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Estimating Finite-Horizon Life-Cycle Models: A

Quasi-Bayesian Approach∗

Xiaobin Liu
Singapore Management University

November 16, 2017

Abstract

This paper proposes a quasi-Bayesian approach for structural parameters in finite-horizon
life-cycle models. This approach circumvents the numerical evaluation of the gradient of the
objective function and alleviates the local optimum problem. The asymptotic normality of
the estimators with and without approximation errors is derived. The proposed estima-
tors reach the semiparametric efficiency bound in the general methods of moment (GMM)
framework. Both the estimators and the corresponding asymptotic covariance are readily
computable. The estimation procedure is easy to parallel so that the graphic processing
unit (GPU) can be used to enhance the computational speed. The estimation procedure is
illustrated using a variant of the model in Gourinchas and Parker (2002).

JEL classification: C11, C12, D91.
Keywords: Finite-horizon life-cycle model, Structural estimation, Quasi-Bayesian estimator,
Method of simulated moment, Numerical solution, GPU computation.

1 Introduction

Life-cycle models (also known as dynamic structural models) have been used extensively in
macroeconomics, labor economics, industrial organizations, demographics, household finance,
and many other fields; see Pakes (1994) and Rust (1994) for excellent reviews. The life-cycle
model with finite-horizon is a subclass that has been found to have a great number of applica-
tions. For a sample of references, see Gourinchas and Parker (2002), Jørgensen (2017), Cagetti
(2003), Browning and Ejrnæs (2009), Kaplan and Violante (2014), Li et al. (2016), Fagereng,
Gottlieb and Guiso (2017), Koijen, Nijman and Irker (2009), and Fischer and Stamos (2013).

A popular technique used to estimate finite-horizon life-cycle models in the literature is
based on the log-linearized approximations to Euler equations. However, it has been argued
that this approach can result in estimation bias; see Ludvigson and Paxson (2001), Carroll
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(2001) and Jøgensen (2016). To deal with this bias, empirical researchers have increasingly
adopted the method of simulated moments (MSM) introduced by Duffie and Singleton (1993).
Gourinchas and Parker (2002), hereafter GP, were the first to using MSM to estimate the
preference parameters in a life-cycle model. Li et al. (2016) studied optimal life-cycle housing
and nonhousing consumption using MSM. Fagereng, Gottlieb and Guiso (2017) applied MSM to
estimate structural parameters and studied portfolio choice over the life-cycle. In these papers,
the estimation procedure was divided into two stages. During the first stage, GMM or calibration
was used to estimate parameters of exogenous processes such as the income process. During the
second stage the structural parameters were estimated using MSM.

However, since MSM uses iterative optimization algorithms, there are four challenges to its
use for estimating finite-horizon life-cycle models. First, the model has to be solved numerically
at each iteration. Solving finite-horizon life-cycle models is time consuming and inconvenient
because of the nonstationary policy functions. Second, one has to use numerical differentiation to
evaluate the gradient of the objective function for parameter updating. Numerical differentiation
requires more restrictive assumptions on the objective function and the computation is also
cumbersome. Third, due to the complexity of the models, there may exist local optimums.
Fourth, typically two-step estimation is necessary, which complicates the asymptotic behavior
of the estimator.

The present paper develops a quasi-Bayesian method for estimating structural parameters
in finite-horizon life-cycle models during the second stage. Following Chernozhukov and Hong
(2003), hereafter CH, we build the quasi-posterior density function based on first-stage estimates
and the GMM objective function. The new estimator is obtained by minimizing the Bayesian
risk function consisting of the quasi-posterior density function and a net loss function. By doing
this, the optimization problem is converted into a sampling one, which avoids the numerical
evaluation for the gradient of the objective function and alleviates the local optimum problem;
see CH for examples where the local optimum problem was carefully explained.

The asymptotic behavior of the proposed estimator is studied in two cases. First, when the
policy functions are analytically available, the asymptotic normality of this estimator is derived.
There is a bias in the asymptotic mean that depends on the net loss function. We also show
that the estimator reaches the efficiency bound in the framework of GMM. When the net loss
function is symmetric, the bias term becomes zero. In particular, if the net loss function is
quadratic, the estimator becomes the posterior mean and the associated asymptotic covariance
can be approximated by the posterior covariance. This is advantageous in computation since
the posterior mean and posterior covariance can be simultaneously computed from the quasi-
posterior samples.

Second, when the policy functions are not analytically available, we propose to approximate
them over a set of grid points. We show that the magnitude of approximation errors depends both
on the number of grid points (j) and the number of observations (N). While the approximation
errors associated with a numerical method accumulate as the number of observations grows,
it is found that they decrease as the number of grid points (j) increases. Interestingly, the
results obtained for the case with analytical solutions still hold true in this case when the
approximation errors decrease at a speed faster than the number of observations. This result
shows that, even in the presence of approximation errors, the estimation approach is attractive
from both the theoretical and computational viewpoints. In practice, most finite-horizon life-
cycle models require numerical solutions, making the proposed estimation method useful in
practical applications.
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In terms of the computational effort, the new estimate requires extensive sampling. It
should be noted that Markov Chain Monte Carlo (MCMC) does not work well here. This
is because, to use MCMC, such as the Gibbs-sampler and Metropolis-Hasting sampler, one
needs to update samples sequentially many times and at each updating the objective function
has to be numerically evaluated. Instead of using MCMC, the importance sampling strategy
is employed. The algorithm used by Creel and Kristensen (2016) is extended to construct a
proposal distribution for important sampling. There are two computational advantages in the
proposed algorithm. First, it is easy to parallelize and hence GPU can be used. Second, it is
made to be adaptive to the dataset.

This paper makes four contributions to the literature. First, a quasi-Bayesian estimation
approach is proposed for finite-horizon life-cycle models. The quasi-Bayesian estimator has de-
sirable properties both in terms of asymptotic behavior and computation. Second, the method
extends the seminal work of CH to life-cycle models and is related to a growing strand of liter-
ature on approximate Bayesian computation. Third, the econometric problem in the presence
of approximation errors caused by numerical methods is carefully studied. The results comple-
ment Fernández-Villaverde, Rubio-Ramı́rez and Santos (2006), hereafter FRS, and Ackerberg,
Geweke and Hahn (2009). The present paper considers the problem in the GMM framework
while FRS and Ackerberg, Geweke and Hahn (2009) consider the problem in the likelihood set-
ting. If an empirical researcher would like to be agnostic about the error distribution, a GMM
framework will be more attractive than the full likelihood approach. Finally, the proposed adap-
tive algorithm makes use of GPU to enhance computational efficiency and is applicable to other
complicated models with moment conditions.

Throughout the paper, a version of the model in GP is used for illustration, but other types
of life-cycle models can also be considered. As long as the assumptions listed in the paper are
satisfied, the theoretical results can be applied and the estimation algorithm remains useful.

The rest of the paper proceeds as follows. Section 2 introduces the illustrative model in
detail. Section 3 presents the first-stage estimation for parameters of the exogenous process
and the latent dynamic state variable filtering. Section 4 examines the second-stage estimation,
including the definition of the estimator, the asymptotic behavior and the related algorithm to
compute the estimator. Section 5 reports results from Monte Carlo studies, including models
with and without dynamic latent state. Section 6 concludes. Appendices contain the details of
proofs, numerical method used and other related computations.

2 An Illustrative Model

Let us first define a discrete-time life-cycle model for households. Households work until an
exogenously given retirement age, Tr. At each working age, the utility function is the constant
relative risk aversion (CRRA) utility function, i.e.,

u (C; ρ0) =

{
C1−ρ0
1−ρ0 ρ0 6= 1

logC ρ0 = 1
,

where C is the consumption level and ρ0 is the risk aversion. The number of household is Nobs.
By forward looking from the initial working age ti, household i (∈ {1, ..., Nobs}) chooses the level
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of consumption Ci,t to solve the optimization problem

max
Ci,τ

Eti

[
Tr∑
τ=ti

βτ−ti0 v (zi,τ ;η0)u (Ci,τ ; ρ0) + βTr+1−t
0 ṼTr+1 (Mi,Tr+1, zi,Tr+1;η0, ρ0, κ0)

]
(1)

s.t. Mi,t+1 = R (Mi,t − Ci,t) + Yi,t+1, ti ≤ t ≤ Tr − 1, (2)

Mi,Tr+1 = R (Mi,Tr − Ci,Tr) , (3)

Ci,t ∈ (0,Mi,t] , (4)

Mi,ti given,

where the subscript τ indicates that the associated variable realizes at age τ and the subscript
i indicates that the variable belongs to household i, β0 the subject discount factor, Ci,τ the
consumption level, Mi,τ the liquid wealth, R the gross interest rate, zi,τ a vector of characteristics
and v (z;η0) a shifter in utility, which can be interpreted as a taste shifter in which the individual
characteristic information z plays a role. In many applications, v (z;η0) is a specific function
that summarizes the impact of the individual characteristics z.

The equations (2) and (3) are wealth accumulation equations before and after retirement.
As in GP, the income process, Yi,t+1, is assumed to follow the following stochastic process.

Income process: Income process is defined as{
Yi,t = Pi,tεi,t,

Pi,t = GtPi,t−1ςi,t,
ti ≤ t ≤ Tr, (5)

where Pi,t denotes the latent permanent component of Yi,t and Pi,Tr+1 = Pi,Tr since there is no
income at age Tr +1, εi,t the transitory component, Gt the real gross permanent income growth,
ςi,t the permanent income shock. Specifically,

εi,t =

{
µ0, with probability p0,

ξi,t, with probability 1− p0,
where log ξi,t

i.i.d.∼ N
(
0, σ2

ε0

)
,

log ςi,t
i.i.d.∼ N

(
0, σ2

ς0

)
,

where µ0 can be zero or some other small values, log ςi,t and log ξi,t independent across i and

t. The parameters for the income process are denoted as χinc0 =
(
µ0, p0, σ

2
ε0, σ

2
ς0, {Gt}

Tr
t=tmin

)′
,

where tmin = min1≤i≤Nobs {ti}.
Characteristics information vector: The characteristics vector at age t of household i,

zi,t, can be deterministic or stochastic. The parameters involved in zi,t are denoted as χcha0 .
According to Jøgensen (2017) and GP, researchers can examine the impact of different charac-
teristics such as the number of children or family size on the marginal utility.

Retirement: When household i retires at Tr, for the tractability of the problem (1), fol-
lowing GP, the retirement value function is assumed to be

ṼTr+1 (Mi,Tr+1, zi,Tr+1; η0, ρ0, κ0) = κ0v (zi,Tr+1;η0)
(Mi,Tr+1 +Hi,Tr+1)1−ρ0

1− ρ0
,

where κ0 is the motivation to retire, Mi,Tr+1 the liquid wealth at age Tr + 1, Hi,Tr+1 the illiquid
wealth after retirement and Hi,Tr+1 = hPi,Tr+1, i.e., Hi,Tr+1 is proportional to the permanent
component at Tr + 1. Since there is no income at Tr + 1, we let Pi,Tr+1 = Pi,Tr .
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The Bellman equation for model (1) is

Ṽt (Mi,t, Pi,t, zi,t;θ0,χ0) = max
Ci,t∈(0,Mi,t]

{v (zi,t;η0)u (Ci,t; ρ0)

+β0Et

[
Ṽt+1 (Mi,t+1, Pi,t+1, zi,t+1;θ0,χ0)

]}
(6)

s.t. Mi,t+1 = R (Mi,t − Ci,t) + Yi,t+1, ti ≤ t ≤ Tr − 1,

Mi,Tr+1 = R (Mi,Tr − Ci,Tr) ,
Ci,t ∈ (0,Mi,t] with Mi,ti given,

where χ0 =
((
χinc0

)′
,
(
χcha0

)′
, R
)′

, θ0 = (η′0, ρ0, β0, κ0, h)′ ∈ Θ ⊂ Rd. At age Tr + 1,

ṼTr+1 (Mi,Tr+1, Pi,Tr+1, zi,Tr+1;θ0,χ0) = ṼTr+1 (Mi,Tr+1, zi,Tr+1;η0, ρ0, κ0, h) .

According to the model setup, the data that economists obtain are {Mi,t, Ci,t, Yi,t, zi,t}Tr+1
t=ti

for household i. Therefore, for the Bellman equation (6), economists cannot directly solve it
since it involves latent state variable Pi,t, which is only observed by household i. Thus, we
instead study the ratio form of the Bellman equation (6).

The setup of the problem, combined with the retirement value function, makes the problem
homogeneous of degree 1− ρ0 in Pi,t. Thus, we define the normalized value functions as follows.

Vt (mi,t, zi,t;θ0,χ0) =
1

P 1−ρ0
i,t

Ṽt (Mi,t, Pi,t;θ0,χ0) ,

VTr+1 (mi,Tr+1, zi,Tr+1;θ0,χ0) =
1

P 1−ρ0
i,Tr+1

ṼTr+1 (Mi,Tr+1, zi,Tr+1;η0, ρ0, κ0)

= κ0v (zi,Tr+1;η0)
(mi,Tr+1 + h)1−ρ0

1− ρ0
.

