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Abstract

This paper proposes a two-stage method for estimating parameters in a para-
metric fractional continuous-time model based on discrete-sampled observations. In
the first stage, the Hurst parameter is estimated based on the ratio of two second-
order differences of observations from different time scales. In the second stage, the
other parameters are estimated by the method of moments. All estimators have
closed-form expressions and are easy to obtain. A large sample theory of the pro-
posed estimators is derived under either the in-fill asymptotic scheme or the double
asymptotic scheme. Extensive simulations show that the proposed theory performs
well in finite samples. Two empirical studies are carried out. The first, based on
the daily realized volatility of equities from 2011 to 2017, shows that the Hurst
parameter is much lower than 0.5, which suggests that the realized volatility is too
rough for continuous-time models driven by standard Brownian motion or fractional
Brownian motion with Hurst parameter larger than 0.5. The second empirical study
is of the daily realized volatility of exchange rates from 1986 to 1999. The estimate
of the Hurst parameter is again much lower than 0.5. Moreover, the proposed frac-
tional continuous-time model performs better than the autoregressive fractionally
integrated moving average (ARFIMA) model out-of-sample.
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1 Introduction

In recent decades, the phenomenon of long-range dependence has been widely observed

in data from hydrology, geophysics, climatology, telecommunication, and economics. In

finance, Taylor (1986) and Ding et al. (1993) find that the absolute values and powers

of stock returns tend to have slowly decaying autocorrelations. Following this stylized

fact, many time series models are proposed to capture long-range dependence, both in

discrete time and in continuous time. A partial list of references includes Granger and

Joyeux (1980), Lo (1991), Ding et al. (1993), Cheung (1993), Baillie (1996), Baillie et

al. (1996), and Andersen et al. (2003) in the domain of discrete time and Comte and

Renault (1996, 1998), Aı̈t-Sahalia and Mancini (2008), and Comte et al. (2012) in the

domain of continuous time.

Among these models, Comte and Renault (1998) propose a continuous-time stochas-

tic volatility model

dXt = κ (µ−Xt) dt+ σdBH
t , (1.1)

where κ ∈ R+, σ ∈ R+, and µ ∈ R are all constants, and BH
t is a fractional Brownian

motion (fBm) that is a zero-mean Gaussian process with covariance functions

Cov
(
BH

t , BH
s

)
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
,∀t, s ∈ R. (1.2)

Although Comte and Renault (1998) impose the assumption thatH ∈ (1/2, 1), we do not

impose this restriction in this paper. In general, H can take any value within the interval

(0, 1). Comte and Renault (1996) has established connections between the continuous-

time model in (1.1) and some conventional long-memory models in the discrete-time

literature.

Gatheral et al. (2018) point out that the sample path of logarithmic realized volatil-

ities (RV) is often too rough to be fitted well by Model (1.1) with H ∈ (1/2, 1). Instead,

they propose the use of Model (1.1) with H ∈ (0, 1/2), which they call the rough frac-

tional stochastic volatility (RFSV) model. When examining the logarithmic RV of a

DAX contract, Bund futures contract, S&P 500 index, and NASDAQ index, they docu-

ment the evidence ofH ≈ 0.1 on any reasonable time scale. They also report the superior

forecasting performance of the RFSV model relative to the heterogeneous autoregressive

model of Corsi (2009).

A growing strand of literature now supports the findings of Gatheral et al. (2018).
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For example, Bennedsen et al. (2017) document roughness in a large number of U.S.

equities and reveal the superior forecasting performance of the RFSV model with the

intraday volatility of the Emini S&P 500 futures contract; Livieri et al. (2018) re-

port strong support for RFSV using the implied volatility-based approximations to spot

volatility; Bayer et al. (2016) obtain strong support for RFSV via SPX volatility surface

and variance swaps. The RFSV model is also applied in mathematical finance, such as

in option pricing theory (Bayer et al., 2016; Garnier and Sølna, 2017), portfolio choice

(Fouque and Hu, 2018), and dynamic hedging (Euch and Rosenbaum, 2018). Jaisson

and Rosenbaum (2016) study microstructural foundations for RFSV.

To better appreciate the arguments of Gatheral et al. (2018), Figure 1 plots the

sample path of the logarithmic daily RV of the S&P 500 index and three simulated

sample paths generated from Model (1.1), with H = 0.1453, 0.5, and 0.7. To generate

the sample paths of {Xt}, we set κ = 1.381, µ = 2.196, and σ = 0.844, which are the

estimated values when Model (1.1) is fitted to the logarithmic daily RV of the S&P 500

index using the estimation method proposed in our paper (0.1453 is the estimate of H).

Figure 1 clearly shows that the sample paths of {Xt} with H = 0.5 and 0.7 are much

smoother than the real data. Moreover, the sample paths of {Xt} become rougher as H

decreases. When H = 0.1453, the level of roughness of the simulated sample-path looks

very similar to that of the real data.

Despite the popularity of Model (1.1), to the best of our knowledge, statistical anal-

ysis of this model based on discrete-sampled data, including estimation and statistical

inference, is limited. In this paper, we first propose a two-stage approach to the estima-

tion of the parameters in Model (1.1). In the first stage, a novel estimator for the Hurst

parameter H is introduced based on the ratio of squared summations of second-order

differences of Xt obtained at different time scales. In the second stage, estimators of

the other parameters in (1.1) are constructed based on a set of moment conditions in

which the true value of H is replaced with the estimated H obtained in the first stage.

Closed-form expressions are established for all the proposed estimators.

We then develop a large sample theory for the proposed estimators. In particular,

we consider two asymptotic schemes: (i) the in-fill asymptotic scheme under which the

sampling interval ∆ goes to zero with a fixed time-span T ; and (ii) the double asymptotic

scheme in which ∆ → 0 and T → ∞ simultaneously. Under both asymptotic schemes,

the consistency and asymptotic normality of H and σ2 are established for all H ∈ (0, 1).

3



01/03/2011 12/28/2012 12/24/2014 12/19/2016
0

1

2

3

4

5
(a) S&P 500

0 1 2 3 4 5 6
1

1.5

2

2.5

3
(b) Model (1.1) with H=0.70

0 1 2 3 4 5 6
-1

0

1

2

3

-1
(c) Model (1.1) with H=0.50

0 1 2 3 4 5 6
0

1

2

3

4

5
(d) Model (1.1) with H=0.1453

Figure 1: Time series plot of the logarithmic daily realized volatility of S&P 500 index
and three simulated sample paths of {Xt} generated by Model (1.1) with κ = 1.381,
µ = 2.196, σ = 0.844, and H = 0.1453, 0.5, and 0.7, respectively.

In addition, an explicit formula is derived for the asymptotic variance of H, which

depends only on the value ofH. This feature greatly facilitates statistical inference about

H. Under the double asymptotic scheme, the consistency and asymptotic distributions

for µ and κ are developed. The convergence rate for µ is a function of H. Both the

convergence rate and the asymptotic distribution for κ depends crucially on H.

Extensive simulations demonstrate that the proposed estimators and the derived

asymptotic distributions work well in finite samples. We also design an experiment

to show the robustness of the proposed estimators to the microstructural noise effects.

We then carry out two empirical studies. In the first, we apply the proposed two-

stage estimation approach to the logarithmic daily RV for the S&P 500, the DJIA, and

the Nasdaq 100. Our estimates and inference results suggest that H is statistically

significantly less than 0.5. This conclusion is robust to jumps. In the second study,

we apply the proposed estimation approach to the logarithmic daily RV for three spot

exchange rates for the U.S. dollar, the Deutsch Mark, and the Japanese yen. Once again,

we document strong evidence that H < 0.5 for each RV. The point estimates of H are

similar to those obtained in the first empirical study and are very robust to jumps. In
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addition, we document the superior out-of-sample performance of Model (1.1) relative

to the discrete-time autoregressive fractionally integrated moving average (ARFIMA)

model.

The remainder of the paper is organized as follows. Section 2 introduces the model

and discusses its relationship with the discrete-time ARFIMA model. Section 3 proposes

a two-stage estimation approach for the parameters in the concerned model. Section 4

establishes the asymptotic properties of the proposed estimators. In Section 5, Monte

Carlo experiments are designed to check the finite sample performance of the proposed

estimators and the developed large sample theory. Empirical studies are carried out

in Section 6, and Section 7 presents our conclusions. All proofs are collected in the

Appendix. Throughout the paper, we use
p→,

a.s.→ ,
d→,

d
=, and ∼ to denote convergence

in probability, convergence almost surely, convergence in distribution, equivalence in

distribution, and asymptotic equivalence, respectively.

2 Model and Some Preliminaries

2.1 Model

The model with which we are concerned in this paper is given by (1.1), where κ ∈ R+,

σ ∈ R+, µ ∈ R, and H ∈ (0, 1) are constants. The stochastic differential equation in

(1.1) has a unique path-wise solution as (see, for example, Cheridito et al., 2003 in the

case when µ = 0)

Xt = e−κtX0 +
(
1− e−κt

)
µ+ σ

∫ t

0
e−κ(t−s)dBH

s , (2.1)

where X0 is the initial value of Xt at t = 0, and the stochastic integral exists as a

path-wise Riemann-Stieltjes integral.

In practice, observations of Xt are available only at discrete time points, for example,

at n(:= T/∆) equally spaced points {i∆}ni=0, with ∆ being the sampling interval and T

being the time-span. When Xt is annualized and observed monthly (weekly or daily),

then ∆ = 1/12 (1/52 or 1/252). Let {Xi∆}ni=0 denote the discrete-time observations of

Xt. The exact discrete-time model of {Xi∆}ni=0 is obtained from (2.1) as

Xi∆ = e−κ∆X(i−1)∆ +
(
1− e−κ∆

)
µ+ εi∆ with εi∆ = σ

∫ i∆

(i−1)∆
e−κ(i∆−s)dBH

s . (2.2)
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When H = 1/2, BH
t becomes a standard Brownian motion and Model (2.2) turns out

to be a first-order autoregressive model (AR(1)) with independent errors (see Bergstrom,

1990). Under the in-fill asymptotic scheme, which assumes ∆ → 0 with a fixed T ,

e−κ∆ ≈ 1 − κ∆ = 1 − κT/n → 1. (2.2) is a local-to-unity model, as shown by Phillips

(1987). In the double asymptotic scheme, which assumes ∆ → 0 and T → ∞, (2.2) is an

AR(1) model with a root with moderate deviation from unity, as shown by Wang and

Yu (2016).

When H ̸= 1/2, the increments of BH
t , also known as fractional Gaussian noise, are

serially correlated, leading to serial dependence in {εi∆}. From the covariance structure

of BH
t given in (1.2), it can be proven that, for any fixed ∆, the increments process{

vi∆ := BH
i∆ −BH

(i−1)∆

}n

i=1
is stationary with the following autocovariance function

Cov
(
vi∆, v(i+j)∆

)
=

1

2
∆2H

{
|j + 1|2H − 2 |j|2H + |j − 1|2H

}
∼ O

(
j2H−2

)
as j → ∞.

It is easy to show that Cov
(
vi∆, v(i+j)∆

)
> 0 and

∑∞
j=0Cov

(
vi∆, v(i+j)∆

)
= +∞ when

H ∈ (1/2, 1). In this case, {εi∆} in (2.2) has positive serial correlations and is a long-

memory process, which leads to long-range dependence in {Xi∆} (Cheridito et al., 2003).

Moreover, if κ is positive and close to zero, {Xi∆} is stationary but has a root close

to unity. In this case, {Xi∆} behaves as the cumulative sum of {εi∆}. The positive

correlation in {εi∆} makes the sample path of {Xi∆} smooth.

In contrast, if H ∈ (0, 1/2), then Cov
(
vi∆, v(i+j)∆

)
< 0 and {vi∆}ni=1 are anti-

persistent with
∑∞

j=0Cov
(
vi∆, v(i+j)∆

)
= 0. In this case, {εi∆} in (2.2) has negative

serial correlations that quickly decay to zero as the lag order increases. Although {εi∆}
does not have long-range dependence, when κ is close to zero, {Xi∆} still exhibits long-

range dependence due to the feature of local-to-unity. Moreover, the negative serial

correlation in {εi∆} induces a rough sample path in {Xi∆}, which explains the findings

of Gatheral et al. (2018) that Model (1.1) with H ≈ 0.1 and κ ≈ 0 provides a good fit

to RV, which has a rough sample path and slowly decaying autocorrelations.

To better appreciate the discussion above, we simulate {Xi∆} and {εi∆} from Model

(1.1) with various values of H. We set κ =1.3810, µ =2.1960, σ =0.8440, and ∆ =1/256.

Details of the simulation of data from Model (1.1) are given in Section 5. Figure 2 plots

the autocorrelations of {Xi∆} and {εi∆}, in which the left panels represent the model

with H = 0.7, and the right panels represent the model with H = 0.1453. The Figure

clearly shows that {εi∆} has positive serial correlations when H = 0.7 and negative serial

6
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Figure 2: Autocorrelation functions of Xi∆ and εi∆ simulated from Model (1.1).

correlations when H = 0.1453. More importantly, in both cases, the process {Xi∆} has

positive and slowly decaying autocorrelations, and hence, long-range dependence.

Figure 3 plots the simulated sample paths of {Xi∆} and {εi∆} and shows that the

sample paths of {εi∆} are rough regardless of whether H = 0.7 or H = 0.1453. However,

the sample path of {Xi∆}, which is close to that of the partial sums of {εi∆}, is smooth

when H = 0.7 but remains rough when H = 0.1453.

