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Abstract

In this paper we develop methods for statistical inferences in a partially identified nonparametric panel

data model with endogeneity and interactive fixed effects. We consider the case where the number of

cross-sectional units () is large and the number of time series periods ( ) as well as the number of

unobserved common factors () are fixed. Under some normalization rules, we can concentrate out the

large dimensional parameter vector of factor loadings and specify a set of conditional moment restrictions

that are involved with only the finite dimensional factor parameters along with the infinite dimensional

nonparametric component. For a conjectured restriction on the parameter, we consider testing the null

hypothesis that the restriction is satisfied by at least one element in the identified set and propose a test

statistic based on a novel martingale difference divergence (MDD) measure for the distance between a

conditional expectation object and zero. We derive the limiting distribution of the resultant test statistic

under the null and show that it is divergent at rate- under the global alternative based on the -process

theory. To obtain the critical values for our test, we propose a version of multiplier bootstrap and establish

its asymptotic validity. Simulations demonstrate the finite sample properties of our inference procedure.

We apply our method to study Engel curves for major nondurable expenditures in China by using a panel

dataset from the China Family Panel Studies (CFPS).
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1 Introduction

Recently there has been a growing interest on panel data models with interactive fixed effects (IFEs). Under a

linear specification of the regression relationship, these models have been extensively studied in the literature;

see, Coakley, Fuertes and Smith (2002), Phillips and Sul (2003, 2007), Pesaran (2006), Kapetanios and

Pesaran (2007), Greenaway-McGrevy, Han and Sul (2008), Bai (2009), Pesaran and Tosetti (2011), Moon

and Weidner (2015, 2017), and Lu and Su (2016), among others. More recently, in an effort to relax the

linear specification, much attention has been turned to the study of nonparametric panel data models with

interactive-effects. See, e.g., Su and Jin (2012), Su, Jin and Zhang (2015), Freyberger (2018), Dong, Gao

and Peng (2018), and Su and Zhang (2018) for an overview. In particular, Freyberger (2018) studies a very

general nonparametric and nonseparable panel model with IFEs. Nevertheless, all of these papers restrict the

covariates to be either strictly or weakly exogenous and assume that the model parameters are point-identified.

In this paper we consider the following nonparametric panel data regression model

 = 0() + 00 
0
 +  (1.1)

where  = 1    = 1   ,  is a × 1 vector of general regressors with support X ,  is scaler output
variable with support Y,  0 and 0 are × 1 vectors of unobserved factors and factor loadings, respectively,
 is a zero-mean error term, and the functional form of 0 (·) is unknown. We allow  and  to be

correlated, and are interested in the inference of  (·) by assuming the presence of a  × 1 vector of weakly
exogenous instruments  with support Z, such that

E (|1  ) = 0 almost surely (a.s.). (1.2)

Throughout the paper we assume that  and  are fixed with  ≥  + 1 and the asymptotic theory is

established by passing  to infinity.

When 0() is linear in  so that 
0 () = 00 for some 

0 ∈ R   is strictly exogenous, and
 = 1 Ahn, Lee and Schmidt (2001) follow the lead of Holz-Eakin, Newey and Rosen (1988) to study the

asymptotic properties of the GMM estimator of  based on the quasi-differencing of the equation in (1.1).

Ahn, Lee and Schmidt (2013, ALS hereafter) consider the GMM estimation of  when  is either strictly

or weakly exogenous and  ≥ 1 Su and Jin (2012) study the asymptotic properties of the sieve estimator of
0 in (1.1) when  is strictly exogenous. Su and Zhang (2018) consider the sieve estimation of 

0 when 

is weakly exogenous. Freyberger (2018) considers the point-identification and estimation of a model that is

more general than that in (1.1), but still restricts  to be either strictly or weakly exogenous.

The nonparametric IV (NPIV) model for cross-sectional data (i.e.,  = 0 ()+ with E (|) = 0 a.s.)
has been widely studied in the literature. NPIV is encompassed by our model as a special case where  = 1

and  = 0. Point-identification of 0 (·) in NPIV relies heavily on a completeness assumption regarding the
joint distribution of  and , as formalized by Newey and Powell (2003). Nevertheless, Santos (2012) shows

that 0 (·) in the NPIV model is only partially identified in general. In Model (1.1) under our investigation,
with the IFEs treated as fixed parameters to be handled, nonparametric point-identification of 0 (·) is even
harder to achieve without imposing strong ad hoc assumptions. Therefore, we aim at developing an effective

inference method for 0 (·) that is consistent under a potential lack of point-identification in this paper.
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For a conjectured restriction on  (·), we develop a consistent procedure for testing the hypothesis that
the restriction is satisfied by at least one element in the identified set of  (·). A broad group of restrictions
can be tested in this way, making the procedure applicable to various inference tasks, including testing model

specification and constructing a confidence set for 0 (·) at any given point. We derive the limiting distribution
of our test statistic under the null and show that it is divergent at rate- under the global alternative based

on the  -process theory. To obtain the critical values for our test, we propose a version of multiplier bootstrap

and establish its asymptotic validity. We conduct Monte Carlo simulations to demonstrate the finite sample

properties of our inference procedure.

Our test statistic is based on a novel martingale difference divergence (MDD) measure for the distance

between a conditional expectation object and zero. This way of constructing statistic for testing conditional

moment specification is rather different from the widely adopted method, dating back to Bierens (1982), that

involves transforming conditional moments into infinitely many unconditional ones via a family of instrument

functions and then constructing Kolmogorov Smirnov (KS) or Cramér-von Mises (CvM) type statistic over

the instrument function family. As shown in the paper, under partial identification, our MDD-based statistic

has two main advantages over Bierens-type statistics: (i) Computing our MDD based statistic is relatively

simple regardless of the dimension of the conditioning variables (i.e.,  ≡ (01  
0
)
0 for  = 1   in

our model). So it does not suffer from high computational cost even if the dimension of the conditioning

variables is moderately large; (ii) The null asymptotic distribution of our statistic is free of any drifting

terms, which commonly appear in the null asymptotic distributions of many existing test statistics built to

be robust against partial identification (e.g., Santos (2012) and Hong (2017)). This makes it straightforward

to implement our testing procedure to obtain an asymptotically exact test.1

The main technical challenges of our analysis arise largely because our test statistic is associated with

a second order  -process asymptotically that is degenerate under the null and non-degenerate under the

alternative. First, out test statistic can be written as a minimizer of a MDD-based process indexed by

 =
¡
0 

¢0
where  is a finite-dimensional vector associated to the unobserved factor  = (1   )

0
and

 is the infinite dimensional parameter of interest. The MDD-based process is a third order  -process that

can be decomposed into the summation of a bias term, a second order canonical  -process and a third order

canonical  -process via standard Hoeffding decompositions. To study these canonical  -process components,

we find helpful insights from de la Peña and Giné (1999) who state some weak convergence results for canonical

 -processes with kernel functions belonging to the VC-subgraph class. Such results are not directly applicable

to our setting because the kernel functions of our  -processes do not belong to the VC-subgraph class due to

the presence of the infinite dimensional parameter  (·). Fortunately, we can verify some primitive conditions
in Acrones and Giné (1993) to show that the second order canonical  -process in our Hoeffding decomposition

converges weakly to a Gaussian chaos process and the third order term asymptotically vanishes. To the best

of our knowledge, such results are the first ones for degenerate  -processes indexed by a non-VC-subgraph

class, which complements the literature in both econometrics and statistics.

1Santos (2012) employs additional sieve parameters to mimic the corresponding drafting term in his bootstrap procedure

so that the resulting test is exact. In comparison, Hong (2017) sets the corresponding drafting term to zero in his bootstrap

procedure, which saves computational cost, but leads to potentially conservative tests.
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Second, to derive the null asymptotic distribution for our statistic, we borrow ideas from the growing

literature on nonparametric partial identification; see, Santos (2012), Andrews and Shi (2014), Chernozhukov,

Newey and Santos (2015), and Hong (2017), among others. Our study complements this literature and

is closely related to Santos (2012) and Hong (2017). The big difference is that Santos (2012) and Hong

(2017) establish their limiting distributions based on standard empirical process theory while we establish

our asymptotic results based on the  -process theory. As a first step, we manage to show that any minimizer

̂ of our MDD-based process lies in the (
−14) neighborhood of the identified set under the 2-norm.

Then we show that our test statistic converges to the minimum of a well-defined (noncentered) Gaussian

chaos process without the usual drifting terms that appear in Santos (2012) and Hong (2017). Given the fact

that our test statistic is not asymptotically pivotal, we propose a multiplier bootstrap procedure to obtain

the bootstrap p-values for asymptotic inference. To show the asymptotic validity of the bootstrap procedure,

an essential step is the study of the unconditional central limit theorem (CLT) for the underlying  -process

of our bootstrap statistic, which is analogous to the unconditional multiplier CLT for empirical processes

studied in van der Vaart and Wellner (1996) and Kororok (2008). It extends the unconditional multiplier

CLT for degenerate second order  -statistics in Leucht and Neumann (2013) to degenerate second order

 -processes.

As an empirical illustration, we apply our method to study Engel curves for four major nondurable

expenditures in China by using a panel dataset from the China Family Panel Studies (CFPS). One of our

interesting findings is that, even with a nonparametric specification on  (·), the model does not suffice to
adequately describe the Engel curve for food consumption among urban households in China when setting

the number  of factors to be 0 or 1. While in comparison our test fails to reject the log-linear specification

for the Engel curves among rural households when setting  = 1. Our empirical study suggests a difference

in the degree of heterogeneity on consumption patterns between within the urban population and within

the rural population in China. It also suggests that, even a nonparametric specification on  (·), as general
as it is, might still be insufficient to compensate for an inadequate handling of heterogeneity to make the

corresponding Engel curve a correctly specified one. These results provide some new insights to the huge

literature on empirical studies of Engel curves.

The rest of the paper is organized as follows. In Section 2, we introduce the model, the moment conditions

and the hypotheses. In Section 3, we construct the MDD-based test statistic, derive its asymptotic behavior,

and propose a consistent multiplier bootstrap procedure to obtain the p-values. In Section 4, we study the

finite sample performance of our inference procedure by Monte Carlo simulations. In Section 5, we apply our

method to study Chinese households’ Engel curves. Final remarks are contained in Section 6. The proofs

of all theorems and lemmas are delegated to Appendix A. Additional materials are provided in the online

supplementary Appendices B and C.

NOTATION. For a vector or matrix  we denote its transpose as 0 and its Frobenius norm as ||
(≡ [tr(0)]12) where ≡ means “is defined as”. We use k·k to denote generic (pseudo) norm. For example,
for  =

¡
0 

¢0
where  is a finite-dimensional vector to be specified later on and  is the infinite dimensional

parameter, we define kk ≡ || + kk to denote a generic (pseudo) norm for  =
¡
0 

¢0
, and one popular

choice for k·k is the 2 norm, yielding kk2 = || + kk2 . The true value of  =
¡
0 

¢0
is denoted as
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0 =
¡
00 0

¢0
. The operator

−→, L−→, and =⇒ denote convergence in probability, weak convergence, and

convergence in law in the sense of Chapter 1.3 in van der Vaart and Wellner (1996), respectively.

2 The model and hypotheses

Let  = (1   )
0
  = (1   )

0
  = (1   )

0
 g0() =

¡
0(1)  

0( )
¢0
  0 =¡

 01   
0


¢0
 and  = (1   )

0
 We can rewrite Model (1.1) with Condition (1.2) in vector form:

 = g
0() +  00 +  with E (|) = 0 a.s. (2.1)

where  ≡ (01  0)0.

2.1 The moment condition

To proceed, we show that Model (2.1) is equivalent to a number of conditional moment equations. Like in

a typical factor model,  0 and 0 are not separately identifiable without restrictions.
2 So as a first step, to

rule out such trivial non-identification, we make the normalization assumption that the  × matrix  takes

a form similar to ALS and Freyberger (2018), as follows:

 =

⎛⎝ Φ

−

⎞⎠ (2.2)

where Φ is a ( −)× matrix of unrestricted parameters, and (2.2) imposes 2 restrictions by requiring

the last  rows of  to be −. Let  =vec(Φ0) ≡ (01  0−)0, where  denotes the th column of Φ0 for
 = 1   −.

Then we define the  × ( −) matrix:

 () ≡
⎛⎝ −

Φ0

⎞⎠ ≡ £1 (1)  −
¡
−

¢¤
 (2.3)

Note that


¡
0
¢0
 0 =

¡
−Φ0

¢⎛⎝ Φ0

−

⎞⎠ = 0(−)× (2.4)

where 0 =vec
¡
Φ00
¢
= (001   

00
−)

0 denotes the true value of . Consequently, premultiplying both sides

of (2.1) by 
¡
0
¢0
helps to eliminate the incidental parameters

©
0
ª
from the equation:


¡
0
¢0
 = 

¡
0
¢0
g0() +

¡
0
¢0
 (2.5)

where

 ()0  =

⎛⎜⎜⎜⎜⎜⎝
1 (1)

0


2 (2)
0


...

−
¡
−

¢0


⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1 + 01̇

2 + 02̇
...

− + 0−̇

⎞⎟⎟⎟⎟⎟⎠
2This is because  00 =  0−10 = ∗∗ for any nonsingular matrix  where ∗ =  0−1 and ∗ = 0  To identify

 and Λ = (1   )
0 we need to impose 2 restrictions.
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and ̇ = (−+1 −+2   )
0
 Let

m( g()) ≡  ()0 [ − g()]

=

⎛⎜⎜⎜⎜⎜⎝
1 (1)

0
[ − g()]

2 (2)
0
[ − g()]
...

−
¡
−

¢0
[ − g()]

⎞⎟⎟⎟⎟⎟⎠ ≡
⎛⎜⎜⎜⎜⎜⎝

1( 1g())

2( 2g())
...

−( −g())

⎞⎟⎟⎟⎟⎟⎠  (2.6)

Then under the condition that the instrument  is weakly exogenous, we can easily see that

E
£
( 

0
g

0())|
¤
= 0 a.s. for  = 1   − (2.7)

When 0 and 0 are point-identified, various methods have been proposed to study the estimation of 

and  in the above model. See Ai and Chen (2003) and Chen and Pouzo (2012), among others.

2.2 The parameter space Θ

The parameter space Θ for  = (0 )0 is specified as Θ = Φ × G as in Hong (2017), where Φ is a compact
subset of R(−) and G is a bounded subset of the following Sobolev space:

W (X ) ≡ { : X → R |  is -times differentiable and kk ≤ ∞}

with k·k being a commonly used norm for weighted Sobolev spaces, defined as

kk2 ≡
X
hi≤

Z
X

¯̄
()

¯̄2
(1 + 0)0 

where  ∈ N+ , hi ≡
P

=1  , 
() ≡ hi()

Q
=1 


 ,  ∈ N+ measures the degree of smoothness,

and 0 ≥ 0. Define another norm k·k as follows

kk ≡ max
hi≤ 

2

∙
sup
∈X

¯̄
()

¯̄
(1 + 0)2

¸
with  = 0 for bounded X , and ¡2 b2c¢ ¡b2c− 

2

¢
   0 for unbounded X . Here, bc represents the

largest integer that is no larger than .

To be precise, we specify the parameter space Θ = Φ× G as follows:

Assumption 2.1 (i) Φ ⊂ R(−) is compact; (ii) G = { ∈ W (X ) : kk ≤ } for some   ∞ and

 ≥  + 2. 0 = 0 for bounded X , and 0 
¡

2 ·b2c

¢

¡b2c− 

2

¢
for unbounded X ; (iii) let

 ≡
⎧⎨⎩ (− b2c+ )  {(− b2c)} if X is unbounded

(− b2c) if X is bounded
(2.8)

Then   1; (iv) X satisfies a uniform cone condition.

Remark. Assumption 2.1(i) is standard and Assumption 2.1(ii)-(iii) parallels Assumption 2.1(i)-(ii) in

Santos (2012). Assumption 2.1(ii) specifies G to be a bounded ball under k·k with radius  inW (X ). Such
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a specification brings the following benefits: (i) As noted by Santos (2012), G is compact under the norm
k·k. Consequently, Θ = Φ× G is compact under k·k defined on R(−) ×W (X ) as

kk ≡ ||+ kk (2.9)

for  =
¡
0 

¢0
. (We formalize this compactness result for Θ as Lemma A.3 in the Appendix.) It immediately

follows that Θ is compact under any norm that is weaker than k·k, such as k·k and k·k2 ; (ii) As noted by
Hong (2017), the compactness of Θ under k·k makes the results in Schumaker (2007) applicable to developing
primitive conditions for the required uniform rate (over Θ) of sieve approximation errors (to be specified by

Assumption 3.3 later in the paper).

2.3 Hypotheses and notion of test

Define

Θ ≡ { = (0 )0 ∈ Φ× G : E [( g())|] = 0 a.s. for  = 1   −} (2.10)

Θ is referred to as the identified set in the literature. We say that  = (
0 )0 is partially identified by (2.7)

if Θ contains more than one element. The following lemma suggests that there is no loss of information by

considering Θ defined in (2.10) instead of (1.1)—(1.2), i.e., the original model.

Lemma 2.1 (No loss of information) Θ , the identified set defined by (2.10), is the same as the identified

set characterized by (1.1)—(1.2). That is, Θ is equivalent to⎧⎪⎪⎨⎪⎪⎩ = (0 )0 ∈ Θ :
For some -dimensional random vector  it holds

E
£
 − ()− 0|

¤
= 0 a.s. for  = 1   −

E
£
 − ()− 0

¡−−(−)¢ |¤ = 0 a.s. for  =  −+ 1  

⎫⎪⎪⎬⎪⎪⎭
where  represents the ’th column of the × identity matrix.

For hypothesis testing on a conjectured restriction on , in the generic form

() = 

we consider testing whether such a restriction is satisfied by at least one element of the identified set.

