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Improved Marginal Likelihood Estimation via

Power Posteriors and Importance Sampling∗

Yong Li, Nianling Wang
Renmin University of China

Jun Yu
Singapore Management University

July 22, 2019

Abstract

The power-posterior method of Friel and Pettitt (2008) has been used to estimate
the marginal likelihoods of competing Bayesian models. In this paper it is shown
that the Bernstein-von Mises (BvM) theorem holds for the power posteriors under
regularity conditions. Due to the BvM theorem, the power posteriors, when adjusted
by the square root of the corresponding grid points, converge to the same normal
distribution as the original posterior distribution, facilitating the implementation of
importance sampling for the purpose of estimating the marginal likelihood. Unlike the
power-posterior method that requires repeated posterior sampling from the power pos-
teriors, the new method only requires the posterior output from the original posterior.
Hence, it is computationally more efficient to implement. Moreover, it completely
avoids the coding efforts associated with drawing samples from the power posteri-
ors. Numerical efficiency of the proposed method is illustrated using two models in
economics and finance.

JEL classification: C11, C12
Keywords: Bayes factor; Marginal likelihood; Markov Chain Monte Carlo; Model
choice; Power posteriors; Importance sampling.

1 Introduction

A highly important statistical decision faced by practitioners is model comparison. In

the Bayesian paradigm, the Bayes factor (BF) is arguably the most widely used Bayesian

statistic for comparing models (Kass and Raftery (1995), Young and Pettit (1996)). Cal-

culation of BFs generally requires the marginal likelihood of the data for a given model,

which conducts integrations over the entire parameter space (Chan and Eisenstat, 2015).

∗We would like to thank for Nial Friel for helpful discussions. Yong Li, school of Economics, Renmin
University of China, Beijing, 1000872, P.R. China. Email for Yong Li: gibbsli@ruc.edu.cn. Li gratefully
acknowledges the financial support of the Chinese Natural Science Fund (No.71773130). Wang gratefully
acknowledges the hospitality during her research visits to Singapore Management University. Yu’s research
was supported by the Singapore Ministry of Education (MOE) Academic Research Fund.
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When the parameter space is of high dimension, the integrations can impose serious com-

putational challenges.

In the literature, various MCMC-based approaches have been proposed to compute

the marginal likelihood. Some excellent reviews are found in DiCiccio et al (1997) and

Han and Carlin (2001). When the dimension of the parameter space is large, as is typical

in latent variable models, several interesting methods have been proposed in the literature

for computing BFs from the MCMC output; see, for example, Chib (1995) and Chib and

Jeliazkov (2001).

In this paper, we plan to improve a method developed by Friel and Pettitt (2008)

which is based on random samples from distributions proportional to the likelihood raised

to a power (the so-called power posteriors). Compared with other approaches, the power-

posterior approach requires very little tuning, is easy to implement, and leads to small

Monte Carlo errors.

To fix ideas, given a constant b ∈ [0, 1], Friel and Pettitt (2008) introduced the power

posterior, denoted by p (θ|y, b), as

p (θ|y, b) =
p(y|θ)bp(θ)

p(y|b)
, p(y|b) =

∫
Θ
p(y|θ)bp(θ)dθ, (1)

where y is data, p(y|θ) is the likelihood function, and p(θ) is the prior distribution. With

the power posterior, the (log-) marginal likelihood can be expressed as a one-dimensional

integral with respect to b from 0 to 1, i.e.,

ln p(y) =

∫ 1

0
Eθ|y,b ln p(y|θ)db =

∫ 1

0

[∫
Θ

ln p(y|θ)p(θ|y, b)dθ
]

db.

In practice, this integral with respect to b does not normally have a closed-form expression

and numerical integrations are needed.

Friel and Pettitt (2008) suggest approximating the integral using the trapezoidal rule,

ln p(y) ≈
S−1∑
s=0

(bs+1 − bs)
Eθ|y,bs+1

ln p(y|θ) + Eθ|y,bs ln p(y|θ)

2
,

where {bs = (s/S)c}Ss=0 with c > 1 is a grid from [0, 1]. Furthermore, when Eθ|y,bs ln p(y|θ)

is not available analytically, we can approximate it by

Eθ|y,bs ln p(y|θ) ≈ 1

J

J∑
j=1

ln p
(
y|θ(j)(bs)

)
,

where {θ(j)(bs)}Jj=1 is a sequence of effective posterior draws from the power posterior

p(θ|y, bs) after discarding some burn-in samples. It can be shown that, when S → +∞
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and J → +∞,

S−1∑
s=0

(bs+1 − bs)
1
J

∑J
j=1 ln p

(
y|θ(j)(bs+1)

)
+ 1

J

∑J
j=1 ln p

(
y|θ(j)(bs)

)
2

p→ ln p(y). (2)

There are many good features in the power-posterior approach as mentioned earlier.

However, there are several drawbacks in the power-posterior approach. First and foremost,

sampling from the power posterior at for each grid point bs is required. Hence, such

sampling has to be repeated for S times, greatly increasing the computational cost when

S is moderate or large. It is well-known that drawing MCMC samples once is often time-

consuming. Repeating the MCMC drawing for a large number of times is even more

time-consuming. Second, to calculate the Monte Carlo standard error of the marginal

likelihood estimate, independent MCMC chains, at all grid points, have to be obtained.

As a result, the computational cost would inevitably increase sharply. Third, for many

standard models with regular distributions, the power posteriors may lead to non-standard

distributions so that standard Bayesian software such as WinBUGS (Spiegelhalter et al,

2003) is difficult to use.

To overcome these disadvantages in the power posteriors, in the present paper, we

propose a novel approach to estimate the marginal likelihood by extending the idea of the

power posteriors. The theoretical underpinning of the proposed approach is the Bernstein-

von Mises (BvM) theorem that we manage to develop for the power posteriors. Due to

the BvM theorem, we show that the power posteriors, when adjusted by the square root

of the grid points, have the same asymptotic normal distribution as the original posterior

distribution. This property suggests that we can use the original posterior distribution,

adjusted by a simple linear transformation, to design a proposal distribution for impor-

tance sampling. After that, via the self-normalized importance sampling technique, an

estimate of the marginal likelihood is obtained. The new method avoids the need to make

random draws from the power posterior at any grid point. Moreover, the new method

completely avoids coding efforts to draw random samples from the power posteriors.

The rest of this paper is organized as follows. Section 2 reviews the power-posterior

approach of Friel and Pettitt (2008). Section 3 establishes the BvM theorem for power

posteriors and introduces the new approach to estimate the marginal likelihood. In Sec-

tion 4, we compare the proposed method with the power-posterior method in terms of

accuracy and computational efficiency using two examples. Section 5 concludes the paper.

Appendix collects the proof of theoretic results in the paper.
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2 A Review of Power Posteriors

In this section, we review the idea of the power posteriors of Friel and Pettitt (2008).

Assume y = (yn, ..., yn) is our data with n observations. Let p(y|θ) be the likelihood

function of a parametric model. Let θ ∈ Θ where Θ is the parameter space. Let p(θ) be

an informative prior distribution for θ.

According to Friel and Pettitt (2008), for a prior p(θ) and any b ∈ [0, 1], the power

posterior and corresponding marginal likelihood can be defined as in (1). It is easy to see

p(y|1) =

∫
p(y|θ)p(θ)dθ = p(y), p(y|0) =

∫
p(θ)dθ = 1. (3)

It can be shown that the first derivative of the power marginal likelihood p(y|b) (de-

noted by U(b)) is

U(b) :=
∂ ln p(y|b)

∂b
=

1

p(y|b)
∂p(y|b)
∂b

=

∫
Θ

∂ ln pb(y|θ)

∂b

p(y|θ)bp(θ)

p(y|b)
dθ

=

∫
Θ

ln p(y|θ)
p(y|θ)bp(θ)

p(y|b)
dθ =

∫
Θ

ln p(y|θ)p(θ|y, b)dθ = Eθ|y,b ln p(y|θ). (4)

Based on (3) and (4), we can recover the integral from the first-order derivative as

ln p(y) = ln p(y)− 0 =

∫ 1

0
U(b)db =

∫ 1

0
Eθ|y,b ln p(y|θ)db. (5)

Equation (5) suggests a powerful approach to estimating the marginal likelihood via the

power posteriors as shown in Friel and Pettitt (2008).

In many cases, the integral
∫ 1

0 U(b)db does not have an analytical solution. Friel and

Pettitt (2008) proposed to numerically approximate it using the trapezoidal rule. In

particular, based on the grid {bs = (s/S)c}Ss=0 with c > 1, ln p(y) is approximated by

ln p(y) ≈
S−1∑
s=0

(bs+1 − bs)
U(bs+1) + U(bs)

2
. (6)

Clearly, as S → +∞,

S−1∑
s=0

(bs+1 − bs)
U(bs+1) + U(bs)

2
→ ln p(y). (7)

Furthermore, since U(bs) = Eθ|y,bs [ln p(y|θ)] does not have an analytical expression in

most cases, we can approximate it via

U(bs) = Eθ|y,bs ln p (y|θ) ≈ 1

J

J∑
j=1

ln p
(
y|θ(j) (bs)

)
, (8)
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where
{
θ(j)(bs)

}J
j=1

are effective random draws from the power posterior p(θ|y, bs). By

the law of large numbers for ergodic sequences, for any bs, as J → +∞,

1

J

J∑
j=1

ln p
(
y|θ(j) (bs)

)
p→ Eθ|y,bs ln p (y|θ) . (9)

Combining (7) and (9), as S → +∞ and J → +∞, we get (2).

In the present paper, we name the marginal likelihood estimation approach mentioned

above as the FP algorithm and it can be summarized as follows:

FP Algorithm

1. Choose a grid {bs = (s/S)c}Ss=0 with c > 1.

2. For each bs, draw J random samples
{
θ(j)(bs)

}J
j=1

(such as MCMC samples) from

the power posterior distribution p (θ|y, bs).

