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Unified M-Estimation of Fixed-Effects Spatial Dynamic
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Abstract
It is well known that quasi maximum likelihood (QML) estimation of dynamic panel

data (DPD) models with short panels depends on the assumptions on the initial values,

and a wrong treatment of them will result in inconsistency and serious bias. The same

issues apply to spatial DPD (SDPD) models with short panels. In this paper, a unifiedM -

estimation method is proposed for estimating the fixed-effects SDPD models containing

three major types of spatial effects, namely spatial lag, spatial error and space-time lag.

The method is free from the specification of the distribution of the initial observations

and robust against nonnormality of the errors. Consistency and asymptotic normality

of the proposed M -estimator are established. A martingale difference representation of

the underlying estimating functions is developed, which leads to an initial-condition free

estimate of the variance of the M -estimators. Monte Carlo results show that the proposed

methods have excellent finite sample performance.

Key Words: Adjusted quasi score; Dynamic panels; Fixed effects; Initial-condition
free estimation; Martingale difference; Spatial effects; Short panels.

JEL classifications: C10, C13, C21, C23, C15

1 Introduction

In the majority of empirical microeconometric research involving panel data, a panel with
a large number of cross-sectional units and a small number of time periods, called a short
panel, remains the prevalent setting (Hsiao et al., 2002; Binder et al., 2005), and evidence from
the standard dynamic panel data models shows that maximum likelihood (ML) estimators
are more efficient than GMM estimators (Hsiao et al., 2002; Binder et al., 2005; Bun and
Caree, 2005; Gouriéroux, et al., 2010; Kruiniger, 2013). Hsiao (2003, Ch. 4) gives an excellent
summary on dynamic panel data (DPD) models with random or fixed effects.

∗I would like to thank Anil Bera, Ingmar Prucha, the participants of the VIII World Conference of the
Spatial Econometrics Association, ETH Zurich, 2014, and the seminar participants of Shanghai University
of Finance and Economics, May 8, 2015, for their helpful comments. The financial support from Singapore
Management University under Grant C244/MSS12E007 is gratefully acknowledged.
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In recent years, there has been a growing interest in the estimation of dynamic panel data
models with cross-sectional or spatial dependence, arising from economic processes such as
housing decisions, technology adoption, unemployment, welfare participation, price decisions,
etc. The resulted models are referred to as spatial DPD (SDPD) models (Anselin, 2001;
Anselin et al., 2008), where the spatial effects may appear in the model either in the form
of spatial lag(s) of the response variable (Yu et al., 2008; Yu and Lee, 2010; Lee and Yu,
2010a; Korniotis, 2010; Elhorst, 2010), or in the form of spatial errors (Elhorst, 2005; Yang
et al., 2006; Mutl, 2006; Su and Yang, 2015). Lee and Yu (2010b, 2015a) provide an excellent
survey on the SDPD models. Most of the studies on the SDPD modes are either based on the
GMM-type method or under a large panel set-up, except Elhorst (2010) and Su and Yang
(2015) who consider the quasi-ML (QML) estimation of the SDPD model with short panels.

As ML estimators are more efficient than the GMM estimators, and the latter can perform
poorly (Gouriéroux, et al., 2010), it is natural to expect that any ML-type estimation be
more efficient than the corresponding GMM estimation. The main difficulty in using ML or
QML method to estimate the DPD or SDPD models with short panels is the modeling of
the initial observations of the response vector, say y0, for the random effects model, or the
initial differences, say Δy1, for the fixed effects model. This is because y0 may be exogenous
in the sense that it varies autonomously, independent of other variables in the model; or
endogenous in the sense that it is generated in the same way as the other values of the
response vector y in the latter time periods. In case that y0 is endogenous, it depends on the
processes starting values and the past values of time-varying regressors, both of which are
not observable, leading to incidental parameters. In the case of fixed effects model, Δy1 is
endogenous whether y0 is exogenous or endogenous and this incidental parameters problem
always exists. The traditional way of handling this problem is to predict these quantities
using the observed values of the regressors (Anderson and Hisao, 1981, 1982; Bhargava and
Sargan, 1983; Hsiao et al. 2002; Elhorst, 2010; Su and Yang, 2015).1 However, the model
for the initial differences involves the unknown process starting time. Also, its predictability
typically requires that the time-varying regressors be stationary or trend-stationary. And,
when there are many time-varying regressors in the model, modelling the initial difference may
introduce ‘too many’ additional parameters, causing a efficiency decline. Most importantly,
this linear projection method may not be applicable to an SDPD model with spatial lags (see
the footnote at the end of Section 2 for some details). It is therefore highly desirable to have
a general method that is free from the specification of the initial conditions.

