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Abstract

We develop an extension of Luce’s random choice model that incorporates a role for

the association of alternatives. Each alternative is characterized by a salience value, a

Luce value, and its associated alternatives. The salience value captures the alternative’s

ability to attract the decision maker’s attention, and the Luce value measures the

alternative’s desirability. The decision maker is first attracted by some alternative

according to a salience-based Luce-type formula, and then chooses among its associated

alternatives according to another desirability-based Luce-type formula. While retaining

the simplicity of the Luce rule, the theory accommodates some well-known behavioral

phenomena in individual choice, such as the attraction effect (violations of regularity),

and violations of stochastic transitivity.
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1 Introduction

In both experimental and market settings, individual choice responses typically exhibit
variability; see for example, Sippel (1997), McFadden (2001), and Manzini, Mariotti, and
Mittone (2010). This paper studies a random choice model, in which we assume the choice
responses to be given by a probability distribution ρ that indicates the probability ρ(A′, A)
that when the possible alternatives faced by the decision maker are the alternatives in A,
some alternative in A′ is chosen, as in the seminal work of Luce (1959).1

In the celebrated Luce model, each alternative x is characterized by a Luce value vx
that measures the alternative’s desirability. The probability of choosing x from an alternative
set A containing x is

ρ({x}, A) := vx∑
y∈A vy

.

Despite many attractive features, there are well-documented violations of the Luce model.
In this paper, we develop an extension of Luce’s random choice model that incorporates a
role for the association of alternatives. In an associationistic Luce rule, each alternative x is
characterized by a salience value, a Luce value, and the set of alternatives that are associated
with x. The salience value captures the alternative’s ability to attract the decision maker’s
attention. As in the Luce model, the Luce value measures the alternative’s desirability. The
decision maker is first attracted by some alternative according to a salience-based Luce-type
formula, and then chooses among its associated alternatives according to another desirability-
based Luce-type formula. Our model reduces to the Luce model when all alternatives are
associated with each other.

We borrow the term association from the philosophy and psychology literature. As noted
in Mandelbaum (2016), “associationism” is a certain arationality of thought: a creature’s
mental states are associated because of some facts about its causal history, and having these
mental states associated entails that bringing one of a pair of associates to mind will, ceteris
paribus, ensure that the other also becomes activated. In our setting, association of alternatives
means that, even if the decision maker is not first attracted by alternative x, as long as the
decision maker is attracted by some alternative that is associated with x, the decision maker
still considers x when she eventually makes a choice.

1Also see Gul, Natenzon, and Pesendorfer (2014), Manzini and Mariotti (2014), Echenique, Saito, and
Tserenjigmid (2014), Brady and Rehbeck (2016), Yildiz (2016), and Kovach (2016), etc.
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This type of decision procedure is ubiquitous in daily life. An investor is attracted
by a particular automobile manufacturer (possibly due to prior knowledge). But when she
compares within the automobile manufacturing industry, she might eventually invest in
another automobile manufacturer, which has stronger fundamentals. A shopper is attracted
by a recently launched handbag of a luxury brand (possibly through advertisement). But
when she visits the store and compares the various handbags, she might eventually purchase
a different handbag, which fits her even better. A foodie is attracted by a spicy dish at
a Michelin restaurant (possibly recommended by a friend). But when she dines there and
compares the various choices from the menu, she might eventually order a non-spicy dish,
which suits her taste even better.

The examples above suggest specific choice of association. It seems natural that all
automobile manufacturers (resp. all handbags in the store, all dishes in the restaurant) are
associated with each other. The difficulty is that the designation of association is rarely
clear-cut. Consider an alternative set with three alternatives: red bus, yellow bus, and
red train. The decision maker may associate the yellow bus with the red bus (same means
of transportation), or associate the red train with the red bus (same color), or associate
both the yellow bus and the red train with the red bus (all three alternatives are means of
transportation). Therefore, how the decision maker associates one alternative with another
cannot be decided based on the physical characteristics of the alternatives. Whether two
alternatives are associated with each other is subjective, and must be derived from the choice
data. We formally define the association of alternatives in Section 4.

While retaining the simplicity of the Luce rule, the theory can explain some well-
known violations of the Luce model, such as the attraction effect (violations of regularity),
and violations of stochastic transitivity. In what follows, we illustrate how the theory
accommodates violations of regularity.2 Regularity asserts that when an alternative is
added to an alternative set, the choice probability of the original members of the set cannot
increase.3 Although regularity seems innocuous, this property conflicts with a substantial
body of evidence, most notably the attraction effect. The following is a modification of an
example in Simonson and Tversky (1992).

2A fuller discussion is contained in Section 5.
3Regularity is necessarily satisfied in many random choice models including the Luce rule (Luce (1959)),

the elimination-by-aspects rule (Tversky (1972)), the attribute rule (Gul, Natenzon, and Pesendorfer (2014)),
and the random consideration set rule (Manzini and Mariotti (2014)).
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Example 1. Let X = {x, y, z}. Alternatives x and z are different variants of the same
good where x is high quality and expensive good, and z is a more expensive version of
x. Alternative y is of a different brand (low quality and cheap good). We might have
ρ({x}, {x, y}) < ρ({x}, {x, y, z}), exhibiting attraction effect (violations of regularity).

In Example 1, since x and z are different variants of the same good, we may assume
that x and z are associated with each other. Also assume that y and z are not associated
with each other. Furthermore, it is plausible that x is more desirable (higher Luce value)
than z, since z is a more expensive version of x. On the one hand, the addition of z to
{x, y} decreases the probability that the decision maker is first attracted by x and y. On
the other hand, when the decision maker is attracted by z, she still considers x, but not y,
when she eventually makes a choice. If x has a sufficiently high Luce value relative to z, then
the addition of z increases the probability of x being chosen. Hence, our model allows for
violations of the regularity property.

This paper joins a growing literature that studies random choice. The closest to our
model in terms of representation is the attribute rule (Gul, Natenzon, and Pesendorfer (2014)).
They interpret alternatives as bundles of attributes. An attribute value maps attributes
to positive reals, and measures the desirability of the attributes.4 The decision maker is
first attracted by some attribute from all perceived attributes according to an attribute-
value-based Luce-type formula, and then randomly chooses an alternative containing the
selected attribute. Consider an investor who is contemplating an investment in automobile
manufacturer BMW and several other companies. If we add another automobile manufacturer
Porsche in the alternative set, this never increases the probability of BMW being considered
when the investor eventually makes a choice. At best, Porsche does not introduce attributes
that are non-existent in the original alternative set, in which case the probability of BMW
being considered when the investor eventually makes a choice remains unchanged.

In our model, the decision maker is randomly attracted by some alternative rather
than some attribute, and then randomly chooses from its associated alternatives. In the
BMW-Porsche example, an investor is attracted by each company with certain probability
(possibly due to prior knowledge of the companies, transaction history of the company stocks,

4More formally, an attribute set Z is an arbitrary index set, and each element of Z is an attribute. An
attribute value is a function ω : Z → R++. Note that the attribute value only depends on the attribute itself,
and is independent of the alternatives that contain the attribute.
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or recommendations by a financial advisor). We hasten to stress that the addition of Porsche
increases the probability of BMW being considered when the investor eventually makes a
choice, if BMW and Porsche are associated with each other. When she is first attracted by
Porsche, she still considers BMW when she eventually makes the investment decision.