Equivalently, defining the restricted set as Θ ≡ { ∈ Θ : () = }, the null and alternative hypotheses
under our consideration are

H0 : Θ ∩Θ 6= ∅ v.s. H1 : Θ ∩Θ = ∅

where ∅ denotes the empty set.
The notion of the above testing hypotheses is widely adopted under partial identification. When 0 =

(00 0)0 is point-identified by (2.7), the above null hypothesisH0 simply tests whether 0 satisfies the specified

restriction in Θ : (
0) = 

We consider the same family of restrictions as in Santos (2012) and Hong (2017):

Assumption 2.2 For (L k·kL) a Banach space,  : (G k·k)→ (L k·kL) is a bounded linear operator.
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As discussed in Santos (2012), Assumption 2.2 appears restrictive but actually encompasses a broad

group of restrictions since one can flexibly choose the Banach space (L k·kL). For example, we can test
whether the value of the function 0 at a point 0 is given by a value 0 by setting (L k·kL) = (R |·|) 
Θ =

©
 ∈W (X ) :  ¡0¢ = 0

ª
  () = 

¡
0
¢
 and  = 0. For another example, we can test whether 0

is an affine function by setting (L k·kL) =
¡
2 ()  k·k2

¢
 Θ = { ∈ W (X ) :  () = 0 + 01 for some¡

0 
0
1

¢0 ∈ R+1}  () =  − A ()  and  = 0 Here, 2 () = { : X → R : E[ ()2]  ∞} kk2 =
{E[()2]}12 and A () denote the projection of  ∈ 2 () onto A ≡ { ∈   (X ) :  () = 0 + 01

for some
¡
0 

0
1

¢0 ∈ R+1} For additional examples of restrictions that satisfy Assumption 2.2, see Santos
(2012).

In the panel data model with IFEs, (·) or its functional, is typically the parameter of interest, in which
case  can be regarded as a nuisance parameter. For this reason, we mainly consider hypotheses that impose

restrictions on (·) alone, in which case the restriction to be tested takes the special form () =  Then the

restricted set becomes Θ = { = ( ) ∈ Φ× G : () = }

3 The testing procedure

3.1 Test statistics

A popular method to handle hypothesis testing for conditional moment models is to construct test statistics

based on equivalent unconditional moments. This method dates back to Bierens (1982) and has been adopted

in many papers on point-identification analysis (see, e.g., Stinchcombe and White (1998) and Dominguez and

Lobato (2004)), and in more recent papers on partial identification analysis such as Santos (2012), Andrews

and Shi (2013), and Hong (2017). To adopt this method in our study, it requires the choice of a family

of generically revealing functions
¡
1(1 ·) 2(2 ·)    −(− ·)

¢
indexed by t ≡ ¡01 02     0−¢0 ∈Q−

=1 T ≡ T that satisfies the following condition

E [( g())|] = 0 a.s. iff E [( g())( )] = 0 for all  ∈ T

Then we can construct the following test statistic

̄ ≡ min
∈Θ∩Θ

max
t∈T

 · | ( t)|2  (3.1)

where

 ( t) ≡

⎛⎜⎜⎜⎜⎜⎝
1


P
=11 (1 )1(1 1)

1


P
=12 (2 )2(2 2)

...

1


P
=1−

¡
− 

¢
−(− −)

⎞⎟⎟⎟⎟⎟⎠ ≡
⎛⎜⎜⎜⎜⎜⎝

1 (1  1)

2 (2  2)
...

−
¡
−  −

¢

⎞⎟⎟⎟⎟⎟⎠ 

with  ( ) ≡  ( g ()) and Θ is an approximating sieve space for Θ.

Hong (2017) shows under a general setting that statistics of the form (3.1) weakly converge to certain

functional of a Gaussian process under the null, and proposes a penalized bootstrap procedure for testing.

8



These results are potentially applicable to the statistic ̄ in our study. However, note that the dimension

of  is given by , and the dimension of the index t is typically equal or comparable to
³P−

=1 
´
,

which can get relatively large for moderate sizes of  − and . As a result, the computation of ̄ can be

extremely expansive. For this reason, we opt for a different test statistic based on the notion of MDD.

An MDD-based statistic for our study is motivated by two recent papers: Shao and Zhang (2014) and

Su and Zheng (2017). For any real-valued variable  and vector-valued variable  , the original version of

MDD, denoted by MDD ( | )2, is defined by Shao and Zhang (2014) as

MDD( | )2 ≡ −E©[ − E ( )] £ † − E ¡ †¢¤ ¯̄ − †¯̄ª  (3.2)

where ( † †) is an independent copy of ( ) Shao and Zhang (2014) show that under some suitable

moment conditions (E( 2) ∞ and 0  E(| |2) ∞), MDD ( | )2 ≥ 0 and

MDD ( | )2 = 0 iff E( | ) = E ( ) a.s. (3.3)

Based on the above properties, they propose a consistent test for conditional mean independence condition

of (3.3).

Su and Zheng (2017) propose a modified version of MDD, defined as:

MDD(| )2 ≡ −E £† ¯̄ − †¯̄¤+ 2E £ ¯̄ − † ¯̄¤E £†¤  (3.4)

where  is the error term of a nonlinear regression model,  is the regressor, and
¡
† †¢ is an independent

copy of ( ). Su and Zheng (2017) show that MDD(| )2 ≥ 0 and

MDD(| )2 = 0 iff E(| ) = 0 a.s. (3.5)

Then they propose a novel and effective test for correct (parametric) specification of the regression function

based on the above properties of MDD. Notably, in their setting, the regression function is correctly specified

if and only if the conditional mean zero condition of (3.5) holds. Simulation results in Su and Zheng (2017)

indicate that a test statistic based on the MDD significantly outperforms many popular specification tests in

the literature, and that it performs well even when the dimension of  is large.

Following the insights from Su and Zheng (2017), it can be shown, under our setting of Θ and Θ, that

Θ ∩Θ 6= ∅ if and only if:

min
∈Θ∩Θ

(
−X
=1

MDD[ ( g ()) |]2
)
= 0 (3.6)

And the construction of the test statistic for

H0 : Θ ∩Θ 6= ∅ v.s. H1 : Θ ∩Θ = ∅ (3.7)

proceeds in two steps as follows:

I. Fix  ∈ Θ and derive a test statistic  () for the null hypothesis H0 : E [ ( g ()) |] = 0

a.s. for all  = 1   − , or equivalently, H0 :
P−

=1 MDD [ ( g ()) |]2 = 0 for all

 = 1   −.
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II. Let Θ be a sieve approximating space for Θ. Then, following (3.6), test H0 : Θ ∩Θ 6= ∅ by using
the statistic ̂ = min

∈Θ∩Θ
 ().

For Step I, we propose the following statistic:

 () ≡
−X
=1

 () (3.8)

where  () is constructed in a way similar to Su and Zheng (2017):

 () = − 1


X
1≤6=≤

 () () +
2



X
1≤6=≤

 ()
1



X
=1

 () (3.9)

with  () ≡  ( g ()) and  =
¯̄
 − 

¯̄
for  = 1   −.

For Step II, we define the test statistic accordingly as

̂ = min
∈Θ∩Θ

 ()  (3.10)

where Θ = Φ× G is an approximating space for Θ = Φ× G, with

G =
©
 ∈ G :  (·) =  (·)0  for some  ∈ Rª

being an approximating space for G by using a  -vector of basis functions 
 (·) = (1 (·)    (·))0

defined on X 

3.2 Definitions and notations

For 0 =
¡
00 0

¢0 ∈ Θ ∩Θ, let
Π

0 ≡
⎛⎝ 0

ΠG 
0

⎞⎠ (3.11)

be the projection of 0 onto Θ ∩Θ.

Definition 3.1 (Weak pseudo-metric) Let  ( ) ≡  ( g ())  Define the following pseudo-

metric d (· ·) on Θ:

d (1 2) ≡
(
−X
=1

MDD[( ( 1)− ( 2)) |]2
)12



for any 1, 2 ∈ Θ.

Note that Θ forms an equivalent class under d (· ·), i.e., for any 01 ∈ Θ and 02 ∈ Θ , d
¡
01 

0
2

¢
= 0,

which is made clear by Lemma A.1 in the Appendix. It also follows from Lemma A.1 that for any given

 ∈ Θ and 0 ∈ Θ ,

d
¡
 0

¢
=

(
−X
=1

MDD [ ( ) |]2
)12



The following lemma shows that d (· ·) is weaker than the 2-metric and satisfies a triangle-like inequality
around the identified set.
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Lemma 3.1 Let Assumptions 2.1 hold. Suppose that E[| |2]  ∞ and E||  ∞ Then there exists a

finite constant   0 s.t. d (1 2) ≤  k1 − 2k2 for any 1, 2 ∈ Θ. In addition, d (1 2) ≤
2
£
d
¡
1 

0
¢
+ d

¡
2 

0
¢¤
for any 0 ∈ Θ .

Definition 3.2 (Pathwise derivatives) For the functions  ( ·) : Θ→ R,  = 1   − we define
the first-order pathwise derivative of  ( ·) at 0 in the direction of ∆ as



¡
 0

¢


[∆] =


¡
 0 + ∆

¢


|=0

and the second-order pathwise derivative of  ( ·) at 0 in the direction of ∆ as

2

¡
 0

¢
2

[∆∆] =
2

¡
 0 + ∆

¢
2

|=0

Given the functional form of  as specified in (2.6), it holds that

 ( )−

¡
 0

¢
=



¡
 0

¢


£
 − 0

¤
+
1

2

2

¡
 0

¢
2

£
 − 0  − 0

¤
 (3.12)

As formalized in Lemma A.6(i) in Appendix A, under mild conditions (Assumptions 2.1, 2.2, and 3.1 —

3.3(i) to be specified in the next subsection), any minimizer ̂ of  () over Θ would lie in the (1)

neighborhood of the identified set Θ under the 
2-norm. Given this consistency result, we can restrict our

attention on a shrinking 2 sieve neighborhood around Θ , defined as

Θ ≡
©
 ∈ Θ : dk·k2 (Θ) ≤ 

ª
for some positive  ↓ 0.3 And we define the following measure of local ill-posedness.

Definition 3.3 (Sieve measure of local ill-posedness) Define the following sieve measure of local ill-

posedness

 ≡ sup
∈Θ :∈ΠΘ

dk·k2 (ΠΘ)

d (ΠΘ)


In our analysis, we allow for moderate ill-posedness in the sense that  ↑ ∞ but at a slow rate. 

provides a link between  (· ·) and the 2 distance. So once we establish the rate of convergence under
 (· ·), a certain rate of convergence under the 2 distance can be established via  . Note that  is

defined in almost the same way as in Hong (2017), except that our pseudo metric is different from Hong’s

(2007). Under point-identification,  = sup∈Θ : 6=Π0
k−Π0k

2

d(Π
0)
, which is similar to the sieve measure

of local ill-posedness in Chen and Pouzo (2012).

3dk·k
2
(Θ) ≡ inf

̃∈Θ

 − ̃

2

represents the distance between a point  and the set Θ under k·k2 . Similarly, in

Definition 3.3, d (ΠΘ) ≡ inf
̃∈ΠΘ

d( ̃) represents the distance between a point  and the set ΠΘ under d (· ·).
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3.3 Asymptotic theory

In this section we study the asymptotic properties of  () and ̂ , defined in (3.8) and (3.10), respectively.

To establish the asymptotic behavior of  (), we impose the following assumption.

Assumption 3.1 (i) {  }=1 are i.i.d. with support X  ×Y ×Z such that all marginal and joint

density functions of   and  are bounded.

(ii) E[(||2 + 1)(||2 + 1)] ∞.

Assumption 3.1(i) is commonly imposed for panel data analyses with individual fixed effects or IFEs. And

it does not rule out dynamic panels as along as we treat the unobserved factors  0 ’s as nonrandom. In the

case where  0 ’s are random, the independence assumption can be replaced by conditional independence: the

lagged dependent variables (e.g., −1) can be independent across  given the minimal sigma-field generated

by the common factors. Assumption 3.1(ii) specifies some moment conditions on  and 

Let  = ( 0
 

0
 

0
)
0
and ̃ () =  ( ) − E [ ( ) |]. Define the second order  -

process indexed by  as follows:

U () =

µ


2

¶−1 X
1≤≤


¡
 ; 

¢


where 
¡
  ; 

¢
= ̃ () ̃ () [E() +E()− ], and E() denotes the expectation with

respect to (w.r.t.) the variable  alone in  =
¯̄
 − 

¯̄
 Denote by  · ·  the usual inner product

on 2 ( ), for  a generic probability measure (or a generic marginal one) on X  × Y × Z . For  ∈
2
¡
 2
¢ ≡ 2 ( ⊗  ), define a Hilbert-Schmidt operator  on 2 ( ) by () () =  ( ·)  (·)  Also,

define a process C on F by

C () =
∞X
=1

   
¡
 2

 − 1
¢


where {} denotes the eigenfunctions of the operator   and {} is a sequence of independent  (0 1)

random variables.

The following theorem studies the asymptotic properties of the process { ()} 

Theorem 3.1 Let Assumptions 2.1, 2.2, and 3.1 hold. Then

(i) For each  = 1   −   () = 2E
£
2
 ( g ())

¯̄
 − †

¯̄¤
+ U () + (

−12) =⇒
B () + C () in ∞ (Θ) where B () = 2E

£
2
 ( g ())

¯̄
 − †

¯̄¤
and C () = C ( (· ·; )) is a

Gaussian chaos process on ∞ (Θ) 4  () =⇒
P−

=1 [B () + C ()] on ∞ (Θ).

(ii) 1

 () =

P−
=1 MDD [ ( ) |]2 +(

−12) uniformly in  ∈ Θ\Θ 

Theorem 3.1(i) indicates that  ()  after being recentered around B ()  is essentially a degenerate

second order  -process on Θ that converges weakly to a Gaussian chaos process {C ()}  Theorem 3.1(ii)

indicates that for  ∈ Θ\Θ   () is dominated by its deterministic component that is associated to the
MDD measure.

To establish the asymptotic behavior of ̂ , we need to impose some further assumptions.

4Let  () be a generic stochastic process indexed by  ∈ B.  () is said to be a process on ∞ (B) if  (·) (treated as a
random function with domain B) has almost sure bounded paths (i.e., realizations) on B.
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Assumption 3.2 The eigenvalues of E
h
 () 

0 ()
i
for  = 1   are uniformly bounded and uni-

formly bounded away from zero.

Assumption 3.3 Θ is a closed subset of Θ, and there exists Π

 ∈ Θ for each  ∈ Θ such that: (i)

 ≡ sup
∈Θ∩Θ

kΠ  − k2 = 
¡
−14

¢
; (ii)  ≡ sup

∈Θ∩Θ
d (Π  ) = 

¡
−12

¢
; (iii) For some

 ↓ 0 s.t.
√
 ↑ ∞, sup

∈Θ∩Θ
kΠ k ≤  −  .

Assumption 3.4  = 
¡
 (1−)(4(2−))¢ for arbitrarily small   0.

Assumption 3.2 is identical to Assumption 3.3(i) in Santos (2012) and is commonly assumed in the

literature on sieve estimation. Assumption 3.3(i) requires a uniform sieve approximation error rate under k·k2
over Θ∩Θ. As discussed previously, the compactness of Θ under k·k makes the results in Schumaker (2007)
applicable to developing a primitive condition for Assumption 3.3(i). Specifically, according to Theorem

6.25 in Schumaker (2007), sup∈Θ kΠ − k2 = (
−(−1)
 ) for B-splines with simple knots. Therefore,

Assumption 3.3(i) is satisfied by picking  → ∞ fast enough such that 1 = 
¡
−14(−1)

¢
. Since

d (Π
 ) is controlled from above by kΠ − k2 as shown by Lemma 3.1, Assumption 3.3(ii) can be

verified by using results for k·k2 . Assumption 3.3(iii) is identical to Assumption 3.4(iii) in Santos (2012).
Assumption 3.4 allows  →∞, but restricts its divergence rate to be slow enough. Essentially, this requires
us to pick  to grow sufficiently slow. Similar assumptions are commonly required in semi/non-parametric

analyses for regularization of ill-posed problems. See, e.g., Blundell, Chen, and Kristensen (2007), Chen and

Pouzo (2012), and Hong (2017). As acknowledged in Hong (2017), Assumption 3.4 is generally hard to verify

because the nature of the dependence of  on  has not been well studied. In the mildly ill-posed case as

classified by Chen and Pouzo (2012), where  ³  for some nonnegative constant , Assumption 3.4 is

satisfied with  = 
¡
 (1−)(4(2−))¢. Consequently, as long as we require  (·) to be sufficiently smooth

such that  ≥ (2− ) (1− ) + 1, there exists  whose rate would satisfy both Assumptions 3.3 and

3.4. Also, in the special case of  = 0 (i.e., no IFEs) and point-identification, Assumption 3.2 is sufficient

to guarantee d
¡
 0

¢ ³ °° − 0
°°
2
asymptotically for any 0 ∈ Θ and

°° − 0
°°
2
=  (1), which implies

that  = (1). Then Assumption 3.4 holds trivially. In the online supplementary Appendix C, we clarify

this claim for the case where  = 0 and also provide some further discussions on the sufficient conditions for

Assumption 3.4 when  ≥ 1.
With the above additional assumptions, we can state the next main result in this paper.

Theorem 3.2 (Consistency of ̂) Let Assumptions 2.1, 2.2, and 3.1 - 3.4 hold. For any ̂ ∈ argmin
∈Θ∩Θ

 ()  it holds that

d

³
̂ Θ ∩Θ

´
= (min(

−14 
−12)) = (

− 1
2+


4 1− ) (3.13)

A close examination of the proof of Theorem 3.2 suggests that we can first show that d

³
̂ Θ ∩Θ

´
=

(
−14) under Assumptions 2.1, 2.2, and 3.1 - 3.3. Such a rate can be improved to (

− 1
2+


4 1− ) by

using the link between d and dk·k2 through the sieve measure of ill-posedness and some iterative argu-

ments. By Assumptions 3.3 - 3.4 and Lemma A.6 in Appendix A, we can show that dk·k2
³
̂ Θ ∩Θ

´
=

(
2−
 −

1
2+


4 ) = (

−14) which will be used in the proof of the next main result.
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Theorem 3.3 (Asymptotic distribution under H0) Let Assumption 2.1, 2.2, and 3.1 - 3.4 hold. Under

the null hypothesis H0 : Θ ∩Θ 6= ∅, we have

̂
L−→ inf

∈Θ∩Θ

−X
=1

[B () +C ()]

Theorem 3.3 studies the asymptotic distribution of ̂ under the null hypothesis. Apparently, ̂ is not

asymptotically pivotal and we will provide a bootstrap method in the next subsection to obtain its bootstrap

-value for the purpose of inference.