When κ > 0, Xt defined in (1.1) is stationary. For simplicity, a stationary initial

condition is taken as

X0 = µ+ σ

∫ 0

−∞
eκsdBH

s
d
= N

(
µ, σ2κ−2HHΓ (2H)

)
,

where Γ (·) denotes the gamma function, although all of the asymptotic results derived

here continue to hold when X0 is a constant or X0 = Op (1). Under the stationary initial

condition, {Xi∆}ni=1 is a Gaussian stationary process with

E (Xi∆) = µ and V ar (Xi∆) = σ2κ−2HHΓ (2H) . (2.3)

An alternative representation of Xi∆ is

Xi∆ = µ+ σ

∫ i∆

−∞
e−κ(i∆−s)dBH

s . (2.4)
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Figure 3: Time series plots of Xi∆ and εi∆ simulated from Model (1.1).

2.2 Relation to ARFIMA model

The continuous-time model (1.1) and its discretization (2.2) are closely related to the

following stationary ARFIMA(1,H − 1/2, 0) model that is widely used and extensively

studied in the discrete-time literature:

yi∆ = µ(1− ρ) + ρy(i−1)∆ + ui∆, |ρ| < 1, (2.5)

ui∆ = (1− L)−(H−1/2)ei∆, ei∆ ∼ i.i.d.(0, σ2
e), i = 1, ..., n,

where L is the lag operator with (1− L)−d defined as

(1− L)−d =
∞∑
j=0

Γ(j + d)

Γ(d)Γ(j + 1)
Lj .

Define d := H − 1/2. Because H ∈ (0, 1), then d ∈ (−1/2, 1/2). Together with the

condition that |ρ| < 1, the ARFIMA model is stationary. It is well-established in the

literature that the errors {ui∆} have a long memory when d ∈ (0, 1/2) but are anti-

persistent when d ∈ (−1/2, 0) (see, for example, Giraitis et al., 2012).

Letting ρ = e−κ∆, σ2
e = 1−e−2κ∆

2κ σ2, and n = 1/∆ (i.e., T = 1), Davydov (1970)

proves the following weak convergence result under some regular conditions: as ∆ → 0,

δHΓ(H + 1/2)

nH
y⌊ns⌋ ⇒ Xs , ∀ 0 ≤ s ≤ 1 , (2.6)
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Table 1: Mean and standard deviation (SD) of the ML estimates of d and ρ when fitting the

ARFIMA(1, d, 0) model by ML approach to data simulated from Model (1.1). When simulating

data, we set κ =15, µ =2.8, σ =1, H =0.15, T =4, ∆ =1/256. This setup implies that

d = H − 1/2 = −0.35 and ρ = exp(−κ∆) =0.9414.

Mean of d̂ SD of d̂ Mean of ρ̂ SD of ρ̂

0.3954 0.0409 0.0118 0.0529

where δH =
√

2HΓ(3/2−H)
Γ(H+1/2)Γ(2−2H) , ⌊z⌋ denotes the greatest integer less than or equal to z,

and {Xs} is the process defined in (1.1) (see also Tanaka (2013, 2015)).

The weak convergence in (2.6) may lead one to believe that the fractional continuous

time model and the ARFIMA(1, d, 0) model are essentially equivalent, especially when

∆ is small; unfortunately, this belief is not justified. To show the difference between

the fractional continuous time model and the ARFIMA model, we simulate data from

Model (1.1) but fit the stationary ARFIMA model with the maximum likelihood (ML)

method. When simulating the data, we set κ =15, µ =2.8, σ =1, H =0.15, T =4, and

∆ =1/256. This setup implies that d = H − 1/2 = −0.35 and ρ = exp(−κ∆) =0.9414.

Table 1 reports the means and standard deviations (SD) of the ML estimates of d and

ρ over 200 replications. The mean of d̂ is very close to 0.4, whereas the mean of ρ̂ is

very close to 0. Both values are far away from the implied values. In fact, the ML

estimates of d and ρ are very close to those obtained in the empirical study when we fit

the ARFIMA model to the daily RV of exchange rates as shown in Section 6. Although

not reported, decreasing the value of ∆ essentially leads to no change in the mean of d̂

and the mean of ρ̂. We conjecture that there may exist critical differences between the

asymptotic behavior of the two likelihoods that make the two model asymptotically non-

equivalent. Here, the asymptotic equivalence is defined based on Le Cam’s deficiency

distance (see Le Cam (1986), Le Cam and Yang (1990)). Wang (2002) showed that the

GARCH(1,1) model and the continuous-time stochastic volatility model are asymptot-

ically non-equivalent, although the former model converges weakly to the latter model

under an in-fill asymptotic scheme. Establishing such a result for the ARFIMA model

and the fractional continuous-time model will be pursued in a future study.
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3 A Two-Stage Estimation Approach

To estimate the parameters in (1.1) based on discrete-sampled data, it is difficult to

apply the maximum likelihood method for the reason that the errors {εt∆} in (2.2) have

complicated dependent structure when H ̸= 1/2.1 In this paper, following Phillips and

Yu (2009b), we proposes an alternative two-stage estimation approach, which is very

easy to implement and does not require any tuning parameter.

In the first stage, motivated by Barndorff-Nielsen et al. (2013), we propose to esti-

mate the Hurst parameter H by using

Ĥ =
1

2
log2


n−4∑
i=1

(
X(i+4)∆ − 2X(i+2)∆ +Xi∆

)2
n−2∑
i=1

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2
 , (3.1)

where log2 (·) is the base-2 logarithm,
{
X(i+4)∆ − 2X(i+2)∆ +Xi∆

}n−4

i=1
and{

X(i+2)∆ − 2X(i+1)∆ +Xi∆

}n−2

i=1
are second-order differences of {Xi∆}ni=1 taken at two

different time scales.2

Clearly, estimatingH requires no information about other parameters in Model (1.1).

Moreover, Ĥ is trivial to compute from data. Section 3 develops the large sample

theory of Ĥ under two asymptotic schemes, including the in-fill asymptotic scheme (i.e.,

∆ → 0 with a fixed T ) and the double asymptotic scheme (i.e., ∆ → 0 and T → ∞,

simultaneously). Under both asymptotic schemes, consistency and asymptotic normality

are established. The asymptotic distribution of Ĥ depends only on the value of H

itself. Hence, statistical inference of H can be done without knowing values of the other

parameters in the model.

It is important to take second order differences to reduce the dependence in the data

so that the central limit theory is applicable for all values of H ∈ (0, 1). However, if

1When σ and H are known and a continuous record of Xt is available over the time interval [0, T ],
Kleptsyna and Le Breton (2002) and Tanaka et al. (2019) obtain expressions for the exact MLE of κ
which involve stochastic integrals. Replacing these stochastic integrals by corresponding Riemann sums
calculated from discrete-time observations {Xi∆}, Tudor and Viens (2007) introduce an approximate
MLE of κ with discrete-sampled data. However, the approximate MLE is challenging to implement,
and its limiting distribution is unknown. Moreover, when σ and H are unknown, how to obtain an
approximate MLE from discrete-sampled data remains as an unsolved problem.

2While the same estimator was used in Barndorff-Nielsen et al. (2013) under a different model,
Barndorff-Nielsen et al. (2013) require the process to be a Brownian semimartingale. Whereas, Model
(1.1) is not a Brownian semimartingale unless H = 1/2. Hence, the asymptotic theory developed in
Barndorff-Nielsen et al. (2013) is not applicable here.
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H is known to be less than 3/4, taking first-order differences is enough to reduce the

dependence in the data. The asymptotic theory for such an estimator is developed in

Phillips et al. (2019) for fractional continuous-time models with more general drift and

diffusion functions.

In the second stage, we estimate the other parameters, σ, µ, κ, in Model (1.1) using

the following method-of-moments estimators:

σ̂ =

√√√√√√
n−2∑
i=1

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2
n
(
4− 22Ĥ

)
∆2Ĥ

, (3.2)

µ̂ =
1

n

n∑
i=1

Xi∆, (3.3)

κ̂ =


n

n∑
i=1

X2
i∆ −

(
n∑

i=1
Xi∆

)2

n2σ̂2ĤΓ
(
2Ĥ
)


−1/(2Ĥ)

. (3.4)

Note that σ̂ depends on Ĥ obtained in the first stage and κ̂ depends on both σ̂ and Ĥ.

The estimators in the second stage are based on a set of moment conditions. When

∆ is small, X(i+2)∆ − 2X(i+1)∆ + Xi∆ ≈ σ
(
BH

(i+2)∆ − 2BH
(i+1)∆ +BH

i∆

)
. It has been

proved in Hu et al. (2019) that, when ∆ = 1, the process
{
BH

i+2 − 2BH
i+1 +BH

i

}n
i=1

is

stationary and ergodic with zero mean and variance 4 − 22H for any H ∈ (0, 1). Using

the self-similarity property of BH
t , we have

V ar
(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)
≈ σ2

(
4− 22H

)
∆2H ,

which justifies the estimator of σ2 given in (3.2). The estimators µ̂ and κ̂ come from the

expressions of the unconditional mean and variance of Xi∆ given in (2.3).

The estimators µ̂ and κ̂ are closely related to some previous studies in the continuous-

time literature, where σ andH are assumed to be known and a continuous record of {Xt}
is assumed to be observed over the time interval [0, T ]. For example, Xiao and Yu (2019a,

b) have proposed the method-of-moments estimators of κ and µ with a continuous-time

record of {Xt} available, whose expressions are similar to the estimators µ̂ and κ̂ in (3.3)

and (3.4) with (i) the summations replaced by corresponding Riemann integrals and (ii)

the estimates σ̂ and Ĥ replaced by their true values. Pioneer studies for estimating κ

with the additional condition of µ = 0 are Hu and Nualart (2010) and Hu et al. (2019).
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4 Asymptotic Theory

The large sample theory of Ĥ and σ̂ defined in (3.1) and (3.2) is reported Section 3.1.

We first show that Ĥ and σ̂ are consistent as long as T∆ → 0 and n = T/∆ → ∞, a

condition that is satisfied under either (i) the in-fill asymptotic scheme where ∆ → 0 with

a fixed T ; or (ii) the double asymptotic scheme where ∆ → 0 and T → ∞ simultaneously

with T diverging at a lower rate than that of 1/∆.3 In Section 3.2, we show that T → ∞
is a necessary condition for the consistency of µ̂ and κ̂ defined in (3.3) and (3.4) and

report the double asymptotic theory of µ̂ and κ̂.

4.1 Asymptotic Theory of Ĥ and σ̂

Theorem 4.1 Let Ĥ and σ̂ be the estimators defined in (3.1) and (3.2) for Model (1.1).

For all H ∈ (0, 1), when T∆ → 0 and n = T/∆ → ∞, we have

(a) Ĥ
p→ H and

√
n
(
Ĥ −H

)
d→ N

(
0,

Σ11 +Σ22 − 2Σ12

(2 log 2)2

)
; (4.1)

(b) σ̂
p→ σ and

√
n

log (∆)
(σ̂ − σ)

d→ N
(
0,

Σ11 +Σ22 − 2Σ12

(2 log 2)2
σ2

)
, (4.2)

where

Σ11 = 2 + 22−4H
∞∑
j=1

(
ρj+2 + 4ρj+1 + 6ρj + 4ρ|j−1| + ρ|j−2|

)2
, (4.3)

Σ12 = 21−2H

4(ρ1 + 1)2 + 2
∞∑
j=0

(ρj+2 + 2ρj+1 + ρj)
2

 , (4.4)

Σ22 = 2 + 4

∞∑
j=1

ρ2j , (4.5)

with

ρj =
1

2 (4− 22H)

(
− |j + 2|2H + 4 |j + 1|2H − 6 |j|2H + 4 |j − 1|2H − |j − 2|2H

)
. (4.6)

3The consistency of Ĥ only requires ∆ → 0. In other words, even when T diverges faster than 1/∆,

violating the condition T∆ → 0, Ĥ is still consistent as long as ∆ → 0.

12



Remark 4.1 It can be proved that ρj ∼ O
(
j2H−4

)
as j → ∞. Hence, for any H ∈

(0, 1), the sequence {ρj}∞j=1 is square summable, ensuring that the infinite sums in Σ11,

Σ12, and Σ22 are all finite. A simple proof by only using the mean value theorem for

integrals suggests that, as j → ∞, we have

2
(
4− 22H

)
ρj

= 2H

{
−
∫ j+2

j+1
x2H−1dx+ 3

∫ j+1

j
x2H−1dx− 3

∫ j

j−1
x2H−1dx+

∫ j−1

j−2
x2H−1dx

}
= 2H

{
− (j + 1 + λ1)

2H−1 + 3 (j + λ2)
2H−1 − 3 (j − 1 + λ3)

2H−1 + (j − 2 + λ4)
2H−1

}
= 2H (2H − 1)

{
−
∫ j+1+λ1

j+λ2

x2H−2dx+ 2

∫ j+λ2

j−1+λ3

x2H−2dx−
∫ j−1+λ3

j−2+λ4

x2H−2dx

}
≈ 2H (2H − 1)

{
− (j + λ5)

2H−2 + 2 (j − 1 + λ6)
2H−2 − (j − 2 + λ7)

2H−2
}

= 2H (2H − 1) (2H − 2)

{
−
∫ j+λ5

j−1+λ6

x2H−3dx+

∫ j−1+λ6

j−2+λ7

x2H−3dx

}
≈ 2H (2H − 1) (2H − 2)

{
− (j − 1 + λ8)

2H−3 + (j − 2 + λ9)
2H−3

}
= 2H (2H − 1) (2H − 2) (2H − 3)

{
−
∫ j−1+λ8

j−2+λ9

x2H−4dx

}
∼ O

(
j2H−4

)
,

where the second equality and the approximate equations come from the mean value

theorem for integrals, and {λs}9s=1 are real numbers in the interval (0, 3).

