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APPENDIX B PROVES the following proposition, which is used in the proof of Theorem 1
in Chen, He, Li, and Sun (2019).

PROPOSITION 2: Fix a Borel measurable set D⊆ V with λ(D) > 0. For any i ∈ I , let Di

be the projection of D on Vi. For any vi ∈Di, let D−i(vi)= {v−i : (vi� v−i) ∈D}. Consider the
following system of equations where α ∈Lλ∞(D�R) are the unknown:∫

D−i(vi)
α(vi� v−i)λ−i(dv−i)= 0� (S.1)

for all i ∈ I and vi ∈Di. If λi is atomless for all i ∈ I , then the system of equations (S.1) has
a nontrivial bounded solution α.

Appendix C details how to modify the proof of Theorem 1 to prove Theorem 2. Ap-
pendix D provides a recipe for the construction of an approximately equivalent mecha-
nism. Appendix E provides examples to illustrate the differences between our approach
of mutual purification and the usual purification principle in the literature related to
Bayesian games.

APPENDIX B: PROOF OF PROPOSITION 2

We first provide a sketch of the proof. If (X�X ) and (Y�Y) are measurable spaces, then
a measurable rectangle is a subset A× B of X × Y , where A ∈ X and B ∈ Y are mea-
surable subsets of X and Y . The sides A, B of the measurable rectangle A× B can be
arbitrary measurable sets. In particular, the sides are not required to be intervals. A mea-
surable rectangle is a discrete rectangle if each of its sides is a finite set. For notational
simplicity, we write Dvi rather than D−i(vi).
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2 CHEN, HE, LI, AND SUN

Define E as follows:

E =
{∑
i∈I
ψi(vi) :ψi ∈Lλ∞(Di�R)�∀i ∈ I

}
�

Then a bounded measurable function α ∈ Lλ∞(D�R) is a solution to the system of equa-
tions (S.1) if and only if

∫
D
α(v)ϕ(v)λ(dv)= 0 for any ϕ(v) ∈ E . Our objective is to show

that E is not dense in Lλ1(D�R). By Corollary 5.108 in Aliprantis and Border (2006), this
implies that the system of equations (S.1) has a nontrivial bounded solution α.

In what follows, we show that E is not dense in Lλ1(D�R) via a series of lemmas. In par-
ticular, we construct a measurable function d(v) with a finite set of values, and show
that the function cannot be approximated in measure by functions in E . Lemma B.1
and Lemma B.2 are technical preparations for the construction of a discrete rectangle
L̃= {(ṽi11 � ṽi22 � � � � � ṽiII )}1≤ij≤ĩj �1≤j≤I that satisfies certain properties. Lemma B.3 constructs a
vector w̄ and the measure function d(v) such that it takes a constant value in the neigh-
borhood of each point in the constructed discrete rectangle. It is then shown that∑

1≤ij≤ĩj �1≤j≤I
d
(
ṽ
i1
1 � ṽ

i2
2 � � � � � ṽ

iI
I

)
w̄i1�i2�����iI = 1�

while ∑
1≤ij≤ĩj �1≤j≤I

( ∑
1≤j≤I

ψj
(
ṽ
ij
j

))
w̄i1�i2�����iI = 0

for any
∑

1≤j≤I ψj ∈ E . This further implies that the mapping d cannot be approximated
by any function in E . The assumption of atomless distribution ensures that all objects in
this proof are well defined.1

LEMMA B.1: Let F ⊆ V be a measurable rectangle with sides Yi ⊆ Vi of measure li, i ∈ I .
Assume that

λ(D∩ F)≥ (1 − ε)λ(F)
for some 0< ε< 1. Then, for all i,

λi
{
vi ∈ Vi : λ−i(Dvi ∩ Fvi) > (1 − √

ε)λ−i(Fvi)
} ≥ (1 − √

ε)li�

PROOF: Denote

	i =
{
vi ∈ Vi : λ−i(Dvi ∩ Fvi) > (1 − √

ε)λ−i(Fvi)
}
�

1These lemmas extend the corresponding mathematical results in Arkin and Levin (1972) from the spe-
cial case with I = 2 and λ the uniform distribution on [0�1] × [0�1] to the general setting in this paper. The
corresponding mathematical results in Arkin and Levin (1972) were used to show the following result (see
Theorem 2.3 therein): “Suppose that f1 ∈ Lη1 (X × Y�Rl1), f2 ∈ Lη1 (X × Y�Rl2) and f3 ∈ Lη1 (X × Y�Rl3),
where X = Y = [0�1] and η is the uniform distribution on [0�1] × [0�1]. Let A be the simplex {a =
(a1� � � � � aK) : ∑

1≤k≤K ak = 1� ak ≥ 0}. Given any measurable function α from X × Y to A, there exists an-
other measurable function α from X × Y to the vertices of the simplex A such that

∫
[0�1] f1(x� y)α(x� y)dy =∫

[0�1] f1(x� y)α(x� y)dy ,
∫

[0�1] f2(x� y)α(x� y)dx = ∫
[0�1] f2(x� y)α(x� y)dx and

∫
[0�1]

∫
[0�1] f3(x� y)α(x� y)dxdy =∫

[0�1]
∫

[0�1] f3(x� y)α(x� y)dxdy .”
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Let 	Ci be the complement of 	i in Vi. We have

(1 − ε)
∏

1≤j≤I
lj = (1 − ε)λ(F)

≤ λ(D∩ F)

=
∫
Vi

λ−i(Dvi ∩ Fvi)λi(dvi)

=
∫
	i

λ−i(Dvi ∩ Fvi)λi(dvi)+
∫
	Ci

λ−i(Dvi ∩ Fvi)λi(dvi)

≤
∫
	i

λ−i(Fvi)λi(dvi)+ (1 − √
ε)

∫
	Ci

λ−i(Fvi)λi(dvi)

= (√ε+ 1 − √
ε)

∫
	i

λ−i(Fvi)λi(dvi)+ (1 − √
ε)

∫
	Ci

λ−i(Fvi)λi(dvi)

= √
ε

∫
	i

λ−i(Fvi)λi(dvi)+ (1 − √
ε)

∫
Vi

λ−i(Fvi)λi(dvi)

= √
ελi(	i)

∏
j 
=i
lj + (1 − √

ε)
∏

1≤j≤I
lj�

where the first line and last line hold because F is a rectangle with sides Yi of measure
li, i ∈ I , the second line follows from the condition that λ(D ∩ F) ≥ (1 − ε)λ(F), the
fifth line holds because (1) Dvi ∩ Fvi ⊆ Fvi ; and (2) λ−i(Dvi ∩ Fvi) ≤ (1 − √

ε)λ−i(Fvi) for
all vi ∈ 	Ci . All other lines are simple algebras. Rearranging the terms, we have λi(	i) ≥
(1 − √

ε)li. Q.E.D.