Section 2 presents the basics of the model. Section 3 introduces the axiom of additivity
of relative probabilities, and shows that the Luce rule is the only choice rule that satisfies
additivity of relative probabilities. Section 4 presents the associationistic Luce rule. We
formally define the association of alternatives, using a revealed stochastic preference approach.
We weaken the axiom of additivity of relative probabilities. Theorem 2, our main result, shows
that the associationistic Luce rule is the only choice rule that satisfies the weak version of
additivity of relative probabilities and an additional transitivity axiom. Section 5 applies the
theory to explain the attraction effect (violations of regularity), and violations of stochastic
transitivity. We also show that the associationistic Luce rule satisfies a property that we call
attraction transitivity. Section 6 compares the associationistic Luce rule to other models in
the literature. The appendix contains proofs omitted from the main body of the paper.

2 Preliminaries

We work with any arbitrarily fixed nonempty finite set X, which can be viewed as the
universal set of available alternatives. Let A be a domain of alternative sets which are subsets
of X. We assume that the domain satisfies the following richness condition: A ∈ A for all
A containing four alternatives, and B ∈ A whenever B ⊂ A and A ∈ A. Let A+ = A\∅.
The elements of A+ are viewed as feasible sets that a decision maker may need to choose
an alternative from. We use A,B,C, . . . to denote alternative sets, and x, y, z, . . . to denote
alternatives. Throughout the rest of the paper, unless it leads to confusion, we abuse the
notation by suppressing the set delimiters, e.g., writing x rather than {x}. To simplify the
statements below, we use the following notational convention:

AB := A ∪B,

xA := x ∪ A,

xy := x ∪ y.

Definition 1. A random choice rule is a map ρ : A×A+ → [0, 1] such that:
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i) for all A ∈ A+, ρ(·, A) is additive, and ρ(A,A) = 1;

ii) for all A ∈ A+ with |A| ≥ 2 and x ∈ A, ρ(x,A) ∈ (0, 1).

The interpretation is that ρ(A′, A) denotes the probability that when the possible
alternatives faced by the decision maker are the alternatives in A, some alternative in A′ is
chosen. Additivity is the requirement that ρ(·, A) is a probability. Equation ρ(A,A) = 1 is
the feasibility constraint; ρ must choose among alternatives available in A. The constraint
ρ(x,A) ∈ (0, 1) says that the random choice rule is non-degenerate; that is, each alternative
x in the feasible set A is chosen with positive probability.

We write ρ(x|A) rather than ρ(x,A), and write ρ(A′|A) rather than ρ(A′, A). In an
alternative set C that contains A and B, we denote the relative probability of choosing
alternatives in A and B conditional on C as follows:

β(A,B|C) = ρ(A|C)
ρ(B|C) .

For all pairwise disjoint alternative sets A,B,D ∈ A+, we call β(A,B|ABD)− β(A,B|AB)
the impact of D on the relative probability of choosing A and B.

3 Luce Rule

The Luce rule is a well-known behavioral optimization model that can be described as follows.
Let v : A+ → R++, and denote v(x) by vx. Such a function v is a Luce value if it is additive.
That is, for all A ∈ A+,

v(A) =
∑
x∈A

vx.

Call the choice rule ρ a Luce rule if there exists a Luce value v such that

ρ(x|A) = vx
v(A) (l)

whenever x ∈ A ∈ A+. We say that the Luce value v represents ρ if equation (l) holds for all
such x,A.

Luce (1959) proves that a choice rule ρ is a Luce rule if and only if it satisfies Luce’s
independence of irrelevant alternatives (IIA) axiom: for all pairwise disjoint alternative sets
A,B,C ∈ A+,

β(A,B|ABC) = β(A,B|AB).
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In words, Luce’s IIA axiom says that for all disjoint alternative sets A,B and C, C has
no impact on the relative probability of choosing A and B. It is a simple form of menu
independence.

In a Luce rule, the relative probability of choosing AB and C conditional on ABC

hinges upon the desirability of the alternatives in AB relative to that of the alternatives in
C.5 Since the desirability of the alternatives in AB can be decomposed into the desirability
of the alternatives in A and the desirability of the alternatives in B, the relative probability
of choosing AB and C conditional on ABC is the sum of two components: the relative
probability of choosing A and C conditional on AC, and the relative probability of choosing
alternatives in B and C conditional on BC. We introduce the following axiom of additivity
of relative probabilities (ARP).

Axiom ARP - Additivity of Relative Probabilities: For all pairwise disjoint alterna-
tive sets A,B,C ∈ A+, β(AB,C|ABC) = β(A,C|AC) + β(B,C|BC).

Axiom Weak ARP does not claim that B has no impact on the relative probability of
choosing A and C per se (or that A has no impact on the relative probability of choosing
B and C). Rather, the axiom says that these two impacts cancel out. Having said that,
Axiom ARP places virtually no restrictions on the alternative sets A,B and C. The following
theorem shows that Axiom ARP is another probabilistic form of Luce’s IIA axiom, and the
Luce rule is the only choice rule that satisfies Axiom ARP.

Theorem 1. A choice rule is a Luce rule if and only if it satisfies Axiom ARP.

4 Associationistic Luce rule

Despite many attractive features, there are well-documented violations of the Luce model.
In this section, we develop an extension of Luce’s random choice model that incorporates a
role for the association of alternatives. In the associationistic Luce rule, each alternative is
characterized by a salience value, a Luce value, and its associated alternatives. The salience
value captures the alternative’s ability to attract the decision maker’s attention. As in the
Luce model, the Luce value measures the alternative’s desirability. The decision maker is

5Similarly, the relative probability of choosing A (resp. B) and C hinges upon the desirability of the
alternatives in A (resp. B) relative to that of the alternatives in C.
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first attracted by some alternative according to a salience-based Luce-type formula, and then
chooses among its associated alternatives according to another desirability-based Luce-type
formula.

Salience value: A salience value is a function γ : A+ → R++, and captures the
alternative’s ability to attract the decision maker’s attention. Again, we write γx rather than
γ(x). Like Luce value, we require γ to be additive. That is, for all A ∈ A+,

γ(A) :=
∑
x∈A

γx.

Association of alternatives: We say that two alternatives x and y are associated
with each other if whenever the decision maker is first attracted by y, she also considers x
(given that x is in the feasible set) when she eventually makes a choice. In other words, even
if the decision maker is not first attracted by alternative x, as long as the decision maker is
attracted by some alternative that is associated with x, the decision maker still considers x
when she eventually makes a choice.

Whether two alternatives are associated with each other is subjective, and must be
derived from behavior. It cannot be decided based on the physical characteristics of the
alternatives, and therefore, it is a property of the choice rule and not of the alternatives. We
use the choice data to reveal whether two alternatives are associated in the following way.
We say that two alternatives x and y are (revealed to be) associated if the relative probability
of choosing x and y is menu-independent; that is, the relative probability of choosing x and
y is the same in any alternative set A that contains x and y. More formally,

Definition 2. Two alternatives x and y are associated with each other if in any alternative
set A that contains x and y, β(x, y|A) = β(x, y|xy).