We also normalize the variables of household i at age t by Pi,t, denoted by lowercase letters,
e.g., mi,t ≡ Mi,t/Pi,t, ci,t ≡ Ci,t/Pi,t. Accordingly, the wealth accumulation equations can be
expressed as

mi,t+1 = (mi,t − ci,t)
R

Gt+1ςi,t+1
+ εi,t+1, ti ≤ t ≤ Tr − 1,

mi,Tr+1 = R (mi,Tr − ci,Tr) .
The ratio-form Bellman equation (6) is

Vt (mi,t, zi,t;θ0,χ0) = max
ci,t
{v (zi,t;η0)u (ci,τ ; ρ0)

+β0Et

[
(Gt+1ςi,t+1)1−ρ0 Vt+1 (mi,t+1, zi,t+1;θ0,χ0)

]}
(7)

s.t. mi,t+1 = (mi,t − ci,t)
R

Gi,t+1ςi,t+1
+ εi,t+1, ti ≤ t ≤ Tr − 1,

mi,Tr+1 = R (mi,Tr − ci,Tr) ,
ci,t ∈ (0,mi,t] .

Therefore, economists can solve the model (7) without the knowledge of latent state variable
Pi,t.
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Remark 2.1. In the Bellman equation (7), the structural parameter θ0 is the same as that in
the original problem (6). We can solve the model by deriving the analytical solutions or using
numerical methods conditional on the value of θ0 and χ0. The Euler equations for problem (7)
are

c−ρ0i,t = β0REςi,t+1,εi,t+1,zi,t+1

[
v (zi,t+1;η0)

v (zi,t;η0)
(Gt+1ςi,t+1)−ρ0 c−ρ0i,t+1

]
, ti ≤ t ≤ Tr − 1,

which are necessary to derive the optimal policies at each age by backward optimization. In
particular, the endogenous grid method (EGM) described in detail in Appendix B.2 can be applied
here.

3 First-Stage Estimation and Latent State Filtering

Following GP and based on the discussion in the previous section, the parameters are divided into

to two parts, the nuisance parameters χ0 =
((
χinc0

)′
,
(
χcha0

)′
, R
)′

and structural parameters θ0.

Data include a panel dataset used during the second stage estimation,
{
Cdi,t,M

d
i,t, Y

d
i,t, z

d
i,t,
}Tr
t=ti

, i =

1, . . . , Nobs and an additional one with sample size J used during the first stage. In the panel
dataset with Nobs households, Cdi,t, M

d
i,t, Y

d
i,t and zdi,t are respectively the consumption level,

liquid wealth, income level and characteristic information vector of household i at age t, respec-
tively.

At the first stage, conditional on the additional dataset, GMM or calibration is used to
estimate χ, denoted as χ̂. The following assumption is imposed for the first-stage estimator.

ASSUMPTION 1. In the first-stage estimation, the nuisance parameters χ0 =
((
χinc0

)′
,
(
χcha0

)′
, R
)′
∈

Ψ can be obtained by GMM based on the additional dataset. The estimator χ̂ satisfies,
√
J (χ̂− χ0)

d→ N (0,Σχ) , (8)

where Σχ is the covariance matrix.

Remark 3.1. If the calibration approach is used in the first stage, then we simply treat χ̂ = χ0

without considering the dispersion caused by estimation, i.e., Σχ = 0. This approach is frequently
used in empirical literature such as Li et al. (2016) and Jøgensen (2017).

Define Fi,t as the information set up to age t for household i. The income process (5) can
be rewritten as {

log Yi,t = logPi,t + log εi,t,

logPi,t = log Ĝt + logPi,t−1 + log ςi,t,
ti ≤ t ≤ Tr − 1,

where log εi,t
i.i.d.∼ N

(
0, σ̂2

ε

)
and log ςi,t

i.i.d.∼ N
(
0, σ̂2

ς

)
. This is the standard linear state-space

model with Gaussian errors so that the Kalman filter can be used to obtain the distribution
of Pi,t conditional on Fi,t and χ̂. When µ = 0, the observations with zero income level can be
considered as missing variables since the estimate p̂ for p0 is very small and thus zero-valued
observation is rare. If µ 6= 0 and is very small, then we can set up the threshold value to check
whether there exists a shock. Via the Kalman filter, the mean and variance of Pi,t conditional
on Fi,t are obtained. Denote the expectation of a random variable with respect to Pi,t up to the
information at age t as EPi,t (·|Fi,t).
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4 Second-stage Estimation

4.1 Estimator

In this section, given χ̂ from the frist stage, the estimator for θ0 will be constructed. In this
subsection we deal with the case in which there exists a close-form solution for optimal policy at
each age. In the next subsection we deal with the case where optimal policies are not analytically
available.

Given any generic θ ∈ Θ and χ ∈ Ψ, the analytical solutions for the optimal policy functions

for the Bellman equation (7) is assumed to exist and denoted as ct

(
md
i,t, z

d
i,t;θ,χ

)
for household

i at age t, where md
i,t ≡ Md

i,t/Pi,t. For economists, Pi,t is unobservable. Hence, taking Pi,t into
account, conditional on the information up to age t, it is natural to assume that the household
i chooses the optimal consumption level according to

Ct

(
Md
i,t, z

d
i,t;θ,χ

)
= EPi,t

[
ct

(
Md
i,t

Pi,t
, zdi,t;θ,χ

)
Pi,t

∣∣∣∣∣Fi,t
]
, (9)

where EPi,t (·|Fi,t) is the expectation with respect to Pi,t based on the filtering at the first-stage
estimation.

Remark 4.1. The conditional expectation of equation (9) is more natural than the unconditional
expectation used in GP, in which the Monte Carlo method was used based on the paths simulated
from the initial working age and hence the information up to age t was discarded. Jøgensen
(2017) treated the mean of logPi,t obtained by the Kalman filter as the true value of logPi,t,
which also ignored the variance information of logPi,t. In Appendix B.5, these two approaches
are compared with that based on equation (9). The evidence shows that equation (9) is superior
to the other two approaches.

In the following assumption, a moment condition is introduced.

ASSUMPTION 2. (Identification) The unique parameter θ0 is in the interior of a compact
convex subset Θ of the Euclidean space Rd. For household i, assume

E
[
Cdi,t − Ct

(
Md
i,t, z

d
i,t;θ0,χ0

)]
=E

[
gt

(
Md
i,t, z

d
i,t;θ0,χ0

)]
=E [gi,t (θ0;χ0)] = 0, (10)

where t = ti, ..., Tr, C
d
i,t is the observed consumption level and Ct

(
Md
i,t, z

d
i,t;θ0,χ0

)
is defined in

equation (9).

Remark 4.2. Assumption 2 is the identification assumption of the structural parameters θ0.
The assumption ensures the parameters are point-identified, which is also adopted by Hansen
(1982) and Duffie and Singleton (1993).

According to equation (10), we can have at most Tm moment conditions, where Tm =

Tr − tmin + 1 and tmin = min{ti}N
obs

i=1 . Based on χ̂ from the first stage, the objective function is

LN (θ) = LN (θ; χ̂) = −N
2

[λN ḡN (θ; χ̂)]′WN (θ; χ̂)λN ḡN (θ; χ̂) , (11)
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where the total number of observations N =
∑Tr

t=tmin
Nt with Nt the sample size at age t from

t = tmin to t = Tr,

ḡN (θ; χ̂) = (ḡtmin (θ; χ̂) , . . . , ḡTr (θ; χ̂))′

=

 1

Ntmin

Ntmin∑
i=1

gi,tmin (θ; χ̂) , . . . ,
1

NTr

NTr∑
i=1

gi,Tr (θ; χ̂)

′ ,
WN (θ; χ̂) = V −1

N (θ; χ̂) ,

where,

VN (θ; χ̂) =ζN

Nobs∑
i=1

λN g̃i (θ; χ̂) g̃i (θ; χ̂)′ λ′Nζ
′
N

+
N

J
λN ḡN,χ (θ; χ̂) Σ̂χḡN,χ (θ; χ̂)′ λ′N , (12)

in which ḡN,χ ( θ; χ̂) is the first-order derivative of ḡN (θ; χ) with respect to χ,

g̃i (θ;χ) = (0, . . . , 0, gi,ti (θ;χ) , . . . , gi,Tr (θ;χ))′︸ ︷︷ ︸
Tm elements

,

λN = diag

(√
Ntmin

N
, . . . ,

√
NTr

N

)
= diag

(√
λN,tmin , . . . ,

√
λN,Tr

)
,

ζN = diag

(√
1

Ntmin

, . . . ,

√
1

NTr

)
.

The use of the weighting matrices λN and ζN is because households may have different initial
working ages.

Following CH, the quasi-Bayesian estimators (QBE), also called Laplace type estimators
(LTE), is constructed. Although the objective function in (11) is not a probability density
function, it is transformed into a proper one by

pN (θ) =
eLN(θ)π (θ)∫

Θ e
LN(θ)π (θ) dθ

, (13)

where π (θ) is the prior information. The pN (θ) in equation (13) is called the quasi-posterior
density function. Based on pN (θ), given the penalty or loss function %N (u), the corresponding
risk function is

RN (ξ) =

∫
Θ
%N (θ − ξ) pN (θ) dθ. (14)

Following CH, the following assumptions are imposed on the loss function %N (u).

ASSUMPTION 3. The loss function %N : Rd → R+ satisfies:

(i) %N (u) = %
(√

Nu
)

, where % (u) ≥ 0 and % (u) = 0 if and only if u = 0;
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(ii) % is convex and % (h) ≤ 1 + |h|p for some p ≥ 1;

(iii) ϕ (ξ) =
∫
Rd % (u− ξ) e−u′audu is minimized uniquely at some τ ∈ Rd for any finite a > 0.

Given the loss function %N (u), based on risk function (14), the QBE for θ0 is defined below.

Definition 4.1. The QBE is the one minimizing the risk function RN (ξ) in (14):

θ̂ = arg inf
ξ∈Θ

RN (ξ) . (15)

4.2 Asymptotic Theory for analytical Solution for Optimal Policy

In this subsection, the asymptotic behavior of the estimator θ̂ defined in (15) is studied. The
following assumptions are imposed.

ASSUMPTION 4. The function gt

(
Md
i,t, z

d
i,t;θ,χ

)
defined in (10) satisfies the following

conditions: (i) gt (·;θ,χ) and ∇θgt (·;θ,χ) are Borel measurable for each θ ∈ Θ and χ ∈ Ψ;

(ii) given χ ∈ Ψ, ∇θgt
(
Md
i,t, z

d
i,t;θ,χ

)
is continuously differentiable on Θ; (iii) ∇θθgt (·;θ,χ)

is Borel measurable for each θ ∈ Θ and χ ∈ Ψ.

ASSUMPTION 5. G (θ,χ) = ∇θE
[
gt

(
Md
i,t, z

d
i,t;θ,χ

)]
is continuous on Θ and χ. G (θ0,χ0)

is finite and has full rank.

ASSUMPTION 6. limN→∞ λN = λ, limN→∞N/J = γ for some constants λ, γ ∈ R+,

Remark 4.3. Assumptions 4 and 5 are similar to those in Hansen (1982). The assumptions
on the moment vector are essential for the study of asymptotic behavior of the estimator. As-
sumption 6 implies Nt is proportional to the total number of observations N . Assumption 6 also
implicates that N is proportional to the number of households in the dataset, Nobs.

When GMM is adopted during the first stage, the following two assumptions are imposed.

ASSUMPTION 7. The first-order derivative of gt

(
Md
i,t, z

d
i,t;θ,χ

)
with respect to χ, gt,χ

(
Md
i,t, z

d
i,t;θ,χ

)
satisfies the following conditions: (i) gt,χ (·;θ,χ) and ∇θgt,χ (·;θ,χ) are Borel measurable for

each θ ∈ Θ and χ ∈ Ψ; (ii) given χ ∈ Ψ, ∇θgt,χ
(
Md
i,t, z

d
i,t;θ,χ

)
is continuously differentiable

on Θ; (iii) ∇θθgt,χ (·;θ,χ) is Borel measurable for each θ ∈ Θ and χ ∈ Ψ.

ASSUMPTION 8. Gχ (θ,χ) = ∇χE
[
gt

(
Md
i,t, z

d
i,t;θ,χ

)]
is continuous on Θ and χ. Gχ (θ0,χ0)

is finite and full rank.

Remark 4.4. Assumptions 7 and 8 are similar to Assumptions 5 and 6. They are associated

with gt,χ

(
Md
i,t, z

d
i,t;θ, χ

)
and necessary because the estimation error due to GMM must be

taken into account. These two assumptions are not required if the calibration is used during the
first stage.

Finally, there are also some restrictions on the prior information π(θ).

ASSUMPTION 9. π (θ) is continuous and uniformly positive over Θ

9



In this paper, only GMM is used during the first stage because the calibration is a special
case of GMM as explained in Remark 3.1. Based on the discussion above, we define

gi (θ;χ) = (gi,tmin (θ;χ) , . . . , gi,Tr (θ;χ))′︸ ︷︷ ︸
Tm elements

.

Furthermore, according to the standard assumption that households are independent across i,
we have the following lemma and theorems.

Lemma 4.1. Under Assumptions 5–8, VN (θ; χ̂) defined in equation (12) has the following
property, uniformly over Θ,

VN (θ; χ̂)
p→λE

[
gi (θ;χ0) gi (θ;χ0)′

]
λ′

+ γλE [gi,χ (θ;χ0)] ΣχE
[
gi,χ (θ;χ0)′

]
λ′ = V (θ) .