LEMMA B.2: Let ĩ1� ĩ2� � � � � ĩI be positive integers, and let 0 < ε < 1 be sufficiently small
such that

ε′ =
∏

1≤j≤I
ĩjε < 1 and

∏
1≤j≤I

ĩjε
′ 1

2I < 1�

Consider the system of measurable rectangles Fi1�����iI = ∏
1≤j≤I Y

ij
j , where 1 ≤ ij ≤ ĩj and

Y 1
j � � � � �Y

ĩj
j are pairwise disjoint subsets of Vj for 1 ≤ j ≤ I such that

λ
(
Fi1�i2�����iI ∩D) ≥ (1 − ε)λ(Fi1�i2�����iI )�

Then there exists a discrete rectangle {vi11 � vi12 � � � � � viII }{1≤ij≤ĩj �1≤j≤I} such that

(1) (vi11 � � � � � v
iI
I ) ∈ Fi1�����iI ∩D for 1 ≤ ij ≤ ĩj and 1 ≤ j ≤ I;

(2) for all 1 ≤ j ≤ I, {vijj } are different points for 1 ≤ ij ≤ ĩj .

PROOF: First, we consider the set

	
i1�i2�����iI
1 = {

v1 ∈ Y ii
1 : λ−1

(
Dv1 ∩ Fi1�i2�����iIv1

)
>

(
1 − √

ε′)λ−1

(
Fi1�i2�����iIv1

)}
�
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It follows from Lemma B.1 that

λ1

(
	
i1�i2�����iI
1

)
>

(
1 − √

ε′)λ1

(
Y
i1
1

)
� (S.2)

For all 1 ≤ i1 ≤ ĩ1, let 	i11 = ⋂
1≤ik≤ĩk�2≤k≤I 	

i1�i2�����iI
1 . We have

λ1

(
	
i1
1

) = λ1

(
Y
i1
1

) − λ1

( ⋃
1≤ik≤ĩk�2≤k≤I

(
Y
i1
1 \ 	i1�i2�����iI1

))

≥ λ1

(
Y
i1
1

) −
∑

1≤ik≤ĩk�2≤k≤I

(
λ1

(
Y
i1
1

) − λ1

(
	
i1�����iI
1

))

> λ1

(
Y
i1
1

) −
∑

1≤ik≤ĩk�2≤k≤I

(
λ1

(
Y
i1
1

) − (
1 − √

ε′)λ1

(
Y
i1
1

))

=
(

1 −
∏

2≤k≤I
ĩk · √ε′

)
λ1

(
Y
i1
1

)
> 0�

where the first line is due to algebra of sets, the third line follows from (S.2). Since λ1 is
atomless and λ1(	

i1
1 ) > 0 for all 1 ≤ i1 ≤ ĩ1, we know that the set 	i11 is infinite. Thus, we

can choose points yi11 ∈ 	i11 , 1 ≤ i1 < ĩ1 such that they are all distinct.
Second, let

	
i1�����iI
2 =

{
v2 ∈ Y i2

2 :
( ⊗

3≤k≤I
λk

)(
D
(y
i1
1 �v2)

∩ Fi1�����iI
(y
i1
1 �v2)

)
>

(
1 − ε′ 1

4
)( ⊗

3≤k≤I
λk

)(
F
i1�����iI

(y
i1
1 �v2)

)}
�

Since yi11 ∈ 	i11 for any i1, we have yi11 ∈ 	i1�����iI1 and( ⊗
2≤k≤I

λk

)(
D
y
i1
1

∩ Fi1�����iI
y
i1
1

)
>

(
1 − √

ε′)( ⊗
2≤k≤I

λk

)(
F
i1�����iI

y
i1
1

)
�

It follows from Lemma B.1 that

λ2

(
	
i1�����iI
2

) ≥ (
1 − ε′ 1

4
)
λ2

(
Y
i2
2

)
�

Denote 	i22 = ⋂
1≤ij≤ĩj �j 
=2 	

i1�����iI
2 . We have

λ2

(
	
i2
2

) = λ2

(
Y
i2
2

) − λ2

( ⋃
1≤ik≤ĩk�k 
=2

(
Y
i2
2 \ 	i1�����iI2

))

≥ λ2

(
Y
i2
2

) −
∑

1≤ik≤ĩk�k 
=2

(
λ2

(
Y
i2
2

) − λ2

(
	
i1�����iI
2

))

≥ λ2

(
Y
i2
2

) −
∑

1≤ik≤ĩk�k 
=2

(
λ2

(
Y
i2
2

) − (
1 − ε′ 1

4
)
λ2

(
Y
i2
2

))
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=
(

1 −
∏

1≤k≤I�k 
=2

ĩk · ε′ 1
4

)
λ2

(
Y
i2
2

)
> 0�

Since λ2 is atomless and λ2(	
i2
2 ) > 0, we can fix points yi22 ∈ 	i22 arbitrarily, as long as they

are all distinct, and are also different from the points {yi11 }1≤i1≤ĩ1 .
Repeating this procedure until I − 1, we can find yikk ∈ 	ikk for 1 ≤ ik ≤ ĩk and 1 ≤ k ≤

I − 1, where 	ikk = ⋂
1≤ij≤ĩj �j 
=k 	

i1�����iI
k and λk(	

ik
k ) > 0. In particular,

	
i1�����iI
I−1 = {

vI−1 ∈ Y iI−1
I−1 : λI

(
D
(y
i1
1 �����y

iI−2
I−2 �vI−1)

∩ Fi1�����iI
(y
i1
1 �����y

iI−2
I−2 �vI−1)

)
>

(
1 − ε′ 1

2I−1
)
λI

(
F
i1�����iI

(y
i1
1 �����y

iI−2
I−2 �vI−1)

)}
�

Finally, consider the set

EiI =
⋂

1≤ik≤ĩk�1≤k≤I−1

(
D
(y
i1
1 �����y

iI−1
I−1 )

∩Y iI
I

)
�

Notice that Fi1�����iI
(y
i1
1 �����y

iI−1
I−1 )

= Y iI
I for any i1� � � � � iI . Then

λI
(
EiI

) = λI
( ⋂

1≤ik≤ĩk�1≤k≤I−1

(
D
(y
i1
1 �����y

iI−1
I−1 )

∩Y iI
I

))

= λI
(
Y
iI
I

) − λI
( ⋃

1≤ik≤ĩk�1≤k≤I−1

(
Y
iI
I \D

(y
i1
1 �����y

iI−1
I−1 )

))

