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Abstract

In this paper, we consider the least squares estimation of a panel structure threshold re-

gression (PSTR) model where both the slope coefficients and threshold parameters may exhibit

latent group structures. We study the asymptotic properties of the estimators of the latent

group structure and the slope and threshold coefficients. We show that we can estimate the

latent group structure correctly with probability approaching 1 and the estimators of the slope

and threshold coefficients are asymptotically equivalent to the infeasible estimators that are

obtained as if the true group structures were known. We study likelihood-ratio-based inferences

on the group-specific threshold parameters under the shrinking-threshold-effect framework. We

also propose two specification tests: one tests whether the threshold parameters are homogenous

across groups, and the other tests whether the threshold effects are present. When the number

of latent groups is unknown, we propose a BIC-type information criterion to determine the

number of groups in the data. Simulations demonstrate that our estimators and tests perform

reasonably well in finite samples. We apply our model to revisit the relationship between capital

market imperfection and the investment behavior of firms and to examine the impact of bank

deregulation on income inequality. We document a large degree of heterogeneous effects in both

applications that cannot be captured by conventional panel threshold regressions.
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Panel threshold regression.
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1 Introduction

Threshold models have a wide variety of applications in economics; see Durlauf and Johnson (1995),

Potter (1995), Kremer, Bick and Nautz (2013), and Arcand, Berkes and Panizza (2015), among

others. In both the cross sectional and time series framework, asymptotic theory for estimation

and inference in threshold models has been well developed. See, e.g., Chan (1993) and Hansen

(2000) on asymptotic distribution theory for the threshold estimator in the fixed-threshold-effect

and shrinking-threshold-effect frameworks, respectively, and Hansen (2011) for a review on the

development and applications of threshold regression models in economics. Both Chan (1993) and

Hansen (2000) require the exogeneity of the regressors. Endogeneity has been considered in some

existing papers; see, e.g., Caner and Hansen (2004), Kourtellos, Stengos and Tan (2016), and Yu

and Phillips (2018). In the panel setup, Hansen (1999) studies static panel threshold models with

exogenous regressors and threshold variables; Seo and Shin (2016) propose a GMM method to

estimate dynamic panel threshold models with additive fixed effects, where either the regressors

or the threshold variables can be endogenous; and Miao, Li and Su (2018) study estimation and

inference in dynamic panel threshold regression with interactive fixed effects.

All existing studies in panel threshold models assume that the slope coefficients and threshold

parameters are common across all individual units. However, such an assumption of homogeneity

is vulnerable in practice given that individual heterogeneity has been widely documented in empir-

ical studies using panel data. See, e.g., Durlauf (2001) and Su and Chen (2013) for cross-country

evidence and Browning and Carro (2007) for ample microeconomic evidences. In panel thresh-

old regressions, heterogeneity can exist in not only the slopes but also the threshold coefficients.

Neglecting latent heterogeneity in any aspect can lead to inconsistent estimation and misleading

inferences. In particular, pooling individuals with different threshold values would bias the thresh-

old and the slope coefficient estimation, and it can even lead to a failure in detecting any threshold

effect in finite samples since heterogeneous threshold effects may offset each other. Even if all

units share the same threshold coefficient, ignoring heterogeneity in the slopes would also lead to

inconsistent estimates.

In this paper, we propose a new panel threshold model that allows the slope and threshold

coefficients to vary across individual units. We model individual heterogeneity via a grouped

pattern, such that all the members within the same group share the same slope and threshold

coefficients, whereas these coefficients can differ across groups in an arbitrary manner. Hence, the

latent group structure may result from two sources of heterogeneity: that in the slope coefficients

and that in the threshold level coefficients. We allow the group membership structure (i.e., which

individuals belong to which group) to be unknown and estimated from the data. We refer to our

model as a panel structure threshold regression (PSTR) model.

Using a panel structure model that imposes a group pattern is a convenient way to model

unobserved heterogeneity, and they have recently received much attention; see Lin and Ng (2012),

Bonhomme and Manresa (2015), Ando and Bai (2016, 2017), Su, Shi, and Phillips (2016), Lu and

Su (2017), Liu et al. (2018), Su and Ju (2018), Su, Wang and Jin (2019), and Okui and Wang
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(2019), among others. An important advantage of the panel structure model is that it allows

flexible forms of unobserved heterogeneity while remaining parsimonious at the same time. As

group structure is latent in such a model, the determination of an individual’s membership is the

key question. Several approaches have been proposed to address this issue. Sun (2005), Kasahara

and Shimotsu (2009), and Browning and Carro (2011) consider finite mixture models. Su, Shi, and

Phillips (2016) propose a variant of the Lasso procedure (C-Lasso) to achieve a classification in

this regard, and this method has been extended to allow for two-way component errors, interactive

fixed effects, nonstationary regressors, and semiparametric specification, respectively, in Lu and Su

(2017), Su and Ju (2018), Huang, Jin and Su (2019), and Su, Wang and Jin (2019). Lin and Ng

(2012), Bonhomme and Manresa (2015), Sarafidis and Weber (2015), and Liu et al. (2018) extend

the K-means algorithms to the panel regression framework. Wang, Phillips and Su (2018) and

Wang and Su (2019) propose to identify the latent group structure based on the Lasso or spectral

clustering techniques in the statistics literature. In the nonparametric literature, Vogt and Linton

(2017, 2019) consider procedures to estimate the unknown group structures for nonparametric

regression curves.

To estimate the PSTR model, we consider a least-squares-type estimator that minimizes the

sum of squared errors. We choose the least-squares approach for classification because the group,

slope, and threshold parameters can be estimated simultaneously, which facilitates the theory. The

disadvantage is that we cannot allow for endogeneity in the regressors and threshold variables.

Cases with endogenous regressors or threshold variables require different and more complicated

analysis and will be left for future research. Due to the presence of the latent group structure

and threshold parameters, we do not have an analytically closed-form solution to the problem.

We propose to employ an EM-type iterative algorithm to find the solution with multiple starting

values. Under some regularity conditions, we show that our estimators of the slope and threshold

coefficients are asymptotically equivalent to the corresponding infeasible estimators of the group-

specific parameters that are obtained by using individual group identity information.

To study the asymptotic properties of the estimators of the threshold coefficients, we follow the

lead of Hansen (2000) and consider the shrinking-threshold-effect framework, where the threshold

effect is diminishing as the sample size approaches infinity. In this framework, we can make in-

ferences regarding each threshold parameter by constructing a likelihood ratio (LR) statistic. We

show that the LR statistics are asymptotically pivotal in the case of conditional homoskedasticity

and that they depend on a scale nuisance parameter otherwise. Such a scale parameter can be

consistently estimated nonparametrically when conditional heteroskedasticity is suspected.

We also consider two specification test statistics. The first one is designed to test the homo-

geneity of the threshold parameters across each group via the LR principle. The corresponding LR

test statistic is non-standard and involves a linear combination of two-sided Brownian motions. We

show how one can obtain the simulated -value with estimated parameters in our discussion. This

test is useful since pooling units, if their threshold coefficients pass the homogeneity test, improves

the efficiency of threshold estimation, especially in small samples. The second is designed to test

the absence of the threshold effect under the null by adopting the method proposed by Hansen
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(1996). In our latent group structure framework, one may suspect the presence of a subset of

threshold effects among all groups, and we also need to take into account the uncertainty caused

by the unknown group structure when studying the asymptotic behavior of the test.

We evaluate the finite-sample performance of the proposed tests and estimation methods via

extensive simulation studies. First, the proposed information criterion can determine the correct

number of groups with a large probability, regardless of whether any threshold effect is present.

Given the number of groups, the next task is to test the existence of threshold effects. Our proposed

test has an appropriate size and non-trivial power in detecting the threshold effect. The power is

an increasing function of the strength of both the threshold effect and sample size. A nice feature

of the test is that it performs well regardless of whether the threshold is heterogeneous across

units. If the threshold effect is present, one can further test whether the threshold parameters

differ across groups. We demonstrate that our test for the homogeneity of the threshold is also

well-behaved in terms of size and its power improves as the degree of threshold heterogeneity

and sample sizes increase. Finally, after the model and the number of groups are specified, we

can proceed with parameter estimation. Our estimation method performs well in heterogeneous

panels with threshold effects in finite samples. With this method, we can precisely estimate group

membership, and the clustering accuracy improves as the number of time periods increases. Both

the threshold parameters and slope coefficients can be precisely estimated. Moreover, we find

that when the threshold parameters are homogeneous across groups, pooling observations with a

common threshold does improve the efficiency of threshold estimation, which in turn highlights the

importance of testing the homogeneity of the threshold parameters.

We illustrate the usefulness of our methods through two real-data examples. First, we revisit the

relationship between capital market imperfections and firms’ investment behavior. We document

a large degree of heterogeneity in firms’ investment behavior, which is bounded by various types of

financial constraints, such as cash flow, Tobin’s Q, and leverage. Such heterogenous threshold effects

cannot be captured by the conventional panel threshold regressions. Next, we examine the impact

of bank regulation, particularly branch deregulation, on income inequality in the US, allowing

observed and unobserved heterogeneity in their impact. We find a group pattern of heterogeneity

in the impact of deregulation across states even after controlling for the threshold effect. The group

structure coincides with geographic locations to some extent but not perfectly, and the threshold

effects appear to be salient in each group. This application again demonstrates the usefulness of the

PSTR since it allows us to capture both observed heterogeneity through thresholds and unobserved

heterogeneity through the latent group structure.

The remainder of the paper is organized as follows. In Section 2, we introduce our model

and estimation method. In Section 3, we introduce the assumptions and examine the asymptotic

properties of the estimators of the latent group structure and the slope and threshold coefficients.

In Section 4, we introduce the inference procedure on the threshold parameters and propose a

specification test for the homogeneity of the threshold parameters across groups. In Section 5,

we consider the specification test for the presence of threshold effects. In Section 6, we propose

a BIC-type information criterion to determine the number of groups. We conduct Monte Carlo
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experiments to evaluate the finite sample performance of our estimators and tests in Section 7. We

apply our model to study the relationship between investment and financing constraints and the

relationship between bank regulation and income distribution in Section 8. Section 9 concludes.

The proofs of the main results in the paper are relegated to the Appendix. Further technical details

can be found in the online Supplementary Materials.

To proceed, we adopt the following notation. The indicator function is denoted as 1(·). 0×
denotes an  ×  matrix of zeros. For two constants  and , we denote max( ) as  ∨  and

min( ) as ∧. For an × real matrix , we denote its transpose as 0 and its Frobenius norm
as kk (≡ [(0)]12) where ≡ means “is defined as”. For a real symmetric matrix , we denote
its minimum eigenvalue as min() The operators

→ and
→ denote convergence in probability and

distribution, respectively. We use ( ) → ∞ to denote the joint convergence of  and  when

 and  pass to infinity simultaneously. Alternatively, as the co-editor suggests, one can consider

the pathwise asymptotics as in Phillips and Moon (1999) and Vogt and Linton (2009).

2 The Model and Estimates

In this section we first present the panel threshold model with latent group structures and then

introduce the estimators of all the parameters in the model.

2.1 The Model

Let  denote the number of cross-sectional units and  the number of time periods. We consider

the model

 = 0
0
0
+ 0

0
0
· (00 ) +  +   = 1    = 1   (2.1)

where  is a  × 1 vector of observable regressors, () ≡1( ≤ )  is a scalar threshold

variable,  is the individual fixed effect and  is the idiosyncratic error term. Note that we allow

both the slope and threshold coefficients to be group specific: 0 is a scalar threshold coefficient, 
0


is a×1 vector of regression coefficients that lies in a compact parameter space B, and 0 is a×1
vector of threshold-effect coefficients for  ∈ G ≡ {1  }, where  is a fixed integer known as

the number of groups. The group-membership variable 0 ∈ G indicates to which group individual
unit  belongs. This group-membership variable is unknown and has to be estimated from the data.

All members in group  have the same coefficients (00  
00
  

0
)
0. We assume 0 ∈ Γ = [ ] for all

 ∈ G, where  and  are two fixed constants. Following the lead of Hansen (2000), we will work

in the shrinking-threshold-effect framework by assuming that 0 ≡ 0 → 0 as ( ) → ∞ for

each  ∈ G unless specified otherwise.
Let D ≡ (1  )0 ∈ Γ, G ≡ (1   )0 ∈ G and Θ ≡ (01  0)0 ∈ B where  ≡

(0 
0
)
0 ∈ B ⊂ R2 . For any given group structure G, we let G = {|  = , 1 ≤  ≤ } be

the index set of the members in group  ∈ G. We denote the true parameters as (Θ0D0G0),

where Θ0 ≡ (001   00)0, D0 ≡ (01  0)0 and G0 ≡ (01  0 )0. Analogously, we denote the
true members in group  ∈ G by G0

 = {| 0 = , 1 ≤  ≤ }.
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For the moment, we assume that the true number of groups 0 is known and given by . In

Section 6, we will discuss how to determine 0 in practice.

2.2 Estimation

To remove the individual-specific fixed effects , we employ the usual within-transformation which

leads to

̃ = ̃0
0
0
+ ̃(

0
0
)00

0
+ ̃  = 1    = 1   (2.2)

where ̃() ≡ () − 1


P
=1 (), and ̃, ̃ and ̃ are defined analogously. Let

() ≡ (0 
0
())

0 and ̃() ≡ () − 1


P
=1 (). Then the model in (2.2) can be

rewritten as

̃ = ̃(
0
0
)00

0
+ ̃  = 1    = 1   (2.3)

Given , we can obtain the following least squares estimator of (ΘDG) :

(Θ̂ D̂ Ĝ) = argmin
(ΘDG)∈B×Γ×G

Q(ΘDG)

where

Q(ΘDG) =
X
=1

X
=1

£
̃ − ̃()

0
¤2
 (2.4)

For any given threshold D and group structure G, the slope coefficients   = 1   can be

estimated by

̂(DG) =

Ã
X
=1

X
=1

1( = )̃()̃()
0
!−1 X

=1

X
=1

1( = )̃()̃

Concentrating out Θ, we can estimate the threshold D and group structure G by

(D̂ Ĝ) = argmin
(DG)∈Γ×G

Q̇(DG) (2.5)

where Q̇(DG) ≡ Q(Θ̂(DG)DG) and Θ̂(DG) = (̂1(DG)0  ̂(DG)0)0.
To find the solution to the above optimization problem, we need to search over the space of

(DG) to minimize the objective function in (2.5). We propose to employ the following EM-type

iterative algorithm to conduct the searching process:

Algorithm 2.1 Set G(0) as a random initialization of the group structure G and let  = 0.

Step 1 For given G(), compute

D() = argminD∈ΓQ̇(DG())
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Step 2 For given D() = {()   = 1 } and G() = {()   = 1 }, compute the slope
coefficients for each group  ∈ G

̂
()
 =

Ã
X
=1

X
=1

1(
()
 = )̃(

()
 )̃(

()
 )

0
!−1 X

=1

X
=1

1(
()
 = )̃(

()
 )̃

Step 3 Compute for all  ∈ {1     },


(+1)
 = argmin

∈G

X
=1

[̃ − ̃(
()
 )

0̂
()
 ]

2

Step 4 Set  = + 1. Repeat Steps 1-3 until numerical convergence.

The above algorithm is similar to Algorithm 1 in Bonhomme and Manresa (2015, BM here-

after) and it alternates among three steps. Steps 1 and 2 are the “update” steps where one updates

the estimates of the threshold parameter and those of the slope coefficients in turn. Step 3 is an

“assignment” step where each individual  is re-assigned to the group 
(+1)
  The objective func-

tion is non-increasing in the number of iterations and we find through simulations that numerical

convergence is typically very fast. Nevertheless, it is hard to ensure that the obtained solution is

globally optimal because it depends on the chosen starting values. In practice, one can start with

multiple random starting values and select the solution that yields the lowest objective value.

3 Asymptotic Theory

In this section, we study the asymptotic properties of the estimators of the group structure, slope

and threshold parameters. We first show the consistency of the group structure estimator and then

establish the asymptotic properties of the estimators of the slope and threshold coefficients.

3.1 The estimator of the group structure

We establish the consistency of the group structure estimator in this subsection. Let F ≡
({(  −1) (−1 −1 −2) }=1) where  () denotes the minimal sigma-field gener-
ated from  Let  = (1   )

0  = (1   )0 and  = (1   )
0. We use  to denote

the number of individuals belonging to group  :  =
¯̄
G0



¯̄
. That is,

¯̄
G0



¯̄
denotes the cardinality

of G0
 For any group structure G, let

 ( ̃DG) ≡ 1



X
=1

X
=1

1(0 = )1( = ̃)̃(̃)̃(̃)
0

Let 0    ∞ denote a generic constant that may vary across places. Let max = max1≤≤ 
max = max1≤≤ and max = max1≤≤ max1≤≤  We first make the following assumptions.
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Assumption A.1: (i.1) For each  = 1   ,  = 1   , (|F−1) = 0 a.s., or (i.2) for each
 = 1   ,  = 1   , (| ) = 0 a.s.;

(ii) {(  ) :  = 1 2   } are mutually independent of each other across ;
(iii) The process {(  )   ≥ 1} is a strong mixing process with mixing coefficients []

satisfying max1≤≤ [] ≤ 
 for some constants   0 and  ∈ (0 1).

(iv) The parameter space B and Γ are compact so that sup∈B kk ≤  and Γ= [ ];

(v) max kk8+0 ≤  and max(kk8+0) ≤  for some 0  0;

(vi) The threshold effect satisfies 0 = ( )−0 for some constants  ∈ (0 12) and 0 6= 0
for all  ∈ G.
Assumption A.2: There exists a constant   0 such that for all  ∈ G,

Pr

µ
inf

(GD)∈G×Γ
max
̃∈G

{min[ ( ̃DG)]}  

¶
→ 1 as ( )→ 1

Assumption A.3: (i) For all  ̃ ∈ G with  6= ̃, we have
°°0 − 0̃

°°   for some constant

  0;

(ii) For any  6= ̃ and 1 ≤  ≤  , we have [̃0(
0
̃ − 0)]

2 ≡ ̃ ≥ ̃ for some constant

̃  0;

(iii) For all  ∈ G : lim→∞ =   0

(iv)  = ( 2) and  = (2) as ( )→∞

Assumption A.1(i)—(iii) is similar to Assumption A.2(a)—(c) in Su and Chen (2013). The major

differences lie in four aspects. First, Su and Chen (2013) consider linear panel data models with

interactive fixed effects and the sigma-field F there also incorporates the factors and factor

loadings, whereas we consider the panel threshold regression models with a latent group structure

and the additive fixed effects. Second, Su and Chen (2013) only consider Assumption A.1(i.1)

and allow for lagged dependent variables to appear in the regressor vector. Here we consider both

scenarios in Assumption A.1(i): the martingale difference sequence (m.d.s.) condition in A.1(i.1)

and the strict exogeneity condition in A.1(i.2), where we allow for dynamic panels in the first

scenario and assume strict exogeneity in the second scenario. In the second scenario, we allow for

serial correlation of an unknown form in the error term. When A.1(i.1) holds, we have asymptotic

biases for the estimators of the slope coefficients. When A.1(i.2) holds and serial correlation is likely

to appear, we have to use the HAC estimator for the asymptotic variance of the slope estimators.

Third, due to the potential appearance of the lagged dependent variables in the regression model,

Su and Chen (2013) use the notion of conditional strong mixing for the process while we focus on

the case of unconditional strong mixing in our model in Assumption A.1(iii). In other words, we

follow Hahn and Kuersteiner (2011) and treat the fixed effects ’s to be nonrandom in our setting

in the dynamic case. If ’s are random, we can modify the unconditional strong mixing conditions

to the conditional strong mixing conditions as in Su and Chen (2013). Fourth, Su and Chen (2013)

assume conditional cross-sectional independence whereas we assume cross-sectional independence

in Assumption A.1(ii).
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A.1(iv) is imposed to facilitate the proof as we do not have closed form solutions to our op-

timization problem. Assumption A.1(v) imposes some moment conditions on the regressors and

error terms, which are weaker than the exponential tail assumption in BM (2015). Assumption

A.1(vi) assumes shrinking threshold effect as in Hansen (2000). In this framework, the asymptotic

distribution of the estimator of  is pivotal up to a scale effect, which facilitates the inference pro-

cedure. In part E of the online supplement we study the asymptotic properties of our estimators in

the fixed threshold effect framework. In the latter case, the inference becomes difficult in practice

and one can consider extending the smoothed least squares estimation of Seo and Linton (2007) to

our PSTR model.

Assumption A.2 is similar to Assumption 1(g) in BM (2015). Given any conjectured group

structure G and for each  ∈ G, we cannot assume min[ ( ̃DG)]   for any ̃ ∈ G due
to the possibility of very few individuals assigned to be in group ̃. However, there exists some

group ̃ ∈ G, in which a positive proportion of  members are assigned. As BM (2015) remark,

such an assumption is reminiscent of the full rank condition in standard regression models.