Theorem 3.4 (Asymptotic behavior under H1) Let Assumption 2.1, 2.2, and 3.1 - 3.4 hold. Under the

alternative hypothesis H1 : Θ ∩Θ = ∅ we have

−1̂
−→ min

∈Θ∩Θ

−X
=1

MDD [ ( ) |]2  0

Theorem 3.4 studies the asymptotic behavior of ̂ under the alternative. It indicates that ̂ diverges

to infinity in probability at rate− which gives the power of the MDD-based test.

3.4 A multiplier bootstrap

As shown by Theorem 3.3, the asymptotic distribution under the null hypothesis is nonstandard and unfa-

miliar. Here we propose a bootstrap procedure to obtain the bootstrap p-values. To ensure the consistency

of the bootstrap procedure, we need to find appropriate ways to: (i) mimic the limiting law of ̂ that is

associated with a Gaussian chaos process C () = (C1 ()  C− ())0 on ∞ (Θ) under the null, and (ii)

ensure the bootstrap statistic is well behaved or divergent to infinity at a slower rate than ̂ under the

global alternative.

Let {}=1 be an i.i.d. sequence that has mean zero and variance 1 and that is independent of the
sample {( )}=1  Two popular choices of distributions for {}=1 are given by the standard normal
distribution ( (0 1)) and the two-point distribution:

 =

⎧⎪⎨⎪⎩−
¡√
5− 1¢ 2 with prob.

¡√
5 + 1

¢

¡
2
√
5
¢

¡√
5 + 1

¢
2 with prob.

¡√
5− 1¢  ¡2√5¢  (3.14)

Let ∗ () ≡  ( g ())  Motivated by the idea of multiplier bootstrap that is widely used for

statistic tests involved with empirical processes or non-degenerate  -processes, we consider the following

process

∗ () ≡
−X
=1

∗ ()  (3.15)

where

∗ () ≡ −
1



X
1≤6=≤

∗ ()
∗
 () +

2



X
1≤6=≤

∗ ()
1



X
=1

∗ ()  (3.16)

Let  ∗ and E∗ denote respectively the probability law and expectation associated with (  ) in

the bootstrap world. We make two remarks on the construction of ∗ ()  First, note that we perturb
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 ( g ()) through the multiplication by the random variable  that ensures E∗ [∗ ()] = 0 This

ensures that the dominant random component in the process {∗ ()} is given by a degenerate second order
 -process that converges to a Gaussian chaos process. More importantly, we can show that the limiting law

of {∗ ()} coincides with that of { ()} on Θ  Second, {∗ ()} is also well behaved for  ∈ Θ\Θ
(i.e., it is not divergent on Θ\Θ), and if we were to define the bootstrap statistic as min∈Θ∩Θ ∗ () 

there is no way to ensure that the minimum is achieved at some value in Θ ∩Θ asymptotically. In order to
obtain the same limiting law for the bootstrap test statistic as ̂ under the null, we must ensure that the

minimum is achieved in the bootstrap world for some value of  in Θ ∩Θ when the null hypothesis holds
true. Fortunately, this can be achieved be adding a suitable penalty term to the bootstrap minimization

objective function, yielding the following bootstrap test statistic:

̂∗ = min
∈Θ∩Θ

∙
∗ () + 

 ()



¸


where  () ≡ 1

 () is a penalty term that ensures the minimum is achieved asymptotically for  ∈

Θ ∩ Θ under the null, and  is a tuning parameter that diverges to infinity at a suitable rate (see

Assumption 3.5 below). As a result, ̂∗ shares the same limiting distribution as ̂ under the null. This

ensures the first goal mentioned above.

To ensure the good power properties of the bootstrap test, we require that ̂∗ be well behaved under

the alternative. When  diverges to infinity at a rate slower than  log (log ())  we will show that

−1 ̂∗
−→ min∈Θ∩Θ

P−
=1 E

h
{MDD [ ( ) |]}2

i
under H1 : Θ ∩Θ = ∅ That is, ̂∗ diverges

to infinity at rate   which is slower than the rate  at which ̂ diverges to infinity under the alternative.

This implies that ̂ À ̂∗ with probability approaching one (w.p.a.1) under the alternative, ensuring the

second aforementioned goal.

To proceed, we add the following assumption on {}=1 and the tuning parameter  

Assumption 3.5 (i) {}=1 is i.i.d. with mean zero and variance one, and is independent of {( )}=1 
(ii) As  →∞  →∞ and  =  ( log (log ())).

The following theorem states the asymptotic properties of ̂∗ when the null hypothesis holds true or is

violated.

Theorem 3.5 (Consistency of the multiplier bootstrap) Let Assumption 2.1, 2.2, and 3.1 - 3.5 hold.

If H0 : Θ ∩Θ 6= ∅ holds true, then

̂∗
L−→ inf

∈Θ∩Θ

−X
=1

[B () +C ()] ;

And if H1 : Θ ∩Θ = ∅ holds true, then

−1 ̂∗
−→ min

∈Θ∩Θ

−X
=1

MDD [ ( ) |]2 

Remark. Theorem 3.5 shows that, with a properly chosen sequence of {}, ̂∗ converges weakly to the
same asymptotic distribution as the original test statistic ̂ does under the null hypothesis. This ensures
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the asymptotic level of the multiplier-bootstrap-based test. Theorem 3.5 also shows that, under any fixed

alternative, ̂∗ diverges to infinity at rate-  which is slower than rate- at which ̂ diverges to infinity.
5

Therefore, the proposed bootstrap procedure has asymptotic power one against any fixed alternative.

An essential step in the proof of Theorem 3.5 is the study of the unconditional central limit theorem

(CLT) of ∗ (), which is analogous to the unconditional multiplier CLT for empirical processes studied in

van der Vaart and Wellner (1996, pp.177-181) and Kororok (2008, pp.181-183). It extends the unconditional

multiplier CLT for degenerate second order  -statistics in Leucht and Neumann (2013) to degenerate second

order  -processes. A close examination of the proof suggests that ̂∗ is asymptotically independent of ̂

under the null and different ̂∗ ’s based on different independent sequences {}=1 are also asymptotically
independent of each other. This suggests that in practice, we can draw {}=1  times independently from

suitable distributions to construct  bootstrap test statistics
n
̂
∗()


o
=1

 Then we can calculate the bootstrap

p-value for our test statistic ̂ as 
∗ = 1



P
=1 1

n
̂ ≤ ̂

∗()


o
with 1 {·} being the usual indicator function,

and reject the null hypothesis when ∗ is smaller than the prescribed level of significance.

4 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to evaluate the finite sample performance of our proposed

inference method.

4.1 Design 1

First, we consider a data generating process (DGP) similar to the one used by Santos (2012) in his Monte

Carlo study, with an added IFE term. We set  = 2 and  = 1. For each period  = 1 2, we generate an

i.i.d. sample by ⎛⎜⎜⎝
¨

¨

¨

⎞⎟⎟⎠ ∼ N
⎛⎜⎜⎝0

⎡⎢⎢⎣
10 05 03

05 10 00

03 00 05

⎤⎥⎥⎦
⎞⎟⎟⎠ 

Then we use the latent variables
¡
¨  

¨
  

¨


¢
to generate (  ) as follows:

 = 2
£
Ψ
¡
¨3

¢− 05¤   = 2 £Ψ ¡¨3¢− 05¤  and  = ¨

where Ψ (·) is the CDF of the standard normal distribution. Finally, the dependent variable  is generated
as

 = 2 cos ()− 2 +  + 

with  0 =
³
1 2

´
=
³
01 −10

´
and  ∼ i.i.d. N(0 05). Here we generate {} independently of all

other variables.

5Recall that if 1 : Θ ∩Θ = ∅ holds true, then min∈Θ∩Θ
−

=1 MDD[ ( ) |]2  0, which has already been

stated in Theorem 3.4.
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Table 1: Size performance for Desgin 1

 = 250  = 500

 = 5  = 15  = 5  = 15

  2-pt Norm 2-pt Norm 2-pt Norm 2-pt Norm

010 0 0.172 0.168 0.196 0.184 0.224 0.216 0.236 0.252

010 14 0.118 0.122 0.146 0.148 0.132 0.114 0.164 0.162

010 13 0.092 0.100 0.126 0.130 0.096 0.102 0.132 0.140

010 12 0.064 0.060 0.082 0.092 0.046 0.044 0.068 0.064

005 0 0.090 0.086 0.134 0.128 0.106 0.106 0.132 0.144

005 14 0.072 0.070 0.098 0.092 0.058 0.062 0.096 0.098

005 13 0.058 0.062 0.088 0.086 0.044 0.046 0.078 0.060

005 12 0.038 0.040 0.060 0.062 0.018 0.018 0.038 0.032

001 0 0.028 0.026 0.060 0.042 0.014 0.016 0.034 0.036

001 14 0.024 0.020 0.046 0.050 0.010 0.012 0.030 0.028

001 13 0.022 0.020 0.038 0.048 0.002 0.010 0.020 0.024

001 12 0.012 0.008 0.030 0.026 0.000 0.000 0.018 0.014

Note:  is the nominal size;  is the norm upper bound; ‘2-pt’ and ‘Norm’ refer to two-point and

standard normal distributions, respectively.

We primarily focus on studying the effect of the penalty weight  and the norm constraint  on the

empirical size/level of the test. For this purpose, we consider the family of null hypotheses

H0 : Θ ∩Θ() 6= ∅ Θ() ≡ { : 0 (0) = }  (4.1)

Under the DGP specified above, the model is nonparametrically identified with a location normalizing con-

dition  (0) = 0. And the null hypothesis in (4.1) is true only at  = 0, and is false otherwise. We set  = 3,

which satisfies the requirement  ≥  + 2 of Assumption 2.1(i). The sieve was chosen to be B-spline of

order 3 with knots {−1−1−1 0 1 1 1}, which implies  = 4. We conduct 200 bootstrap evaluations to

calculate the bootstrap -values. The Monte Carlo study consists of 500 replications.

In Table 1, we report the simulated size under Design 1 for testing the null hypothesis in (4.1) with

 = 0, as a function of the targeted size , norm constraint , penalty weight  , and sample size  , for

two different disturbance distributions used in the multiplier bootstrap procedure (the two-point distribution

specified by (3.14) and the standard normal distribution). As mentioned above, the null hypothesis in (4.1) is

true at  = 0 under Design 1. From Table 1 we have the following observations: (i) The choice  = 0 (i.e.,

no penalty in the bootstraps) leads to severe size distortions, as expected from our theory, and is considered

to illustrate the extreme case of selecting too small a penalty weight; (ii) The size is not sensitive to either

the choice of disturbance distribution or the choice of ; (iii) The size is somewhat sensitive to the choice of

 . Overall, choosing  = 13 gives good size control under the current design.

In Table 2, we report the simulated probability of rejecting the null hypothesis in (4.1) at  = ±13, ±19,
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and ±31, under a nominal size of 005 and Design 1. Since the null hypothesis in (4.1) is false at any of
these  values, Table 2 means to assess the finite sample power performance against fixed alternatives. Note

that the further  is away from zero, the further the hypothesis in (4.1) deviates from a true one. From

Table 2 we have the following observations: (i) Overall, the rejection probabilities are noticeably larger than

the nominal size 0.05, and they keep getting larger as  moves away from zero. This indicates good power

performance; (ii) For almost all given values of  and given choices of  , , and disturbance distributions

used in bootstraps, the rejection probabilities generally increase as we increase the sample size from  = 250

to  = 500;6 (iii) The powers are not sensitive to the choice of disturbance distribution; (iv) The powers are

somewhat sensitive to the choice of  and . With a smaller  and a smaller  , we get higher rejection

probabilities. Nevertheless, the overall results indicates good power performance, as noted in (i).

4.2 Design 2

As a robustness check, we also conduct Monte Carlo simulations under a DGP that is different from Design

1. Now we allow the IFEs to be correlated with the covariate . Specifically, now we generate  as

 = 2
£
Ψ
¡
(¨ + 0)3

¢− 05¤ while keeping everything else unchanged from the previous DGP. We still

consider the null hypotheses specified in (4.1). Under the current DGP, the model is nonparametrically

identified. And the null in (4.1) is true only at  = 0, and is false otherwise. Like in Design 1, we conduct 200

bootstrap evaluations to calculate the bootstrap -values. The Monte Carlo study consists of 500 replications.

Under Design 2, we report simulated probabilities of rejecting the null at  = 0 in Table 3. And we report

simulated rejection probabilities at  = ±13, ±19, and ±31, under a nominal size of 005, in Table 4. From
these results, we obtain observations very similar to those obtained from Tables 1 and 2.

4.3 Design 3

Now we focus on testing for linearity. We test the null hypothesis

H0 : Θ ∩Θ 6= ∅ Θ ≡
©
 ∈ Θ :  () = +  for some ( ) ∈ R2ª  (4.2)

And we adopt a series of DGPs indexed by  with  = 3 and  = 1, as follows:

 =  + 2 +  + 

 = 0250 + 05 + 05 + 

with ⎛⎜⎜⎝






⎞⎟⎟⎠ ∼ N
⎛⎜⎜⎝0

⎡⎢⎢⎣
10 00 00

00 10 00

00 00 05

⎤⎥⎥⎦
⎞⎟⎟⎠ 

6There are only few exceptions found in Table 2, where the rejection probabilities do not increase as we increase the

sample size from  = 250 to  = 500. They all happen when setting  = 15, with

 = −13  = 14 Two-pt


,

 = −13  = 13 Normal

,


 = −13  = 14 Normal


,


 = −13  = 12 Normal


, and

 = −19  = 12 Two-pt

, respectively. For the former two, the rejection probabilities decrease slightly. For the

latter three, the rejection probabilities stay the same.
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Table 2: Power performance for Desgin 1 (nominal size: 005)

 = 250  = 500

 = 5  = 15  = 5  = 15

  2-pt Norm 2-pt Norm 2-pt Norm 2-pt Norm

13 14 0.250 0.244 0.154 0.140 0.444 0.442 0.182 0.178

13 13 0.230 0.234 0.138 0.140 0.410 0.392 0.142 0.138

13 12 0.150 0.150 0.080 0.088 0.262 0.264 0.074 0.074

−13 14 0.194 0.198 0.098 0.090 0.314 0.330 0.082 0.090

−13 13 0.174 0.174 0.068 0.072 0.278 0.260 0.074 0.068

−13 12 0.106 0.114 0.056 0.058 0.182 0.182 0.060 0.058

19 14 0.534 0.536 0.240 0.242 0.826 0.820 0.338 0.340

19 13 0.498 0.488 0.224 0.210 0.786 0.782 0.284 0.310

19 12 0.390 0.386 0.146 0.146 0.670 0.646 0.150 0.154

−19 14 0.360 0.370 0.140 0.142 0.650 0.644 0.182 0.166

−19 13 0.346 0.350 0.118 0.128 0.602 0.610 0.152 0.150

−19 12 0.258 0.260 0.088 0.082 0.490 0.492 0.088 0.086

31 14 0.960 0.952 0.714 0.714 0.998 0.998 0.934 0.922

31 13 0.942 0.936 0.680 0.676 0.998 0.998 0.912 0.922

31 12 0.898 0.908 0.552 0.522 0.994 0.998 0.818 0.820

−31 14 0.796 0.792 0.438 0.432 0.972 0.974 0.746 0.740

−31 13 0.776 0.768 0.416 0.418 0.968 0.964 0.708 0.698

−31 12 0.680 0.662 0.352 0.348 0.948 0.942 0.606 0.602

Note:  is the norm upper bound; ‘2-pt’ and ‘Norm’ refer to two-point and standard normal distributions, respectively.
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Table 3: Size performance for Desgin 2

 = 250  = 500

 = 5  = 15  = 5  = 15

  2-pt Norm 2-pt Norm 2-pt Norm 2-pt Norm

010 0 0.162 0.156 0.160 0.184 0.224 0.212 0.210 0.216

010 14 0.090 0.090 0.126 0.118 0.120 0.126 0.148 0.152

010 13 0.060 0.060 0.100 0.102 0.098 0.094 0.134 0.128

010 12 0.032 0.038 0.052 0.048 0.044 0.054 0.082 0.008

005 0 0.068 0.066 0.094 0.098 0.104 0.102 0.132 0.140

005 14 0.038 0.038 0.058 0.056 0.052 0.058 0.108 0.102

005 13 0.036 0.034 0.050 0.048 0.046 0.044 0.086 0.086

005 12 0.018 0.016 0.024 0.024 0.012 0.018 0.046 0.048

001 0 0.010 0.016 0.018 0.024 0.014 0.018 0.046 0.046

001 14 0.012 0.014 0.014 0.018 0.004 0.006 0.034 0.040

001 13 0.010 0.012 0.014 0.012 0.004 0.004 0.026 0.026

001 12 0.004 0.008 0.010 0.008 0.002 0.002 0.016 0.018

Note:  is the nominal size;  is the norm upper bound; ‘2-pt’ and ‘Norm’ refer to two-point and

standard normal distributions, respectively.
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Table 4: Power performance for Desgin 2 (nominal size: 005)

 = 250  = 500

 = 5  = 15  = 5  = 15

  2-pt Norm 2-pt Norm 2-pt Norm 2-pt Norm

13 14 0.260 0.262 0.158 0.140 0.478 0.482 0.170 0.188

13 13 0.230 0.230 0.114 0.130 0.422 0.434 0.150 0.146

13 12 0.152 0.152 0.050 0.062 0.286 0.280 0.080 0.074

−13 14 0.162 0.160 0.058 0.062 0.274 0.258 0.084 0.076

−13 13 0.132 0.128 0.056 0.058 0.238 0.228 0.066 0.068

−13 12 0.076 0.074 0.052 0.054 0.154 0.156 0.052 0.052

19 14 0.550 0.552 0.252 0.258 0.874 0.880 0.368 0.364

19 13 0.510 0.514 0.226 0.232 0.850 0.848 0.294 0.316

19 12 0.406 0.418 0.138 0.142 0.742 0.746 0.174 0.186

−19 14 0.330 0.346 0.102 0.106 0.624 0.610 0.146 0.146

−19 13 0.296 0.302 0.086 0.094 0.600 0.578 0.114 0.116

−19 12 0.226 0.202 0.060 0.066 0.458 0.448 0.072 0.066

31 14 0.926 0.932 0.696 0.700 1.000 1.000 0.944 0.950

31 13 0.914 0.916 0.680 0.676 1.000 1.000 0.936 0.930

31 12 0.886 0.884 0.574 0.560 1.000 1.000 0.874 0.880

−31 14 0.764 0.746 0.420 0.426 0.970 0.974 0.712 0.696

−31 13 0.736 0.720 0.404 0.378 0.966 0.972 0.684 0.682

−31 12 0.628 0.626 0.302 0.294 0.936 0.938 0.562 0.562

Note:  is the norm upper bound; ‘2-pt’ and ‘Norm’ refer to two-point and standard normal distributions, respectively.
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Table 5: Size and power performance for Design 3 (nominal size: 005)

   = 250  = 500  = 1000

0 14 0.012 0.026 0.044

0 13 0.010 0.020 0.040

0 12 0.006 0.016 0.028

02 14 0.046 0.156 0.296

02 13 0.038 0.150 0.272

02 12 0.016 0.102 0.188

05 14 0.112 0.410 0.848

05 13 0.106 0.392 0.832

05 12 0.068 0.290 0.788

10 14 0.232 0.570 0.956

10 13 0.204 0.526 0.940

10 12 0.126 0.454 0.908

Note: Rows with  = 0 show size and all other rows show power.