≥ λI
(
Y
iI
I

) −
∑

1≤ik≤ĩk�1≤k≤I−1

(
λI

(
Y
iI
I

) − λI
(
D
(y
i1
1 �����y

iI−1
I−1 )

∩Y iI
I

))

= λI
(
Y
iI
I

) −
∑

1≤ik≤ĩk�1≤k≤I−1

(
λI

(
Y
iI
I

) − λI
(
D
(y
i1
1 �����y

iI−1
I−1 )

∩ Fi1�����iI
(y
i1
1 �����y

iI−1
I−1 )

))

> λI
(
Y
iI
I

) −
∑

1≤ik≤ĩk�1≤k≤I−1

(
λI

(
Y
iI
I

) − (
1 − ε′ 1

2I−1
)
λI

(
F
i1�����iI

(y
i1
1 �����y

iI−1
I−1 )

))

= λI
(
Y
iI
I

) −
∑

1≤ik≤ĩk�1≤k≤I−1

(
λI

(
Y
iI
I

) − (
1 − ε′ 1

2I−1
)
λI

(
Y
iI
I

))

=
(

1 −
∏

1≤k≤I−1

ĩk · ε′ 1
2I−1

)
λI

(
Y
iI
I

)
> 0�

The second inequality holds since yiI−1
I−1 ∈ 	iI−1

I−1 ⊆ 	i1�����iII−1 , and hence

λI
(
D
(y
i1
1 �����y

iI−1
I−1 )

∩ Fi1�����iI
(y
i1
1 �����y

iI−1
I−1 )

)
>

(
1 − ε′ 1

2I−1
)
λI

(
F
i1�����iI

(y
i1
1 �����y

iI−1
I−1 )

)
�
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Since λI is atomless and λI(EiI ) > 0, we can fix points yiII ∈ EiI arbitrarily, as long as
they are all different, and are different from the points {yijj }1≤j≤I−1�1≤ij≤ĩj . By the choice

of EiI , (yi11 � � � � � y
iI
I ) ∈ Fi1�����iI ∩ D for any 1 ≤ ij ≤ ĩj and 1 ≤ j ≤ I. This completes the

proof. Q.E.D.

We are ready to prove that E is not dense in Lλ1(D�R). Recall that

E =
{∑
i∈I
ψi(vi) :ψi ∈Lλ∞(Di�R)�∀i ∈ I

}
�

LEMMA B.3: E is not dense in Lλ1(D�R).

PROOF: We construct a measurable function d(v) with a finite set of values, which can-
not be approximated in measure on (D�B(D)�λ) by functions in E . Fix positive integers
ĩj , 1 ≤ j ≤ I such that ∑

1≤j≤I
ĩj <

∏
1≤j≤I

ĩj�

Step (1) We construct a linear mapping T from R

∏
1≤j≤I ĩj to R

∑
1≤j≤I ĩj as follows:

T(w)=
{ ∑
k 
=j�1≤ik≤ĩk

wi1�i2�����iI

}
1≤ij≤ĩj �1≤j≤I

�

where w is a
∏

1≤j≤I ĩj × 1 column vector with its typical entry denoted by wi1�i2�����iI . Con-
sider the system of

∑
1≤j≤I ĩj homogeneous linear equations T(w) = 0 with

∏
1≤j≤I ĩj un-

knowns. By the construction of positive integers ĩj , 1 ≤ j ≤ I, the number of unknowns
is more than the number of equations. Therefore, the system of homogeneous linear
equations T(w) = 0 has nontrivial solutions. We denote by w̄ an arbitrarily fixed non-
trivial solution of T(w) = 0, and write w̄i1�i2�����iI for its typical entry. Also pick numbers
{di1�i2�����iI }1≤ij≤ĩj �1≤j≤I such that ∑

1≤ij≤ĩj �1≤j≤I
di1�i2�����iI w̄i1�i2�����iI = 1� (S.3)

Step (2) Fix a discrete rectangle

L= {(
v
i1
1 � v

i2
2 � � � � � v

iI
I

) ∈D : 1 ≤ ij ≤ ĩj�1 ≤ j ≤ I} ⊂D�
For all 1 ≤ ij ≤ ĩj , 1 ≤ j ≤ I, we construct the following measurable rectangles:

Fi1�i2�����iI = {
v= (v1� v2� � � � � vI) ∈ V : ∣∣vj − vijj ∣∣ ≤ δ�1 ≤ j ≤ I}� and

Gi1�i2�����iI = {
v= (v1� v2� � � � � vI) ∈R

Il : ∣∣vj − vijj ∣∣ ≤ δ�1 ≤ j ≤ I}�
For sufficiently small δ, {Fi1�i2�����iI }1≤ij≤ĩj �1≤j≤I are pairwise disjoint, and {Gi1�i2�����iI }1≤ij≤ĩj �1≤j≤I
are also pairwise disjoint. Furthermore, by construction, for all 1 ≤ ij ≤ ĩj , 1 ≤ j ≤ I,

Fi1�i2�����iI =Gi1�i2�����iI ∩ V ⊆Gi1�i2�����iI � (S.4)
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Let g= 1D be the indicator function onD, and gδ(v)= 1
λ(B(v�δ))

∫
B(v�δ)

gdλ, where B(v�δ)
is a ball with center v and radius δ. By Lemma 4.1.2 in Ledrappier and Young (1985),
gδ → g for λ-almost all v ∈ R

Il as δ→ 0. Therefore, 1
λ(B(v�δ))

∫
B(v�δ)

1D dλ→ 1D(v) for each
v ∈D. Since (vi11 � v

i2
2 � � � � � v

iI
I ) ∈D,

λ
(
Gi1�i2�����iI ∩D) ≥ (1 − ε)λ(Gi1�i2�����iI

)
(S.5)

for sufficiently small δ, where ε is given in Lemma B.2. Therefore,

λ
(
Fi1�i2�����iI ∩D) = λ

(
Gi1�i2�����iI ∩ V ∩D)

= λ
(
Gi1�i2�����iI ∩D)

≥ (1 − ε)λ(Gi1�i2�����iI
)

≥ (1 − ε)λ(Fi1�i2�����iI )�
where the first line and the last line follow from (S.4), and the second line holds because
D⊆ V , and the third line is (S.5).

To summarize our construction above, we pick δ > 0 sufficiently small such that

λ
(
Fi1�i2�����iI ∩D) ≥ (1 − ε)λ(Fi1�i2�����iI )

for all 1 ≤ ij ≤ ĩj , 1 ≤ j ≤ I.
Step (3) Consider the following function d(v) defined on D:

d(v)=
{
di1�i2�����iI � if v ∈ Fi1�i2�����iI ∩D�
0� otherwise�

In what follows, we show that d(v) cannot be approximated by functions in E on
(D�B(D)�λ) in measure.