We write x ∼ y if x and y are associated with each other, and x � y if otherwise. It is
easy to see that the relation ∼ is symmetric and reflexive. We write A ≈ B if for any x ∈ A
and y ∈ B, we have x ∼ y. We say that an alternative set A is a collection of associated
alternatives if x, y ∈ A implies x ∼ y. In this case, we write A ∈ L. As the following example
demonstrates, the relation ∼ is not necessarily transitive, and therefore, is not an equivalence
relation.

Example 2. Let X = {x, y, z}. The random choice rule ρ is given by

ρ(x|x) = ρ(y|y) = ρ(z|z) = 1,

8



ρ(x|xy) = ρ(y|xy) = ρ(y|yz) = ρ(z|yz) = 1
2 ,

ρ(x|xyz) = ρ(y|xyz) = ρ(z|xyz) = 1
3 ,

ρ(x|xz) = 1
3 , ρ(z|xz) = 2

3 .

It is straightforward to verify that x ∼ y, y ∼ z, and yet x � z.

Next we define the notion of connectedness of two alternatives sets: when A and B have
elements in common, they are connected. Even if A and B have no elements in common,
they are connected if there are elements of A and B that are associated with each other.

Definition 3. A and B are disconnected if whenever x ∈ A, y ∈ B, we have x � y.

We write A ⊥ B if A and B are disconnected.
Our first axiom asserts that the relation ∼ is transitive; that is, if x and y are associated

with each other, and y and z are associated with each other, then x and z are associated
with each other.

Axiom T - Transitivity : The relation ∼ is transitive.

Axiom T implies that we can partition the universal set of alternatives X in the
following way: {Pi}ni=1, such that i) Pi ∈ L, for any i = 1, 2, . . . , n ; and ii) Pi ⊥ Pj for any
i, j = 1, 2, . . . , n and i 6= j.

Suppose that AB and C are disconnected. If the decision maker is first attracted by the
alternatives in C, she does not consider the alternatives in AB when she eventually makes a
choice. Similarly, if the decision maker is first attracted by the alternatives in AB, she does
not consider the alternatives in C when she eventually makes a choice. In other words, the
relative probability of choosing AB and C conditional on ABC hinges upon the ability of the
alternatives in AB to attract the decision maker’s attention relative to that of the alternatives
in C.6 Since the ability of the alternatives in AB to attract the decision maker’s attention
can be decomposed into the ability of the alternatives in A to attract the decision maker’s
attention and that of the alternatives in B, the relative probability of choosing AB and C
conditional on ABC is the sum of two components: the relative probability of choosing A
and C conditional on AC, and the relative probability of choosing alternatives in B and C
conditional on BC. More formally,

6Similarly, the relative probability of choosing A (resp. B) and C hinges upon the ability of the alternatives
in A (resp. B) to attract the decision maker’s attention relative to that of the alternatives in C.
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Axiom Weak ARP - Weak Additivity of Relative Probabilities : If A ∩B = ∅ and
AB ⊥ C, then β(AB,C|ABC) = β(A,C|AC) + β(B,C|BC).

Mathematically, Axiom Weak ARP is a weakening of Axiom ARP. However, the
rationale for the two axioms is different. In a Luce rule, the relative probability is solely
driven by the desirability of the alternatives. In contrast, in an associationistic Luce rule,
in the case that AB and C are disconnected, the relative probability is solely driven by
the ability of the alternatives to attract the decision maker’s attention. Consequently, this
weak version requires additivity of relative probability only for the case in which AB and C
are disconnected. We hasten to stress that Axiom Weak ARP does not claim that, for C
disconnected with AB, B has no impact on the relative probability of choosing A and C (or
that A has no impact on the relative probability of choosing B and C). Rather, the axiom
says that these two impacts cancel out.

Associationistic Luce rule: For a partition of X and x ∈ X, we denote by Px the
block that contains x. Call the choice rule ρ an associationistic Luce rule if there exists a
partition (Pi)ni=1 of X, a salience value γ, and a Luce value v such that

ρ(x|A) = γ(A ∩ Px)
γ(A)

v(x)
v(A ∩ Px)

(a)

whenever x ∈ A ∈ A+. We say that ((Pi)ni=1, γ, v) represents ρ if equation (a) holds for all
such x,A. Figure 1 illustrates the associationistic Luce rule.

P1 P2 · · · Pn

x

A

Figure 1: The universal set of alternatives X is depicted as the outermost rectangle. The
feasible set A that the decision maker needs to choose an alternative from is depicted as
the ellipse. The partition (Pi)ni=1 of X are depicted as the smaller rectangles marked by
P1, P2, . . . , Pn. We have ρ(x|A) = γ(A∩P1)

γ(A)
v(x)

v(A∩P1) .

We show that the associationistic Luce rule is the only choice rule that satisfies Axiom
T and Axiom Weak ARP. Formally, we prove a stronger result. Consider the following axiom.
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Axiom Weak ARP* : If A ∩ B = ∅ and AB ⊥ C where C ∈ L, then β(AB,C|ABC) =
β(A,C|AC) + β(B,C|BC).

It is easy to see that Axiom ARP implies Axiom ARP*. The following theorem shows
that the associationistic Luce rule is the only choice rule that satisfies Axiom T and Axiom
Weak ARP*.

Theorem 2. A choice rule is an associationistic Luce rule if and only if it satisfies Axiom
T and Axiom Weak ARP*.

In what follows, we discuss the uniqueness of the representation. Consider the following
example.

Example 3. Let X = {x, y, z, w}. Suppose that it is revealed from the choice data that
x and y are associated with each other, z and w are associated with each other, and that
({{x, y}, {z, w}}, γ, v) represents choice rule ρ, where γx = γz = γw = 1, γy = 2, vx = vw = 1,
and vy = vz = 2. In this example, although x and y are associated with each other, it is easy
to verify that β(x, z|xyz) = β(x, z|xz), and β(x,w|xyw) = β(x,w|xw). In other words, y has
no impact on the relative probability of choosing x and z (or w). Note that this is also the case
if y is in a different block from x and z. Indeed, one can construct ({{x}, {y}, {z, w}}, γ′, v′)
that also represents ρ. In particular, γ′x = γ′z = γ′w = 1, γ′y = 2, v′x = v′y = v′w = 1, and
v′z = 2.

We say that x ∈ X is an isolated alternative if i) for any y ∈ X, y � x; or ii) for any
y ∼ x where y 6= x, and z � x, we have β(x, z|xyz) = β(x, z|xz). Denote the set of isolated
alternatives under choice rule ρ by Sρ. The following theorem shows that the partition
structure is unique in X\Sρ. In Example 3, Sρ = {x, y}. This theorem implies that, for any
((Pi)ni=1, γ, v) that represents ρ, {z, w} is a block of (Pi)ni=1.

Theorem 3. If ((Pi)ni=1, γ, v) represents choice rule ρ, then either Pi ∩ Sρ = ∅ or Pi ⊂ Sρ

for any i ∈ {1, 2, ..., n}. Furthermore, if both ((Pi)ni=1, γ, v) and ((P ′j)mj=1, γ
′, v′) represent ρ,

P ′i ⊂ X\Sρ implies that P ′i is a block of (Pi)ni=1 (and vice versa).

