0.0057 0.0023 88.88 99.98 0.0057 0.0024 88.64
Oracle - 0.0057 0.0023 88.88 - 0.0057 0.0023 88.88

DGP 4

200 40 C-Lasso 98.82 0.0230 0.0124 51.02 98.67 0.0245 0.0114 52.76
post-Lasso®® 98.82 0.0193 0.0019 89.88 98.67 0.0190 0.0018 90.16
post-Lasso/™ 98.82 0.0193 0.0022 89.96 98.67 0.0190 0.0021 89.92
Cup-Lasso 99.97 0.0072 0.0020 91.06 99.92 0.0071 0.0020 91.02
Oracle - 0.0071  0.0020 91.14 - 0.0071  0.0020 91.14

DGP 5

200 40 C-Lasso 98.69 0.0239 0.0143 40.52 98.59 0.0256 0.0135 42.30
post-Lasso®® 98.69 0.0222 0.0025 88.72 98.59 0.0215 0.0024 88.86
post—Lassofm 98.69 0.0223 0.0027 88.44 98.59 0.0216 0.0026 88.46
Cup-Lasso 100.00 0.0057 0.0026 89.24 99.98 0.0057 0.0026 89.16
Oracle - 0.0057 0.0026 90.84 - 0.0057 0.0026 90.84

DGP 6

200 40 C-Lasso 99.93 0.0212 0.0191 26.56 99.92 0.0206 0.0183 28.88
post-Lasso®® 99.93 0.0140 -0.0102 70.66 99.92 0.0140 -0.0103 70.50
post-Lasso/™ 99.93 0.0080 0.0009 93.10 99.92 0.0079 0.0009 93.02
Cup-Lasso 100.00 0.0075 0.0008 93.16 99.99 0.0075 0.0008 93.24
Oracle - 0.0075 0.0008 92.62 - 0.0075 0.0008 92.62
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Table A.2 Classification and point estimation of oy in DGPs 7-8

C)\ 0.1 0.2

N T % Correct RMSE Bias % Coverage % Correct RMSE Bias % Coverage

classification classification

DGP 7

24 34 C-Lasso 77.78 0.0951 0.0156 79.17 76.52 0.0929 0.0145 76.67
post-Lasso®® 77.78 0.0350 -0.0049 79.57 76.52 0.0427 -0.0026 78.69
post-Lasso/™ 77.78 0.0353 -0.0056 80.74 76.52 0.0430 -0.0032 79.31
Cup-Lasso 82.78 0.0248 -0.0001 78.23 81.81 0.0254 0.0006 77.13
Oracle - 0.0151 0.0009 88.52 - 0.0151 0.0009 88.52

48 68 C-Lasso 86.97 0.0939 0.0072 72.18 87.16 0.0755 0.0069 71.33
post-Lasso®® 86.97 0.0192 -0.0043 82.72 87.16 0.0201 -0.0033 83.15
post-Lasso/™ 86.97 0.0192 -0.0042 83.45 87.16 0.0202 -0.0032 83.72
Cup-Lasso 92.94 0.0062 -0.0011 87.37 93.55 0.0059 -0.0007 88.04
Oracle - 0.0048 0.0005 92.14 - 0.0048 0.0005 92.14

72 102 C-Lasso 91.57 0.0714 0.0009 67.77 92.02 0.0521 0.0017 67.36
post—LassobC 91.57 0.0147 -0.0034 85.72 92.02 0.0144 -0.0032 86.05
post-Lasso/™ 91.57 0.0147 -0.0033 86.62 92.02 0.0144 -0.0030 86.85
Cup-Lasso 96.67 0.0030 -0.0005 91.06 97.19 0.0028 -0.0003 91.78
Oracle - 0.0025 0.0003 92.42 - 0.0025 0.0003 92.42

DGP 8

24 34 C-Lasso 82.63 0.0903 0.0136 78.22 79.82 0.0912 0.0164 76.65
post-Lasso®® 82.63 0.0657 -0.0177 83.58 79.82 0.0694 -0.0137 83.85
post-Lasso/™ 82.63 0.0672 -0.0176 83.25 79.82 0.0713 -0.0131 82.25
Cup-Lasso 96.39 0.0275 0.0036 83.27 92.13 0.0355 0.0047 80.90
Oracle - 0.0241 0.0017 82.72 - 0.0241 0.0017 82.72

48 68 C-Lasso 89.24 0.0553 -0.0013 65.03 86.77 0.0567 0.0027 66.22
post-Lasso®® 89.24 0.0531 -0.0156 85.82 86.77 0.0515 -0.0135 83.98
post-Lasso/™ 89.24 0.0532 -0.0155 86.52 86.77 0.0515 -0.0134 84.55
Cup-Lasso 99.56 0.0109 0.0001 90.23 98.12 0.0099 0.0003 89.37
Oracle - 0.0056 0.0002 90.47 - 0.0056 0.0002 90.47

72 102 C-Lasso 91.95 0.0379 0.0000 58.53 90.77 0.0393 0.0017 58.80
post—LassobC 91.95 0.0424 -0.0119 88.12 90.77 0.0408 -0.0112 87.90
post-Lasso/™ 91.95 0.0421 -0.0116 87.72 90.77 0.0407 -0.0109 88.15
Cup-Lasso 99.97 0.0027 0.0003 92.33 99.71 0.0028 0.0003 92.25
Oracle - 0.0027 0.0003 92.33 - 0.0027 0.0003 92.33
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