 0 =
³
1 2 3

´
=
³
07 02 −10

´
, and  ∼ i.i.d.N(0 01). Again, we generate {} independently

of all other variables.

For a given , denote the above DGP as DGP(). Under DGP(), the null in (4.2) is true or false,

depending on the value of . The null is true under DGP(0), and is false under DGP() at any given

 6= 0. And  can be viewed as a measure of how far the DGP is away from a linear specification. We do

200 bootstrap evaluations using the two-point distribution and adopt 500 replications. Table 5 reports the

simulated probabilities of rejecting the null in (4.2) under a nominal size of 005 for DGP() with  = 0,

02, 05 and 1, and for  = 250, 500 and 1000. Note that rows with  = 0 show size, while all other rows

show power. From Table 5 we have the following observations: (i)  = 250 seems to be too small for this

design; (ii) As we increase the sample size, the simulated size keeps getting closer to the targeted size of

005. When  = 1000, the simulated size is reasonably close to 005 with  = 14 and 13; (iii) The

rejection probabilities increase noticeably as  deviates away from zero, for all choices of  and all sample

sizes. This indicates good power performance. (iv) Similar to what we observe in the previous two designs,

 = 12 seems to be a bit too large for the penalty weight, which leads to undersizing even at  = 1000

for the current design. Nevertheless,  = 12 still provides good power performance.

5 Empirical Application

In this section, we apply our method to study Engel curves for major nondurable expenditures in China,

using data from the China Family Panel Studies (CFPS) for the period 2010 - 2014. The CFPS is similar to
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the U.K. Family Expenditure Survey (U.K.FES), but is conducted every other year. Specifically, the CFPS

data are collected in 2010, 2012, and 2014, which produces a three-period ( = 3) balanced panel data set

of 6627 households.

According to the panel data from CFPS and its consumption categorization, on average, food (including

dining) expenditures take the largest share of total nondurable expenditures (averaging at 41.54%), which

is followed by medical and health care expenditures (averaging at 12.01%), expenditures on commute and

communication (averaging at 9.99%), and grocery expenditures (averaging at 9.63%). We study the Engel

curves for these four major categories of consumption.

For household  at period , let , , ,  be the share of its total nondurable expenditures

spent on food including dining (FD), medical and health care (MH), commute and communication (CC),

grocery(GY), respectively. Let  be the log of total annual nondurable expenditures, and let  be total

household annual income. The Engel curves are assumed to take the following additive form:

 =  () + 0 +  (5.1)

for  ∈ {1 2 3} and  ∈ {  }. , , and  are unobservable terms, representing the vector of

factors, the vector of factor loadings, and other heterogeneity, respectively. Some observations are dropped

because they have key variables out of reasonable range.7 For studying Engel curves for FD and MH, we also

condition on households who exhibited positive consumption of both categories. These restrictions yield a

three-period panel of 3811 cross-sectional observations for FD and MH (consisting of 1787 urban households

and 2024 rural households). Similarly, for studying Engel curves for CC and GY, we condition on households

who exhibited positive consumption of these two categories both, which yields a three-period panel of 4584

cross-sectional observations for CC and GY (consisting of 2287 urban households and 2297 rural households).

We set the support for  as X = [7 14], which includes all observations for all four categories of

consumption. Since X is compact, we set  = 0 (i.e., no tail control needed). For nonparametric inferences,

we employ B-spline of order 3 on [7 14], with 2 interior knots which are the 333th percentile and the 667th

percentile of the corresponding  sample. And we specify  = 15. Finally, we conduct hypothesis tests with

200 bootstrap repetitions, and with  = 14 and  = 13 as suggested by our Monte Carlo simulations.

5.1 Testing for log-linearity

Since the seminar work of Deaton and Muellbauer (1980), a log-linear specification (i.e., linear in the log of

total nondurable expenditures) has been commonly adopted to parameterize Engel curves in the literature.

The use of log-linear Engel curves to estimate and correct bias in directly measured macroeconomic indicators

is very prevalent in empirical studies. For instance, a popular way to construct an alternative measure of

household income or expenditure relies on the log-linear Engel curves as a key assumption to infer incomes

or expenditures. See Aguiar and Bils (2015), Browning and Crossley (2009), Hurst, Li, and Pugsley (2014),

and Pissarides and Weber (1989), among others. Besides, there are papers focusing on estimating CPI bias

7We drop observations with extremely low total annual expenditures (≤ 2188 CNY, which corresponds to the 001 quantile

of total expenditures distribution) or extremely low total household annual income (≤ 3000 CNY, which equals the poverty line
per capita set by the State Council Leading Group Office of Poverty Alleviation and Development of China in 2015)
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based on the log-linear form of Engel curves; see Hamilton (2001) and Nakamura, Steinsson, and Liu (2016),

among others. On the other hand, there are also papers advocating advantages of building nonparametric

Engel curves over the parametric ones for studies of demand. See, e.g., Blundell, Browning and Crawford

(2003) and Blundell, Chen, and Kristensen (2007).

In our empirical study, we first examine whether the log-linear relationship could adequately describe the

Engel curves for major nondurable expenditures in China. Under a potential lack of point-identification, the

linear specification can be tested through the hypothesis specified in (4.2) that we previously studied in our

Monte Carlo simulations, i.e.,

H0 : Θ ∩Θ 6= ∅ Θ ≡
©
 ∈ Θ :  () = +  for some ( ) ∈ R2ª  (5.2)

To account for potential differences in consumption pattern/habit between urban and rural households, we

conduct tests of the above hypotheses using the whole sample, the urban subsample, and the rural subsample,

respectively. In Table 6, we report the bootstrap p-values of corresponding test statistics for each consumption

category, and for specifying the number of factors as  = 1 or 2. According to Table 6, when setting  = 1

and applying the conventional 5% significance level, we obtain the following testing results: (i) For FD, our

tests reject the null except for the rural subsample; (ii) For MH, interestingly, our tests fail to reject the null

when conditioning on either urban or rural households, yet are able to reject the null for the whole sample

(i.e., without conditioning on urban or rural households); (iii) For both CC and GY, our tests reject the

null regardless of whether we condition on urban households, rural households, or not. We get the same

testing results regardless of whether  = 14 or 13, and the p-values seem to be insensitive to these two

choices of  . In short, these results suggest nonlinearity for some Engel curves and noticeable difference in

consumption pattern/habit on FD and MH between urban and rural households.

Also according to Table 6, when setting  = 2, however, we fail to reject the null of log-linear specification

for the Engel curves for all cases under our investigation. A possible explanation is that the IFE terms

encompass unobserved heterogeneity of more flexible forms under  = 2 than that under  = 1; and

consequently, under  = 2, the log-linear relationship might suffice to adequately describe the Engel curves,

with heterogeneity being more flexibly taken care of by the IFEs. As noted by Santos (2012), failing to

reject the null that there are log-linear Engel curves in the identified set does not necessarily justify adopting

such a parametric specification. If the model is partially identified, then even when log-linear specifications

are indeed in Θ , there is no guarantee that the true model is one of them. Therefore confidence intervals

constructed under the log-linear assumption may asymptotically exclude the true parameter of interest.

5.2 Confidence interval for  (̄)

Next, we examine the robustness of our testing results regarding the log-linear specification by comparing

95% confidence intervals for food Engel curves at the sample average (across both  and  ) ̄ with and

without assuming log-linearity and by setting  = 1 or 2 and  = 13. Define

Θ ≡ { ∈ Θ :  (̄) = }  (5.3)
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Table 6: Bootstrap p-values for testing the log-linear null for the Engel curves

NO. of factors  = 1 NO. of factors  = 2

Cat.  all urban rural all urban rural

FD 14 0.000 0.000 0.915 0.520 0.460 0.930

MH 14 0.010 0.655 0.165 0.260 0.740 0.255

CC 14 0.000 0.000 0.000 0.060 0.415 0.185

GY 14 0.000 0.010 0.010 0.790 0.860 0.810

FD 13 0.005 0.000 0.865 0.635 0.495 0.960

MH 13 0.005 0.745 0.145 0.240 0.795 0.400

CC 13 0.000 0.000 0.000 0.075 0.460 0.230

GY 13 0.000 0.030 0.010 0.825 0.875 0.790

Note: FD, MH, CC and GY abbreviate food, medical and heath care, commute

and communication, and grocery, respectively.

We obtain the confidence intervals for  (̄) under the log-linear specification by inverting tests of a series of

null hypotheses, indexed by , defined as follows:

H0 : Θ ∩
¡
Θ ∩Θ

¢ 6= ∅ (5.4)

where Θ is defined in (5.2). We also obtain the nonparametric confidence intervals  (̄) by inverting tests

of the following null hypotheses:

H0 : Θ ∩Θ 6= ∅ (5.5)

where Θ is defined by (5.3). For comparison purpose, we also construct confidence intervals using the

method developed by Santos (2012), as well as standard IV confidence intervals. To make Santos’ (2012)

method applicable here, we pool the panel into a large cross-section data set, ignoring any potential fixed

effects (which effectively turns into a situation with  = 1 and  = 0). Standard IV confidence intervals

are constructed based on the pooled data set, too. To make a direct comparison between our method and

Santos’ (2012), we also construct confidence intervals based on the pooled data set using our method. All

these confidence intervals are reported in Table 7. Here we mainly focus on results from the urban subsample

for a detailed discussion. According to Table 7, for food consumption by urban households, while the log-

linear confidence interval based on Santos (2012) is somewhat larger than the standard IV one, we end up

with an empty set constructing log-linear confidence interval based on the pooled data set using our method.

Moreover, based on the original panel data set, when setting   2, we obtain empty confidence intervals

even under the nonparametric specification. Conducting further tests (to be discussed in the next subsection)

on specifications using our method confirms our finding of these empty sets: for food consumption by urban

households, based on the pooled data set, our test rejects the null of a log-linear specification; based on the

original panel data set, our test reject both the null of a log-linear specification and that of a nonparametric
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specification when setting   2.8 In the next subsection we focus on the joint specification of functional

forms and the number of factors.

Interestingly, several confidence intervals are given by [0 1] in Table 7 under  = 2 This suggests that

the inference does not provide any informative/powerful results regarding  (̄) when we allow for both a very

flexible heterogeneity specification ( = 2) and a lack of point-identification. Overall, Table 7, in particular

its first 6 rows, can be interpreted as results from a sensitivity analysis which demonstrates how the degree

of informativeness/powerfulness of our inference procedure varies in response to changes in the strength of

the model assumptions. These results pretty much reflect the law of decreasing credibility as coined by

Manski (2003): Stronger assumptions yield inferences that may be more powerful but less credible, which is

a dilemma faced by empirical researchers as they decide what assumption to maintain. Here, we also take

Manski’s (2003) view that statistical theory cannot resolve the dilemma but can clarify its nature. That said,

Table 7 suggests our inference procedure still provides informative results under the already quite general

setting of  = 1, nonparametric  (·) and partial identification.

5.3 Further investigation on heterogeneity and specification

We further investigate the specification of the functional form of  (·) and the number of factors (), again
focusing on food consumption. Ignoring the index  for different expenditure categories, we can rewrite the

Engel curves in (5.1) as

 =  () +  (5.6)

 () =  () + 0 (5.7)

where  = 1 2 3, the subscripts on  (·) capture potential heterogeneity cross individual and time, while
(5.7) assumes the heterogeneity to take a special form of a common part  (·) augmented with an additive
IFE term. A specification under the (5.6) - (5.7) framework is characterized by the combination of two

specifications: (i) the functional form specification on  (·), and (ii) the specification on the number of factors
. The less restrictive a functional form specification on  (·), the more flexible/general the model is w.r.t.
the common part relationship. The larger the number of factors, the more flexible/general the model is w.r.t.

unobserved heterogeneity. It is easy to see that, within the (5.6) - (5.7) framework, the model achieves its

maximum flexibility/generality when  (·) is treated nonparametrically and  is set to 2.9 We use our method
to test the specification of a variety these combinations.10

The p-values obtained from these tests are reported in Table 8. As suggested by Table 8, even with a

nonparametric specification on  (·), the model does not suffice to adequately describe the Engel curve for
food consumption among urban households in China when setting   2.11 Interestingly, in comparison,

our test fails to reject a log-linear specification on Engel curve among rural households when setting  = 1.

8When  = 0 one can continue to implement our testing procedure in the absence of the nuisance parameter 
9Recall that the maximum number of factors allowed is  − 1 for our method to work.
10 In other words, here we view these tests as jointly testing for the specification on  and the specification on the functional

form of  (·). While for obtaining CI for  (̄), we take a narrow view and interpret corresponding tests as only testing for the

specification on the functional form of  (·), assuming any given specification on  to be true.
11As mentioned earlier in this section, we employ a specific B-spline (i.e., of order 3 on [7 14] with 2 interior knots) to
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Table 7: 95% confidence intervals of  (̄) for the food Engel curves

All Urban Rural

 = 2, nonparametric [0000 1000] [0000 1000] [0000 1000]

 = 2, log-linear [0000 1000] [0110 0890] [0000 1000]

 = 1, nonparametric Empty Empty [0308 0633]

 = 1, log-linear Empty Empty [0390 0585]

 = 0, nonparametric Empty Empty Empty

 = 0, log-linear Empty Empty Empty

Pooled, nonparametric [0325 0530] [0387 0550] [0258 0511]

Pooled, log-linear [0406 0412] Empty [0400 0410]

Pooled, nonpara., Santos [0119 0810] [0252 0712] [0000 0791]

Pooled, log-linear, Santos [0378 0440] [0366 0533] [0377 0423]

Pooled, standard IV [0411 0418] [0419 0429] [0401 0411]

Note: Given , a log-linear CI for  (̄) is empty if the null 0 : Θ ∩Θ 6= ∅ is rejected at 5% level;

Similarly, a nonparametric CI for  (̄) is emply if the null 0 : Θ ∩Θ 6= ∅ is rejected at 5% level.

[Note that our test still rejects a nonparametric specification for the rural population when setting  = 0.] In

contrast, Banks, Blundell, and Lewbel (1997) pool a panel data set into a cross-sectional one and their study

suggests that a log-quadratic specification suffices to adequately describe most Engel curves. Admittedly,

such a comparison is only indirect because Banks, Blundell, and Lewbel (1997) use a different data set, one

obtained from the U.K.FES, for their study. Our findings suggest: (i) There is a great degree of heterogeneity

on food consumption pattern among urban households in China; (ii) There is a lesser degree of heterogeneity

on food consumption pattern among rural households, compared with that among urban households in China;

(iii) Even a nonparametric specification on  (·), as general as it is, might still be insufficient to compensate
for an inadequate handling of heterogeneity to make the whole model a correctly specified one; (iv) When

a panel data set is available, using methods that fully extract information from the panel structure, such as

ours, could potentially provide more informative results than those obtained based on cross-sectional data

sets, or based on panel data sets but treated as pooled cross-sectional ones.

approximate  (·) for corresponding tests where  (·) is supposed to be treated nonparametrically. This practice shares the same
spirit with many existing nonparametric testing procedures. In an utterly strict sense, what is really tested here is where the

specific cubic B-spline with 2 interior knots is adequate to describe the Engel curve for the given finite sample.
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Table 8: P-values for testing joint specification on  (·) and 

All Urban Rural

 = 2, nonparametric 0.750 0.960 0.975

 = 2, log-linear 0.635 0.495 0.960

 = 1, nonparametric 0.015 0.005 0.595

 = 1, log-linear 0.005 0.000 0.865

 = 0, nonparametric 0.000 0.000 0.000

 = 0, log-linear 0.000 0.000 0.000

Pooled, nonparametric 0.870 0.990 0.905

Pooled, log-linear 0.285 0.000 0.390

Pooled, nonpara., Santos 0.760 0.925 0.220

Pooled, log-linear, Santos 0.065 0.835 0.195

6 Conclusion

In this paper we propose a statistical inference procedure for partially identified nonparametric panel data

models with endogeneity and IFEs. Even though the original identified set is specified through a set of

conditional moment restrictions under the weak exogeneity assumption, we are able to translate it into

an equivalent set of unconditional moment restrictions by using the novel MDD measure for the distance

between a conditional mean object and zero. We construct the test statistic based on such a measure which

is associated with a second order  -process in the limit that is degenerate under the null and non-degenerate

under the alternative. We derive the limiting distribution of the resultant test statistic under the null and

show that it is divergent at rate- under the global alternative. To obtain the critical values for our test,

we also propose a version of multiplier bootstrap and establish its asymptotic validity. Simulations show

that our test behaves well in finite samples. We apply our method to study Engel curves for several major

nondurable expenditures in China by using a panel dataset from China Family Panel Studies (CFPS).