Remark 4.2 Figure 2 plots the values of the asymptotic variance of
√
n
(
Ĥ −H

)
for

H ∈ (0, 1) . It shows that the asymptotic variance of
√
n
(
Ĥ −H

)
is a decreasing func-

tion over the interval H ∈ (0, 1).

Remark 4.3 It is worth mentioning that the asymptotic variance of Ĥ only depend on

H while the asymptotic variance of σ̂2 only depends on H and σ2. Neither depends on

κ and µ. This feature greatly facilitates statistical inference about H and σ2 because H

and σ2 can be consistently estimated when T is fixed but κ and µ cannot.

Remark 4.4 Although we have assumed κ > 0 in Model (1.1), the proposed estima-

tors of H and σ still work when κ ≤ 0. Moreover, the developed in-fill asymptotic

theory still applies when κ ≤ 0. In fact, if κ = 0, X(i+2)∆ − 2X(i+1)∆ + Xi∆ =

σ
(
BH

(i+2)∆ − 2BH
(i+1)∆ +BH

i∆

)
, making it easier to develop the asymptotic distributions

of Ĥ and σ̂2.

13



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1

1.25

1.5

1.75

2

2.25

2.5

Figure 4: Asymptotic variance of
√
n
(
Ĥ −H

)
as a function of H ∈ (0, 1) .

When H = 1/2, Model (1.1) becomes the Vasicek model that has been used to model

interest rates in the literature. The Vasicek model enjoys the Markov property. Whereas,

if H ̸= 1/2, Model (1.1) does not have the Markov property any more. To facilitate the

test of the hypothesis H = 1/2, Corollary 4.2 gives the value of the asymptotic variance

of
√
n
(
Ĥ − 1/2

)
. Putting H = 1/2 into the formulae given in Theorem 4.1, we get that

ρ0 = 1, ρ1 = −1/2, ρj = 0 for j ≥ 2, Σ11 = 7/2, Σ12 = 3/2, and Σ22 = 3, and then

Corollary 4.2 is obtained directly and reported below.

Corollary 4.2 When H = 1/2, we have, as T∆ → 0 and n = T/∆ → ∞,

√
n
(
Ĥ − 1/2

)
d→ N

(
0,

7

8 (log 2)2

)
.

4.2 Asymptotic Theory of µ̂ and κ̂

To develop the asymptotic theory of µ̂ and κ̂ defined in (3.3) and (3.4), we need the

double asymptotic scheme where T → ∞ and ∆ → 0. We may also need a condition to

govern the relative divergence/convergence rates of T and ∆.

Theorem 4.3 Let µ̂ be the estimator of µ defined in (3.3). For all H ∈ (0, 1), when

T → ∞ and ∆ → 0, we have µ̂
p→ µ. If, in addition, T 1−H∆H → 0, then

T 1−H (µ̂− µ)
d→ N

(
0, σ2/κ2

)
. (4.7)
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Theorem 4.4 Let κ̂ be the estimator of κ defined in (3.4). For all H ∈ (0, 1), when

T → ∞ and T∆ → 0, we have κ̂
p→ κ. If, in addition,

(a) for H ∈ (0, 3/4),
√
T∆H → 0, then

√
T (κ̂− κ)

d→ N (0, κϕH) , (4.8)

with

ϕH =


1

4H2

[
(4H − 1) + 2Γ(2−4H)Γ(4H)

Γ(2H)Γ(1−2H)

]
if H ∈ (0, 12)

4H−1
4H2

[
1 + Γ(3−4H)Γ(4H−1)

Γ(2−2H)Γ(2H)

]
if H ∈ [12 ,

3
4)

;

(b) for H = 3/4,
√
T∆H/ log (T ) → 0, then

√
T

log(T )
(κ̂− κ)

d→ N
(
0,

16κ

9π

)
;

(c) for H ∈ (3/4, 1), T 2−2H∆H → 0, then

T 2−2H (κ̂− κ)
d→ −κ2H−1

HΓ(2H + 1)
R ,

where R is the Rosenblatt random variable whose characteristic function is given by

c(s) = exp

(
1

2

∞∑
k=2

(
2
√
−1sσ(H)

)k ak
k

)
,

with σ(H) =
√
H(H − 1/2) and

ak =

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
|x1 − x2|H−1 · · · |xk−1 − xk|H−1 |xk − x1|H−1 dx1 · · · dxk.

Remark 4.5 Note that ϕH in Part (a) of Theorem 4.4 is continuous at H = 1/2. Using

the formula Γ (z + 1) = zΓ (z), ϕH for H ∈ (0, 1/2) can be rewritten as

ϕH =
1

4H2

[
(4H − 1) +

Γ (3− 4H) Γ (4H)

Γ (2H) Γ (2− 2H)

]
.

Hence, when H → 1/2 from the left side of 1/2, we have

lim
H→1/2−

ϕH =

[
1 +

Γ (1) Γ (2)

Γ (1) Γ (1)

]
= 2.

If H = 1/2, ϕH = 2. Hence, ϕH is continuous at H = 1/2.
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Figure 5: Plot of ϕH as a function of H.

Remark 4.6 When H = 1/2 and is known, the double asymptotic distribution of the

ML estimator of κ is known to be N (0, 2κ); see, for example, Tang and Chen (2009).

Since ϕH = 2 when H = 1/2, our method-of-moments estimator κ̂ has the same limiting

distribution as the MLE in this case. Therefore, κ̂ is asymptotically efficient when H =

1/2.

Remark 4.7 Figure 3 plots ϕH as a function of H. It shows that ϕH reaches the

minimum value at H = 1/2. Over the interval (0, 1/2], ϕH is decreasing in H. Whereas,

over the interval [1/2, 3/4), ϕH monotonically increases to +∞ as H → 3/4. This feature

suggests that the convergence rate of κ̂ − κ should be lower than 1/
√
T when H = 3/4.

Part (b) of Theorem 4.4 shows that the convergence rate of κ̂ − κ is log (T ) /
√
T when

H = 3/4.

5 Monte Carlo Studies

This section checks the finite-sample performance of the proposed estimators and the

developed asymptotic theory with data simulated from Model (1.1), various values of

16



H, σ, µ and κ, and different combinations of the sampling frequency ∆ and time span

T . The data simulation and parameter estimation steps are summarized as follows:

(i) Set values for parameters H, µ, κ, σ, in Model (1.1).

(ii) Choose the values of ∆ and T , and hence, the number of observations for parameter

estimation n = T/∆.

(iii) For any given ∆, choose the value of M > 1 to get a finer grid

{0,∆/M, 2∆/M, . . . ,∆; (M + 1)∆/M, (M + 2)∆/M, . . . , 2∆; . . . , n∆} .

Then, generate series of fractional Gaussian noise
{
BH

jγ −BH
(j−1)γ

}nM

j=1
by using

fast Fourier transformation at the finer grid γ := ∆/M .4

(iv) The Euler approximation of Model (1.1) over the interval ((j − 1) γ, jγ) takes the

form of

Xjγ = X(j−1)γ + κ
(
µ−X(j−1)γ

)
γ + σ

(
BH

jγ −BH
(j−1)γ

)
. (5.1)

Starting from any pre-determined initial value X0, the time series {Xjγ}nMj=1 is

generated recursively based on Equation in (5.1) with the simulated fractional

Gaussian noise series
{
BH

jγ −BH
(j−1)γ

}nM

j=1
obtained in Step 3. A subset of {Xjγ}nMj=1

is {Xi∆}ni=0, which gives the simulated sample path of the process Xt with the

target sampling interval ∆.5

4Details of the use of fast Fourier transformation to generate series of fractional Gaussian noise can
be found in Paxson (1997). Other methods for simulating fBm can be seen in a recent survey paper by
Coeurjolly (2000).

5For any target sampling interval ∆, a representation of Model (1.1) over the interval ((i− 1)∆, i∆)
is

Xi∆ = X(i−1)∆ + κµ∆− κ

∫ i∆

(i−1)∆

Xtdt+ σ
(
BH

i∆ −BH
(i−1)∆

)
. (5.2)

If we let γ = ∆ (i.e. M = 1), Equation (5.1) for simulating the data becomes

Xi∆ = X(i−1)∆ + κµ∆− κX(i−1)∆∆+ σ
(
BH

i∆ −BH
(i−1)∆

)
,

which is the same as Equation (5.2) but with the integral
∫ i∆

(i−1)∆
Xtdt replaced by X(i−1)∆∆. If

we choose an M > 1, by dividing the interval ((i− 1)∆, i∆) into M equally-spaced subintervals as
∪iM

j=(i−1)M+1 ((j − 1) γ, jγ] and simulating data based on Equation (5.1), then the simulated data are

Xi∆ = X(i−1)∆ + κµ∆− κ

iM∑
j=(i−1)M+1

X(j−1)γγ + σ
(
BH

i∆ −BH
(i−1)∆

)
,

which is the same as Equation (5.2) but with the integral replaced by the corresponding Riemann sum,

i.e.,
∫ i∆

(i−1)∆
Xtdt ≈

∑iM
j=(i−1)M+1 X(j−1)γγ. Clearly, the larger the M , the smaller the approximation
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(v) Using the simulated data {Xi∆}ni=0, estimate H, µ, κ, and σ based on the estimators

defined in (3.1), (3.2), (3.3), and (3.4), respectively.

(vi) Replicate the above procedure 10,000 times.

In the first experiment, we investigate the finite sample properties of the estimator

Ĥ defined by (3.1) under various combinations of the sampling frequency ∆ and the

time span T . We let the true value of H vary from 0.1 to 0.9, and set κ = 1.381,

µ = 2.196, and σ = 0.844, which are the estimated values when Model (1.1) is fitted

to the logarithmic daily RV of S&P 500 index using the estimation method proposed

in the present paper. Simulation results are reported in Table 1, including the mean,

the SD, the 2.5 percentile, and the 97.5 percentile. For the purpose of comparison, we

also calculate and report (in parentheses) the SD, the 2.5 percentile and 97.5 percentile

implied by the asymptotic theory given by (4.1).

Table 2 reveals several features. First, for all combinations of ∆ and T , and for all

values of H, the estimator Ĥ always has a very small bias and a small SD. This suggests

that H can be accurately estimated by Ĥ. Second, the bias, the SD, and the 95%

confidence interval of Ĥ each become smaller when the sampling interval ∆ decreases or

the time span T increases. This finding supports the asymptotic theory of Ĥ given by

(4.1). Third, the finite-sample SD, the 2.5 percentile, and 97.5 percentile are very close to

their asymptotic counterparts, which suggests that the asymptotic distribution derived

in Theorem 4.1 can provide excellent approximations to finite-sample distribution.

To better show how well the derived asymptotic distribution can approximate its

finite-sample counterpart, in Figure 6, we plot the histogram of the statistic Φ
(
Ĥ,H, n

)
defined as

Φ
(
Ĥ,H, n

)
=

2
√
n log 2√

Σ11 +Σ22 − 2Σ12

(
Ĥ −H

)
,

where Σ11,Σ22,and Σ12 are defined in Theorem 4.1, and Ĥ comes from the first experi-

ment. We then compare it with the density of N(0, 1). We consider the cases in which

n = T/∆ with T = 10 and ∆ = 1/256, and H = 0.1, 0.3, 0.5, and 0.7, respectively. It

can be seen in Figure 6 that, in all cases, the histograms can be well approximated by

error generated by using Riemann sums. When ∆ is already small, the approximation error can be
ignored even when M is a relatively small number. Our idea is the same as the in-fill technique used in
Elerian et al. (2001).
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Table 2: Finite sample properties of the estimator Ĥ defined in (3.1). Values reported
in parentheses are calculated based on the asymptotic theory given in (4.1). In the
simulations, we set M = 8, and fix κ = 1.381, µ = 2.196, and σ = 0.844, which are
the estimated values when Model (1.1) is fitted to the logarithmic daily RV of S&P 500
index using the estimation method proposed in the present paper.