Assumption A.3(i) and (iii) parallels Assumption A1(vi)—(vii) in Su, Shi, and Phillips (2016,

SSP hereafter). A.3(i) requires that the group-specific slope coefficients be separated from each

other, and it can be relaxed to allow the differences between the group-specific slope coefficients

to shrink to zero at some slow rates at the cost of more lengthy arguments. It is worth em-

phasizing that the latent group structure is identified through the separation of group-specific

slope coefficients and we find that the potential separation of the threshold parameters is not

necessary; see the remarks after Theorem 3.1 for futher discussions. A.3(iii) implies that each

group has an asymptotically non-negligible proportion of individuals as  → ∞. Noting that
[̃0(

0
̃ − 0)]

2 = (0̃ − 0)
0(̃̃0)(

0
̃ − 0) A.3(ii) is automatically satisfied under A.3(i) pro-

vided that the minimum eigenvalue of (̃̃
0
) is bounded away from zero. Apparently,  cannot

contain time-invariant regressors under Assumption A.3(ii). Assumption A.3(iv) puts some restric-

tions on the relative magnitudes of  and  which can be easily met in many macro and financial

applications. If we follow BM (2015) and assume exponentially-decaying tails, we can relax the

conditions on ( ) to   → 0 as ( ) → ∞ for some   0 If we follow Vogt and Linton

(2019) and consider the pathwise asymptotics by setting  = ( ) for some divergent function (·)
and passing  →∞. Then Assumption A.3(iv) can be satisfied when ( ) 2+( )2 converges

to some nonnegative finite constant as  →∞.
The following theorem reports the consistency of the estimators of the group membership for

all individuals.

Theorem 3.1 Suppose that Assumptions A.1—A.3 hold. Then

Pr

Ã
sup
1≤≤

1(̂ 6= 0 ) = 1

!
→ 0 as ( )→∞

Theorem 3.1 is similar to Theorem 2 of BM (2015). This theorem states that as ( )→∞,
we can correctly estimate the group structure with probability approaching one (w.p.a.1). From
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the proof of the above theorem, we can see that the identification of the true group structure highly

hinges on Assumption A.3(i). In particular, since we permit 0 = 0 → 0 as ( )→∞ under

the shrinking-threshold-effect framework, the proof of Theorem 3.1 mainly relies on the differences

of 0’s across groups. In this case, as long as the slope coefficients in one regime are separate

from each other across the  groups, they are also separate from each other asymptotically in the

other regime and whether the threshold parameters in different groups differ from each other does

not matter. In other words, the threshold parameters do not need to separate from each other.

In the online Supplementary Material, we give a proof of Theorem 3.1 under the fixed-threshold-

effect framework. We show that in that case, either the separation among 0’s or that among 
0
’s

is sufficient for identifying the latent group structure under some regularity conditions. To stay

focused, we will work in the shrinking-threshold-effect framework below.

3.2 The estimators of the slope and threshold coefficients

Given the fact that the latent group structure can be recovered from the data at a sufficiently fast

rate (see Lemma A.3 in the appendix), we will show that the estimators of the slope and threshold

coefficients are asymptotically equivalent to the infeasible estimators that are obtained as if the

true group structure were known. Then we derive the asymptotic distributions of the coefficient

estimators.

To establish the asymptotic equivalence, we add some notation. Let ̃( 
∗) = ̃()−̃(∗).

Let (·) denote the probability density function (PDF) of . For all  ∈ G, define

() =
1



X
∈G0



X
=1

̃()̃()
0

̃() =
1



X
∈G0



X
=1

̃( 
0
)̃( 

0
)
0

− 1



X
∈G0



X
=1

̃( 
0
)̃()

0 [()]
−1 1



X
∈G0



X
=1

̃()̃( 
0
)
0

 () =
1



X
∈G0



X
=1

[
0
()]

 () =
1



X
∈G0



X
=1

(
0
| = )() and

 () =
1



X
∈G0



X
=1

(
0

2
| = )()

Let () = lim( )→∞ (), () = lim( )→∞ (), () = lim( )→∞  (),

0
 = (

0
) and  0 = (

0
). We add the following two assumptions.
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Assumption A.4: (i) There exists a constant   0 such that Pr (min∈Γ min [()] ≥ ) → 1

as ( )→∞ for all  ∈ G;
(ii) There exists a constant   0 such that min∈Γ

©
Pr(min[̃()] ≥  min[1

¯̄
 − 0

¯̄
])
ª→ 1

as ( )→∞ for each  ∈ G
Assumption A.5: (i) max∈Γmax(kk4 | = ) ≤  for  =  and ;

(ii) () is continuous over Γ and max sup∈Γ () ≤  ∞

(iii) For  ∈ G, () and () are continuous at  = 0;

(iv) There exists a constant   0 such that inf∈Γ min[()] ≥  for all  ∈ G.
Assumption A.4(i) is a non-colinearity assumption for the regressors and A.4(ii) holds because

 k()− (
∗)k ³ | − ∗| under some regularity conditions on { }  where  ³  means

and both  and  are bounded away from zero. It’s natural to expect that the first term in the

definition of ̃() is of the same probability order as
¯̄
 − 0

¯̄
. A.4(ii) requires that after projecting

̃( 
0
) onto ̃(), the associated residual exhibits the same probability order of variations

groupwise. Assumption A.5 imposes some conditions on the conditional PDF and moments of

 and . A.5(i) requires that the fourth order conditional moment of  and  be well

behaved; A.5(ii) requires that the PDF of  be uniformly bounded; A.5(iii)—(iv) requires the

probability limits of some quantities associated with the asymptotic variance be well behaved.

To state the next theorem, we define the infeasible estimators of the slope and threshold coef-

ficients that are obtained with known group structures:

(Θ̌ Ď) ≡ argmin
(ΘD)∈B×Γ

Q̌(ΘD) (3.1)

where Q̌(ΘD) ≡ Q(ΘDG0) With the knowledge of the true group structure G0, we can split

the  individuals into  groups perfectly and estimate the group-specific parameters for each

group. Let Q̌( ) =
P

∈G0


P
=1[̃ − ̃()

0]2. Then we have

Q̌(ΘD) =
X
=1

Q̌( ) and (̌ ̌) = argmin
()∈B×Γ

Q̌( ) for each  ∈ G

The following theorem establishes the asymptotic equivalence between the feasible estimator (Θ̂ D̂)

and the infeasible estimator (Θ̌ Ď)

Theorem 3.2 Suppose that Assumptions A.1—A.5 hold with  ∈ (0 13) in Assumption A.1(vi).
Let  = ( )1−2 Then we have ( )12

°°°Θ̂− Θ̌°°° → 0 and  (D̂− Ď) → 0

Theorem 3.2 shows that Θ̂−Θ̌ = (( )−12) and D̂−Ď = (
−1
 ) by restricting  ∈ (0 13)

in Assumption A.1(vi). Under Assumptions A.1—A.5, we can show that Θ̌−Θ0 = (( )−12 +
−1) and Ď has  -rate of convergence. Therefore, the estimator (Θ̂ D̂) has the same asymptotic

distribution as that of (Θ̌ Ď). Then we can establish the asymptotic distribution of our least squares

estimator.
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To report the asymptotic distributions of ̂ and ̂ , we add some notation:

 ( 
∗) ≡ 1



X
∈G0



X
=1

̃()̃(
∗)0

Ω1( 
∗) ≡ 1



X
∈G0



X
=1

̃()̃(
∗)02

Ω2( 
∗) ≡ 1



X
∈G0



X
=1

X
=1

̃()̃(
∗)0 and

B () ≡ 1



X
∈G0



X
=2

X


 [()] 

Assumption A.6: (i) For each  ∈ G, the following probability limits exist and are finite:
( 

∗) = plim( )→∞  ( 
∗) Ω( ∗) = plim( )→∞Ω( 

∗) for  = 1 2, and

B() = lim( )→∞ B ()

(ii)  ( 
∗) → ( 

∗) and Ω( 
∗) → Ω( ∗) for  = 1 2 uniformly in  ∗ ∈ Γ

Assumption A.6 imposes some conditions on the probability limits of random quantities that are

associated with the asymptotic variance and bias of Θ̂. Here, we follow Hansen (2000) and assume

directly that  and Ω for  = 1 2 converge uniformly to some limits. The uniformity

greatly facilitates the proofs of Theorem 3.3 below.

We establish the asymptotic distribution of our estimators in the following theorem.

Theorem 3.3 Suppose that Assumptions A.1—A.6 hold with  ∈ (0 13) in Assumption A.1(vi).
Let  = ( )

1−2, 0 = (
0
 

0
) B0 = B(0) and Ω0 = Ω(0 0) for  = 1 2 Then

for each  ∈ G
(i)
p
 (̂ − 0)− (0)−1

q



B0

→ N (0 (0)−1Ω01(0)−1) under Assumption A.1(i.1) andp
 (̂ − 0)

→ N (0 (0)−1Ω02(0)−1) under Assumption A.1(i.2);
(ii)  (̂ − 0)

→ T where  =
00  0

 
0


(00 0


0
 )
2  T = argmax ∈

£−12 ||+()
¤
 and

(·)  ∈ G, are mutually independent two-sided Brownian motions.

Theorem 3.3 establishes the asymptotic distributions of the estimators of the slope and threshold

coefficients. Note that we strengthen Assumption A.1(vi) slightly to require  ∈ (0 13). From the
proof of Lemma A.7 that is used in the proof of the above theorem, we can easily find that such

an extra condition is not needed if we only consider the case where  →  for some  ∈ (0∞)
When we allow for dynamics in Assumption A.1(i.1), the estimator ̂ of the group-specific

slope coefficient 0 exhibits a bias term to be corrected as in standard dynamic panels. One can

conduct the bias correction by estimating 0 and B0 consistently by

̂ ≡ 1

̂

X
∈Ĝ

X
=1

̃(̂)̃(̂)
0 and B̂ =

1

̂

X
∈Ĝ

X
=2

X


(̂)̂

12



where ̂ =
¯̄̄
Ĝ

¯̄̄
denotes the cardinality of Ĝ Ĝ ≡ { : ̂ = } for  ∈ G, and ̂ = ̃ −

̃(̂)
0̂ Similarly, it is easy to show that a consistent estimator of the asymptotic variance of ̂

in this case is given by ̂−1 Ω̂1̂
−1
  where Ω̂1 =

1
̂

P
∈Ĝ

P
=1 ̃(̂)̃(̂)

0̂2When ( )

is strictly exogenous in Assumption A.1(i.2), we allow for serial correlation in the error terms. In

this case, we propose to estimate the asymptotic variance of ̂ by ̂−1 Ω̂2̂
−1
  where Ω̂2 is a

panel heteroskedasticity and autocorrelation consistent (HAC) estimator:

Ω̂2 =
1

̂

X
∈Ĝ

"
Λ̂0 +

X
=1

(Λ̂ + Λ̂
0
)

#


where  = 1−||    satisfies 1+3 → 0 as  →∞ and Λ̂ =
1


P
=+1 ̃(̂)̃−(̂)

0

×̂̂− Following Su and Jin (2012) and the results in Theorems 3.2—3.3, we can show that Ω̂2
and ̂−1 Ω̂2̂

−1
 are consistent estimators of Ω02 and (

0
)
−1Ω02(0)−1 respectively.

Theorem 3.3(ii) indicates that the asymptotic distribution of ̂ is pivotal up to a scale parameter

, which is similar to that given by Theorem 1 in Hansen (2000). It is well known that this

result highly relies on the assumption that the threshold effect converges to zero as ( ) →
∞ Under the fixed-threshold-effect framework ( = 0), it is possible to demonstrate  (̂ −
0) =  (1) but the asymptotic distribution of ̂ will not be asymptotically pivotal even after

appropriate normalization. In addition, it is well known that the above scale parameter  cannot

be consistently estimated. To make inference on the threshold parameters, we propose to apply

the likelihood ratio test in the next section.

4 Inference on the Threshold Parameter

In this section, we consider inference on the threshold parameter D = (1  )
0. We consider

three cases. The first case is to test the null hypothesis on the threshold parameter  for a single

group  ∈ G :
01 :  = 0 for some 

0
 ∈ Γ

Next, we consider testing the homogeneity of the threshold parameters:

02 : 
0
1 =  = 0 = 0 for some 0 ∈ Γ

If one fails to reject the hypothesis of common threshold parameter for all groups, one can estimate

the model with a common threshold parameter, , say. Then we can study the inference on the

common threshold parameter

03 :  = 0 for some 0 ∈ Γ

4.1 Likelihood ratio test for a single 

To test the null hypothesis 01 :  = 0, a standard approach is to use the likelihood ra-

tio (LR) test. If we know the true group structure, the likelihood ratio test statistic can be

13



constructed as in Hansen (2000). In our framework, we need to construct the test statistic

based on the estimated group structure {Ĝ  ∈ G}. Let ̄() ≡ argmin∈B Q̄( ), where

Q̄( ) ≡
P

∈Ĝ

P
=1 [̃ − ̃()

0]2  We follow the lead of Hansen (2000) and propose to em-
ploy the following LR test statistic for  :

L () ≡ ̂
Q̄(̄() )− Q̄(̂ ̂)

Q̄(̂ ̂)


The major difference is that we consider the minimization of Q̄( ) instead of the infeasible

version Q̌( ). In the proof of Theorem 4.1 below, we show that Q̄( ) and Q̌( ) are

asymptotically equivalent so that we can study the asymptotic distribution of the LR test statistic

based on the minimization of the infeasible objective function.

For each  ∈ G, let 2 =lim( )→∞ 1


P
∈G0



P
=1(

2
),  = 00  0 0 and  =

00 0


0
 . Let 

2 =lim( )→∞ 1


P
=1

P
=1(

2
) The following theorem establishes the as-

ymptotic null distribution of the above LR test statistic.

Theorem 4.1 Suppose that Assumptions A.1—A.6 hold with  ∈ (0 13) in Assumption A.1(vi).
Then under 01 :  = 0, we have

L (
0
)

→ 2 for each  ∈ G

where 2 =


2
and  = max∈[2() − ||] has the distribution function characterized by

Pr( ≤ ) = (1− −2)2.

Theorem 4.1 indicates that the asymptotic distribution of the LR test statistic constructed from

the estimated group structure is asymptotically equivalent to that of the infeasible test statistic

obtained from the true group structure. Now, we still have a nuisance parameter 2. In the special

case where we have conditional homoskedasticity along both the cross-section and time dimensions,

2 = 1 and the LR statistic is asymptotically free of any nuisance parameter. If heteroskedasticity

is suspected, then we need to estimate 2 consistently. Noting that

2 =
plim( )→∞ 1



P
∈G0



P
=1[(

00
 )

2| = 0]
¡
0
¢

2plim( )→∞ 1


P
∈G0



P
=1[(

00
 )

2| = 0]
¡
0
¢ 

we propose to estimate 2 by

̂2 =

P
∈Ĝ

P
=1(̂ − )(̂

0
̂)

2

̂2
P

∈Ĝ

P
=1(̂ − )(̂

0
)

2


where ̂2 = Q̃(̂ ̂)(̂ ) () = −1() → 0 is the bandwidth parameter and  (·)
is a kernel function. We can readily show that ̂2 = 2 +  (1) and ̂2 = 2 +  (1) under some
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standard weak conditions on  and  (·)  Given the consistent estimate of 2 we can consider the
normalized LR statistic

NL (
0
) = L (

0
)̂

2


We can easily tabulate the asymptotic critical value forNL (
0
)We can also invert this statistic

to obtain the asymptotic 1−  confidence interval for  :

1− =
©
 ∈ Γ : NL ≤ 1−

ª


where 1− denotes the 1− percentile of  For example, 1− = 594 735, and 1059 for  = 010
005, and 001, respectively.

4.2 Test for a common threshold parameter

In applications, it is likely that all individuals share a common threshold parameter, although their

slope coefficients may still vary across groups. In this case, estimating the model with the common-

threshold restriction imposed improves the asymptotic efficiency of the threshold estimator. Thus

motivated, one may wish to test the homogeneity of the threshold parameter prior to estimation.

In this section, we consider testing the null hypothesis

02 : 
0
1 =  = 0 = 0 for some 0 ∈ Γ

Let D = {D = (  )0  ∈ Γ} ⊆ Γ be the restricted parameter space and D ≡
(  )0 ∈ D. Then the null hypothesis can be equivalently rewritten as 02 : D

0 ∈ D. We can

estimate the model by restricting D ∈D under 02 :

(Θ̂ D̂ Ĝ) = argmin
(ΘDG)∈B×D×G

Q(ΘDG)

Then we can construct the LR test statistic by

L = 
Q(Θ̂ D̂ Ĝ)−Q(Θ̂ D̂ Ĝ)

Q(Θ̂ D̂ Ĝ)


The following theorem studies the asymptotic distribution of L under 02

Theorem 4.2 Suppose that Assumptions A.1—A.6 hold with  ∈ (0 13) in Assumption A.1(vi).
Under the null hypothesis 02 : D

0 ∈ D, we have

L
→

X
=1

̃2max
∈

[2()− ||]−max
∈

⎡⎣ X
=1

̃2
¡
2()−

¯̄

¯̄¢⎤⎦ ≡ Ξ

where  =

1

̃
2
 and ̃2 =  (

2).
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Theorem 4.2 indicates that the limiting distribution Ξ of L involves two sets of nuisance

parameters, viz, ̃2 and  for  ∈ G. Under conditional homoskedasticity, we have ̃2 = 1 for each
. If heteroskedasticity is suspected, then we need to estimate ̃2 consistently. If  is homogeneous

across , we do not need to estimate it. However,  is generally not homogeneous across  and we

need to estimate it via estimating ̃2

1

 and . Using Theorem 3.1, it is easy to show that a

consistent estimator of  is given by ̂ = ̂ Noting that ̃2 =
2
2
2 and



1
=
plim( )→∞ 1



P
∈G0



P
=1[(

00
 )

2| = 0]
¡
0
¢

plim( )→∞ 1
1

P
∈G0

1

P
=1[(

00
1 )

2| = 0] (0)


we propose to estimate ̃2 and

1

respectively by

b̃2 = ̂2
̂2

̂2
and

̂

̂1
=

1
̂

P
∈Ĝ

P
=1(̂ − )(̂

0
)

2

1
̂

P
∈Ĝ1

P
=1(̂1 − )(̂

0
1)

2


where ̂2 = 1


P
=1

P
∈Ĝ

P
=1[̃− ̃(̂)0̂]2 It is easy to show that the above estimators are

consistent under standard conditions and a consistent estimator of  is given by ̂ =
̂
̂1

̂b̃2 To
find out the -value, we can simulate the asymptotic distribution with these estimates. Basically, we

can simulate  independent two-sided Brownian motions (·)’s and construct the corresponding
statistic where the nuisance parameters are replaced with their consistent estimates. Simulating a

large number of times, we can mimic the asymptotic distribution sufficiently well. Then, we can

reject the null hypothesis at the prescribed  level, if the test statistic is larger than 1− quantile

of the simulated distribution.

4.3 Likelihood ratio test for a common threshold parameter

Suppose we have common threshold parameters, we can use the restricted estimator (Θ̂ D̂ Ĝ)

defined in the last subsection. Even in this case, the estimators of the group-specific slope coef-

ficients share the same asymptotic distribution as the unrestricted estimators studied in the last

section due to the asymptotic independence between the estimators of the slope coefficients and

that of the threshold parameter.

To make inference on the common threshold parameter , we also consider an LR test for

03 :  = 0 The LR test statistic is now defined by

L () = 
Q(Θ̂(D  Ĝ)D Ĝ)−Q(Θ̂ D̂ Ĝ)

Q(Θ̂ D̂ Ĝ)


where Θ̂(D  Ĝ) is defined as in Section 2.1 and the superscript  is an abbreviation for “com-

mon”. Note that 03 :  = 0 can be equivalently rewritten as 03 : D
0 = D0 

The next theorem establishes the asymptotic distribution of L () under 03
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Theorem 4.3 Suppose that Assumptions A.1—A.6 hold with  ∈ (0 13) in Assumption A.1(vi).
Under the null 03 : D

0 = D0 , we have

L (
0)

→ 2max
∈

[ ()− ||] 

where 2 =
³P

=1 

´

³
2
P

=1 

´


Like before, we can estimate the nuisance parameter 2 consistently by the nonparametric

estimator:

̂2 =

P
=1

P
=1(̂ − )(̂

0
̂
̂)

2

̂2
P

=1

P
=1(̂ − )(̂

0
̂
)2



where ̂ is the estimator of the common threshold parameter  under 02, () = −1()
→ 0 is the bandwidth parameter and  (·) is a kernel function.

5 Test for the Presence of Threshold Effect

In application, one may suspect that a set of groups do not have the threshold effect. In this case,

we can verify the existence of threshold effects for  ≤  groups by testing the null hypothesis

H0 : 01 =  = 0 = 0

versus the alternative hypothesis H1 : 0 6= 0 for some  ∈ G where G ≡ {  = 1  } ⊂ G.
To study the local power of our test, we consider the following sequence of Pitman local alternatives

H1 : 
0

= 

√
 for  ∈ G

Let c ≡ (01  0 )0 and L ≡ (1    )0⊗ where ⊗ denotes Kronecker product,  ≡ [0×   ]
and  is a  × 1 vector with th entry being 1 and other entries equal to zero. Then we can

rewrite the null and local alternative hypotheses respectively as

H0 : LΘ0 = 0×1 and H1 : LΘ0 = c
√


Note that c = 0×1 corresponds to the null hypothesis of no threshold effects and we allow 0
for  ∈ G to shrink to zero at the ( )−12-parametric rate under the local alternative. Under
H1 , the early estimators of Θ

0 and G0 continue to be consistent with any D ∈ Γ despite the
fact that we cannot identify D0.