Fix an partition of X that represents ρ, it is easy to see that the salience value γ is
unique up to a positive multiplicative constant, and the Luce value v is unique up a positive
multiplicative constant within each block.
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5 Anomalies

This section illustrates how the associationistic Luce rule accommodates some well-known
violations of the Luce model, such as the attraction effect (violations of regularity), and
violations of stochastic transitivity. Throughout this section, we assume that the decision
maker follows the associationistic Luce rule. Note that when all alternatives are associated
with each other, the associationistic Luce rule reduces to the Luce rule. Consequently, the
data can not exhibit any violations of the Luce model. For simplicity of exposition, we shall
exclude the discussion of this case.7

5.1 Violation of Regularity - Attraction Effect

The associationistic Luce rule can accommodate violations of regularity. We focus on the
attraction effect, a well-known violation of regularity. As in Rieskamp, Busemeyer, and
Mellers (2006), the attraction effect (violations of regularity) can be formalized as follows:

ρ(x|xyz) > ρ(x|xy).

In words, the addition of a third alternative z to the alternative set xy increases the probability
of x being chosen. Strong evidence of this phenomenon has been found in many studies in
psychology and marketing, in different contexts, and in both laboratory and field experiments;
see for example, Huber, Payne, and Puto (1982), Simonson and Tversky (1992), and Doyle,
O’Connor, Reynolds, and Bottomley (1999).

In this subsection, we show that the associationistic Luce rule captures the attraction
effect. Consider the following example.

Example 4. Let γx = 1, γy = γz = 2, and vx = vy = 2, vz = 1, where x and z are in the
same block, y is in a different block. We have

ρ(x|xyz) = γx + γz
γx + γy + γz

vx
vx + vz

= 2
5 ,

and ρ(x|xy) = γx
γx + γy

= 1
3 ,

7Note that it is never revealed from the choice data that x ⊥ y for any x and y. Suppose to the
contrary that it is revealed from the choice data that x ⊥ y for any x and y. For any alternative set A that
contains alternatives z and w, we have β(z, w|A) = β(z, w|zw) = γz

γw
. Therefore, z and w are (revealed to be)

associated with each other. We arrive at a contradiction.
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exhibiting attraction effect.

The following proposition provides a necessary and sufficient condition for the attraction
effect.

Proposition 1. The following two statements are equivalent:
i) ρ(x|xyz) > ρ(x|xy);
ii) x and z are in the same block, y is in a different block, and vx

vz
> γx

γz

γx+γy+γz

γy
.

Proposition 1 summarizes the underlying logic for how the associationistic Luce rule can
account for the attraction effect. Suppose that x and z are associated with each other, but x
and y are not associated with each other. On the one hand, the addition of z decreases the
probability that the decision maker is first attracted by x and y. On the other hand, when
the decision maker is first attracted by z, she still considers x, but not y, when she eventually
makes a choice. Therefore, the probability of y being chosen necessarily decreases. If x has a
sufficiently high Luce value relative to z, then the addition of z increases the probability of x
being chosen, exhibiting attraction effect.

The next example builds upon Example 1 from the introduction.

Example 5 (Continued from Example 1). Recall that alternatives x, z and w are different
variants of the same good where x is high quality and expensive good, z is a more expensive
version of x. Alternative y is of a different brand (low quality and cheap good). We might
have ρ(x|xyz) > ρ(x|xy), exhibiting attraction effect. Now we introduce another alternative
w, which is an even more expensive version of z. Again, we might have ρ(z|yzw) > ρ(z|yz),
exhibiting attraction effect.

In Example 5, the addition of z to xy “helps” increase the probability of x being chosen,
and the addition of w to yz “helps” increase the probability of z being chosen. In this case, it
seems natural that the addition of w to xy should “help” increase the probability of x being
chosen. We introduce the following property that we call attraction transitivity.

Definition 4 (Attraction transitivity). For any x, y, z, w ∈ X, ρ(x|xyz) > ρ(x|xy) and
ρ(z|yzw) > ρ(z|yz) imply ρ(x|xyw) > ρ(x|xy).

It is easy to see that the our model satisfies attraction transitivity.

Proposition 2. The associationistic Luce rule satisfies attraction transitivity.
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5.2 Stochastic Intransitivity

Several psychologists, starting from Tversky (1969), have argued that choices may fail to be
transitive. When choice is stochastic, there are many ways to define analogues of transitive
behavior in deterministic models. A weak such analogue is the following:

Definition 5 (Weak Stochastic Transitivity). For any x, y, z ∈ X, ρ(x|xy) ≥ 1
2 and ρ(y|yz) ≥

1
2 imply ρ(x|xz) ≥ 1

2 .

Rieskamp, Busemeyer, and Mellers (2006) provide a detailed review of evidence
suggesting that choice rules may violate this property. Example 6 below illustrates how the
associationistic Luce rule can account for violations of weak stochastic transitivity, and thus
of the stronger version:

Definition 6 (Strong Stochastic Transitivity). For any x, y, z ∈ X, ρ(x|xy) ≥ 1
2 and

ρ(y|yz) ≥ 1
2 imply ρ(x|xz) ≥ max{ρ(x|xy), ρ(y|yz)}.

Example 6. Let vx > vy > vz and γy > γz > γx, where x and y are in the same block, z is
in a different block. We have

ρ(x|xy) = vx
vx + vy

>
1
2 ,

ρ(y|yz) = γy
γy + γz

>
1
2 ,

but also
ρ(x|xz) = γx

γx + γz
<

1
2 ,

violating weak stochastic transitivity.

In Example 6, since x and y are associated with each other, in the binary choice between
x and y, no matter which alternative the decision maker is attracted by in the first stage,
she considers both alternatives in the second stage. Since x is more desirable (higher Luce
value), she chooses x more frequently than y. Since y and z are not associated with each
other, in the binary choice between y and z, the decision maker chooses the alternative that
attracts her in the first stage. Since y is more salient, she chooses y more frequently than z.
By similar reasoning, in the binary choice between x and z, the decision maker chooses z
more frequently than x.

The key for the violations of weak stochastic transitivity is that the ordering of the
salience value γ and the ordering of the Luce value v are reversed for some pair of alternatives.

14



It is easy to check that if the ordering of the salience value γ weakly agrees with the ordering
of the Luce value v,8 the associationistic Luce rule satisfies weak stochastic transitivity.

6 Comparison to Related Models

In this section, we consider how the associationistic Luce rule compares to other models in the
literature. Block and Marschak (1960) consider a class of stochastic choice functions known
as random utility models. A random utility model is described by a probability measure over
preference orderings, where the agent selects the maximal alternative available according to
the randomly assigned preference ordering. The Luce rule is a special case of random utility
models. Random utility models necessarily obey the regularity condition. Therefore, the
associationistic Luce rule is not nested in random utility models.

Gul, Natenzon, and Pesendorfer (2014) introduce the attribute rule where they interpret
alternatives as bundles of attributes. The decision maker first randomly chooses an attribute
from all perceived attributes, and then randomly chooses an alternative containing the
selected attribute. The attribute rule is a random utility model (they further show that the
set of attribute rules and random utility maximizers are essentially the same). Therefore, the
associationistic Luce rule and the attribute rule are not equivalent from the discussion of
random utility models.