Value of H 0.1 0.2 0.3 0.5 0.7 0.8 0.9

Panel A: T = 4

∆ = 1
256

Mean 0.0984 0.1982 0.2981 0.4979 0.6977 0.7976 0.8974

SD
0.0470 0.0460 0.0449 0.0423 0.0392 0.0375 0.0357
(0.0474) (0.0461) (0.0449) (0.0421) (0.0390) (0.0374) (0.0356)

2.5%
0.0057 0.1071 0.2092 0.4142 0.6190 0.7211 0.8258
(0.0055) (0.1085) (0.2115) (0.4173) (0.6227) (0.7251) (0.8270)

97.5%
0.1892 0.2867 0.3834 0.5785 0.7732 0.8707 0.9670
(0.1944) (0.2914) (0.3884) (0.5826) (0.7772) (0.8748) (0.9729)

∆ = 1
512

Mean 0.0995 0.1994 0.2993 0.4992 0.6991 0.7990 0.8989

SD
0.0334 0.0326 0.0319 0.0301 0.0280 0.0269 0.0256
(0.0335) (0.0326) (0.0317) (0.0298) ( 0.0276) (0.0264) (0.0252)

2.5%
0.0339 0.1355 0.2367 0.4394 0.6432 0.7456 0.8478
(0.0331) (0.1353) (0.2374) (0.4415) (0.6453) (0.7470) (0.8484)

97.5%
0.1648 0.2632 0.3613 0.5582 0.7542 0.8515 0.9483
(0.1668) (0.2646) (0.3625) (0.5584) (0.7546) (0.8529) (0.9515)

Panel B: T = 16

∆ = 1
256

Mean 0.0994 0.1994 0.2993 0.4991 0.6989 0.7988 0.8986

SD
0.0239 0.0232 0.0225 0.0211 0.0196 0.0187 0.0179
(0.0237) (0.0230) (0.0224) (0.0210) (0.0195) (0.0187) (0.0178)

2.5%
0.0521 0.1534 0.2544 0.4570 0.6598 0.7616 0.8636
(0.0527) (0.1542) (0.2557) (0.4586) (0.6613) (0.7625) (0.8635)

97.5%
0.1453 0.2441 0.3427 0.5400 0.7368 0.8351 0.9334
(0.1472) (0.2457) (0.3442) (0.5413) (0.7386) (0.8374) (0.9364)

∆ = 1
512

Mean 0.0998 0.1998 0.2998 0.4997 0.6997 0.7997 0.8996

SD
0.0166 0.0161 0.0157 0.0148 0.0137 0.0131 0.0125
(0.0167) (0.0163) (0.0158) (0.0149) (0.0138) (0.0132) (0.0126)

2.5%
0.0671 0.1681 0.2692 0.4706 0.6727 0.7739 0.8750
(0.0665) (0.1676) (0.2687) (0.4707) (0.6726) (0.7735) (0.8742)

97.5%
0.1325 0.2312 0.3304 0.5290 0.7270 0.8255 0.9241
(0.1334) (0.2323) (0.3312) (0.5292) (0.7273) (0.8264) (0.9257)

19



-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

D
e
n
s
it
y

H=0.1

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

D
e
n
s
it
y

H=0.3

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

D
e
n
s
it
y

H=0.5

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

D
e
n
s
it
y

H=0.7

Figure 6: Histograms of Φ
(
Ĥ,H, n

)
with n = T/∆, T = 10, ∆ = 1/256, and H =

0.1, 0.3, 0.5, 0.7, respectively. Superimposed in the solid line is the density of N(0, 1).

the density of N(0, 1), which suggests that the derived asymptotic distribution works

well in finite samples.

In the second experiment, we set σ = 1, µ = 2.8, κ = 5, T = 16, ∆ = 1/256, and

M = 8 and let H vary from 0.1 to 0.7. Table 3 reports the estimation results of each

parameter (H, σ, µ, and κ) and reveals several features. First, comparison with the

results in Panel B of Table 2 shows the estimation of H is not sensitive to the change

in the values of σ, µ, or κ, which indicates that the good properties of Ĥ reported in

Table 2 continue to hold for various values of σ, µ, and κ. Second, the parameters σ

and µ can be accurately estimated. The means and medians are always close to their

respective true parameter values, and the SDs are small. When the value of H increases

from 0.1 to 0.7, the SD of σ̂ decreases, as predicted by the asymptotic theory given by

(4.2) and by Figure 2, which shows that the asymptotic variance of σ̂ is a decreasing

function of H. Furthermore, as the value of H changes, the SD of µ̂ increases. This

observation is also supported by the asymptotic theory given in (4.7), which shows that

the convergence rate of µ̂ is T 1−H , hence H has a negative effect on the precision of µ̂.
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Table 3: Finite sample properties of the estimates of the parameters (H,σ, µ, κ) with
various values of H, T = 16 and ∆ = 1/256

H σ µ κ :::: H σ µ κ

True value .10 1.00 2.80 5.00 .30 1.00 2.80 5.00

Mean .0994 1.0063 2.7999 5.6397 .2993 1.0049 2.7997 5.1998
Median .0997 .9981 2.7997 4.7395 .2993 .9978 2.7993 5.0043
SD .0239 .1324 .0173 4.2997 .0225 .1284 .0288 1.8281
2.5% .0521 .7689 2.7664 .1671 .2544 .7711 2.744 2.1814
97.5% .1453 1.2853 2.8339 16.1090 .3427 1.2749 2.8562 9.2864

True value .50 1.00 2.80 5.00 .70 1.00 2.80 5.00

Mean .4991 1.0037 2.7995 5.2745 .6989 1.0029 2.7995 5.6529
Median .4994 .9969 2.7990 5.1378 .6988 .9932 2.7986 5.5571
SD .0211 .1269 .0499 1.3391 .0196 .1317 .0865 1.2643
2.5% .4570 .7758 2.7038 2.9904 .6598 .7674 2.6326 3.4720
97.5% .5400 1.2723 2.8966 8.2454 .7368 1.2832 2.9694 8.4214

Third, the parameter κ can be estimated with less precision. The SDs are comparatively

large, and the bias and skewness in κ̂ are noticeable. The difficulties in estimating κ have

been well studied for continuous-time models driven by standard Brownian motion (i.e.,

H = 1/2); see, for example, Phillips and Yu (2005, 2009a) and Wang et al. (2011). Tang

and Chen (2009) and Yu (2012) derive analytical expressions to approximate the bias in

the MLE of κ when H = 1/2. Our simulation results show that the bias in estimating

κ continues to exist for continuous-time models driven by fBm and depends not only on

the true value of κ but also on the value of H in a nonlinear fashion. This finding is

supported by the asymptotic theory given in Theorem 4.4, which shows that both the

convergence rate and the asymptotic variance of κ̂ depend crucially on the value of H.

In the third experiment, we fix H to 0.45 and allow the other parameters (σ, µ,

and κ) to take various values to determine how a change in one parameter affects the

estimates of the other parameters. Panel A of Table 4 reports the simulation results

when µ = 2.8, κ = 5, and σ varies from 0.3 to 2. The simulation results confirm the

prediction from the asymptotic theories developed here that a change in σ should have

no effect on the estimation of H and κ, but it should increase the variance of σ̂ and µ̂.

Panel B of Table 4 reports the simulation results when σ = 0.3, κ = 5, and µ varies

from 0.5 to 2. As predicted by the asymptotic theories, the estimation results of H, σ,
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Table 4: Estimates of (H,σ, µ,κ) when H = 0.45, T = 16, ∆ = 1/256, and (σ, µ,κ) take
various values.

H σ µ κ :::: H σ µ κ

Panel A: σ varies

True value .45 .30 2.80 5.00 .45 .50 2.80 5.00

Mean .4492 .3012 2.7999 5.2383 .4492 .5020 2.7998 5.2383
SD .0215 .0381 .0131 1.4123 .0215 .0635 .0218 1.4123

True value .45 1.00 2.80 5.00 .45 2.00 2.80 5.00

Mean .4492 1.0040 2.7996 5.2383 .4492 2.0081 2.7992 5.2383
SD .0215 .1271 .0436 1.4123 .0215 .2541 .0871 1.4123

Panel B: µ varies

True value .45 .30 .50 5.00 .45 .30 1.00 5.00

Mean .4492 .3012 .4999 5.2383 .4492 .3012 .9999 5.2383
SD .0215 .0381 .0131 1.4123 .0215 .0381 .0131 1.4123

True value .45 0.30 1.50 5.00 .45 .30 2.00 5.00

Mean .4492 .3012 1.4999 5.2383 .4492 .3012 1.9999 5.2383
SD .0215 .0381 .0131 1.4123 .0215 .0381 .0131 1.4123

Panel C: κ varies

True value .45 1.00 2.80 1.00 .45 1.00 2.80 3.00

Mean .4494 1.0045 2.7978 1.2595 .4494 1.0045 2.7974 3.2483
SD .0215 .1271 .2123 .5612 .0215 .1271 .0724 1.0246

True value .45 1.00 2.80 5.00 .45 1.00 2.80 10.00

Mean .4492 1.0040 2.7996 5.2383 .4485 1.0008 2.7998 10.1683
SD .0215 .1271 .0436 1.4123 .0215 .1267 .0218 2.2102

and κ and the SD of µ̂ all remain the same when the value of µ is changed.

Panel C of Table 4 reports the simulation results when σ = 1, µ = 2.8, and κ varies

from 1 to 10. It shows that the results of the estimation of H and σ are insensitive to

the change in κ, whereas when κ is increased from 1 to 10, the SD of µ̂ decreases, and

the SD of κ̂ increases. Again, these findings are consistent with the suggestions of the

developed asymptotic theories.

To see the effects of ∆ and M on the estimates, we design the fourth experiment

by fixing T and the four parameters (H, σ, µ, and κ), but varying the value of ∆ from

1/256 to 1/2048 and the value of M from 16 to 32. Note that M is chosen to control
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Table 5: Performance of the estimators when T = 16 and (∆,M) vary.

∆ = 1/256 ∆ = 1/2048

H σ µ κ :::: H σ µ κ

True value .45 1.00 2.80 5.00 .45 1.00 2.80 5.00

Panel A: M = 16

Mean .4492 1.0037 2.8003 5.2301 .4498 1.0006 2.8004 5.2402
Median .4493 .9953 2.7999 5.0811 .4500 .9995 2.8006 5.1518
S.Dev. .0215 .1271 .0429 1.4179 .0076 .0601 .0434 1.0321
2.5% .4074 .7795 2.7172 2.8915 .4352 .8888 2.7165 3.5075
97.5% .4912 1.2752 2.8862 8.4212 .4644 1.1217 2.8865 7.5137

Panel B: M = 32

Mean .4494 1.0040 2.8007 5.2406 .4500 1.0010 2.7992 5.2232
Median .4493 .9952 2.8004 5.1082 .4500 .9993 2.7992 5.1324
S.Dev. .0213 .1262 .0432 1.4070 .0076 .0601 .0436 1.0189
2.5% .4075 .7815 2.7181 2.9167 .4353 .8899 2.7136 3.4769
97.5% .4905 1.2716 2.8864 8.4084 .4649 1.1259 2.8834 7.4461

the discretization errors generated by applying the Euler discretization when simulating

data. If ∆ is already small enough, the Euler discretization error is negligible; hence,

the choice of M does not materially change the simulation results. In contrast, the value

of ∆ may affect the performance of the estimators. Here, 1/256 corresponds roughly to

daily observations, whereas 1/2048 corresponds to hourly observations. The asymptotic

theory given in Theorem 4.1 shows that the estimators Ĥ and σ̂ are consistent under

the scheme of ∆ → 0. Hence, it is expected that, when ∆ changes from 1/256 to 1/2048,

the performances of Ĥ and σ̂ should improve. The consistency of µ̂ and κ̂ requires

T → ∞. Hence, the change in ∆ may have only a limited effect on µ̂ and κ̂. Each of

these predictions is supported by the simulation results reported in Table 5.

Table 6 presents the simulation results when ∆ = 1/256 and M = 16, but the time-

span T varies from 8 to 16. The Table shows that the performance of all estimators

improves as T increases. In particular, the bias in κ̂ is reduced by approximately half

when the value of T is doubled. The SDs for Ĥ, σ̂, and κ̂ are reduced by a factor of
√
2, whereas the SD for µ̂ is reduced by a factor of 20.55 ≈ 1.46 when the value of T

is doubled. Again, these findings are consistent with the prediction of our asymptotic

theory.
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Table 6: Performance of the estimators when ∆ = 1/256, M = 16, but T varies from 8
to 16.

T = 8 T = 16

H σ µ κ :::: H σ µ κ

True value .45 1.00 2.80 5.00 .45 1.00 2.80 5.00

Mean .4491 1.01149 2.7994 5.5351 .4491 1.0036 2.8002 5.2301
Median .4490 .9928 2.7987 5.2522 .4493 .9953 2.7999 5.0810
SD .0306 .1834 .0634 2.1019 .0214 .1270 .0429 1.4179
2.5% .3897 .7016 2.6780 2.3040 .4074 .7795 2.7172 2.8915
97.5% .5091 1.4168 2.9219 10.4051 .4912 1.2752 2.8862 8.4212

Thus far, we have assumed that Xt is observed without measurement errors. In the

empirical applications considered below, Xt corresponds to daily integrated volatility,

which is estimated by the daily RV obtained from high-frequency data. The presence of

microstructural noise in ultra high-frequency data indicates that non-negligible estima-

tion errors are present in the daily RV. In the last experiment, we assume that discrete

observations of logarithmic daily integrated volatility are generated from Model (1.1)

(denoted as X∗
t ), where we set T = 16, ∆ = 1/256, M = 8, κ = 5, µ = 2.8, and σ = 1,

but vary H = 0.1, 0.2, ..., 0.9. We add an estimation error vt ∼ N(0, 10−3) to the gen-

erated series to produce the RV Xt (i.e., Xt = X∗
t + vt). Such a choice is consistent with

the empirical results in the literature regarding the size of estimation errors relative to

the size of the daily RV (see, for example, Bollerslev et al., 2016).6 Table 7 reports the

estimates of H by using data with and without measurement errors. It can be seen that

the empirically relevant measurement errors do not affect the accuracy in the estimates

of H, especially when H ≤ 0.7.