As we do not know the true group structure, we need to rely on the estimated group structure Ĝ.

For any fixed D and a preliminary estimate of group structure Ĝ, we can obtain the bias-corrected

estimator Θ̄bc(D Ĝ) = (̄
bc
1 (1)

0   ̄bc ()
0)0 Let

Π̂ = diag(̂1  ̂)⊗ 2 and K̂ (D) = Lω̂(D)−1Ω̂(D)ω̂(D)−1L0
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where

ω̂(D) =

⎡⎢⎢⎣
̂1(1 1)

. . .

̂( )

⎤⎥⎥⎦ and Ω̂(D) =

⎡⎢⎢⎣
Ω̂11(1 1)

. . .

Ω̂1( )

⎤⎥⎥⎦ 
We can construct the sup-Wald test statistic W = supD∈Γ  (D), where

 (D) =  · Θ̄bc(D Ĝ)0Π̂12L0
³
K̂ (D)

´−1
LΠ̂12Θ̄bc(D Ĝ)

Let  () =
1√


P
∈G0



P
=1{() − 1



P
=1[()]}. Let () be a zero mean

Gaussian process with covariance kernel Ω( 
∗) Let K(D) = Lω(D)−1Ω(D)ω(D)−1L0 S(D) =

Lω(D)−1S(D), S(D) = (1(1)0  ()0)0, andQ(D) = Lω(D)−1Q(D)Π12L0, whereΠ =diag(1
 )⊗ 2 ,

Q(D) =

⎡⎢⎢⎣
1(1 

0
1)

. . .

( 
0
)

⎤⎥⎥⎦ , Ω(D) =
⎡⎢⎢⎣
Ω11(1 1)

. . .

Ω1( )

⎤⎥⎥⎦  and

ω(D) =

⎡⎢⎢⎣
1(1 1)

. . .

( )

⎤⎥⎥⎦ 
To state the next theorem, we add one assumption.

Assumption A.7: For each  ∈ G  ()⇒ () on the compact set Γ where⇒ denotes the

usual weak convergence.

The following theorem establishes the asymptotic distribution of our sup-Wald test statistic

under H1 

Theorem 5.1 Suppose that Assumptions A.1(i.1) and (ii)—(v), and A.2—A.7 hold. Then under

H1 : LΘ0 = c
√
 , we have

W
→ sup
D∈Γ

 c (D) 

where  c (D) =
£
S(D) +Q(D)c

¤0
[K(D)]−1

£
S(D) +Q(D)c

¤
.

Under H0, c = 0 and 0 ≡ supD∈Γ  0(D) = supD∈Γ S(D)0 [K(D)]
−1 S(D). Clearly, the

limiting null distribution of W depends on the Gaussian process S(D) and is not pivotal. We

cannot tabulate the asymptotic critical values for the above sup-Wald statistic. Nevertheless, given

the simple structure of S(D) we can follow the literature (e.g., Hansen 1996) and simulate the

critical values via the following procedure:

1. Generate {  = 1    = 1  } independently from the standard normal distribution;
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2. Calculate Ŝ (D) =
1√
̂

P
∈Ĝ

P
=1 ̃()̂();

3. Compute W∗
 ≡ supD∈Γ Ŝ(D)0ω(D)−1L0[K̂ (D)]

−1Lω̂(D)−1Ŝ(D);

4. Repeat Steps 1—3  times and denote the resulting W∗
 test statistics as W∗

 for  =

1  

5. Calculate the simulated/bootstrap -value for the W test as 
∗
 = 1



P
=1 1{W∗

 ≥
W} and reject the null when ∗ is smaller than some prescribed level of significance.

The above discussion was based on the m.d.s. condition in Assumption A.1(i.1). If we con-

sider the case of static panels such that Assumption A.1(i.2) holds, then the covariance kernel

is given by Ω( 
∗) = lim( )→∞ 1



P
∈G0



P
=1

P
=1[̃()̃(

∗)0] for  ∈ G. Now,
the above simulation procedure needs to be modified because Ŝ (D) constructed in Step 2 will

not mimic the Gaussian process S(D) in this case. Instead of generating the independently and

identically distributed (i.i.d.) standard normal random variables {} in Step 1, we can gener-
ate  = (1   )

0 independently from a zero mean multivariate normal distribution with the

variance-covariance matrix Σ = {} given by  = [1− (|− |  )]1 (|− | ≤  ) for some 

such that 1 + 3 → 0. Then



h
Ŝ (D)Ŝ (D)

0
i
=

1

̂

X
∈̂

X
=1

X
=1

(
− 


)̃()̃()̂()̂()

where (·) denotes the expectation conditional on the sample  ≡ {  ,  = 1    =

1  } and  () = [1− ||  ]1 (|| ≤  ). Apparently, [Ŝ (D)Ŝ (D)
0] converges in

probability to Ω( ) and the modified simulation procedure will generate statistics that follow

the same asymptotic distribution as that of W .

In practice, we frequently consider testing the presence of threshold effects in all  groups, that

is, testing H0 : 01 =  = 0 = 0 In this case, L =  ⊗  and we can readily rewrite our Wald

statistic W as

W = sup
(1)∈Γ

X
=1



¡

¢ ≡Wsum

 

where 

¡

¢
= ̂ · ̄bc

¡

¢0
[K̂ ()]

−1̄bc
¡

¢
 K̂ () = ̂( )

−1Ω̂1( )
×̂( )−10 and ̄

bc


¡

¢
= ̄

bc


¡

¢
 Here, 

¡

¢
is the Wald statistic used for testing

whether 0 = 0 for the th group. For this reason, we can also refer to W as a sup-sum-type of

Wald statistic (Wsum
 ). Alternatively, we can also consider a sup-sup-type of Wald statistic:

Wsup
 = sup

1≤≤
sup
∈Γ



¡

¢


Following the proof of Theorem 5.1, we can readily find the limiting null distribution of Wsup
  As

before, when we allow for serial correlation in the error terms, we should use Ω̂2 in place of Ω̂1

and modify the simulation procedure correspondingly to obtain the simulated -values. We will

compare the performance of Wsum
 with that of Wsup

 via simulations in Section 7.
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6 Determining the Number of Groups

In practice, the true number of groups 0 is typically unknown. In this case, we can consider a

BIC-type information criterion (IC) to determine the number of groups. Following BM (2015) and

SSP (2016), we consider the following IC:

() = ln(̂2()) +  (6.1)

where ̂2() = ( )−1Q(Θ̂() D̂() Ĝ()) where we make the dependence of Θ̂ D̂ Ĝ on the

group number  explicit, and  is a tuning parameter that plays the role of ln( )( ) in

the standard BIC for linear panel data models. The estimated number of groups is given by

̂ = argmin
∈{1max}

()

where max is an upper bound for 
0 that does not grow with ( )  Following the arguments in

SSP (2016), we can readily show that Pr(̂  0) → 0 provided  =  (1) under the standard

condition that ̂2()
→ 2()  2 whenever   0. This implies that ̂ ≥ 0 w.p.a.1. As in

BM (2015), it is difficult to further show that Pr(̂ = 0) → 1 as ( ) → ∞ without further

restrictions given the use of the K-means-type iterative algorithm in our estimation procedure.

On the other hand, if we require each estimated group should contain a minimum proportion 

of individuals (e.g.,  = 005),1 then we can show that when   0 the threshold parameters and

slope coefficients can also be estimated consistently and it is possible to show that ̂2()−̂2(0) =
(

−1) under some conditions stated in the online supplement. In this case, a choice of  such

that  ·  → ∞ as ( )→ ∞ would help to eliminate the over-selected model. Then we can

prove the following theorem.

Theorem 6.1 Suppose that Assumptions A.1—A.5 hold. Suppose that Assumptions D.1-D.2 in the

online supplement holds. Then Pr(̂ = 0)→ 1 as ( )→∞

Theorem 6.1 shows that the use of the IC helps to determine the correct number of groups

w.p.a.1. SSP and Liu et al. (2018) propose a similar IC to ours. SSP also require that  → 0

and  → ∞ as ( ) → ∞ for general nonlinear models but remark that this condition can

be relaxed substantially for linear panel data models. In contrast, Liu et al. (2018) require that

 → 0 and 
1

2(1+) → ∞ for some   0 which is much stronger than our requirement on

  The main reason is that they consider general nonlinear regression models and do not explore

the properties of their objective function. They suggests using the tuning parameter  ³ −14,
which satisfies our theoretical requirement but tends to be too large to be useful in practice. In the

simulations in the next section, we find that by setting  = 01 ln ( )  the above IC works

fairly well in determining the true number of groups.

1 If a group contains less than bc members, the members in this group can be merged into other groups.
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7 Monte Carlo Simulations

In this section we evaluate the finite sample performance of our tests and estimates via a set of

Monte Carlo experiments.

7.1 Data generation processes

We consider three main cases. The first two cases concern static panels with different error struc-

tures, and the third case examines the dynamic panel. In each case, we consider two subcases that

differ regarding whether the threshold value is group specific or common across individual units.

Thus, we have six data generating processes (DGPs) in total.

DGP 1: We generate the data from the following static panel structure model:

 =  + 11( ≤ ) + 21(  ) +  (7.1)

where  = −1
P

=1 , and we generate  from an i.i.d. standard normal distribution. The

slope coefficient vector  = (
0
1  

0
2)

0 has a group pattern of heterogeneity with the number of
groups  = 3, and it is specified as

(11 12 13) = (1 175 25) and (21 22 23) = (1 175 25) + 1( )−01

where 1 controls the size of the threshold effect and we set 1 = 1 if not especially mentioned. Let

 be the proportion of units in group  for  = 1 2 3, and we fix the ratio of units among groups

such that 1 : 2 : 3 = 03 : 03 : 04. The threshold variable  follows i.i.d. (1 1). The error

term  is heteroskedastic, generated as  = , where  = (+ 01
2
)
12, with  controlling

for the signal-to-noise ratio, and  ∼ i.i.d. (0 1). We set  = 05, leading to 2 of about 0.85.
Let D = (1 2 3)

0. We consider two subcases: group-specific and homogeneous threshold value,
i.e.

DGP 1.1 : D = (05 1 15)0 DGP 1.2 : D = (1 1 1)0

DGP 2: This is the same as DGP 1 except that the error term is generated from an autoregressive

process,

 = 04−1 +   ∼ i.i.d. (0 1)

As above, we consider two subcases, with group-specific and homogeneous threshold values, and

we label these two subcases DGP 2.1 and DGP 2.2, respectively.

DGP 3: In this case, we consider dynamic panel data models,

 =  + (1  1)1( ≤ ) + (2  2)1(  ) +  (7.2)

where  = (−1 )0 and  = −1
P

=1 . The slope coefficient of −1 is set as

(11 12 13) = (02 04 06) and (21 22 23) = (02 04 06) + 2( )−01
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with 2 = 14 if not especially mentioned. The slope coefficient  , the threshold variable , and

the error term  are all generated in the same manner as that in DGP 1. We likewise consider

two subcases with different types of threshold values, and we label them DGP 3.1 and DGP 3.2.

For each DGP, we consider two cross-sectional sample sizes,  = (50 100), and two time series

periods,  = (30 60), leading to four combinations of cross-sectional and time series dimensions.

The number of replications is set to 1000 for the estimation and 500 for the hypothesis testing.

7.2 Determining the number of groups

As both of our testing and estimation procedures require specifications of the number of groups,

we first examine the accuracy of the IC in determining the number of groups, measured by the

empirical probability of selecting a particular number. The proposed IC is calculated by assuming

the presence of the threshold effect. Nevertheless, researchers typically do not have prior knowledge

of the existence of the threshold effect, and tests for the threshold effect in turn require the input

of the number of groups. Therefore, we examine the performance of IC for the PSTR model in

both scenarios with and without the threshold effect (1 = 1 and 2 = 14 in the former case and

1 = 2 = 0 in the latter). In practice, we need to choose an appropriate  for the information

criterion. We experiment with many alternatives and find that  = 01 ln( ) works fairly

well.

TABLE 1 around here.

Table 1 displays the empirical probability of selecting a particular number of groups in the three

DGPs, and the highest probability in each case is highlighted in bold. The left panel displays the

selection frequency when there is no threshold effect but only group-specific slope coefficients, and

the right panel considers the cases in the presence of the threshold effect. In both cases, our IC

can select the correct number of groups with a large probability, more than 96% in all cases, and

this probability increases as either  or  increases. This result suggests that the proposed IC can

correctly determine the number of groups regardless whether the there is a threshold effect, and

this further allows us to implement tests and estimation given the true number of groups.

7.3 Test for the existence of threshold effect

Next, we investigate the performance of the two Wald statistics (Wsum
 and Wsup

 ) to test the

existence of a panel structure threshold effect at three conventional significance levels, namely,

1%, 5%, and 10%. These tests are evaluated given the correct number of groups, say 0 = 3. We

examine the performance of the tests under both homogeneous and heterogeneous threshold effects.

However, prior to the test, one is typically ignorant whether the threshold is heterogeneous across

groups. Hence, we implement our tests assuming that the threshold is group specific. To facilitate

computation and avoid ill behavior for the test statistic, we truncate the top and bottom 10% of
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the threshold values and use the grid {11% 12%     89%}. The critical values for the two test
statistics are simulated based on  = 600 replications.

TABLEs 2 and 3 around here.

Table 2 presents the rejection frequency of the two tests when the threshold is group specific.

The left panel presents the size of the test, i.e. the rejection frequency under the null hypothesis

with 1 = 0 in DGP 1 and 2 and 1 = 2 = 0 in DGP 3. Since the classification is based on

the discrepancy of slope coefficients, heterogeneity in the threshold does not contribute to group

separation. Hence, the size of both tests is generally well controlled. We find that both tests tend

to be oversized when  = 50 and  = 30, but the sizes improve when either  or  increases.

The middle panel shows the power of the tests in the presence of a weak threshold effect (1 = 15,

2 = 115). Both tests demonstrate non-trivial power in detecting the threshold effect, and for the

fixed DGP and nominal level, the power function monotonically increases as either dimension of

the sample size grows. Finally, the right panel considers a stronger threshold effect with 1 = 12

and 2 = 110. We find that the rejection frequency of both tests increases as the threshold effect

increases, and it reaches 1 with large samples.

Table 3 considers the case in which the threshold is homogeneous across groups. Again, both

tests demonstrate reasonably good size and power properties. We find that both tests tend to

over reject the null hypothesis when there are indeed no threshold effects, especially when  = 30.

As  increases, the rejection frequency approaches the nominal level under the null. Under the

alternative hypothesis, the rejection frequency in the presence of homogeneous thresholds seems to

be higher than that in case of heterogeneous thresholds. This arises potentially because we estimate

the threshold for each group, ignoring the feature of homogeneity. The inefficiency of threshold

estimates may inflate the rejection frequency.

7.4 Test for homogeneity of threshold parameters across groups

If there exists a threshold effect, the next issue is whether the threshold is common for individuals.

We test the homogeneity of the threshold using the LR-based statistic discussed in Section 4.2.

As above, we use the grid {11% 12%     89%} to facilitate the computation. To estimate 2,

we employ the nonparametric method detailed in Section 4.2 and follow Hansen (2000) in using

the Epanechnikov kernel and the bandwidth selected according to a minimum mean square error

criterion. The rejection frequency is displayed in Table 4.

TABLE 4 around here.

The left panel of Table 4 presents the rejection frequency under the null hypothesis of homoge-

neous thresholds with D = (1 1 1)0. The size of the test statistic is generally close to the nominal
levels in all DGPs, except that it is undersized for the 10% level test in DGP 2 and 3. The mid-

dle panel reports the rejection frequency under the alternative hypothesis of weakly heterogeneous
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threshold values, i.e., D = (085 1 115)0; the right panel considers the case in which the thresh-
old is strongly heterogeneous, i.e., D = (05 1 15)0. As the degree of heterogeneity increases, we
observe a stable increase in the power function. The power is also increasing as either  or 

increases for the fixed degree of heterogeneity and nominal level. This indicates that our test has

reasonably good power in detecting the heterogeneity of threshold values.

7.5 Estimation results

Finally, we consider the estimation of the PSTR model in the case of both homogeneous and group-

specific thresholds. When the thresholds are expected to be common across groups, we impose an

equality restriction for threshold estimation, but we still allow group-specific slope coefficients. We

evaluate the performance of the proposed method with respect to three aspects: clustering, slope

coefficient estimates, and threshold estimates. The accuracy of classification is measured by the

average of the misclassification frequency (MF) across replications, defined as

MF =
1



X
=1

1(̂ 6= 0 )

For slope coefficient estimates, we focus on the bias, root mean squared error (RMSE), and coverage

probability (CP) of the two-sided nominal 95% confidence interval, while the threshold parameter

estimates are evaluated based on the bias, coverage probability, and average confidence interval

length. In the dynamic panels (DGP 3), the evaluation is based on the bias-corrected slope coeffi-

cient estimates.

TABLE 5 around here.

Table 5 presents the average misclassification rate across replications. In general, the method

can correctly estimate the group membership, and the misclassification rate decreases quickly as

 increases. In the static panel with heteroskedastic error (DGP 1), PSTR can correctly classify

at least 96% of individuals when  = 30 and roughly 99.7% when  = 60. When the errors are

serially correlated (DGP 2), PSTR can correctly estimate the group membership for more than 90%

of individuals in the worst case. Allowing for dynamics does not deteriorate the good performance

of classification, and the misclassification rate remains low in all cases. Interestingly, we find that

the misclassification rate is lower in the case of homogeneous threshold parameters than in the

case of group-specific thresholds. This is consistent with our theoretical prediction that group

identification requires the separation of group-specific slope coefficients instead of heterogeneity

among the threshold parameters.

TABLEs 6—8 around here.

Next, we examine the estimates of the slope coefficients and threshold parameters, and the

results are presented in Tables 6—8. In each DGP, the slope coefficients can be accurately estimated
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with a small bias, and the coverage probability is generally close to the 95% nominal level. Again,

allowing for group-specific thresholds leads to poorer slope and threshold estimates. We find that

when the threshold is group specific in DGP 2.1, the RMSE of the slope estimates sometimes

decreases disproportionally faster than the speed of the increase in  . This occurs because the

relatively large misclassification rate in DGP 2.1 is remarkably reduced by increasing  , and precise

classification contributes to better slope estimates.

The threshold parameter is also estimated accurately in all cases, and the average length of

the confidence interval shrinks as both  and  increase. We find that the average length of

the confidence interval is generally much smaller in the case of a homogeneous threshold than the

group specific threshold. This suggests that pooling does improve the efficiency of the threshold

estimation for common threshold groups.

8 Empirical Applications

We illustrate our procedure through two empirical applications. Our first application examines

the investment decision of firms in the presence of financing constraints using the popular data

of Hansen (1999). As a second application, we examine the impact of bank deregulation on the

distribution of income using the historical data of US states.

8.1 Investment and financing constraints

We first apply the proposed PSTR estimator to revisit the question whether capital market im-

perfections affect firms’ investment behavior. An influential and seminal study by Fazzari et al.

(1988) suggests that firms’ investment is associated with its cash flow only when the firm is con-

strained by external financing. To investigate the threshold effect of financial constraints, Hansen

(1999) examines three investment determinants, i.e., Tobin’s Q, cash flow, and leverage, allowing

the impact of cash flow to vary depending on whether a firm is financially constrained. This study

assumes that firms are all homogeneous, such that they face the same threshold parameters and

share a common effect of determinants. A number of evidence, however, has shown that firms be-

have heterogeneously in their financial activities, including investment decisions (see, for example,

Spearot (2012), Bernard et al. (2007), and Foster et al. (2008)). Heterogeneity may occur not

only in the effect of financial variables on investment (even after differentiating constrained and

unconstrained firms), but also in threshold parameters. Firms with diversified characteristics may

be subjected to distinct threshold levels.

Thus motivated, we revisit the determinants of investment and consider the following model

 =  + 1−11(−1 ≤ ) + 2−11(−1  ) +  (8.1)

where  is the ratio of investment to capital and  denotes the firm fixed effect. We follow

Lang et al. (1996) and Hansen (1999) to consider the potential determinants  = (  ),

where  is Tobin’s Q,  is the ratio of cash flows to capital, and  denotes leverage.  is
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Figure 1: The information criterion for determining the number of groups in the investment and

financial constraint application

the threshold variable, which we specify as Tobin’s Q, cash flow, or leverage, all of which proxy for

a certain degree of financial constraints. The lagged values of ,  , and  are used as regressors

and threshold variables to avoid possible endogeneity (see also Hansen (1999) and González et

al. (2005)). This model allows a time-invariant group pattern of heterogeneity in both slope

coefficients and the threshold parameter as well as time-varying heterogeneity depending on the

realization of the threshold variable. We use the same data set as Hansen (1999) that contains 565

firms over 15 years.

To estimate (8.1), we first determine the number of groups chosen based on the IC. Figure 1

displays the value of the IC when we choose the number of groups ranging from 1 to 8 under the

three specifications of the threshold variable. For each given number of groups, we estimate the

parameters in (8.1) based on 1000 initializations. The IC selects four groups when we use cash

flow and Tobin’s Q as the threshold variable, while it suggests five groups when leverage is used.

We next test the existence of threshold effects using Wsum
 and Wsup

 defined in Section 5. Both

tests (based on 600 bootstrap replications) suggest the presence of threshold effects for the three

specifications of the threshold variable, and the common-threshold test tends to reject the null

hypothesis of homogeneity in all cases.