Theorem 4.1. Under Assumptions 1–9, for the estimator θ̂ defined in (15),

√
N
(
θ̂ − θ0

)
d→ τ + N (0,Σθ) ,

where

Σθ =
[
G′θλ

′ (λΣgλ
′ + γλG′χΣχGχλ

′)−1
λGθ

]−1
,

τ = arg inf
α∈Rd

{∫
Rd
ρ (α− u) f

(
u; 0, G′θλ

′W (θ0)λGθ
)
du

}
,

where f (·,µ,Ω) is the multivariate normal density with mean µ and covariance Ω, Gθ =
∇θE [gi (θ0;χ0)], Gχ = ∇χE [gi (θ0;χ0)], Σg = E

[
gi (θ0;χ0) gi (θ0;χ0)′

]
.

Remark 4.5. If the calibration is used during the first stage, then we have

√
N
(
θ̂ − θ0

)
d→ τ + N

(
0,
(
G′θλ

′ (λΣgλ
′)−1

λGθ

)−1
)
.

Since there is no need to take estimation error into account, the second term in the optimal
weighting matrix disappears in the calibration.

Usually τ is difficult to evaluate at θ0 since the value of θ0 is unknown. However, if we
choose the quadratic loss function, according to CH and the Bayesian literature, the estimator
in Definition 4.1 becomes the mean of the quasi-posterior distribution in (13), which is called
the quasi-posterior mean and defined as

θ̄ = EpN [θ] =

∫
Θ
θpN (θ) dθ. (16)

The corollary below follows Theorem 4.1.

Corollary 4.2. Under Assumptions 1–9, given %N (·) = N · u2 and the estimator θ̄ defined in
(16), √

N
(
θ̄ − θ0

) d→ N (0,Σθ) ,

with Σθ =
[
G′θλ

′ (λΣgλ
′ + γλG′χΣχGχλ

′)−1
λGθ

]−1
, where the variables are the same as in

Theorem 4.1. Meanwhile, Σθ has the following property.

N · EpN
[(
θ − θ̄

) (
θ − θ̄

)′]
= Σθ + op (1) .

10



Remark 4.6. From Corollary 4.2 with samples from pN (θ), both the estimator and the asymp-
totic covariance, which are the mean and covariance of quasi-posterior distribution, can be si-
multaneously calculated. This is in contrast to extremum estimators where the estimator and
the asymptotic covariance are obtained separately.

4.3 Asymptotic Theory for Numerical Solution for Optimal Policy

In most cases, there is no analytical solution for the Bellman equation (7). Numerical methods
are needed to solve the model inevitably introducing approximation errors. In this subsection,
we develop conditions under which the results obtained in the last subsection continue to hold
when numerical solutions are used.

Given the values of θ and χ, the (infeasible) exact solution for the policy function at age

t for household i is denoted as ct

(
md
i,t, z

d
i,t;θ,χ

)
. Denote the numerical approximation by

cjt

(
md
i,t, z

d
i,t;θ,χ

)
where j is the number of grid points in the finite range of md

i,t based on

which we can evaluate other optimal policies by using interpolation methods. The numerical

solution cjt

(
md
i,t, z

d
i,t;θ,χ

)
is indexed by j because the approximation admits refinements, i.e.,

when j goes to infinity, cjt

(
md
i,t, z

d
i,t;θ,χ

)
converges to ct

(
md
i,t, z

d
i,t;θ,χ

)
.

With the numerical solution, neither the exact objective function (11) nor the quasi-posterior
density in (13) can be evaluated. Before we introduce our estimation procedure, let us first fix
some new notations.

The approximated optimal consumption level for household i at age t is

Cjt

(
Md
i,t, z

d
i,t;θ,χ

)
= EPi,t

[
cjt

(
Md
i,t

Pi,t
, zdi,t;θ,χ

)
Pi,t

∣∣∣∣∣Fi,t
]
. (17)

The sample moment becomes

Cdi,t − C
j
t

(
Md
i,t, z

d
i,t;θ0,χ0

)
=gjt

(
Md
i,t, z

d
i,t;θ0, χ0

)
=gji,t (θ0; χ0) , (18)

for household i at age t, where t = ti, ..., Tr. Then the approximate objective function is defined
as

LjN (θ) = −N
2

[
λN ḡ

j
N (θ; χ̂)

]′
W j
N (θ; χ̂)λN ḡ

j
N (θ; χ̂) , (19)

where

ḡjN (θ; χ̂) =
(
ḡjtmin (θ; χ̂) , . . . , ḡjTr (θ; χ̂)

)′
=

 1

Ntmin

Ntmin∑
i=1

gji,tmin (θ; χ̂) , . . . ,
1

NTr+1

NTr+1∑
i=1

gji,Tr (θ; χ̂)

′ ,
W j
N (θ; χ̂) =

[
V j
N (θ; χ̂)

]−1
,

11



V j
N (θ; χ̂) =ζN

Nobs∑
i=1

λN g̃
j
i (θ; χ̂) g̃ji (θ; χ̂)′ λ′Nζ

′
N

+
N

J
λN ḡ

j
N,χ (θ; χ̂) Σ̂χḡ

j
N,χ (θ; χ̂)′ λ′N , (20)

g̃ji (θ;χ) =
(

0, . . . , 0, gji,ti (θ;χ) , . . . , gji,Tr (θ;χ)
)′

︸ ︷︷ ︸
Tm elements

.

Remark 4.7. Based on the approximated objective function (19), one can use MSM to obtain the
extremum estimator. If so, one must implement an iterative optimization algorithm in which the
value and gradient of the objective function have to be numerically evaluated for each parameter
updating. These computational efforts and their cost are demanding. Further, as pointed out in
CH, sometimes the maximum estimator is the local optimum, not the global one.

Based on equation (19), we can define the approximated quasi-posterior as

pjN (θ) =
eL

j
N(θ)π (θ)∫

Θ e
LjN(θ)π (θ) dθ

. (21)

Given the loss function %N (u), the risk function and estimator corresponding to the approxi-
mated quasi-posterior is

RjN (ξ) =

∫
Θ
%N (θ − ξ) pjN (θ) dθ, (22)

θ̂
j

= arg inf
ξ∈Θ

RjN (ξ) . (23)

Other variables remain the same as those in the case with the analytical solution.
Following FRS and Ackerberg, Geweke and Hahn (2009), the following assumption is imposed

on numerical methods.

ASSUMPTION 10. For all j, χ and z, over a finite range of m, cjt (m, z; θ,χ) is continuous
on m and continuously differentiable at all points except at a finite number of points.

Remark 4.8. Assumption 10 ensures the continuity of cjt (m, z;θ, χ̂) at all points and differen-
tiability except at a finite number of points in the finite range of m. The lack of differentiability
makes it possible to use numerical methods with kinks at a finite number of points. Such methods
include the linear interpolation or the approximation within space spanned by linear basis func-
tions. This assumption is satisfied naturally by most solution methods for dynamic economic
models.

FRS studied the econometric problem of computed dynamic models. They found that under
some mild conditions, as the approximated policy functions converged to the exact ones, the
approximated likelihood also converged to the exact likelihood. Meanwhile, as more data are
included, a better approximation is required. Ackerberg, Geweke and Hahn (2009) examined
the impact of approximation errors on a classical estimate of a simple time series model. They
found the approximation errors are required to vanish at a certain speed as the sample size goes

12



to infinity. Following Ackerberg, Geweke and Hahn (2009), the approximation error is defined
as

∆j = sup
θ∈Θ,χ∈Ψ

{
max
z,m,t

{∥∥∥cjt (m, z;θ,χ)− ct (m, z;θ,χ)
∥∥∥ ,∥∥∥Cjt,χ (M,z;θ,χ)− Ct,χ (M, z;θ,χ)

∥∥∥}} . (24)

Remark 4.9. Unlike Ackerberg, Geweke and Hahn (2009), we do not need to consider the ap-
proximation error associated with the first and second-order derivatives of the objective function.
Note that t ∈ [tmin, Tr + 1] and from the dataset, the normalized wealth m and characteristic
vector z are all bounded. Thus, given any generic θ and χ, ∆j is controlled by the number of
grid points j. Furthermore, if the calibration is adopted during the first stage, we do not have
to consider the approximation error of Cjt,χ (m, z;θ,χ).

In accordance with Ackerberg, Geweke and Hahn (2009), the approximation error should
disappear asymptotically, i.e., j → ∞, as N → ∞. Given Assumptions 1–10, the following
theorem hold.

Theorem 4.3. Under Assumptions 1–10, for the estimator θ̂
j

defined in (23), if as N →∞,

N∆j → 0,

then, √
N
(
θ̂
j
− θ0

)
d→ τ + N (0,Σθ) ,

with

Σθ =
[
G′θλ

′ (λΣgλ
′ + γλG′χΣχGχλ

′)−1
λGθ

]−1
.

Remark 4.10. An approximate optimal policy for every household at every age inevitably in-
troduces the approximation error. As the total number of observations increases, the error will
accumulate. Theorem 4.3 requires that the accumulative approximation error be smaller than
the sampling error, and thus is negligible. The detailed relationship between j and N in different
numerical methods is left for future studies.

Similarly, given the quadratic loss function, the approximated quasi-posterior mean is defined
as

θ̄
j

= E
pjN

[θ] =

∫
Θ
θpjN (θ) dθ. (25)

Corollary 4.4. Under Assumptions 1–10, given the quadratic loss function %N (·) and the esti-

mator θ̄
j

defined in (25), if N∆j → 0 as N →∞, then,

√
N
(
θ̄
j − θ0

)
d→ N (0,Σθ) ,

with Σθ =
[
G′θλ

′ (λΣgλ
′ + γλG′χΣχGχλ

′)−1
λGθ

]−1
, where the variables are the same as in

Theorem 4.1. Meanwhile, Σθ has the following property.

N · E
pjN

[
N
(
θ − θ̄j

)(
θ − θ̄j

)′]
= Σθ + op (1) , (26)

where E
pjN

is the expectation with respect to pjN (θ).
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Theorem 4.3 and Corollary 4.4 are important because they show that when the approxima-
tion errors disappears at a speed faster than the total number of observations, the approximated
estimator shares the desirable properties of the estimator when policy functions are analytically
available.

This result is related to that in FRS and Ackerberg, Geweke and Hahn (2009) with two dif-
ferences. First, both papers focus on the likelihood inference, whereas the estimation framework
is GMM in the present paper. Second, the disappearance rate in Theorem 4.3 is also different.
In Ackerberg, Geweke and Hahn (2009), a static simple time series model is studied and the rate
of the approximation errors is required to be faster than the square root of the time span, i.e.,
o
(
T 1/2

)
. The present paper focuses on the life-cycle model with finite horizon and the speed of

the approximation error is required to be faster than the total number of the observations, i.e.,
o (N).

Remark 4.11. Theorem 4.3 and Corollary 4.4 show that only the approximation error of

cjt

(
md
i,t, z

d
i,t;θ, χ̂

)
and Cjt,χ

(
Md
i,t, z

d
i,t;θ, χ̂

)
need to be considered. If the calibration is used

at the first stage, the approximation error of Cjt,χ

(
Md
i,t, z

d
i,t;θ, χ̂

)
can be ignored. However, if

an optimization approach is used, other types of approximation errors, such as those in calcu-
lating the first- and second-order derivatives of the objective function, require careful attention,
which may be very complicated and difficult to control in practice.

Remark 4.12. Equation (26) can be used to compute the asymptotic covariance. On the one
hand, it is the by-product of samples from the approximated quasi-posterior distribution. On the
other hand, it avoids numerical evaluations of Gθ and Gχ.

4.4 Estimation

The theoretical results in previous subsections are attractive. However, sampling from the quasi-
posterior distribution remains a difficult problem. The MCMC method does not work well here
since it requires sampling sequentially many times and numerically evaluating the objective
function at each updating. Instead of MCMC, importance sampling is used together with GPU
to enhance the computational speed.

In practice, it is very hard to find a good proposal distribution for the importance sampling.
Direct sampling from the prior can be computationally inefficient. Recognizing this problem, we
adapt the algorithm proposed in Creel and Kristensen (2016) to estimate finite-horizon life-cycle
models. The algorithm for the estimation is summarized in Algorithms 1 and 2. Both algorithms
request a great number of quasi-posterior density evaluations. The usual CPU time will be high.
Thanks to the availability of GPU, we can solve the model numerically given a great number of
parameter values and do the interpolation in parallel.

In Algorithm 1, δ and exp(L) are close to zero. They are threshold values for the search
of area and selection of particles with significant quasi-posterior density values, respectively.
Specifically, steps 10–24 ensure that the shrinking sampling area is sufficiently narrow given
K1 and δ, and that they are adaptive to different datasets. Besides, step 25 selects particles
in S with significant quasi-posterior density values, denoted as S̃. Step 26–29 uniformly draw
K particles from S̃ and construct the proposal distribution for important sampling, which is a
mixture of normal distributions.
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Algorithm 1 Construction of Proposal Distribution

1: Input: The number of samples K1, the selected number of particles K2, the covariance
for the random perturbation Σ, the tolerance level δ, the threshold value L, the number of
component in proposal distribution K.

2: Set up i = 0
3: for k = 1 to K1 do
4: Draw θik ∼ π (θ).
5: Compute ωik = LN

(
θik
)

+ log π
(
θik
)
.

6: end for
7: Set up the set of particles S = ∅.
8: Compute V1 = maxω0

k

9: Compute V2 = V1 + 2δ
10: while |V1 − V2| < δ do

11: Sort
{
ωik
}K1

k=1
in descending order.