6 Empirical Studies

This section includes two empirical studies. In the first empirical study, we fit Model

(1.1) to three logarithmic daily RV series for equities. We apply the proposed estimation

method and the new asymptotic theory to test the null hypothesis of H = 0.5. In the

6Bollerslev et al. (2016) report the median realized quarticity of 0.000175 and the median RV of
0.6295 in the S&P500. The ratio between the two quantities is 2.78 × 10−4, which is slightly less than
the ratio between 10−3 and 2.8 used in our simulation.
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Table 7: Performance of Ĥ when data has measurement errors with variance 10−3. The
experiment sets T = 16, ∆ = 1/256, M = 8, κ = 5, µ = 2.8, σ = 1.

H = 0.1 H = 0.2 H = 0.3 H = 0.4 H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9

Panel A: Estimation results without measurement errors

Mean 0.0993 0.1993 0.2992 0.3992 0.4991 0.5990 0.6990 0.7988 0.8987
Median 0.0992 0.1993 0.2992 0.3991 0.4993 0.5992 0.6991 0.7991 0.8988
SD 0.0238 0.0232 0.0225 0.0218 0.0211 0.0203 0.0195 0.0186 0.0177

Panel B: Estimation results with measurement errors

Mean 0.0993 0.1992 0.2992 0.3991 0.4988 0.5979 0.6943 0.7781 0.7875
Median 0.0993 0.1993 0.2992 0.3992 0.4991 0.5980 0.6945 0.7782 0.7876
SD 0.0238 0.0232 0.0225 0.0218 0.0211 0.0203 0.0195 0.0189 0.0190

second study, we mainly compare the out-of-sample performance of Model (1.1) relative

to an ARFIMA(1, d, 0) model for forecasting three daily RV series for exchange rates.

6.1 RV for equities

We now fit Model (1.1) to three logarithmic daily RV series for the S&P 500, DJIA, and

Nasdaq 100. The three RV series are obtained from the Ox-Mann realized library and

based on 5-minute returns.7 The sample period is from 01/03/2011 to 12/04/2017. Fig-

ure 7 plots three time series of log(100
√
RV × 252) which is the logarithmic annualized

RV.

Table 8 reports three sets of estimation results, including the point estimates and the

95% confidence intervals for all four parameters. The confidence intervals are obtained

from our asymptotic theory. In all cases, the estimated H is much less than 0.5, ranging

between .0946 for DJIA to .2550 for Nasdaq 100. The point estimates of H are similar

to those used by Gatheral et al. (2018). The 95% confidence intervals suggest that we

have strong evidence against the null hypothesis of H = 0.5. Hence, each RV series is

better modeled by RFSV. This finding once again supports the results found by Bayer

et al. (2016), Gatheral et al. (2018), and Livieri et al. (2018). We also find clear

evidence against the model used by Comte and Renault (1998), where it is assumed that

H ∈ (1/2, 1).

Model (1.1) is a Gaussian process that does not allow for jumps in volatility. To check

7The data are obtained from https://realized.oxford-man.ox.ac.uk/.
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Figure 7: Time series plot of log(RV) for S&P 500, DJIA, Nasdaq 100

Table 8: Empirical results for logarithmic RV of S&P 500, DJIA, Nasdaq 100

Name H σ µ κ

S&P 500
.1453 .8440 2.1960 1.3810

(.0738, .2166) (.8331, .8549) (1.9665, 2.4253) (1.2829, 1.4790)

DJIA
.0946 .6788 2.2019 .2382

(.0200, .1672) (.6698, .6877) (1.2318, 3.1718) (.1946, .2816)

Nasdaq 100
.2550 1.2849 2.2220 14.8874

(.1861, .3238) (1.2688, 1.3008) (2.1819, 2.2621) (14.5993, 15.1754)
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Table 9: Empirical results for logarithmic RV of S&P 500, DJIA, NASDAQ 100 with 7
largest observations removed.

Name H σ µ κ

S&P 500
.1518 .8706 2.1883 1.9407

(.08041, .2232) (.8594, .8818) (2.0171, 2.3594) (1.8251, 2.0562)

DJIA
.0965 .6807 2.1942 .3269

(.0238, .1692) (.6717, .6897) (1.4803, 2.9080) (.2760, .3778)

Nasdaq 100
.2577 1.2973 2.2152 16.9296

(.1887, .3266) (1.2811, 1.3135) (2.1793, 2.2511) (16.6225, 17.2367)

Table 10: Empirical results for logarithmic RV of S&P 500, DJIA, NASDAQ 100 with
14 largest observations removed.

Name H σ µ κ

S&P 500
.1592 .9009 2.1817 2.5822

(.0878, .2305) (.8893, .9126) (2.0463, 2.3172) (2.4498, 2.7146)

DJIA
.1061 .7089 2.1877 .6106

(.0335, .1787) (.6996, .7182) (1.7807, 2.5947) (.5418, .6793)

Nasdaq 100
.2536 1.2675 2.2101 17.3052

(.1843, .3227) (1.2516, 1.2833) (2.1759, 2.2441) (16.9929, 17.6173)

the robustness of our empirical results against the potential jumps in volatility over the

period, we remove the 7 and 14 largest observations from each series. These choices

of jump intensity correspond to 1 jump and 2 jumps per annum and are empirically

reasonable. Tables 9 and 10 report three sets of estimation results, including the point

estimates and 95% confidence intervals for all four parameters, with the jumps removed.

The empirical results are very similar to those reported in Table 8, which suggests that

the results, including the estimated H, are robust to jumps.

6.2 RV for exchange rates

We now fit Model (1.1) to three well-known RV series for spot exchange rates for the

U.S. dollar, the Deutsch Mark, and the Japanese yen over the period from December

1, 1986 to June 30, 1999. The same data are used by Andersen et al. (2003). Figure

8 plots three time series, each of which with 3045 observations. The roughness in the

data is once again obvious from the plot. Because our model is closely related to the
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Figure 8: Time series plot of log(RV) for the U.S. dollar, the Deutschmark and the
Japanese Yen over the period from December 1, 1986 to June 30, 1999

discrete time ARFIMA model, which has very good out-of-sample performance among

alternative univariate models, as shown in Andersen et al. (2003), we focus our attention

on the forecasting performance between the proposed model and the ARFIMA model.

To forecast future logarithmic RV, following Gatheral et al. (2018), we assume that

κ = 0 in Model (1.1). When H is known, the h-step-ahead forecasting formula based

on the history (−∞, t] in a continuous record, derived by Nuzman and Poor (2000), is

given by8

E (Xt+h|Ft) =
cos (Hπ)

π
hH+1/2

∫ t

−∞

Xs

(t− s+ h)(t− s)H+1/2
ds. (6.2)

When H is unknown, we replace it with the estimate Ĥ defined in (3.1). It has been

noted in Remark 4.4 that the estimate of H is consistent even when κ = 0.

8When a truncated discrete record is available at s = 1, ..., t, we must modify the forecasting formula
to

E (Xt+h|Ft) =
cos (Hπ)

π
hH+1/2

∑t
s=1

Xs

(t−s+1+h)(t−s+1)H+1/2∑t
s=1(t− s+ 1 + h)−1(t− s+ 1)−H+1/2

. (6.1)
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To forecast with the following ARFIMA(1, d, 0) model,

Xt = µ+ ρ (Xt−1 − µ) + εt, (1− L)dεt = et, et ∼ i.i.d.N (0, σ2
e), d ∈ (−1/2, 1/2), (6.3)

if µ, ρ, and d are known, one may use the forecasting formula given by Hosking (1981),

as follows

E (Xt+h|Ft) = −
∞∑
s=1

πsX̂t+h−s,

where

πs =
(s− d− 2)!

(s− 1)!(−d− 1)!

{
1− ρ− (1 + d)

s

}
, (6.4)

and X̂t+h−s = E (Xt+h−s|Ft) when h − s > 0 and X̂t+h−s = Xt+h−s when h − s ≤ 0.9

When µ, ρ, and d are unknown, we estimate them with the ML method.

Following Andersen et al. (2003), we initially divide the entire sample period into

two periods. The first period is from December 1, 1986 to December 1, 1996, which

contains 2449 observations, and the second period is from December 2, 1996 to June 30,

1999, which contains 596 days for out-of-sample evaluation. On each day in the second

period, 1-day-ahead and h-day-ahead (with h = 2, 5, 10) forecasts are obtained. Each

forecast is based on the MLE of µ, ρ, and d for the ARFIMA model and the proposed

estimate of H for Model (1.1). The estimates are obtained on the basis of an expanding

window as more observations become available. The last date for which a 10-day-ahead

forecast is carried out is June 20, 1999. The data from between December 1, 1986 and

June 20, 1999 are used to obtain estimates in both models. The last date for which a

1-day-ahead forecast is carried out is June 29, 1999. The data from between December

1, 1986 and June 29, 1999 are used to obtain the estimates in both models.

To gain an idea about the point estimates in both models, Table 11 reports the

estimated H in Model (1.1) and the estimated µ, ρ, and d in the ARFIMA model based

on the full sample of each volatility series. In all cases, the estimated value of d is very

close to 0.401, which is the value used by Andersen et al. (2003) to forecast RV. The

estimated value of H is close to those obtained in the first empirical study and very close

to 0.14, which is the value used by Gatheral et al. (2018).

9When implementing the forecasting formula, if s ≥ 100, noting that (s−d−2)!
(s−1)!(−d−1)!

{
1− ρ− (1+d)

s

}
∼

(1−ρ)
(−d−1)!

s−d−1, we simply use (1−ρ)
(−d−1)!

s−d−1 to approximate πs.
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Table 11: Estimate of H for the fractional continuous time model and estimate of µ, ρ and d

for the ARFIMA model

Model (1.1) ARFIMA

H µ ρ d

Mark/$ 0.1543 -1.1357 -0.0630 0.4155

Mark/Yen 0.1307 -1.1184 -0.1008 0.4663

Yen/$ 0.1711 -1.0279 -0.0379 0.4330

Table 12: One-step-ahead forecasting results in the Mark/$ RV

intercept slope of ARFIMA slope of our model R2

ARFIMA -0.0608 0.9335 - 0.2801

Our model -0.2395 - 0.7926 0.2855

Joint -0.2916 -0.2516 1.003 0.2857

To compare the out-of-sample performances of these two competing models, following

Mincer and Zarnowitz (1969) and Andersen et al. (2003), we project the logarithmic RV

on a constant and the two model forecasts (first individually and then jointly). Table

12 reports the results for the 1-day-ahead forecasts for Mark/$, including the estimated

intercept, the estimated slopes, and R2 in each regression. We find the results very

interesting. First, in single forecasting regressions, our model generates a slightly higher

value for R2 than the ARFIMA model. Note that the ARFIMA model can generate very

accurate volatility forecasts according to Andersen et al. (2003). The joint forecasting

regression indicates that the ARFIMA forecasts have a negative relationship with the

true logarithmic RV after controlling for the forecasts obtained from our model.

Table 13 reports the results for multiple-day-ahead forecasts. To save space, we

report R2 only in single forecasting regressions. In all cases, our model generates higher

values for R2 than the ARFIMA model.

Table 14 reports the R2 results in single forecasting regressions for the other two

exchange rates for 1-day-ahead up to 10-day-ahead forecasts. The general conclusions

about the superiority of the fractional continuous time model hold true, except for the

Table 13: Multi-step-ahead forecasting results in the Mark/$ RV

2-day 5-day 10-day

ARFIMA .4364 .4792 .5041

Our model .4640 .5159 .5452
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Table 14: Forecasting results in the Mark/Yen RV and in the Yen/$ RV

1-day 2-day 5-day 10-day

Mark/Yen ARFIMA .4219 .5284 .5581 .5661

Mark/Yen Our model .4253 .5434 .5821 .5929

Yen/$ ARFIMA .3704 .5046 .5340 .5355

Yen/$ Our model .3685 .5273 .5707 .5740

Table 15: Estimate of H for the fractional continuous time model and estimate of µ, ρ and d

for the ARFIMA model with 14 and 28 largest observations removed

Model (1.1) ARFIMA

H µ ρ d

Mark/$ with 14 observations removed 0.1532 -1.1464 -0.0689 0.4165

Mark/$ with 28 observations removed 0.1585 -1.1557 -0.0652 0.4138

Mark/Yen with 14 observations removed 0.1400 -1.1352 -0.1006 0.4636

Mark/Yen with 14 observations removed 0.1391 -1.1459 -0.1027 0.4610

Yen/$ with 14 observations removed 0.1713 -1.0432 -0.0437 0.4323

Yen/$ with 14 observations removed 0.1690 -1.0540 -0.0448 0.4297

1-day-ahead forecast of Yen/$ RV.

Model (1.1) is a Gaussian process that does not allow for jumps. To check the

robustness of our empirical results against the potential jumps over the period, we remove

the 14 and 28 largest observations from each series. Table 15 reports three sets of

estimation results, including the point estimates and 95% confidence intervals for all

four parameters. The empirical results are very similar to those reported in Tables 11,

which suggests that the results, especially the estimated H, are robust to jumps.

To gain a deeper understanding of why the continuous time model and the ARFIMA

model show differences in performance in the out-of-sample exercise, Figure 9 compares

the values of the weight functions used in these two models for one-step-ahead forecast

(i.e., h = 1). The weights used for the ARFIMA model are {−πs} given in (6.4), and s

denotes the lag length. To facilitate the comparison, we rewrite the forecasting formula

used by the continuous time model as

E (Xt+h|Ft) =

t∑
s=1

θsXt+1−s with θs =
cos (Hπ)

(s+ h)(s)H+1/2π
hH+1/2/

t∑
s=1

(s+h)−1(s)−H+1/2.