TABLE 9 around here.

Table 9 summarizes the estimation results of (8.1) with three specifications of the threshold

variable. When we specify the threshold variable as Tobin’s Q, the estimates of the threshold are

10.721, 2.800, 0.854, and 0.282 for the four groups, such that 93%, 87%, 56%, and 15% of the sample

fall below the threshold in each group, respectively. In most groups, both Tobin’s Q and cash flow
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are positively associated with investment, as expected. Leverage generally has a negative impact

on investment, and this impact is stronger for constrained firms than for unconstrained firms. This

result supports the over-investment hypothesis that leverage serves as a disciplining device that

prevents firms from over-investing (see, e.g., Jensen (1986) and Seo and Shin (2016)). Group 1

is characterized by relatively low average investment but high average Tobin’s Q, while firms in

Group 2 are mostly undervalued but still invest aggressively. Group 3 contains very “unsuccessful”

firms with highest average leverage as well as lowest average cash flow and Tobin’s Q. By contrast,

Group 4 is featured by the highest average cash flow and Tobin’s Q but lowest average leverage,

indicating that firms in this group can be well operated and active in the market. The estimated

thresholds for both Groups 1 and 2 occur at the upper quantiles, whereas the effects of cash flow and

leverage differ remarkably across the two groups. The effect of cash flow is strongly and positively

significant for overvalued firms in Group 2 but less clear for the same type of firms in Group 1.

When Tobin’s Q is below the threshold, the leverage effect is stronger for firms in Group 2 than

for firms in Group 1. For the very “unsuccessful” firms in Group 3, investment is more sensitive to

Tobin’s Q and cash flow compared with Groups 1 and 2. This is in line with the expectation that

the marginal benefit from extra cash and a high asset value is especially high for firms that lack

financial resources. Most firms in Group 4 are “successful”, with average Tobin’s Q greater than 1.

For a few firms in this group that are severely undervalued and thus financially constrained, both

the positive impact of Tobin’s Q and negative impact of leverage are pronounced.

Next, we examine the case in which we use cash flow as the threshold variable. Again, we find a

large degree of heterogeneity in the estimates of threshold parameters and slope coefficients. Group

1 contains the burgeoning firms with the largest average cash flow and Tobin’s Q. Most firms in this

group fall below the lower threshold regime, with significantly positive effects of Tobin’s Q and cash

flow and a negative effect of leverage. The threshold effect in Group 2 is particularly prominent,

since the impact of Tobin’s Q and cash flow on investment is much stronger for cash-constrained

firms than for unconstrained firms. We find that the effects of Tobin’s Q and cash flow are both

negative and sizable for extremely cash-constrained firms in Group 3. Further examination reveals

that such firms may borrow money to expand, such that they still invest aggressively when they

face a shortage of cash flow. This also explains a large positive effect of leverage when they are

cash constrained.

Finally, we use leverage as the threshold variable. In this case, the IC suggests five groups.

The first three groups share the same threshold at zero, but the slope coefficient estimates differ.

Firms in Groups 1 and 2 generally have a low investment level, but firms in Group 1 are mostly

overvalued, while those in Group 2 are often undervalued. When these firms have non-zero debt,

their investment is positively affected by their cash flow and Tobin’s Q. The investment behavior

of Group 3 is more sensitive to cash flow than that of Groups 1 and 2. Group 4 contains a number

of overvalued firms with large cash flow, and the negative effect of leverage on investment in this

group is particularly strong in comparison with that of other groups. Group 5, as an extra group,

emerges in this case because of seven firms with especially high investment. Such firms also have

an abundance of cash and well-valued assets. These are possibly the aggressive firms, for which we
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find a strong and positive impacts of cash flow and leverage on investment.

In general, we find a large degree of heterogeneity across firms, which is potentially driven

by unobserved firm characteristics, such as their market performance, investment strategy, and

managerial risk-taking behavior. Such heterogeneity cannot be captured by conventional threshold

regressions. The group pattern varies to some extent for different specifications of the threshold

variable. This suggests that the three candidate threshold variables capture distinct aspects of

financial constraints.

8.2 Bank regulation and income distribution

Our second application concerns the relationship between bank regulation and the distribution

of income. Bank regulation plays a crucial role in governing the financial market. It subjects

banks to certain restrictions and guidelines regarding, for example, bank mergers, acquisitions, and

branching, in the hope of creating a transparent environment for banking institutions, individuals,

and corporations. Bank regulations generally consist of two components: (1) licensing that sets

requirements for starting a new bank and (2) governmental supervision of the bank’s activities.

Hence, with stiffer regulations, there could be fewer banks in operation in the market, and banking

activities can be more restricted. In shaping regulation policies, income inequality is always one

of the central concerns. There exists a theoretical debate on the impact of bank regulation on the

distribution of income. On the one hand, imposing stiffer regulatory restrictions on bank mergers

and branching is likely to create and protect local banking monopolies, which further leads to

higher fixed fees that hurt the poor. Thus, the main motivation for deregulation is to intensify

bank competition and improve bank performance. On the other hand, objection on deregulation

is also raised due to the fears that centralized banking power would discriminatively curtail the

financial opportunities of the poor (Kroszner and Strahan, 1999) and thus amplify inequality.

We revisit the relationship between bank regulation, particularly branch deregulation, and the

distribution of income by applying the PSTR estimator. This analysis was first undertaken by

Beck et al. (2010) using US state-level data in a standard (fixed effects) panel framework. We

employ the same data set that covers 49 US states for 31 years from 1976 to 2006.2 The impact of

branch deregulation may vary remarkably across states depending on their financial market situa-

tions, economic performance, demographic features, and so forth. For example, Beck et al. (2010)

suggested that the impact of bank deregulation is more prominent if bank performance prior to

deregulations is more severely hurt by intrastate branching restrictions. Moreover, deregulation

may disproportionately affect different income groups that are characterized by heterogeneous de-

mographic features, and its impact on the distribution of income could also differ across states

depending on their economic and financial market performance.

To model the heterogeneous impact of bank deregulation on the distribution of income, we

consider the panel structure threshold model as follows:

 =  + (1 + 1)1( ≤ ) + (2 + 2)1(  ) +  (8.2)

2The dataset contains 50 US states and the District of Columbia but excludes Delaware and South Dakota.
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where  represents the distribution of income, which is measured by the logistic transformation

of the Gini coefficient following Beck et al. (2010) and  denotes the state fixed effect.
3  is

a dummy variable that equals one if a state has implemented deregulation and zero otherwise,

and the date of deregulation refers to that on which a state permitted branching via mergers and

acquisitions. The control variables in  include two salient and robust demographic determinants

of income inequality based on the cornerstone study of Beck et al. (2010), namely, the percentage

of high school dropouts (Dropout) and the unemployment rate (Unemp). We consider four specifi-

cations of the threshold variable : the two demographic variables in the covariates (Dropout and

Unemp), the initial share of small banks, and the initial share of small firms. Obviously, these two

demographic variables allow us to examine the potentially heterogeneous impact of deregulation,

which depends on the demographic features of the state. The initial share of small banks reflects

the degree of bank competition at the date of deregulation, which may disproportionately deter-

mine the impact of deregulation. The initial share of small firms also plays a role in influencing

the impact of deregulation because the barriers to obtaining credit from distant banks is greater

for small firms than for larger firms, leading to a heterogeneous impact across states with different

initial shares of small firms. To analyze the effect of the two share variables, we have to use a

subsample of the data with 37 states if we wish to have a balanced panel. Detailed information on

the dataset and its source can be found in Beck et al. (2010).

The moderate effect of the two initial share variables was first proposed and analyzed by Beck

et al. (2010) in a difference-in-difference (DiD) framework. The advantages of (8.2) compared

to the conventional DiD approach are as follows: (1) DiD can only report a positive or negative

(linear) effect of the moderating variables, (e.g., the same value for all levels of the initial share of

small firms), while PSTR provides information on how such an effect varies (possibly non-linearly)

across different levels of these variables; (2) DiD captures only observed heterogeneity that is driven

by the moderating variables, while PSTR allows us to model the unobserved heterogeneity as the

group pattern is fully unrestricted.

We first examine the optimal number of groups chosen by the IC. Figure 2 displays the value of

IC when we choose the number of groups ranging from 1 to 8 under four specifications of threshold

variables. The IC robustly chooses two groups as the optimal specification in all cases. The -values

of Wsup
 and Wsum

 suggest that the impact of explanatory variables does exhibit threshold effects

for all four specifications of the threshold variable, although to different extents.

TABLE 10 around here.

Table 10 presents the estimated threshold and effects of the explanatory variables. In general,

we find a large degree of heterogeneity both across groups and across different levels of the threshold

variables. We first examine the impact of deregulation if we specify the threshold variable as the

rate of high school dropouts. In this case, the test for the common threshold rejects the null of

3We also consider alternative measures of the distribution of income, such as the logarithm of the Gini coefficients

and Theil index, and the results are qualitatively unchanged.
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Figure 2: The information criterion for determining the number of groups in the bank deregulation

application

Figure 3: Estimates of the group memebership of US states ( = 2)
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homogeneity with -value 0.03; thus, we allow the threshold coefficient to vary across groups in our

estimation. The estimation is based on 10000 initial values, and the same number of initializations

is used for the estimation with other threshold variables below. Our method assigns 26 states into

Group 1 and 23 states into Group 2. Interestingly, the classification coincides with the geographic

location to some extent (see Figure 3). Group 1 contains mainly coastal states, such as Washington,

Oregon, California, New York, New Jersey, Massachusetts, Vermont, Virginia, and Florida. These

states are generally characterized by good economic performance and active financial markets.

Group 2 contains states with less active financial markets, including mostly inland and Southeastern

states, such as Montana, North Dakota, Minnesota, Nebraska, Iowa, North and South Carolina,

and Georgia. The two groups are distinguished by the effects of covariates and the threshold. The

estimated threshold of Group 1 is 0.295, such that 73% of observations fall below the threshold. The

effect of deregulation on income inequality is significantly negative (−00291) when the dropout
rate is below the threshold, and it is of a similar size as reported by Beck et al. (2010) (see

column (1) of Table II of Beck et al. (2010)). Nevertheless, this effect becomes insignificant when

the dropout rate is particularly high. For Group 2, the estimated threshold is much smaller with

1.5% of the sample in the lower threshold regime, and a majority of the sample in this group

report a significantly negative impact of deregulation on inequality. Compared with Group 1, the

inequality reduction induced by deregulation is much less sizeable in Group 2. This is possibly

because bank competition is disproportionately intensified by deregulation in coastal states than in

inland/south-eastern states, leading to better bank performance and further to a larger reduction

in income inequality.

Next, we examine the deregulation effect when we specify the threshold variable as the unem-

ployment rate. The -value of the common-threshold test is 0.01, strongly favoring the hypothesis

of the heterogeneous threshold coefficients. The group pattern estimated in this case is closely in

line with the specification above, with only two states (Ohio and Wyoming) switching their group

memberships. We again find a large degree of heterogeneity across the two groups. The estimated

thresholds are 9.8 for Group 1 and 2.6 for Group 2, which leads to about 95% and 10% of the

sample below the threshold, respectively. The impact of deregulation on inequality is significantly

negative for the majority of the sample in both groups but insignificant for the minority. These

results suggest that branching deregulation can reduce income inequality in most states, but the

magnitude of reduction is bigger in Group 1. However, for the states with an extreme unemploy-

ment and dropout rate, deregulation does not significantly help reduce inequality and even enlarges

inequality.

To explicitly examine how the degree of bank competition influences the impact of deregulation,

we consider the threshold variable as the initial share of small bank. Owing to the unavailability of

the initial share in some states, we employ a subsample of the data with 37 states. In this case, the

test for the common threshold strongly suggests homogeneity; thus, we proceed with the estimation

imposing the homogeneity restriction. The states are again classified into coastal and inland/south-

eastern groups with only four states (Kentucky, New Hampshire, North Dakota, and West Virginia)

switching their group memberships compared with the case of the dropout rate being the threshold
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variable. This confirms the heterogeneity of geographic locations and demonstrates the robustness

of the estimated group pattern. The estimated threshold is 0.1723 for both groups (due to the

common-threshold restriction), such that most observations are in the lower threshold regime. The

impact of deregulation is negative in all groups and all regimes, but the magnitude of inequality

reduction is larger when the share is beyond the threshold in both groups. This result is in line

with the expectation that states with a comparatively high ratio of small banks benefit more from

eliminating branching restrictions, as such restrictions that protect small banks from competition

have been particularly harmful to bank operations. Since most states are in the lower threshold

regime in both groups, we see that the magnitude of inequality reduction induced by deregulation

is larger for the majority in Group 1 than the majority in Group 2 as in the previous states.

Finally, we consider the potential threshold effect induced by the initial share of small firms.

Again, the test for the common threshold fails to reject the null of homogeneity; thus, we estimate

the model restricting the two groups to share the same threshold. The estimated group pattern

remains highly similar to the above case using the initial share of small banks as the threshold

variable, with only one state changing its group membership. The estimated threshold in both

groups is in the 0.783 quantile of the initial share of small firms. Interestingly, when we specify the

threshold variable as the two initial-share variables, the estimated slope coefficients in Group 1 are

close or even identical. This is, of course, due to the robustness of the classification; moreover, it

implies that the two share variables result in similar sample thresholding for Group 1. However,

sample thresholding by the two share variables differs in Group 2, and the impact of deregulation

is not significant in Group 2 when we use the initial shares of small firms as the threshold variable.

In both groups, the inequality reduction is more sizable when the initial share of small firms is

beyond the threshold. This confirms the theoretical argument that the impact of deregulation is

more pronounced in states with a large ratio of small firms before deregulation, since the existence

of branching restrictions impedes the growth of small firms that typically face greater barriers to

obtaining credit from distant banks and thus enlarges inequality (Beck et al., 2010).

To summarize, the PSTR estimates provide at least two new important insights that are not

provided by standard panel data models with interaction terms. First, we find a large degree of

heterogeneity between the two groups even after controlling for the threshold effect, and the impact

of deregulation is more sizeable in the group containing most coastal states. This result is robust

regardless of the way in which we specify the threshold variable. The group structure coincides

with the geographic locations to some extent but not precisely, and this latent group pattern is

difficult, if not impossible, to recover using standard panel data approaches. Second, we find a

clear threshold effect in each of the two groups. The degree of inequality reduction induced by

deregulation depends on the demographic features and the composition of financial markets. Such

a group pattern heterogeneity and nonlinear feature of threshold effects can be simultaneously

captured by our PSTR model but not by the conventional DiD approach.
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9 Conclusion

In this paper, we consider the least squares estimation of a panel structure threshold regression

(PSTR) model, where both the slope coefficients and threshold parameters may exhibit latent

group structures. We summarize the practical procedure of using this model as follows. The

procedure starts with selecting the right number of groups using the IC. With the number of

groups given, we first test the presence of threshold effects using the two proposed Wald-type

statistics. If there are threshold effects, we then need to test whether the threshold coefficients also

vary across groups. Next, we can proceed with the estimation with or without the homogeneity

of thresholds imposed, depending on the results of the common-threshold test. We show that we

can consistently estimate the latent group structure and estimators of the slope and the threshold

coefficients are asymptotically equivalent to the infeasible estimators that are obtained as if the

true group structures were known. Moreover, the standard inference based on LR test statistic can

provide a correct coverage for the group-specific threshold parameters.

There are several interesting topics for further research. First, we only allow individual fixed

effects in our PSTR model. It is possible to also allow for fixed time effects in the model, but

this will complicate the analysis to a great deal. Second, it is very interesting but challenging to

study the PSTR model with interactive fixed effects, which can incorporate strong cross-sectional

dependence in many macro or financial data. Third, we do not allow the latent group structures to

change over time. It is interesting and extremely challenging to study PSTR models with a time-

varying latent group structure. Fourth, as mentioned in the introduction, we can also consider a

PSTR model with endogenous regressors and threshold variables and latent group structures, which

would require the use of GMM-type estimation. Fifth, one can also consider a PSTR model with

multiple thresholds or multiple threshold variables by extending the works of Li and Ling (2012)

and Seo and Linton (2007) to the panel setup with or without latent group structures.
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APPENDIX

In this appendix we prove the main results in the paper. The proofs rely on some technical lemmas

whose proofs can be found in Appendix B of the online supplement. They also call on some other technical

lemmas in Appendix C of the online supplement.

A Proofs of the main results

To prove Theorem 3.1, we first need three technical lemmas, viz, Lemmas A.1—A.3 below. To state these

lemmas, we define some notation. First, we introduce the following auxiliary objective function:

Q̃(ΘDG) =
X
=1

X
=1

h
̃0(

0
0
− ) + ̃(

0
0
)000 − ̃()

i2
+

X
=1

X
=1

̃2 (A.1)

Lemma A.1 shows that the distance between Q̃(ΘDG) and Q(ΘDG) is (1) uniformly in (ΘDG)

so that we can study the asymptotic properties of Θ̂ through Q̃(ΘDG) in Lemma A.2. Now, define the

Hausdorff distance  : B × B →  as follows

( ) ≡ max
½
max
∈G

µ
min
̃∈G

k − ̃k
¶
 max

̃∈G

µ
min
∈G

k − ̃k
¶¾



Lemma A.1. Suppose that Assumption A.1 holds. Then sup(ΘDG)∈B×Γ×G
1

|Q(ΘDG)−Q̃(ΘDG)|

= (1)

Lemma A.2. Suppose that Assumptions A.1—A.3 hold. Then (Θ̂Θ
0)

→ 0 as ( )→∞

Remark. The proof of Lemma A.2 shows that there exists a permutation Θ̂ such that
°°°̂ − 0Θ̂()

°°° =
(1)We can take Θ̂() =  by relabeling. In the following analysis, we shall write ̂−0 = (1) without

referring to the relabeling any more.

Lemma A.3. Let ̂(ΘD) = argmin∈G
P

=1

£
̃ − ̃()

0
¤2
 Suppose Assumptions A.1—A.3 hold. For

some   0 small enough and ( ) large enough such that max∈G
°°0°° ≤ √, we have

Pr

Ã
sup

(ΘD)∈N×Γ

"
1



X
=1

1(̂(ΘD) 6= 0 )

#!
= (−4)

where N =
n
Θ ∈ B :

°° − 0
°°2    ∈ G

o


Proof of Theorem 3.1. By Lemma A.2, we have (Θ̂ D̂) ∈ N × Γ. Therefore, we can conclude that
1


P
=1 Pr(̂ 6= 0 ) = (−4) by Lemma A.3. Hence, we have

Pr

µ
sup


1
¡
̂ 6= 0

¢
= 1

¶
≤

X
=1

Pr(̂ 6= 0 ) =  · (−4) = 
¡
−4

¢
 ¥

To prove Theorem 3.2, we need Lemmas A.4—A.7.

Lemma A.4. Suppose  is any random variable with 1


P
 kk3+ ≤  for some constant   0

and   0. Suppose Assumptions A.1—A.5 hold. Then
°°° 1


P
=1

P
=1 1(̂ 6= 0 )

°°° = (( )−1)
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To state the next lemma, we define an auxiliary estimator Θ̌(D) ≡ (̌1(1)0  ̌()0)0, which is the
least squares estimator of Θ with fixed D and true group specification G0, that is,

̌() =

⎛⎝X
∈G0



X
=1

̃()̃()
0

⎞⎠−1⎛⎝X
∈G0



X
=1

̃()̃

⎞⎠ for  ∈ G

Then the infeasible estimator is given by Θ̌ = Θ̌(Ď) with Ď = argminD∈Γ Q̌(Θ̌(D)D). See also (3.1)
in Section 3.1. In the online Supplementary Material we derive the asymptotic properties of Θ̌. The next

lemma establishes the asymptotic equivalence by exploiting the properties of infeasible estimators.

Lemma A.5. Suppose that Assumptions A.1—A.5 hold. Then ( ) → ∞ we have ̂ = ̌(̂) +

(( )−1) for all  ∈ G.
Lemma A.6. Suppose that Assumptions A.1—A.5 hold and  ∈ (0 13). Then  (̂ − 0) = (1) for

all  ∈ G.
Lemma A.7. Suppose that Assumptions A.1—A.5 hold. For any  = 0 + (1 ) and  ∈ G, the
following statement holds:

̌()− ̌(
0
) = (( )−12) and ̌(̌() )− ̌(̌ ) = (1).

Proof of Theorem 3.2. For the first result, we can show
√
 [̌(̂) − ̌] → 0 by Lemmas A.5—

A.7. It suffices to show the second result. Given Lemma A.6, we can denote ̂ ≡ 0 + ̂ and

̌ ≡ 0 + ̌ . Let

∗∗ () ≡ ̌(̌(̂) 
0
)− ̌(̌(̂) 

0
 +  ) and (A.2)

∗ () ≡ ̌(̌ 
0
)− ̌(̌ 

0
 +  ) (A.3)

First we show that ∗∗ () − ∗ ()
→ 0 uniformly on any compact set Ψ. It is straightforward to

calculate that

∗∗ ()−∗ () = ∗ ()−  ()

where  () is a remainder term that is defined in Lemma C.14 in the online Supplementary Material and

∗ () can be defined analogously. We show in the proof of Lemma C.14 that 
∗
 ()

→ 0 uniformly on

any compact set Ψ Similar arguments can be used to show that ∗ ()
→ 0 uniformly on any compact

set Ψ. Therefore, we have ∗∗ ()−∗ ()
→ 0 uniformly on any compact set Ψ.