3. For each bs, evaluate the integration U(bs) based on Equation (8).

4. Using the trapezoidal rule, the marginal likelihood is estimated by Equation (6).

To check reliability of the marginal likelihood estimate, one can compute the Monte

Carlo standard error (MCSE). To do so, Friel and Pettitt (2008) suggested running the FP

algorithm independently for at least 100 times. To estimate the log-marginal likelihood

(denoted by LML), let

L̂MLr =
S−1∑
s=0

(bs+1 − bs)
1
J

∑J
j=1 ln p

(
y|θ(r,j) (bs+1)

)
+ 1

J

∑J
j=1 ln p

(
y|θ(r,j) (bs)

)
2

, (10)

where
{
θ(r,j)(bs)

}J
j=1

are effective random draws from the power posterior p(θ|y, bs) inde-

pendently across r, where R ≥ 100. Then, we can calculate the MCSE as

MCSEFP =
1

R

R∑
r=1

(
L̂MLr − LML

)2
, where LML =

1

R

R∑
r=1

L̂MLr. (11)

Remark 2.1 The power-posterior method requires repeated sampling from the power pos-

teriors corresponding to all grid points {bs}Ss=0 = (s/S)c. It is well-known that MCMC

sampling is time-consuming. Obtaining MCMC samples S + 1 times makes it time-

consuming to estimate the marginal likelihood. From Equation (11), it is easy to see

that MCSE is even more time-consuming to obtain. Parallel computing can be helpful, as

shown in Hoehna et al (2017).

Remark 2.2 The power posteriors of most models lead to non-standard distributions. As

a result, it may be impossible to use standard distributions in software such as WinBUGS

to obtain MCMC samples. In this case, researchers must first define model-specific new

distributions and then draw MCMC samples.
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3 New Approach

3.1 The BvM theorem for power posteriors

Before introducing the new method, we first establish the BvM theorem for the power

posteriors. Under some regularity condition, according to the standard BvM theorem, the

posterior distribution is asymptotically independent of the prior distribution and converges

to a normal distribution,

√
n
(
θ − θ̂

)
|y d→ N (0, nΣn) ,

where Σn =

−∂2 ln p

(
y|θ̂

)
∂θ∂θ′

−1

and θ̂ is the maximum likelihood estimator (MLE) of θ;

see Gelman et al (2004) and Schervish (2012) for details about the BvM theorem.

In this section, we extend the BvM theorem to cover the power posteriors. To do so,

we need to impose some regularity conditions, similar to those in Schervish (2012). Let

L(θ) = ln p(y|θ), L̇(θ) =
∂ ln p(y|θ)

∂θ
, L̈(θ) =

∂2 ln p(y|θ)

∂θ∂θ′
.

Assumption 1: Θ ⊆ Rq for some finite q.

Assumption 2: Let θ0
n be the quasi-true value that minimizes the Kullback-Leibler

(KL) loss between the DGP and the candidate model

θ0
n = arg min

θ∈Θ

1

n

∫
ln

g(y)

p(y|θ)
g(y)dy,

where
{
θ0
n

}
is the sequence of minimizers interior to Θ uniformly in n.

Assumption 3: The prior distribution, p(θ), is positive and continuous at θ0
n. Fur-

thermore, it is second-times continuously differentiable, p
(
ϑ0
n

)
> 0 and

∫
‖ϑ‖2 p(ϑ)dϑ <

∞.

Assumption 4: There exists a neighborhood N0 ⊆ Θ of θ0
n and L(θ) is twice con-

tinuously differentiable with respect to all coordinates of θ in this neighborhood and

L̈
(
θ0
n

)
= Op(1).

Assumption 5: The largest eigenvalues of Σn converges to zero with probability

approaching one.

Assumption 6: For δ > 0 and N0(δ) ⊆ Θ, there exists K(δ) > 0 such that

lim
n→∞

Pθ0
n

(
sup

θ∈Θ\N0(δ)

λn
[
L(θ)− L(θ0

n)
]
< −K(δ)

)
= 1,

where N0(δ) is an open ball of radius δ around θ0
n and λn is the smallest eigenvalues of

Σn.
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Assumption 7: For each ε > 0, there exists δ(ε) > 0 such that

lim
n→∞

Pθ0
n

(
sup

θ∈N0(δ(ε)),‖γ‖=1

∣∣∣∣1 + γ ′Σ
1
2
n L̈ (θ) Σ

1
2
nγ

∣∣∣∣ < ε

)
= 1.

Remark 3.1 Under these assumptions, Schervish (2012) established the BvM theorem to

show that the posterior distribution converges to a normal distribution with the MLE as

its mean and Σn as its covariance. Note that we have changed Assumption 2 of Schervish

(2012) by allowing the quasi-true value θ0
n to be dependent on the sample size. This change

makes the assumption more reasonable for dependent data. Other regularity conditions for

establishing the BvM theorem are possible; see, for example, Chen (1985), Ghosh and

Ramamoorthi (2003). Assumption 3 is to ensure that the first and second moments of

the posterior distribution exist. More details about these regularity conditions, one can see

Schervish (2012) and Li et al (2018).

Let θb be the parameter in the power posterior distribution p (θb|y, b) so that we

distinguish it from the parameter θ in the original posterior distribution p(θ|y). That is,

p (θb|y, b) =
p (y|θb)b p (θb)

p(y|b)
, p(y|b) =

∫
p (y|θb)b p (θb) dθb.

The BvM theorem for the power posteriors is given in the following theorem.

Theorem 3.1 For any constant b ∈ (0, 1], let p (y|θb) be the statistical model correspond-

ing to the power posterior p (θb|y, b). Under Assumptions 1-7, we have, as n→ +∞,

√
n
√
b
(
θb − θ̂b

)
|y, b d→ N (0, nΣn) ,

where θ̂b is the MLE of θb and, hence, θ̂b = θ̂.

Remark 3.2 Let θ̄ =
∫
θp(θ|y)dθ be the posterior mean of θ. Under Assumptions 1-7,

based on Li et al (2018), we have

θ̄ = E [θ|y] = θ̂ + op(n
−1/2),

V
(
θ̂
)

= E
[(
θ − θ̄

) (
θ − θ̄

)′
|y
]

= −

[
∂2 ln p(y|θ̂)

∂θ∂θ′

]−1

+ op(n
−1). (12)

Hence, it is easy to show that, given y and b ∈ (0, 1], we have

√
n
(
θ − θ̄

)
=
√
n
(
θ − θ̂

)
+
√
n
(
θ̂ − θ̄

)
=
√
n
(
θ − θ̂

)
+ op(1)

d→ N (0, nΣn) ,

√
n
√
b
(
θb − θ̄

)
=
√
n
√
b
(
θb − θ̂

)
+
√
n
√
b
(
θ̂ − θ̄

)
d→ N (0, nΣn) .
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Remark 3.3 The BvM theorem suggests that the power posterior converges to the normal

distribution and, when adjusted by square root of corresponding grid point, converges to

the same normal distribution as the original posterior distribution. According to Remark

3.2,
√
n
(
θ − θ̄

)
and
√
n
√
b
(
θb − θ̄

)
share the same asymptotic distribution, N (0, nΣn).

Hence, a natural idea to approximate the power posterior p (θb|y, b) is to make a linear

transformation of θ|y. In the next subsection, based on the importance sampling technique,

a new approach that explores this relationship to estimate the marginal likelihood will be

introduced.

3.2 The new approach

For any b ∈ (0, 1], we propose the following linear transformation

θb =
1√
b

(
θ − θ̄

)
+ θ̄. (13)

That is,
√
b
(
θb − θ̄

)
+ θ̄ = θ. Based on this linear transformation, the probability density

function of θb conditional on y and b, denoted by pA (θb|y, b), can be expressed as

pA (θb|y, b) = p(θ|y)
√
b =
√
b
p(y|θ)p(θ)

p(y)
=

√
bp
(
y|
√
b
(
θb − θ̄

)
+ θ̄

)
p
(√

b
(
θb − θ̄

)
+ θ̄

)
p(y)

.

According to the BvM theorem, pA (θb|y, b) converges to the same normal distribution

as p (θb|y, b). Hence, pA (θb|y, b) provides a good approximation to p (θb|y, b) when n is

large. Random samples from pA (θb|y, b) can serve as a good approximation to random

samples from p (θb|y, b).
To ensure the transformed parameter θb is in the same parameter space as original

parameter θ, we first impose the following assumption and later we relax it.

Assumption 8: For any positive constant c1 and q-dimensional vector C1, we assume

c1θ + C1 ∈ Θ for any θ ∈ Θ.

Based on the importance sampling technique (Geweke, 1989), we can get

Eθb|y,b ln p (y|θb) =

∫
Θ

ln p (y|θb) p(θb|y, b)dθb

=

∫
Θ

ln p (y|θb)
p(θb|y, b)
pA (θb|y, b)

pA (θb|y, b) dθb

=

∫
Θ

ln p (y|θb)w (θb) pA (θb|y, b) dθb, (14)

where

w (θb) =
p (θb|y, b)
pA (θb|y, b)

=

p(y|θb)bp(θb)
p(y|b)

√
bp(y|θ)p(θ)
p(y)

=
p (y|θb)b p (θb)

p(y|θ)p(θ)

p(y)√
bp(y|b)

.
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Let
{
θ(j)

}J
j=1

be some effective random samples generated from this posterior dis-

tribution p(θ|y). To generate random samples from pA (θb|y, b), we can simply use the

relation pA (θb|y, b) /
√
b = p(θ|y), namely,

θ
(j)
b =

1√
b

(
θ(j) − θ̄

)
+ θ̄, θ̄ ≈ 1

J

J∑
j=1

θ(j).

Clearly
{
θ

(j)
b

}J
j=1

are effective random samples from pA (θb|y, b) and can be regarded as

effective random samples from p(θb|y, b) when n is moderate or large.

Based on Theorem 3.1 and in the spirit of importance sampling, we can estimate U(b)

as:

U(b) =

∫
Θ

ln p (y|θb)w (θb) pA (θb|y, b) dθb ≈
1

J

J∑
j=1

ln p
(
y|θ(j)

b

)
w
(
θ

(j)
b

)
. (15)

Since w
(
θ

(j)
b

)
involves some unknown constants, based on the self-normalized importance

sampling technique, we can have

Ŵ
(
θ

(j)
b

)
=

w
(
θ

(j)
b

)
∑J

j=1w
(
θ

(j)
b

) =

p
(
y|θ(j)b

)b
p
(
θ
(j)
b

)
p(y|θ(j))p(θ(j))∑J

j=1

p
(
y|θ(j)b

)b
p
(
θ
(j)
b

)
p(y|θ(j))p(θ(j))

(16)

=
exp

{
b ln p

(
y|θ(j)

b

)
− ln p

(
y|θ(j)

)
+ ln p

(
θ

(j)
b

)
− ln p

(
θ(j)

)}
∑J

j=1 exp
{
b ln p

(
y|θ(j)

b

)
− ln p

(
y|θ(j)

)
+ ln p

(
θ

(j)
b

)
− ln p

(
θ(j)

)} .
Then, we can get that a consistent estimate of U(b), denoted as ÛLWY (b), as

ÛLWY (b) =
J∑
j=1

ln p
(
y|θ(j)

b

)
Ŵ
(
θ

(j)
b

)
. (17)

Remark 3.4 Due to the BvM theorem, pA (θb|y, b) provides a good approximation to the

power posterior p (θb|y, b) for any b. Instead of using pA (θb|y, b) to replace p (θb|y, b)
directly, we use pA (θb|y, b) as a proposal distribution for importance sampling. Hence,

our proposed approach does not require n→ +∞.