Let t = 3045, which is the sample size of the Mark/$ RV data. Let H = 0.1543, which

corresponds to the estimated H in our proposed model based on the full sample of
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Figure 9: Weights of ARFIMA(1, d, 0) and our model for forecasting Mark/$

Mark/$ RV. Let ρ = −0.063 and d = 0.4155, which correspond to the ML estimates

of ρ and d in the stationary ARFIMA model based on the full sample of Mark/$ RV.

Figure 9 reports the values of {−πs} and {θs} for s = 1, ..., 2401. It shows that {−πs}
and {θs} are positive and that they decay to zero at the same rate. More importantly,

it can be seen that θ1 > −π1 and θs < −πs for s > 1, which means that, relative to the

ARFIMA model, our model assigns a higher weight to the most recent observation and

lower weights to earlier observations.

7 Conclusions

Over the past two decades, the general consensus is that the volatility of financial assets

displays long-range dependence. In the continuous-time setting, long-range dependence

can be modeled with the help of fBm. Gatheral et al. (2018) show that the logarithmic

RV behaves essentially as an fBm, and the Hurst parameter takes a value of around 0.1

at any reasonable time scale. Using at-the-money options on the S&P 500 index with

short maturity, Livieri et al. (2018) further confirm that volatility is rough.
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This study contributes to the literature by proposing a novel estimation method for

all parameters in a fractional continuous-time model based on discrete-sampled observa-

tions when the parameter space for the Hurst parameter is (0, 1). In the first stage, the

Hurst parameter is estimated based on the ratio of two second-order differences of ob-

servations obtained at various time scales. In the second stage, the other parameters are

estimated by the method of moments. All estimators have closed-form expressions and

are easy to obtain. We also developed the asymptotic theory for the proposed estimators

that facilitates statistical inference.

Simulations suggest that our two-stage estimators perform well in finite samples. The

method is applied to two empirical examples, the logarithmic RV of the S&P 500, DJIA,

and Nasdaq 100 and the logarithmic RV of Mark/$, Mark/Yen, and Yen/$ exchange

rates. Empirical studies show that the volatility is rough, which reinforces the findings

of Gatheral et al. (2018) in all six series. This empirical finding is robust to jumps. We

also compare the out-of-sample forecasting performance of the fractional continuous-time

model with the stationary ARFIMA model and find evidence of the superior performance

of the fractional continuous-time model.

This study also suggests several important directions for future research. First,

although our estimators are consistent and easy to use, they may not be asymptotically

efficient. The development of an asymptotically more efficient estimation technique and

determination of the asymptotic relative inefficiency of our two-stage estimators hold

great interest. Second, the model considered in this paper has no jumps, even though

the proposed model with H < 1/2 is rough. Although the removal of a few jumps

from the data cannot change the feature of roughness, jumps may have implications for

the magnitude of parameter estimates. Extending the estimate method and asymptotic

theory to cover fractional continuous-time models with jumps is important, and we

leave it for future studies. Third, this paper assumes that the Hurst parameter does

not change over time. This assumption can be too restrictive. How to test whether

the value of H changes in the sample and how to model time-varying H values are

some important questions to ask. Fourth, in this paper we fit the fractional continuous

time model to RV series. By doing so, we assume that the RV measures integrated

volatility without measurement error. This assumption is clearly too strong. The degree

of robustness of the empirical results to measurement errors in RV will be explored in a

future study. In addition, the robustness of the roughness in other time-series data such
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as interest rates is pursued by Phillips et al. (2019). Finally, our results indicate that

the fractional continuous time model and the discrete time ARFIMA model may not

be asymptotically equivalent, even though the discrete time ARFIMA model converges

weakly to the fractional continuous time model under the in-fill asymptotic scheme. Such

an asymptotic non-equivalence should be established.

APPENDIX

Lemma 7.1 Let BH
t = BH (t) be an fBm with the Hurst parameter H ∈ (0, 1) and

t ∈ [0,∞).

(a) Define yi = BH (i+ 2) − 2BH (i+ 1) + BH (i) for i = 0, 1, 2, . . .. The process {yi}
is a Gaussian stationary process with E (yi) = 0 and V ar (yi) = 4 − 22H , and has

autocorrelation functions as, for j = 0, 1, 2, . . . ,

ρj =
1

2 (4− 22H)

{
− |j + 2|2H + 4 |j + 1|2H − 6 |j|2H + 4 |j − 1|2H − |j − 2|2H

}
;

(b) Define yi,∗ = BH (i+ 4)− 2BH (i+ 2)+BH (i) for i = 0, 1, 2, . . .. The process {yi,∗}
is a Gaussian stationary process with E (yi,∗) = 0 and V ar (yi,∗) = 22H

(
4− 22H

)
, and

has autocorrelation functions as, for j = 0, 1, 2, . . . ,

ρj,∗ = 2−2H
(
ρj+2 + 4ρj+1 + 6ρj + 4ρ|j−1| + ρ|j−2|

)
;

(c) Define ξi,∗ = y2i,∗ − E
(
y2i,∗

)
and ξi = y2i − E

(
y2i
)
, for i = 0, 1, 2, . . .. The bivariate

process
{(

ξi,∗ ξi
)′}

is a weakly stationary process with mean zero and autocovariance

matrices as, for j = 0, 1, 2, . . . ,

Γj = E

((
ξi+j,∗
ξi+j

)(
ξi,∗ ξi

))
= 2

(
4− 22H

)2( 24Hρ2j,∗ (ρj+2 + 2ρj+1 + ρj)
2(

ρj + 2ρ|j−1| + ρ|j−2|
)2

ρ2j

)
.

Lemma 7.2 Let BH (t) be the same fBm as in Lemma 7.1 with t ∈ [0, T ], where T is the

time span. Suppose BH (t) are observed at discrete time points with sampling interval

∆, denoted by
{
BH

i∆ = BH (i∆)
}n
i=0

, where n = ⌊T/∆⌋ is the number of observations.

Define

ηi,∗ =

(
BH

(i+4)∆ − 2BH
(i+2)∆ +BH

i∆

∆H

)2

− 22H
(
4− 22H

)
for i = 0, 1, 2, . . . n− 4,

ηi =

(
BH

(i+2)∆ − 2BH
(i+1)∆ +BH

i∆

∆H

)2

−
(
4− 22H

)
for i = 0, 1, 2, . . . n− 2.

34



It can be proved that, as n → ∞,

1√
n

(∑n−4
i=0 ηi,∗∑n−2
i=0 ηi

)
d−→ N

(0
0

)
,Γ0 +

∞∑
j=1

(
Γj + Γ′

j

) ,

where Γj are the covariance matrices defined in Lemma 7.1, and the long-run covariance

matrix in the limiting distribution is well-defined.

Proof of Lemma 7.1: The results in Parts (a)-(b) are obtained straightforwardly based

on the definition of fBm and its covariance structure given in (1.2). Details are tedious

and omitted here for simplicity.

For Part (c), let us first prove that
{
ξi = y2i − E

(
y2i
)}∞

i=0
is a stationary process.

From the stationarity of {yi}, it can be obtained that E (ξi) = 0. Then, we have, for

j = 0, 1, 2, . . .,

Cov (ξi+j , ξi) = E (ξi+jξi) = E
(
y2i+jy

2
i

)
− E

(
y2i+j

)
E
(
y2i
)

= V ar (yi+j)V ar (yi) + 2 [Cov (yi+j , yi)]
2 − E

(
y2i+j

)
E
(
y2i
)

= 2
(
4− 22H

)2
ρ2j

where the third equality comes form the Issei’ theorem (Isserlis, 1918) for computing

higher-order moments of multivariate normal distribution, and the last equation is from

the stationarity properties of {yi} given in Part (a).

Taking the same procedure above with the stationarity properties of {yi,∗} shown

in Part (b) gives a proof of {ξi,∗} being a stationary process with mean zero and

E (ξi+j,∗ξi,∗) = 2
(
4− 22H

)2
24Hρ2j,∗.

We now derive the expressions of E (ξi+jξi,∗) and E (ξi+j,∗ξi) and show that they

only depends on j, not i. For any i = 0, 1, 2, . . . , it can be seen that

yi,∗ =
[
BH (i+ 4)− 2BH (i+ 3) +BH (i+ 2)

]
+ 2

[
BH (i+ 3)− 2BH (i+ 2) +BH (i+ 1)

]
+
[
BH (i+ 2)− 2BH (i+ 1) +BH (i)

]
= yi+2 + 2yi+1 + yi.

Hence, for any j = 0, 1, 2, . . . ,

Cov (yi+j , yi,∗) = Cov (yi+j , yi+2 + 2yi+1 + yi) =
(
4− 22H

) (
ρ|j−2| + 2ρ|j−1| + ρj

)
.
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Then, by using the Isserlis’ theorem (Isserlis, 1918) again, we have

E (ξi+jξi,∗) = E
(
y2i+jy

2
i,∗
)
− E

(
y2i+j

)
E
(
y2i,∗
)

= V ar (yi+j)V ar (yi,∗) + 2 [Cov (yi+j , yi,∗)]
2 − E

(
y2i+j

)
E
(
y2i,∗
)

= 2
(
4− 22H

)2 (
ρ|j−2| + 2ρ|j−1| + ρj

)2
.

Similarly, it can be proved that E (ξi+j,∗ξi) = 2
(
4− 22H

)2
(ρj+2 + 2ρj+1 + ρj)

2. Then,

the covariance matrices {Γj} are obtained.

In Remark 4.1, we have proved that ρj ∼ O
(
j2H−4

)
as j → ∞. Therefore, the se-

quence of covariance matrices {Γj} is absolutely summable, and the long-run covariance

matrix Γ0 +
∑∞

j=1

(
Γj + Γ′

j

)
is well-defined. Hence, the bivariate process

{(
ξi,∗ ξi

)′}
is weakly stationary.

Proof of Lemma 7.2: From the self-similarity property of fBm, it can be obtained

that, for any i = 0, 1, 2, . . . ,

BH
(i+4)∆ − 2BH

(i+2)∆ +BH
i∆

∆H

d
= BH (i+ 4)− 2BH (i+ 2) +BH (i)

and
BH

(i+2)∆ − 2BH
(i+1)∆ +BH

i∆

∆H

d
= BH (i+ 2)− 2BH (i+ 1) +BH (i) .

As a result, we have
{(

ηi,∗ ηi
)′}n−4

i=1

d
=
{(

ξi,∗ ξi
)′}n−4

i=1
, where

{(
ξi,∗ ξi

)′}
is the

weakly stationary bivariate process defined in Part (c) of Lemma 7.1. Then, apply-

ing the conventional central limit theorem for stationary vector process to the process{(
ξi,∗ ξi

)′}
gives the asymptotic normal distribution reported in the theorem.

Proof of Theorem 4.1: (a) From Equation (2.2), we have, as ∆ → 0,

X(i+1)∆ −Xi∆ =
(
e−κ∆ − 1

)
(Xi∆ − µ) + σ

∫ (i+1)∆

i∆
e−κ[(i+1)∆−s]dBH

s

= Op (∆) + σ

∫ (i+1)∆

i∆
{1 +O (∆)} dBH

s

= σ
(
BH

(i+1)∆ −BH
i∆

)
+Op (∆) = Op

(
∆H
)
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and

X(i+2)∆ − 2X(i+1)∆ +Xi∆

=
(
X(i+2)∆ −X(i+1)∆

)
−
(
X(i+1)∆ −Xi∆

)
=
(
e−κ∆ − 1

) (
X(i+1)∆ −Xi∆

)
+ σ

(∫ (i+2)∆

(i+1)∆
e−κ[(i+2)∆−s]dBH

s −
∫ (i+1)∆

i∆
e−κ[(i+1)∆−s]dBH

s

)

= Op

(
∆1+H

)
+ σ

(∫ (i+2)∆

(i+1)∆
{1 +O (∆)} dBH

s −
∫ (i+1)∆

i∆
{1 +O (∆)} dBH

s

)
= σ

(
BH

(i+2)∆ − 2BH
(i+1)∆ +BH

i∆

)
+Op

(
∆1+H

)
.