Next, we have

∗∗ (̂) = ̌(̌(̂) 
0
)− ̌(̌(̂) 

0
 + ̂ )

= ̌(̌ 
0
)−

£
̌(̌(̂) 

0
 + ̂ ) + (1)

¤
= ̌(̌ 

0
)− ̌(̌ 

0
 + ̌ ) + (1)

= ∗ (̌) + (1)

= max
∈

∗ () + (1)

where the first and second equalities hold by (A.2) and Lemma A.7, respectively, the fourth equality holds

by (A.3) and the fact that ̌ = ̌(̌) and the last equality follows from the definition of ̌ On the other
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hand side, ∗∗ (̂) = ∗ (̂)+(1) by the uniform convergence of 
∗∗
 ()−∗ () in probability

to zero. It follows that

∗ (̂) = max
∈

∗ () + (1)

Noting that ∗ (·) converges weakly to a continuous stochastic process that has a unique maximum and

̌ = argmax∈∗ () we must have

̂ = argmax
∈

∗ () + (1) = ̌ + (1)

which implies  (̂ − ̌) = (1). ¥

Lemma A.8. Suppose Assumptions A.1(ii)—(vi) and A.3—A.6 hold. Let M0 =  − 1

 

0
 with  being a

 × 1 vector of ones.
(i) Under Assumption A.1(i.1) we have 1√



P
∈G0


(

0
)
0M0+

q



B (

0
)

→ (0Ω01) where

B (
0
) =

1


P
∈G0



P
=1

P


£
(

0
)

¤
for each  ∈ G;

(ii) Under Assumption A.1(i.2) we have: 1√


P
∈G0


(

0
)
0M0

→ (0Ω02) where Ω2(
0
 

0
) is

as defined in Assumption A.6.

Proof of Theorem 3.3. (i) By Theorem 3.2, we only need to consider the infeasible estimator Θ̌. By

Lemma A.7, we have thatp
 (̌ − 0) =

p
 (̌(

0
)− 0) + (1)

=

⎛⎝ 1



X
∈G0



(
0
)
0M0(

0
)

⎞⎠−1 1p


X
∈G0



(
0
)
0M0 + (1)

Then the result follows from Lemma A.8 and Assumption A.6.

(ii) The result follows from Theorem 3.2 and Lemma C.14 in the online supplement. ¥

Proof of Theorem 4.1. First, using Lemma A.3, we can readily show that ̂
→ 1 and ̌(̌ ̌)( )

→ 2. Let ̄() be the minimizer of ̄( ) that is defined in Section 4.1. Following the proof of Lemma

A.5, we can also show that ̄(
0
) = ̌

¡
0
¢
+ (( )−1) With this and using Lemma A.4, we can readily

show that

̄(̄(
0
) 

0
) = ̄(̌

¡
0
¢
 0) + (1) = ̌(̌(

0
) 

0
) + (1) (A.4)

On the one hand, by the definitions of (̌ ̌) and {(̂ ̂)  = 1  }, we have

̌(̌ ̌) ≤ ̌(̂ ̂) and
X
=1

̄(̂ ̂) ≤
X
=1

̌(̌ ̌)

On the other hand, we can apply Lemma A.4 to show that

̄( ) = ̌( ) + (1) (A.5)

This, in conjunction with the first inequality in the above displayed equation implies that ̌(̌ ̌) ≤
̄(̂ ̂) + (1) and hence

P
=1 ̌(̌ ̌) ≤

P
=1 ̄(̂ ̂) + (1) Combining this last inequality

with the second inequality in the above displayed equation yields

X
=1

̌(̌ ̌) =
X
=1

̄(̂ ̂) + (1)
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which, in conjunction with ̌(̌ ̌) ≤ ̄(̂ ̂) + (1) for each  ∈ G, implies that

̄(̂ ̂) = ̌(̌ ̌) + (1) (A.6)

Noting that ̌(
0
)−0 = [

P
∈G0


(

0
)
0M0(

0
)]
−1P

∈G0

(

0
)
0M0 and using the analysis of ̌−0

in the proof of Theorem 3.3, we can readily show that ̌(
0
) − ̌ = (1

√
 ) With this, we can also

show that

̌(̌(
0
) 

0
)− ̌(̌ 

0
) = (1) (A.7)

Then we have

̄(̄(
0
) 

0
)− ̄(̂ ̂) = ̌(̄(

0
) 

0
)− ̌(̌ ̌) + (1)

= ̌(̌(
0
) 

0
)− ̌(̌ ̌) + (1)

= [̌(̌ 
0
)− ̌(̌ ̌)] + [̌(̌(

0
) 

0
)− ̌(̌ 

0
)] + (1)

= ̌(̌ 
0
)− ̌(̌ ̌) + (1) (A.8)

where the first equality follows from (A.5) and (A.6), the second and last equalities hold by (A.4) and (A.7),

respectively.

By Lemma C.14 in the online Supplementary Material, we have

̌(̌ 
0
)− ̌(̌  + 0)⇒ −2  ||+ 2

q
 2 ()

where  ≡ 00 0


0
 and  ≡ 00  0

 
0
 . Then by the continuous mapping theorem (CMT),

̌(̌ 
0
)− ̌(̌ ̌ + 0) ⇒ max

∈

h
−2  ||+ 2

q
 2 ()

i
=
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∈

⎡⎣−2


¯̄
2 

¯̄
+ 2

s
2

2




()

⎤⎦
=





max
∈

"
−
¯̄̄̄
¯2

2 

¯̄̄̄
¯+ 2(

2



2 )

#
=





max
∈

[− ||+ 2()]  (A.9)

where the second equality holds by the distributional equality () = (
2) and the last equality

follows from the change of variable (by setting  ≡ 2



2 ).

Lastly, we have

L

¡
0
¢
=

̄(̄(
0
) 

0
)− ̄(̂ ̂)

̄(̂ ̂)( )
=

̌(̌ 
0
)− ̌(̌ ̌ + 0)

̌(̌ ̌)( )
+  (1)

→ 

2

max
∈

[− ||+ 2()] 

where the first equality holds by (A.8) and (A.6), and the convergence follows from (A.9) and the fact that

̌(̌ ̌)( ) = 2 +  (1)  ¥

Proof of Theorem 4.2. Under the null hypothesis, one can study the asymptotic property of (Θ̂ D̂ Ĝ)

similar to that of (Θ̂ D̂ Ĝ). Following the arguments as used in the proof of Lemma A.5, we can show that

(Θ̂ D̂ Ĝ) = ̌(Θ̌(Ď) Ď) + (1)
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where Ď = argminD∈D ̌(Θ̌(D)D). This, in conjunction with the fact that(Θ̂ D̂ Ĝ) = ̌(Θ̌ Ď)+(1)

implies that

(Θ̂ D̂ Ĝ)−(Θ̂ D̂ Ĝ) = ̌(Θ̌(Ď) Ď)− ̌(Θ̌ Ď) + (1)

=
£
̌(Θ̌(Ď) Ď)− ̌(Θ̌(Ď)D

0)
¤
+
£
̌(Θ̌D0)− ̌(Θ̌ Ď)

¤
+
£
̌(Θ̌(Ď)D

0)− ̌(Θ̌D0)
¤
+ (1)

=
£
̌(Θ̌D0)− ̌(Θ̌ Ď)

¤− £̌(Θ̌(Ď)D
0)− ̌(Θ̌(Ď) Ď)

¤
+ (1)

where we use the fact that ̌(Θ̌(Ď)D
0) − ̌(Θ̌D0) = (1) that can be proved by following the same

arguments as used to derive (A.7).

For ̌(Θ̌D0)− ̌(Θ̌ Ď), we have that under 02 : D
0 ∈ D (i.e., 

0
1 =  = 0 = 0)

̌(Θ̌D0)− ̌(Θ̌ Ď) =
X
=1

£
̌(̌ 
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¤
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X
=1

∗ (̌)
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−
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=
X
=1





max
∈

[− ||+ 2()]

by Lemma C.13 in the online supplement. Writing Ď = (0 + ̌   
0 + ̌ )

0, we have that
under 02 : D

0 ∈ D

̌(Θ̌(Ď)D
0)− ̌(Θ̌(Ď) Ď) =

X
=1

£
̌(̌(Ď) 
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where the last equality is obtained by changing variable  =  · 21. This completes our proof. ¥
Proof of Theorem 4.3. This proof is analogous to the first half of that of Theorem 4.2 and thus omitted.

¥

Proof of Theorem 5.1. Following the arguments as used in the proof of Theorem 3.2, the Wald test

statistic is asymptotically equivalent to the infeasible Wald test statistic uniformly for D. Therefore, we can

focus on the study of the asymptotic property of the infeasible Wald test statistic. To avoid introducing new

notations, we just assume Ĝ = G0, which occurs w.p.a.1. Then ̄
bc

 () = ̌
bc

 () w.p.a.1., where ̌
bc

 () is

the bias-corrected version of ̌() when necessary (e.g., in the dynamic case) and ̌() is defined before

Theorem 3.2. Similarly, let Θ̌bc(D) be the bias corrected version of Θ̌(D) when necessary
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For  ∈ G, we can readily establish

p


h
̌
bc

 ()− 0

i
=  ( )

−1 1p


X
∈G0



X
=1

̃()[̃(
0
)− ̃()]

00

+ ( )
−1 () + (1)

Note that  ( )
→ ( ) uniformly in  by Assumption A.6 and  () ⇒ () on Γ by

Assumption A.7. In addition, by Assumption A.6,
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1



X
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where the convergence follows by Assumption A.6. Then under H1 : LΘ0 = c
√
p

̌
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p


0
 + ( )
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ª
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√
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Then by the CMT, we can conclude that

√
LΠ̂12Θ̌bc(D) =

⎛⎜⎜⎝
p
1̌

bc

1
(1)

...p
 ̌

bc


( )

⎞⎟⎟⎠⇒ Lω(D)−1
h
S(D) +Q(D)Π12L0c

i


It is standard to show that K̂ (D)
→ Lω(D)−1Ω(D)ω(D)−1L0 uniformly in D. Then we have  ()⇒

 () by the CMT. ¥

Proof of Theorem 6.1. Using Theorem 3.2 and the analysis of the infeasible estimators in Section C of the

online supplement, we can readily show that ̂2
¡
0
¢ → 2 as ( )→∞ Then (0) = ln

¡
̂2
¡
0
¢¢
+


0 → 2 by Assumption D.2(ii) in the online supplement, where 2 =lim( )→∞ 1



P
=1

P
=1(

2
)

When 1 ≤   0, by Assumption D.2(ii) we have that w.p.a.1. () = ln
¡
̂2 ()

¢
+ ≥ ln(̄2) 

ln(2) as ( )→∞ So we have

Pr(̂  0) = Pr(∃1 ≤   0 ()  (0))→ 0 as ( )→∞ (A.10)

Next, we consider the case where 0   ≤ max. When   0, we have by Proposition D.1 in the

online supplement that max0≤max
[̂2 ()− ̂2(0)] = (

−1) It follows that

Pr(̂  0) = Pr(∃0   ≤ max ()  (0))

= Pr(∃0   ≤ max  [ln(̂
2 ())− ln(̂2(0))]  (−0) )

→ 0 as ( )→∞ (A.11)
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where the last line follows from the fact that  [ln(̂2 ()) − ln(̂2(0))] =  ln(1 + ̂2()−̂2(0)
̂2(0)

) =

( (̂2 () − ̂2(0)) =  (1) and  → ∞ as ( ) → ∞ by Assumption D.2(ii). Combining

(A.10) and (A.11), we have Pr(̂ = 0)→ 1 as ( )→∞ ¥
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Table 1: Group number selection frequency using IC when 0 = 3

No threshold effect With threshold effect

  1 2 3 4 5 1 2 3 4 5

DGP 1.1 50 30 0.000 0.000 0.967 0.033 0.000 0.000 0.000 0.976 0.024 0.000

50 60 0.000 0.000 0.972 0.026 0.002 0.000 0.000 0.997 0.003 0.000

100 30 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.998 0.002 0.000

100 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

DGP 1.2 50 30 0.000 0.000 0.974 0.026 0.000 0.000 0.000 0.976 0.024 0.000

50 60 0.000 0.000 0.998 0.002 0.000 0.000 0.000 0.998 0.002 0.000

100 30 0.000 0.000 0.996 0.004 0.000 0.000 0.000 1.000 0.000 0.000

100 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

DGP 2.1 50 30 0.000 0.000 0.982 0.018 0.000 0.000 0.000 0.982 0.016 0.002

50 60 0.000 0.000 0.996 0.004 0.000 0.000 0.000 0.992 0.008 0.000

100 30 0.000 0.000 0.998 0.002 0.000 0.000 0.000 0.998 0.002 0.000

100 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

DGP 2.2 50 30 0.000 0.000 0.994 0.006 0.000 0.000 0.000 0.946 0.032 0.022

50 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.998 0.002 0.000

100 30 0.000 0.000 0.996 0.004 0.000 0.000 0.000 0.997 0.003 0.000

100 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

DGP 3.1 50 30 0.000 0.000 0.992 0.008 0.000 0.000 0.000 0.998 0.002 0.000

50 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

100 30 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.998 0.000 0.000

100 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

DGP 3.2 50 30 0.000 0.000 0.998 0.002 0.000 0.000 0.000 0.994 0.006 0.000

50 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

100 30 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.998 0.002 0.000

100 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
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Table 2: Rejection frequency of test for existence of threshold effect: Heterogeneous thresholds

No threshold effect Weak threshold effect Strong threshold effect

(1 = 0, 2 = 0) (1 = 1/5, 2 = 115) (1 = 1/2, 2 = 110)

  1% 5% 10% 1% 5% 10% 1% 5% 10%

Wsup


DGP 1.1 50 30 0.026 0.072 0.122 0.096 0.228 0.332 0.728 0.833 0.923

50 60 0.006 0.044 0.088 0.160 0.304 0.496 0.918 0.985 1.000

100 30 0.016 0.050 0.084 0.160 0.308 0.436 0.923 0.980 0.993

100 60 0.010 0.044 0.080 0.276 0.512 0.606 1.000 1.000 1.000

DGP 2.1 50 30 0.036 0.094 0.138 0.108 0.202 0.308 0.533 0.755 0.878

50 60 0.008 0.058 0.088 0.096 0.240 0.332 0.760 0.923 0.943

100 30 0.024 0.074 0.120 0.126 0.294 0.332 0.788 0.930 0.968

100 60 0.010 0.044 0.080 0.140 0.342 0.442 0.968 0.993 0.998

DGP 3.1 50 30 0.024 0.070 0.150 0.160 0.306 0.444 0.826 0.942 0.970

50 60 0.012 0.050 0.106 0.260 0.526 0.642 0.992 1.000 1.000

100 30 0.018 0.062 0.118 0.212 0.492 0.610 0.984 0.998 1.000

100 60 0.006 0.058 0.086 0.520 0.770 0.868 1.000 1.000 1.000

Wsum


DGP 1.1 50 30 0.030 0.076 0.148 0.152 0.276 0.376 0.853 0.915 0.968

50 60 0.012 0.042 0.086 0.224 0.358 0.544 0.980 1.000 1.000

100 30 0.020 0.060 0.102 0.244 0.398 0.554 0.985 0.995 1.000

100 60 0.016 0.044 0.080 0.378 0.622 0.686 1.000 1.000 1.000

DGP 2.1 50 30 0.042 0.106 0.154 0.148 0.260 0.342 0.673 0.855 0.928

50 60 0.016 0.056 0.090 0.122 0.274 0.382 0.880 0.963 0.980

100 30 0.032 0.112 0.186 0.216 0.418 0.450 0.925 0.973 0.980

100 60 0.012 0.060 0.086 0.244 0.436 0.530 0.995 1.000 1.000

DGP 3.1 50 30 0.012 0.064 0.098 0.178 0.312 0.436 0.888 0.962 0.986

50 60 0.004 0.030 0.080 0.302 0.574 0.668 0.996 1.000 1.000

100 30 0.014 0.054 0.094 0.272 0.528 0.654 1.000 0.998 1.000

100 60 0.004 0.036 0.068 0.596 0.798 0.886 1.000 1.000 1.000
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Table 3: Rejection frequency of test for existence of threshold effect: Homogeneous thresholds

No threshold effect Weak threshold effect Strong threshold effect

(1 = 0, 2 = 0) (1 = 1/5, 2 = 115) (1 = 1/2, 2 = 110)

  1% 5% 10% 1% 5% 10% 1% 5% 10%

Wsup


DGP 1.2 50 30 0.024 0.072 0.118 0.126 0.356 0.434 0.818 0.964 0.990

50 60 0.006 0.044 0.088 0.164 0.408 0.526 0.984 0.996 1.000

100 30 0.016 0.050 0.095 0.208 0.400 0.512 0.978 0.996 1.000

100 60 0.010 0.044 0.085 0.412 0.635 0.734 1.000 1.000 1.000

DGP 2.2 50 30 0.032 0.076 0.138 0.090 0.220 0.360 0.692 0.926 0.948

50 60 0.016 0.066 0.118 0.140 0.282 0.404 0.906 0.986 0.994

100 30 0.020 0.068 0.116 0.122 0.330 0.440 0.908 0.982 0.996

100 60 0.012 0.052 0.096 0.264 0.474 0.620 0.998 0.998 0.998

DGP 3.2 50 30 0.024 0.094 0.174 0.256 0.474 0.626 0.940 0.990 1.000

50 60 0.008 0.066 0.118 0.454 0.700 0.804 1.000 1.000 1.000

100 30 0.012 0.086 0.134 0.398 0.670 0.730 1.000 1.000 1.000

100 60 0.007 0.056 0.104 0.740 0.906 0.966 1.000 1.000 1.000

Wsum


DGP 1.2 50 30 0.029 0.076 0.140 0.198 0.400 0.454 0.962 0.992 0.996

50 60 0.012 0.042 0.086 0.300 0.508 0.672 0.998 1.000 1.000

100 30 0.018 0.060 0.114 0.362 0.540 0.652 0.998 1.000 1.000

100 60 0.015 0.044 0.086 0.620 0.780 0.881 1.000 1.000 1.000

DGP 2.2 50 30 0.034 0.076 0.154 0.146 0.322 0.408 0.912 0.970 0.980

50 60 0.008 0.070 0.124 0.190 0.400 0.548 0.986 1.000 1.000

100 30 0.041 0.099 0.156 0.298 0.442 0.566 0.990 0.996 1.000

100 60 0.014 0.056 0.096 0.394 0.628 0.734 1.000 1.000 1.000

DGP 3.2 50 30 0.012 0.068 0.138 0.324 0.520 0.626 0.990 1.000 1.000

50 60 0.006 0.036 0.070 0.560 0.760 0.816 1.000 1.000 1.000

100 30 0.010 0.064 0.090 0.480 0.734 0.816 1.000 1.000 1.000

100 60 0.008 0.044 0.088 0.860 0.982 0.992 1.000 1.000 1.000
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Table 4: Rejection frequency for the test of homogeneous thresholds

Threshold Homogeneous Weakly heterogeneous Strongly heterogeneous

 = [1 1 1]  = [085 1 115]  = [05 1 15]

  1% 5% 10% 1% 5% 10% 1% 5% 10%

DGP 1 50 30 0.013 0.076 0.110 0.810 0.904 0.960 0.968 0.980 0.994

50 60 0.018 0.061 0.114 0.994 0.986 0.996 1.000 1.000 1.000

100 30 0.014 0.064 0.096 0.990 0.998 1.000 1.000 1.000 1.000

100 60 0.012 0.046 0.112 1.000 1.000 1.000 1.000 1.000 1.000

DGP 2 50 30 0.014 0.034 0.052 0.344 0.592 0.690 0.116 0.312 0.408

50 60 0.010 0.038 0.056 0.862 0.950 0.948 0.498 0.710 0.808

100 30 0.010 0.052 0.058 0.844 0.932 0.956 0.498 0.714 0.794

100 60 0.008 0.042 0.050 0.994 0.998 1.000 0.920 0.970 0.994

DGP 3 50 30 0.006 0.040 0.064 0.936 0.972 0.900 0.692 0.856 0.900

50 60 0.010 0.046 0.048 1.000 1.000 1.000 0.968 0.994 0.998

100 30 0.006 0.042 0.066 0.998 1.000 1.000 0.972 0.992 0.998

100 60 0.010 0.036 0.040 1.000 1.000 1.000 1.000 1.000 1.000

Table 5: Average misclassification rate

 = 50  = 100

 = 30  = 60  = 30  = 60

DGP 1.1 0.0365 0.0032 0.0316 0.0026

DGP 1.2 0.0203 0.0011 0.0179 0.0013

DGP 2.1 0.0963 0.0141 0.0697 0.0124

DGP 2.2 0.0509 0.0076 0.0470 0.0075

DGP 3.1 0.0041 0.0001 0.0028 0.0000

DGP 3.2 0.0011 0.0000 0.0015 0.0002
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Table 6: Estimates of coefficients and threshold values: Heteroskedastic error (DGPs 1.1-1.2)