12: Select the first K2 of the sorted ωik and associated θik, obtain
{
ω̃ik
}K2

k=1
and

{
θ̃
i
k

}K2

k=1

13: S = S
⋃{

θ̃
i
k

}K2

k=1
.

14: for k = 1 to K2 do

15: Compute ωkNorm = eω̃
i
k∑K

k=1 e
ω̃i
k

.

16: end for
17: for k = 1 to K1 do

18: Draw
˜̃
θik ∼Multinomial

({
θ̃
i
k

}K2

k=1
,
{
ωkNorm

}K2

k=1

)
19: Compute θi+1

k =
˜̃
θik + εi+1

k , εi+1
k ∼ N (0,Σ).

20: Compute ωi+1
k = LN

(
θi+1
k

)
+ log π

(
θi+1
k

)
.

21: end for
22: Compute V1 = V2.
23: Compute V2 = maxωi+1

k .
24: end while
25: Select the particle points in S that satisfies ωik − V2 > L, obtain S̃.
26: for k = 1 to K do
27: Draw θISk from S̃ uniformly.
28: end for
29: Define the importance sampling density as the mixture of densities associated with each

drawn θISk :

q (θ) =

K∑
k=1

pkqk
(
θ|θISk

)
,

where pk = eωk/
∑K

k=1 e
ωk , ωk == LN

(
θISk
)

+ log π
(
θISk
)
, and qk

(
θ|θISk

)
= N

(
θISk ,Σ

)
. Or

pk = 1
K , for k = 1, . . . ,K.

30: Output: q (θ).
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Algorithm 2 Estimator Calculation

1: Input: The number of samples K3, the proposal distribution q (θ).
2: for k = 1 to K3 do
3: Draw θ(k) ∼ q (θ).

4: Compute ω̃(k) = e
LN

(
θ(k)

)
π
(
θ(k)

)
.

5: end for
6: Compute the estimator ̂̄θ =

∑K3
k=1 ω

(k)θ(k)∑K3
k=1 ω

(k)
,

̂V ar (θ) =
1∑K3

k=1 ω
(k)

K3∑
k=1

ω(k)
(
θ(k) − ̂̄θ)(θ(k) − ̂̄θ)′ ,

where ω(k) = ω̃(k)/q
(
θ(k)

)
.

7: Output: ̂̄θ, ̂V ar (θ).

In Algorithm 2, when K3 → ∞, ̂̄θ → θ̄, ̂V ar (θ) → V ar (θ), where V ar (θ) is the quasi-
posterior covariance with respect to pN (θ), since

̂̄θ =

∑K3
k=1 ω

(k)θ(k)∑K3
k=1 ω

(k)
→
∫

Θ
θpn (θ) dθ = θ̄,

̂V ar (θ) =
1∑K3

k=1 ω
(k)

K3∑
k=1

ω(k)
(
θ(k) − ̂̄θ)(θ(k) − ̂̄θ)′

→
∫

Θ
θθ′pn (θ) dθ + θ̄θ̄

′

≡
∫

Θ

(
θ − θ̄

) (
θ − θ̄

)′
pN (θ) dθ.

Remark 4.13. The numerical evaluation of the quasi-posterior density values is costly compu-
tationally. GPU can enhance the computational speed greatly since it can solve the model and
compute the density values in parallel given a great number of sampled parameters. Steps 10–24
are adaptive since the area with the largest posterior density values will be automatically found
given the dataset, δ and K1.

5 Monte Carlo Studies

In this section, two models are studied to examine the performance of the new approach. One
is the life-cycle model without exogenous dynamic latent state. The other one is a simplified
version of the illustrative model.
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Table 1: The Values of Parameters Used to Simulate Data

T β ρ R y σ2
ε

10 0.96 2 1.03 0.5 0.04

5.1 The Case without Dynamic Latent State

The households are faced with the same utility maximization problem, i.e.,

max
{ct}Tt=0

E0

[
T∑
t=0

βt
c1−ρ
t

1− ρ

]
, (27)

s.t. mt+1 = R (mt − ct) + yεt+1, 0 ≤ t < T,

ct ∈ (0,mt] ,with m0 given,

where β is the subjective discount factor, ρ the risk aversion of the households, R the gross
interest rate, y the income level for the households from period t = 0 to t = T , εt+1 the income

shock associated with the income at each period and εt+1
i.i.d.∼ logN

(
−σ2

ε
2 , σ

2
ε

)
, mt the liquid

wealth at the beginning of period t and ct the consumption level that chosen by the households,
which is in the budget constraint (0,mt]. Thus, the Euler equations for the life-cycle model are

c−ρt = RβEt
[
ct+1 (mt+1)−ρ

]
,mt+1 = R (mt − ct) + yεt+1, 0 ≤ t ≤ T − 1, (28)

where at period T , cT = mT , which results from the households seeking to consume all their
wealth at the last period. There are no close-form solutions for the optimal consumptions,
thus a numerical method is required. Conditional on the values of parameters, EGM is used
to construct the grid of the optimal consumption at each period. The detail is illustrated in
Appendix B.2.

In this study, the true values of the parameters are reported in Table 1. Conditional on the

values listed in Table 1, we solve the model numerically and simulate a data set
{
c∗i,t,m

d
i,t

}T
t=0

for each household i, where the initial wealth md
0,i is drawn from a truncated normal distri-

bution with mean 5 and variance 100 ranging from 0 to infinity, i.e., N (5, 100) I {x > 0},
where I is the indicator function. The optimal consumption c∗i,t is interpolated based on
the consumption grid obtained from numerical solving. The measurement error is added,

cdi,t = c∗i,t + εi,t, εi,t
i.i.d.∼ N

(
0, σ2

ε

)
, where σ2

ε = 0.005†. The numbers of households simu-

lated are Nobs = 1000, 1500, 2000, 3000, respectively and the number of replications for each

case is 200. For each replication, the simulated noisy data
{
cdi,t,m

d
i,t

}T
t=1

are used to estimate

the parameters ρ and β.
In order to estimate the parameters, the priors for the two parameters are set to

β ∼ U (0.5, 1) , ρ ∼ U (0, 15) ,

†Jøgensen (2017) estimated the variance of measurement error, which was approximately 0.46. But the sample
size he used ranged from 150, 000 to 800, 000. Since the sample sizes in Monte Carlo studies are between 1000
and 3000, the variance of measurement error is proportionally set as 0.005 in terms of the variance of sample
moments.
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Table 2: The Bias and RMSE of the Estimator for β and ρ

β ρ

Bias RMSE Bias RMSE

Nobs = 1000 −1.3602× 10−3 3.89× 10−3 0.2311 0.6780
Nobs = 1500 −1.4685× 10−3 3.407× 10−3 0.2535 0.6008
Nobs = 2000 −6.2943× 10−4 2.683× 10−3 0.1081 0.4692
Nobs = 3000 4.3860× 10−4 2.2× 10−3 0.0715 0.3926

where U(a, b) is the uniform distribution ranging from a to b. For β, based on the economic
theory, it should satisfy β ∈ (0, 1) and usually it is assumed to be around 0.9. Thus the prior
for β is uninformative. Besides, for the risk averse parameter, ρ, the range between 0 and 15 is
also quite uninformative.

Algorithms 1 and 2 are applied to estimate the model (for more details of the estimation,
please refer to Appendix B.3) and the bias and root mean square error (RMSE) are computed
for each parameter in every scenario. The bias and RMSE are defined in Appendix B.1. The
results are listed in Table 2. It is obvious that as the sample size increases, the bias of both
parameters decreases. Further, the RMSE of both parameters also decreases and the magnitude
of all the RMSE is proportional to the square root of the sample size approximately. This
simulation study justifies the asymptotic theory and the usefulness of the algorithm.

5.2 The Case with Dynamic Latent State

In this subsection, a simplified life-cycle model in GP is considered to examine the performance
of the new approach. The model is defined in the following. The household i is faced with the
following optimization problem,

max
Ci,τ

Eti

[
Tr∑
τ=t0

βτ−t0
C1−ρ
i,τ

1− ρ
+ κβTr+1−t0

(
Mi,Tr+1 +Hi,Tr+1

)1−ρ
1− ρ

]
(29)

s.t.Mi,t+1 = R (Mi,t − Ci,t) + Yi,t+1, t0 ≤ t ≤ Tr − 1

Mi,Tr+1 = R (Mi,Tr − Ci,Tr) , t = Tr,

Ci,t ∈ (0,Mi,t] ,with Mi,t0 given.

The model specification is almost the same as the illustrative model except that all households
start to work at the same age and the marginal utility shifter is not included. The income
process is also the same and is defined as,{

Yi,t = Pi,tεi,t,

Pi,t = GtPi,t−1ςi,t,
ti ≤ t ≤ Tr,

εi,t =

{
µ, with probability p,

ξi,t, with probability 1− p,
where log ξi,t

i.i.d.∼ N
(
0, σ2

ε

)
,

log ςi,t
i.i.d.∼ N

(
0, σ2

ς

)
.
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Table 3: Parameter values used to simulate data.

{Gt}10
t=1 R σ2

ε σ2
ς p µ β ρ Tr γ1 t0

Figure 1 1.03 0.04 0.02 0.03 10−6 0.96 2 10 0.07 1

The parameters of the income process are given and the ratio-form Bellman equation is now,

Vt (mi,t;θ) = max
ci,t

{
c1−ρ
i,τ

1− ρ
+ +βEt

[
(Gt+1Ni,t+1)1−ρ Vt+1 (mi,t+1;θ)

]}
(30)

s.t.mi,t+1 = (mi,t − ci,t)
R

Gi,t+1ςi,t+1
+ εi,t+1, ti ≤ t ≤ Tr − 1,

mi,Tr+1 = R (mi,Tr − ci,Tr) , t = Tr,

ci,t ∈ (0,mi,t] ,

with

VTr+1 (mi,Tr+1;θ) = κ
(mi,Tr+1 + h)1−ρ

1− ρ

=
1

(1− ρ)κ
− 1
ρ

(
κ
− 1
ρmi,Tr+1 + κ

− 1
ρh
)1−ρ

=
1

(1− ρ) γ1
(γ1mi,Tr+1 + γ0)1−ρ ,

where ci,t and mi,t are the normalized values of consumption level Ci,t and wealth Mi,t, respec-
tively. For simplicity, γ0 is equal to 0, which is consistent with the result obtained by GP. The
value function after retirement becomes

VTr+1 (mi,Tr+1;θ) =
1

(1− ρ) γ1
(γ1mi,Tr+1)1−ρ . (31)

The structural parameter is now θ = {β, ρ, γ1}. The values of parameters for the simulation are
listed in Table 3.

The values of {Gt}10
t=1 are described in the left panel of Figure 1, which is the same as

Jøgensen (2016). The discount factor β, gross interest rate R, income shock probability p,
variance of transitory shock σ2

ε , retirement rule parameter γ1 and variance of the shock to
permanent income σ2

ς are approximately equal to those in GP. Following Jøgensen (2016), the
risk aversion ρ equals 2 and the value of µ is very close to zero.

For this model, the corresponding ratio-form Euler equations are

c−ρi,t = max
{
m−ρi,t , βREςi,t+1,εi,t+1

[
(Gt+1ςi,t+1)−ρ ci,t+1 (mi,t+1)−ρ

]}
, t0 ≤ t ≤ Tr − 1,

c−ρi,Tr = max
{
m−ρi,Tr , βR (γ1mi,Tr+1)−ρ

}
, at age Tr.

EGM is used to solve the model (for more details, one can refer to Appendix B.2). The solution
of the ratio-form model is presented in the right panel of Figure 1.
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Figure 1: The values of Gt and the policy functions for Bellman equation in ratio form

Notes: The left panel presents the plots of the value of Gt at different ages. The right panel is
the numerical solution of the ratio-form model (30).

In the simulation, we assume at age t = 1, the corresponding permanent component of
income P di,1 for every household is drawn from a log-normal distribution, i.e.,

logP di,1 ∼ N
(
0, σ2

ς

)
,∀i = 1, ..., Nobs,

where Nobs is the number of simulated households. We then simulate an income panel dataset{
Y d
i,t, P

d
i,t

}10

t=1
for each household i. Meanwhile, household’s initial wealth at age 1, Md

i,1, is

sampled from a truncated normal distribution with mean 1 and variance 1 ranging from 0 to
infinity, i.e., Md

i,1 ∼ N (1, 1) I {x > 0}, for i = 1, . . . , Nobs, where I is the indicator function.
The Bellman equation in ratio form is solved by EGM and we obtain the consumption grid at

each period. At each t, we normalize the wealth md
i,t =

Md
i,t

P di,t
and use the grid to interpolate the

corresponding optimal ratio-form consumption c∗i,t. We then compute the optimal consumption

level as C∗i,t = c∗i,tP
d
i,t and obtain

{
C∗i,t,M

d
i,t, Y

d
i,t, P

d
i,t

}10

t=1
for each household i. Following the

simulation procedure in the last subsection, we add the measurement error, Cdi,t = C∗i,t + εi,t,

εi,t
i.i.d.∼ N

(
0, σ2

ε

)
, σ2

ε = 0.008. Finally we have
{
Cdi,t,M

d
i,t, Y

d
i,t

}10

t=1
, for i = 1, . . . , Nobs, which is

used for estimation.
In order to obtain the sample moment vector, the Kalman filter is used to filter the income

observations to obtain the mean and variance for Pi,t at each t for household i. The Kalman
filter for income process is documented in detail in Appendix B.4.