Suppose that d(v) can be approximated by functions in E on (D�B(D)�λ) in measure.
By the definition of E , there exists a sequence of functions dn(v)= ∑

i∈I ψ
n
i (vi) that con-

verges to d on some Borel measurable subset C of D such that λ(C)= λ(D).
By the construction in Step (2) and Lemma B.2, there exists a discrete rectangle L̃ =

{(ṽi11 � ṽi22 � � � � � ṽiII )}1≤ij≤ĩj �1≤j≤I such that (ṽi11 � ṽ
i2
2 � � � � � ṽ

iI
I ) ∈ Fi1�i2�����iI ∩ C for all 1 ≤ ij ≤ ĩj ,

1 ≤ j ≤ I. Since w̄ satisfies that
∑

1≤ik≤ĩk�k 
=j w̄
i1�i2�����iI = 0 for all 1 ≤ ij ≤ ĩj , 1 ≤ j ≤ I, we

have ∑
1≤ij≤ĩj �1≤j≤I

di1�i2�����iI w̄i1�i2�����iI

= lim
n→∞

∑
1≤ij≤ĩj �1≤j≤I

dn
(
ṽ
i1
1 � ṽ

i2
2 � � � � � ṽ

iI
I

)
w̄i1�i2�����iI

= lim
n→∞

∑
1≤ij≤ĩj �1≤j≤I

( ∑
1≤j≤I

ψnj
(
ṽ
ij
j

))
w̄i1�i2�����iI

= lim
n→∞

∑
1≤j≤I

∑
1≤ij≤ĩj

( ∑
1≤ik≤ĩk�k 
=j

w̄i1�i2�����iI

)
ψnj

(
ṽ
ij
j

) = 0�
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which contradicts with (S.3). Therefore, the function d cannot be approximated by func-
tions in E on (D�B(D)�λ) in measure. This completes the proof. Q.E.D.

APPENDIX C: PROOF OF THEOREM 2

The proof of Theorem 2 is analogous to the proof of Theorem 1. We shall not repeat
all the arguments. Rather, we focus on aspects of the proof that are unique to Theorem 2.

Recall that h is a function taking values in R
N
++. For Theorem 2, we work with the

following set:

Υ̇q = {
g ∈ Υ : E(ghj|vi)= E(qhj|vi) for all i ∈ I and λi-almost all vi ∈ Vi�1 ≤ j ≤N}

�

Following the proof of Theorem 1, it is easy to show Υ̇q admits extreme points. Then we
proceed to show that all extreme points of Υq are deterministic at λ-almost all v ∈ V .
While the logic is exactly the same to the proof of Theorem 1, the proof of the follow-
ing proposition requires additional care. In particular, we shall prove the correspond-
ing version of Lemma B.3. We do not need to make any changes to Lemma B.1 and
Lemma B.2.

PROPOSITION 3: Fix a Borel measurable set D⊆ V with λ(D) > 0. For any i ∈ I , let Di

be the projection of D on Vi. For any vi ∈Di, let D−i(vi)= {v−i : (vi� v−i) ∈D}. Consider the
following system of equations where α ∈Lλ∞(D�R) are the unknown:∫

D−i(vi)
α(vi� v−i)h(vi� v−i)λ−i(dv−i)= 0� (S.6)

for all i ∈ I and vi ∈Di. If λi is atomless for all i ∈ I , then the system of equations (S.1) has
a nontrivial bounded solution α.

Define the set E ′ as

E ′ =
{
h(v) ·

∑
i∈I
ψi(vi) :ψi ∈Lλ∞

(
Di�R

N
)
�∀i ∈ I

}
�

Then a bounded measurable function α in Lλ∞(D�R) is a solution to Problem (S.6) if
and only if

∫
D
αϕdλ = 0 for any ϕ ∈ E ′. Lemma C.1 below shows that E ′ is not dense in

Lλ1(D�R). By Corollary 5.108 in Aliprantis and Border (2006), the system of equations
(S.6) has a nontrivial bounded solution α.

LEMMA C.1: E ′ is not dense in Lλ1(D�R).

PROOF: We construct a measurable function d(v) with a finite set of values, which can-
not be approximated in measure on (D�B(D)�λ) by functions in E ′. Fix positive integers
ĩj , 1 ≤ j ≤ I such that

N
∑

1≤j≤I
ĩj <

∏
1≤j≤I

ĩj �
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For any discrete rectangle L= {(vi11 � vi22 � � � � � viII ) ∈D : 1 ≤ ij ≤ ĩj�1 ≤ j ≤ I}, we associate
a linear mapping TL from R

∏
1≤j≤I ĩj to R

N
∑

1≤j≤I ĩj :

TL(w)=
{ ∑
k 
=j�1≤ik≤ĩk

h
(
v
i1
1 � v

i2
2 � � � � � v

iI
I

)
wi1�i2�����iI

}
1≤ij≤ĩj �1≤j≤I

�

where w is a
∏

1≤j≤I ĩj × 1 column vector with its typical entry denoted by wi1�i2�����iI .
Step (1) Fix a discrete rectangle L̄⊂D such that
(1) L̄= {(v̄i11 � v̄i22 � � � � � v̄iII ) ∈D : 1 ≤ ij ≤ ĩj�1 ≤ j ≤ I}; and
(2) the rank of the mapping TL̄ is maximal among all TL, say r.

Consider the system of
∑

1≤j≤I ĩj homogeneous linear equations TL̄(w) = 0 with∏
1≤j≤I ĩj unknowns. Since the rank of the mapping TL̄ is maximal, there exist r equa-

tions and r unknowns for which the corresponding determinant is nonzero. Without loss
of generality, we focus on this r × r matrix and denote it by L̄r ; then det(L̄r) 
= 0.

By the construction of positive integers ĩj , 1 ≤ j ≤ I, the number of unknowns is more
than the number of equations. Therefore, the system of homogeneous linear equa-
tions TL̄(w) = 0 has nontrivial solutions. We denote by wL̄ an arbitrarily fixed nontriv-
ial solution of TL̄(w) = 0, and write wi1�i2�����iI

L̄
for its typical entry. Also pick numbers

{di1�i2�����iI }1≤ij≤ĩj �1≤j≤I such that

∑
1≤ij≤ĩj �1≤j≤I

di1�i2�����iIw
i1�i2�����iI
L̄

= 1� (S.7)

For any discrete rectangle L, we denote by Lr the r × r submatrix with the same r rows
and r columns when constructing L̄r from TL̄. For any discrete rectangle L in a small open
neighborhood of L̄, we have det(Lr) 
= 0.

Let wL̄ be a nontrivial solution of the system corresponding to the discrete rectangle L
in the sense that TL̄(wL̄)= 0. For any discrete rectangle L⊂D such that det(Ls) 
= 0, we
provide a solution wL below such that TL(wL)= 0.