The paper can be extended in various directions. First, our panel data model is of nonparametric nature

in the presence of IFEs and we have a single nonparametric object of interest. It is also interesting to

consider more general nonparametric panel data models with more than one nonparametric project (e.g.,

additive models) or semiparametric panel data models with both nonparametric and parametric components

that are of interest. Second, it remains unclear how to determine the number of factors in our framework.

Difficulty arises because one cannot apply existing methods (e.g., Bai and Ng (2002), Onatski (2010), Ahn

and Horenstein (2013), Su, Miao and Jin (2019)) that are developed under the large  and large  setup to

our framework with large  and fixed  Further complication is due to the partial identification nature of

nonparametric panel. Third, it is possible to extend the current theoretical framework to conditional moment

inequality models through the introduction of some slackness parameter. This will greatly broadens the scope

of the current paper. We leave the extensions for future research.
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APPENDIX

The appendix contains the proofs of the main results in the paper. In proving these results, we make use

of several lemmas whose proofs can be found in the online supplement.

A Proofs of the main results

Let MDD(| ) =
h
MDD(| )2

i12
 To prove the main results, we make use of the following lemmas.

Lemma A.1 Let  be a real random vector s.t. E ||  ∞. For any real-valued random variables 1

and 2, if MDD(1|)2 = 0 a.s., then MDD(2 −1|)2 = MDD(2|)2 and E[(2 −1) (
†
2 −


†
1 ) ×

¯̄
 − †

¯̄
] = E

h
2

†
2

¯̄
 − †

¯̄i
 where 

†
1 

†
2  and † are independent copies of 1 2 and 

respectively.

Lemma A.2 Let  be a real random vector s.t. E || ∞. Let W be a set of real-valued random variables

with uniformly bounded second moment, i.e., sup
∈W

E
¡
 2

¢
 ∞. Then there exists a finite constant , s.t.

for any 12 ∈W, it holds that¯̄̄
MDD(1|)2 −MDD(2|)2

¯̄̄
≤ MDD(1 −2|) ≤ 2 [MDD(1|) +MDD(2|)] 

Lemma A.3 The parameter space Θ is compact under the norm k·k as defined by (2.9). Consequently,
there exists a constant   ∞ s.t. for all  ∈ G, sup∈X

¯̄
()

¯̄
≤  for any vector of nonnegative

integers  with hi ≤ 
2 . In particular, for all  ∈ G, sup∈X |()| ≤ 

Lemma A.4 Let Assumption 2.1 and 3.1(i) hold. Define Q () ≡ P−
=1 MDD [ ( ) |]2  Then

Q (·) is Lipschitz continuous w.r.t. k·k2 in Θ.

Lemma A.5 Consider a generic econometric model  () = 0, the identified set of which is characterized

by Θ ≡ { ∈ Θ :  () = 0 }  Suppose the following conditions hold: (i)  (·) ≥ 0 and Θ is compact

under (pseudo-)metric d (· ·); (ii) Θ ⊆ Θ are closed and s.t. ∃ Π for each  ∈ Θ s.t. d (Π ) =  (1)

and  ≡ sup0∈Θ d
¡
Π

0 0
¢
= (1); (iii) sup

∈Θ
| ()− ()| =  ( ) for some  =  (1); (iv) ∃

positive constants 1 and 2 s.t. 1 d (Θ)
2 ≤  () ≤ 2 d (Θ)

2
. Then for ̂ ∈ argmin

∈Θ
 ()  it holds

that d(̂ Θ) = 

³
max{  12 }

´
.

Lemma A.6 (i) Let Assumptions 2.1, 2.2, 3.1, 3.2, and 3.3(i) hold. For any ̂ ∈ argmin
∈Θ∩Θ

 (), it holds

that dk·k2
³
̂ Θ ∩Θ

´
=  (1); (ii) If, in addition, Assumption 3.3(ii), (iii), and 3.4 hold, then it holds

that dk·k2
³
̂ Θ ∩Θ

´
= 

³
 d

³
̂ Θ ∩Θ

´
+ 

´
.

Proof of Lemma 2.1. Recall from (2.10) that Θ = { =
¡
0 

¢0 ∈ Φ × G : E [ ( g()) |] = 0
a.s. for  = 1   −} Let

Θ̃ ≡

⎧⎪⎪⎨⎪⎪⎩ = (0 )0 ∈ Θ :
For some -dimensional random vector  it holds

E
£
 − ()− 0|

¤
= 0 a.s. for  = 1   −

E
£
 − ()− 0

¡−−(−)¢ |¤ = 0 a.s. for  =  −+ 1  

⎫⎪⎪⎬⎪⎪⎭ (A.1)
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where  is the ’th column of the × identity matrix. We need to show that Θ = Θ̃ .

For any given ̃ = (̃
0
 ̃)0 ∈ Θ̃ , it holds that⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E
h
1 − ̃(1)− 0̃1 |1

i
...

E
h
− − ̃(−)− 0̃− |−

i
E
£
−+1 − ̃(−+1)− 0 (−1) |−+1

¤
...

E
£
 − ̃( )− 0 (−) |

¤

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 a.s. (A.2)

By (2.6), multiplying both sides of (A.2) by the ( −)×  matrix (̃)0 ≡ (− Φ̃) yields⎛⎜⎜⎜⎝
E
h
1

³
 ̃1 g̃()

´
|1

i
...

E
h
−

³
 ̃− g̃()

´
|−

i
⎞⎟⎟⎟⎠ = 0 a.s.

which clearly implies that ̃ ∈ Θ . Since this holds for any ̃ ∈ Θ̃ , it holds that Θ̃ ⊆ Θ 
Next, for any given 0 =

¡
00 0

¢0 ∈ Θ , it holds that⎛⎜⎜⎜⎝
E
£
1

¡
 

0
1g

0()
¢ |1¤

...

E
£
−

¡
 

0
−g

0()
¢ |−¤

⎞⎟⎟⎟⎠ = 0 a.s.

or, equivalently,⎛⎜⎜⎜⎝
E
n
1 − 0 (1) +

P
=1 

0
1

£
−+ − 0 (−+)

¤ |1o
...

E
n
− − 0 (−) +

P
=1 

0
−

£
−+ − 0 (−+)

¤ |1o
⎞⎟⎟⎟⎠ = 0 a.s. (A.3)

Let 0 ≡ (−+1 − 0 (−+1)    − 0 ( ))
0 Then by (A.3) and the fact that 00 (−) =

−+ − 0 (−+), it holds that⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E
£
1 − 0(1)− 00 

0
1 |1

¤
...

E
£
− − 0(−)− 00 

0
− |−

¤
E
£
−+1 − 0(−+1)− 00 (−1) |−+1

¤
...

E
£
 − 0( )− 00 (−) |

¤

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 a.s. (A.4)

which clearly implies that 0 ∈ Θ̃ . Since it holds for any 0 ∈ Θ , it holds that Θ ⊆ Θ̃  This completes
the proof of the lemma. ¥

Proof of Lemma 3.1. Note that for any real-valued random variable  and real vector-valued random

variable ,

MDD( |)2 = MDD ( |)2 + [E ( )]
2 E
¯̄
 − †

¯̄
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which follows directly from the definitions of MDD and MDD. By Definition 3.1, we have that for any

1 =
¡
01 1

¢0 ∈ Θ and 2 =
¡
02 2

¢0 ∈ Θ,
d (1 2)

2

=
−X
=1

MDD[ ( 1)− ( 2) |]2

=
−X
=1

MDD [ ( 1)− ( 2) |]2 +
−X
=1

{E [ ( 1)− ( 2)]}2 E
¯̄
 − †

¯̄
(A.5)

The rest of the proof is organized into three parts. In Part I, we show the existence of a constant 1 ∞ s.t.

−X
=1

MDD [ ( 1)− ( 2) |]2 ≤ 1 k1 − 2k22 

In Part II, we show the existence of a constant 2 ∞ s.t.

−X
=1

{E [ ( 1)− ( 2)]}2 E
¯̄
 − †

¯̄
≤ 2 k1 − 2k22 

And in Part III, we combine the results from Parts I and II to complete the proof.

Part I. The compactness of Φ according to Assumption 2.1(i) implies that Φ ≡ sup∈Φ || ∞ By

Lemma A.3, for all  ∈ G, it holds that sup∈X |()| ≤   ∞ Note that  ( ) = [ −  ()] +P
=1  [−+ −  (−+)]  Then for any 1 =

¡
01 1

¢0 ∈ Θ and 2 =
¡
02 2

¢0 ∈ Θ, we have
 ( 1)− ( 2) = − [1 ()− 2 ()] +

X
=1

(1 − 2)[−+ − 1 (−+)]

−
X
=1

2 [1 (−+)− 2 (−+)]  (A.6)

Then by the triangle inequality, we have

| ( 1)− ( 2)|

≤ |1 ()− 2 ()|+
X
=1

¯̄
1 − 2

¯̄
|−+ − 1 (−+)|+

X
=1

¯̄
2

¯̄
|1 (−+)− 2 (−+)|

≤ |1 ()− 2 ()|+ (| |+)
X
=1

¯̄
1 − 2

¯̄
+Φ

X
=1

|1 (−+)− 2 (−+)|

≤ |1 ()− 2 ()|+ (| |+) |1 − 2|+Φ

X
=1

|1 (−+)− 2 (−+)| 

It follows that for  = 1   −,

[ ( 1)− ( 2)]
2

≤ 3

(
[1 ()− 2 ()]

2
+ (| |+)

22 |1 − 2|2 + 2
Φ

X
=1

[1 (−+)− 2 (−+)]
2

)

≤ 1

(
[1 ()− 2 ()]

2 +
X
=1

[1 (−+)− 2 (−+)]
2

)
+ 3(| |+)

22 |1 − 2|2 (A.7)
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where 1 = 3max
©
2
Φ 1

ª
 and the first inequality follows from the Cauchy-Schwarz inequality and

Jensen inequality.

Denote by  () ≡ E [exp (i0)] the characteristic function of . It holds that

|Var (exp (i0))| =
¯̄̄
E
h
exp (i0)2

i
− E [exp (i0)]2

¯̄̄
=
¯̄̄
 (2)− [ ()]2

¯̄̄
≤ | (2)|+ | ()|2 ≤ 2 (A.8)

where the last inequality follows from the fact that | (·)| ≤ 1. Now, by equation (2.4) in Su and Zheng
(2017),

MDD [ ( 1)− ( 2) |]2

=

Z


[Cov ( ( 1)− ( 2)  exp (i
0))]2  () 

≤ Var ( ( 1)− ( 2))

Z


|Var (exp (i0))|  () 

≤ 2E
n
[ ( 1)− ( 2)]

2
oZ


 () 

≤ 2

"
1E

(
[1 ()− 2 ()]

2
+

X
=1

[1 (−+)− 2 (−+)]
2

)
+ 32E[(| |+)

2] |1 − 2|2
#

≤ 2

h
1 (+ 1) k1 − 2k22 +2 |1 − 2|2

i
≤ 

n
k1 − 2k22 + |1 − 2|2

o
=  k1 − 2k22 

where i ≡ √−1,  () ≡ 1
h
 ||(1+)

i
,  ≡ (1+)2Γ

¡
1+
2

¢
, Γ (·) is the complete gamma function:

Γ () ≡ R∞
0

(−1) exp (−)   =
R
  ()  ∞ 2 = 32E[(| |+ )

2] ∞  ∞ is a constant

that depends on the density of  and  = 2max {1 (+ 1)  2} ∞ In the derivation above,

the first inequality follows from Cauchy-Schwarz inequality, the second one holds by Jensen inequality and

(A.8), and the third one holds by (A.7), and the fourth one holds by the boundedness of all density functions,

according to Assumption 3.1(i). Consequently, we have that for any 1 ∈ Θ and 2 ∈ Θ,
−X
=1

MDD [ ( 1)− ( 2) |]2 ≤ 1 k1 − 2k22 (A.9)

where 1 ≡ ( −) ∞

Part II. For any 1 ∈ Θ and 2 ∈ Θ, we have

{E [ ( 1)− ( 2)]}2 E
¯̄
 − †

¯̄
≤ {E [ ( 1)− ( 2)]}2 E

¯̄
 − †

¯̄
≤ E

n
[ ( 1)− ( 2)]

2
o
E
¯̄
 − †

¯̄
≤

"
1E

(
[1 ()− 2 ()]

2 +
X
=1

[1 (−+)− 2 (−+)]
2

)
+ 32E[(| |+)

2] |1 − 2|2
#

×E
¯̄
 − †

¯̄
≤

h
1 (+ 1) k1 − 2k22 +2 |1 − 2|2

i
E
¯̄
 − †

¯̄
≤ ̃ k1 − 2k22 
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where ̃ = max {1 (+ 1)  2}E
¯̄
 − †

¯̄
 ∞ the second inequality holds by Jensen inequality,

and the third one follows from (A.7). Consequently, we have that for any 1 ∈ Θ and 2 ∈ Θ,
−X
=1

{E [ ( 1)− ( 2)]}2 E
¯̄
 − †

¯̄
≤ 2 k1 − 2k22  (A.10)

where 2 ≡ ( −) ̃  ∞

Part III. Combining (A.5), (A.9) and (A.10) yields that for any 1 ∈ Θ and 2 ∈ Θ, d (1 2)2 ≤
(1 + 2) k1 − 2k22 = 2 k1 − 2k22  where  ≡

√
1 + 2. This proves the first claim in Lemma 3.1.

The second claim in Lemma 3.1 follows immediately from the second inequality result of Lemma A.2. ¥

To prove Theorem 3.1, we introduce some notations adopted from Arcones and Giné (1993) and de la

Peña and Giné (1999, Chapter 5). Let (S  ) be a probability space and {}=1 be an i.i.d. sequence with
probability law  Let F be a class of measurable real functions on . The th order  -process based on

 and indexed by F is


 () ≡ 

 ( ; ) ≡
( −)!

 !

X
i∈


¡
1   

¢
  ∈ F , (A.11)

where i ≡ (1  )   = {(1  ) :  ∈ N 1 ≤  ≤  and  6=  if  6= } We will repeatedly use
the Hoeffding’s decomposition of a  -statistic. The operator  =  acts on -integrable function

 :  → R as follows

 (1  ) =
¡
1 − 

¢ · · · ¡ − 
¢
− (A.12)

where  is the Dirac measure at the observation  . Note that  is a  -canonical function of  variables.

Then we have the following Hoeffding’s decomposition


 () =

X
=0

⎛⎝ 



⎞⎠
 ( ◦ ) (A.13)

where  is a symmetric version of  : (1  ) = (!)
−1P


¡
1   

¢
with the sum extended

over ! permutations (1  ) of {1 }
Given a pseudometric space (F  )  the -covering number of (F  ) is

N (F  ) ≡ min
(
 : ∃1   ∈ F s.t. sup

∈F
min
≤

 ( ) ≤ 

)


We define N (F) ≡ N (F   ) as the random -covering numbers of (F  ) where  ( ) =
{

 (| − |)}1 where  ≥ 1 Note that  denotes the  distance corresponding to the random measure
that assigns mass

(−)!
 ! to each of the points (1   ) ∈  i ∈   When F is a class of real

symmetric measurable functions on , we define pseudo-distances 2 on F as follows

22 ( ) ≡
¡



¢


³
 ( − )

2
´


33



By the proof of Corollary 5.7 in Arcones and Giné (1993), there exist some positive finite constants  such

that for all   0

N2 ( F) ≤
Q

=0
N

Ã


2 ( + 1)12 2
F  k·k

2(
×−)

!
 (A.14)

where for   0 
 × − denotes the random probability measure


 × − =

( − )!

 !

X
i∈

(1 )
× −

defined on (S) and for  = 0 0 × just means  Here 2 (
 × −) defines the pseudometric

on  :

k − k2
2(

×−) = 
 × − ( − )

2


Note that

N
³
F  k·k

2(0
×)

´
' 2 if  ≤ 2 and equals 1 otherwise (A.15)

Proof of Theorem 3.1. Note that  () = 1 ()+2 ()  where 1 () = − 1


P
1≤6=≤  ()

× () and 2 () =
2


P
1≤6=≤  ()

1


P
=1 ()  Let ̄ () = E [ () |] and

̃ () =  ()− ̄ ()  Then

1 () = − 1


X
1≤6=≤

[̃ () + ̄ ()] [̃ () + ̄ ()]

= − 1


X
1≤6=≤

̃ () ̃ () − 1



X
1≤6=≤

̄ () ̄ () − 2



X
1≤6=≤

̃ () ̄ ()

and

2 () =
2

2

X
1≤6=≤

X
=1

̃ () ̃ () +
2

2

X
1≤6=≤

X
=1

̄ () ̄ ()

+
2

2

X
1≤6=≤

X
=1

[̃̄ () + ̄ () ̃ ()]

Then  () = ̃1 () + ̃2 () + ̃3 ()  where

̃1 () = − 1


X
1≤6=≤

̃ () ̃ () +
2

2

X
1≤6=≤

X
=1

̃ () ̃ ()

̃2 () = − 1


X
1≤6=≤

̄ () ̄ () +
2

2

X
1≤6=≤

X
=1

̄ () ̄ ()

̃3 () = − 2


X
1≤6=≤

̃ () ̄ () +
2

2

X
1≤6=≤

X
=1

[̃̄ () + ̄ () ̃ ()]

We prove parts (i) and (ii) of the theorem in turn.