Therefore, by using the results in Lemma 7.2, we have, as long as ∆ → 0,

σ−2

n∆2H

n−2∑
i=1

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2
=

1

n∆2H

n−2∑
i=1

{(
BH

(i+2)∆ − 2BH
(i+1)∆ +BH

i∆

)2
+Op

(
∆1+2H

)}

=
1

n

n−2∑
i=1

(
BH

(i+2)∆ − 2BH
(i+1)∆ +BH

i∆

∆H

)2

+
1

n

n−2∑
i=1

Op (∆)

=
1

n

n−2∑
i=1

[
ηi +

(
4− 22H

)]
+Op (∆)

p→ 4− 22H , (A.1)

and, as ∆ → 0 and T∆ → 0,

σ−2

√
n∆2H

n−2∑
i=1

{(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2 − σ2
(
4− 22H

)
∆2H

}
=

1√
n∆2H

n−2∑
i=1

{(
BH

(i+2)∆ − 2BH
(i+1)∆ +BH

i∆

)2
−
(
4− 22H

)
∆2H +Op

(
∆1+2H

)}

=
1√
n

n−2∑
i=1

(BH
(i+2)∆ − 2BH

(i+1)∆ +BH
i∆

∆H

)2

−
(
4− 22H

)+
1

n

n−2∑
i=1

Op

(√
T∆
)

=
1√
n

n−2∑
i=1

ηi + op (1)
d→ N

0, 2
(
4− 22H

)2ρ20 + 2
∞∑
j=1

ρ2j

 , (A.2)

where the asymptotic variance can be equivalently represented as
(
4− 22H

)2
Σ22 with

Σ22 defined as in (4.5).
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Similarly, using the results in Lemma 7.2 again, we have, as long as ∆ → 0,

σ−2

n∆2H

n−4∑
i=1

(
X(i+4)∆ − 2X(i+2)∆ +Xi∆

)2
=

1

n

n−4∑
i=1

[
ηi,∗ + 22H

(
4− 22H

)]
+Op (∆)

p→ 22H
(
4− 22H

)
, (A.3)

and, as ∆ → 0 and T∆ → 0,

σ−2

√
n∆2H

n−4∑
i=1

{(
X(i+4)∆ − 2X(i+2)∆ +Xi∆

)2 − σ222H
(
4− 22H

)
∆2H

}

=
1√
n

n−4∑
i=1

ηi,∗ + op (1)
d→ N

0, 21+4H
(
4− 22H

)2ρ20,∗ + 2

∞∑
j=1

ρ2j,∗

 , (A.4)

the asymptotic variance in which has an identical representation as

21+4H
(
4− 22H

)2ρ20,∗ + 2

∞∑
j=1

ρ2j,∗


= 21+4H

(
4− 22H

)21 + 21−4H
∞∑
j=1

[(
ρj+2 + 4ρj+1 + 6ρj + 4ρ|j−1| + ρ|j−2|

)2]
= 24H

(
4− 22H

)2
Σ11 ,

where the first equation comes from the relationship between ρj,∗ and ρj given in Lemma

7.1, and Σ11 is defined in (4.3).

Then, based on (A.3) and (A.1), the consistency of 22Ĥ is achieved as long as ∆ → 0:

22Ĥ =

σ−2

n∆2H

n−4∑
i=1

(
X(i+4)∆ − 2X(i+2)∆ +Xi∆

)2
σ−2

n∆2H

n−2∑
i=1

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2 p→
22H

(
4− 22H

)
4− 22H

= 22H .

With the continuity of log2 (·), the consistency of Ĥ = 1
2 log2

(
22Ĥ

)
is obtained straight-

forwardly.
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To derive the asymptotic distribution, we first note that, from Lemma 7.2,

lim
n→∞

Cov

(
1√
n

n−4∑
i=1

ηi,∗,
1√
n

n−2∑
i=1

ηi

)

= 2
(
4− 22H

)2(ρ2 + 2ρ1 + ρ0)
2 +

∞∑
j=1

[
(ρj+2 + 2ρj+1 + ρj)

2 +
(
ρj + 2ρ|j−1| + ρ|j−2|

)2]
= 2

(
4− 22H

)24 (ρ0 + ρ1)
2 + 2

∞∑
j=0

(ρj+2 + 2ρj+1 + ρj)
2

 = 22H
(
4− 22H

)2
Σ12,

which leads to the asymptotic result that, as n → ∞,

1√
n

n−4∑
i=1

ηi,∗ − 22H
1√
n

n−2∑
i=1

ηi
d→ N

(
0, 24H

(
4− 22H

)2
[Σ11 +Σ22 − 2Σ12]

)
,

where Σ12 is defined as in (4.4). Then, together with the results given in (A.1), (A.2)

and (A.4), the asymptotic distribution of 22Ĥ −22H is obtained as ∆ → 0 and T∆ → 0 :

√
n
(
22Ĥ − 22H

)

=

σ−2
√
n∆2H

{
n−4∑
i=1

(
X(i+4)∆ − 2X(i+2)∆ +Xi∆

)2 − 22H
n−2∑
i=1

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2}
σ−2

n∆2H

n−2∑
i=1

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2

=

1√
n

n−4∑
i=1

ηi,∗ − 22H 1√
n

n−2∑
i=1

ηi − 1√
n
21+2H

(
4− 22H

)
σ−2

n∆2H

n−2∑
i=1

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2
d→

N
(
0, 24H

(
4− 22H

)2
[Σ11 +Σ22 − 2Σ12]

)
4− 22H

d
= N

(
0, 24H [Σ11 +Σ22 − 2Σ12]

)
.

Note that 22Ĥ = 22H + 2 log (2) · 22H̃
(
Ĥ −H

)
, where H̃ lies between H and Ĥ.

Therefore, as ∆ → 0 and T∆ → 0,

√
n
(
Ĥ −H

)
=

√
n
(
22Ĥ − 22H

)
22H̃ · 2 log (2)

d→ N
(
0,

Σ11 +Σ22 − 2Σ12

{2 log (2)}2

)
.

The proof is completed.
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(b) Based on the result that
√
n
(
Ĥ −H

)
= Op (1) as ∆ → 0 and T∆ → 0, we have

∆2Ĥ−2H = exp
{
2
(
Ĥ −H

)
log (∆)

}
= exp

{
2
√
n
(
Ĥ −H

) log (∆)√
n

}

= exp

2
√
n
(
Ĥ −H

) 2
√
∆log

(√
∆
)

√
T

 p→ 1,

where the last limit is due to
√
∆log

(√
∆
)
→ 0 as ∆ → 0. Together with the limiting

result given in (A.1), the consistency of σ̂2 is obtained under the condition of ∆ → 0

and T∆ → 0 :

σ̂2 =

σ−2

n∆2H

n−2∑
i=1

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2
σ−2

(
4− 22Ĥ

)
∆2Ĥ−2H

p→ 4− 22H

σ−2 (4− 22H)
= σ2.

To derive the asymptotic distribution of σ̂2, we first prove that, as ∆ → 0 and

T∆ → 0,

∆2Ĥ−2H−1 = exp

{
2
√
n
(
Ĥ −H

) log (∆)√
n

}
−1 = 2

√
n
(
Ĥ −H

) log (∆)√
n

+op

(
log (∆)√

n

)
,

and

√
n

log (∆)

(
∆2Ĥ−2H − 1

)
= 2

√
n
(
Ĥ −H

)
+ op (1)

d→ N
(
0,

Σ11 +Σ22 − 2Σ12

{log (2)}2

)
. (A.5)

Then, from the representation of σ̂2 given in (3.2), we have

σ̂2 − σ2

=

σ−2
√
n∆2H

n−2∑
i=1

{(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2 − σ2
(
4− 22H

)
∆2H

}
√
nσ−2

(
4− 22Ĥ

)
∆2Ĥ−2H

+
σ2 (n− 2)

(
4− 22H

)
n
(
4− 22Ĥ

)
∆2Ĥ−2H

− σ2

=
Op (1)

Op (
√
n)

+
(n− 2)

(
4− 22H

)
σ2

n
(
4− 22Ĥ

)
∆2Ĥ−2H

− σ2

=
σ2(

4− 22Ĥ
)
∆2Ĥ−2H

{
n− 2

n

(
4− 22H

)
−
(
4− 22Ĥ

)
∆2Ĥ−2H

}
+Op

(
1√
n

)

=
σ2(

4− 22Ĥ
)
∆2Ĥ−2H

{(
22Ĥ − 22H

)
−
(
4− 22Ĥ

)(
∆2Ĥ−2H − 1

)
+O

(
1

n

)}
+Op

(
1√
n

)
,
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where the second equation is from the result in (A.1). Note that 22Ĥ −22H = Op (1/
√
n)

and ∆2Ĥ−2H p→ 1. Therefore, as ∆ → 0 and T∆ → 0, we have

√
n

log (∆)

(
σ̂2 − σ2

)
= −

√
n

log (∆)

(
∆2Ĥ−2H − 1

)
σ2

∆2Ĥ−2H
+Op

(
1

log (∆)

)
d→ N

(
0,

Σ11 +Σ22 − 2Σ12

{log (2)}2
σ4

)
.

where the last limit comes from the asymptotic result proved in (A.5).

Proof of Theorem 4.3: Starting from the definition of µ̂ given in (3.3), we have, as

∆ → 0,

µ̂ =
1

n

n∑
i=1

Xi∆ =
1

T

n−1∑
i=0

∫ (i+1)∆

i∆
Xi∆dt+

XT −X0

n

=
1

T

n−1∑
i=0

∫ (i+1)∆

i∆

(
Xt +Op

(
∆H
))

dt+
XT −X0

n
=

1

T

∫ T

0
Xtdt+Op

(
∆H
)
+Op

(
1

n

)
.

Therefore, as T → ∞ and ∆ → 0,

µ̂ =
1

T

∫ T

0
Xtdt+ op (1)

p→ E (Xt) = µ,

where the last limit comes from the ergodicity of the process {Xt} when κ > 0 (see Xiao

and Yu (2019a,b)).

To derive the limiting distribution, first notice that, according to Theorem 3.3 of

Xiao and Yu (2019a) and Theorem 3.1 of Xiao and Yu (2019b), as T → ∞,

T 1−H

(
1

T

∫ T

0
Xtdt− µ

)
d→ N

(
0,

σ2

κ2

)
,

for the cases where H ∈ [1/2, 1) and H ∈ (0, 1/2), respectively. Consequently, when

T → ∞, ∆ → 0, and T 1−H∆H → 0, we have

T 1−H (µ̂− µ) = T 1−H

(
1

T

∫ T

0
Xtdt− µ

)
+Op

(
T 1−H∆H

)
+Op

(
T 1−H∆H∆1−H

T

)
= T 1−H

(
1

T

∫ T

0
Xtdt− µ

)
+ op (1)

d→ N
(
0, σ2/κ2

)
.

Proof of Theorem 4.4: We first prove the consistency of κ̂ for all H ∈ (0, 1) under

the condition of T → ∞ and T∆ → 0. From the definition of κ̂ given in (3.4), we have

κ̂−2Ĥ =

1
n

n∑
i=1

X2
i∆ −

(
1
n

n∑
i=1

Xi∆

)2

σ̂2ĤΓ
(
2Ĥ
) .
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Note that, as T → ∞ and ∆ → 0,

1

n

n∑
i=1

X2
i∆ =

1

T

n−1∑
i=0

∫ (i+1)∆

i∆
X2

i∆dt+
X2

T −X2
0

n

=
1

T

n−1∑
i=0

∫ (i+1)∆

i∆

(
X2

t +Op

(
∆H
))

dt+
X2

T −X2
0

n

=
1

T

∫ T

0
X2

t dt+Op

(
∆H
)
+Op (1/n)

p→ E
(
X2

t

)
= σ2κ−2HHΓ (2H) + µ2,

where the limit has been proved in Xiao and Yu (2019a, b) for H ∈ [1/2, 1) and H ∈
(0, 1/2), respectively. With the limit of 1

n

n∑
i=1

Xi∆ obtained in the proof of Theorem 4.3,

it is obtained that

1

n

n∑
i=1

X2
i∆ −

(
1

n

n∑
i=1

Xi∆

)2
p→ E

(
X2

t

)
− µ2 = σ2κ−2HHΓ (2H) .

The consistency of σ̂2 and Ĥ have been proved in Theorem 4.1 under the condition of

T∆ → 0. As a result, we have, when T → ∞ and T∆ → 0,

κ̂−2Ĥ =

1
n

n∑
i=1

X2
i∆ −

(
1
n

n∑
i=1

Xi∆

)2

σ̂2ĤΓ
(
2Ĥ
) p→ σ2κ−2HHΓ (2H)

σ2HΓ (2H)
= κ−2H ,

and

κ̂ = exp

{
− 1

2Ĥ
log
{
κ̂−2Ĥ

}}
p→ exp

{
− 1

2H
log
{
κ−2H

}}
= κ,

where Γ (·), exp {·}, and log {·} are continuous functions. The consistency of κ̂ is proved.

To derive the asymptotic distribution of
√
T (κ̂− κ) as shown in Part (a) of the

theorem, we will first find the asymptotic distribution of
√
T
(
κ̂−2Ĥ − κ−2H

)
. Notice

that

σ̂2ĤΓ
(
2Ĥ
)(

κ̂−2Ĥ − κ−2H
)
=

1

n

n∑
i=1

X2
i∆ −

(
1

n

n∑
i=1

Xi∆

)2

− κ−2H σ̂2ĤΓ
(
2Ĥ
)

=

 1

n

n∑
i=1

X2
i∆ −

(
1

n

n∑
i=1

Xi∆

)2

− σ2κ−2HHΓ (2H)


− κ−2H

{
σ̂2ĤΓ

(
2Ĥ
)
− σ2HΓ (2H)

}
. (A.6)
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From the asymptotic theory of σ̂2 and Ĥ provided in Theorem 4.1, we have, as

T∆ → 0,

σ̂2ĤΓ
(
2Ĥ
)
− σ2HΓ (2H)

=
(
σ̂2 − σ2

)
ĤΓ

(
2Ĥ
)
+ σ2

(
Ĥ −H

)
Γ
(
2Ĥ
)
− σ2H

[
Γ
(
2Ĥ
)
− Γ (2H)

]
= Op

(
log (∆)√

n

)
+Op

(
1√
n

)
+Op

(
1√
n

)
. (A.7)

The order of the term Γ
(
2Ĥ
)
− Γ (2H) is from the Taylor expansion as

Γ
(
2Ĥ
)
− Γ (2H) = Γ′

(
2H̃
)
· 2
(
Ĥ −H

)
,

where H̃ takes values between Ĥ and H, and the derivation function Γ′ (·) is finite over

the interval (0, 4).