In this paper, we propose a unified, initial-condition free approach to estimate the SDPD
models with fixed effects, allowing all three major types of spatial dependence to be present
in the model, namely, the spatial lag, space-time lag, and spatial error. The approach starts
from the ‘conditional’ quasi-likelihood, with the initial differences being treated as if they are
exogenous, and then makes corrections on the conditional quasi-score functions to give a set

1In case of fixed effects models, the incidental parameters problem also occurs in the model itself (the fixed
effects), but this problem can be resolved by first-differencing or some kind of orthogonal transformations.
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of unbiased estimating equations.2 Solving these unbiased estimating equations (EFs) leads
to estimators that are consistent and asymptotically normal. It turns out that the corrections
or the adjustments on the conditional quasi scores are totally free from the specification of
the distribution of the initial differences, resulting initial-condition free estimators for the
SDPS model. The proposed estimator is simply referred to in this paper as the M -estimator
according to Huber (1981) or van der Vaart (1998).3

For initial-condition free inferences, a martingale differences (MDs) representation of the
EFs (being the adjusted quasi scores) is developed, and the average of the outer products
of the MDs (OPMD) is shown to give a consistent and initial-condition free estimate of
the variance covariance (VC) matrix of the EFs. This and the estimated Hessian matrix
together give a consistent estimate of the VC matrix of the M -estimators, referred to as the
OPMD-estimator in this paper. Monte Carlo results show that the proposed M -estimators
of the model parameters and the OPMD-estimator of their VC matrix have excellent finite
sample performance – robust against the way the initial observations being generated and
nonnormality of the error distributions. Under a special submodel where only spatial error
is present, the proposed methods are compared with the traditional method where the initial
observations are modeled and the full quasi likelihood is used (Su and Yang, 2015). The
results show that the two methods are comparable when the initial observations are correctly
specified, but the proposed methods are more robust against misspecifications of the initial
conditions. Our Monte Carlo results show that the proposed unified M -estimation method,
for the FE-SDPD model with all three types of spatial effects, is not only valid when T is
small, but also provides better estimators when T is not small, compared with the conditional
quasi likelihood approach. The proposed OPMD method for the VC matrix estimation is valid
only when T is small, but when T is large, a plug-in method based on the conditional variance
of the adjusted quasi scores, treating the initial differences as exogenous, can be used.

The rest of the paper is organized as follows. Section 2 describes the general SDPD
model, its submodels, and discusses the limitations of the method of modelling the initial
conditions with the SDPD models. Section 3 introduces the unified M -estimation method
for the general SDPD model with fixed effects, presents the asymptotic properties of the
proposed M -estimators, and introduces the OPMD method for VC matrix estimation and
proves its consistency. Section 4 considers several important submodels and discusses how
the general results are simplified, and how the proposed methods compare with the existing
QML approach. Section 5 presents Monte Carlo results. Section 6 concludes the paper.

2Clearly, this ‘conditional’ quasi likelihood can never be a correct likelihood as Δy1 is always endogenous,
and thus maximizing it may produce inconsistent estimators when the time dimension T is fixed and small.
This is intuitively clear as the conditional likelihood ignores the information contained in Δy1 which is a fixed
proportion of the whole data Δy1,Δy2, . . . ,ΔyT . Beside, Δy1 may contain some additional information about
the model parameters that is accumulated from the past. In this sense, some form of modifications is necessary
before this conditional likelihood approach can be followed for model estimation.

3The term ‘M -estimator’ was coined by Huber (1964) to mean maximum-likelihood type. It can be defined
in either of the two ways: (a) as the solution of a maximization problem and (b) as the root of an estimating
equation. Clearly, our estimation strategy falls into the category (b). van der Vaart (1998) also called the
M -estimator defined in (b) a zero estimator. See also Huber (1981) and Newey and MacFadden (1994).