Manzini and Mariotti (2014) axiomatize the random consideration set rule, where the
source of choice errors is the decision maker’s failure to consider all feasible alternatives.
While the preference over the alternatives is deterministic, each alternative is considered with
a certain probability. Brady and Rehbeck (2016) examine the role of stochastic feasibility
in consumer choice using a random conditional choice set rule (RCCSR).9 They show that
RCCSR generalizes the random consideration set rule of Manzini and Mariotti (2014). Both
models are incompatible with the Luce model, as they necessarily violate Luce’s IIA axiom
when A ∈ A and |A| ≥ 3, since the ratio of the probability of choosing the most preferred
alternative over the probability of choosing the least preferred alternative necessarily decreases

8More formally, (γx − γy)(vx − vy) ≥ 0 for any x and y. In words, this condition says that a more salient
alternative is also more desirable.

9Manzini and Mariotti (2014) assume that the probabilities of each alternative being considered are
independent, whereas Brady and Rehbeck (2016) model feasibility to permit correlation in availability of
alternatives.
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once the middle ranked alternative is removed from the alternative set. The associationistic
Luce rule, in contrast, includes the Luce rule as a special case.

Echenique, Saito, and Tserenjigmid (2014) develop the perception-adjusted Luce model
(PALM). In this model, a decision maker is described by a weak order and a utility function.
She perceives each element of the alternative set sequentially according to the perception
priority. Each perceived alternative is chosen with probability described by a function that
depends on utility according to a Luce-type formula. The perception priority partitions the
alternative set, where each block contains alternatives with the same perception priority.
Note that two alternatives are associated with each other in our model, if and only if the two
alternatives have the same perception priority in the PALM. Consider any alternative set xy,
where x and y are not associated with each other. Adding an alternative z which is neither
associated with x nor y will not change the relative probability of choosing x and y in our
model. However, the perception priority of z is not well defined in the PALM; see Echenique,
Saito, and Tserenjigmid (2014, Section 3). Therefore, the associationistic Luce rule is not
nested in the PALM. Lastly, we note that there are models which are both a PALM and an
associationistic Luce rule, such as the Luce model.

A Appendix

A.1 Preparatory Lemmas

This subsection contains several lemmas that are used to prove Theorem 1 and Theorem 2.
Lemmas 1 - 4 are purely arithmetic.

Lemma 1. If a, b, c, d, e, f ∈ (0, 1) and

a+ b+ c = 1
1− a
a

= d

1− d + 1− e
e

;

1− b
b

= e

1− e + 1− f
f

;

1− c
c

= f

1− f + 1− d
d

,

then
a

b
= e

1− e.
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Proof. Rearranging the three equations, we have

a+ b

1− a− b = 1
1−a
a
− 1−e

c

+ 1
1−b
b
− e

1−e
,

and

a2e2 + 2abe2 + b2e2 − 2a2e− 2abe+ a2

= (ae+ be)2 − 2a(ae+ be) + a2

= (ae+ be− a)2

= 0.

Therefore,
a

b
= e

1− e.

Lemma 2. If a, b, c, d > 0, and

( 1
a+ b

+ 1
c+ d

)( 1
1
a

+ 1
c

+ 1
1
b

+ 1
d

) = 1,

then
ad = bc.

Proof. Rearranging gives

(a+ b+ c+ d)(abc+ acd+ abd+ bcd)

= (a+ b)(c+ d)(a+ c)(b+ d).

Simplifying further, we have

a2d2 − 2abcd+ b2c2 = (ad− bc)2 = 0

and ad = bc.

We say that an n× n matrix M is symmetrically reciprocal, denoted by SR, if aii = 1
for all i = 1, 2, . . . , n and aij = 1

aji
for all i, j = 1, 2, . . . , n and i 6= j. We say that an

n× n matrix M is transitive if the matrix M is entrywise positive and aij = aikakj for all
i, j, k = 1, 2, . . . , n.
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Lemma 3. For any SR and transitive matrix M = (aij)n×n, there exists wi, i = 1, 2, . . . , n
such that

aij = wi
wj

and
n∑
i=1

wi = 1.

Proof. We explicitly construct wi for i = 1, 2, . . . , n. Let

wi = ai1∑n
j=1 aj1

, ∀i = 1, 2, . . . , n.

It is easy to see that ai1 = wi

w1
. Since the matrix M is SR, we have a1j = w1

wj
. Since the matrix

M is transitive, we have that

aij = ai1a1j = wi
w1

w1

wj
= wi
wj
.

Let N = (1, 1, . . . , 1)T denote the n× 1 vector of 1′s.

Lemma 4. For any SR and transitive matrices M = (aij)n×n and M̄ = (āij)n×n, if N ′(M −
M̄) = 0, we have aij = āij for all i, j = 1, 2, . . . , n.

Proof. By Lemma 3, we can choose wi for M and w̄i for M̄ such that

aij = wi
wj
, āij = w̄i

w̄j
,
n∑
i=1

wi = 1,
n∑
i=1

w̄i = 1.

Since N ′(M1 −M2) = 0, we have

(N ′(M − M̄))j = (N ′M)j − (N ′M̄)j

=
n∑
k=1

(akj − ākj)

=
n∑
k=1

(wk
wj
− w̄k
w̄j

)

= 1
wj
− 1
w̄j

= 0.

Therefore, wj = w̄j and aij = āij for all i, j = 1, 2, . . . , n.
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A.2 Proof of Theorem 1

It is easy to see that the Luce rule satisfies Axiom ARP. For the other direction, suppose
that a choice rule ρ satisfies Axiom ARP. For pairwise disjoint alternative sets A,B,C ∈ A+,
we have

β(AB,C|ABC) = β(A,C|AC) + β(B,C|BC);

β(AC,B|ABC) = β(A,B|AB) + β(C,B|CB);

β(BC,A|ABC) = β(B,A|AB) + β(C,A|AC).

By Lemma 1, we have10

β(A,B|ABC) = β(A,B|AB). (1)

Since (1) holds for all pairwise disjoint alternative sets A,B,C ∈ A+, we conclude that the
choice rule ρ is a Luce rule.

A.3 Proof of Theorem 2

We first show that if a choice rule ρ satisfies Axiom T and Axiom Weak ARP*, then it
is an associationistic Luce rule. Axiom T implies that we can partition the set X in the
following way: {Pi}ni=1, such that i) Pi ∈ L, for any i = 1, 2, . . . , n ; and ii) Pi ⊥ Pj for any
i, j = 1, 2, . . . , n and i 6= j. Without loss of generality, let us assume that there are at least
two blocks in the partition.11 Consider any alternative set A ∈ A+ and alternative x ∈ A.
Let Ai = A ∩Xi, we have A = ∪ni=1(A ∩Xi) = A1A2 · · ·An. It is easy to see that i) Ai ∈ L,
for any i = 1, 2, . . . , n ; and ii) Ai ⊥ Aj for any i, j = 1, 2, . . . , n and i 6= j. Without loss of
generality, we assume that x ∈ A1.