Remark 3.5 Based on the simple linear transformation given in (13), the proposed ap-

proach only requires
{
θ(j)

}J
j=1

which are effective random samples generated from the

original posterior distribution p(θ|y). There is no need to draw MCMC samples from the

power posteriors. Hence, our method reduces computational cost. Moreover, coding efforts

associated with drawing MCMC samples from the power posterior is completely avoided.
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Remark 3.6 The BvM theorem is a large sample theory and the Gaussian approximation

works better when n × b takes a larger value. When the grid point b is very small, for

example b ≤ 1/n, we should not use the Gaussian approximation. Since such b is close

enough to zero, the prior distribution provides a good approximation to the power posterior

p (θ|y, b). In this case, the prior distribution can be used as the proposal distribution. In

particular, we can draw J samples
{
θ(0,1),θ(0,2), · · · ,θ(0,J)

}
from the prior distribution

p(θ). In this case, using the self-normalized importance sampling technique, we get

U(b) =

∫
Θ

ln p (y|θb)w0 (θb) p (θb) dθb ≈
J∑
j=1

ln p
(
y|θ(j)

b

)
Ŵ0

(
θ

(0,j)
b

)
, (18)

where

w0 (θb) =
p (θb|y, b)
p (θb)

=

p(y|θb)bp(θb)
p(y|b)

p (θb)
=
p (y|θb)b

p(y|b)
,

Ŵ0

(
θ

(0,j)
b

)
=

w0

(
θ

(0,j)
b

)
∑J

j=1w0

(
θ

(0,j)
b

) =
p
(
y|θ(0,j)

)b∑J
j=1 p

(
y|θ(0,j)

)b =
exp

{
b ln p

(
y|θ(0,j)

)}∑J
j=1 exp

{
b ln p

(
y|θ(0,j)

)} .

In practice, when the sample size is moderate or large, 1/n is small and there are very few

grid points such that n× b ≤ 1. For example, in Example 2 of Section 4 where n = 5823,

if c is set to 3 and S = 20, there is only one grid point less than 1/n; if c is set to 3 and

S = 40, there are two grid points less than 1/n; if c is set to 3 and S = 100, there are

only five grid points less than 1/n.

Remark 3.7 An important difference between the FP method and the proposed method is

that the proposed method is based on the importance sampling approach where the proposal

distribution is developed based on the BvM theorem. When the sample size is very small

such that the posterior distribution is far away from the Gaussian distribution, the FP

method is still a good choice to estimate the marginal likelihood.

In the present paper, we name the proposed marginal likelihood estimation approach

as the LWY algorithm and it can be summarized as follows:

LWY Algorithm

1. Choose a grid {bs = (s/S)c}Ss=0 with c > 1.

2. Draw J samples
{
θ(0,1),θ(0,2), · · · ,θ(0,J)

}
from the prior distribution p(θ).

3. When bs ≤ 1/n, estimate U(bs) by Equation (18).
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4. Draw J samples
{
θ(1),θ(2), · · · ,θ(J)

}
from the posterior distribution p(θ|y).

5. When bs > 1/n, by the proposed linear transformation, we get

θ
(j)
bs

=
1√
bs

(θ(j) − θ̄) + θ̄, θ̄ ≈ 1

J

J∑
j=1

θ(j).

For each bs, we evaluate U(bs) by Equation (16) and (17)

6. Obtain the estimate of the marginal likelihood by Equation (6).

In practice, Assumption 8 is often violated. A simple example where Assumption 8 is

too strong is the correlation coefficient parameter whose parameter space is [−1, 1]. If a

grid point bs is close to zero such that 1− 1√
bs
< 0, then θ

(j)
bs

= 1√
bs
θ(j) +

(
1− 1√

bs

)
θ̄ may

take a value outside of [−1, 1]. Hence, the importance sampling technique as in Equations

(14) and (15) does not work any more. To deal with this difficulty, we propose to perform

a parameter transformation and need the following assumption to replace Assumption 8.

Assumption 8∗: Assume that there is a one-to-one monotonic transformation be-

tween the original parameter θ and the new parameter φ such that θ = g(φ). Let the

inverse of the transformation be φ = g−1(θ). Denote the parameter space of φ by Φ. For

any positive constant c1 and q-dimensional vector C1, we assume c1φ + C1 ∈ Φ for any

φ ∈ Φ.

Under Assumption 8∗, we have

ln p(y) =

∫ 1

0
U(b)db =

∫ 1

0
Eθ|y,b ln p(y|θ)db =

∫ 1

0

∫
Θ

ln p(y|θ)p(θ|y, b)dθ

=

∫ 1

0

∫
Φ

ln pφ(y|φ)pφ(φ|y, b)dφ, (19)

where pφ(y|φ) := p(y|g(φ)) is the likelihood function of the model (expressed as a function

of φ) and pφ(φ|y, b) is the power posterior of φ which is given by

pφ(φ|y, b) =
pφ(y|φ)bpφ(φ)

p(y)
,

where pφ(φ) is the prior density of φ.

For any b ∈ (0, 1], we can do the same simple linear transformation for φ as for θ, i.e.,

φb =
1√
b

(
φ− φ̄

)
+ φ̄,φ =

√
b
(
φb − φ̄

)
+ φ̄.

Based on this linear transformation, the probability density function of φb conditional on

y and b, denoted by pAφ (φb|y, b), can be expressed as

pAφ (φb|y, b) = pφ(φ|y)
√
b =
√
b
pφ(y|φ)pφ(φ)

pφ(y)
=

√
bpφ

(
y|
√
b
(
φb − φ̄

)
+ φ̄

)
pφ

(√
b
(
φb − φ̄

)
+ φ̄

)
p(y)

.

11



The BvM theorem continues to hold, implying that pAφ (φb|y, b) converges to the same

normal distribution as pφ (φb|y, b). Hence, pAφ (φb|y, b) provides a good approximation to

pφ (φb|y, b) when n is moderate or large. Random samples from pAφ (φb|y, b) can serve as

a good approximation to random samples from pφ (φb|y, b). An estimate of the marginal

likelihood can be obtained using the self-normalized importance sampling technique. The

result is given in the following theorem.

Theorem 3.2 Let
{
θ(1),θ(2), · · · ,θ(J)

}
be the random samples from the posterior distri-

bution p(θ|y). Let φ(j) = g−1(θ(j)) for j = 1, ..., J . For a constant b ∈ (0, 1], denote

φ
(j)
b =

1√
b
(φ(j) − φ̄) + φ̄, φ̄ ≈ 1

J

J∑
j=1

φ(j).

Let

Ŵ (φ
(j)
b ) =

exp
{
b ln pφ

(
y|φ(j)

b

)
− ln pφ

(
y|φ(j)

)
+ ln pφ

(
φ

(j)
b

)
− ln pφ

(
φ(j)

)}
∑J

j=1 exp
{
b ln pφ

(
y|φ(j)

b

)
− ln pφ

(
y|φ(j)

)
+ ln pφ

(
φ

(j)
b

)
− ln pφ

(
φ(j)

)} ,
(20)

where pφ(φ) = p(θ)
∣∣∣∂g(φ)

∂φ

∣∣∣. Then, under Assumptions 1-7 and Assumption 8∗, we can

get a consistent estimate of U(b) by Û∗LWY (b) which is defined as,

Û∗LWY (b) =
J∑
j=1

ln p
(
y|g
(
φ

(j)
b

))
Ŵ
(
φ

(j)
b

)
. (21)

Hence, under the parameter transformation, based on Theorem 3.2, the LWY algorithm

can be revised as:

LWY∗ Algorithm

1. Choose a grid {bs = (s/S)c}Ss=0 with c > 1.

2. Draw J samples
{
θ(0,1),θ(0,2), · · · ,θ(0,J)

}
from the prior distribution p(θ).

3. When bs ≤ 1/n, estimate U(bs) by Equation (18).

4. Draw J samples
{
θ(1),θ(2), · · · ,θ(J)

}
from the posterior distribution p(θ|y).

5. Based on the transformation φ(j) = g−1(θ(j)), we get J samples
{
φ(1),φ(2), · · · ,φ(J)

}
from the posterior distribution pφ(φ|y).

12



6. When bs > 1/n, by the linear transformation of parameters, we get

φ
(j)
bs

=
1√
bs

(φ(j) − φ̄) + φ̄, φ̄ ≈ 1

J

J∑
j=1

φ(j).

For each bs, evaluate U(bs) by Equations (20) and (21).

7. Obtain the estimate of the marginal likelihood by

S−1∑
s=0

(bs+1 − bs)
1
J

∑J
j=1 ln p

(
y|g
(
φ(j) (bs+1)

))
+ 1

J

∑J
j=1 ln p

(
y|g
(
φ(j)(bs)

))
2

. (22)

Remark 3.8 In practice, it is fairly easy to find a transformation that satisfies Assump-

tion 8∗. For example, for the degrees of freedom parameter v in the Student t distribution

which is constrained to be larger than 2, we can use the transformation φ = ln(v−2) ∈ R.

In this case, g(φ) = exp(φ)+2 and g−1(v) = ln(v−2). For another example, for the corre-

lation coefficient δ which is constrained to be in the interval of [−1, 1], we can use the trans-

formation φ = tan
(
π
2 δ
)
∈ R. In this case, g(φ) = 2

π arctan(φ) and g−1(δ) = tan
(
π
2 δ
)
.

Remark 3.9 Hoehna et al (2017) explained how to use the parallel computing technique

for fast computation of the marginal likelihoods using the FP algorithm. One can also

use the parallel computing technique to implement the LWY algorithm. This is because,

while our method does not require MCMC sampling from the power posterior for each grid

point, we need to evaluate the likelihood function and obtain the importance weights at each

grid point. Obviously, these calculations can be parallelized too. In the examples discussed

below, we only report the CPU time without resorting the parallel computing technique.

If the parallel computing technique is used, the computing time of both algorithms can be

reduced but the relative computational cost will be the same.