3



2 Spatial Dynamic Panel Data Models

Consider the spatial dynamic panel data (SDPD) model where the spatial effects appear
in the model in the forms of spatial lag (SL), space-time lag (STL), and spatial error (SE):

yt = ρyt−1 + λ1W1yt + λ2W2yt−1 +Xtβ + Zγ + μ+ αt1n + ut, (2.1)

ut = λ3W3ut + vt, t = 1, 2, . . . , T,

where yt = (y1t, y2t, . . . , ynt)′ and vt = (v1t, v2t, . . . , vnt)′ are n × 1 vectors of response values
and idiosyncratic errors at time t, and {vit} are independent and identically distributed (iid)
across i and t with mean zero and variance σ2

v ; the scalar parameter ρ characterizes the
dynamic effect, λ1 the spatial lag effect, λ2 the space-time effect, and λ3 the spatial error
effect; {Xt} are n × p matrices containing values of p time-varying exogenous variables, Z is
an n×q matrix containing the values of q time-invariant exogenous variables that may include
the constant term, dummy variables (e.g., individuals’ gender and race), etc.; β and γ are
the usual regression coefficients; Wr, r = 1, 2, 3 are the given n × n spatial weight matrices;
and μ is an n × 1 vector of unobserved individual-specific effects, {αt} are the time-specific
effects, and 1n is an n× 1 vector of ones.

Model (2.1) is fairly general. It embeds several important submodels popular in the
literature. Thus, it is highly desirable to have a unified method of inference for this general
model so that the method can easily be simplified to suit each special model of interest to
a particular applied problem. On the other hand, Model (2.1) can be further extended to
contain higher-order spatial lags in yt, in yt−1, as well as in ut. See the end of Section 3.1 for
further discussions. In this paper, we focus on Model (2.1) because it is general enough and
further generalizations can be done at the expense of more tedious algebra. Each submodel
has its own features and merits, and thus deserves some specific attention.

First, setting λ1 and λ2 to zero, Model (2.1) reduces to an SDPD model with only SE,4

in the form of a spatial autoregressive (SAR) error process,

yt = ρyt−1 +X ′
tβ + Zγ + μ+ αt1n + ut, ut = λ3W3ut + vt, t = 1, 2, . . . , T. (2.2)

Su and Yang (2015) provide formal asymptotic results for the quasi maximum likelihood
(QML) estimation of Model (2.2) with short panels (T small), and random or fixed effects.
To give a full quasi likelihood function, the initial observations y0 or the initial differences
Δy0 are modeled under some fundamental assumptions adapted from Hsiao et al. (2002).
These assumptions may not hold and thus the model for the initial observations or differences
is subject to model misspecification. See the end of this section for a detailed discussion.

4This SE dependence structure was introduced by Anselin (1988). Subsequently, alternative or extended
SE structures have been suggested, e.g., to replace the SAR process by a spatial moving average SMA process,
to allow μ to be spatially correlated as well, etc. See Kapoor et al. (2007), Anselin et al. (2008), Lee and Yu
(2012) and Baltagi et al. (2013). However, with short panels and fixed effects, μ must be eliminated by a data
transformation to avoid incidental parameters problem, and after that only the SE structure in ut is kept.
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Setting λ2 and λ3 in (2.1) to zero gives an SDPD model with only SL,

yt = ρyt−1 + λ1W1yt +X ′
tβ + Zγ + μ+ αt1n + vt, t = 1, 2, . . . , T. (2.3)

A spatial model (not necessarily dynamic panel) with only SL effect may be more popular
than that with only SE effect, as in the former, both the mean and variance of a spatial unit
are directly affected by some other spatial units, whereas in the latter only the variance is
so, resulting a model with so-called cross-section dependence.5

Setting λ2 to zero, Model (2.1) reduces to an SDPD model with both SL and SE, also
referred to as the SDPD model with SARAR effect in the literature,

yt = ρyt−1 + λ1W1yt +X ′
tβ + Zγ + μ+ αt�n + ut, ut = λ3W3ut + vt, t = 1, 2, . . . , T. (2.4)

This model encompasses Models (2.2) and (2.3) has not been formally treated under the
QML-type approach.6 Čı́žk et al. (2014) considered GMM estimation of this model by
extending the three steps approach of Kapoor et al. (2007) with large n and fixed T .

Setting λ3 in (2.1) to zero gives an SDPD model with SL and STL,

yt = ρyt−1 + λ1W1yt + λ2W2yt−1 +X ′
tβ + Zγ + μ+ αt�n + vt, t = 1, 2, . . . , T. (2.5)

Under fixed effects, Yu et al. (2008) presented formal asymptotic results for the QML es-
timation of Model (2.5) under large n and large T set-up, and Lee and Yu (2014) studied
this model based on GMM approach where n is large and T can be large but small relative
to n. The case of large n and fixed T for Model (2.5) has not been formally treated in the
literature, in particular under the QML approach.