To estimate the parameters ρ, β, γ1, the following priors are used,

ρ ∼ U (0, 15) , β ∼ U (0.5, 1) , γ1 ∼ U (0, 1) .

It is quite intuitive that households must use their wealth to support their lives after retirement
and they would not consume all their liquid wealth in the first year after retirement. Thus,
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Table 4: The bias and RMSE of the estimator

Nobs = 1500 Nobs = 2000 Nobs = 3000

β Bias 2.8583× 10−4 −3.0266× 10−5 −3.7344× 10−5

RMSE 2.8394× 10−3 2.7242× 10−3 1.9599× 10−3

ρ Bias −3.4112× 10−2 −1.8676× 10−3 −1.5472× 10−2

RMSE 0.1726 0.1676 0.1321

γ1 Bias 5.7411× 10−5 2.2704× 10−5 −6.8096× 10−6

RMSE 2.0429× 10−4 1.6755× 10−4 1.3224× 10−4

the bound is quite reasonable and uninformative. For the priors for ρ and β, they are also
uninformative as argued earlier.

We use Algorithms 1 and 2 to do the estimation. In the estimation, we set K1 = K3 = 38400,
K2 = 1280, Σ = diag (0.0001, 0.04, 0.0001), δ = 0.5, L = −10, K = 7680 and the number of
grids in EGM is 100. The sample sizes considered here are Nobs = 1500, 2000, 3000, respectively.
The number of replications is 50. The biases and RMSE of the estimation are reported in Table
4.

The results in Table 4 have similar patterns to the outputs in the preceding subsection. The
bias for all parameters decreases as the sample size increases. Further, the RMSE is approxi-
mately proportional to the square root of sample size as predicted by theory. In summary, the
results in Table 4 still justify the asymptotic theory.

6 Conclusion

In this paper, a quasi-Bayesian estimator is introduced for structural parameters in finite-horizon
life-cycle models. The asymptotic normality of the estimator is derived when an analytical
solution for the model exists. When the policy functions are not analytically available, it is
shown that if the approximation errors caused by numerical solving vanish fast enough, the
estimator remains to be asymptotically normal. Further, it is shown that the estimator reaches
the semiparametric efficiency bound in the GMM framework. In the proposed method, the usual
optimization procedure is converted into a sampling procedure, thereby avoiding the numerical
evaluation for the gradient of objective function and alleviating the local optimum problem.
The estimator and associated asymptotic covariance can be computed simultaneously. The
estimation procedure is also easy to parallelize, facilitating a GPU-based and adaptive algorithm
to enhance computational efficiency. The estimation procedure is also illustrated based on a
variant of the model in GP.

In general our estimator is less efficient than the full likelihood-based procedures, such as
those proposed by FRS and Ackerberg, Geweke, and Hahn (2009). However, our procedure is
less stringent about the model specification. For example, the distribution is left unspecified
in our approach. Hence, our set up may be more appealing to empirical researchers who are
agnostic about distributional behaviors of the errors.

There are many possible extensions for this method. For example, finite-horizon life-cycle
models with endogenous discrete choices can be considered since these models have received
considerable attention recently; see Iskhakov et.al. (2017), Kaplan and Violante (2014) and
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references therein. Meanwhile, the present paper only focuses on the estimation. There also
remains plenty of work related to inference. These topics are left for future research.
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Appendices

A Proof of Lemmas and Theorems

A.1 The Proof of Lemma 4.1

As in (12),

VN (θ; χ̂) =ζN

Nobs∑
i=1

λN g̃i (θ; χ̂) g̃i (θ; χ̂)′ λ′Nζ
′
N

+
N

J
λN ḡN,χ (θ; χ̂) Σ̂χḡN,χ (θ; χ̂)′ λ′N ,

For the first term, by Assumption 2 and Assumption 7, as N → ∞, χ̂ → χ0. And in the

framework of the structural model, {g̃i (θ; χ̂)}N
obs

i=1 are independent across i. Combined with
Assumption 1, 5 and 6, we have

ζN

Nobs∑
i=1

λN g̃i (θ; χ̂) g̃i (θ; χ̂)′ λNζN
p→ E

[
λgi (θ;χ0) gi (θ;χ0)′ λ′

]
,

where
gi (θ;χ) = (gi,tmin (θ;χ) , . . . , gi,Tr (θ;χ))′︸ ︷︷ ︸

Tm elements

.

Similarly, by Assumption 2 and 7, as N →∞, Σ̂χ
p→ Σχ, χ̂→ χ0. Combined with Assumption

1, 8 and 9, we can have

N

J
λN ḡN,χ (θ; χ̂) Σ̂χḡN,χ (θ; χ̂)′ λ′N ,

p→ γλE [gi,χ (θ;χ0)] ΣχE
[
gi,χ (θ;χ0)′

]
λ′.

A.2 The Proof of Theorem 4.1

We define

M (θ) = −1

2
E [gi (θ;χ0)]′ λ′W (θ)λE [gi (θ;χ0)] ,

whereW (θ) = V −1 (θ) =
{
λE
[
gi (θ;χ0) gi (θ;χ0)′

]
λ+ γλE [gi,χ (θ;χ0)] ΣχE

[
gi,χ (θ;χ0)′

]
λ′
}−1

,
where V (θ) defined in Lemma 4.1. From the definition of criterion function (11), under Assump-
tion 1- 10 , we have

1

N
LN (θ) = −1

2
ḡ (θ; χ̂)′ λ′NV

−1
N (θ; χ̂)λN ḡ (θ; χ̂)

p→M (θ) .

Further, in the framework, we implies that the matrix VN (θ; χ̂) and V (θ) are positive definite
for all θ ∈ Θ. Thus, the as WN (θ; χ̂) = V −1

N (θ; χ̂) and W (θ) = V −1 (θ).(what is the
meaning of the above two sentences?) Due to W (θ) > 0 and M (θ0) = 0, by Assumption
3, for any δ > 0, θ ∈ {θ : ‖θ − θ0‖ ≥ δ} ⊂ Θ, we have M (θ) < 0, so that M (θ)−M (θ0) < 0.
Therefore, the Lemma 1 in Chernozukov and Hong (2003) is satisfied.
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Since {gi,t (θ;χ)} are independent across i, we have

√
NλN ḡN (θ0;χ0)

d→ N
(
0, λΣgλ

′) ,
where Σg = E

[
gi (θ0;χ0) gi (θ0;χ0)′

]
. If we use the GMM method to estimate the parameter

χ0, for
√
NλN ḡ (θ0; χ̂), expanding it around χ0,

√
NλN ḡN (θ0; χ̂) =

√
NλN

[
ḡN (θ0;χ0) + ḡχ (θ0; χ̃)′ (χ̂− χ0) + op

(
1√
J

)]
=
√
NλN ḡN (θ0;χ0) +

√
N

J
λN ḡN,χ (θ0; χ̃)′

√
J (χ̂− χ0) + op

(√
N

J

)
.

By Assumption 2, from the first-stage estimation,

√
J (χ̂− χ0)

d→ N (0,Σχ) .

Following GP, since the first-stage estimator is obtained conditional on exogenous structural
models and mostly different data, then we can have

√
NλN ḡN (θ0; χ̂)

d→ N
(
0, λΣgλ

′ + γλG′χΣχGχλ
′) , (A.1)

whereGχ = E [∇χgi (θ0;χ0)], γ = limN→∞
N
J , λ = limN→∞ λN , Σg = E

[
gi (θ0;χ0) gi (θ0;χ0)′

]
.

We can rewrite the criterion function as

LN (θ) =− N

2
[λN ḡN (θ; χ̂)]′WN (θ; χ̂)λN ḡN (θ; χ̂)

=− N

2
[λN ḡN (θ; χ̂)]′

ζN Nobs∑
i=1

λN g̃i (θ; χ̂) g̃i (θ; χ̂)′ λ′Nζ
′
N

+
N

J
λN ḡN,χ (θ; χ̂) Σ̂χḡN,χ (θ; χ̂)′ λ′N

]−1

λN ḡN (θ; χ̂)

=− N

2
tr

λN ḡN (θ; χ̂) ḡN (θ; χ̂)′ λ′N

ζN Nobs∑
i=1

λN g̃i (θ; χ̂) g̃i (θ; χ̂)′ λ′Nζ
′
N

× +
N

J
λN ḡN,χ (θ; χ̂) Σ̂χḡN,χ (θ; χ̂)′ λ′N

]−1
}

=− N

2
tr
[
C (θ)D−1 (θ)

]
,

where C (θ) and D (θ) are symmetric. Then following Magnus and Neudecker (1995), we have

d
{
tr
[
C (θ)D−1 (θ)

]}
=tr

{
dC (θ)D−1 (θ) + C (θ) dD−1 (θ)

}
=tr

{
D−1 (θ) dC (θ) + C (θ)D−1 (θ) dD (θ)D−1 (θ)

}
=tr

{
D−1 (θ) dC (θ)−D−1 (θ)C (θ)D−1 (θ) dD (θ)

}
.

25



Before we derive the first-order and second-order differentiation of LN (θ), we consider the
following formula,

tr {K1 (θ) dD (θ)K2 (θ)}

=tr

K1 (θ) ζNλNd

Nobs∑
i=1

g̃i (θ; χ̂) g̃i (θ; χ̂)′

λ′Nζ ′NK2 (θ)


+
N

J
tr
{
K1 (θ)λNd

[
ḡN,χ (θ; χ̂) Σ̂χḡN,χ (θ; χ̂)′

]
λ′NK2 (θ)

}
=
Nobs∑
i=1

tr
{
K1 (θ) ζNλN

[
∇θg̃i (θ; χ̂) dθg̃i (θ; χ̂)′ + g̃i (θ; χ̂) dθ′∇θg̃i (θ; χ̂)′

]
λ′Nζ

′
NK2 (θ)

}
+

N

J
tr
{
K1 (θ)λN

[
∇θḡN,χ (θ; χ̂) dθΣ̂χḡN,χ (θ; χ̂)′ + ḡN,χ (θ; χ̂) Σ̂χdθ

′∇θḡN,χ (θ; χ̂)′
]
λ′NK2 (θ)

}
=

Nobs∑
i=1

tr
{
g̃i (θ; χ̂)′ λ′Nζ

′
NK2 (θ)K1 (θ) ζNλN∇θg̃i (θ; χ̂) dθ

}
+

Nobs∑
i=1

tr
{
g̃i (θ; χ̂)′ λ′Nζ

′
NK1 (θ)′K2 (θ)′ ζNλN∇θg̃i (θ; χ̂) dθ

}
+

N

J
tr
{

Σ̂χḡN,χ (θ; χ̂)′ λ′NK2 (θ)K1 (θ)λN∇θḡN,χ (θ; χ̂) dθ
}

+

N

J
tr
{

Σ̂χḡN,χ (θ; χ̂)′ λ′NK1 (θ)′K2 (θ)′ λN∇θḡN,χ (θ; χ̂) dθ
}
. (A.2)

Then, for the first term tr
[
D−1 (θ) dC (θ)

]
,

tr
[
D−1 (θ) dC (θ)

]
=tr

{
D−1 (θ)λNd [ḡN (θ; χ̂)] ḡN (θ; χ̂)′ λ′N +D−1 (θ)λN ḡN (θ; χ̂) [dḡN (θ; χ̂)]′ λ′N

}
=tr

{
D−1 (θ)λN∇θḡN (θ; χ̂) dθḡN (θ; χ̂)′ λ′N +D−1 (θ)λN ḡN (θ; χ̂) [∇θḡN (θ; χ̂) dθ]′ λ′N

}
=tr

{
ḡN (θ; χ̂)′ λ′ND

−1 (θ)λN∇θḡN (θ; χ̂) dθ + λN∇θḡN (θ; χ̂) dθḡN (θ; χ̂)′ λ′ND
−1 (θ)

}
=2tr

{
ḡN (θ; χ̂)′ λ′ND

−1 (θ)λN∇θḡN (θ; χ̂) dθ
}

=2tr
{
ḡN (θ; χ̂)′ λ′NWN (θ; χ̂)λN∇θḡN (θ; χ̂) dθ

}
.