1 2 

DGP 1.1: 0= (05 1 15)0
Bias RMSE CP Bias RMSE CP Bias CP Length

 = 50 Group 1 −0001 0.078 0.908 −0002 0.056 0.915 0009 0.958 0.549

 = 30 Group 2 0003 0.097 0.895 0015 0.107 0.893 0018 0.923 0.373

Group 3 0002 0.078 0.920 0004 0.103 0.890 0001 0.960 0.545

 = 50 Group 1 −0004 0.052 0.925 0000 0.035 0.940 0002 0.963 0.214

 = 60 Group 2 −0001 0.042 0.925 −0001 0.042 0.928 0002 0.965 0.202

Group 3 −0003 0.037 0.948 −0001 0.055 0.913 0000 0.973 0.246

 = 100 Group 1 0001 0.055 0.922 −0002 0.038 0.898 −0003 0.966 0.245

 = 30 Group 2 0004 0.045 0.920 0000 0.048 0.904 −0003 0.948 0.207

Group 3 0007 0.035 0.928 −0003 0.057 0.922 0001 0.968 0.240

 = 100 Group 1 0003 0.037 0.944 −0002 0.024 0.938 0000 0.972 0.125

 = 60 Group 2 0003 0.030 0.938 −0001 0.029 0.942 −0002 0.970 0.108

Group 3 0000 0.025 0.920 −0004 0.036 0.946 −0004 0.962 0.119

DGP 1.2: 0= (1 1 1)0
Bias RMSE CP Bias RMSE CP Bias CP Length

 = 50 Group 1 0001 0.057 0.938 −0010 0.060 0.928 −0002 0.928 0.073

 = 30 Group 2 −0002 0.064 0.903 −0010 0.060 0.923

Group 3 0006 0.062 0.923 −0011 0.061 0.913

 = 50 Group 1 0004 0.038 0.960 −0003 0.040 0.943 0001 0.933 0.049

 = 60 Group 2 0001 0.043 0.927 −0003 0.043 0.917

Group 3 0004 0.042 0.940 −0003 0.038 0.957

 = 100 Group 1 0001 0.042 0.930 −0009 0.041 0.947 0001 0.940 0.051

 = 30 Group 2 0006 0.045 0.913 −0006 0.041 0.933

Group 3 0006 0.040 0.930 −0011 0.039 0.963

 = 100 Group 1 0003 0.026 0.963 −0002 0.028 0.950 −0001 0.947 0.027

 = 60 Group 2 0005 0.029 0.933 −0002 0.029 0.940

Group 3 0004 0.027 0.953 −0004 0.029 0.943
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Table 7: Estimates of coefficients and threshold values: Autoregressive error (DGPs 2.1-2.2)

1 2 

DGP 2.1: 0= (05 1 15)0
Bias RMSE CP Bias RMSE CP Bias CP Length

 = 50 Group 1 −0014 0.153 0.834 0015 0.163 0.874 0048 0.932 0.797

 = 30 Group 2 −0008 0.198 0.812 0032 0.225 0.802 −0010 0.848 0.605

Group 3 −0024 0.140 0.858 0001 0.203 0.856 −0034 0.936 0.924

 = 50 Group 1 −0008 0.092 0.914 −0001 0.043 0.930 −0006 0.966 0.374

 = 60 Group 2 −0003 0.051 0.924 0002 0.050 0.942 0004 0.964 0.291

Group 3 −0005 0.050 0.922 0005 0.073 0.892 −0014 0.958 0.433

 = 100 Group 1 −0021 0.080 0.894 −0009 0.050 0.882 −0015 0.960 0.380

 = 30 Group 2 −0002 0.076 0.840 0000 0.073 0.856 0003 0.918 0.302

Group 3 0006 0.057 0.880 0013 0.075 0.910 −0003 0.946 0.331

 = 100 Group 1 0002 0.045 0.944 0002 0.031 0.932 0001 0.980 0.195

 = 60 Group 2 −0003 0.037 0.930 0001 0.037 0.934 0002 0.950 0.158

Group 3 −0002 0.031 0.942 0000 0.046 0.940 0000 0.972 0.181

DGP 2.2: 0= (1 1 1)0
Bias RMSE CP Bias RMSE CP Bias CP Length

 = 50 Group 1 −0002 0.067 0.937 −0008 0.074 0.920 0001 0.960 0.181

 = 30 Group 2 0012 0.108 0.877 0000 0.091 0.923

Group 3 0009 0.091 0.917 −0008 0.097 0.927

 = 50 Group 1 0005 0.048 0.965 0000 0.050 0.938 −0001 0.985 0.079

 = 60 Group 2 0001 0.053 0.918 −0002 0.048 0.945

Group 3 0004 0.051 0.930 −0004 0.049 0.955

 = 100 Group 1 −0004 0.053 0.928 −0017 0.061 0.851 −0001 0.950 0.099

 = 30 Group 2 0001 0.056 0.914 −0002 0.057 0.910

Group 3 0019 0.053 0.914 −0002 0.051 0.932

 = 100 Group 1 0001 0.033 0.950 −0005 0.036 0.930 0000 0.980 0.051

 = 60 Group 2 −0001 0.031 0.965 −0001 0.033 0.965

Group 3 0004 0.033 0.965 −0001 0.036 0.920
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Table 8: Estimates of coefficients and threshold values: Dynamic panel (DGPs 3.1-3.2)

1 2 

DGP 3.1: 0= (05 1 15)0
Bias RMSE CP Bias RMSE CP Bias CP Length

 = 50 Group 1 −0007 0.035 0.923 −0010 0.025 0.920 −0006 0.940 0.184

 = 30 Group 2 −0003 0.017 0.963 −0007 0.020 0.907 0003 0.970 0.161

Group 3 −0002 0.012 0.923 −0007 0.019 0.877 −0008 0.947 0.147

 = 50 Group 1 −0003 0.025 0.930 −0005 0.017 0.950 0001 0.973 0.095

 = 60 Group 2 −0002 0.013 0.953 −0003 0.012 0.943 −0002 0.940 0.073

Group 3 −0001 0.007 0.960 −0001 0.011 0.950 0000 0.947 0.073

 = 100 Group 1 −0007 0.027 0.927 −0009 0.019 0.917 0000 0.973 0.110

 = 30 Group 2 −0003 0.014 0.937 −0007 0.015 0.933 0000 0.943 0.082

Group 3 −0002 0.008 0.940 −0005 0.013 0.907 −0002 0.947 0.074

 = 100 Group 1 −0005 0.019 0.923 −0004 0.013 0.927 −0001 0.947 0.059

 = 60 Group 2 −0002 0.009 0.930 −0002 0.009 0.953 0000 0.960 0.044

Group 3 −0001 0.005 0.950 −0003 0.009 0.920 0000 0.967 0.038

DGP 3.2: 0= (1 1 1)0
Bias RMSE CP Bias RMSE CP Bias CP Length

 = 50 Group 1 −0008 0.029 0.957 −0014 0.032 0.910 0001 0.977 0.050

 = 30 Group 2 −0004 0.019 0.930 −0005 0.019 0.910

Group 3 0000 0.012 0.937 −0005 0.013 0.927

 = 50 Group 1 −0003 0.018 0.957 −0005 0.021 0.937 0000 0.950 0.024

 = 60 Group 2 −0002 0.013 0.940 −0002 0.012 0.940

Group 3 −0001 0.008 0.953 −0002 0.009 0.923

 = 100 Group 1 −0008 0.020 0.957 −0010 0.025 0.897 0001 0.983 0.029

 = 30 Group 2 −0002 0.013 0.950 −0006 0.014 0.933

Group 3 0000 0.009 0.953 −0005 0.010 0.893

 = 100 Group 1 −0006 0.017 0.948 −0004 0.018 0.938 0000 0.964 0.201

 = 60 Group 2 −0002 0.011 0.942 −0001 0.012 0.944

Group 3 −0002 0.007 0.958 −0003 0.008 0.922
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Table 9: Investment and financial constraint: Estimated threshold and slope coefficients

Threshold variable Tobin’s Q

Group 1 Group 2 Group 3 Group 4

 (Lower regime %) 10.721 (93%) 2.800 (87%) 0.854 (56%) 0.282 (15%)

1  00081∗∗∗ 00716∗∗∗ 01537∗∗∗ 13450∗∗∗

(0.0008) (0.0029) (0.0146) (0.0631)

 00918∗∗∗ 00977∗∗∗ 03278∗∗∗ −46433∗∗∗
(0.0051) (0.0121) (0.0366) (0.1563)

 −00158∗∗∗ −00671∗∗∗ 00206 −08063∗∗∗
(0.0039) (0.0068) (0.0204) (0.1025)

2  00086∗∗∗ 00134∗∗∗ 00553∗∗∗ −00004
(0.0010) (0.0052) (0.0084) (0.0003)

 −00194∗ 03007∗∗∗ −04886∗∗∗ −00161∗∗∗
(0.0116) (0.0579) (0.0617) (0.0080)

 00668 00798 01251∗∗∗ −00143∗∗∗
(0.0803) (0.0830) (0.0270) (0.0061)

Threshold variable Cash flow

Group 1 Group 2 Group 3 Group 4

 (Lower regime %) 0.853 (98%) 0.279 (66%) −0084 (1.6%) −0343(0.2%)
1  00013∗∗∗ 01447∗∗∗ −04135∗∗∗ −00034∗∗∗

(0.0004) (0.0075) (0.0295) (0.0009)

 00684∗∗∗ 01545∗∗∗ −20022∗∗∗ −01496∗∗∗
(0.0052) (0.0216) (0.0697) (0.0411)

 −00096∗ 00203∗ 526850∗ −02208∗∗∗
(0.0041) (0.0106) (0.1284) (0.0435)

2  −00010∗∗∗ 00068∗∗∗ 00468∗∗∗ 00117∗∗∗

(0.0005) (0.0013) (0.0028) (0.0013)

 00806∗∗∗ 00054 −00835∗∗∗ 02958∗∗∗

(0.0081) (0.0138) (0.0128) (0.0110)

 −00996∗∗∗ 01644∗∗∗ −00399∗∗∗ −00730∗∗∗
(0.0193) (0.0256) (0.0060) (0.0083)

Threshold variable Leverage

Group 1 Group 2 Group 3 Group 4 Group 5

 (Lower regime %) 0 (8.5%) 0 (8.5%) 0 (8.5%) 0.002 (8.9%) 0.806 (98%)

1  −00003 00957∗∗∗ 00014 00107∗∗∗ 00538∗∗∗

(0.0003) (0.0109) (0.0027) (0.0012) (0.0131)

 00584∗∗∗ −00047 02276∗∗∗ −00519∗∗∗ −08202∗∗∗
(0.0097) (0.0509) (0.0247) (0.0132) (0.1507)

 −00083 −00297 00816 −08464∗∗∗ 01648∗∗∗

(0.0165) (0.0566) (0.0549) (0.0637) (0.0337)

2  00039∗∗∗ 00804∗∗∗ 00117∗∗∗ 00003 12055∗∗∗

(0.0008) (0.0033) (0.0021) (0.0005) (0.1284)

 00304∗∗∗ 00423∗∗∗ 03854∗∗∗ 01164∗∗∗ −43237∗∗∗
(0.0054) (0.0133) (0.0163) (0.0086) (0.2463)

 00024 −00535∗∗∗ 00258∗∗∗ −01168∗∗∗ 02734∗∗∗

(0.0042) (0.0072) (0.0078) (0.0099) (0.0383)
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Table 10: Impact of bank deregulation: Estimated threshold and slope coefficients

Threshold variable Dropout rate Unemployment rate

Group 1 Group 2 Group 1 Group 2

 (Lower regime %) 0.295 (73%) 0.041 (1.5%) 9.80 (95%) 2.60 (10%)

1 Dereg −00291∗∗∗ 02444∗∗∗ −00316∗∗∗ −00228
(0.0082) (0.0576) (0.0080) (0.0427)

Dropout −06749∗∗∗ 33793∗∗∗ −06959∗∗∗ −52629
(0.0778) (0.7635) (0.0805) (3.0658)

Unemp 00032∗ 00390∗ 00007 01566∗∗∗

(0.0020) (0.0198) (0.0022) (0.0489)

2 Dereg −01672∗ −00199∗∗∗ 00339 −00197∗∗∗
(0.0779) (0.0086) (0.0415) (0.0088)

Dropout −11961∗∗∗ −02286∗∗∗ −04149 −02125∗∗∗
(0.2666) (0.0614) (0.6825) (0.0629)

Unemp 00626∗∗∗ 00263∗∗∗ 00212∗∗∗ 00263∗∗∗

(0.0118) (0.0021) (0.0051) (0.0022)

Threshold variable Ratio of small banks Ratio of small firms

Group 1 Group 2 Group 1 Group 2

 (Lower regime %) 0.1723 (94.5%) 0.8943 (78.3%)

1 Dereg −00291∗∗∗ −00067 −00354∗∗∗ 00003

(0.0092) (0.0091) (0.0091) (0.0117)

Dropout −07805∗∗∗ −02432∗∗∗ −08015∗∗∗ −03306∗∗∗
(0.0933) (0.0791) (0.0924) (0.0968)

Unemp 00038 00253∗∗∗ 00030 00244∗∗∗

(0.0026) (0.0022) (0.0025) (0.0026)

2 Dereg −00655 −01555∗∗∗ −00655 −00089
(0.0455) (0.0479) (0.0455) (0.0141)

Dropout 05417∗∗∗ −17011∗∗∗ 05417∗∗∗ −00295
(0.2723) (0.4793) (0.2723) (0.1294)

Unemp 00573∗∗∗ −00008 00573∗∗∗ 00303∗∗∗

(0.0179) (0.0092) (0.0179) (0.0042)
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B Proof of Lemmas A.1-A.8 in Appendix A

Proof of Lemma A.1. Note that
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It suffices to show that the second term in the last line is (1) uniformly in (ΘDG) ∈ B × Γ × G .
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Following similar arguments used in the proof of Lemma A.3 in Hansen (2000), we can show that
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under Assumption A.1(i.1) or A.1(i.2) and Assumption

A.1(iii). Then sup()∈B×Γ |2 ( )| = (1). Consequently,
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uniformly in (ΘDG) ∈ B × Γ × G  ¥
Proof of Lemma A.2. It suffices to show (i) max∈G
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where the last equality follows from Assumption A.2 which says that there exists a group ̃∗ ∈ G such that
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The first term on the right hand side (RHS) of the last inequality is larger than ̃ by Assumption A.3(a)
and the second and third terms are (1) by the above arguments. Then we can conclude that Θ̂() 6= Θ̂(̃)
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By Assumptions A.1 and A.3, we can use Lemma B.1 in the next section to show the first two terms
to be (−4). To study the third term on the RHS of the last inequality, we take  such that  ≤h
min∈G

³
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for any constant   0. This completes our proof. ¥
Proof of Lemma A.4. By Markov inequality, we have
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Proof of Lemma A.5. By direct calculations, we have
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Following the analysis of the infeasible estimator ̌ in Lemma C.10 in the online Supplementary Material,

we can also show that ̂ − 0 = (1 ) based on (B.2). ¥
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shows that ̌(

0
)− 0 = 

¡
( )−12 + −1

¢
.

Next, noting that

̌( ) =
X
∈G0



X
=1

[̃ − ̃()
0]2 =

X
∈G0



[ − ()]
0M0[ − ()]

0M0 −0
M0 = ( −)

0M0( −) + 2( −)
0M0 for any two  × 1 vectors  and  and

8



 − () = [()−(
0
)]

0
 +  +  with  being a  × 1 vector of ones, we have

̌(̌() )− ̌(̌ ) =
√
 [̌()− ̌]

0 1


X
∈G0



()
0M0()

√
 [̌()− ̌]

+2 [̌()− ̌]
0 1


X
∈G0



()
0M0[()−(

0
)]

0


+2 [̌()− ̌]
0 1


X
∈G0



()
0M0

=  (1) +(( )−12)(( )
−1+

)

+ [(
−1


[( )−12 + −1]) +(( )−1+)](( )−12 + −1)

=  (1) 

where the last equality follows from the fact that  ∈ (0 13) and  = ( 2). ¥
Proof of Lemma A.8. (i) Let P0 = 1


 

0
  Note that

1p


X
∈G0



(
0
)
0M0 =

1p


X
∈G0



[(
0
)− P0((0))]0 (B.3)

− 1


p


X
∈G0



X
=1

{(0)−
£
(

0
)
¤} ≡ 1 −2

It suffices to show that (i1) 1
→ (0Ω01) and (i2) 2 =

q



B +  (1)  To prove (i1), we relabel

the index G0
 = {1  

} to {1 }. Let  denote a 2 × 1 nonrandom vector with kk = 1 For

 = (−1) +  for  = 1   and  = 1   let  =
h
(

0
)− 1



P
=1((

0
))
i
. Let  = 

Then we have

01 =
1√


X
=1

0

Immediately, {}=1 is a martingale difference sequence (m.d.s.) under the filtration F = ({ : 1 ≤
 ≤ }) the minimal sigma-field generated from { : 1 ≤  ≤ }. Apparently, max1≤≤  kk4 ≤ 
for some  ∞ under Assumption A.1. In addition,

1



X
=1

0
0


= 0
1



X
∈G0



X
=1

̃(
0
)̃(

0
)
02

+0
1



X
∈G0



X
=1

2

"
2(

0
)−

1



X
=1

{(0)−[(
0
)]}

#"
1



X
=1

{(0)−[(
0
)}0

#


≡ 11 +12

9



By Assumption A.6, 11
→ 0Ω1(0 0) For 12, we have by Cauchy-Schwarz and Markov inequalities

|12| ≤ kk2
⎛⎝ 1



X
∈0



X
=1

4

°°°°°
"
2(

0
)−

1



X
=1

{(0) +[(
0
)]}

#°°°°°
2
⎞⎠12

×
⎛⎝ 1



X
∈0



X
=1

°°°°° 1
X
=1

{(0)−[(
0
)}
°°°°°
2
⎞⎠12

=  (1)

³
−12

´
=  (1) 

Then 1
→ (0Ω1(

0
 

0
)) by the Cramér-Wold device and the martingale central limit theorem.

Next, we consider 2. Note that

2 =
1


p


X
∈G0



X
=1


£
(

0
)

¤
+

1


p


X
∈G0



X
=1

©¡
(

0
)−[(

0
)]
¢
 −

£
(

0
)

¤ª
≡ 21 +22.

For 21, we have 21 =
q




1



P
∈G0



P
=1

P


£
(

0
)

¤
=
q




B  For 22 we can easily

verify that (22) = 0 and

 k22k2 = 1

 3

X
∈G0





°°°°°
X

=1

£{(0)−[(
0
)]} −

£
(

0
)

¤¤°°°°°
2

= 
¡
−1

¢
by using the Davydov inequality for strong mixing processes. Then 22 = (

−12) and (i2) follows.
(ii) Now, let  ≡ (

0
)
0M0

p
 . Then we have  independent across  and

 kk2 =
1



X
=1

X
=1


¡
̃(

0
)̃(

0
)
0

¢
≤ 1



X
=1

X
=1

6[|− |]12
°°̃(0)°°4 °°̃(0)°°4

= (1)

By Theorem A of Yang (2016), we have max kk2+ ≤ ()
−(2+)2maxmax1≤≤

°°̃(0)°°2+2
for some   0 and   ∞. Here k·k = { k·k}1. Then Lindeberg condition holds and we have the
desired claim. ¥

C Supplementary Lemmas

We first state a technical lemma that is also used in the proof the main results in the paper. Then we study
the asymptotic properties of the infeasible estimators.