The logic of the proof for this direction is summarized as follows. In Step i), we
show that the choice data satisfies independence of irrelevant blocks; that is β(Ai, A1|A) =
β(Ai, A1|A1Ai). Step ii) constructs the salience value γ, and Step iii) constructs the Luce
value v. Lastly, Step iv) verifies that the choice rule is an associationistic Luce rule.

Step i) Independence of Irrelevant Blocks: We first show that β(Ai, A1|A) =
β(Ai, A1|A1Ai) in a series of lemmas.

10Let ρ(A|ABC) = a, ρ(B|ABC) = b, ρ(C|ABC) = c, ρ(C|AC) = d, ρ(A|AB) = e, and ρ(B|BC) = f .
11If X ∈ L, our model reduces to the Luce rule.
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Lemma 5. For distinct blocks Ai, Aj, Ak, we have β(Ai, Aj|AiAjAk) = β(Ai, Aj|AiAj).

Proof. Axiom Weak ARP* implies that

β(AiAj, Ak|AiAjAk) = β(Ai, Ak|AiAk) + β(Aj, Ak|AjAk);

β(AiAk, Aj|AiAjAk) = β(Ai, Aj|AiAj) + β(Ak, Aj|AjAk);

β(AjAk, Ai|AiAjAk) = β(Aj, Ai|AiAj) + β(Ak, Ai|AiAk).

By Lemma 1, we have12

β(Ai, Aj|AiAjAk) = β(Ai, Aj|AiAj).

Lemma 6. For distinct blocks Ai, Aj, Ak, we have β(Ai, Aj|AiAj)β(Aj, Ak|AjAk) =
β(Ai, Ak|AiAk).

Proof. By the definition of β, we have

β(Ai, Ak|AiAjAk) = β(Ai, Aj|AiAjAk)β(Aj, Ak|AiAjAk).

By Lemma 5, we have

β(Ai, Aj|AiAjAk) = β(Ai, Aj|AiAj),

β(Aj, Ak|AiAjAk) = β(Aj, Ak|AjAk),

β(Ai, Ak|AiAjAk) = β(Ai, Ak|AiAk).

Therefore,
β(Ai, Ak|AiAk) = β(Ai, Aj|AiAj)β(Aj, Ak|AjAk).

Lemma 7. β(Ai, Aj|AiAj) = β(Ai, Aj|A).
12Let ρ(Ai|AiAjAk) = a, ρ(Aj |AiAjAk) = b, ρ(Ak|AiAjAk) = c, ρ(Ak|AiAk) = d, ρ(Ai|AiAj) = e, and

ρ(Aj |AjAk) = f .
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Proof. Repeatedly applying Axiom Weak ARP*, we have

β(A−i, Ai|A) =
∑
j:j 6=i

β(Aj, Ai|AiAj). (2)

By the definition of β,
β(A−i, Ai|A) =

∑
j:j 6=i

β(Aj, Ai|A). (3)

Therefore, it follows from (2) and (3) that

∑
j:j 6=i

β(Aj, Ai|AiAj) =
∑
j:j 6=i

β(Aj, Ai|A). (4)

Now let aji = β(Aj, Ai|AiAj), and āji = β(Aj, Ai|A) if j 6= i. Let aii = āii = 1. Therefore, it
follows from the (4) that ∑

j

aji =
∑
j

āji. (5)

Furthermore, by Lemma 6, ajiaik = ajk. By the definition of β, ājiāik = ājk. By Lemma 4,
we have aij = āij. That is, β(Ai, Aj|AiAj) = β(Ai, Aj|A).

Step ii) Construction of the Salience Value γ: Fix an arbitrary x̄ ∈ P1, and let
γ(x̄) = 1. Define γ(y) = γ(x̄)β(y, x̄|x̄y) = β(y, x̄|x̄y) for any y /∈ P1. Fix an arbitrary ȳ ∈ X2.
Define γ(x) = γ(ȳ)β(x, ȳ|xȳ) = β(ȳ, x̄|x̄ȳ)β(x, ȳ|xȳ) for any x ∈ X1 and x 6= x̄.

Lemma 8. If x̃ ∈ Pi and ỹ ∈ Pj, i 6= j, then β(x̃, ỹ|x̃ỹ) = γ(x̃)
γ(ỹ) .

Proof. By symmetry, it suffices to consider the following cases.
Case i) If x̃ /∈ P1 and ỹ /∈ P1, then

β(x̃, ỹ|x̃ỹ) = β(x̃, ỹ|x̄x̃ỹ)

= β(x̃, x̄|x̄x̃ỹ)β(x̄, ỹ|x̄x̃ỹ)

= β(x̃, x̄|x̃x̄)β(x̄, ỹ|x̄ỹ)

= γ(x̃)
γ(ỹ) .

Case ii) If x̃ = x̄ ∈ P1 and ỹ /∈ P1, by construction, β(x̄, ỹ|x̄ỹ) = 1
β(ỹ,x̄|x̄ỹ) = γ(x̄)

γ(ỹ) .
Case iii) If x̃ ∈ P1, x̃ 6= x̄ and ỹ /∈ P2, then

β(x̃, ỹ|x̃ỹ) = β(x̃, ỹ|x̃ỹȳ)
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= β(x̃, ȳ|x̃ỹȳ)β(ȳ, ỹ|x̃ỹȳ)

= β(x̃, ȳ|x̃ȳ)β(ȳ, ỹ|ỹȳ)

= γ(x̃)
γ(ȳ)

γ(ȳ)
γ(ỹ)

= γ(x̃)
γ(ỹ) .

Case iv) If x̃ ∈ P1, x̃ 6= x̄ and ỹ = ȳ ∈ P2, then by construction, β(x̃, ȳ) = β(x̃,ȳ)γ(ȳ)
γ(ȳ) =

γ(x̃)
γ(ȳ) .

Case v) If x̃ ∈ X1, x̃ 6= x̄ and ỹ ∈ X2, ỹ 6= ȳ. Repeatedly applying Axiom WA, we have

β(x̃x̄, ỹȳ|x̃x̄ỹȳ) = β(x̃, ỹȳ|x̃ỹȳ) + β(x̄, ỹȳ|x̄ỹȳ)

= 1
β(ỹȳ, x̃|x̃ỹȳ) + 1

β(ỹȳ, x̄|x̄ỹȳ)

= 1
β(ỹ, x̃|x̃ỹ) + β(ȳ, x̃|x̃ȳ) + 1

β(ỹ, x̄|x̄ỹ) + β(ȳ, x̄|x̄ȳ) .

Similarly,

β(ỹȳ, x̃x̄|x̃x̄ỹȳ) = 1
β(x̃, ỹ|x̃ỹ) + β(x̄, ỹ|x̄ỹ) + 1

β(x̃, ȳ|x̃ȳ) + β(x̄, ȳ|x̄ȳ) .

Since

β(x̃x̄, ỹȳ|x̃x̄ỹȳ)β(ỹȳ, x̃x̄|x̃x̄ỹȳ) = 1,

by Lemma 2, we have

β(ỹ, x̃|x̃ỹ)β(ȳ, x̄|x̄ȳ) = β(ȳ, x̃|x̃ȳ)β(ỹ, x̄|x̄ỹ).