Setting ρ, λ1 and λ3 to zero in Model (2.1), we have a panel data model with only STL

dependence, referred to as pure space recursive model in Anselin et al. (2008). Finally, when
all the spatial parameters are set to zero, Model (2.1) reduces to the regular dynamic panel
data (DPD) model, which has been extensively treated in the literature.

The current study focuses on the general Model (2.1) with fixed effects, large n and small
T . Under this scenario, Z must be excluded from the model, and αt1n can be merged into
Xtβ. Thus, the model under study takes the form:

yt = ρyt−1 + λ1W1yt + λ2W2yt−1 +Xtβ + μ+ ut, ut = λ3W3ut + vt, (2.6)

t = 1, 2, . . . , T . The QML approach requires the initial observations (differences) be specified
(modeled) in order to construct the full likelihood function. The standard approach of mod-
elling the initial observations or initial differences is through a linear projection onto the space

5An alternative way of modelling the cross-section dependence may be the factor model; see, e.g., Andrews
(2005), Pesaran (2006), Bai (2009), and Pesaran and Tosetti (2011).

6Anselin et al. (2008, p. 647) point out that combinations of both spatially lagged dependent variables and
spatially lagged error terms may lead to identification problems unless the covariate effects are non-zero. For
detailed discussions on the identification of the SDPD models, see Elhorst (2012) and Lee and Yu (2015b).
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of observed regressors (Hsiao et al., 2002). This approach has been successfully adapted by
Su and Yang (2015) to give consistent estimations of Model (2.2) under both random effects
and fixed-effects. However, this approach requires the following initial conditions:

(i) data collection starts from the 0th period; the processes start from the −mth period, i.e.,
m periods before the start of data collection, where m = 0, 1, . . ., and then evolve according
to the prescribed processes, i.e., one of the models described above; (ii) starting positions of
the process y−m are treated as exogenous; hence the exogenous variables Xt and the errors ut
start to have impact on the response from the period −m+ 1 onwards; (iii) all the exogenous
quantities (y−m, Xt) are considered as random and inferences proceed by conditioning on
them, (iv) {xit, t = . . . ,−1, 0, 1, . . .} are trend-stationary or first-difference stationary for all
i = 1, . . . , n, and (v) the variances of y−m are constant.

Evidently, what happened in the ‘past’ is not observed, the process starting time or m is
unknown, the processes movements may not be the same before and after the start of data
collection, and the processes are observed only for a few periods. Hence, the above assump-
tions, in particular the later part of (i) and (iv), may not hold and the linear projection model
for the initial observations may be misspecified.7 Furthermore, even if these assumptions do
hold, the linear projection method for modelling the initial observations/differences may not
have a straightforward extension to SDPD models that contain SL and/or STL structures.8

Alternative methods that are free from the initial conditions, or the methods without the
need of explicitly modelling the initial differences, are therefore highly desirable.

3 Unified M-Estimation of Fixed-Effects SDPD Models

In this section, we present a unified framework for estimating the fixed effects (FE) SDPD
models, where all three types of spatial dependence are allowed to present in the model and
the time dimension T is allowed to be small and fixed. The basic idea of this unified approach
is to first formulate the Gaussian likelihood function conditional on the initial differences Δy1
as if they are exogenous, and then modify the resulted quasi score function to account for the
ignorance of Δy1 in this ‘conditional’ quasi Gaussian score. We shall start with short panels,
i.e., panels with large n and small and fixed T , to show the exact cause of inconsistency of
the estimators based on this conditional likelihood, and how the quasi scores be adjusted so

7Consider Model (2.2) after first-difference. Under the initial conditions, we obtain,

Δy1 = λm
3 Δy−m+1 +

Pm−1
j=0 λj

3Δx−j+1β +
Pm−1

j=0 λj
3B

−(j+1)
3 Δv−j+1,

by successive backward substitutions. Clearly, the exogenous part Δη1 of Δy1 enjoys an approximately linear
structure, which makes the linear project of Δη1 onto the space of the observed Δxt, t = 1, . . . , T , valid.
However, if the specified initial conditions do not hold, this linear projection is in doubt.