By formula (A.2),

tr
{
D−1 (θ)C (θ)D−1 (θ) dD (θ)

}
=2

Nobs∑
i=1

tr
{
g̃i (θ; χ̂)′ λ′Nζ

′
ND

−1 (θ)C (θ)D−1 (θ) ζNλN∇θg̃i (θ; χ̂) dθ
}

+

2N

J
tr
{

Σ̂χḡN,χ (θ; χ̂)′ λ′ND
−1 (θ)C (θ)D−1 (θ)λN∇θḡN,χ (θ; χ̂) dθ

}
=2

Nobs∑
i=1

tr
{
g̃i (θ; χ̂)′ λ′Nζ

′
NWN (θ; χ̂)λN ḡN (θ; χ̂) ḡN (θ; χ̂)′ λ′NWN (θ; χ̂) ζNλN∇θg̃i (θ; χ̂) dθ

}
+

2N

J
tr
{

Σ̂χḡN,χ (θ; χ̂)′ λ′NWN (θ; χ̂)λN ḡN (θ; χ̂) ḡN (θ; χ̂)′ λ′NWN (θ; χ̂)λN∇θḡN,χ (θ; χ̂) dθ
}
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Therefore,

dLN (θ)

=−Ntr
{
ḡN (θ; χ̂)′ λ′NWN (θ; χ̂)λN∇θḡN (θ; χ̂) dθ

}
+

N
Nobs∑
i=1

tr
{
g̃i (θ; χ̂)′ λ′Nζ

′
NWN (θ; χ̂)λN ḡN (θ; χ̂) ḡN (θ; χ̂)′ λ′NWN (θ; χ̂) ζNλN∇θg̃i (θ; χ̂) dθ

}
+

N2

J
tr
{

Σ̂χḡN,χ (θ; χ̂)′ λ′NWN (θ; χ̂)λN ḡN (θ; χ̂) ḡN (θ; χ̂)′ λ′NWN (θ; χ̂)λN∇θḡN,χ (θ; χ̂) dθ
}
,

which implies,

∇θLN (θ)

=−N∇θḡN (θ; χ̂)′ λ′NWN (θ; χ̂)λN ḡN (θ; χ̂) +

N

Nobs∑
i=1

∇θg̃i (θ; χ̂)′ λ′Nζ
′
NWN (θ; χ̂)λN ḡN (θ; χ̂) ḡN (θ; χ̂)′ λ′NWN (θ; χ̂) ζNλN g̃i (θ; χ̂) +

N2

J
∇θḡN,χ (θ; χ̂)′ λ′NWN (θ; χ̂)λN ḡN (θ; χ̂) ḡN (θ; χ̂)′ λ′NWN (θ; χ̂)λN ḡN,χ (θ; χ̂) Σ̂χ.

By (A.1),

ḡN (θ0; χ̂) = op

(
1√
n

)
,WN (θ0; χ̂) = Op (1) , (A.3)

it is obvious that

N
Nobs∑
i=1

∇θg̃i (θ0; χ̂)′ λ′Nζ
′
NWN (θ0; χ̂)λN ḡN (θ0; χ̂) ḡN (θ0; χ̂)′ λ′NWN (θ0; χ̂) ζNλN g̃i (θ0; χ̂)

=N2Op

(
1√
N

)
op

(
1√
N

)
op

(
1√
N

)
Op

(
1√
N

)
=op (1) .

N2

J
∇θḡN,χ (θ0; χ̂)′ λ′NWN (θ0; χ̂)λN ḡN (θ0; χ̂) ḡN (θ0; χ̂)′ λ′NWN (θ0; χ̂)λN ḡN,χ (θ0; χ̂) Σ̂χ

=NOp (1) op

(
1√
N

)
op

(
1√
N

)
Op (1) = op (1) .

Therefore,

∇θLN (θ0)√
N

=−∇θḡN (θ0; χ̂)′ λ′NWN (θ0; χ̂)
√
NλN ḡN (θ0; χ̂) + op (1)

d→N
(
0, G′θλ

′V −1 (θ0)λG′θ
)
,

where V −1 (θ0) =
(
λΣgλ

′ + γλG′χΣχGχλ
′)−1

and Gθ = ∇θE [gi,t (θ0;χ0)]. This is because from
(A.1), √

NλN ḡ (θ0; χ̂)
d→ N

(
0, λΣgλ

′ + γλG′χΣχGχλ
′) ,
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where Gχ = E [∇χḡ (θ0;χ0)], γ = limN→∞
N
J , λ = limN→∞ λN , Σg = E

[
gi (θ0;χ0) gi (θ0;χ0)′

]
and

∇θḡN (θ0; χ̂)′
p→ ∇θE [gi,t (θ0;χ0)] = Gθ,

WN (θ0; χ̂)
p→V −1 (θ0)

=
{
λE
[
gi (θ0;χ0) gi (θ0;χ0)′

]
λ+ γλE [gi,χ (θ0;χ0)] ΣχE

[
gi,χ (θ0;χ0)′

]
λ′
}−1

=
(
λΣgλ

′ + γλG′χΣχGχλ
′)−1

.

Now turn to the second derivative of the criterion function, which is the Hessian matrix of
Ln (θ). The second order differentiation,

d2
{
tr
[
A (θ)B−1 (θ)

]}
=d
{
−tr

{
ḡN (θ; χ̂)′ λ′NWN (θ; χ̂)λN∇θḡN (θ; χ̂) dθ

}
+

Nobs∑
i=1

tr
{
g̃i (θ; χ̂)′ λ′Nζ

′
NWN (θ; χ̂)λN ḡN (θ; χ̂) ḡN (θ; χ̂)′ λ′NWN (θ; χ̂) ζNλN∇θg̃i (θ; χ̂) dθ

}
+

N2

J
tr
{

Σ̂χḡN,χ (θ; χ̂)′ λ′NWN (θ; χ̂)λN ḡN (θ; χ̂) ḡN (θ; χ̂)′ λ′NWN (θ; χ̂)λN∇θḡN,χ (θ; χ̂) dθ
}}

.

Following the preceding procedure to derive the first-order differentiation,, we can obtain the
form of ∇θθ′Ln (θ). Due to Assumptions 5-9, for any δ > 0, ∇θθ′Ln (θ) is continuous when
‖θ − θ0‖ ≤ δ and we can have

∇θθ′LN (θ0)

N
= −∇θḡN (θ0; χ̂)′ λ′NWN (θ0; χ̂)λN∇θḡN (θ0; χ̂) + op (1) .

Meanwhile, we have

M (θ) = −1

2
E [gi (θ;χ0)]′ λ′W (θ)λE [gi (θ;χ0)] ,

whereW (θ) = V −1 (θ) =
{
λE
[
gi (θ;χ0) gi (θ;χ0)′

]
λ+ γλE [gi,χ (θ;χ0)] ΣχE

[
gi,χ (θ;χ0)′

]
λ′
}−1

.
Then,

∇θθ′M (θ) =− E [∇θgi (θ;χ0)]′ λ′W (θ)λE [∇θgi (θ;χ0)]−
{W (θ)E [gi (θ;χ0)]⊗ Id}E [∇θθ′gi (θ;χ0)]−

− 1

2
E [gi (θ;χ0)]′ λ′∇θθ′W (θ)λE [gi (θ;χ0)]

∇θθ′M (θ0) = −E [gi (θ0,χ0)]′ V −1 (θ0)E [gi (θ0,χ0)] + op (1) .

And thus,
∇θθ′LN (θ0)

N
−∇θθ′M (θ0)

p→ 0.

Then for ε > 0, N > 0, ∃δ1 (ε,N) > 0, ∀θ ∈ {θ : ‖θ − θ0‖ < δ1 (ε,N)}, due to the continuity,

sup
θ

∥∥∥∥∇θθ′LN (θ)

N
− ∇θθ

′LN (θ0)

N

∥∥∥∥ < 1

3
ε.
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∃δ2 (ε) > 0, ∀θ ∈ {θ : ‖θ − θ0‖ < δ2 (ε)}, due to continuity,

sup
θ
‖∇θθ′M (θ)−∇θθ′M (θ0)‖ < 1

3
ε.

And for ε > 0, ∃N (ε, ε) > 0, ∀N > N (ε, ε),

P

{∥∥∥∥∇θθ′LN (θ0)

N
−∇θθ′M (θ0)

∥∥∥∥ < 1

3
ε

}
≥ 1− ε.

Therefore, for any ε > 0, ∀N > N (ε, ε), let δ (ε,N) = min {δ1 (ε,N) , δ2 (ε)}, ∀θ ∈ {θ : ‖θ − θ0‖ < δ (ε,N)},

sup
θ

∥∥∥∥∇θθ′LN (θ)

N
−∇θθ′M (θ)

∥∥∥∥ ≤ sup
θ

∥∥∥∥∇θθ′LN (θ)

N
− ∇θθ

′LN (θ0)

N

∥∥∥∥+ sup
θ
‖∇θθ′M (θ)−∇θθ′M (θ0)‖

+

∥∥∥∥∇θθ′Ln (θ0)

n
−∇θθ′M (θ0)

∥∥∥∥
<

2

3
ε+

∥∥∥∥∇θθ′LN (θ0)

N
−∇θθ′M (θ0)

∥∥∥∥ .
Then{

sup
θ

∥∥∥∥∇θθ′LN (θ0)

N
−∇θθ′M (θ0)

∥∥∥∥ < 1

3
ε

}
⊂

{
sup
θ

∥∥∥∥∇θθ′LN (θ)

N
−∇θθ′M (θ)

∥∥∥∥ < ε

}
,

which implies

P

 sup
‖θ−θ0‖<δ(ε)

∥∥∥∥∇θθ′LN (θ)

N
−∇θθ′M (θ)

∥∥∥∥ < ε

 ≥ 1− ε,

in other words, for ε > 0,

lim sup
n→∞

P

 sup
‖θ−θ0‖<δ(ε)

∥∥∥∥∇θθ′LN (θ)

N
−∇θθ′M (θ)

∥∥∥∥ > ε

 = 0

Therefore, the Lemma 2 in CH (2003) is satisfied. By the Theorem 2 in CH (2003), for the
etimator θ̂ defined in (15), we can have

√
N
(
θ̂ − θ0

)
d→ τ +N (0,Σθ) ,

where

Σθ =
[
G′θλ

′ (λΣgλ
′ + γλG′χΣχGχλ

′)−1
λGθ

]−1
,

Gθ = ∇θE [gi (θ0;χ0)], Gχ = E [∇χgi (θ0;χ0)], γ = limN→∞
N
J , λ = limN→∞ λN , Σg =

E
[
gi (θ0;χ0) gi (θ0;χ0)′

]
, τ = arg infz∈Rd

{∫
Rd ρ (z − u) f (u; 0, G′θλ

′W (θ0)λGθ) du
}

.
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A.3 The proof of Theorem 4.3

Lemma A.1. By the definition of ∆j in (24), ∀θ ∈ Θ,

ḡN (θ; χ̂)− ḡjN (θ; χ̂) = Op (∆j) .

ḡN,χ (θ; χ̂)− ḡjN,χ (θ; χ̂) = Op (∆j) ,

V j
N (θ; χ̂)− VN (θ; χ̂) = Op (∆j) .

Proof: By definition, for any θ ∈ Θ,

ḡN (θ; χ̂) = (ḡtmin (θ; χ̂) , . . . , ḡTr (θ; χ̂))′ =

 1

Ntmin

Ntmin∑
i=1

gi,tmin (θ; χ̂) , . . . ,
1

NTr

NTr∑
i=1

gi,Tr (θ; χ̂)

′ .
Let t ∈ [tmin, Tr], for gi,t (θ;χ) = Cdi,t−Ct

(
Md
i,t, z

d
i,t;θ,χ

)
, gji,t (θ;χ) = Cdi,t−C

j
t

(
Md
i,t, z

d
i,t;θ,χ

)
,

ḡt (θ; χ̂)− ḡjt (θ; χ̂) =
1

Nt

Nt∑
i=1

[
gi,t (θ; χ̂)− gji,t (θ; χ̂)

]
=

1

Nt

Nt∑
i=1

[
Ct

(
Md
i,t, z

d
i,t;θ, χ̂

)
− Cjt

(
Md
i,t, z

d
i,t;θ, χ̂

)]
=

1

Nt

Nt∑
i=1

EPi,t

{[
ct

(
Md
i,t

Pi,t
, zdi,t;θ, χ̂

)
− cjt

(
Md
i,t

Pi,t
, zdi,t;θ, χ̂

)]
Pi,t

}

≤∆j
1

Nt

Nt∑
i=1

EPi,t (Pi,t) = Op (∆j) ,

which implies
ḡN (θ; χ̂)− ḡjN (θ; χ̂) = Op (∆j) .

And similarly, we can also have

ḡN,χ (θ; χ̂)− ḡjN,χ (θ; χ̂) = Op (∆j) .

And thus for,

V j
N (θ; χ̂) =ζN

Nobs∑
i=1

λN g̃
j
i (θ; χ̂) g̃ji (θ; χ̂)′ λ′Nζ

′
N

+
N

J
λN ḡ

j
N,χ (θ; χ̂) Σ̂χḡ

j
N,χ (θ; χ̂)′ λ′N ,
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the first term, since g̃ji (θ; χ̂) and g̃i (θ; χ̂) are continuous and Θ is compact by assumptions,

ζN

Nobs∑
i=1

λN g̃
j
i (θ; χ̂) g̃ji (θ; χ̂)′ λ′Nζ

′
N − ζN

Nobs∑
i=1

λN g̃i (θ; χ̂) g̃i (θ; χ̂)′ λ′Nζ
′
N

=ζNλN

Nobs∑
i=1

[
g̃ji (θ; χ̂) g̃ji (θ; χ̂)′ − g̃i (θ; χ̂) g̃i (θ; χ̂)′

]
λ′Nζ

′
N

=ζNλN

Nobs∑
i=1

[
g̃ji (θ; χ̂) g̃ji (θ; χ̂)′ − g̃ji (θ; χ̂) g̃i (θ; χ̂)′

]
λ′Nζ

′
N+

ζNλN

Nobs∑
i=1

[
g̃ji (θ; χ̂) g̃i (θ; χ̂)′ − g̃i (θ; χ̂) g̃i (θ; χ̂)′

]
λ′Nζ

′
N

=Op (∆j) .

And the second term is similar, which means

V j
N (θ; χ̂)− VN (θ; χ̂) = Op (∆j) .