• Since det(Ls) 
= 0, the rank of the system corresponding to the operator TL is at
least r. Due to the choice of L, the rank of the system corresponding to the operator TL is
at most r, and hence is r. As a result, the equations that do not occur in the determinant
det(Ls) are linear combinations of the r equations that do.

• We focus on the r equations that occur in the determinant det(Ls), and let
w
i1�����iI
L = w

i1�i2�����iI
L̄

if the column corresponding to the unknown wi1�i2�����iI
L does not occur

in the determinant det(Ls).
• The remaining r unknowns of wi1�����iI

L , corresponding to the columns that occur in
the determinant det(Ls), can be obtained by Cramer’s rule.

It follows from the construction above that wL depends continuously on the r nodes of
the discrete rectangle L corresponding to the columns of det(Ls).

For all 1 ≤ ij ≤ ĩj , 1 ≤ j ≤ I, we construct the following measurable rectangles:

Fi1�i2�����iI = {
v= (v1� v2� � � � � vI) ∈ V : ∣∣vj − v̄ijj ∣∣ ≤ δ�1 ≤ j ≤ I}� and

Gi1�i2�����iI = {
v= (v1� v2� � � � � vI) ∈R

Il : ∣∣vj − v̄ijj ∣∣ ≤ δ�1 ≤ j ≤ I}�
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For sufficiently small δ, {Fi1�i2�����iI }1≤ij≤ĩj �1≤j≤I are pairwise disjoint, and {Gi1�i2�����iI }1≤ij≤ĩj �1≤j≤I
are also pairwise disjoint. Furthermore, by construction, for all 1 ≤ ij ≤ ĩj , 1 ≤ j ≤ I,

Fi1�i2�����iI =Gi1�i2�����iI ∩ V ⊆Gi1�i2�����iI � (S.8)

Let g= 1D be the indicator function onD, and gδ(v)= 1
λ(B(v�δ))

∫
B(v�δ)

gdλ, where B(v�δ)
is a ball with center v and radius δ. By Lemma 4.1.2 in Ledrappier and Young (1985),
gδ → g for λ-almost all v ∈ R

Il as δ→ 0. Therefore, 1
λ(B(v�δ))

∫
B(v�δ)

1D dλ→ 1D(v) for each
v ∈D. Since L̄⊂D,

λ
(
Gi1�i2�����iI ∩D) ≥ (1 − ε)λ(Gi1�i2�����iI

)
(S.9)

for sufficiently small δ, where ε is given in Lemma B.2. Therefore,

λ
(
Fi1�i2�����iI ∩D) = λ

(
Gi1�i2�����iI ∩ V ∩D)

= λ
(
Gi1�i2�����iI ∩D)

≥ (1 − ε)λ(Gi1�i2�����iI
)

≥ (1 − ε)λ(Fi1�i2�����iI )�
In addition, since

∑
1≤ij≤ĩj �1≤j≤I d

i1�����iI ·wi1�����iI
L is continuous in the discrete rectangle, for

sufficiently small δ,
∑

1≤ij≤ĩj �1≤j≤I d
i1�����iI ·wi1�����iI

L ≥ 1
2 for

L= {(
v
i1
1 � � � � � v

iI
I

) ∈ Fi1�����iI ∩D : 1 ≤ ij ≤ ĩj�1 ≤ j ≤ I}�
To summarize our construction above, we pick δ > 0 sufficiently small such that
(1) λ(Fi1�i2�����iI ∩D)≥ (1 − ε)λ(Fi1�i2�����iI ); and
(2)

∑
1≤ij≤ĩj �1≤j≤I d

i1�i2�����iIw
i1�i2�����iI
L ≥ 1

2 for any discrete rectangle

L= {(
v
i1
1 � � � � � v

iI
I

) ∈ Fi1�����iI ∩D : 1 ≤ ij ≤ ĩj�1 ≤ j ≤ I}�
Step (2) Consider the following function d(v):

d(v)=
{
di1�i2�����iI � if v ∈ Fi1�i2�����iI ∩D�
0� otherwise�

In what follows, we show that the function d(v) cannot be approximated by functions
E on (D�B(D)�λ) in measure. Suppose that the function d(v) can be approximated by
functions in E on (D�B(D)�λ) in measure. Then there exists a sequence of functions
dn(v) = h(v)

∑
i∈I ψ

n
i (vi) that converges to d on some Borel measurable subset C such

that λ(C)= λ(D).
By the construction in Step (1) and Lemma B.2, there exists a discrete rectangle L =

{(vi11 � vi22 � � � � � viII )}1≤ij≤ĩj �1≤j≤I such that (vi11 � v
i2
2 � � � � � v

iI
I ) ∈ Fi1�i2�����iI ∩ C for all 1 ≤ ij ≤ ĩj ,
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1 ≤ j ≤ I. Since
∑

k 
=j�1≤ik≤ĩk h(v
i1
1 � v

i2
2 � � � � � v

iI
I )w

i1�i2�����iI = 0 for any j ∈ I , we have

∑
1≤ij≤ĩj �1≤j≤I

di1�i2�����iIw
i1�i2�����iI
L

= lim
n→∞

∑
1≤ij≤ĩj �1≤j≤I

dn
(
v
i1
1 � v

i2
2 � � � � � v

iI
I

)
w
i1�i2�����iI
L

= lim
n→∞

∑
1≤ij≤ĩj �1≤j≤I

(
h
(
v
i1
1 � v

i2
2 � � � � � v

iI
I

)∑
j∈I
ψnj

(
v
ij
j

))
w
i1�i2�����iI
L

= lim
n→∞

∑
1≤ij≤ĩj �1≤j≤I

{(
w
i1�i2�����iI
L h

(
v
i1
1 � v

i2
2 � � � � � v

iI
I

))∑
j∈I
ψnj

(
v
ij
j

)}

= lim
n→∞

∑
j∈I

{ ∑
1≤ij≤ĩj �1≤j≤I

w
i1�i2�����iI
L h

(
v
i1
1 � v

i2
2 � � � � � v

iI
I

)}
ψnj

(
v
ij
j

)

= 0�

However,
∑

1≤ij≤ĩj �1≤j≤I d
i1�i2�����iIw

i1�i2�����iI
L ≥ 1

2 . We arrive at a contradiction. As a result, the
function d cannot be approximated by functions in E ′ on (D�B(D)�λ) in measure. This
completes the proof. Q.E.D.