Part I. Proof of part (i).

34



When  ∈ Θ  ̄ () = 0 for all  = 1   and  = 1  − This implies that ̃2 () = ̃3 () =

0 We are left to study ̃1 ()  For the second term in the definition of ̃1 ()  we have

2



X
1≤6=≤

X
=1

̃ () ̃ ()

=
2

2

X
1≤6=≤

̃ ()
2
 +

2

2

X
1≤6=≤

̃ () ̃ () +
2

2

X
1≤6= 6=≤

̃ () ̃ ()

=
2

2

X
1≤6=≤

̃ ()
2
 +

2

2

X
1≤6=≤

̃ () ̃ () +
( − 1)( − 2)

2
U2

where U2 =
¡

3

¢−1P
1≤≤≤ 

¡
   ; 

¢
and 

¡
   ; 

¢
= 1

3 [̃ () ̃ () + ̃ ()

×̃ () +̃ () ̃ () + ̃ () ̃ () + ̃ () ̃ () + ̃ () ̃ ()] is a

symmetrized version of 0
¡
   ; 

¢ ≡ 2̃ () ̃ () Note that

E [ (1 2 3; )] = 0 E [ (1 2 3; ) |1] = 0 and
E [ (1 2 3; ) |1 2] =

1

3
̃1 () ̃2 () [E3(13) + E3(23)] ≡ (2) (1 2; )

Let 
(3)
 (1 2 3; ) =  (1 2 3; ) − [(2) (1 2; ) + 

(2)
 (1 3; ) + 

(2)
 (2 3; )] By Hoeffding’s

decomposition in (A.13) (see also Lee (1996, p.26) and de la Peña and Giné (1999, p.137)), we have U2 () =

3H2 () +H3 ()  where

H2 () =

µ


2

¶−1 X
1≤≤

(2)

¡
  ; 

¢
and H3 () =

µ


3

¶−1 X
1≤≤≤

(3)

¡
   ; 

¢


Similarly, we can write the first term in the definition of ̃1 () as follows: − 1


P
1≤6=≤ ̃ () ̃ ()

= −1


U1 ()  where U1 () = −
⎛⎝ 

2

⎞⎠−1P
1≤6=≤ ̃ () ̃ () Then we have

̃1 () =
 − 1


U1 () +
( − 1)( − 2)

2
U2 +

2

2

X
1≤6=≤

̃ ()
2


+
2

2

X
1≤6=≤

̃ () ̃ ()

= U () +H3 () +
2

2

X
1≤6=≤

̃ ()
2
 − 3 − 2


U1 ()− 3 − 2


U2

where U () = U1 () + 3H2 () =
¡

2

¢−1P
1≤≤ 

¡
  ; 

¢
and 

¡
  ; 

¢
= ̃ () ̃ ()

×[E() + E()− ]

Let X and Z denote the supports of  and , respectively. Note that (; ) =  ()
0
[ − g ()]

= [ −  ()] +
P

=1  [−+ −  (−+)] and  = (1  )
0 for  = 1   −  Let  =

(0 )
0 Define

F1 ≡ { (· ·; ) : R ×X  → R :  ( ; ) = [ −  ()] +
X
=1

 [−+ −  (−+)]

for some  =
¡
0 

¢0 ∈ Φ × G} (A.16)
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where Φ ≡
©
 ∈ R : kk ≤ 

ª
for some constant  and G ≡ { ∈  (X ) : kk ≤ }  Similarly, let

 = (0 0 0)0 and  = R ×X  ×Z  Define

F
1 ≡ {̃(·; ) :  → R : ̃ (; ) = [ −  ()]− E [( −  ())| = ]

+
X
=1

{[−+ −  (−+)]− E [(−+ −  (−+))| = ]}

for some  =
¡
0 

¢0 ∈ Φ × G} (A.17)

F2 ≡ {(· ·; ) :  ×  → R :  (1 2; ) = ̃ (1; ) ̃ (2; ) ̆12

for some  =
¡
0 

¢0 ∈ Φ × G} (A.18)

and

F3 ≡ {(· · ·; ) :  ×  ×  → R :  (1 2 3; ) = ̃ (1; ) ̃ (2; ) ̆12

+̃ (1; ) ̃ (3; ) ̆13 + ̃ (2; ) ̃ (3; ) ̆23

for some  =
¡
0 

¢0 ∈ Φ × G} (A.19)

where, e.g.,  = (01  
0
)

0
and ̆ = E() + E() −  The compactness of Φ according

to Assumption 2.1(i) implies that Φ ≡ sup∈Φ ||  ∞ By Lemma A.3, for all  ∈ G, it holds that
sup∈X |()| ≤  ∞ Then for any  ∈ Θ and  = 1   −, we have

| ( )| ≤ [||+ | ()|] +
X
=1

¯̄


¯̄
[|−+|+ | (−+)|]

≤ | |+ +Φ [| |+] = (Φ+ 1) [| |+] ≤  [| |+ 1] ≡ 1 ( )  (A.20)

where  = (1   )
0
  = (1   )

0
  denote the th element in  and  is a generic positive

constant that may vary across lines. By (A.6),

| ( 1)− ( 2)| ≤ (| |+) |1 − 2|+ (Φ + 1) k1 − 2k∞
≤ (| |+ 1) {|1 − 2|+ k1 − 2k∞} 

It follows that the class F1 is Lipschitz in Φ × G (w.r.t.) the norm |·|+ k·k∞  Then by Theorem 2.7.11 in

van der Vaart and Wellner (1996), we have

N[] ( k1k  F1 k·k2) ≤ N (2 Φ × G |·|+ k·k∞) ≤ N (4 Φ |·|)N (4 G k·k∞)

≤ 

µ
4



¶
exp

∙µ
4



¶¸
 (A.21)

where the first inequality follows from Theorem 2.7.11 in van der Vaart and Wellner (1996) and the last one

follows from Lemma A.3 in Santos (2012), which indicates that N (G k·k∞) ≤  exp
¡¡
1


¢¢
with  being

defined in (2.8). This also implies that

N[] (2 kk  F
1 k·k2) ≤ 

µ
4



¶2
exp

∙
2

µ
4



¶¸
 (A.22)
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Let 2 (1 2) = (|1|+ 1)(|2|+ 1)(|1|+ |2|+ 1) with  = (
0
 

0
 

0
)
0 ∈  By arguments as used in the

proof of Theorem 6 in Andrews (1994), there is a finite positive constant 0 such that

N[] (20 k2k  F2 k·k) ≤
£
N[] (2 k1k  F2 k·k)

¤2 ≤ 

µ
4



¶4
exp

∙
4

µ
4



¶¸
 (A.23)

We verify the conditions in Theorem 5.6 of Arcones and Giné (1993, AC hereafter). First, by Assumption

3.1(i)-(ii),

E
³
[2 (1 2)]

2
´
≤ 22

n
[(|1|+ 1)(|2|+ 1) |1|]2 + [(|1|+ 1)(|2|+ 1) |2|]2

o
≤ 42E

h
(|1|+ 1)2 |1|2

i
E
£
(|2|+ 1)2

¤ ≤ ∞

This verifies Condition (a) in Theorem 5.6 of AC. Applying (A.14) with  =  = 2 yields

N2 (F2) = N2 ( 22F2) ≤
2Q

=0
N

Ã


2
√
32

F2 k·k2(
×2−)

!


By (A.15),
R 
0
logN

³


2
√
320

F2 k·k2(0
× 2)

´
 ¹ R 

0
log 1


 Note that

Z 

0

logN

Ã


2
√
321

F2 k·k2(1
×1)

!


= 2
√
321

£
1 (

1 22 )
¤12 Z [2

√
321

1
 (

1 2)]12

0

log
³

£
1 (

1̄ 2)
¤12

F2 k·k2(1
×1)

´


¹ £
1 (

1 22 )
¤12 Z [2

√
321

1
 (

1 2
2 )]

12

0

∙
log

µ
4



¶
+

µ
4



¶¸


¹ £
1 (

1 22 )
¤12 Z [2

√
321

1
 (

1 2
2 )]

12

0

−

¹ £
1 (

1 22 )
¤2

1− 

where the first equality follows from the change of variables, the first inequality holds by (A.23), and the second

inequality follows from the fact that the integrand is dominated by the term (4)− in the neighborhood of

0,   1 by Assumption 2.1(iii), and
R 0
0
log (1)  ∞ for any 0 ∞ Similarly, we haveZ 

0

logN

Ã


2
√
322

F2 k·k2(2
)

!


= 2
√
322

£
2 (̄

2)
¤12 Z [2

√
322

2
 (

2)]12

0

logN
³

£
2 (

2)
¤12

F  k·k2(2
)

´


¹ £
2 (

2 22 )
¤12 Z [2

√
322

2
(

2)]12

0

∙
log

µ
4



¶
+

µ
4



¶¸


¹ £
2 (

2
2 )
¤12 Z [2

√
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2
 (

2)]
12

0

− ¹ £2 ( 22 )¤2 1− 
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Then

lim
→0

lim sup
→∞

E
"Z 

0

logN2 (F2) 
#

= lim
→0

lim sup
→∞

E∗
"Z 

0

2X
=0

logN

Ã


2
√
32

F2 k·k2(
× 2−)

!


#

¹ lim
→0

lim sup
→∞

"Z 

0

log
1


+ E

n£
1 (

1 22 )
¤2

+
£
2 (

2
2 )
¤2o

1−
#
= 0

where the last equality follows from the fact that E{£2 ( 22 )¤2} ≤ ©E £2 ( 22 )¤ª2 = {E([2 (1 2)]2}2 
∞ by Jensen inequality and similarly E{£1 ( 1 22 )¤2} ∞ This verifies condition (c) in Theorem 5.6 of

AC. Next, notice that N
³



2
√
32

F2 k·k2(
× 2−)

´
= 1 a.s. for  = 0 1 2 and for sufficiently large 

say,  ≥ 0 by the total boundedness of Φ× G and the law of large numbers for U-statistics. It follows that
for some small   0 and by the above calculations,

E
¯̄̄̄Z ∞
0

logN2 ( 22F2) 
¯̄̄̄1+

¹ E
¯̄̄̄Z 0

0

logN2 ( 22F2) 
¯̄̄̄1+

¹
¯̄̄̄Z 0

0

log
1




¯̄̄̄1+
+ E

n£
1 (

1 22 )
¤(1+)2

+
£
2 (

2
2 )
¤(1+)2o

∞

where E denotes the outer-expectation associated to E the last inequality holds by choosing  sufficiently

small such that (1 + ) 2 ≤ 1 This implies that the sequence ©R∞
0
log2 (F2) 

ª∞
=1

is uniformly

integrable. That is, condition (b) in Theorem 5.6 of AC is verified. Then by Theorem 5.6 of AC, we have

U () =⇒ C () in ∞ (Θ) 

Next, note that H3 () is a third order −canonical −process with the envelope function for the kernel
in the definition of H3 () given by 3 (1 2 3) = {(|1|+ 1)(|2|+ 1)(|1|+ |2|+ 1) + (|1|+ 1)(|3|+
1)(|1|+ |3|+ 1) + (|2|+ 1)(|3|+ 1)(|2|+ |3|+ 1)} Following the analysis of U ()  it is easy to show
that E[3 (1 2 3)

2] ∞ under Assumption 3.1(i)-(ii),

lim
→0

lim sup
→∞

E
"Z 

0

[logN2 (F3)]32 
#
= 0

and the sequence
nR∞

0
[log2 (F3)]32 

o∞
=1

is uniformly integrable. Here we use the fact that

3
2 (1 + ) 2 ≤ 1 for sufficiently small  As a result, 32H3 () converges to a Gaussian chaos process

and sup∈Θ |H3 ()| = 

¡
−12

¢
 Our condition is sufficient to ensure the uniform law of large num-

bers to hold for the  -process with kernel function associated with ̃ ()
2
 As a result, we have

2

2

X
1≤6=≤

̃ ()
2
 = 2E

h
̃1 ()

2
12

i
+ (1) ≡ B () + (1) uniformly in  ∈ Θ

Following the analysis of U ()  we can also show that both U1 () and U2 () converge to Gaussian

chaos processes. Consequently, we have

̃1 () =⇒ B () +C () . (A.24)
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When  ∈ Θ  we also have  () =⇒ B () + C () given the fact that ̃ () = 0 for  = 2 3 in this

case. As a result, we have  () =⇒ B () +C ().

Part II. Proof of part (ii).

When  ∈ Θ  (A.24) continues to hold. By the law of large numbers for  -processes and the definition
of MDD, we have

1


̃2 () = − 1

2

X
1≤6=≤

̄ () ̄ () +
2

3

X
1≤6=≤

X
=1

̄ () ̄ ()

= −E [̄1 () ̄2 ()12] + 2E [̄1 ()12]E [̄2 ()] +  (1)

= MDD [ ( ) |]2 +  (1) uniformly in  ∈ Θ\Θ 

In fact, applying Hoeffding decomposition to 1

̃2 () and arguments as used in Part I, we can strengthen

 (1) to 

¡
−12

¢
in the last claim.

Now, define U3 () = (−2)!
 !

P
1≤6=≤ ̃ () ̄ () and U4 () = (−3)!

!

P
1≤6= 6=≤ [̃̄ ()

+̄ () ̃ ()] It is easy to see that U3 () and U4 () are non-degenerate second and third order

 -processes, respectively. One can easily apply symmetrization and similar calculations as above to verify

the entropy condition in Theorem 4.10 of AC holds to conclude both 12U3 () and 12U4 () converge

to Gaussian processes. This implies that

sup
∈Θ\Θ

1

12

¯̄̄
̃3 ()

¯̄̄

= sup
∈Θ\Θ

¯̄̄̄
¯̄− 2

32

X
1≤6=≤

̃ () ̄ () +
2

52

X
1≤6=≤

X
=1

[̃̄ () + ̄ () ̃ ()]

¯̄̄̄
¯̄

¹ sup
∈Θ\Θ

¯̄̄
12U3 ()

¯̄̄
+ sup

∈Θ\Θ

¯̄̄
12U4 ()

¯̄̄
=  (1) 

Consequently, we have 1

 () =

P−
=1

P3
=1

1

̃ () =

P−
=1 MDD [ ( ) |]2 +  (

−12)

uniformly in  ∈ Θ\Θ  ¥

Proof of Theorem 3.2. In this proof Conditions (i) — (iv) listed in Lemma A.5 are referred to as C(i) —

C(iv), respectively. Let  () ≡ P−
=1 MDD [ ( ) |]2 and  () ≡ 1


 () =

P−
=1

1

 ().

Our goal is to show that, over the restricted parameter space Θ ∩ Θ under d (· ·),  (·) and  (·) as
specified above satisfy C(i) - C(iv) in Lemma A.5.

We first prove that d(̂ Θ) = 

¡
max{  −14}

¢
= 

¡
−14

¢
and then argue that such a rate

can be improved to (
−12) by iterative arguments.

Due to the nonnegativity of MDD,  (·) ≥ 0. By Lemma A.3, Θ is compact under k·k and hence
is compact under d (· ·), which is weaker than k·k. Since Θ is closed due to the continuity of  (·)
under Assumption 2.2, Θ∩Θ is also compact under d (· ·). So C(i) is satisfied. Assumption 3.3(i) and (ii)
guarantee C(ii) to hold with  =  = 

¡
−12

¢
. C(iii) holds according to Theorem 3.1 with  = −12.

Obviously, C(iv) holds with 1 = 2 = 1 by Lemma A.1 and the fact that MDD
£


¡
 0

¢ |¤ = 0 for
any 0 ∈ Θ  Then by Lemma A.5, we have

d

³
̂ Θ

´
= 

³
max

n
  

−14
o´

= 

³
−14

´
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This, in conjunction with Assumption 3.4 and Lemma A.6, implies that dk·k2 (̂ Θ) = ( d(̂ Θ ∩
Θ) + ) = (

−14)

For any   0 there exists a constant   0 such that Pr
³
dk·k2 (̂ Θ) ≤ 

−14
´
≥ 1−  Let

Θ̃ = { : dk·k2 (Θ) ≤ 
−14} Now, we can consider minimization of  () over  ∈ Θ̃  Using

arguments as used in the proof of Theorem 3.1 and the expressions in (A.31)-(A.35) in the proof of Theorem

3.3 below, we can show that

sup
∈Θ̃

| ()− ()| = −12

³


−14
´
= 

³


−34
´

(A.25)

by showing that sup∈Θ̃
¯̄
1



¡
0  − 0

¢− 
¡
0  − 0

¢¯̄
= 

¡


−34¢ for  = 1 2 3 and sup0∈Θ¯̄
1



¡
0
¢¯̄
= 

¡
−1

¢
 The last claim holds by Theorem 3.1(i). Next, we argue that the first claim holds

for  = 1 only as the other two cases can be studied analogously. Note that with ∆ =  − 0

1


1

¡
0  − 0

¢− 1
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0  − 0
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⎧⎨⎩ 1

2
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 [∆] [∆] − E
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†
 [∆]
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3
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X
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 [∆] [∆]− E
©
 [∆]
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E
£
†

 [∆]
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≡ −1 () + 22 () 

where we suppress the dependence of 1 () and 2 () on 0 Let κ
¡
  ;∆

¢
=  [∆]  [∆]

 (∆) = EE [κ
¡
  ;∆

¢
] and κ1 (;∆) = E [κ

¡
  ;∆

¢
]− (∆)  where E denotes expectation w.r.t.

 alone. Let κ̃
¡
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¢
= κ

¡
 ;∆

¢−κ1 (;∆)−κ1 ¡ ;∆¢+  (∆)  By Hoeffding decomposition,

we have

1 () =
2
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1≤≤
{ [∆] [∆] − E [ [∆]  [∆]]}+
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2

 ( − 1)
X
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κ̃
¡
  ;∆

¢
+

¡
−1

¢
 (A.26)

where 

¡
−1

¢
holds uniformly in  (and 0) Noting that the second term in (A.26) is a degenerate second

order  -process, we can readily follow the proof of Theorem 3.1(i) and show that it is 

¡
−1

¢
uniformly

in ∆ = − 0 ∈ Θ− 0 For the first term in (A.26), we can apply the expression of
(0)


[∆] in (A.35)

and entropy calculations as used in the proof of Theorem 3.1(i) to show that

sup
∈Θ̃
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©
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£
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Then sup∈Θ̃ |1 ()| = 

¡


−34¢ Analogously, we can show that sup∈Θ̃ |2 ()| = 

¡


−34¢ 
It follows that sup∈Θ̃

¯̄
1

1

¡
0  − 0

¢− 1
¡
0  − 0

¢¯̄
= 

¡


−34¢ and (A.25) holds. Then we
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can apply Lemma A.5 with  = 
−34 to conclude

d

³
̂ Θ

´
= 

³
max

n
  

12
 −38

o´
= (

12
 −38) (A.27)

Now, given the first iteration result in (A.27), we can focus on Θ̃
(1)
 = { : dk·k2 (Θ) ≤ 

12
 −38}

and show that

sup
∈Θ̃(1)

| ()− ()| = −12

³


12
 −38

´
= 

³

32
 −78

´
which, in conjunction with Lemma A.5 implies that

d

³
̂ Θ

´
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³
max

n
  

34
 −716

o´
= (

34
 −716) (A.28)

Repeating such an arguments for any finite  times, we can obtain

d

³
̂ Θ

´
= −14

µ³
−14

´
=1

1
2

¶


By choosing =  () sufficiently large, we obtain d(̂ Θ) = (
− 1
2+


4 1− ) for any fixed small positive

number   0. ¥

Proof of Theorem 3.3. We organize this proof into three parts. In Part I, we establish that, to calculate

the test statistic, we only need to minimize over a neighborhood of Θ ∩Θ; in Part II, we show further that
the minimization would focus on Θ ∩ Θ asymptotically; and in Part III, we combine the results in Parts
I and II to complete the proof. Note that continuity and compactness imply that all minimums are indeed

attained.