4 Examples

In this section, we use two examples to evaluate and compare the performance of the

proposed algorithm and the FP algorithm by calculating the mean (or bias) and the

MCSE of the marginal likelihood. We also compare the computational efficiency of both

algorithms. Computational efficiency is measured based on the CPU time on a common

desktop with Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz 3.40GHz.

In the first example, we consider a multivariate linear regression model with Gaus-

sian errors for which the marginal likelihood is available in closed-form. Based on the

closed-form expression, we can accurately evaluate and compare the performance of the
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two algorithms. We repeat both estimation procedures for 100 times and then use Equa-

tion (11) to calculate the mean (or bias) and the MCSE of the marginal likelihood. To

further illustrate the computational advantage of the newly proposed algorithm, we also

investigate the multivariate linear regression model with Student t errors. The t distribu-

tion complicates the likelihood function as well as the power posterior sampling. It allows

us to highlight the computational efficiency of the proposed algorithm relative to the FP

algorithm. To illustrate potential extra coding efforts required by the FP algorithm, we

use WinBUGS to draw MCMC samples in this example. The LWY algorithm is easily

implementable in WinBUGS without extra coding efforts or sampling efforts from the

power posterior. Whereas, the FP algorithm requires users to code the likelihood den-

sity corresponding to the power posterior using the “zeros trick” technique (Chapter 9

in Spiegelhalter et al 2003) in WinBUGS. Compared with using existing distributions in

WinBUGS, the “zeros trick” technique greatly slows down the sampling speed.

In the second example, we consider several copula models. Most copula models do

not lead to standard distributions, making it difficult to use WinBUGS to obtain MCMC

samples. In this paper, we use the “mcmc” package in R to obtain MCMC sample when

implementing the FP and the LWY algorithms. To use this package, one only needs

to specify the posterior density directly. As a result, no extra coding effort is needed

to implement the FP algorithm one can conveniently raise the original likelihood to any

power bs ∈ (0, 1]. However, as will be reported below, the FP algorithm is much slower to

implement than the LWY algorithm.

4.1 Linear regression models

In the first example, we use a linear regression model with multiple explanatory variables

to illustrate the effectiveness of the proposed approach. The data contains sale price of

546 houses sold in Windsor, Canada in 1987. For more details about the data, one can

refer to Koop (2003). We are interested in factors that can influence house prices. There

are four explanatory variables, including the size, the number of bedrooms, the number of

bath rooms, and the number of storeys. The following two linear models are considered:

M1 : yi = β1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + εi, εi ∼ N(0, σ2), i = 1, 2, · · · , n.

M2 : yi = β1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + εi, εi ∼ t(0, σ2, v), i = 1, 2, · · · , n.

For M1, we use the same priors as in Koop (2003), that is,

β ∼ N(β0, h
−1V0), h :=

1

σ2
∼ Γ(s, r),

14



Table 1: Bias and MCSE (in parenthesis) of the log-marginal likelihood estimates in M1

c = 1 c = 3

FP LWY FP LWY

S = 20 -494.95(4.12) -494.95(4.14) -1.85(0.03) -1.84(0.17)

S = 40 -243.74(2.06) -243.74(2.09) -0.29(0.01) -0.28(0.22)

S = 100 -94.07(0.82) -94.07(0.86) 0.22(0.01) 0.23(0.17)

where β0, V0 are the prior mean and the prior variance of β, h is inverse of the error variance

with s, r being the scale parameter and the rate parameter of a Gamma distribution.

Furthermore, following Koop (2003), we set β0 =
[

0, 10, 5000, 104, 104
]′

, V0 =

diag
(

2.4, 6× 10−7, 0.15, 0.6, 0.6
)
, s = 2.5, r = 6.25 × 107. In both models, h is

the precision parameter which has to be greater than zero. To ensure Assumption 8, we

use the transformation φ(h) = ln(h) ∈ R.

Note that for M1 the marginal likelihood is available analytically and hence can be

calculated without any error. The true marginal likelihood value is -6151. Moreover, the

power posterior has a closed-form expression which is always the normal-gamma distribu-

tion for any grid point. Therefore, it is easy to directly draw from the power posteriors.

In M2, v is the degrees of freedom parameter with v > 2 in the t distribution . To

ensure Assumption 8, we use the transformation φ(v) = ln(v − 2) ∈ R. We assign the

same prior distribution for h as in M1. We choose the prior distribution for v − 2 to be

an exponential distribution, i.e., v − 2 ∼ Exp(0.05). The power posteriors do not have a

closed-form expression for M2.

We generate the MCMC output from the original posterior for model M2 using Win-

BUGS. We also generate the MCMC output from the power posterior for M2 by using

the “zeros trick” technique and defining the power posterior distribution corresponding to

each grid point as a new distribution in WinBUGS. For each chain, we draw 100,000 sam-

ples in total with the first 40,000 samples being discarded, and next 60,000 being kept as

effective samples. We take one sample from every three samples to reduce the dependence

of the chain so that J = 20, 000. We then estimate the marginal likelihood using the FP

and LWY algorithms.

For the choice of other tuning parameters, say c and S, we follow Friel and Pettitt

(2008). They suggested choosing c = 3 or 5 and S between 20 and 100. As U(bs) involves

a higher level of non-linearity as bs is closer to zero, to calculate
∫ 1

0 U(b)db, a fine grid is

needed near zero. With c > 1, more grid points are assigned in the region near zero.

Table 1 reports the bias and the MCSEs of the (log-) marginal likelihood estimates

from the two algorithms when c = 1, 3, and S = 20, 40, 100 in M1. Table 2 reports the

(log-) marginal likelihood estimates from the two algorithms (denoted by LMLFP and
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Table 2: Log-marginal likelihood (LML) estimates for M2 with c = 3

S = 20 S = 40 S = 100

LMLFP -6514 -6513 -6513

LMLLMY -6518 -6518 -6517

Table 3: CPU time (in minutes or in hours) of linear regression models

M1 M2

FP LWY FP LWY

S = 20 19.71 min 20.31 min 3.81 h 0.35 h

S = 40 40.25 min 39.21 min 9.12 h 0.84 h

S = 100 108.96 min 93.49 min 22.80 h 1.91 h

LMLLWY ) when c = 3 , and S = 20, 40, 100 in M2. We cannot obtain the bias in M2 as

the true value of the marginal likelihood is unknown in M2.

We can see from Table 1 that both FP and LWY provide good approximations to the

true value when S is moderate and c = 3. The MCSEs always take small values, reinforcing

the finding in Friel and Pettitt (2008). When c = 1, the quality of the approximations is

much worse, confirming the suggestion that a fine grid should be used in the regions near

zero. This is the reason why we only choose c = 3 in the rest of the paper. In this case,

for all three values of S, the two algorithms provide very similar estimates. Based on the

marginal likelihood values of M1 and those of M2, one can obtain the BF. It is evident

that M1 fits the data better than M2.

In Table 3 we report the CPU time for estimating the marginal likelihood once. Since

M1 has a closed-form expression for the power posteriors, not surprisingly, there is not

much computational gain in using the LWY algorithm relative to the FP algorithm as

drawing from the power posteriors is easy. However, there is a substantial gain in the

LWY algorithm in terms of the computational cost relative to the FP algorithm in M2.

While not reported, the LWY algorithm saves more of the CPU time if both methods are

used to compute MCSEs in M2.

4.2 Copula models

In this subsection, following Hurn et al (2019), we consider several copula models for stock

returns. Unlike Hurn et al (2019) where the copula models are estimated using maximum

likelihood, we estimate competing models using MCMC. For each competing model, we

use the FP and LWY algorithms to estimate the marginal likelihood and then obtain the

BFs to make a pair-wise comparison of nested and nonnested models.
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Let r1t and r2t be the daily log returns at time t. Assume

r1t = µ1 + σ1z1t,

r2t = µ2 + σ2z2t,

where µi, σi are the mean and the standard deviation of rit for i = 1, 2. The joint distri-

bution of returns is modeled by a copula function, i.e.,

F (r1t, r2t) = C(F1(r1t), F2(r2t); δ),

where Fi(·) is the marginal distribution for rit and C(·; δ) is the copula function with

parameter δ. Different assumptions about the marginal distribution of zit and the copula

function are made below, leading to different models. All competing models are fit to

daily log returns on the S&P 100 and S&P 600 Indices for the period 17 August 1995 to

28 December 2018.1

We use the “mcmc” package in R to obtain the MCMC output. It requires users to

provide the kernel of the likelihood function and the prior. Recall that

p(θ|y, b) ∝ p(y|θ)bp(θ).

The kernel of the target functions for the model corresponding to the power posterior, in

the log form, is:

b ln p(y|θ) + ln p(θ).

For each b, we iterate 100,000 times in total, and the first half of the chain is discarded

as burn-in. For the remaining 50,000 samples, we keep one out of every five samples to

reduce the dependence of the chain so that J = 10, 000.

4.2.1 Gaussian copula normal marginals

In this model we assume z1t, z2t ∼ N(0, 1) and C(·; δ) to be the Gaussian copula function.

This is equivalent to assuming
(
r1t, r2t

)′
follows a bivariate normal distribution with

the correlation coefficient δ ∈ [−1, 1]. The log likelihood function at time t is:

lnLt = − ln 2π − 1

2
ln

(
1− δ2

h1h2

)
− z2

1t + z2
2t − 2δz1tz2t

2(1− δ2)
,

where hi = 1/σ2
i is the precision parameter, and zit = (rit − µi)h1/2

i for i = 1, 2. The

parameters of interest are θ = (µ1, h1, µ2, h2, δ)′.

1We have extended the sample period of the same returns from 17 August 1995 – 20 May 2011, as used
in Hurn et al (2019), to 17 August 1995 – 28 December 2018.
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Table 4: Posterior means and posterior standard errors of parameters for the Gaussian
copula normal marginals model

Parameters µ1 h1 µ2 h2 δ

posterior mean 0.0265 0.7058 0.0367 0.5478 0.8422

posterior sd 0.0163 0.0132 0.0186 0.0102 0.0038

Table 5: Log-marginal likelihood estimates for the Gaussian copula normal marginals
model with c = 3

S = 20 S = 40 S = 100

LMLFP -15726 -15720 -15717

LMLLWY -15729 -15721 -15718

To do Bayesian analysis, we assign the following prior distributions on parameters,

µi ∼ N(0, 25), hi ∼ Γ(0.1, 1), i = 1, 2, and δ ∼ U [−1, 1].