Therefore,

β(x̃, ỹ|x̃ỹ) = β(x̃, ȳ|x̃ȳ)β(x̄, ỹ|x̄ỹ)β(ȳ, x̄|x̄ȳ)

= γ(x̃)
γ(ȳ)

γ(x̄)
γ(ỹ)

γ(ȳ)
γ(x̄)

= γ(x̃)
γ(ỹ) .

Lemma 9. If A ⊆ Pi, B ⊆ Pj, i 6= j, then

β(A,B|AB) = γ(A)
γ(B) .
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Proof. Repeatedly applying Axiom Weak ARP*, we have

β(A,B|AB) =
∑
x∈A

β(x,B|xB)

=
∑
x∈A

1
β(B, x|xB)

=
∑
x∈A

1∑
y∈B β(y, x|xy)

=
∑
x∈A

1∑
y∈B

γ(y)
γ(x)

= γ(A)
γ(B) .

Step iii) Construction of the Luce Value v: For each block Pi, fix an arbitrary
alternative x̂i ∈ Xi, and let v(x̂i) = 1. Define v(xi) = β(xi, x̂i|xix̂i) for any xi ∈ Xi and
xi 6= x̂i.

Lemma 10. If xi, x′i ∈ Pi and xi 6= x′i, then β(xi, x′i|xix′i) = v(xi)
v(x′

i)
.

Proof. By construction, v(xi) = β(xi, x̂i|xix̂i) and v(x′i) = β(x′i, x̂i|x′ix̂i). Therefore,

β(xi, x′i|xix′i) = β(xi, x′i|xix′ix̂i)

= β(xi, x̂i|xix′ix̂i)β(x̂i, x′i|xix′ix̂i)

= β(xi, x̂i|xix̂i)β(x̂i, x′i|x̂ix′i)

= v(xi)
v(x′i)

.

Step iv) Verification: We verify that the choice rule is an associationistic Luce rule.

ρ(x|A) = ρ(A1|A)β(x,A1|A)

= ρ(A1|A)β(x,A1|A1)

= ρ(A1|A)ρ(x|A1)

= ρ(A1|A)∑n
i=1 ρ(Ai|A)ρ(x|A1)
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= 1∑n
i=1 β(Ai, A1|A)ρ(x|A1)

= 1∑n
i=2 β(Ai, A1|A1Ai) + 1ρ(x|A1). (6)

where the second equality follows from x ∈ A1 ∈ L, and the last equality follows from
independence of irrelevant blocks.

Following from (6) and Lemma 9,

ρ(x|A) = 1∑n
i=2

γ(Ai)
γ(A1) + 1

ρ(x|A1)

= γ(A1)
γ(A) ρ(x|A1). (7)

By Lemma 10,

ρ(x|A1) = 1
β(A1, x|A1)

= 1∑
y∈A1 β(y, x|A1)

= 1∑
y∈A1 β(y, x|xy)

= 1∑
y∈A1

v(y)
v(x)

= v(x)
v(A1) .

Continuing from (7),

ρ(x|A) = γ(A1)
γ(A)

v(x)
v(A1) .

This concludes the proof for this direction.

Next we show that if a choice rule is an associationistic Luce rule, it satisfies Axiom
T and Axiom Weak ARP*. If a choice rule ρ is an associationistic Luce rule, there exists
((Pi)ni=1, γ, v) such that

ρ(x|A) = γ(A ∩ Px)
γ(A)

v(x)
v(A ∩ Px)

(a)

whenever x ∈ A ∈ A+.
Axiom Weak ARP*. If A ∩B = ∅ and AB ⊥ C, where C ∈ L,

β(AB,C|ABC) =
γ(AB)

γ(AB)+γ(C)
γ(C)

γ(AB)+γ(C)
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=
γ(A)

γ(A)+γ(C)
γ(C)

γ(A)+γ(C)

+
γ(B)

γ(B)+γ(C)
γ(C)

γ(B)+γ(C)

= β(A,C|AC) + β(B,C|BC).

Axiom T. In what follows, we show that the choice rule ρ satisfies Axiom T. Consider
the following coarsening of the partition (Pi)ni=1. For each block Pi, if |Pi| > 1, Pi remains a
block of the new partition. Let B0 denote the union of the blocks whose cardinality is one;
that is, B0 = ∪j:|Pj |=1Pj . After such coarsening, we relabel the blocks of the new partition as
B0, B1, B2, ..., Bm.

Consider the new partition (Bi)mi=0. Now for any block Bi, i ≥ 1, if for all x, y ∈ Bi,

v(x)
v(y) = γ(x)

γ(y) , (8)

we union this block with B0. Denote by C0 the union of all such blocks together with B0.
After such coarsening, we relabel the blocks of new partition as C0, C1, C2, ..., Ck. For any
x ∈ C0, we define γ′(x) = v′(x) = γ(x). Otherwise, define γ′(x) = γ(x) and v′(x) = v(x).

We show that ((Ci)ki=0, γ
′, v′) also represents the choice rule ρ. Take any arbitrary x

and A containing x, we need to show that

ρ(x|A) = γ′(A ∩ Cx)
γ′(A)

v′(x)
v′(A ∩ Cx)

. (9)

If x ∈ Ci for some i ≥ 1, it is easy to see that equality (9) holds. If x ∈ C0, then

γ′(A ∩ Cx)
γ′(A)

v′(x)
v′(A ∩ Cx)

= γ(A ∩ Cx)
γ(A)

γ(x)
γ(A ∩ Cx)

= γ(A ∩ Px)
γ(A)

γ(x)
γ(A ∩ Px)

= γ(A ∩ Px)
γ(A)

v(x)
v(A ∩ Px)

= ρ(x|A),

where the first equality follows from definition of γ′ and v′, and the third equality follows
from (8). Therefore, ((Ci)ki=0, γ

′, v′) also represents the choice data.
Note that if x, y ∈ Ci, then x ∼ y. Therefore, to show transitivity, it suffices to show

that for any x ∈ Ci, whenever x ∼ y for some y, y ∈ Ci. Suppose not, there exists some
y ∼ x, and yet y ∈ Cj for some j 6= i. Note that either x or y belongs to Ck for some k ≥ 1.
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Without loss of generality, we assume y ∈ Ck for some k ≥ 1. Our construction ensures that
there exists z ∈ Ck such that z 6= y, and

v′(y)
v′(z) 6=

γ′(y)
γ′(z) . (10)

Therefore,

β(x, y|xyz) =
γ′(x)

γ′(x)+γ′(y)+γ′(z)
v′(x)
v′(x)

γ′(y)+γ′(z)
γ′(x)+γ′(y)+γ′(z)

v′(y)
v′(y)+v′(z)

= γ′(x)
γ′(y) + γ′(z)

v′(y) + v′(z)
v′(y)

6= γ′(x)
γ′(y) + γ′(z)

γ′(y) + γ′(z)
γ′(y)

= γ′(x)
γ′(y)

= β(x, y|xy),

where the inequality follows from (10). But since y ∼ x, β(x, y|xy) = β(x, y|xyz). We have a
contradiction. This concludes the proof that Axiom T is satisfied.