Define

κ̂HN =

 1
T

∫ T
0 X2

t dt−
(

1
T

∫ T
0 Xtdt

)2
σ2HΓ (2H)


−1/(2H)

. (A.8)

Theorem 3.3 of Xiao and Yu (2019a) and Theorem 3.1 of Xiao and Yu (2019b) have

proved, for the cases where H ∈ [1/2, 3/4) and H ∈ (0, 1/2) respectively, that, as

T → ∞,
√
T (κ̂HN − κ)

d→ N (0, κϕH) ,

where ϕH is defined as in Theorem 4.4 in the current paper. As a result, we have

1
T

∫ T
0 X2

t dt−
(

1
T

∫ T
0 Xtdt

)2
σ2HΓ (2H)

= (κ̂HN )−2H

= κ−2H − 2Hκ−2H−1 (κ̂HN − κ) +Op

(
(κ̂HN − κ)2

)
,

and, as T → ∞,

√
T

{
1

T

∫ T

0
X2

t dt−
(
1

T

∫ T

0
Xtdt

)2

− σ2κ−2HHΓ (2H)

}
=

√
Tσ2HΓ (2H)

{
(κ̂HN )−2H − κ−2H

}
=

√
Tσ2HΓ (2H)

{
−2Hκ−2H−1 (κ̂HN − κ) +Op

(
(κ̂HN − κ)2

)}
d→ σ2HΓ (2H) ·

(
−2Hκ−2H−1

)
· N (0, κϕH) .
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Then, for the first term in (A.6), it is obtained that, as T → ∞ and
√
T∆H → 0,

√
T

 1

n

n∑
i=1

X2
i∆ −

(
1

n

n∑
i=1

Xi∆

)2

− σ2κ−2HHΓ (2H)


=

√
T

{
1

T

∫ T

0
X2

t dt−
(
1

T

∫ T

0
Xtdt

)2

− σ2κ−2HHΓ (2H) +Op

(
∆H
)
+Op

(
1

n

)}
d→ σ2HΓ (2H) ·

(
−2Hκ−2H−1

)
· N (0, κϕH) . (A.9)

Now, putting (A.7) and (A.9) in Equation (A.6), we have, as T → ∞, T∆ → 0, and
√
T∆H → 0,

√
T σ̂2ĤΓ

(
2Ĥ
)(

κ̂−2Ĥ − κ−2H
)

d→ σ2HΓ (2H)
(
−2Hκ−2H−1

)
· N (0, κϕH) ,

and
√
T
(
κ̂−2Ĥ − κ−2H

)
d→
(
−2Hκ−2H−1

)
· N (0, κϕH) .

Note that the first-order Taylor expansion of κ̂−2Ĥ at the point κ̂ = κ takes the form

of

κ̂−2Ĥ = κ−2Ĥ − 2Ĥκ̃−2Ĥ−1 (κ̂− κ) ,

where κ̃ lies between κ̂ and κ. As a result, we have

−2Ĥκ̃−2Ĥ−1 (κ̂− κ) = κ̂−2Ĥ − κ−2Ĥ

=
(
κ̂−2Ĥ − κ−2H

)
−
(
κ−2Ĥ − κ−2H

)
=
(
κ̂−2Ĥ − κ−2H

)
+ 2 log (κ)κ−2H

(
Ĥ −H

)
+Op

((
Ĥ −H

)2)
,

where the third equation comes from the first-order Taylor expansion of κ−2Ĥ at the

point Ĥ = H. Finally, we have, as T → ∞, T∆ → 0, and
√
T∆H → 0,

−2Ĥκ̃−2Ĥ−1
√
T (κ̂− κ) =

√
T
(
κ̂−2Ĥ − κ−2H

)
+Op

(√
∆
)

d→
(
−2Hκ−2H−1

)
·N (0, κϕH) ,

thereby,
√
T (κ̂− κ)

d→ N (0, κϕH) ,

which gives the asymptotic distribution shown in Part (a) of the theorem.

For κ̂HN given in (A.8), Xiao and Yu (2019a) have proved that, when H = 3/4,
√
T

log(T )
(κ̂− κ)

d→ N
(
0,

16κ

9π

)
, as T → ∞,
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and, when H ∈ (3/4, 1),

T 2−2H (κ̂− κ)
d→ −κ2H−1

HΓ(2H + 1)
R , as T → ∞,

where R denotes the Rosenblatt random variable. Using these results and taking the

same procedure above for the proof of Part (a) of the theorem will give the asymptotic

distributions in Part (b)-(c) of the theorem, respectively. The proof of the theorem is

completed.

References

Aı̈t-Sahalia, Y. and Mancini, T. S. (2008). Out of sample forecasts of quadratic

variation. Journal of Econometrics, 147(1):17–33.

Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P. (2003). Modeling and

forecasting realized volatility. Econometrica, 71(2): 579–625.

Baillie, R. T. (1996). Long memory processes and fractional integration in economet-

rics. Journal of Econometrics, 73(1):5–59.

Baillie, R. T., Bollerslev, T., and Mikkelsen, H. O. (1996). Fractionally integrated gen-

eralized autoregressive conditional heteroskedasticity. Journal of Econometrics,

74(1): 3–30.

Barndorff-Nielsen, O. E., Corcuera, J. M., and Podolskij, M. (2013). Limit theorems for

functionals of higher order differences of Brownian semi-stationary processes. In

Prokhorov and Contemporary Probability Theory: In Honor of Yuri V. Prokhorov,

volume 33, pages 69–96. Springer Science & Business Media.

Bayer, C., Friz, P., and Gatheral, J. (2016). Pricing under rough volatility. Quantitative

Finance, 16(6):887–904.

Bennedsen, M., Lunde, A., and Pakkanen, M.S., (2017). Decoupling the short- and

long-term behavior of stochastic volatility. Working Paper, CREATES, Aarhus

University.

Bergstrom, A.R., (1990). Continuous time econometric modelling. Oxford University

Press.

Bollerslev, T., Patton, A. J., and Quaedvlieg, R. (2016). Exploiting the errors: A simple

approach for improved volatility forecasting, Journal of Econometrics, 192(1): 1–

18.

45



Cheridito, P., Kawaguchi, H., Maejima, M. (2003). Fractional Ornstein-Uhlenbeck

processes. Electronic Journal of Probability, 8(3): 1-14.

Cheung, Y. W. (1993). Long memory in foreign-exchange rates. Journal of Business

and Economic Statistics, 11(1):93–101.

Cheung, Y.-W., Diebold, F. X. (1994). On maximum likelihood estimation of the dif-

ferencing parameter of fractionally-integrated noise with unknown mean. Journal

of Econometrics, 62(2): 301–316.

Coeurjolly, J. (2000). Simulation and identification of the fractional Brownian motion:

a bibliographical and comparative study. Journal of statistical software, 5(7):1–53.

Comte, F., Coutin, L. and Renault, E. (2012). Affine fractional stochastic volatility

models. Annals of Finance, 8(2-3):337–378.

Comte, F. and Renault, E. (1996). Long memory continuous time models. Journal of

Econometrics, 73(1):101–149.

Comte, F. and Renault, E. (1998). Long memory in continuous-time stochastic volatil-

ity models. Mathematical Finance, 8(4):291–323.

Corsi, F. (2009). A simple approximate long-memory model of realized volatility.

Journal of Financial Econometrics, 7(2): 174–196.

Ding, Z., Granger, C. W. J. and Engle, R. F. (1993). A long memory property of stock

market returns and a new model. Journal of Empirical Finance, 1(1): 83–106.

Elerian, O., Chib, S. and N. Shephard, Likelihood Inference for Discretely Observed

Nonlinear Diffusions, Econometrica, 69(4), 959–993.

Euch, O. E. and Rosenbaum, M. (2018). Perfect hedging in rough Heston models.

Annals of Applied Probability, 28(6): 3813–3856.

Fouque, J. P. and Hu, R. (2018). Optimal portfolio under fast mean–reverting fractional

stochastic environment. SIAM Journal on Financial Mathematics, 9(2):564–601.

Garnier, J. and Sølna, K. (2017). Correction to Black–Scholes formula due to fractional

stochastic volatility. SIAM Journal on Financial Mathematics, 8(1):560–588.

Gatheral, J., Jaisson, T. and Rosenbaum, M. (2018). Volatility is rough. Quantitative

Finance, 18(6):933–949.

Giraitis L., Koul H., Surgailis D. (2012). Large Sample Inference for Long memory

Processes, Imperial College Press.

Granger, C. W. J. and Joyeux, R. (1980). An introduction to long–memory time series

models and fractional differencing. Journal of Time Series Analysis, 1(1): 15–29.

46



Hosking, J. (1981). Fractional differencing. Biometrika, 68(1): 165–176.

Hu, Y. and Nualart, D. (2010). Parameter estimation for fractional Ornstein–Uhlenbeck

processes. Statistics and Probability Letters, 80(11):1030–1038.

Hu, Y., Nualart, D., and Zhou, H. (2019). Parameter estimation for fractional

Ornstein–Uhlenbeck processes of general Hurst parameter. Statistical Inference

for Stochastic Processes, 22(1): 111–142.

Isserlis, L. (1918). On a formula for the product-moment coefficient of any order of a

normal frequency distribution in any number of variables. Biometrika, 12(1/2):

134-139.

Jaisson, T., Rosenbaum, M. (2016). Rough fractional diffusions as scaling limits of

nearly unstable heavy tailed Hawkes processes. Annals of Applied Probability,

26(5): 2860-2882.

Kleptsyna, M. and Le Breton, A. (2002). Statistical analysis of the fractional Ornstein–

Uhlenbeck type process. Statistical Inference for stochastic processes, 5(3):229–

248.

Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer,

Berlin.

Le Cam, L. and Yang, G. (1990). Asymptotics in Statistics. Some Basic Concepts.

Springer, New York.

Livieri, G., Mouti, S., Pallavicini, A. and Rosenbaum, M. (2018). Rough volatility:

evidence from option prices. IISE Transactions, 50(9):767–776.

Lo, A. (1991). Long-term memory in stock market prices. Econometrica, 59(5):1279–

313.

Mincer, J. A., Zarnowitz, V. (1969). The evaluation of economic forecasts. In Economic

Forecasts and Expectations, ed. by J. Mincer. New York: National Bureau of

Economic Research, 3–46.

Nuzman, C. J., Poor, H. V. (2000). Linear estimation of self-similar processes via

Lamperti’s transformation. Journal of Applied Probability, 37(2): 429–452.

Paxson, V. (1997). Fast, approximate synthesis of fractional gaussian noise for gen-

erating self-similar network traffic. ACM SIGCOMM Computer Communication

Review, 27(5):5–18.

Phillips, P. C. B., Wang, X., Xiao, W. and Yu, J. (2019). Nonparametric estimation of

fractional continuous-time model for interest rates. Work in progress, Singapore

Management University

47



Phillips, P. C. B. and Yu, J. (2005). Jackknifing bond option prices. Review of

Financial Studies, 18(2): 707–742.

Phillips, P. C. B. and Yu, J. (2009a). Simulation-based estimation of contingent–claims

prices. Review of Financial Studies, 22(9): 3669–3705.

Phillips, P. C. B. and Yu, J. (2009b). A two-stage realized volatility approach to

estimation of diffusion processes with discrete data. Journal of Econometrics,

150(2):139–150.

Tanaka, K. (2013). Distributions of the maximum likelihood and minimum contrast

estimators associated with the fractional Ornstein–Uhlenbeck process. Statistical

Inference for Stochastic Processes, 16(3):173–192.

Tanaka, K. (2015). Maximum likelihood estimation for the non-ergodic fractional

Ornstein–Uhlenbeck process. Statistical Inference for Stochastic Processes, 18(3):315–

332.

Tanaka, K., Xiao, W., Yu, J. (2019). Maximum likelihood estimation for the fractional

Vasicek model. SMU Economics and Statistics Working Paper Series, Paper No.

08-2019.

Tang, C. Y., Chen, S. X. (2009). Parameter estimation and bias correction for diffusion

processes. Journal of Econometrics, 149(1):65–81.

Taylor, S. J. (1986). Modelling financial time series. John Wiley & Sons, New York.

Tudor, C. and Viens, F. (2007). Statistical aspects of the fractional stochastic calculus.

Annals of Statistics, 35(3):1183–1212.

Xiao, W. and Yu, J. (2019a). Asymptotic theory for estimating the drift parameters

in the fractional Vasicek model. Econometric Theory, 35(1): 198–231.

Xiao, W. and Yu, J. (2019b). Asymptotic theory for rough fractional Vasicek models.

Economics Letters, 177: 26-29.

Wang, Y. (2002). Asymptotic nonequivalence of GARCH models and diffusions, Annals

of Statistics, 30(3), 754–783.

Wang, X., Phillips, P. C. B., Yu, J. (2011). Bias in estimating multivariate and

univariate diffusions. Journal of Econometrics, 161(2): 228–245.

Wang, X., Yu, J. (2016). Double asymptotics for explosive continuous time models.

Journal of Econometrics, 193(1): 35–53.

Yu, J. (2012). Bias in the estimation of the mean reversion parameter in continuous

time models. Journal of Econometrics, 169(1):114–122.

48


	Estimation and Inference of fractional continuous-time model with discrete-sampled data
	Citation

	tmp.1568873432.pdf.eoePq