To validate Assumption 8, we use the transformation φ(hi) = ln(hi) ∈ R and φ(δ) =

tan
(
π
2 δ
)
∈ R when implementing the LWY algorithm.

The posterior means and posterior standard errors of these parameters are reported

in Table 4. These estimates are reasonable. For example, the posterior mean of δ is

0.8422, suggesting that there is a strong linear relationship between the two daily returns.

However, the Gaussian copula implies that there is no tail dependence between the two

daily returns. The estimates of the marginal likelihood by the FP and LWY algorithms

are reported in Table 5 while the CPU time for the two algorithms is reported in Table

6. It is clear that both methods provide reliable estimates. However, our method is much

cheaper to be implemented computationally than the FP method, using only 10% of the

CPU time.

Table 6: CPU time for the two algorithms for the Gaussian copula normal marginals model

FP LWY

S = 20 3.80 min 0.54 min

S = 40 8.95 min 0.89 min

S = 100 19.11 min 2.15 min
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Table 7: Posterior means and posterior standard errors of parameters for the Gaussian
copula t marginals model

Parameters µ1 h1 µ2 h2 δ v

Posterior mean 0.0490 1.5492 0.0618 1.0860 0.8236 3.8831

Posterior sd 0.0116 0.0401 0.0139 0.0271 0.0042 0.0957

Table 8: Log-marginal likelihood estimates for the Gaussian copula t marginals model
with c = 3

S = 20 S = 40 S = 100

LMLFP -14879 -14879 -14880

LMLLWY -14887 -14881 -14879

4.2.2 Gaussian copula t marginals

In this model we assume z1t, z2t ∼ t(0, 1, v) and C(·; δ) to be the Gaussian copula function.

The log likelihood function at time t is:

lnLt = −1

2
ln(1− δ2)− q2

1t + q2
2t − 2δq1tq2t

2(1− δ2)
+

1

2
(q2

1t + q2
2t) + ln

(
h

1/2
1 f(z1t; v)

)
+ ln

(
h

1/2
2 f(z2t; v)

)
,

where δ ∈ [−1, 1], qit = Φ−1(F (zit; v)), zit = (rit − µi)h1/2
i , F (zit; v), f(zit) are the CDF

and PDF of the t distribution with v degrees of freedom (v > 2), and Φ−1(·) is the

quantile function of the standard normal distribution. The Gaussian copula t marginals

model nests the Gaussian copula normal marginals model. If v → ∞, the two models

are the same. To validate Assumption 8, we use the transformations φ(hi) = ln(hi) ∈ R,

φ(v) = ln(v − 2) ∈ R, φ(δ) = tan
(
π
2 δ
)
∈ R. Since v should be larger than 2 and

δ ∈ [−1, 1], we use an exponential prior distribution for v − 2 and a uniform prior for δ,

i.e., v − 2 ∼ Exp(1), δ ∼ U [−1, 1].

The likelihood function of this model is complicated than the Gaussian copula normal

marginals model. It requires a longer CPU time to do the posterior sampling. For example,

to sample from the posterior distribution, for the Gaussian copula normal marginals model

it only takes 10 seconds, whereas for the Gaussian copula t marginals model it takes about

17 minutes. Consequently, the FP algorithm requires more CPU time to estimate the

marginal likelihood of the Gaussian copula t marginals model.

The posterior means and posterior standard errors of the parameters are reported in

Table 7. Again, these estimates are reasonable. For example, the posterior mean of v is

3.8831, suggesting the evidence of very heavy tails in the daily returns. The estimates of

the marginal likelihood by the FP and LWY algorithms are reported in Table 8 while the

CPU time for the two algorithms is reported in Table 9. Both methods provide reliable
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Table 9: CPU time for the two algorithms for the Gaussian copula t marginals model

FP LWY

S = 20 6.73 h 0.91 h

S = 40 12.88 h 1.54 h

S = 100 32.75 h 3.33 h

Table 10: Posterior means and posterior standard errors of parameters for the t copula t
marginals model

Parameters µ1 h1 µ2 h2 δ v η

Posterior mean 0.0558 1.7318 0.0704 1.2037 0.8168 3.3382 3.6102

Posterior sd 0.0115 0.0557 0.0139 0.0364 0.0051 0.1334 0.1413

estimates. Comparing the marginal likelihood values in Table 8 and Table 5, it is clear

that the Gaussian copula t marginals model fits the data much better the Gaussian copula

normal marginals model. This conclusion is very reasonable given the heavy tails in the

daily returns. Moreover, our method is much cheaper to implement computationally than

the FP method, using only 10% of the CPU time.

4.2.3 t copula t marginals

In this model we assume z1t, z2t ∼ t(0, 1, v) and C(·; δ, η) to be the t copula function where

δ is the correlation coefficient and η captures the tail dependence. Unlike the Gaussian

copula, the t copula allows for tail dependence in both tails. The log likelihood function

at time t is:

lnLt = − ln(2π)− 1

2
ln(1− δ2)− η + 2

2
ln

(
1 +

q2
1t + q2

2t − 2δq1tq2t

η(1− δ2)

)
− ln f(q1t; η)− ln f(q2t; η) + ln

(
f(z1t; v)h

1/2
1

)
+ ln

(
f(z2t; v)h

1/2
2

)
,

where δ ∈ [−1, 1], qit = F−1(F (zit; v); η), zit = (rit − µi)h1/2
i , i = 1, 2. The t copula t

marginals model nests the Gaussian copula t marginals model. If η → +∞, the two models

are the same. To validate Assumption 8, we use the transformations φ(hi) = ln(hi) ∈ R,

φ(v) = ln(v − 2) ∈ R, φ(η) = ln(η − 2) ∈ R, φ(δ) = tan
(
π
2 δ
)
∈ R. For the prior

distributions, we assume v − 2, η − 2 ∼ Exp(1), δ ∼ U [−1, 1].

Table 11: Log-marginal likelihood estimates for the t copula t marginals model with c = 3

S = 20 S = 40 S = 100

LMLFP -14694 -14691 -14691

LMLLWY -14689 -14683 -14681
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Table 12: CPU time for the two algorithms for the t copula t marginals model

FP LWY

S = 20 24.45 h 3.50 h

S = 40 49.72 h 5.78 h

S = 100 120.85 h 12.20 h

The MCMC sampling from the posterior distribution is even more complicated for the

t-copula t marginals model. It requires more CPU time(about 1 hour) to draw from the

original posterior and the power posteriors for once. The posterior means and posterior

standard errors of the parameters are reported in Table 10. Again, these estimates are

reasonable. For example, the posterior mean of η is 3.6102, suggesting the evidence of

strong tail dependence between the daily returns. The estimates of the marginal likelihood

by the FP and LWY algorithms are reported in Table 11 while the CPU time for the

two algorithms is reported in Table 12. Both methods provide reliable estimates of the

marginal likelihood. Comparing the marginal likelihood values in Table 11 and Table 8, it

is clear that the t copula t marginals model fits the data much better than the Gaussian

copula t marginals model. This conclusion is very reasonable because there is not only a

strong linear relationship but also a strong tail dependence between the two daily returns.

However, our method is much cheaper to implement computationally than the FP method,

using only 10% of the CPU time. Even with S = 20, the computational burden is a major

challenge for the FP algorithm, requiring 24 hours of CPU time to run the FP algorithm

once. Giving the computational cost, it is impossible to obtain the MCSE using the FP

algorithm.

From Table 11, it can be seen that there is a noticeable difference between the log-

marginal likelihood values obtained by the two algorithms. With the concern that the

difference may be due to a reasonably small value of J being used, we increase J to 20,000,

the log-marginal likelihood estimate obtained the LWY algorithm is -14695, -14688 and

-14686 for S = 20, 40, 100 respectively. However, with the increased J , we cannot obtain

the log-marginal likelihood estimate by the FP algorithm as it is too time consuming.

4.2.4 Clayton copula t marginals

In this model we assume z1t, z2t ∼ t(0, 1, v) and C(·; δ) to be the Clayton copula function.

The Clayton copula function is given by:

C(u1, u2; δ) =
(
u−δ1 + u−δ2 − 1

)−1/δ
, 0 < δ <∞,

where δ > 0 captures the degree of left tail dependence of the two marginals. This model

does not nest or is not nested by any model introduced earlier as the Clayton copula only
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Table 13: Posterior means and posterior standard errors of parameters for the Clayton
copula t marginals model

Parameters µ1 h1 µ2 h2 δ v

Posterior mean 0.1638 1.9200 0.1920 1.3491 2.2459 2.5487

Posterior sd 0.0110 0.0590 0.0134 0.0386 0.0447 0.0682

Table 14: Log-marginal likelihood estimation for the Clayton copula t marginals model
with c = 3

S = 20 S = 40 S = 100

LMLFP -15279 -15280 -15280

LMLLWY -15284 -15278 -15276

allows for dependence at left tails. The log likelihood function at time t is:

lnLt = ln(1 + δ)− (1 + δ)(lnu1t + lnu2t)− (2 + 1/δ) ln
(
u−δ1t + u−δ2t − 1

)
+ ln(f(z1t; v)h

1/2
1 ) + ln(f(z2t; v)h

1/2
2 ),

where zit = (rit − µi)h1/2
i and uit = F (zit; v) for i = 1, 2. To validate Assumption 8, we

use the transformations φ(hi) = ln(hi) ∈ R, φ(v) = ln(v− 2), φ(δ) = ln δ. As for the prior

of δ, we assume δ ∼ Γ(1, 1).

The posterior means and posterior standard errors of these parameters are reported

in Table 13. Again, these estimates are reasonable. For example, the posterior mean of δ

is 2.246, suggesting the evidence of strong dependence in the left tails. The estimates of

the marginal likelihood by the FP and LWY algorithms are reported in Table 14 while the

CPU time for the two algorithms is reported in Table 15. Both methods provide reliable

estimates. Comparing the marginal likelihood values of all four models reported in Tables

14, 11, 8 and 5 (some are nested and some are not), it is clear that the t copula t marginals

model fits the data much best, followed by the Gaussian copula t marginals model, then

by the Clayton copula t marginals model, and finally by the Gaussian copula normal

marginals model. Again, our method is much cheaper to implement computationally than

the FP method, using only 10% of the CPU time.