The Proof of Theorem 4.3: The criterion function for the case using analytical solution
and the one approximated by numerical methods are

LN (θ) = −N
2
ḡN (θ; χ̂)′ λ′NWN (θ; χ̂)λN ḡN (θ; χ̂) ,

and

LjN (θ) = −N
2
ḡjN (θ; χ̂)′ λ′NW

j
N (θ; χ̂)λN ḡ

j
N (θ; χ̂) ,

respectively. By Lemma A.1, if N∆j → 0, as N →∞, for all θ ∈ Θ,

V j
N (θ; χ̂)− VN (θ; χ̂) = Op (∆j) ,

so that [
V j
N (θ; χ̂)

]−1 [
V j
N (θ; χ̂)− VN (θ; χ̂)

]
V −1
N (θ; χ̂) =V −1

N (θ; χ̂)−
[
V j
N (θ; χ̂)

]−1

=Op (1)O (∆j)Op (1)

=Op (∆j) .

So that,

sup
θ∈Θ

{
LjN (θ)− L̃jN (θ)

}
= sup
θ∈Θ

{
−N

2
ḡjN (θ; χ̂)′ λ′NW

j
N (θ; χ̂)λN ḡ

j
N (θ; χ̂) +

N

2
ḡjN (θ; χ̂)′ λ′NWN (θ; χ̂)λN ḡ

j
N (θ; χ̂)

}
= sup
θ∈Θ

{
−N

2
ḡjN (θ; χ̂)′ λ′N

[
W j
N (θ; χ̂)−WN (θ; χ̂)

]
λN ḡ

j
N (θ; χ̂)

}
=NOp (∆j) = Op (N∆j) .
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Therefore, denote W̃N (θ; χ̂) = λ′NWN (θ; χ̂)λN ,

sup
θ∈Θ

∥∥∥LN (θ)− LjN (θ)
∥∥∥

≤ sup
θ∈Θ

∥∥∥LN (θ)− L̃jN (θ)
∥∥∥+ sup

θ∈Θ

∥∥∥LjN (θ)− L̃jN (θ)
∥∥∥

≤ sup
θ∈Θ

∥∥∥∥N2 ḡjN (θ; χ̂)′ W̃N (θ; χ̂) ḡjN (θ; χ̂)− N

2
ḡjN (θ; χ̂)′ W̃N (θ; χ̂) ḡN (θ; χ̂)

∥∥∥∥+

sup
θ∈Θ

∥∥∥∥N2 ḡjN (θ; χ̂)′ W̃N (θ; χ̂) ḡN (θ; χ̂)− N

2
ḡN (θ; χ̂)′ W̃N (θ; χ̂) ḡN (θ; χ̂)

∥∥∥∥+Op (N∆j)

≤N
2

sup
θ∈Θ

∥∥∥ḡjN (θ; χ̂)′ W̃N (θ; χ̂)
∥∥∥ sup
θ∈Θ

∥∥∥ḡjN (θ; χ̂)− ḡN (θ; χ̂)
∥∥∥+

N

2
sup
θ∈Θ

∥∥∥ḡN (θ; χ̂)′ W̃N (θ; χ̂)
∥∥∥ sup
θ∈Θ

∥∥∥ḡjN (θ; χ̂)− ḡN (θ; χ̂)
∥∥∥+Op (N∆j)

=Op (N∆j) .

Therefore, when N∆j → 0, as N → ∞, LN (θ) − LjN (θ)
p→ 0 over Θ. Further, due to the

compactness of Θ and the Taylor expansion,

sup
θ∈Θ

∥∥∥exp [LN (θ)]− exp
[
LjN (θ)

]∥∥∥
= sup
θ∈Θ

‖exp [LN (θ)]‖ sup
θ∈Θ

∥∥∥exp
[
LN (θ)− LjN (θ)

]
− 1
∥∥∥

≤C1 sup
θ∈Θ

∥∥∥exp
(
LN

(
θ̃
)
− LjN

(
θ̃
)) [

LN (θ)− LjN (θ)
]∥∥∥

≤C1 sup
θ∈Θ

∥∥∥exp
(
LN

(
θ̃
)
− LjN

(
θ̃
))∥∥∥ sup

θ∈Θ

∥∥∥[LN (θ)− LjN (θ)
]∥∥∥

≈C1 (1 +Op (N∆j))Op (N∆j)

=Op (N∆j) , (A.4)

where θ̃ is between 0 and θ.∫
Θ

exp
[
LjN (θ)

]
π (θ) dθ −

∫
Θ

exp [LN (θ)]π (θ) dθ

=

∫
Θ

exp
[
LjN (θ)− LN (θ)

]
π (θ) dθ

≤ sup
θ∈Θ

∥∥∥exp [LN (θ)]− exp
[
LjN (θ)

]∥∥∥ ∫
Θ
π (θ) dθ

=Op (N∆j) . (A.5)

Following the proof of Theorem 4.1, we define

J (θ0) = −E [∇θgi (θ0,χ0)]′ V −1 (θ0)E [∇θgi (θ0,χ0)] ,
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and

h ≡
√
N (θ − TN ) , TN = θ0 +

1√
N
UN , UN =

1√
N
J−1 (θ0)∇θLN (θ0) ,

so that, let HN =
{√

N (θ − θ0)− UN : θ ∈ Θ
}

, pN (θ) and pjN (θ) can be transformed into

1√
N
p∗N (h) and 1√

N
p∗jN (h), respectively, where,

p∗jN (h) =
π
(
TN + h√

N

)
exp

[
LjN

(
TN + h√

N

)]
∫
HN

π
(
TN + h√

N

)
exp

[
LjN

(
TN + h√

N

)]
dh

=
π
(
TN + h√

N

)
exp

[
LjN

(
TN + h√

N

)]
Cj

,

p∗N (h) =
π
(
TN + h√

N

)
exp

[
LN

(
TN + h√

N

)]
∫
HN

π
(
TN + h√

N

)
exp

[
LN

(
TN + h√

N

)]
dh

=
π
(
TN + h√

N

)
exp

[
LN

(
TN + h√

N

)]
C

.

The corresponding transformed risk functions of RjN (ξ) and RN (ξ) are denoted as QjN (ζ) and
QN (ζ), respectively, where

QjN (ζ) =

∫
HN

ρ (h+ UN − ζ) p∗jN (h) dh,

QN (ζ) =

∫
HN

ρ (h+ UN − ζ) p∗N (h) dh.

As in Theorem 4.1, the Lemma 1 and Lemma 2 in CH (2003) are satisfied, which implies that
the Theorem 1 and Theorem 2 in their paper hold. So that we have for any 0 ≤ α <∞,∫

HN

‖h‖α |p∗N (h)− p∞ (h)| dh p→ 0,

where

p∞ (h) =

√
|J (θ0)|
(2π)d

exp

(
−1

2
h′J (θ0)h

)
,

and

lim
N→∞

∫
HN

‖h‖α p∞ (h) dh = Cα <∞.

Q∞ (ζ) =

∫
Rd
ρ (h+ UN − ζ) p∞ (h) dh.

33



Therefore,∫
HN

‖h‖α
∣∣∣p∗jN (h)− p∞ (h)

∣∣∣ dh
≤
∫
HN

‖h‖α
∣∣∣p∗jN (h)− p∗N (h)

∣∣∣ dh+

∫
HN

‖h‖α |p∗N (h)− p∞ (h)| dh

=

∫
HN

‖h‖α π
(
TN +

h√
N

) ∣∣∣∣∣∣
exp

[
LjN

(
TN + h√

N

)]
Cj

−
exp

[
LN

(
TN + h√

N

)]
C

∣∣∣∣∣∣ dh+ op (1)

≤
∫
HN

‖h‖α π
(
TN +

h√
N

) ∣∣∣∣∣∣
exp

[
LjN

(
TN + h√

N

)]
Cj

−
exp

[
LN

(
TN + h√

N

)]
Cj

∣∣∣∣∣∣ dh+

∫
HN

‖h‖α π
(
TN +

h√
N

) ∣∣∣∣∣∣
exp

[
LN

(
TN + h√

N

)]
Cj

−
exp

[
LN

(
TN + h√

N

)]
C

∣∣∣∣∣∣ dh+ op (1) .

For the second term, it is obvious that

Cj =

∫
HN

π

(
TN +

h√
N

)
exp

[
LjN

(
TN +

h√
N

)]
dh =

∫
Θ

exp
[
LjN (θ)

]
π (θ) dθ,

C =

∫
HN

π

(
TN +

h√
N

)
exp

[
LN

(
TN +

h√
N

)]
dh =

∫
Θ

exp [LN (θ)]π (θ) dθ.

which implies Cj − C = Op (N∆j) by (A.5) and then for the first term, since N∆j → 0,

∫
HN

‖h‖α π
(
TN +

h√
N

) ∣∣∣∣∣∣
exp

[
LN

(
TN + h√

N

)]
Cj

−
exp

[
LN

(
TN + h√

N

)]
C

∣∣∣∣∣∣ dh
=

∣∣∣∣ 1

Cj
− 1

C

∣∣∣∣ ∫
HN

‖h‖α π
(
TN +

h√
N

)
exp

[
LN

(
TN +

h√
N

)]
dh

=

∣∣∣∣ 1

Cj
− 1

C

∣∣∣∣ ∫
HN

‖h‖α p∞ (h) dh+ op (1)

=Cα

∣∣∣∣ 1

Cj
− 1

C

∣∣∣∣+ op (1) = Op (N∆j) .
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For the second term, by the Taylor expansion and (A.5)

∫
HN

‖h‖α π
(
TN +

h√
N

) ∣∣∣∣∣∣
exp

[
LjN

(
TN + h√

N

)]
Cj

−
exp

[
LN

(
TN + h√

N

)]
Cj

∣∣∣∣∣∣ dh
=
C

Cj

∫
HN

‖h‖α 1

C
π

(
TN +

h√
N

)
exp

[
LN

(
TN +

h√
N

)]
×
∣∣∣∣LjN (TN +

h√
N

)
− LN

(
TN +

h√
N

)
+ op (N∆j)

∣∣∣∣ dh
=Op (1)Op (N∆j)

∫
HN

‖h‖α 1

C
π

(
TN +

h√
N

)
exp

[
LN

(
TN +

h√
N

)]
dh

=Op (1)Op (N∆j)Cα

=Op (N∆j) .

Therefore, ∫
HN

‖h‖α
∣∣∣p∗jN (h)− p∞ (h)

∣∣∣ dh = Op (N∆j) .

By the Assumption 3, ρ (u) ≤ 1 + |u|p and by |a+ b|p ≤ 2p−1 |a|p + 2p−1 |b|p for p ≥ 1. For any
fixed ζ,∣∣∣QjN (ζ)−Q∞ (ζ)

∣∣∣ ≤∫
HN

(1 + ‖h+ UN − ζ‖p)
∣∣∣p∗jN (h)− p∞ (h)

∣∣∣ dh
+

∫
Rd\HN

(1 + ‖h+ UN − ζ‖p) p∞ (h) dh

≤
∫
HN

(
1 + 2p−1 ‖h‖p−1 + 2p−1 ‖UN − ζ‖p−1

) ∣∣∣p∗jN (h)− p∞ (h)
∣∣∣ dh

+

∫
Rd\HN

(
1 + 2p−1 ‖h‖p−1 + 2p−1 ‖UN − ζ‖p−1

)
p∞ (h) dh

=

∫
HN

(
1 + 2p−1 ‖h‖p−1 +Op (1)

) ∣∣∣p∗jN (h)− p∞ (h)
∣∣∣ dh

+

∫
Rd\HN

(
1 + 2p−1 ‖h‖p−1 +Op (1)

)
p∞ (h) dh.

From above discussions,∫
HN

(
1 + 2p−1 ‖h‖p−1 +Op (1)

) ∣∣∣p∗jN (h)− p∞ (h)
∣∣∣ dh = Op (N∆j) ,

and by the exponentially small tails of the normal density,∫
Rd\HN

(
1 + 2p−1 ‖h‖p−1 +Op (1)

)
p∞ (h) dh = op (1) .

Hence, if N∆j → 0, given fixed ζ, QjN (ζ)−Q∞ (ζ)
p→ 0.
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Then, we show that both QjN (ζ) and Q∞ (ζ) are convex, for any given ζ and ζ̃, and α ∈ [0, 1],

QjN

(
αζ + (1− α) ζ̃

)
=

∫
HN

ρ
[
h+ UN − αζ − (1− α) ζ̃

]
pj∗N (h) dh

=

∫
HN

ρ
[
α (h+ UN − ζ) + (1− α)

(
h+ UN − ζ̃

)]
pj∗N (h) dh

≤α
∫
HN

ρ (h+ UN − ζ) pj∗N (h) dh

+ (1− α)

∫
HN

ρ
(
h+ UN − ζ̃

)
pj∗N (h) dh

=αQjN (ζ) + (1− α)QjN

(
ζ̃
)
.

Hence QjN (ζ) is convex. Similarly, Q∞ (ζ) is also convex. Further,

Q∞ (ζ) ≤
∫
HN

(
1 + 2p−1 ‖h‖p−1 + 2p−1 ‖UN − ζ‖p−1

)
p∞ (h) dh

= 1 + 2p−1

∫
HN

‖h‖p−1 p∞ (h) dh+ 2p−1

∫
HN

‖UN − ζ‖p−1 p∞ (h) dh

= Op (1) .