APPENDIX D: APPROXIMATELY EQUIVALENT DETERMINISTIC MECHANISMS

Chen et al. (2019, Section 3) showed the existence of equivalent deterministic mech-
anisms, but did not provide a way of constructing such equivalent deterministic mech-
anisms. In this section, we explore the construction of an approximately equivalent de-
terministic mechanism. For simplicity of exposition, we illustrate our approach in the
one-dimensional setting in which Vi = [vi� v̄i] for all i ∈ I , and we focus on approximate
equivalence in terms of interim expected allocation probabilities for all agents. For any
vector (z1� z2� � � � � zK) ∈ R

K , let ‖z‖1 = ∑
k∈K |zk|. For any set S, we write Card(S) for its

cardinality.
We first construct a sequence of allocation rules qN indexed by N . We partition V into

smaller rectangles. Within each rectangle, we construct the allocation rule qN so that qN is
deterministic and so that qN is approximately equivalent to the ex ante expected allocation
probabilities within the rectangle. Proposition 4 then shows that qN is an approximation
for q. We shall summarize the arguments of the proof in the proof itself.

Construction of qN

Fix ε > 0. For all N ≥ 1, we divide Vi into 2N subintervals {V N
i�n}1≤n≤2N of equal measure.

That is, λi(V N
i�n)= 1

2N for all i ∈ I and 1 ≤ n≤ 2N . For each sub-rectangle
∏

i∈I V
N
i�ni

, let

aNn1�n2�����nI
= 2NI

∫
∏
i∈I V Ni�ni

q(v1� v2� � � � � vI)λ(dv)�
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Note that aNn1�n2�����nI
is a vector in R

K
+ . We write aN�kn1�n2�����nI

to denote the kth entry of
aNn1�n2�����nI

. Since
∑

k∈K q
k(v)= 1 for all v ∈ V , we have

∑
k∈K

aN�kn1�n2�����nI
= 1�

Choose a vector bNn1�n2�����nI
∈ R

K
+ such that

(1) ‖aNn1�n2�����nI
− bNn1�n2�����nI

‖1 <
ε
4 ;

(2)
∑

k∈K b
N�k
n1�n2�����nI

= 1; and
(3) bN�kn1�n2�����nI

is a nonnegative rational number for all k ∈K.
Without loss of generality, we assume that bN�kn1�n2�����nI

= 1
βN
cN�kn1�n2�����nI

, where βN is a positive
integer and cN�kn1�n2�����nI

is a nonnegative integer. Then

∑
k∈K

cN�kn1�n2�����nI
= βN

∑
k∈K

bN�kn1�n2�����nI
= βN�

For all 1 ≤ i≤ I and 1 ≤ ni ≤ 2N , we further cut V N
i�ni

into βN subintervals {V N�si
i�ni

}1≤si≤βN of
equal measure.

We are now ready to construct the allocation rule qN . Fix N and (n1� n2� � � � � nI). Any
v = (v1� v2� � � � � vI) ∈ V necessarily lies in some sub-rectangle V N�s1

1�n1
× V N�s2

2�n2
× · · · × V N�sI

I�nI
.

Let
∑

i∈I si = αβN + γ, where α and γ are nonnegative integers and 0 ≤ γ < βN . Let

qN(v1� v2� � � � � vI)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1�0� � � � �0)� 0 ≤ γ ≤ cN�1n1�n2�����nI
− 1�

(0�1� � � � �0)� cN�1n1�n2�����nI
≤ γ ≤ cN�1n1�n2�����nI

+ cN�2n1�n2�����nI
− 1�

� � � � � � � �

(0� � � � �0�1)�
∑

1≤k≤K−1

cN�kn1�n2�����nI
≤ γ ≤

∑
k∈K

cN�kn1�n2�����nI
− 1�

Proposition 4 below shows that qN is an approximation for q.

PROPOSITION 4: For any ε > 0, there exists a positive integer Ñ such that, for all N ≥ Ñ ,∫
Vi

∣∣∣∣
∫
V−i

[
qk(vi� v−i)− qkN(vi� v−i)

]
λ−i(dv−i)

∣∣∣∣λi(dvi) < ε (S.10)

for all i ∈ I and k ∈K.

PROOF: Fix ε ∈ (0�1). It suffices to show that there exists a positive integer Ñ such
that, for all N ≥ Ñ , there exists a subset DN

i ⊆ Vi with λi(DN
i ) < ε for all i ∈ I such that∥∥∥∥

∫
V−i

[
q(vi� v−i)− qN(vi� v−i)

]
λ−i(dv−i)

∥∥∥∥
1

< ε (S.11)

for all i ∈ I and vi ∈ Vi \DN
i .

Step (1) shows that there exists a continuous function q̃ that is an approximation for q.
This follows from Lusin’s theorem. By the continuity of q̃, Step (2) constructs q̃N from
q̃ such that q̃N is an approximation for q̃. We then show in Step (3) and Step (4) that
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qN is an approximation for q̃N . Combining the arguments above, we show that qN is an
approximation for q.

Step (1) By Lusin’s theorem (see Royden and Fitzpatrick (2010, p. 66)), there exists a
continuous function q̃ : V → �({1�2� � � � �K}) such that

λ
({
v ∈ V : q(v) 
= q̃(v)})< ε3

128K2 � (S.12)

Let D= {v ∈ V : q(v) 
= q̃(v)}. For each i ∈ I , let D(vi)= {v−i : (vi� v−i) ∈D} for vi ∈ Vi,
and let Di = {vi : λ−i(D(vi)) ≥ ε

8K }. It follows from (S.12) that λi(Di) <
ε2

16K for all i ∈ I .
By the definition of Di, for all vi ∈ Vi \Di, λ−i(D(vi)) < ε

8K and

∥∥∥∥
∫
V−i

[
q(vi� v−i)− q̃(vi� v−i)

]
λ−i(dv−i)

∥∥∥∥
1

≤Kλ−i
(
D(vi)

)
<K

ε

8K
= ε

8
� (S.13)

Step (2) Parallel to the construction of aNn1�n2�����nI
from q, for each sub-rectangle∏

i∈I V
N
i�ni

, let

ãNn1�n2�����nI
= 2NI

∫
∏
i∈I V Nini

q̃(v1� � � � � vI)λ(dv)�

Let q̃N(v)= ãNn1�n2�����nI
for v ∈ ∏

i∈I V
N
i�ni

. Then for i ∈ I , 1 ≤ ni ≤ 2N and vi ∈ V N
i�ni

,

∫
V−i
q̃N(vi� v−i)λ−i(dv−i)= 1

2N(I−1)

∑
1≤nj≤2N�j 
=i

ãN(n1�n2�����nI )
�

Since q̃ is continuous, q̃N(v) converges to q̃(v) as N → ∞ for all v ∈ V . By Lebesgue’s
dominated convergence theorem (see Royden and Fitzpatrick (2010, p. 88)),

∥∥∥∥
∫
V−i

[
q̃(vi� v−i)− q̃N(vi� v−i)