Table 15: CPU time for the two algorithms for the Clayton copula t marginals model

FP LWY

S = 20 7.16 h 1.05 h

S = 40 13.86 h 1.70 h

S = 100 36.42 h 3.64 h
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5 Concluding Remarks

In this paper, under some regularity conditions, we establish the BvM theorem for the

power posteriors. Due to the BvM theorem, the power posteriors, when adjusted by the

square root of the grid points, converge to the same normal distribution as the origi-

nal posterior distribution. This large sample theory, therefore, allows us to improve the

power-posterior method of Friel and Pettitt (2008) by providing a proposal distribution for

importance sampling. Unlike the power-posterior method that requires repeated posterior

sampling from the power posteriors, the new method only requires the posterior output of

the original posterior. Hence, it is computationally more efficient. Moreover, for models

where extra coding efforts are needed to draw MCMC samples from power posteriors, such

coding efforts are completely avoided.

The accuracy of the proposed method is examined and compared with the power-

posterior method in the Gaussian linear regression model where the true value of the

marginal likelihood can be obtained. It suggests that the proposed method provides

reliable estimates of the marginal likelihood. It performs as well as the power-posterior

method of Friel and Pettitt (2008) in terms of both bias and MCSE. Comparison of

computational efficiency between the proposed method against Friel and Pettitt’s method

is made under a linear regression model with t errors and several copula models. The

comparison suggests that when a model is reasonably complicated, Friel and Pettitt’s

method is very time-consuming for estimating the marginal likelihood and impossible for

obtaining the MCSE of the marginal likelihood estimates. Our method can reduce 90% of

CPU time of Friel and Pettitt’s method.

The marginal likelihood is only well-defined under proper priors. Therefore, it is im-

portant to note that, as a method that aims to estimate the marginal likelihood, our

method cannot be used in connection to improper priors.

6 Appendix

6.1 Proof of Theorem 3.1

To discriminate the parameter θ in the original posterior distribution p (θ|y), let θb be the

parameter in the power posterior distribution p (θb|y, b). For the power posterior, when

b ∈ (0, 1], we know that

p (θb|y, b) =
p (y|θb)b p (θb)

p(y|b)
, p(y|b) =

∫
p (y|θb)b p (θb) dθb,
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and θ̂b is the MLE of θ̂b which is the solution to

θ̂b = arg min
θb∈Θ

ln
(
p (y|θb)b

)
= arg min

θb∈Θ
b ln p (y|θb) = arg min

θ∈Θ
ln p (y|θ) .

Hence, θ̂b = θ̂ where θ̂ is the MLE of θ̂ in the original model p(y|θ̂), we can get that

Σ−1
n = −

∂2 ln p
(
y|θ̂b

)
∂θ∂θ′

= −
∂2 ln p

(
y|θ̂
)

∂θ∂θ′
.

Let znb : =
(
b−1Σn

)−1/2
(
θb − θ̂b

)
and An :=

{
znb : θ̂b+

(
b−1Σn

)1/2
znb∈ Θ

}
be the

support space of znb. Then, based on this transformation, the power posterior density of

znb, p (znb|y, b), can be written as

p (znb|y, b) =

∣∣b−1Σn

∣∣1/2 p (y|θb)b p (θb)

p (y|b)

=

∣∣b−1Σn

∣∣1/2 p(y|θ̂b+(b−1Σn)1/2znb

)
p
(
θ̂b+

(
b−1Σn

)1/2
znb

)
p (y|b)

. (23)

From (23), to establish the BvM theorem for the power posterior, we only need to

prove

lim
n→∞

P

(∫
An

∣∣∣∣p (znb|y, b)− (2π)−q/2 exp

(
−

z′nbznb
2

)∣∣∣∣ dznb< ε

)
= 1. (24)

Based on (24), we can derive that

p (znb|y, b)− (2π)−q/2 exp

(
−

z′nbznb
2

)
=

∣∣b−1Σn

∣∣1/2
p (y|b)

p
(
y|θ̂b+(b−1Σn)1/2znb

)
p
(
θ̂b+

(
b−1Σn

)1/2
znb

)
− (2π)−q/2 exp

(
−

z′nbznb
2

)

=

∣∣b−1Σn

∣∣1/2 p(y|θ̂b
)

p (y|b)
p
(
θ̂b+

(
b−1Σn

)1/2
znb

) p(y|θ̂b+
(
b−1Σn

)1/2
znb

)
p
(
y|θ̂
)

− (2π)−q/2 exp

(
−

z′nbznb
2

)

=

∣∣b−1Σn

∣∣1/2 p(y|θ̂b
)
p (θ0)

p (y|b)

p
(
θ̂b+

(
b−1Σn

)1/2
znb

)
p (θ0)

p
(
y|θ̂b+

(
b−1Σn

)1/2
znb

)
p
(
y|θ̂
)

− (2π)−q/2 exp

(
−

z′nbznb
2

)
. (25)

To prove (25), we first prove that∣∣b−1Σn

∣∣1/2 p(y|θ̂
)
p (θ0)

p (y|b)
p→ (2π)−q/2 .
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Taking the Taylor expansion to ln p
(
y|θ̂b +

(
b−1Σn

)1/2
znb

)b
at θ̂b, we get

ln p
(
y|θ̂b + (b−1Σn)1/2znb

)b
= b ln p

(
y|θ̂b +

(
b−1Σn

)1/2
znb

)
= b ln p

(
y|θ̂b

)
+

1

2
bb−1z′nbΣ

1/2
n

∂2 ln p
(
y|θ̃b

)
∂θb∂θ

′
b

Σ1/2
n znb

= b ln p
(
y|θ̂b

)
− 1

2
z′nbΣ

1/2
n

−∂2 ln p
(
y|θ̂b

)
∂θb∂θ

′
b

−
∂2 ln p

(
y|θ̃b

)
∂θb∂θ

′
b

+
∂2 ln p

(
y|θ̂b

)
∂θb∂θ

′
b

Σ1/2
n znb

= b ln p
(
y|θ̂b

)
− 1

2
z′nbΣ

1/2
n

Σ−1
n −

∂2 ln p
(
y|θ̃b

)
∂θb∂θ

′
b

−Σ−1
n

Σ1/2
n znb

= b ln p
(
y|θ̂b

)
− 1

2
z′nb

[
Iq −Rn

(
θ̃b,y

)]
znb, (26)

where Iq is a q-dimensional identity matrix and

Rn

(
θ̃b,y

)
= Iq + Σ1/2

n

∂2 ln p
(
y|θ̃b

)
∂θb∂θ

′
b

Σ1/2
n ,

with θ̃b lies between θ̂b +
(
b−1Σn

)1/2
znb and θ̂b.

Based on the regularity conditions, we know that ∃δ > 0, for any θb satisfying∥∥θb − θ0
n

∥∥ ≤ δ, θb ∈ N0 (δ) =
{
θb :

∥∥θb − θ0
n

∥∥ ≤ δ}. Then, we divide the support space of

θ into two parts, that is,

p(y|b) =

∫
Θ
p (θb) p (y|θb)b dθb = K = K1 +K2,

K1 =

∫
N0(δ)

p (θb) p (y|θb)b dθb,K2 =

∫
Θ\N0(δ)

p (θb) p (y|θb)b dθb. (27)

Based on (26) and (27), we get

K1 =

∫
N0(δ)

p (θb) p (y|θb)b dθ = p
(
y|θ̂b

)b ∫
N0(δ)

p (θb) exp
[
b
(

ln p (y|θb)− ln p(y|θ̂b)
)]

dθb

= p
(
y|θ̂b

)b ∫
N0(δ)

p (θb) exp

[
−1

2

(
θb − θ̂b

)′ (
b−1Σn

)− 1
2

[
Iq −Rn

(
θ̃b,y

)] (
b−1Σn

)− 1
2

(
θb − θ̂b

)]
dθb.

For some η ∈ (0, 1) and θb ∈ N0 (δ), based on Assumption 3, we get∣∣p (θb)− p
(
θ0
n

)∣∣ ≤ ηp (θ0
n

)
, (28)

so that

(1− η)p
(
θ0
n

)
≤ p (θb) ≤ (1 + η)p

(
θ0
n

)
.
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We further get

(1− η)p
(
θ0
n

)
p
(
y|θ̂b

)b
K12 < K1 < (1 + η)p

(
θ0
n

)
p
(
y|θ̂b

)b
K12,

where

K12 =

∫
N0(δ)

exp

[
−1

2

(
θb − θ̂b

)′ (
b−1Σn

)− 1
2

[
Iq −Rn

(
θ̃b1,y

)] (
b−1Σn

)− 1
2

(
θb − θ̂b

)]
dθb

=

∫
N0(δ)

exp

[
−1

2
z′nb

[
Iq −Rn

(
θ̃b,y

)]
znb

]
dθb. (29)

Let r0 = znb/ ‖znb‖, so that ‖r0‖ = 1. Then, we get

r′0Rn

(
θ̃b

)
r0 = r′0r0 + r′0Σ

1/2
∂2 ln p

(
y|θ̃b

)
∂θb∂θ

′
b

Σ1/2r0 = 1 + r′0Σ
1/2

∂2 ln p
(
y|θ̃b

)
∂θb∂θ

′
b

Σ1/2r0,

where θ̃b lies between θb and θ̂b. Since θ̂b
p→ θ0

n, With probability approaching 1, θ̂b ∈
N0 (δ). Hence, θ̃1 ∈ N0 (δ) with probability approaching 1. Furthermore, by Assumption

7, for θb ∈ N0 (δ), any η1 > 0,

lim
n→∞

P

(
sup

θb∈N0(δ),‖r0‖=1

∣∣∣∣1 + r′0Σ
1/2
n

∂2 ln p (y|θb)
∂θb∂θ

′
b

Σ1/2
n r0

∣∣∣∣ < η1

)
= 1,

that is

lim
n→∞

P

(
sup

θb∈N0(δ),‖r0‖=1

∣∣∣r′0Rn

(
θ̃b,y

)
r0

∣∣∣ < η1

)
= 1.

It is noted that

K3 := exp

[
−1

2
z′nb

(
Iq −Rn

(
θ̃b,y

))
znb

]
= exp

[
−1

2
‖znb‖2 r′0

(
Iq −Rn

(
θ̃b,y

))
r0

]
= exp

[
−1

2
‖znb‖2

(
1− r′0Rn

(
θ̃b,y

)
r0

)]
.