Part I. Recall that ̂ ∈ argmin
∈Θ∩Θ

 ()  Then dk·k2
³
̂ Θ ∩Θ

´
= 

³
 d(̂ Θ) + 

´
=

((
1−
 −

1
2+


4 ) +  ) = (

−14) by Lemma A.6, Theorem 3.2, and Assumption 3.4. This, in

conjunction with the fact that  = sup
∈Θ∩Θ

kΠ  − k2 = 
¡
−14

¢
by Assumption 3.3(i), implies that

∃ some  ↓ 0
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³
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´
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³
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´
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n
  

−12
o
=  ( )  (A.29)

Define 


¡
0
¢ ≡ © ∈ Θ ∩Θ : °° − 0

°°
2
≤ 

ª
 Then (A.29) implies that
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"
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∈
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#
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because ∀   0,
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where the convergence follows from the second condition in (A.29).

Continuing with (A.30),
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∈Θ∩Θ
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0∈Θ∩Θ

"
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∈
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where ∆ =  − 0
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with  [∆] =
(

0)


[∆] and 2 [∆] =
2(
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2

[∆∆]  Note that the last equality in (A.31)

above is obtained by plugging
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By straightforward pathwise derivative calculations,
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It is easy to verify that
P3

=1 
¡
0  − 0

¢
= MDD

£
 ( )−

¡
 0

¢ |¤2 = MDD [ ( ) |]2 
where the last equality follows from Lemma A.1.

Using arguments analogous to those in the proof of Theorem 3.1(ii), we can show that for any given

0 ∈ Θ ,
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It is easy to see algebraically that 1
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∆
¢
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0
√
∆
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for any

scalar constant  ≥ 0. These algebraic properties imply that
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where the last equality holds because 
1
4  ↓ 0 according to (A.29). This, in conjunction with the fact that
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¡
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= 0, implies that
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Analogously to the analysis of 1
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 it can be shown that

√


∙
1


2

¡
0∆

¢− 2
¡
0∆

¢¸
=  (1) uniformly in ∆ =  − 0 ∈ Θ− 0 and

sup
: k−0k2≤

¯̄
2

¡
0  − 0

¢−2
¡
0  − 0

¢¯̄
=  (1)  (A.39)

where we use the fact that 2
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8  ↓ 0. Combining (A.38), (A.39), and

(A.40), we have
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where each  (1) holds uniformly in  ∈ 


¡
0
¢
.

Plugging (A.41) in (A.31) yields
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Part II. Next, we show that the term min
∈

 (0)

P−

=1 MDD[ ( ) |]2 in (A.42) can be
dropped asymptotically. The nonnegativity of MDD implies that

min
∈
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According to the third condition in (A.29), i.e., sup
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for all 0 ∈ Θ ∩Θ and large enough  . Then for all 0 ∈ Θ ∩Θ,
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where the first equality follows from Lemma A.1 and the fact that MDD
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last equality follows from Assumption 3.3(ii). It follows that
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Combining (A.43)—(A.45) yields
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As a result, substituting (A.46) into (A.42) delivers
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Part III. By Theorem 3.1(i) and the extended continuous mapping (see, e.g., Theorem 1.11.1 in van der

Vaart and Wellner (1996)), we have

inf
0∈Θ∩Θ

"
−X
=1



¡
0
¢# L−→ inf

0∈Θ∩Θ

−X
=1

£
B
¡
0
¢
+C

¡
0
¢¤
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So the proof is completed. ¥

Proof of Theorem 3.4. Let  be the same as the one specified by (A.29) in the proof of Theorem 3.3.

By Theorem 3.1,
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¯̄̄̄
¯ 1  ()−
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¯ −→ 0 (A.48)

Since Θ is compact under k·k by Lemma A.3, it follows from the theorem of maximum and the continuous

mapping theorem that
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where the first equality holds because of the uniform asymptotic k·k2-equicontinuity of 1

 () −

P−
=1

MDD [ ( ) |]2 (implied by (A.48) or by Theorem 3.1 directly) and the fact that
°°°Π ̃ − ̃

°°°
2

=  ( ) with  ↓ 0, the third inequality follows from Lemma A.2,12 the fourth inequality holds by Cauchy-
Schwarz inequality, and the last inequality holds by Lemma 3.1.

(A.50) and (A.49) imply

1


̂ = min

∈Θ∩Θ
1


 () = min

∈Θ∩Θ

−X
=1

MDD [ ( ) |]2 +  (1) 

12The finite moments requirement in Lemma A.2 can be easily verified by Assumption 3.1(ii), together with the result that

| ( )| ¹ | |+ 1, which is established in (A.20) in the proof of Theorem 3.1.
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If Θ ∩ Θ = ∅, then ∀  ∈ Θ ∩ Θ it holds that
P−

=1 MDD[ ( ) |]2  0. The compactness of

Θ ∩Θ guarantees that

min
∈Θ∩Θ

−X
=1

MDD[ ( ) |]2  0

which completes the proof.13 ¥

Proof of Theorem 3.5. Recall that ∗ () =  ()  Note that 
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∗
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13Note that Θ is a linear subspace, so it is closed, which, in conjunction with the compactness of Θ, implies the compactness

of Θ ∩Θ.
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and
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where ∗ =  × R It is easy to see the envelope functions for F∗1 F∗2 and F∗3 are respectively given
by  ∗1 (

∗) ≡  (||+ 1) ||   ∗2 (∗1 ∗2) = (|1| + 1)(|2| + 1)̆12 |12|  and  ∗3 (
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in the proof of Theorem 3.1, we can readily show that
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Part I. Proof of part (i). It is easy to see that E∗[ ∗2 (
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] ∞ verifying Condition (a) in Theorem

5.6 of AC. As in the proof of Theorem 3.1, we can readily show that
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where the last inequality holds by choosing  sufficiently small such that (1 + ) 2 ≤ 1 This verifies the
uniform integrability of the sequence
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and thus condition (b) in Theorem 5.6 of

AC.

Then by Theorem 5.6 of AC, we have U∗ () =⇒ C∗ () in ∞ (Θ)  where C∗ () = C (∗ (· ·; )) and
∗
¡
∗  

∗
 ; 

¢
= ∗ (

∗
 ; )

∗


¡
∗ ; 

¢
̆12 =  () ()  ̆12We now argue that {C∗ ()} share the
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restrict (1)  () to lie in Θ  Without loss of generality, we can focus on the case  = 1.
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Note that for  ∈ Θ  
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That is, U∗ () share the same asymptotic distribution as U () when  ∈ Θ . As a result, we have
U∗ () =⇒ C () in ∞ (Θ) 

48



Next, note that H∗3 () is a third order  ∗−canonical −process with the envelope function for its asso-
ciated kernel given by  ∗3  Following the analysis of U∗ ()  it is easy to show that E∗ [ ∗3 (
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This completes the proof of the theorem. ¥
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B Proofs of Lemmas A.1—A.6

Proof of Lemma A.1. The proof is mainly based on the definitions of MDD and MDD as specified in

Shao and Zhang (2014) and Su and Zheng (2017), respectively, as well as their properties as shown in these

two papers. Let  denote the dimension of 

We first prove the first claim. Note that MDD (1|)2 = 0 if and only if E (1|) = E (1)  which, in

turn, implies that for any given constant vector  ∈ R 

Cov (1 exp (i
0)) = E [1 exp (i

0)]− E [1]E [exp (i0)]

= E [E (1|) exp (i0)]− E [1]E [exp (i0)]

= E [1]E [exp (i0)]− E [1]E [exp (i0)]

= 0

where the second equality follows from the law of iterated expectations. Then by equation (2.4) in Su and

Zheng (2017), we have
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To proceed, note that for a generic real-valued random variable  ,
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which follows directly from the definitions of MDD and MDD. Also note that MDD(1|)2 = 0 if and

only if E (1|) = 0 It follows that MDD(1|)2 = 0 if and only if

MDD (1|)2 = 0 and E (1) = 0 (B.3)

This, in conjunction with the given condition that MDD(1|)2 = 0 implies that
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2 E
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where the first and last equalities follow from(B.2), the second equality holds by (B.3), and the third equality

holds by (B.1). This proves the first claim.

Now, we prove the second claim. By Su and Zheng (2017),

MDD(2 −1|)2 = −E
h
(2 −1)

³


†
2 −

†
1

´ ¯̄
 − †

¯̄i
+ 2E

£
(2 −1)

¯̄
 − †

¯̄¤
E
h


†
2 −

†
1

i
= −E

h
(2 −1)

³


†
2 −

†
1

´ ¯̄
 − †

¯̄i
+ 2E

£
2

¯̄
 − †

¯̄¤
E
h


†
2

i
− 2E £1

¯̄
 − †

¯̄¤
E
h


†
2 −

†
1

i
− 2E

£
2

¯̄
 − †

¯̄¤
E
h


†
1

i


Noting that E (1|) = 0, we have E (1) = E( †
1 ) = 0 and E

£
1

¯̄
 − †

¯̄¤
= 0 by the law of iterated

expectations and the independence between (1 ) and †. Then we have

MDD(2 −1|)2 = −E
h
(2 −1)

³


†
2 −

†
1

´ ¯̄
 − †

¯̄i
+ 2E

£
2

¯̄
 − †

¯̄¤
E
h


†
2

i
 (B.4)

And we also know that

MDD(2|)2 = −E
h
2

†
2

¯̄
 − †

¯̄i
+ 2E

£
2

¯̄
 − †

¯̄¤
E
h


†
2

i
 (B.5)

(B.4)—(B.5), in conjunction with the fact that MDD(2 −1|)2 = MDD(2|)2, implies that

E
h
(2 −1)

³


†
2 −

†
1

´ ¯̄
 − †

¯̄i
= E

h
2

†
2

¯̄
 − †

¯̄i
 ¥

Proof of Lemma A.2. Note that for any real-valued random variable  , it holds that

MDD( |)2 = MDD ( |)2 + [E ( )]2E
¡¯̄
 − †

¯̄¢
 (B.6)

We prove the first and second inequalities in Parts I and II, respectively.
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Part I. We organize Part I into three subparts. In Part I (i), we show the existence of a finite constant

1 s.t. for any pair {12} ⊆W, it holds that¯̄̄
MDD (1|)2 −MDD (2|)2

¯̄̄
≤ 1 ·

h
MDD (1 −2|)2

i12


In Part I (ii), we show the existence of a finite constant 2 s.t. for any pair {12} ⊆W, it holds that¯̄̄
E (1)

2 E
¡¯̄
 − †

¯̄¢− E (2)
2 E
¡¯̄
 − †

¯̄¢¯̄̄ ≤ 2 ·
h
E (1 −2)

2 E
¡¯̄
 − †

¯̄¢i12


And in Part I (iii), we combine the results from Part I (i) and Part I (ii) via B.6 to prove the fist inequality.

Part I (i). By the definition of W

sup
∈W

Var ( ) = sup
∈W

h
E
¡
 2

¢− E ( )
2
i
≤ sup

∈W
E
¡
 2

¢ ≡ 3 ∞ (B.7)

Denote by  () ≡ E [exp (i0)]  the characteristic function of . It holds that

|Var (exp (i0))| =
¯̄̄
E
h
exp (i0)2

i
− E [exp (i0)]2

¯̄̄
=

¯̄̄
 (2)− [ ()]2

¯̄̄
≤ | (2)|+ | ()|2 ≤ 2 (B.8)

where the last inequality follows from the fact that | (·)| ≤ 1. By equation (2.4) in Su and Zheng (2017),
we have that for any pair {12} ⊆W,¯̄̄

MDD (1|)2 −MDD (2|)2
¯̄̄

=

¯̄̄̄Z


h
Cov (1 exp (i

0))2 −Cov (2 exp (i
0))2

i
 () 

¯̄̄̄
≤

Z


¯̄̄
Cov (1 exp (i

0))2 −Cov (2 exp (i
0))2

¯̄̄
 () 

≤
Z


|Cov (1 exp (i
0))−Cov (2 exp (i

0))|
× [|Cov (1 exp (i

0))|+ |Cov (2 exp (i
0))|]  () 

≤
Z


|Cov (1 exp (i
0))−Cov (2 exp (i

0))|

×
h¯̄̄
Var (1)

12
Var (exp (i0))12

¯̄̄
+
¯̄̄
Var (2)

12
Var (exp (i0))12

¯̄̄i
 () 

≤ 2
p
23

Z


|Cov (1 exp (i
0))−Cov (2 exp (i

0))|  () 

= 2
p
23

Z


|Cov (1 −2 exp (i
0))|  () 

≤ 2
p
23

∙Z


|Cov (1 −2 exp (i
0))|2  () 

¸12
= 2

p
23

h
MDD (1 −2|)2

i12
where i ≡ √−1  () is as defined in the proof of Lemma A.1, the fourth inequality follows from (B.7)-

(B.8), and the last inequality follows from the Hölder inequality. Consequently, we have that for any pair

{12} ⊆W ¯̄̄
MDD (1|)2 −MDD (2|)2

¯̄̄
≤ 1

h
MDD (1 −2|)2

i12
(B.9)
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where 1 ≡ 2
√
23

Part I (ii). By Jensen inequality and (B.7), we have

sup
∈W

E | | ≤ sup
∈W

£
E
¡
 2

¢¤12
=
p
3 (B.10)

For any pair {12} ⊆W,¯̄̄
[E (1)]

2 E
¯̄
 − †

¯̄
− [E (2)]

2 E
¯̄
 − †

¯̄¯̄̄
=

¯̄̄
E (1 +2)E

¯̄
 − †

¯̄12 ¯̄̄ ¯̄̄E (1 −2)
¡
E
¯̄
 − †

¯̄¢12 ¯̄̄
≤ [E |1|+ E |2|]

¡
E
¯̄
 − †

¯̄¢12 h
[E (1 −2)]

2 E
¯̄
 − †

¯̄i12
≤ 2

p
3
¡
E
¯̄
 − †

¯̄¢12 h
[E (1 −2)]

2 E
¯̄
 − †

¯̄i12
= 2

h
[E (1 −2)]

2 E
¯̄
 − †

¯̄i12
(B.11)

where the last inequality follows from (B.9), and 2 ≡ 2
√
3 · E

¡¯̄
 − †

¯̄¢12
 ∞ by the condition that

E
¯̄
 − †

¯̄
∞ and the fact that 3 ∞.

Part I (iii). For any pair {12} ⊆W it holds that¯̄̄
MDD(1|)2 −MDD(2|)2

¯̄̄
≤

¯̄̄
MDD (1|)2 −MDD (2|)2

¯̄̄
+
¯̄̄n
[E (1)]

2 − [E (2)]
2
o
E
¡¯̄
 − †

¯̄¢¯̄̄
≤ 1

h
MDD (1 −2|)2

i12
+ 2

h
[E (1 −2)]

2 E
¯̄
 − †

¯̄i12
≤ max {1 2}

½h
MDD (1 −2|)2

i12
+
h
[E (1 −2)]

2 E
¯̄
 − †

¯̄i12¾
≤
√
2max {1 2}

n
MDD (1 −2|)2 + [E (1 −2)]

2 E
¯̄
 − †

¯̄o12
= 

h
MDD(1 −2|)2

i12


where  ≡ √2max {1 2}  ∞ the first inequality follows from the triangle inequality, and the second

inequality holds by (B.9) and (B.11).

Part II. It is easy to see that

E (1 −2)
2 E
¯̄
 − †

¯̄
≤ 2

h
E (1)

2 E
¯̄
 − †

¯̄
+ E (2)

2 E
¯̄
 − †

¯̄i
 (B.12)

Next, note that

MDD (1 −2|)2

=

Z


Cov (1 −2 exp (i
0))2  () 

=

Z


[Cov (1 exp (i
0))−Cov (2 exp (i

0))]2  () 

≤ 2

Z


Cov (1 exp (i
0))2  () + 2

Z


Cov (2 exp (i
0))2  () 

= 2
h
MDD (1|)2 +MDD (2|)2

i
 (B.13)
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Combining (B.6), (B.12) and (B.13) yields MDD(1 −2|)2 ≤ 2
h
MDD(1|)2 +MDD(2|)2

i
 It

follows that h
MDD(1 −2|)2

i12
≤
√
2
h
MDD(1|)2 +MDD(2|)2

i12
≤ 2

½h
MDD(1|)2

i12
+
h
MDD(2|)2

i12¾
where the second inequality follows from the fact that

¡
2 + 2

¢12 ≤ √2 (+ ) for any   ≥ 0 This

completes the proof. ¥

Proof of Lemma A.3. To prove the first claim, note that
¡
R(−) ×W (X )  k·k

¢
forms a metric space,

in which compactness is equivalent to sequential compactness. So it is sufficient to show that (Θ k·k) is
sequentially compact.