]
λ−i(dv−i)

∥∥∥∥
1

→ 0

for all vi ∈ Vi. By Egoroff’s theorem (see Royden and Fitzpatrick (2010, p. 64)), there
exists a subset D̃i ⊆ Vi with λi(D̃i) <

ε
4 such that

∫
V−i q̃N(vi� v−i)λ−i(dv−i) uniformly con-

verges to
∫
V−i q̃(vi� v−i)λ−i(dv−i) on Vi \ D̃i. Then there exists Ñ such that, for N ≥ Ñ and

vi ∈ Vi \ D̃i, ∥∥∥∥
∫
V−i

[
q̃(vi� v−i)− q̃N(vi� v−i)

]
λ−i(dv−i)

∥∥∥∥
1

<
ε

4
� (S.14)

Step (3) Recall from Step (1) that Di = {vi : λ−i(D(vi))≥ ε
8K } and λi(Di) <

ε2

16K . For all
i ∈ I and N ≥ 1, let ENi = {ni : λi(Di ∩ V N

i�ni
)≥ 1

2N
ε

8K �1 ≤ ni ≤ 2N}. Since

ε2

16K
> λi(Di)≥

∑
ni∈ENi

λi
(
Di ∩ V N

i�ni

) ≥ Card
(
ENi

) 1
2N

ε

8K
�
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we have Card(ENi )
2N < ε

2 . Let D̂N
i = ⋃

ni∈ENi V
N
i�ni

. Then λi(D̂N
i )= Card(ENi )

2N < ε
2 . For vi ∈ Vi \ D̂N

i

(i.e., vi ∈ V N
i�ni

with ni /∈ENi ),∥∥∥∥ 1
2N(I−1)

∑
1≤nj≤2Nj 
=i

aNn1�n2�����nI
−

∫
V−i
q̃N(vi� v−i)λ−i(dv−i)

∥∥∥∥
1

=
∥∥∥∥ 1

2N(I−1)

∑
1≤nj≤2Nj 
=i

(
aNn1�n2�����nI

− ãNn1�n2�����nI

)∥∥∥∥
1

≤ 2N
∫
V Ni�ni

∫
V−i

∥∥q(v1� v2 � � � � vI)− q̃(v1� v2� � � � � vI)
∥∥

1
λ−i(dv−i)λi(dvi)

= 2N
∫
V Ni�ni

\Di

∫
V−i

∥∥q(v1� v2� � � � � vI)− q̃(v1� v2� � � � � vI)
∥∥

1
λ−i(dv−i)λi(dvi)

+ 2N
∫
V Ni�ni

∩Di

∫
V−i

∥∥q(v1� v2� � � � � vI)− q̃(v1� v2� � � � � vI)
∥∥

1
λ−i(dv−i)λi(dvi)

≤ 2Nλi
(
V N
i�ni

)
K
ε

8K
+ 2Nλi

(
V N
i�ni

∩Di

)
K

≤ ε

4
� (S.15)

Step (4) By the construction of qN , for all i ∈ I , 1 ≤ ni ≤ 2N , and vi ∈ V N
i�ni

,∫
V−i
qN(vi� v−i)λ−i(dv−i)= 1

2N(I−1)

∑
1≤nj≤2N�j 
=i

bNn1�n2�����nI
�

Therefore, for all N and vi ∈ Vi,∥∥∥∥
∫
V−i
qN(vi� v−i)λ−i(dv−i)− 1

2N(I−1)

∑
1≤nj≤2N�j 
=i

aNn1�n2�����nI

∥∥∥∥
1

=
∥∥∥∥ 1

2N(I−1)

∑
1≤nj≤2N�j 
=i

bNn1�n2�����nI
− 1

2N(I−1)

∑
1≤nj≤2N�j 
=i

aNn1�n2�����nI

∥∥∥∥
1

≤ 1
2N(I−1)

∑
1≤nj≤2Nj 
=i

∥∥bN(n1�n2�����nI )
− aN(n1�n2�����nI )

∥∥
1

<
ε

4
� (S.16)

Finally, let DN
i =Di ∪ D̃i ∩ D̂N

i . Then λi(DN
i ) ≤ ε. Recall that Ñ has been defined in

Step (2). For all N ≥ Ñ and vi ∈ Vi \DN
i , (S.11) follows from (S.13)–(S.16). Q.E.D.

APPENDIX E: SELF PURIFICATION AND MUTUAL PURIFICATION

Our mechanism equivalence result builds on the methodology of mutual purification.
We emphasize that the notion of mutual purification is both conceptually and technically
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different from the usual purification principle in the literature related to Bayesian games,
as illustrated by the following two examples.

Example 6 studies a generalized matching pennies game, and Example 7 studies a
single-unit auction. The two games share the following features:

1. There are two agents.
2. Agent 1’s type is uniformly distributed on (0�1] with total probability 1 − λ1(0),

and the distribution has an atom at the point 0 with λ1(0) > 0.
3. Agent 2’s type is uniformly distributed on [0�1].
4. Agents’ types are independently distributed.

Example 6 below illustrates the idea of self purification. The behavioral strategy of
agent 2 can be purified since the distribution of agent 2’s type is atomless, whereas the
behavioral strategy of agent 1 cannot be purified since agent 1’s type has an atom.

EXAMPLE 6—Generalized Matching Pennies: Consider the following m×m zero-sum
game with incomplete information, where m is sufficiently large ( 1

m
< λ1(0)). The action

space for both agents is A1 =A2 = {a1� a2� � � � � am}. The payoff matrix for agent 1 is given
in Figure S.1. In words, agent 1 would like to match the action of agent 2 and avoid the
action that is one step below the action of agent 2 (including the case that she takes the
action am and agent 2 takes the action a1). The payoffs of the agents do not depend on
the type profile.

Consider the behavioral strategy that each agent mixes over all actions with equal prob-
ability. Formally,

f1(v)= f2(v)= 1
m

∑
1≤s≤m

δas

for all v ∈ [0�1], where δas is the Dirac measure at as. It is easy to verify that (f1� f2) is a
Bayesian Nash equilibrium and the expected payoffs of both agents are 0.

CLAIM 1: Agent 2 has a pure strategy f ′
2 such that (f1� f

′
2) is a Bayesian Nash equilibrium

and provides the same expected payoffs for both agents, whereas agent 1 does not have such
a pure strategy.