With probability approaching 1, we have∫
N0(δ)

exp

[
−1 + η1

2

(
θb − θ̂b

)′ (
b−1Σn

)−1
(
θb − θ̂b

)]
dθb =

∫
N0(δ)

exp

[
−1 + η1

2
‖znb‖2

]
dθb

≤ K3 ≤
∫
N0(δ)

exp

[
−1− η1

2
‖znb‖2

]
dθb

=

∫
N0(δ)

exp

[
−1− η

2

(
θb − θ̂b

)′ (
b−1Σn

)−1
(
θb − θ̂b

)]
dθb.
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Furthermore, we can derive that∫
N0(δ)

exp

[
−1± η1

2

(
θb − θ̂b

)′ (
b−1Σn

)−1
(
θb − θ̂b

)]
dθb = (2π)

q
2 (1± η1)−

q
2

∣∣b−1Σn

∣∣1/2 Φ(cn),

where Φ(cn) is the probability that a standard multivariate normal distribution Nq (0, Iq)

is in cn and

cn = {t : θ̂b + (1± η1)−
1
2 Σ

1
2
n t ∈ N0(δ)}.

According to the regularity conditions, Σ
1
2
n t = op(1) for all t and hence Φ(cn)

p→ 1. Thus,

with probability 1, we get(2π)
q
2

∣∣b−1Σn

∣∣ 12
(1 + η1)

q
2

 ≤ K3 ≤

(2π)
q
2

∣∣b−1Σn

∣∣ 12
(1− η)

q
2

 .
Since η is any small positive constant so that we can relate it to any ε > 0, we have

lim
n→∞

P

(2π)
q
2
(
b−1Σn

) 1
2 (1− ε) ≤ K1

p
(
θ0
n

)
p
(
y|θ̂b

)b ≤ (2π)
q
2
(
b−1Σn

) 1
2 (1 + ε)

 = 1.

In other words, we can show that

K1

|b−1Σn|
1
2 p
(
y|θ̂b

)b
p
(
θ0
n

) p−→ (2π)
q
2 .

As to K2, we can show that

K2 =

∫
Θ\N0(δ)

p (θb) p (y|θb)b dθb

= p
(
y|θ̂b

)b ∫
Θ\N0(δ)

p (θb) exp
[
b
(

ln p (y|θb)− ln p
(
y|θ̂b

))]
dθb

= p
(
y|θ̂b

)b
exp

[
b
(

ln p
(
y|θ0

n

)
− ln p

(
y|θ̂b

))]
×∫

Θ\N0(δ)
p (θb) exp [b (ln p (y|θb)− ln p (y|θ0))] dθb.

According to Assumption 6, when θb ∈ Θ\N0(δ), ln p (y|θb)− ln p
(
y|θ0

n

)
≤ −λ−1

n K (δ) ≤
− |Σn|−

1
q K (δ) with probability approaching 1. Then, with probability approaching 1,

K2 ≤ p
(
y|θ̂b

)b
exp

[
−bλ−1

n K (δ)
] ∫

Θ\N0(δ)
p(θ)dθ ≤ p

(
y|θ̂b

)b
exp

[
−b |Σn|−

1
q K (δ)

]
,
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K2

|b−1Σn|
1
2 p
(
y|θ̂b

)b ≤ exp
[
−b |Σn|−

1
q K (δ)

]
|b−1Σn|

1
2

→ 0.

Noting that p(y|b) = K1 +K2, we get∣∣b−1Σn

∣∣ 12 p(y|θ̂b
)b
p
(
θ0
n

)
p(y|b)

p−→ (2π)−
q
2 . (30)

Based on (24), we can further derive that

p (znb|y, b)− (2π)−q/2 exp

(
−

z′nbznb
2

)

=

∣∣b−1Σn

∣∣1/2 p(y|θ̂b
)
p
(
θ0
n

)
p (y|b)

p
(
θ̂b+

(
b−1Σn

)1/2
znb

)
p (θ0

n)

p
(
y|θ̂b+

(
b−1Σn

)1/2
znb

)
p
(
y|θ̂b

)
− (2π)−q/2

p
(
θ̂b+

(
b−1Σn

)1/2
znb

)
p (θ0

n)

p
(
y|θ̂b+

(
b−1Σn

)1/2
znb

)
p
(
y|θ̂
)

+ (2π)−q/2

p
(
θ̂b+

(
b−1Σn

)1/2
znb

)
p (θ0

n)

p
(
y|θ̂b+

(
b−1Σn

)1/2
znb

)
p
(
y|θ̂b

) − exp

(
−

z′nbznb
2

)
=

∣∣b−1Σn

∣∣1/2 p(y|θ̂b
)
p
(
θ0
n

)
p (y|b)

− (2π)−q/2

 p
(
θ̂b+(b−1Σn)1/2znb

)
p (θ0

n)

p
(
y|θ̂b+(b−1Σn)1/2znb

)
p
(
y|θ̂b

)
+ (2π)−q/2

p
(
θ̂b+(b−1Σn)1/2znb

)
p (θ0

n)

p
(
y|θ̂b+(b−1Σn)1/2znb

)
p
(
y|θ̂b

) − exp

(
−

z′nbznb
2

) . (31)

It is noted that∫
An

p
(
θ̂b+

(
b−1Σn

)1/2
znb

)
p (θ0

n)

p
(
y|θ̂b+

(
b−1Σn

)1/2
znb

)
p
(
y|θ̂b

) dznb

≤
∫
An

p
(
θ̂b+

(
b−1Σn

)1/2
znb

)
p (θ0

n)
dznb ≤

1

p (θ0
n)
. (32)

Based on (30), (31) and (32), to prove

lim
n→∞

P

(∫
An

∣∣∣∣p (znb|y, b)− (2π)−q/2 exp

(
−

z′nbznb
2

)∣∣∣∣ dznb< ε

)
= 1

from (23), we only need to prove that

P

∫
An

∣∣∣∣∣∣
p
(
θ̂b+b

−1Σ
1/2
n znb

)
p (θ0

n)
exp

−z′nb[Iq −Rn

(
θ̃b,y

)
]znb

2

− exp

(
−

z′nbznb
2

)∣∣∣∣∣∣ dzn< ε

→ 1.
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By Assumption 3, it is enough to prove

P

∫
An

∣∣∣∣∣∣p
(
θ̂b+b

−1Σ
1
2
nznb

)
exp

−z′nb[Iq −Rn

(
θ̃b,y

)
]znb

2

− p (θ0
n

)
exp

(
−

z′nbznb
2

)∣∣∣∣∣∣ dznb< ε

→ 1.

Let

A1n =
{

zn : θ̂b + b−1Σ1/2
n znb∈ N0 (δ)

}
, A2n =

{
znb : θ̂b + b−1Σ1/2

n znb∈ Θ\N0 (δ)
}
,

and

Cn =

∣∣∣∣p(θ̂b + b−1Σ1/2
n znb

)
exp

[
−1

2
z′nb

[
Iq −Rn(θ̃b,y)

]
znb

]
− p

(
θ0
n

)
exp

(
−

z′nbznb
2

)∣∣∣∣ .
The integration of Cn in area An can be decomposed into those in two areas, A1n and

A2n, i.e.,

J =

∫
An

Cndznb=

∫
A1n

Cndznb +

∫
A2n

Cndznb := J1 + J2.

In the following, we try to prove that

J1 =

∫
A1n

Cndznb
p→ 0, J2 =

∫
A2n

Cndznb
p→ 0.

For J1, note that

Cn ≤ C1n + C2n,

where

C1n =
∣∣∣p(θ̂b+b−1Σ1/2

n znb

)∣∣∣ ∣∣∣∣exp

[
−1

2
z′nb

[
Iq −Rn

(
θ̃b,y

)]
znb

]
− exp

(
−

z′nbznb
2

)∣∣∣∣ ,

C2n =
∣∣∣p(θ̂b+b−1Σ1/2

n znb

)
− p

(
θ0
n

)∣∣∣ exp

(
−

z′nbznb
2

)
.

Then we have

0 ≤ J1 ≤ J11 + J12,

where

J11 =

∫
A1n

C1ndznb, J12 =

∫
A1n

C2ndznb.
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From (28), we know that
∣∣∣p(θ̂b+b−1Σ

1/2
n znb

)∣∣∣ ≤ (1 + η) p
(
θ0
n

)
. Hence, we have

J11 ≤ (1 + η) p
(
θ0
n

) ∫
A1n

∣∣∣∣∣∣exp

−z′nb

[
Iq −Rn

(
θ̃b,y

)]
znb

2

− exp

(
−

z′nbznb
2

)∣∣∣∣∣∣ dznb.

Note that for any constant c, | exp(|c|) − 1| ≤ exp(|c|)|c|. Hence, with probability 1,

when θ ∈ N0 (δ), we get∣∣∣∣exp

[
−1

2
z′nb

[
Iq −Rn

(
θ̃b,y

)]
znb

]
− exp

(
−

z′nbznb
2

)∣∣∣∣
=

∣∣∣∣exp

[
1

2
z′nbRn

(
θ̃b,y

)
znb

]
− 1

∣∣∣∣ exp

(
−

z′nbznb
2

)
≤ exp

[∣∣∣∣12z′nbRn

(
θ̃b,y

)
znb

∣∣∣∣] ∣∣∣∣12z′nbRn

(
θ̃b,y

)
znb

∣∣∣∣ exp

(
−

z′nbznb
2

)
= exp

[∣∣∣∣12z′nbznb

∣∣∣∣ ∣∣∣r′0Rn

(
θ̃b,y

)
r0

∣∣∣] ∣∣∣∣12z′nbznb

∣∣∣∣ ∣∣∣r′0Rn

(
θ̃b,y

)
r0

∣∣∣ exp

(
−

z′nbznb
2

)
≤ η

2
exp

[∣∣∣η
2
z′nbzn

∣∣∣] ∣∣z′nbznb∣∣ exp

(
−

z′nbznb
2

)
=

η

2
‖znb‖2 exp

(
−

(1− η)z′nbznb
2

)
. (33)

Let

J∗11 =

∫
A1n

∣∣∣∣exp

[
−1

2
z′nb

[
Iq −Rn

(
θ̃b,y

)]
znb

]
− exp

(
−

z′nbznb
2

)∣∣∣∣ dznb.
It follows from (33) that

lim
n→∞

P

{
J∗11 ≤

η

2

∫
A1n

‖znb‖2 exp

(
−

(1− η) z′nbznb
2

)
dznb

}
= 1. (34)

Furthermore, we can derive that∫
A1n

‖znb‖2 exp

(
−

(1− η) z′nbznb
2

)
dznb

≤
∫
Rq
‖znb‖2 exp

(
−1− η

2
z′nbznb

)
dznb =

∫
Rq

(
q∑
i=1

z2
nb,i

)
exp

(
−1− η

2
z′nbznb

)
dznb

= q

∫
R

z2
nb,i exp

(
−1− η

2
z2
nb,i

)
dznb,i = q (2π)1/2 (1− η)−3/2 ,

where znb,i is the ith element of znb. Hence, we have

lim
n→∞

P
(
J11 ≤ ηp

(
θ0
n

)√
π2−1/2q (1 + η)−1/2

)
= 1. (35)
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In the following, we deal with J12. From (28), we have

J12 ≤
∫
A1n

∣∣∣p(θ̂b+Σ1/2
n znb

)
− p

(
θ0
n

)∣∣∣ exp

(
−

z′nbznb
2

)
dznb

≤ ηp
(
θ0
n

) ∫
A1n

exp

(
−

z′nbznb
2

)
dznb

≤ ηp
(
θ0
n

) ∫
Rq

exp

(
−

z′nbznb
2

)
dznb

= ηp
(
θ0
n

)
(2π)q/2

∫
Rq

(2π)−q/2 exp

(
−

z′nbznb
2

)
dznb

= ηp
(
θ0
n

)
(2π)q/2 .