C.1 A technical lemma

Lemma C.1. Let  denote a  × 1 random vector with mean zero and  kk8+  ∞ for some   0.
Suppose that {  = 1  } is strong mixing process with mixing coefficients  [] ≤ 

 for some   0
and  ∈ (0 1). Then as  →∞ and for any   0 we have

Pr

Ã°°°°° 1
X
=1



°°°°°  

!
= (−4)

10



Proof of Lemma C.1. The proof is similar to and simpler than that of Lemma B.1(ii) in Wang, Phillips,
and Su (2018) and thus omitted. ¥

C.2 Asymptotic properties of the infeasible estimators

We present the analysis of infeasible estimator in this section.
Lemma C.2. Suppose Assumptions A.1, A.3(iv) and A.4 hold. For any  ∈ G, we have that

̌ − 0 = (1) and ̌ − 0 = (( )−)

Proof of Lemma C.2. First, we show the convergence rate of ̌() for any  ∈ Γ. Let () ≡
([01 

0
11()]

0  [0  
0
 ()]

0)0 a ×2 matrix. Let(1 2) ≡ (1[1(1)−1(2)]   [ (1)
− (2)])0 a × matrix. By the definition of ̌(), we have ̌() = [

P
∈G0


()

0M0()]
−1P

∈G0

()

0

M0. It follows that

̌()− 0 = [Φ1()]
−1 1



X
∈G0



()
0M0 − [Φ1()]−1Φ2()0 (C.1)

where Φ1() ≡ 1


P
∈G0


()

0M0(), Φ2() =
1



P
∈G0


()

0M0( 
0
) By Assumption A.4(i),

Φ1() = (1) for all  ∈ Γ. It is standard to show that 1


P
∈G0


()

0M0 = (( )−12+−1) and

Φ2() = (1). Then we have ̌()−0 = (( )−+−1) by exploiting the fact that 0 = ((( )−).
Given the fact that   13 and  = ( 2), we can conclude from (C.1) that ̌() − 0 = (( )−)
and

̌()− 0 = − [Φ1()]−1Φ2()0 + (( )−) (C.2)

Next we show the consistency of ̌. Let Φ3() =
1



P
∈G0


( 

0
)
0M0( 

0
). By direct calcu-

lations, we can show that

1



¡Q̌(̌ ̌)− Q̌(
0
 

0
)
¢

= 00 Φ3(̌)
0
 + (̌ − 0)

0Φ1(̌)(̌ − 0) + 2(̌ − 0)
0Φ2(̌)

0


−(̌ − 0)
0 2



X
∈G0



(̌)
0M0 − ̌

0


2



X
∈G0



(̌ 
0
)
0M0 (C.3)

Note that the last two terms on the right hand side (RHS) of the above equation are (( )−2). This, in
conjunction with (C.2) and (C.3) implies that,

1



¡Q̌(̌ ̌)− Q̌(
0
 

0
)
¢
= 00 [Φ3(̌)−Φ2(̌)0Φ1(̌)−1Φ2(̌)]0 + (( )−2)

By Assumption A.4(ii), we have that

Φ3(̌)−Φ2(̌)0Φ1(̌)−1Φ2(̌) = ̃(̌)

which is a  ×  matrix with minimum eigenvalue min[̃(̌)] ≥  min{1
¯̄
̌ − 0

¯̄
} w.p.a.1. Hence it

follows that

( )
2−1 ¡Q̌(̌ ̌)− Q̌(

0
 

0
)
¢ ≥ 2

°°0°°  min{1 ¯̄̌ − 0
¯̄
}+ (1)

where we use the fact 0 = ( )− and  →  by Assumptions A.1(vi) and A.2(iii). On the other

hand, we have Q̌(̌ ̌)− Q̌(̌ 
0
) ≤ 0 We can conclude that ̌ − 0 = (1).
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Given the consistency of ̌, we can easily show that
1



P
∈G0


(̌)

0M0(
0
 ̌) = (1). Then

̌ − 0 = (( )−) follows. ¥
Lemma C.3. Let (1 2) = kk |(2)− (1)| and (1 2) = kk |(2)− (1)|. Sup-
pose Assumptions A.1(v) and A.5 hold, there is a constant 1  ∞ such that for ≤ 1  2 ≤  and
 ≤ 4,

max


 [(1 2)]
 ≤ 1 |2 − 1| and max


 [(1 2)]

 ≤ 1 |2 − 1| 

Proof of Lemma C.3. For any random variable 

 [()] = ( · 1{ ≤ }) =  [1{ ≤ }(|)] =
Z 

−∞
(|)()

where  (·) is the cumulative distribution function (CDF) of  with the corresponding PDF (·) Taking
derivative with respect to  on both sides yields




 [()] = (| = )()

Then by the Hölder inequality and Assumptions A.1(v) and A.5




 [kk ()] = (kk | = )() ≤ [(kk4 | = )]4()

≤  for some  ∞
This implies that

max


 [(1 2)]
 ≤ 1 |2 − 1| with 1 =  

Analogously, we have max [(1 2)]
 ≤ 1 |2 − 1|  ¥

Lemma C.4. Suppose Assumptions A.1, A.3(iii)—(iv) and A.4—A.5 hold. Then there exists a constant
2 ∞ such that for all ≤ 1  2 ≤  and  ∈ G



¯̄̄̄
¯̄ 1p



X
∈G0



X
=1

¡
2(1 2)−2(1 2)

¢¯̄̄̄¯̄
2

≤ 2 |2 − 1| 



¯̄̄̄
¯̄ 1p



X
∈G0



X
=1

¡
2(1 2)−2(1 2)

¢¯̄̄̄¯̄
2

≤ 2 |2 − 1| 

Proof of Lemma C.4. For notational simplicity, let (1 2) = [(1 2)]

for  ≥ 0 By the indepen-

dence across  and strong mixing over  for {(  )}, there is a constant † such that



¯̄̄̄
¯̄ 1p



X
∈G0



X
=1

©
2(1 2)−[2(1 2)]

ª¯̄̄̄¯̄
2

=
1



X
∈G0





¯̄̄̄
¯ 1√

X
=1

©
2(1 2)−[2(1 2)]

ª¯̄̄̄¯
2

≤ †



X
∈G0



1



X
=1


©
2(1 2)−

£
2(1 2)

¤ª2
≤ †



X
∈G0



X
=1


£
4(1 2)

¤ ≤ †1 |2 − 1| 
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The first result follows by setting 2 = †1 Analogously, we can prove the second result in the lemma. ¥

Lemma C.5. Let  () = 
−12
 −12

P
∈G0



P
=1 (). Suppose Assumptions A.1, A.3(iii)—

(iv) and A.4—A.5 hold, there are constants 1 and 2 such that for all ,  ∈ G   0,   0 and

 ≥ ( )
−1, if

p
 ≥ 2, then

Pr

Ã
sup

0≤≤0+
| ()−  (

0)|  

!
≤ 1

2

4


Proof of Lemma C.5. The proof is similar to that of Lemma A.3 in Hansen (2000). ¥
Lemma C.6. Suppose Assumptions A.1, A.3(iii)—(iv) and A.4—A.6 hold, we have for  ∈ G,

 ()⇒ ()

a mean-zero Gaussian process with almost surely continuous sample paths.
Proof of Lemma C.6. The proof is similar to that of Lemma A.4 of Hansen (2000). ¥

Lemma C.7. Let  () =
1



P
∈G0



P
=1

00
 

0


0
 [()− (

0
)] and  () =

1


P
∈G0

P
=1 kk

¯̄
()− (

0
)
¯̄
. Under Assumptions A.1, A.3(iii)—(iv) and A.4—A.5, there exist constants  

0, 0   ∞, such that for all   0 and   0, there exists a  ∞ such that for all ( ) and  ∈ G,

Pr

Ã
inf

≤|−0|≤
 ()¯̄
 − 0

¯̄  (1− )

!
≤ 

Pr

⎛⎝ sup
≤|−0|≤

 ()¯̄
 − 0

¯̄  (1 + )

⎞⎠ ≤ 

Proof of Lemma C.7. The proof is similar to that of Lemma A.7 of Hansen (2000). ¥
Lemma C.8: Under Assumptions A.1, A.3(iii)—(iv) and A.4—A.5, there exists some   ∞ such that for
any  ∞ and  = 1  

Pr

⎛⎝ sup
≤|−0|≤

¯̄
 ()−  (

0
)
¯̄

√


¯̄
 − 0

¯̄  

⎞⎠ ≤ 

Proof of Lemma C.8. The proof is similar to that of Lemma A.8 of Hansen (2000). ¥

Lemma C.9. Let ̃ () = −1

P
∈G0



h
−1

P
=1 kk

¯̄
()− (

0
)
¯̄i2

and ̃ () =


−12
 −32

P
∈G0



P
=1

P
=1 (()−(0)). Suppose Assumptions A.1, A.3(iii)—(iv) and A.4—A.5

hold. Then there exists some  ∞ and   0 such that for any   0   0 and  ∈ G,

Pr

⎛⎝ sup
≤|−0|≤

¯̄̄
̃ ()

¯̄̄
√


¯̄
 − 0

¯̄  

⎞⎠ ≤  and Pr

⎛⎝ sup
≤|−0|≤

¯̄̄
̃ ()

¯̄̄
¯̄
 − 0

¯̄  

⎞⎠ ≤ 

Proof of Lemma C.9. The analysis for the first result is analogous to that of Lemma C.8. For the second
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result, we consider the case   0. Letting () = ( 
0
) = kk

¯̄
()− (

0
)
¯̄
 we have

[̃ ()] = −1

X
∈G0





"
−1

X
=1

kk
¯̄
()− (

0
)
¯̄#2

= −1

X
∈G0





"
−1

X
=1

()

#2

= −1

X
∈G0



Var

"
−1

X
=1

()

#2
+−1

X
∈G0



Ã
1



X
=1

[()]

!2

≤ †−1

X
∈G0



−2
X
=1


£
()

2
¤
+−1

X
∈G0



Ã
1



X
=1

[()]

!2

≤ †1


¯̄
 − 0

¯̄
+ 21

¯̄
 − 0

¯̄2


where the first inequality follow from the fact that Var
h
−1

P
=1 ()

i2
≤ †−2

P
=1Var[()] ≤

†−2
P

=1[()]
2 for some †  ∞ by using the fact that {()  ≥ 1} is also a strong mixing

process, and the last inequality follows from Lemma C.2.
First we consider the case  − 0  0. Choose a   1   ( − 1)(4213) and  such that

  . We set  = 0 + −1 for  = 1   + 1 such that  + 1 ≥  and  ≤ . Since



≤ ,  ≤ log( ). When ( ) is large enough„ we can have †1




≤ 4. Then we can

calculate

Pr

Ã
sup
1≤≤

̃ (+1)¯̄
 − 0

¯̄  

!
≤

X
=1

[̃ (+1)]


¯̄
 − 0

¯̄
≤

X
=1

†1
¯̄
+1 − 0

¯̄



¯̄
 − 0

¯̄ +
X
=1

21
¯̄
+1 − 0

¯̄2

¯̄
 − 0

¯̄
=

†1





+

21
2



(+1 − 1)
 (− 1)

≤ †1





+

21
3





(− 1)  2

For any  ∈ [0 +   
0
 +], there exists a  ∈ {1  } such that  ≤  ≤ +1. In view of the fact

that ̃ () is monotonic in , we have
̃ ()

|−0| ≤
̃ (+1)

|−0| . It follows that

Pr

⎛⎝ sup
≤−0≤

¯̄̄
̃ ()

¯̄̄
¯̄
 − 0

¯̄  

⎞⎠ ≤ PrÃ sup
1≤≤

̃ (+1)¯̄
 − 0

¯̄  

!
≤ 2

A symmetric argument gives us the proof for the case − ≤  − 0 ≤ − . This completes our proof.
¥
Lemma C.10. Suppose that Assumptions A.1, A.3(iii)—(iv) and A.4—A.5 hold. Then we have  (̌ −
0) = (1) for all  ∈ G.
Proof of Lemma C.10: Let    be the coefficients defined in Lemma C.6-C.8 and  =

°°0°°  Pick an
 such that min{1  }    0 and 2 (1− ) − 24  − 2 (6 + 4

2)  0 Let E be the joint
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event that, for all  ∈ G:
¯̄
̌ − 0

¯̄
≤ , ( )

°°̌ − 0
°° ≤ , ( )

°°̌ − 0
°° ≤ ,

inf
≤|−0|≤

 ()¯̄
 − 0

¯̄ ≥ (1− )

sup
≤|−0|≤

 ()¯̄
 − 0

¯̄ ≤ (1 + )

sup
≤|−0|≤

¯̄
 ()−  (

0
)
¯̄

√


¯̄
 − 0

¯̄ ≤ 

sup
≤|−0|≤

¯̄̄
̃ ()

¯̄̄
√


¯̄
 − 0

¯̄ ≤ 

sup
≤|−0|≤

̃ ()¯̄
 − 0

¯̄ ≤ 

Then by Lemma C.7-C.9.Let( 
0
) ≡ (1[1()−1(0)]   [ ()− (0)])0 a × matrix. Let

∆X ≡ X( 
0
) ≡

©
( 

0
)  ∈ G0



ª
 which is an  × matrix. Let () ≡ ([01 011()]0 

[0  
0
 ()]

0)0 a  × 2 matrix. Let Z() ≡
©
()  ∈ G0



ª
 which is an  × 2 matrix. Let

∆X = (
⊗ P0)∆X , and Z(

0
) = (

⊗ P0)Z(0) where recall that P0 = −1 0 . Let  =
(1   )

0 and ε =
©
  ∈ G0



ª
 an  × 1 vector.

̌ ( )− ̌ ( 
0
) = 0∆X0

(
⊗M0)∆X − 20∆X0

(
⊗M0)Z(

0
)( − 0)

+20∆X0
(

⊗M0)ε

= 00 ∆X
0
∆X

0


0
 + ( − 0)

0∆X0
∆X( + 0)− 0∆X∆X

−20∆X0
Z(

0
)( − 0) + 2

0∆X
0
Z(

0
)( − 0) + 2

0∆X0
ε

−20∆X0
ε

Let ̌ = ( )− for some  such that
°° − 0

°° ≤  implied by E . Suppose that E happens

and for  ∈ [0 +   
0
 +], we have

( )
2−1 ̌ (̌ )− ̌ (̌ 

0
)¯̄

 − 0
¯̄

=
2 00 ∆X

0
∆X

0



¯̄
 − 0

¯̄ +
2 ( + 0 )

0∆X0
∆X( − 0 )

( )
¯̄
 − 0

¯̄ − 2  0∆X∆X

( )
¯̄
 − 0

¯̄
−2


0


h
∆X0

Z(
0
)−∆X

0
Z(

0
)
i
( )

(̌ − 0)

( )
¯̄
 − 0

¯̄ + 2
°°

°° ∆X0
ε −∆X

0
ε

( )1−
¯̄
 − 0

¯̄
≥ 2  ()¯̄

 − 0
¯̄ − 2 (

°°0°°+ °°0°°)°° − 0
°°  ()¯̄

 − 0
¯̄ − 2 kk2 ̃ ()¯̄

 − 0
¯̄

−4 kk ( )

°°̌ − 0

°°  () + ̃ ()¯̄
 − 0

¯̄ − 2
°°

°° ¯̄ ()−  (
0
)
¯̄

√


¯̄
 − 0

¯̄
−2
°°

°°
¯̄̄
̃ ()

¯̄̄
√


¯̄
 − 0

¯̄
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≥ 2 (1− )− 2 (2+ )(1 + ) − 2 (+ )2 − 4 (+ )[(1 + ) + ]

−4 (+ )

 2 (1− )− 24  − 2 (6 + 4
2)

 0

which indicates that ̌ does not belong to [
0
 +   

0
 +]. A symmetric argument shows that if E

happens ̌ does not belong to [
0
 − 0 −   ]. Hence, we have shown ̌ − 0 = (1 ) for all

 ∈ G. ¥
Lemma C.11. Let ∗ () =  (

0
 +  ) and ∗ () =  (

0
 +  ).

Suppose that Assumptions A.1, A.3(iii)—(iv) and A.4—A.5 hold. Then we have that uniformly in  ∈ Ψ,

∗ ()
→  ||  and ∗ ()

→ 0
 ||

where  = 00 
0


0
 for  ∈ G and Ψ is a compact set.

Proof of Lemma C.11. The proof is similar to that of Lemma A.10 in Hansen (2000). ¥
Lemma C.12. Let  () =

√


£
 (

0
 +  )−  (

0
)
¤
 Suppose that Assumptions

A.1, A.3(iii)—(iv) and A.4—A.5 hold. Then on any compact set Ψ

 ()⇒ ()

where () is a vector Brownian motion with covariance matrix  [(1)(1)
0] =  0

 

Proof of Lemma C.12. First, we show the convergence of finite dimensional distribution:  ()
→

(0  0
 ). Let () ≡ 1√



P
=1 

√
 [(

0
 +  ) − (

0
)] and F = ({()  ≤ }).

By Assumption A.1(ii) and Liapunov’s central limit theorem (e..g., Theorem 23.11 of Davidson (1994, pp.372-
373), it suffices to verify thatX

∈G0


()()
0 → || 0

 and
X
∈G0



k()k4 = (1)

Note that

X
∈G0



()()
0 =





X
∈G0



X
=1


0


2


¯̄
(

0
 +  )− (

0
)
¯̄

+




X
∈G0



X
1≤6=≤


0
[(

0
 +  )− (

0
)][(

0
 +  )− (

0
)]

≡  + 

For   we can conduct similar calculations as used in the proof of Lemma C.3 to obtain


£


0


2


¯̄
(

0
 +  )− (

0
)
¯̄¤



→ (
0


2
| = 0)

Then we can readily show  → || 0
 by using the Chebyshev inequality and the fact that {(  )}

is independent across  and strong mixing along the time dimension. Let  = [(
0
 +  ) −
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(
0
)] For   we have for any  × 1 nonrandom vector  with kk = 1 we have

| [0 ]| =




¯̄̄̄
¯̄ X
∈G0



X
1≤6=≤

Cov(0 
0)

¯̄̄̄
¯̄ ≤ 



X
∈G0



−1X
=1

0X
=+1

|Cov(0 0)|

=




X
∈G0



X
0|−|≤0

|Cov(0 0)|+




X
∈G0



X
|−|0

|Cov(0 0)|

≤ 20 max


max
0|−|≤0

|Cov(01 02)|+




X
∈G0



{ [0]}(3+0)(4+0)max


kk28+0

≤ 0(
¡


¢−2
) +  

0(3+0)(4+0) =  (1)

provided 0 is chosen such that 0 = ( ) and 0(ln )
0 → ∞ for some constant 0  1 This

implies that  [ ] = (1) In addition, it is easy to verify that Var[0 ] =  (1)  Then we have

 =  (1). Consequently,
P

∈G0

()()

0 → || 0
 

Now, we verify that
P

∈G0

k()k4 = (1) Note that

X
∈G0



 [0()]
4
=

2

( )
2

X
∈G0





¯̄̄̄
¯0

X
=1



¯̄̄̄
¯
4

=
2

( )
2

X
∈G0



X
=1

 (0)
4
+  (1)

= ( ( )
−1) +  (1) =  (1) 

where the second equality follows from the simple application of the Davydov inequality for strong mixing

processes and similar arguments as used in the analysis of   Then
P

∈G0

k()k4 = (1) by Markov

inequality. Then the pointwise distributional result follows.
For the stochastic equicontinuity, the proof procedure is similar to that in Hansen (2000) and thus

omitted. ¥
Lemma C.13. Let ̃∗ () =  ̃ (

0
 +  ) and ̃∗ () =  ̃ (

0
 +  ).

Suppose that Assumptions A.1, A.3(iii)-(iv) and A.4—A.5 hold. Then ̃∗ ()
→ 0 and ̃∗ ()

→
0 uniformly in  ∈ Ψ, where Ψ is a compact set.
Proof of Lemma C.13. By the proof of Lemma C.9, we have

[̃∗ ()] = 

µ
1



¯̄


¯̄
+
¯̄


¯̄2¶
=  (1) 

Let () = −1
P

=1 (), where () = kk
¯̄
(

0
 +  )− (

0
)
¯̄
 Let ̃() = () −
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[()] Then

Var(̃∗ ()) = 2


⎡⎢⎣
¯̄̄̄
¯̄−1

X
∈0



{()2 −[()
2]}
¯̄̄̄
¯̄
2
⎤⎥⎦ = 2

2


X
∈0



{()2 −[()
2]}2

≤
2

2


X
∈G0





"
−1

X
=1

()

#4

≤
82

2


X
∈G0





"
−1

X
=1

̃()

#4
+
82

2


X
∈0





"
−1

X
=1

 [()]

#4

≤
2

2


4

X
∈G0



⎧⎨⎩
X
=1

 [̃()]
4 +

Ã
X
=1

 [̃()]
2

!2⎫⎬⎭+  (1) +(−1 −2
)

= 
¡


−1
 −3 +−1 −2

¢
+  (1) =  (1) 

where the first equality follows from the Jensen inequality, the second inequality follows from the  in-
equality, the third one follows from the repeated application of Davydov inequality and the fact that

max [()] = (−1
) and the next to last equality holds by the moment calculations. Then

̃∗ () =  (1) for each  ∈ Ψ This result, in conjunction with the monotonicity of ̃∗ () in ei-

ther the half line [0∞) or the half line (−∞ 0] implies that ̃∗ ()
→ 0 uniformly in  ∈ Ψ. See Hansen

(2000, p. 598).

For ̃∗ () we can follow the above arguments and show that ̃∗ () =  (1) for each  ∈ Ψ
Following Lemma A.11 in Hansen (2000), we can readily show the tightness of the process {̃∗ ()} As a
result, we have ̃∗ ()

→ 0 uniformly in  ∈ Ψ. ¥
Lemma C.14. Suppose that Assumptions A.1, A.3(iii)—(iv) and A.4—A.5 hold. Then on any compact set
Ψ,

∗ ()⇒ −2  ||+ 2
q
2 () =





Ã
−

2
 2



||+ 2(
2 2



)

!
,

where  = 00  0
 

0
 .