Recall that Θ = Φ × G, where Φ is compact by assumption. By Lemma A.2 in Santos (2012), (G k·k)
is also compact despite the difference in notations. Specifically, b2c is equivalent to Santos’s (2012) , and
−b2c is equivalent to his0. In addition, the condition  ≥ +2 required by Assumption 2.1(ii) guarantees

‘min {0}  
2 ’, which is required in Santos (2012). Consequently, both Φ and G are sequentially

compact. Then for any given sequence { =
¡
0  

¢0} in Θ, there is subsequence { =
¡
0

 

¢0}
s.t. 

→  under |·| for some  ∈ Φ as  → ∞, and there is also a subsubsequence {
=

(0
 

)0} in {
=
¡
0

 

¢0} s.t. 
→  under k·k for some  ∈ G as 

→∞. In short,
for any given sequence { =

¡
0  

¢0} in Θ, we are able to find a subsequence {
= (0

 
)0}

s.t. 
→ ¡

0 
¢0 ∈ Θ under k·k as  →∞. This shows that (Θ k·k) is sequentially compact.

To prove the second claim, note that (W (X )  k·k) is a metric space. The compactness of its subset
(G k·k) as proven above implies total boundedness of G under k·k, which in turn implies boundedness of
G under k·k. So there exists a constant  s.t. sup∈G kk ≤  As a result, for any given vector of

nonnegative integer  with hi ≤ 
2 , it hods that

sup
∈X

¯̄
()

¯̄
≤ sup

∈X

¯̄
()

¯̄
(1 + 0)2 ≤ max

hi≤
2

∙
sup
∈X

¯̄
()

¯̄
(1 + 0)2

¸
= kk ≤ sup

∈G
kk ≤ 

where the first inequality follows from the fact that (1 + 0)2 ≥ 1 under the requirement that  ¡

2 ·b2c

¢

¡b2c− 

2

¢
 0 as specified in Assumption 2.1(ii). ¥

Proof of Lemma A.4. Here we follow the same notations for various bounds as we have adopted in

the previous proofs. Specifically, the compactness of Φ according to Assumption 2.1(i) implies that Φ ≡
sup∈Φ ||  ∞ By Lemma A.3, for all  ∈ G, it holds that sup∈X |()| ≤   ∞ Then for any  ∈ Θ
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and  = 1   −, we have

| ( )| =

¯̄̄̄
¯[ −  ()] +

X
=1

 [−+ −  (−+)]

¯̄̄̄
¯

≤ [||+ | ()|] +
X
=1

¯̄


¯̄
[|−+|+ | (−+)|]

≤ | |+ +Φ [| |+] = (Φ+ 1) [| |+]

where  = (1   )
0
  = (1   )

0
  denote the th element in  and the first inequality holds

by the triangle inequality. It follows that for any  ∈ Θ and  = 1   −

E
n
[ ( )]

2
o
≤ 2 (Φ+ 1)2

h
E(| |2) +2



i
∞

where the last inequality follows from the fact that E( | |2) ∞ under Assumption 3.1(ii). In addition, by

the triangle inequality, Jensen inequality, and Assumption 3.1(ii), E
¯̄
 − †

¯̄
≤ E

¯̄
 − †

¯̄
≤ 2

h
E( ||2)

i12
∞ Therefore, the result in Lemma A.2 is applicable here.

By Lemma A.2, we have that for any 1 ∈ Θ and 2 ∈ Θ,¯̄̄
MDD [ ( 1) | ]2 −MDD[ ( 2) | ]2

¯̄̄
≤ 

n
MDD[ ( 1)− ( 2) | ]2

o12
≤  k1 − 2k2

for some finite constants  and , where the first and second inequalities hold by Lemmas A.2 and 3.1,

respectively. As a result,

|Q (1)−Q (2)| =

¯̄̄̄
¯
−X
=1

MDD [ ( 1) | ]2 −
−X
=1

MDD [ ( 2) | ]2
¯̄̄̄
¯

≤
−X
=1

¯̄̄
MDD [ ( 1) | ]2 −MDD[ ( 2) | ]2

¯̄̄
≤

"
−X
=1



#
 k1 − 2k2 

This completes the proof of the lemma. ¥

Proof of Lemma A.5. We refer to Conditions (i) — (iv) listed in the statement of Lemma A.5 as C(i) —

C(iv), respectively.

By C(iii), ∀   0, ∃ a constant  ∞ and a positive integer  s.t.

Pr

µ
sup
∈Θ

| ()− ()|  

¶
≥ 1−  (B.14)

for all  ≥ . For any given 0 ∈ Θ , it follows from C(ii) that ∃ a sequence ©0ª with 0 ∈ Θ s.t.

d
¡
0  

0
¢ ≤  .

Let  ≡ max
n
2
p
1

p
221

o
 ∞ and  ≡ max{  12 }. Let Θ be the open 

enlargement of Θ under d (· ·). By C(i) (compactness of Θ) and C(iv), it holds that

∆ ≡ inf
∈(Θ )

∩Θ
 () ≥ 1

2
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where  denotes the complement of set  Note that


³
̂

´
−

¡
0
¢
=

h

³
̂

´
−

³
̂

´i
+
h


³
̂

´
−

¡
0
¢i
+
£


¡
0
¢−

¡
0
¢¤

≤
h

³
̂

´
−

³
̂

´i
+
£


¡
0
¢−

¡
0
¢¤

≤
¯̄̄

³
̂

´
−

³
̂

´¯̄̄
+
¯̄


¡
0
¢−

¡
0
¢¯̄
 (B.15)

where the first inequality holds because 

³
̂

´
−

¡
0
¢ ≤ 0 by the definition of ̂ . Then for  ≥ ,

we have

Pr

µ

³
̂

´
 

¡
0
¢
+
∆

2

¶
= Pr

µ

³
̂

´
−

¡
0
¢

∆

2

¶
≥ Pr

Ã

³
̂

´
−

¡
0
¢


1
2


2

!
≥ Pr

³¯̄̄

³
̂

´
−

³
̂

´¯̄̄
+
¯̄


¡
0
¢−

¡
0
¢¯̄
 2

´
≥ 1−  (B.16)

where the second inequality follows from (B.15) and the fact that 1
2
2 ≥ 2 , and the last inequality

follows from (B.14).

It follows from C(iv) that 
¡
0
¢ ≤ 2 d

¡
0 Θ

¢2 ≤ 2 d
¡
0  

0
¢2 ≤ 2

2
 ≤ ∆2 for  large enough,

which, together with (B.16), implies that

Pr
³

³
̂

´
 ∆

´
≥ Pr

µ

³
̂

´
 

¡
0
¢
+
∆

2

¶
≥ 1−  (B.17)

for  large enough.

Note that(̂ )  ∆ if and only if ̂ ∈ Θ , or, equivalently, d(̂ Θ)   = max{  12 }.
Therefore, we can rewrite (B.17) as

Pr
³
d
³
̂ Θ

´
 max{  12 }

´
≥ 1− 

for  large enough. This exactly shows that d
³
̂ Θ

´
= 

³
max{  12 }

´
. ¥

To prove Lemma A.6, we need the following Lemma.

Lemma B.1 Consider a generic econometric model  () = 0, the identified set of which is character-

ized by Θ ≡ { ∈ Θ :  () = 0 }  Suppose the following conditions hold: (i)  (·) ≥ 0 and Θ is

compact under (pseudo-)norm k·k; (ii) Θ ⊆ Θ are closed and s.t. ∃ Π ∈ Θ for each  ∈ Θ s.t.

sup∈Θ kΠ − k = (1); (iii) sup
∈Θ

| ()− ()| =  (1); (iv)  (·) is continuous w.r.t. k·k in Θ. Then

for ̂ ∈ argmin
∈Θ

 ()  it holds that dk·k(̂ Θ) =  (1).

Proof of Lemma B.1. Lemma B.1 is essentially the same as Lemma A.5 in Santos (2012), except that

we do not assume the continuity of  w.r.t. k·k in Θ . A close inspection on the proof of Lemma A.5 in
Santos (2012) shows that the continuity of  does not play a role in the proof. In other words, the proof

7



of Lemma A.5 in Santos (2012) works without assuming the continuity of  , and therefore applies directly

to proving Lemma B.1 here. ¥

Proof of Lemma A.6. We prove parts (i) and (ii) of the Lemma in turn.

Part I. Proof of part (i).

Let  () ≡P−
=1 MDD [ ( ) |]2 and  () ≡ 1


 () =

P−
=1

1

 ()  as in the proof of

Theorem 3.2. Our goal is to show that, over the restricted parameter space Θ ∩Θ under k·k2 ,  (·) and
 (·) as specified above satisfy Conditions (i)—(iv) in Lemma B.1.
Due to the nonnegativity of MDD,  (·) ≥ 0. By Lemma A.3, Θ is compact under k·k and hence

is compact under k·k2  which is weaker than k·k. Since Θ is closed due to the continuity of  (·) under
Assumption 2.2, Θ∩Θ is also compact under k·k2 . So Condition (i) in Lemma B.1 is satisfied. Assumption
3.3(i) guarantees Condition (ii) in Lemma B.1 to hold; Condition (iii) in Lemma B.1 holds according to

Theorem 3.1. Condition (iv) in Lemma B.1 holds according to Lemma A.4. Consequently, the conclusion in

part (i) follows from Lemma B.1.

Part II. Proof of part (ii).

This part of the proof is similar to the proof of Lemma A.3 in Hong (2017) and it goes as follows. For

any given 0 ∈ Θ , °°°̂ − 0
°°°
2
≤

°°°̂ −Π0°°°
2
+
°°Π0 − 0

°°
2

≤  d

³
̂ Π

0
´
+ 

≤ 2

h
d

³
̂  

0
´
+ d

¡
Π

0 0
¢i
+ 

≤ 2

h
d

³
̂  

0
´
+ 

i
+  

where the first inequality follows from the triangle inequality for k·k2  the second one holds by Definition 3.3
and Assumption 3.3(i), the third one follows from Lemma 3.1, and the last inequality holds by Assumption

3.3(ii). Taking infimum over 0 ∈ Θ ∩Θ yields

dk·k2
³
̂ Θ ∩Θ

´
≤ 2

h
d

³
̂ Θ ∩Θ

´
+ 

i
+ 

= 

³
 d

³
̂ Θ ∩Θ

´
+ 

´
where the equality holds by the fact that  = 

¡
−12

¢
. ¥

C A discussion on Assumption 3.4

Recall that we have already required in Assumption 3.2 that the eigenvalues of E
h
 () 

0 ()
i
for

 = 1   are uniformly bounded and uniformly bounded away from zero. Here, we mainly focus on

discussing sufficient conditions for  to satisfy Assumption 3.4 for point-identification cases. Under point-

identification,

 = sup
∈Θ : 6=Π0

dk·k2 (ΠΘ)

d (ΠΘ)
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with Θ =
©
 ∈ Θ :

°° − 0
°°
2
≤ 

ª
(where  ↓ 0) being the  (1) neighborhood of 0 under the

2 norm. Since a proper completeness condition is necessary for point-identification, we maintain such a

condition for most part of the discussion, stated as follows:

(Completeness condition) For any measurable function  (·) : X → R, E [ () |] = 0 iff

 (·) = 0 a.s. for  = 1   −.

Note that, for any  ∈ Θ , we can write  − Π0 =
³¡
− 0

¢0
∆0



´0
for some ∆ ∈ R . By

Assumption 3.2, we have °° −Π0°°22 ³ ¯̄− 0
¯̄2
+ |∆ |2  (C.1)

C.1 The case of  = 0

We consider the special case of  = 0 (i.e., no IFEs) and  = 1. Generalization to the  = 0 and   1 case

is straightforward. Note that, when  = 0,  =  (·) and Θ = G. Consequently, ∀  ∈ Θ s.t.  6= Π0, it
holds that d

¡
Π

0
¢2
= MDD

£
∆0

 (1) |1
¤2
for some ∆ 6= 0.

For a fixed  , the following three conditions are equivalent: (i) MDD
£
∆0

 (1) |1
¤2

 0 for all

∆ 6= 0; (ii) E
£
∆0

 (1) |1
¤ 6= 0 for all ∆ 6= 0; (iii) There is no multicollinearity among the elements

of the  (·) vector. Note that the equivalence between (ii) and (iii) follows from the completeness condition.
The condition of the eigenvalues of E

h
 () 

0 ()
i
being bounded away from zero uniformly over 

by Assumption 3.2 guarantees that there is no multicollinearity in  (·) even as  → ∞ and  → ∞.
Consequently, it can be shown that d

¡
Π

0
¢ ³ °° −Π0°°2 for  ∈ Θ . Therefore, when  = 1,

Assumption 3.4 holds trivially with  = (1) under Assumption 3.2.

C.2 The case of  ≥ 1
Now we consider the case of  = 1 and  = 2. Generalization to the  ≥ 1 and  =  + 1 case is

straightforward at the cost of more tedious algebra.

In the  (1) neighborhood of 0 under the 2 norm, which is also the  (1) neighborhood of Π
0 under

the 2 norm by Assumption 3.3(i) (
¯̄
Π

0 − 0
¯̄
↓ 0 sufficiently fast),

d
¡
Π

0
¢2

= MDD
£
1 ( )−1

¡
Π

0
¢ |¤2

= 11
¡
0  −Π0

¢
+  (1) 

where

11
¡
0  −Π0

¢
≡ −E

""
1

¡
 0

¢


£
 −Π0

¤# "1

¡
 †† 0

¢


£
 −Π0

¤# ¯̄̄
1 − 

†
1

¯̄̄#

+2E

""
1

¡
 0

¢


£
 −Π0

¤# ¯̄̄
1 − 

†
1

¯̄̄#
E

""
1

¡
 †† 0

¢


£
 −Π0

¤##
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Recall
1(0)



£
 −Π0

¤
=
¡
1 − 01

¢ £
2 − 0 (2)

¤−£ (1)−Π0 (1)¤−01 £ (2)−Π0 (2)¤.
It then follows that

11
¡
0  −Π0

¢
=
¡
1 − 01∆

0


¢


⎛⎝1 − 01

∆

⎞⎠ 

where

 ≡ −E
h


¡
†   †¢ ¯̄̄1 − 

†
1

¯̄̄i
+ 2E

£


¡
†   †¢¤E h¯̄̄1 − 

†
1

¯̄̄i
with



¡
†   †¢ ≡

⎛⎝ 2 − 0 (2)

− (1)− 01
 (2)

⎞⎠⎛⎝ 
†
2 − 0

³

†
2

´
−

³

†
1

´
− 01



³

†
2

´⎞⎠0



By the definition of the martingale difference divergence matrix (MDDM) in Lee and Shao (2018) (see their

Definition 1 and Lemma 1),14 we can rewrite  above as

 = MDDM

⎡⎣⎛⎝ 2 − 0 (2)

− (1)− 01
 (2)

⎞⎠ |1
⎤⎦+1

with

1 ≡ E
⎡⎣⎛⎝ 2 − 0 (2)

− (1)− 01
 (2)

⎞⎠⎤⎦E
⎡⎣⎛⎝ 2 − 0 (2)

− (1)− 01
 (2)

⎞⎠⎤⎦0 E h¯̄̄1 − 
†
1

¯̄̄i


By Lemma 1 and Theorem 1 in Lee and Shao (2018), MDDM

⎡⎣⎛⎝ 2 − 0 (2)

− (1)− 01
 (2)

⎞⎠ |1
⎤⎦ is positive

semi-definite (p.s.d.). This, in conjunction with the p.s.d. of 1 implies that  is also p.s.d.

Note that the MDDM in Lee and Shao (2018) is defined to examine conditional mean independence. To

examine conditional mean zero, we shall redefine

MDDM( | ) ≡ −E
³
  †0 ¯̄ − †¯̄´+ 2E ( )E ¡ †¢0 E ¯̄ − † ¯̄

= MDDM ( | ) + E ( )E
¡
 †¢0 E ¯̄ − † ¯̄ 

Then it is straightforward to conclude, based on Theorem 1 in Lee and Shao (2018), that ∀  ∈ R and
 ∈ R s.t. E

³
| |2 + | |2

´
∞, ∃ − linearly independent combinations of  s.t. they are conditionally

mean zero w.r.t.  , iff rank (MDDM( | )) = . Consequently,  is strictly positive definite if and only

if:

no element of E

⎡⎣⎛⎝ 2 − 0 (2)

− (1)− 01
 (2)

⎞⎠ |1
⎤⎦ equals zero.

If, in addition, we require that the smallest eigenvalue of be bounded away from zero, a condition similar

to Assumption 3.2, then

d
¡
Π

0
¢2

= 11
¡
0  −Π0

¢
+  (1)

º
¯̄
− 0

¯̄2
+ |∆ |2  (C.2)

14Lee and Shao (2018) extend the MDD ( | ) concept of Shao and Zhang (2014) for a scalar variable  to MDDM ( | )

to a vector-valuded  . Specifically, for variables  and  , both of which can be vector-valued, s.t. 

| |2 + | |2


∞, Lee

and Shao (2018) specify MDDM ( | ) = −

( −  ( ))  † −   †0  − †.
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which, in conjunction with (C.1), implies that d
¡
Π

0
¢2 º °° −Π0°°22 . This, together with Lemma

3.1, implies that d
¡
Π

0
¢2 ³ °° −Π0°°22 in an  (1) neighborhood of 0 under the 2 norm. Conse-

quently, Assumption 3.4 is satisfied with  =  (1).
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