Agent 1

Agent 2
a1 a2 a3 · · · am

a1 1 −1 0 · · · 0
a2 0 1 −1 · · · 0
a3 0 0 1 · · · 0
���

���
���

���
���

���

am −1 0 · · · 0 1

FIGURE S.1.—Agent 1’s payoff matrix.
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PROOF: Consider the following pure strategy f ′
2 of agent 2:

f ′
2(v)=

⎧⎪⎪⎨
⎪⎪⎩
as� v ∈

[
s− 1
m

�
s

m

)
�1 ≤ s ≤m− 1�

am� v ∈
[
m− 1
m

�1
]
�

It is easy to see that (f1� f
′
2) is a Bayesian Nash equilibrium and provides the same ex-

pected payoffs for both agents.
Next, we show that there does not exist a pure strategy g1 of agent 1 such that g1 is a

component of a Bayesian Nash equilibrium with both agents’ expected payoffs being 0.
Suppose that (g1� g2) is a Bayesian Nash equilibrium such that g1 is a pure strategy of
agent 1. For each 1 ≤ s ≤ m, let Ds = {v1 ∈ V1 : g1(v1) = as} denote the collection of
types of agent 1 that play as. Without loss of generality, we assume that 0 ∈ D1. Let
S = arg max1≤s≤m λ1(Ds). Since λ1(Ds)≥ λ1(D1)≥ λ1(0) > 1

m
for all s ∈ S, it must be that

S is a strict subset of {1�2� � � � �m}. Therefore, at least one of the following is true: (1)
there exists 1 ≤ s∗ < m such that s∗ ∈ S and s∗ + 1 /∈ S; and (2) m ∈ S and 1 /∈ S. In the
former case, playing as∗+1 for all her types gives agent 2 a strictly positive expected pay-
off λ1(Ds∗)− λ1(Ds∗+1) > 0. In the latter case, playing a1 for all her types gives agent 2 a
strictly positive expected payoff λ1(Dm)− λ1(D1) > 0. Since in either case, agent 2 has a
strategy that gives her a strictly positive expected payoff, the expected payoff of agent 2
when playing g2 must be strictly positive in the equilibrium (g1� g2). We arrive at a contra-
diction. Q.E.D.

Example 7 below demonstrates how the purification for an agent relies on the atom-
less distribution of the other agent’s type, which partially illustrates the idea of mutual
purification. In particular, for some given stochastic mechanism in the two-agent setting
with independent types as specified above, agent 1 who has an atom in her type space can
achieve the same interim expected payoff by some deterministic mechanism,2 whereas
there does not exist such a deterministic mechanism for agent 2.

EXAMPLE 7: Consider a single-unit auction with two bidders. The payoff function of
agent i is εvi + (1 − vj)

m for i� j = 1�2 and i 
= j, where m is sufficiently large and ε is
sufficiently small such that

λ1(0)
2

> ε+ 1
m+ 1

�

Consider the allocation rule q= (q1� q2) with q1(v)= q2(v)= 1/2 for all v, where qi is
the probability of bidder i getting the object for i ∈ {1�2}. The interim expected utility of
agent 1 with type v1 is∫

V2

(
εv1 + (1 − v2)

m
)
q1(v1� v2)λ2(dv2)= εv1

2
+ 1

2(m+ 1)
�

and the interim expected utility of agent 2 with type v2 is∫
V1

(
εv2 + (1 − v1)

m
)
q2(v1� v2)λ1(dv1)= εv2

2
+ λ1(0)

2
+ (

1 − λ1(0)
) 1

2(m+ 1)
�

2For simplicity, we only consider such an equivalence in terms of interim expected payoffs.
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CLAIM 2: There exists a deterministic mechanism which gives agent 1 the same interim
expected utility, whereas there does not exist such a deterministic mechanism for agent 2.

PROOF: We first construct a deterministic mechanism which gives agent 1 the same
interim expected payoff. Define a function G on V1 × V2 = [0�1]2 by letting

G(v1� v2)=
∫ v2

0

[
εv1 + (

1 − v′
2

)m]
λ2

(
dv′

2

) −
[
εv1

2
+ 1

2(m+ 1)

]
�

for any (v1� v2) ∈ V1 × V2. It is easy to see that for any v1 ∈ [0�1], G(v1�0) < 0 <
G(v1�1) = εv1

2 + 1
2(m+1) . Furthermore, ∂G

∂v2
= εv1 + (1 − v2)

m > 0 for any v1 ∈ [0�1] and
v2 ∈ [0�1). Therefore, for each v1 ∈ [0�1], there exists a unique g(v1) ∈ (0�1) such that
G(v1� g(v1))= 0. By the implicit function theorem, g is differentiable, and hence measur-
able. Let q̂1(v1� v2)= 1 if 0 ≤ v2 ≤ g(v1) and 0 otherwise, and q̂2(v1� v2)= 1 − q̂1(v1� v2).
Then the mechanism q̂ gives agent 1 the same interim expected utility.

Next, we show that there does not exist any deterministic mechanism that gives agent
2 the same interim expected utility. Suppose that there exists a deterministic mechanism
q̃= (q̃1� q̃2) that gives agent 2 the same interim expected utility. Fix v2 ∈ V2 = [0�1].

Suppose that q̃2(0� v2)= 1. Then the interim expected utility of agent 2 with type v2 is∫
V1

(
εv2 + (1 − v1)

m
)
q̃2(v1� v2)λ1(dv1)≥ (εv2 + 1)λ1(0)�

Recall that λ1(0)
2 > ε+ 1

m+1 . Hence we have

(εv2 + 1)λ1(0)≥ λ1(0) >
λ1(0)

2
+ ε+ 1

m+ 1
>
εv2

2
+ λ1(0)

2
+ (

1 − λ1(0)
) 1

2(m+ 1)
�

Thus, the interim expected payoff of agent 2 under the mechanism q̃ is strictly greater than
the interim expected payoff of agent 2 under the mechanism q. This is a contradiction.
Therefore, it must be that q̃2(0� v2)= 0 since q̃ is a deterministic mechanism.

Next, since q̃2(0� v2)= 0, the interim expected payoff of agent 2 is∫
V1

(
εv2 + (1 − v1)

m
)
q̃2(v1� v2)λ1(dv1)

=
∫
(0�1]

(
εv2 + (1 − v1)

m
)
q̃2(v1� v2)λ1(dv1)

≤ (
1 − λ1(0)

)∫ 1

0

(
εv2 + (1 − v1)

m
)

dv1

= (
1 − λ1(0)

)
εv2 + 1 − λ1(0)

m+ 1

< ε+ 1
m+ 1

<
λ1(0)

2

<
εv2

2
+ λ1(0)

2
+ (

1 − λ1(0)
) 1

2(m+ 1)
�
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That is, the interim expected payoff of agent 2 under the mechanism q̃ is strictly less than
the interim expected payoff of agent 2 under the mechanism q. This is also a contradic-
tion. Therefore, there does not exist any deterministic mechanism that gives agent 2 the
same interim expected payoff. Q.E.D.
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