Similarly, we have

lim
n→∞

P
{
J12 ≤ ηp

(
θ0
n

)
(2π)q/2

}
= 1. (36)

And from (35) and (36),

lim
n→∞

P
{
J1 = J11 + J12 ≤ ηp

(
θ0
n

) (
(2π)q/2 +

√
π2−1/2q (1 + η)−1/2

)}
= 1. (37)

By the way of how η and ε are chosen, we get from (37) that

lim
n→∞

P {J1 ≤ ε} = 1. (38)

Since ε is chosen arbitrarily and J1 ≥ 0, we have

J1
p→ 0.

Next we show that

J2
p→ 0. (39)

such that

0 ≤ J2 =

∫
A2n

Cndznb ≤ J21 + J22,

where

J21 =

∫
A2n

p
(
θ̂b+b

−1Σ1/2
n znb

)
exp

[
−1

2
z′nb

[
Iq −Rn

(
θ̃b,y

)]
znb

]
dznb,

J22 =

∫
A2n

p
(
θ0
n

)
exp

(
−

z′nbznb
2

)
dznb.
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For J21, in terms of (26), we have

J21 =

∫
A2n

p
(
θ̂b+b

−1Σ1/2
n znb

)
exp

[
−1

2
z′nb

[
Iq −Rn

(
θ̃b,y

)]
znb

]
dznb

=

∫
A2n

p
(
θ̂b+b

−1Σ1/2
n znb

)
exp

[
b
(

ln p
(
y|θ̂b + b−1Σ1/2

n znb

)
− ln p

(
y|θ̂b

))]
dznb

=

∫
A2n

p
(
θ̂b+b

−1Σ1/2
n znb

)
exp

[
b
(

ln p
(
y|θ̂b + b−1Σ1/2

n znb

)
− ln p

(
y|θ0

n

))]
dznb

× exp
[
b
(

ln p
(
y|θ0

n

)
− ln p

(
y|θ̂b

))]
. (40)

According to Assumption 6, if zn∈A2n, ln p
(
y|θ̂b + b−1Σ1/2znb

)
−ln p

(
y|θ0

n

)
< − |Σn|−

1
q K (δ)

with probability approaching 1. Furthermore, it is noted that exp
[
b
(

ln p
(
y|θ0

n

)
− ln p

(
y|θ̂
))]

≤ 1. Hence, the integral on the right-hand side of (40) is less than

exp
[
−b |Σn|−

1
q K (δ)

] ∫
A2n

p
(
θ̂b+b

−1Σ1/2
n znb

)
dznb,

with probability approaching 1. Then, we can have

exp
[
−b |Σn|−

1
q K (δ)

] ∫
A2n

p
(
θ̂b+b

−1Σ1/2
n znb

)
dznb

= bq/2 exp
[
−b |Σn|−

1
q K (δ)

] ∫
Θ\N0(δ)

p (θ) |Σn|−1/2 dθ

≤ bq/2 exp
[
−b |Σn|−

1
q K (δ)

] ∫
Θ\N0(δ)

p (θ) |Σn|−1/2 dθ.

Note that

exp
[
− |Σn|−

1
q K (δ)

]
|Σn|−1/2 p→ 0.

Furthermore, θ̂b − θ0
n

p→ 0 by Assumptions 1-7. Then we have

J21
p→ 0. (41)

For J22, we can show that

J22 =

∫
A2n

p
(
θ0
n

)
exp

(
−

z′nbznb
2

)
dznb = p

(
θ0
n

) ∫
A2n

exp

(
−

z′nbznb
2

)
dznb

≤ p
(
θ0
n

) ∫
‖znb‖>

√
nλn
q+1

δ
exp

(
−

z′nbznb
2

)
dznb

≤ (2π)q/2 p
(
θ0
n

) ∫
∩qi=1{|znb,i|>

√
nλn
q+1

δ}
(2π)−q/2 exp

(
−

z′nbznb
2

)
dznb

≤ (2π)q/2 p
(
θ0
n

) ∫
∩qi=1{|znb,i|>

√
nλn
q+1

δ}
(2π)−q/2 exp

(
−

z′nbznb
2

)
dznb,
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where znb,i is the ith element of znb and λn is the smallest eigenvalue of −b 1
n L̈
(
θ̂
)

.

Furthermore, we can derive that∫
∩qi=1{|znb,i|>

√
nλn
q+1

δ}
(2π)−q/2 exp

(
−

z′nbznb
2

)
dznb

=

∫
Rq

∏q

i=1
1

(
|znb,i| >

√
nλn
q + 1

δ

)
(2π)−q/2 exp

(
−

z′nbznb
2

)
dznb

=
∏q

i=1

[∫
R

1

(
|znb,i| >

√
nλn
q + 1

δ

)
(2π)−1/2 exp

(
−

z2
nb,i

2

)
dznb,i

]

=
∏q

i=1

[∫
|znb,i|>

√
nλn
q+1

δ
(2π)−1/2 exp

(
−

z2
nb,i

2

)
dznb,i

]

≤

(√
q + 1

exp
(
−nλnδ2/2(q + 1)

)
√
nλn2πδ

)q
= 2−

q
2 (q + 1)

q
2

(
1√
πδ

)q
(nλn)−

q
2 exp

(
− nλnqδ

2

2(q + 1)

)
p→ 0, (42)

where the last inequality is due to∫ ∞
x

1√
2π
e−

t2

2 dt ≤
∫ ∞
x

1√
2π

t

x
e−

t2

2 dt =
e−

x2

2

x
√

2π
.

From (42), we have

J22
p→ 0. (43)

From (41) and (43), we can get (39). And from (38) and (39), we have

J
p→ 0.

Hence, we prove that p (znb|y, b), the posterior distribution znb

(
: =(b−1Σn)−1/2

(
θb − θ̂b

))
,

converges to a standard multivariate normal distribution. In other words, we prove that

the power posterior density of θb also converges to a multivariate normal distribution, i.e.,

√
n
√
b
(
θb − θ̂b

)
|y, b d→ N (0, nΣn) .

6.2 Proof of Theorem 3.2

Note that the samples
{
θ(1),θ(2), · · · ,θ(J)

}
are from the posterior distribution p(θ|y).

Under the parameter transformation,
{
φ(1),φ(2), · · · ,φ(J)

}
with φ(j) = g−1

(
θ(j)

)
are

from the posterior distribution pφ(φ|y). For any b ∈ (0, 1], by the linear transformation

φ
(j)
b =

1√
b

(
φ(j) − φ̄

)
+ φ̄, φ̄ ≈ 1

J

J∑
j=1

φ(j),
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we can get the samples
{
φ

(1)
b ,φ

(2)
b , · · · ,φ(J)

b

}
which are from the posterior distribution

pAφ (φb|y).

Again, based on the parameter transformation under Assumption 8∗, we get

U(b) = Eθb|y,b ln p (y|θb) =

∫
Θ

ln p (y|θb) p(θb|y, b)dθb

=

∫
Φ

ln pφ (y|φb) pφ(φb|y, b)dφb

=

∫
Φ

ln pφ (y|φb)
pφ(θb|y, b)
pAφ (φb|y, b)

pAφ (φb|y, b) dφb

=

∫
Φ

ln pφ (y|φb)wφ (φb) pAφ (φb|y, b) dφb,

where

wφ (φb) =
pφ (φb|y, b)
pAφ (φb|y, b)

=

pφ(y|φb)bpφ(φb)
p(y|b)

√
bpφ(y|φ)pφ(φ)

p(y)

=
pφ (y|φb)b pφ (φb)

pφ(y|φ)pφ(φ)

p(y)√
bp(y|b)

.

Again, based on importance sampling, we can estimate U(b) by

U(b) =

∫
Φ

ln pφ (y|φb)w (φb) pAφ (φb|y, b) dφb ≈
1

J

J∑
j=1

ln pφ

(
y|φ(j)

b

)
ŵ
(
φ

(j)
b

)
,

where ŵ
(
φ

(j)
b

)
involves some unknown constants. Using the normalized importance sam-

pling technique, we can get another consistent estimate of U(b) given by

U(b) ≈ Û∗LWY (b) =
J∑
j=1

ln pφ

(
y|φ(j)

b

)
Ŵφ

(
φ

(j)
b

)
,

where

Ŵφ

(
φ

(j)
b

)
=

wφ

(
φ

(j)
b

)
∑J

j=1wφ

(
φ

(j)
b

) =

pφ

(
y|φ(j)

b

)b
pφ

(
φ

(j)
b

)
pφ(y|φ(j))pφ(φ(j))∑J

j=1

pφ

(
y|φ(j)

b

)b
pφ

(
φ

(j)
b

)
pφ(y|φ(j))pφ(φ(j))

=
exp

{
b ln pφ

(
y|φ(j)

b

)
− ln pφ

(
y|φ(j)

)
+ ln pφ

(
φ

(j)
b

)
− ln pφ

(
φ(j)

)}
∑J

j=1

{
b ln pφ

(
y|φ(j)

b

)
− ln pφ

(
y|φ(j)

)
+ ln pφ

(
φ

(j)
b

)
− ln pφ

(
φ(j)

)} .
Under the parameter transformation, we can get that pφ(y|φ) = p(y|g(φ)) and pφ(φ) =

p(g(φ))
∣∣∣∂g(φ)

∂φ

∣∣∣. Thus, we can get an consistent estimate of U(b) as

U(b) ≈ Û∗LWY (b) =
J∑
j=1

ln p
(
y|g
(
φ

(j)
b

))
Ŵφ

(
φ

(j)
b

)
.
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