And by the same logic QjN (ζ) = Op (1).
If N∆j → 0, by the convexity lemma of Polard (1991), pointwise convergence entails the

uniform convergence over the compact set B,

sup
ζ∈B

∣∣∣QjN (ζ)−Q∞ (ζ)
∣∣∣ p→ 0.

For Q∞ (ζ) =
∫
Rd ρ (h+ UN − ζ) p∞ (h) dh, it is minimized at ζ∗ = τ + UN = Op (1). And

QjN (ζ) is minimized at
√
N
(
θ̂
j
− θ0

)
. Following CH, the uniform convergence property above

as well as the convexity property imply that
√
N
(
θ̂
j
− θ0

)
= UN + τ + op (1). Combined with

the fact that

UN =
1√
N
J−1 (θ0)∇θLN (θ0)

d→ N (0,Σθ) ,

the results in the theorem follows.

A.4 The Proof of Corollary 4.4

The asymptotic theory is easily obtained from Theorem 4.3. For

Ej
[
N
(
θ − θ̄j

)(
θ − θ̄j

)′∣∣∣∣ ·] =

∫
Θ
N
(
θ − θ̄j

)(
θ − θ̄j

)′
pjN (θ) dθ,

we let

h ≡
√
N (θ − TN ) , TN = θ0 +

1√
N
UN , UN =

1√
N
J−1 (θ0)∇θLN (θ0) ,

36



then

θ =
h√
N

+ TN , θ̄
j

=
h̄j√
N

+ TN , h̄
j =

∫
HN

hp∗jN (h) dh,

so that

θ − θ̄j =
1√
N

(
h− h̄j

)
.

Therefore, ∫
Θ
N
(
θ − θ̄j

)(
θ − θ̄j

)′
pjN (θ) dθ

=

∫
HN

(
h− h̄j

) (
h− h̄j

)′
p∗jN (h) dh

=

∫
HN

hh′p∗jN (h) dh− h̄j h̄j′,

As in Theorem 4.3, if N∆j → 0,
∫
HN
‖h‖α

∣∣∣p∗jN (h)− p∞ (h)
∣∣∣ dh = op (1), which implies

h̄j h̄j′ =

∫
HN

hp∗jN (h) dh

∫
HN

h′p∗jN (h) dh

p→
∫
Rd
hp∞ (h) dh

∫
Rd
h′p∞ (h) dh

=h̄h̄′,

and ∫
HN

hh′p∗jN (h) dh
p→
∫
Rd
hh′p∞ (h) dh.

Therefore, ∫
HN

(
h− h̄j

) (
h− h̄j

)′
p∗jN (h) dh

p→
∫
HN

(
h− h̄

) (
h− h̄

)′
p∗N (h) dh

=J−1 (θ0)

=−∇θθ′M (θ0)

=Σg.

That is, if N∆j → 0 as N →∞,∫
Θ
N
(
θ − θ̄j

)(
θ − θ̄j

)′
pjN (θ) dθ = Σg + op (1) .

B The Details of Estimation and Computation

B.1 The Computation of Bias and Root Mean Square Error

This subsection shows how to compute the bias and RMSE. Assume the true value of the target
parameter x is x0 and {x̂m}Mm=1 is the set of estimates of x in M Monte Carlo replications. The
bias is defined as

Bias (x) =
1

M

M∑
m=1

x̂m − x0.
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The root mean square error is defined as

RMSE (x) =

√√√√ 1

M

M∑
m=1

(x̂m − x0)2.

B.2 The Endogenous Grid Method for the Model (7)

The application of EGM for model (7) is documented in Algorithm B.1.

Algorithm B.1 The Endogenous Grid Method for Dynamic Model (7)

1: Inputs: Optimal consumption at period t+1, cj (−−−→mt+1, zt+1;θ,χ) and the endogenous grid
at period t+ 1, −−−→mt+1.

2: Form an exogenous ascending grid over end-of-period wealth at period t, denoted as
−→
At ={

Akt
}j
k=1

, where Akt > Ak−1
t , ∀k ∈ {2, . . . , j} .

3: for k = 1 to j do

4: Compute cki,t =

{
β0REςt+1,εt+1,zi,t+1

[
v(zt+1;η0)
v(zt;η0)

(Gt+1ςt+1)−ρ cj
(
mk
t+1, zt+1;θ,χ

)]}− 1
ρ

with mk
t+1 =

RAkt
Gt+1ςt+1

+ εt+1.

5: Compute mk
t = ckt +Akt .

6: end for
7: Store the endogenous grid. −→mt =

{
mk
t

}j
k=1

.

8: Store the corresponding optimal consumption at period t. cj (−→mt, zt;θ,χ) =
{
ckt
}j
k=1

9: Ouputs: cj (−→mt, zt;θ,χ), −→mt.

Note:

(i) In Step 4, numerical method is used.

• Eςt+1,εt+1,zi,t+1 is the expectation with respect to ςt+1, εt+1 and zt+1. The expectation
is numerically evaluated by using Gauss-Hermite quadrature method.

• The algorithm solves the model backwards, therefore cj
(
mk
t+1, zt+1;θ,χ

)
is the in-

terpolated value of optimal consumption at period t + 1 to approximate the income
shocks.

(ii) During the EGM step, as in Carroll (2006), the credit constraints are dealt with by setting
the smallest possible end-of-period resources A1

t equal 0. After operating the EGM, due to
the monotonicity of saving, m1

t is the threshold value so that when mt < m1
t , the optimal

consumption ct = mt.

B.3 The details of the estimation procedure for Section 5.1

During the estimation for the model (27), let K1 = 12800, K2 = 3840, K = 2560, δ = 0.5 and
the cutoff value L = −10. The number of grid to solve the model is 100. The perturbation
variance is Σ = diag (0.0001, 0.04), where 0.0001 and 0.04 are for β and ρ, respectively. We use
the case where Nobs = 3000 for illustration.
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Figure B.1: The particle points selected during the estimation

Figure B.2: The contour of the quasi-posterior density function and finally selected particle
points

Figure B.1 plots the particle selected during the estimation procedure. As the process goes
on, the area shrinks very quickly. The area of the first particle selection is wide but starting
from the second selection, the area is very narrow. After the fourth particle points selection, we
collect all the particles and select a subset of them based on the threshold value L. Afterwards,
we uniformly choose K points from the subset. Based on these K selected particles, we construct
a proposal distribution – a mixture normal distribution. At last, we draw K3 samples from the
proposal distribution.

The subset of particles and the contour of the quasi-posterior density are plotted in Figure
B.2. The left panel is the contour plot and the right panel is the contour plot plus the subset of
particles. We can readily find that the particles cover the area with significant density value quite
well, which justifies that the proposal distribution is very close to the quasi-density function.

We can see from the left panel of Figure B.3. The area with significant weights is very
narrow. The algorithm can identify the area quite accurately. After the final selection, we draw
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Figure B.3: The finally selected particle points and samples from proposal distribution

K3 samples from the proposal distribution. From the right panel of Figure B.3, we can find that
the finally selected particles are almost covered by the samples from the proposal distribution.

B.4 The Kalman Filter for the Income Process

When there is not income shock, we have

zit = U + Bxit + yit,

xit = Ct + Dxit−1 + uit,

where U = 0, B = 1, zit = log Yit, xit = logPit, yit = log εit ∼ N
(
0, σ2

ε

)
, Ct = logGt, D = 1,

uit = log ςit ∼ N
(
0, σ2

ς

)
. According to the dataset, Yit is observed household income, Gt , σ2

ε

and σ2
ς are known. The permanent income component Pit is the one that we want to recover.

In the following, the subscripts i is suppressed.
The Kalman filter consists of following three steps. Since the error terms are all normal

and the structure is linear, all the variables in the system are normal distributed. Thus we
only need to filter the mean and variance. Initialize the mean and variance at the beginning,
µ0|0 = E [x0|F0], Σ0|0 = V ar (x0|F0), where F0 is the information set known at time 0. Later
the details of initialization is discussed.

• Initialize µ0|0 and Σ0|0. At the beginning of time t, we have µt−1|t−1, Σt−1|t−1.

• One-step-ahead predictive distribution of xt|Ft−1 ∼ N
(
µt|t−1,Σt|t−1

)
:

µt|t−1 ≡ E [xt|Ft−1] =E [Ct + Dxit−1|Ft−1]

=Ct + Dµt−1|t−1,

Σt|t−1 ≡ V ar [xt|Ft−1] =E [V ar (xt|Ft−1) |Ft−1] + V ar [E (xt|Ft−1) |Ft−1]

=σ2
ς + D2Σt−1|t−1,

where Ft denotes the information known up to time t.
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Figure B.4: The performance of income filter

• One-step-ahead predictive distribution of zt|Ft−1 ∼ N
(
ft|t−1, Qt|t−1

)
:

ft|t−1 ≡ E [zt|Ft−1] =E {E [zt|xt, Ft−1] |Ft−1}
=U + Bµt|t−1,

Qt|t−1 ≡ V ar [zt|Ft−1] =E [V ar (zt|Ft−1) |Ft−1] + V ar [E (zt|Ft−1) |Ft−1]

=σ2
ε + B2Σt|t−1.

• The filtering distribution of xt given Ft. xt|Ft ∼ N
(
µt|t,Σt|t

)
:

µt|t = µt|t−1 + Σt|t−1BQ
−1
t|t−1

(
zt − ft|t−1

)
,

Σt|t = Σt|t−1 − Σt|t−1B
2Q−1

t|t−1Σt|t−1.

If p > 0, and µ is very closed to 0. We can use some threshold value to judge whether there
is a shock or not. Once the shock is in presence at any time t, logPt = log Yt − logµ, in which
case Pt can be directly recovered. Thus, we can set µt|t = log Yt− logµ and Σt|t = 0. Otherwise
if p > 0, and µ = 0, the income here can be treated as missing.

For the values of µ0|0 = E [x0|F0], Σ0|0 = V ar (x0|F0), since log Yit = logPit + log εit, we
simply assume for each household i, the initial value µ0|0 = log Y0 − pµ, where log Y0 is the
population mean of income level at time 0, and accordingly Σ0|0 = σ2

ε .
Figure B.4 reports the performance of the income filter where G26:29 = 1.05, G30:35 = 1.03,

G36:45 = 1.01, G46:65 = 1, Tr = 65, p = 0.03, µ = 10−6, σ2
ς = 0.02, σ2

ε = 0.04. From the
left panel, the 95% area centering at the filtered mean µt|t,i and bounded by ±2Σt|t can cover
Pi,t at majority of the life time. Further, the right panel shows that the difference between the
population means of µt|t and Pi,t are quite small.
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B.5 The Comparison of Different Computations for Optimal Consumption

Here the second example in the Monte Carlo study section is used with Tr = 65 to compare
the performance of different computation methods for the optimal consumption level Ci,t for
household i at age t. One is to simulate numerous income sample paths and compute the
optimal consumption at every path at every age. At each age we collect the consumptions of
all households and compute sample mean. This is the approach proposed by GP. We call it as
’GP’ and it can be expressed by

CGPi,t = E

[
ct

(
Md
i,t

Pi,t

)
Pi,t

]
=

1

G

G∑
g=1

ct

(
Md
i,t

P
(g)
i,t

)
P

(g)
i,t , for each i, t,

Ei

{
E

[
ct

(
Md
i,t

Pi,t

)
Pi,t

]}
=

1

Nt

Nt∑
i=1

GGPi,t ,

where
{
P (g)

}66

t=26
is the permanent income component from t = 26 to t = 66 at gth simulated

income path.
The other is to treat the filtered mean µt|t,i from the Kalman income filter, as logPi,t, which

is used by Jørgensen (2017). We call this approach as ‘J’ and it can also expressed by

CJi,t = ct

(
Md
i,t

µt|t,i

)
µt|t,i, for each i, t,

Ei

[
ct

(
Md
i,t

µt|t,i

)
µt|t,i

]
=

1

Nt

Nt∑
i=1

GJi,t,

The proposed approach in equation (9) is denoted as ‘L’. Given Nobs = 1500, we compare
these three computation approaches, which is reported in Figure B.5. The number of simulated
paths for ‘GP’ is 1000. From the following figures, it is obvious ’GP’ does not approximate the
population mean of consumption profile quite well even when sample path is 1000. ’J’ is close
to the population mean, similar to ’L’.

For further comparison, we use the following statistics to compare the three approaches,

dist =

√√√√ 1

T

T∑
t=1

(
1

N

N∑
i=1

Cdi,t −
1

N

N∑
i=1

Ca
i,t

)2

, a = GP, J, L.

The values of the statistics are reported in Table B.1. It is apparent that ’L’ has the smallest
distance from the population mean of consumption profile in all cases. As the sample size
increases, the distance of ’L’ decreases dramatically. But the other two approaches remains the
same magnitudes.

Besides, we change the value of ρ into 0.5, which is the same as GP. Following Figure B.5,
we draw the corresponding figures in Figure B.6 which shows that ’L’ is better.
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Figure B.5: The computed consumption profiles when Nobs = 1500,ρ = 2

Table B.1: The values of the statistics for three approaches

GP J L

Nobs = 1500 6.5382× 10−4 7.2569× 10−5 2.8096× 10−5

Nobs = 3000 6.8139× 10−4 7.1134× 10−5 1.3468× 10−5

Nobs = 6000 2.4233× 10−3 6.6381× 10−5 9.9386× 10−6

Figure B.6: The computed consumption profiles when Nobs = 6000,ρ = 0.5
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