A.4 Proof of Theorem 3

It follows from the proof of Theorem 2 (the necessity part) that we can construct ((Ct)kt=0, γ
′, v′)

that represents ρ such that (Ct)kt=0 is a coarsening of (Pi)ni=0. In particular, C0 contains some
blocks of (Pi)ni=0, and Ct is a block of the partition (Pi)ni=0 for t = 1, 2, . . . , k. Furthermore,
the salience value γ′ and the Luce value v′ satisfy that i) γ′

x

v′
x

= 1 for all x ∈ C0; and ii)
|Ct| ≥ 2, and there exist x, y ∈ Ct such that γ′

x

v′
x
6= γ′

y

v′
y
for t = 1, 2, . . . , k.

It follows that for any x ∈ X\C0, there exists y in the same block as x with γ′
x

v′
x
6= γ′

y

v′
y
. For

any z not in the same block as x, it follows from the proof of Theorem 2 (the necessity part)
that β(x, z|xyz) 6= β(x, z|xz). By the definition of Sρ, x /∈ Sρ. By construction, C0 ⊂ Sρ.
Therefore, C0 = Sρ.

Suppose that ((P ′j)mj=1, γ
′, v′) represents ρ. It follows that (P ′j)mj=1 must be a refinement

of (Ct)kt=0. We want to show that Ct is a block of (P ′j)mj=1 for t ∈ {1, 2, ..., k}. Suppose to
the contrary, there exists t̂ ≥ 1 such that Ct̂ = ∪ŝs=1P

′
js with ŝ ≥ 2. For any s ∈ {1, 2, ..., ŝ},

|P ′js| ≥ 2, and there exists x, y ∈ P ′js such that γ′
x

v′
x
6= γ′

y

v′
y
. However, it follows from the proof of

Theorem 2 (the necessity part) that for all s1, s2 ∈ {1, 2, ..., ŝ}, s1 6= s2, there exist x, y ∈ P ′js1
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and z ∈ P ′js2
such that β(x, z|xyz) 6= β(x, z|xz). This implies that x and z are not associated

with each other. However, both x and z are contained in Ct̂. We arrive at a contradiction.
Therefore, Ct is a block of (P ′j)mj=1 for t ∈ {1, 2, ..., k}. This concludes the proof, since Ct is
also a block of (Pi)ni=0 for t ∈ {1, 2, ..., k}, and ∪kt=1Ct = X\Sρ.

A.5 Missing Proof for Section 5

Proof of Proposition 1. ii) ⇒ i) is straightforward. For i) ⇒ ii), it suffices to consider
the following cases.

Case i) Suppose that x and y are in the same block, z is in a different block. In this
case, we have a contradiction, since

ρ(x|xyz) = γx + γy
γx + γy + γz

vx
vx + vy

<
vx

vx + vy

= ρ(x|xy).

Case ii) Suppose that x and z are in the same block, y is in a different block. In this
case,

ρ(x|xyz) > ρ(x|xy)

⇒ γx + γz
γx + γy + γz

vx
vx + vz

>
γx

γx + γy

⇒ vx
vz
>
γx
γz

γx + γy + γz
γy

.

Case iii) Suppose that y and z are in the same block, x is in a different block. In this
case, we have a contradiction, since

ρ(x|xyz) = γx
γx + γy + γz

<
γx

γx + γy

= ρ(x|xy).

Proof of Proposition 2. Suppose that the decision maker follows the associationistic
Luce rule, ρ(x|xyz) > ρ(x|xy), and ρ(z|yzw) > ρ(z|yz). It follows from Proposition 1 that
x, z and w are in the same block, y is in a different block, and

vx
γx

>
vz
γz

γx + γy + γz
γy

,
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vz
γz

>
vw
γw

γy + γz + γw
γy

.

Therefore,

vx
γx

>
vw
γw

γx + γy + γz
γy

γy + γz + γw
γy

>
vw
γw

γx + γy + γw
γy

.

By Proposition 1, we have ρ(x|xyw) > ρ(x|xy).

References

Block, H. D., and J. Marschak (1960): “Random Orderings and Stochastic Theories
of Responses,” in Contributions to Probability and Statistics, pp. 97–132. Stanford, CA:
Stanford University Press.

Brady, R. L., and J. Rehbeck (2016): “Menu-Dependent Stochastic Feasibility,”
Econometrica, 84(3), 1203–1223.

Doyle, J. R., D. J. O’Connor, G. M. Reynolds, and P. A. Bottomley (1999):
“The Robustness of the Asymmetrically Dominated Effect: Buying Frames, Phantom
Alternatives, and In-Store Purchases,” Psychology & Marketing, 16(3), 225–243.

Echenique, F., K. Saito, and G. Tserenjigmid (2014): “The Perception-Adjusted Luce
Model,” mimeo. California Institute of Technology.

Gul, F., P. Natenzon, and W. Pesendorfer (2014): “Random Choice as Behavioral
Optimization,” Econometrica, 82(5), 1873–1912.

Huber, J., J. W. Payne, and C. Puto (1982): “Adding Asymmetrically Dominated
Alternatives: Violations of Regularity and the Similarity Hypothesis,” Journal of Consumer
Research, 9(1), 90–98.

Kovach, M. (2016): “Thinking Inside the Box: Status Quo Bias and Stochastic
Consideration,” mimeo, ITAM.

Luce, R. D. (1959): Individual Choice Behavior: A Theoretical Analysis. New York: Wiley.

28



Mandelbaum, E. (2016): “Associationist Theories of Thought,” in The Stanford
Encyclopedia of Philosophy, ed. by E. N. Zalta. Summer 2016 edn.

Manzini, P., and M. Mariotti (2014): “Stochastic Choice and Consideration Sets,”
Econometrica, 82(3), 1153–1176.

Manzini, P., M. Mariotti, and L. Mittone (2010): “Choosing Monetary Sequences:
Theory and Experimental Evidence,” Theory and Decision, 69(3), 327–354.

McFadden, D. (2001): “Economic Choices,” American Economic Review, 91(3), 351–378.

Rieskamp, J., J. R. Busemeyer, and B. A. Mellers (2006): “Extending the Bounds of
Rationality: Evidence and Theories of Preferential Choice,” Journal of Economic Literature,
44(3), 631–661.

Simonson, I., and A. Tversky (1992): “Choice in Context: Tradeoff Contrast and
Extremeness Aversion,” Journal of Marketing Research, 29(3), 281–295.

Sippel, R. (1997): “An Experiment on the Pure Theory of Consumer’s Behaviour,” Economic
Journal, 107(444), 1431–1444.

Tversky, A. (1969): “Intransitivity of Preferences,” Psychological Review, 76(1), 31–48.

(1972): “Elimination by Aspects: A Theory of Choice,” Psychological Review, 79(4),
281–299.

Yildiz, K. (2016): “List-Rationalizable Choice,” Theoretical Economics, 11(2), 587–599.

29


	Associationistic luce rule
	Citation

	Introduction
	Preliminaries
	Luce Rule
	Associationistic Luce rule
	Anomalies
	Violation of Regularity - Attraction Effect
	Stochastic Intransitivity

	Comparison to Related Models
	Appendix
	Preparatory Lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Missing Proof for Section 5