Proof of Lemma C.14. Let (
0
 +   

0
) = [1[1(

0
 +  ) − 1(

0
)]   [ (

0
 +

 )−  (
0
)]]

0. We have

∗ () = ̌(̌ 
0
)− ̌(̌ 

0
 +  )

= −
X
∈G0



00 (
0
 +   

0
)
0(

0
 +   

0
)

0
 + 2

X
∈G0



00 (
0
 +   

0
)
0

+ ()

where

 () = 2( )
(̌ − 0)

0∗ ()− 2( )
̌
0

∗
 ()( )

(̌ − 0)

−( )
(̌ − 0)

0∗ ()( )
(̌ + 0) + ( )

̌
0
̃
∗
 ()( )

̌

+2( )
̌
0
̃
∗
 ()− 2̌

0


X
∈0



(
0
 +   

0
)
0M0(

0
)(̌ − 0)

≡ 1 () + + 6 ()

18



By Lemma C.10, we haveX
∈G0



00 (
0
 +   

0
)
0(

0
 +   

0
)

0


= ( )−2
X
∈G0



00 (
0
 +   

0
)
0(

0
 +   

0
)

0


= (



)2





X
∈G0



00 (
0
 +   

0
)
0(

0
 +   

0
)

0


= (



)2∗ ()⇒ 2  || 

By Lemma C.11, we haveX
∈G0



00 (
0
 +   

0
)
0 = ( )−

X
∈G0



00 (
0
 +   

0
)
0

= (



)( )

12−00
£
 (

0
 +  )−  (

0
)
¤

= (



) ()

⇒ 
00
 () = 

√
()

By the fact that ( )(̌ − 0) =  (1)  Assumption A.1(vi), and Lemma C.10, we have  () =
(1) uniformly in  for  = 1 2 3 4. By Lemma C.12 we have that 5 () = (1) uniformly in . For
6 (), we have

|6 ()| ≤ 2
©
( )


°°̌°°ª©( )


°°̌ − 0

°°ª 



°°°°°°
X
∈0



(
0
 +   

0
)
0M0(

0
)

°°°°°°
=  (1)  (1) (1) =  (1) uniformly in  ∈ Ψ

as we can follow the proofs of Lemmas C.10 and C.12 and show that



||P∈0


(

0
+  

0
)
0M0(

0
)||

=  (1) uniformly in  ∈ Ψ Consequently, we have ∗ ()⇒ −2  ||+ 2
q
2 () on any

compact set Ψ ¥

D Determination of the Number of Groups

Recall that ̂2() ≡ 1

Q(Θ̂() D̂() Ĝ()) Let ̄2 ≡ 1



P
=1

P
=1 

2
 In the estimation, we require

each group to contain at least bc individuals. We denote the index set of members in group  as G,

where G ∈ G = {G̃, |G̃|  bc} for all  ∈ G. Let ̂ = |G|  We can define five empirical processes
that depend on G:

(G ) =
1

̂

X
∈G

()
0M0 ∆(G  

∗) =
1

̂

X
∈G

( 
∗)0M0

Φ1(G ) =
1

̂

X
∈G

()
0M0(), Φ2(G  

∗) =
1

̂

X
∈G

()
0M0( 

∗) and

Φ3(G  
∗) =

1

̂

X
∈G

( 
∗)0M0( 

∗)
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LetG be any possible group structure when the number of groups in {1 2 } is given by We assume
the following conditions hold for the empirical processes.

Assumption D.1. (i) Pr
¡
inf(G)∈×Γ min [Φ1(G )] ≥ 

¢→ 1 as ( )→∞ for some   0;

(ii) Pr
¡
infG∈ inf |−∗|̄ min

£
Φ3(G  

∗)−Φ2(G  
∗)0Φ1(G )

−1Φ2(G  
∗)
¤
 | − ∗| ≥ 

¢
→ 1 as ( )→∞ for some   0 and ̄  0;

(iii) Pr
³
supG∈ sup|−∗|̄ kΦ(G  

∗)k  | − ∗| ≤ 
´
→ 1 for  = 2 3 as ( )→∞ for some

  0;

(iv) Pr
³
sup(G)∈×Γ k(G )k ≤ −12

´
→ 1 for some   0;

(v) Pr
³
supG∈ sup|−∗|̄ k∆(G  

∗)k  | − ∗| ≤ −12
´
→ 1 for some   0 and ̄  0

Assumption D.2. (i) As ( )→∞,min1≤0 minG ̂2G

→ ̄2  2 where 2 ≡ lim( )→∞( )−1P
=1

P
=1

¡
2
¢


(ii)  → 0 and  →∞ as ( )→∞.
Assumption D.1(i)-(iii) requires the sample covariance matrices are well behaved for any subset of in-

dividuals. Assumption D.1(iv) is the assumption that plays the most important role in our analysis. It

requires sup(G)∈×Γ k(G )k = (
−12) for all (G ) ∈ G × Γ. For the true group members

G0
, we can show that (G

0
 ) = (( )−12) under some regularity conditions. However when we are

estimating the model with   0 it is possible that
°°°(Ĝ )

°°° = (
−12). Similar remarks hold for

D.1(v). Assumption D.2 specifies the usual condition for the consistency of an information criterion. In
particular, Assumption D.2(i) in conjunction with the first part of D.2(ii) helps to eliminate all underfitted
models and the second part of D.2(ii) helps to eliminate the overfitted models.

Proposition D.1 Suppose Assumptions A.1-A.5 in the text and Assumption D.1 hold. The following state-

ment holds:

̂2()− ̄2 = (
−1) for any 0 ≤  ≤ max

Remark. The probability order (
−1) in the above proposition is not a conservative order. To illustrate

this point, we consider a simple regression where  = + so that there is only one group. If we estimate
the model with  = 2, we have

0 ≥ 
£
̂2(2)− ̄2

¤
=
1



2X
=1

X
∈Ĝ

X
=1

⎛⎝ − 1

̂

X
∈Ĝ

X
=1



⎞⎠2

− 1



X
=1

X
=1

2

=
1



2X
=1

X
∈Ĝ

X
=1

⎛⎝ − 1

̂

X
∈Ĝ

X
=1



⎞⎠2

− 1



X
=1

X
=1

2

= −
2X

=1

̂



⎛⎝ 1

̂

X
∈Ĝ

̄·

⎞⎠2

≤ −
2X

=1

̃



⎛⎝√
̃

X
∈G̃

̄·

⎞⎠2



where ̄· = 1


P
=1  G̃1 = {|̄· ≤ 0} G̃2 = {|̄·  0} ̃ =

¯̄̄
G̃

¯̄̄
 and the last inequality holds by the

definitions of {Ĝ} and ̂2(2) [Note that ̂2(2) is minimized at (Ĝ1 Ĝ2).] Without loss of generality, we

suppose that  is i.i.d.  (0 1) over both  and . Then  ≡
√
 ̄· v  (0 1) and by the strong law of

large numbers¯̄̄̄
¯̄√
̃1

X
∈G̃1

̄·

¯̄̄̄
¯̄ =

¯̄̄̄
¯
√


̃1

X
=1

̄·1 (̄· ≤ 0)
¯̄̄̄
¯ = 

̃1

¯̄̄̄
¯ 1

X
=1

1 ( ≤ 0)
¯̄̄̄
¯ → 2 | [1 ( ≤ 0)]| 
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where  v  (0 1) and we use the fact that ̃1 = 1


P
=1 1 (̄· ≤ 0)

→  ( ≤ 0) = 1
2  Similarly,¯̄̄̄

¯̄√
̃2

X
∈G̃2

̄·

¯̄̄̄
¯̄ =

¯̄̄̄
¯
√


̃2

X
=1

̄·1 (̄·  0)

¯̄̄̄
¯ = 

̃2

¯̄̄̄
¯ 1

X
=1

1 (  0)

¯̄̄̄
¯ → 2 | [1 (  0)]| 

This calculation indicates that the negative value 
£
̂2(2)− ̄2

¤
has the probability order 

¡
−1

¢
that

cannot be 
¡
−1

¢
 In other words, the order (

−1) is a tight probability order for ̂2(2)− ̄2 

Proof of Proposition D.1. Following similar arguments as used in the proofs of Lemmas A.1-A.3, we can
show that individuals from the true group G0

 would stay in the same estimated group w.p.a.1, i.e.,

Pr

∙
sup

1≤≤
1(̂ = ̂  

0
 6= 0 ) = 1

¸
→ 0 as ( )→∞

We only consider the case where some true groups are further divided into several groups. For notational

simplicity, we only consider the case 0 = 1 where our true parameters can be rewritten as (00 0)0 =
(00 00 0)0 without the group-specific subscript. Since we still estimate a PSTR model with  ≥ 1 groups,
the estimators, e.g., (̂

()

  ̂() ) still have the group-specific subscript. But for notational brevity, we will

denote (̂
()

  ̂() ) as (̂ ̂) Then we can write Q(Θ̂() D̂() Ĝ()) =
P

=1 Q̄(̂ ̂) where Q̄(· ·) is
defined in Section 4.1. Following the analysis for (C.2) in the proof of Lemma C.2, we have

̂ − 0 = Φ̄1(̂)
−1 1

̂

X
∈Ĝ

(̂)
0M0 − Φ̄1(̂)−1Φ̄2(̂)0 (D.1)

where Φ̄1() ≡ 1
̂

P
∈Ĝ

()
0M0() = Φ1(Ĝ ) and Φ̄2() ≡ 1

̂

P
∈Ĝ

()
0M0( 

0) =

Φ2(Ĝ  
0). Following the similar analysis for (C.3) of Lemma C.2, we have

1

̂

h
Q̄(̂ ̂)− Q̄(

0 0)
i

= 00Φ̄3(̂)
0 + (̂ − 0)0Φ̄1(̂)(̂ − 0) + 2(̂ − 0)0Φ̄2(̂)

0

−(̂ − 0)0
2



X
∈Ĝ

(̌)
0M0 − ̂

0


2



X
∈Ĝ

(̂ 
0)0M0

where Φ̄3() ≡ 1
̂

P
∈Ĝ

( 
0)0M0( 

0) = Φ3(Ĝ  
0). Plugging (D.1) into the above equation,

we have

1

̂

h
Q̄(̂ ̂)− Q̄(

0 0)
i
= 00

£
Φ̄3(̂)− Φ̄2(̂)0Φ̄1(̂)−1Φ̄2(̂)

¤
0

−(Ĝ ̂)
0Φ̄1(̂)

−1(Ĝ ̂) + 2
00Φ̄2(̂)

0Φ̄1(̂)
−1(Ĝ ̂)

−2
³
̂ − 0

´0
∆(Ĝ ̂ 

0)− 200∆(Ĝ ̂ 
0)

≡ ∆Q̄1 + +∆Q̄5

We discuss two cases: (1) ( )− 12 = (1) and (2) ( )− 12 →∞ as ( )→∞

In Case (1), we have 0 = (−12) By Assumption D.1(iii) and equation (D.1), we can readily show
that ̂ − 0 = (

−12). With this result, then we can show that ∆Q̄ = (
−1) for  = 1  5 by

using Assumption D.1.
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In Case (2), we have ̂ − 0 = (
−12 + ( )−

¯̄
̂ − 0

¯̄
) by (D.1) and Assumption D.1(iii). Then

we can apply Assumption D.1 to show that

∆Q̄1 = (( )−2
¯̄
̂ − 0

¯̄
) ∆Q̄2 = (

−1)

∆Q̄3 = (
−12( )−

¯̄
̂ − 0

¯̄
)

∆Q̄4 = (
−12( )−

¯̄
̂ − 0

¯̄2
+ −1

¯̄
̂ − 0

¯̄
) and

∆Q̄5 = (
−12( )−

¯̄
̂ − 0

¯̄


Because ∆Q̄1  0 by Assumption D.1(ii) and 1
̂

h
Q̄(̂ ̂)− Q̄(

0 0)
i
 0 by the definition of

least squares estimation, we can conclude ∆Q̄1 should have at most the same order as
P5

=2∆Q̄. By

comparison between these orders, we can show that
¯̄
̂ − 0

¯̄
= (

−1( )2) and
P5

=1∆Q̄ = (
−1)

follows. Consequently,

0 ≥ ̂2()− ̄2 =
1



X
=1

h
Q̄(̂ ̂)− Q̄(

0 0)
i

=
X
=1

̂



1

̂

h
Q̄(̂ ̂)− Q̄(

0 0)
i

≥
X
=1

1

̂

h
Q̄(̂ ̂)− Q̄(

0 0)
i
= (

−1)

This implies that ̂2()− ̄2 = (
−1) for any 0 ≤  ≤ max ¥

E Consistency of groupmembership estimators in the fixed-threshold-

effect framework

In this section, we discuss the asymptotic property of our least squares estimator under the constant threshold
effect framework (i.e.,  = 0). Suppose Assumptions A.1-A.5 hold except that we now let  = 0. Then one
can follow the arguments as used in the proofs of Lemmas C.2-C.10 to show that

¯̄
̌ − 0

¯̄
= (( )−1)

and ̌ = ̌(0) + (( )−12), where (̌ ̌) is infeasible estimator for  ∈ G.
In the PSTR model, the major difficulty is to show the consistency of the estimator of the latent group

structure as in Theorem 3.1. Once we establish a similar result as that of Lemma A.3, we can prove
Theorem 3.1. In addition, we can prove Lemmas A.4-A.6 which confirms

¯̄
̂ − 0

¯̄
= (( )−1) and

̂ = ̌ + (( )−12). In the following analysis, we give a sketch of the proof of Theorem 3.1 in the
fixed-threshold-effect framework.

To proceed, we add some notations. Define

̃ ( ̃G) ≡ 1



X
=1

X
=1

1(0 = )1( = ̃)
£
(0

0
)
2|0

¤


where (·|) ≡ (·| = ). We impose an additional identification condition:
Assumption E.1. As ( )→∞, the following statements hold: (i) For some constants   0 and ̄  0
we have

sup
1≤≤

sup
(0∗‘)‘∈B2

sup
|−∗|̄

(
Pr

"
X
=1

[̃()
0 − ̃(

∗)0∗]2 ≤



X
=1

[( − ∗)0̃(∗)]
2
+ | − ∗| £(0)2|¤

#)
= (−4);
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(ii) There exists a constant   0 such that for all  ∈ G,

Pr

µ
inf

(GD)∈G×Γ
max
̃∈G

{min[ ( ̃DG)] ∧ ̃ ( ̃G)}  

¶
→ 1;

(iii) For all  ̃ ∈ G, where  6= ̃, we have
°°(00  0)0 − (00̃  0̃)0°°   for some constant   0;

(iv) For any  6= ̃ and 1 ≤  ≤  , we have

max
¡
[̃(

0
)
0(0̃ − 0)]

2
¯̄
0̃ − 0

¯̄

£
(0

0
̃)
2|0̃

¤¢ ≡ ̃̃ ≥ ̃̃

for some constant ̃̃  0

Assumption E.1 (i) is a non-colinearity condition similar to Assumption A.4(ii) in the main text. How-
ever, it requires that the non-colinearity property should hold for each individual. Assumption E.1(ii) is
modified from Assumption A.2. Assumption E.1(iii)-(iv) is modified from Assumption A.3(i)-(ii). As re-

marked in Section 3.1, E.1(iv) is redundant if we assume that min([̃(
0
)̃(

0
)
0]) and 00 (0|0)0

are bounded below from zero by a constant  say.
Below we prove Theorem 3.1 under Assumptions A.1, A.3(iii)-(iv) and E.1.

Proof of Theorem 3.1. Lemma A.1 still holds under the stated conditions. Lemmas A.2-A.3 are replaced
by Lemmas E.1 and E.2 below. Combining Lemmas E.1-E.2 we have the desired claim. ¥

Lemma E.1. Suppose that Assumptions A.1, A.3(iii)-(iv) and E.1 hold. Then we have ((Θ̂ D̂) (Θ
0D0))

→
0, where

((Θ̂ D̂) (Θ
0D0)) = max

½
max
∈G

µ
min
̃∈G

°°°̂ − 0̃

°°°2 + ¯̄̂ − 0̃
¯̄¶

 max
̃∈G

µ
min
∈G

°°°̂ − 0̃

°°°2 + ¯̄̂ − 0̃
¯̄¶¾



Proof of Lemma E.1. It suffices to show (i) max∈G
³
miñ∈G

°°°̂ − 0̃

°°°+ ¯̄̂ − 0̃
¯̄´
= (1) and (ii)

max̃∈G
³
min∈G

°°°̂ − 0̃

°°°+ ¯̄̂ − 0̃
¯̄´
= (1)

We first show (i). By Lemma A.1, we have

1


Q̃(Θ̂ D̂ Ĝ) =

1


Q(Θ̂ D̂ Ĝ) + (1) ≤ 1


Q(Θ0D0G0) + (1)

=
1


Q̃(Θ0D0G0) + (1)

where the inequality holds by the definition of least squares estimator. On the other hand, noting that

Q̃(ΘDG) is minimized at (Θ0D0G0), we have 1

[Q̃(Θ̂ D̂ Ĝ) − Q̃(Θ0D0G0)] ≥ 0 It follows that

1

[Q̃(Θ̂ D̂ Ĝ)− Q̃(Θ0D0G0)] = (1) By direct calculation, we have uniformly in (ΘDG)

1



h
Q̃(ΘDG)− Q̃(Θ0D0G0

)
i

=
1



X
=1

X
=1

n
000 ̃(

0
0
)− 0 ̃()

o2
≥ 



X
=1

X
=1

h
( − 00

)0̃()
i2
+





X
=1

X
=1

¯̄̄
 − 00

¯̄̄

h
(0

0
0
)2|00

i
+ (1)

=
X
=1

X
̃=1





X
=1

X
=1

1(0 = )1( = ̃)
n£
(0 − ̃)

0̃(̃)
¤2
+
¯̄
̃ − 0

¯̄

£
(0

0
)
2|0

¤o
+ (1)

= 

X
=1

X
̃=1

h
(0 − ̃)

0 ( ̃DG)(0 − ̃) +
¯̄
̃ − 0

¯̄
̃ ( ̃G)

i
+ (1)
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where the inequality holds by Assumption E.1(i) and the last equation is by the definitions of ( ̃DG)

and ̃ ( ̃G). It follows that

(1) = 

X
=1

X
̃=1

h
(0 − ̃)

0 ( ̃DG)(0 − ̃) +
¯̄
̃ − 0

¯̄
̃ ( ̃G)

i
+ (1)

≥ 

X
=1

X
̃=1

n
min[ ( ̃DG)] ∧ ̃ ( ̃G)

o³°°0 − ̃
°°2 + ¯̄̃ − 0

¯̄´
+ (1)

≥ max
∈G

X
̃=1

n
min[ ( ̃DG)] ∧ ̃ ( ̃G)

o³°°0 − ̃
°°2 + ¯̄̃ − 0

¯̄´
+ (1)

≥ max
∈G

µ
min
̃∈G

°°°0 − ̂̃

°°°2 + ¯̄̃ − 0
¯̄¶ X

̃=1

n
min[ ( ̃DG)] ∧ ̃ ( ̃G)

o
+ (1)

≥ max
∈G

µ
min
̃∈G

°°°0 − ̂̃

°°°2 + ¯̄̃ − 0
¯̄¶
+ (1)

where the last inequality is by Assumption E.1(ii) which says that there exists a group ̃∗ ∈ G such thatn
min[ ( ̃DG)] ∧ ̃ ( ̃G)

o
   0 w.p.a.1. Consequently, we have

max
∈G

µ
min
̃∈G

°°°0 − ̂̃

°°°2 + ¯̄̃ − 0
¯̄¶
=  (1) 

To show (ii), we can follow a similar analysis given in the proof of Lemma A.2. The details are omitted here.
¥

Remark. The proof of Lemma E.1 shows that there exists a permutation Θ̂ such that
°°°̂ − 0Θ̂()

°°°2 +¯̄̄
̂ − 0

Θ̂()

¯̄̄
= (1) We can take Θ̂() =  by relabeling. In the following analysis, we shall write°°°̂ − 0Θ̂()

°°°2 + ¯̄̄̂ − 0Θ̂()

¯̄̄
= (1) without referring to the relabeling any more.

Lemma E.2. Let ̂(ΘD) = argmin∈G
P

=1

£
̃ − ̃()

0
¤2
 Suppose that Assumptions A.1, A.3(iii)-

(iv) and E.1 hold. Then we have that for some   0,

Pr

Ã
sup

(ΘD)∈Ñ

"
1



X
=1

1(̂(ΘD) 6= 0 )

#!
= (−4)

where Ñ =
n
(ΘD) ∈ B × Γ :

°° − 0
°°2 + ¯̄ − 0

¯̄
   ∈ G

o
Proof of Lemma E.2. The proof is similar to that of Lemma A.3 except the details of bounding Z(ΘD)
where

Z(ΘD) ≡ 1(0 6= )1

Ã
X
=1

[̃ − ̃()
0)]2 ≤

X
=1

[̃ − ̃(0 )
00 ]

2

!


For Z(ΘD), we have
Z(ΘD) ≤ max

̃∈G\{}
1 (( ̃) ≤ 0) 

where

( ̃) =
X
=1

[̃(̃)
0̃ − ̃()

0]
½
1

2
[̃(̃)

0̃ − ̃()
0] + ̃ + ̃(

0
̃)
00̃ − ̃(̃)

0̃

¾
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Then we can follow the analysis of Lemma A.3 to show that

Z(ΘD) ≤ max
̃∈\{}

1

(
X
=1

[̃(
0
̃)
00̃ − ̃0(

0
)
00]

½
1

2
[̃(

0
̃)
00̃ − ̃0(

0
)
00] + ̃

¾
≤ 

)
≡ Z̃

where  = 
√

P

=1(kk2 + 2) for some constant   0. Next, we can use the Assumption E.1(i) to
show that

Pr(Z̃ = 1) ≤
X

̃∈G\{}
Pr

(


2

X
=1

£
(0̃ − 0)

0̃(0)
¤2
+
¯̄
0̃ − 0

¯̄

£
(0

0
̃)
2|0̃

¤
+

X
=1

[̃(
0
̃)
00̃ − ̃0(

0
)
00]̃ ≤ 

)
+ (−4)

Then one can use Assumption E.1(iv) and similar arguments as used in the proof of Lemma A.3 to show

that the leading term on the right hand side of the last inequality is (−4) The result then follows from
the Markov inequality as used in the proof of Lemma A.3. ¥
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