8Consider simply the first-differenced Model (2.3). Under the initial conditions, we obtain,

Δy1 = λm
1 B

−m
1 Δy−m+1 +

Pm−1
j=0 λj

1B
−(j+1)
1 Δx−j+1β +

Pm−1
j=0 λj

1B
−(j+1)
1 Δv−j+1,

by successive backward substitutions. Now, different from the SDPD model with SE only, the exogenous part
Δη1 of Δy1 also contains spatial effect through B1, and the linear structure is no longer there.
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as to give consistent estimators. Then we argue that when T grows with n the proposed
estimation strategy remains valid, and in fact it gives better estimators than those based
on the conditional likelihood, which is the usual QML estimators under the large n and
large T set up (see, e.g., Yu et al., 2008). We first present the results for the most general
model, and then in Section 4 specialize them to each of several submodels to facilitate the
practical applications and to compare with the existing QML estimation if available. Proofs
of the theoretical results are lengthy, in particular the proofs of the theorems, and are put in
Appendix B (for the lemmas) and Appendix C (for the theorems).

3.1 The M-estimation

To facilitate the introduction of the general theory and method, we differentiate the true
value of a parameter vector from its general value by adding by adding a subscript ‘0’, e.g., β0

is the true value of β, and emphasize that Model (2.6) holds only under the true parameter
values. Following the standard practice, we eliminate μ by first-differencing (2.6) to give,

Δyt = ρ0Δyt−1 + λ10W1Δyt +λ20W2Δyt−1 + ΔXtβ0 + Δut, Δut = λ30W3Δut + Δvt, (3.1)

for t = 2, 3, · · · , T . The parameters left in Model (3.1) are ψ0 = {β′0, σ2
v0, ρ0, λ

′
0}′ where

λ0 = (λ10, λ20, λ30)′. Note that Δy1 depends on both the initial observations y0 and the first
period observations y1. Thus, even if y0 is exogenous, y1 and thus Δy1 is not. However, we still
formulate a likelihood function as if Δy1 is exogenous, and then make corrections on the rele-
vant elements of the score function. Let ΔY = {Δy′2, . . . ,Δy′T}′, ΔY−1 = {Δy′1, . . . ,Δy′T−1}′,
ΔX = {ΔX ′

2, . . . ,ΔX
′
T}′, and Δv = {Δv′2, . . . ,Δv′T}′. Let Wr = IT−1 ⊗Wr, r = 1, 2, 3,

where ⊗ denotes the Kronecker product and Im an m×m identity matrix. Define Br(λr) =
In − λrWr, r = 1, 3, and B2(ρ, λ2) = ρIn + λ2W2. Model (3.1) can be written as:

ΔY = ρ0ΔY−1 + λ10W1ΔY + λ20W2ΔY−1 + ΔXβ0 + Δu, Δu = λ30W3Δu+ Δv. (3.2)

It is easy to see that

Var(Δu) = σ2
v0

{
C ⊗ [B′

3(λ30)B3(λ30)]−1
} ≡ σ2

v0Ω(λ30),

where C is a (T − 1) × (T − 1) constant matrix,

C =

⎛⎜⎜⎜⎜⎜⎝
2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2

⎞⎟⎟⎟⎟⎟⎠ .

Under normality of vt, the joint distribution of Δu can be easily obtained, which translates
directly to the conditional joint distribution of ΔY . The quasi Gaussian loglikelihood of ψ
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in terms of Δy2, . . . ,ΔyT , as if Δy1 is exogenous, has the form, ignoring the constant term:

�STLE(ψ) = −n(T−1)
2 log(σ2

v) − 1
2 log |Ω(λ3)| + log |B1(λ1)| − 1

2σ2
v
Δu(θ)′Ω(λ3)−1Δu(θ), (3.3)

where θ = (β′, ρ, λ1, λ2)′, Δu(θ) = B1(λ1)ΔY − B2(ρ, λ2)ΔY−1 − ΔXβ, B1(λ1) = IT−1 ⊗
B1(λ1), and B2(ρ, λ2) = IT−1 ⊗ B2(ρ, λ2).

Let θ1 = (β′, ρ, λ2)′. Given λ1 and λ3, (3.3) is maximized at

θ̃1(λ1, λ3) = (ΔX
′Ω−1ΔX)−1ΔX

′ΩB1(λ1)ΔY, (3.4)

σ̃2
v(λ1, λ3) = 1

n(T−1)Δũ
′(λ1, λ3)Ω−1Δũ(λ1, λ3), (3.5)

where ũ(λ1, λ3) = B1(λ1)ΔY −ΔXθ̃(λ1, λ3) and ΔX = (ΔX,ΔY−1,W2ΔY−1). Substituting
θ̃1(λ1, λ3) and σ̃2

v(λ1, λ3) back into (3.3) gives the concentrated conditional quasi loglikelihood
of (λ1, λ3), ignoring the constant term,

�cSTLE(λ1, λ3) = −n(T−1)
2 log[σ̃2

v(λ1, λ3)] − 1
2 log |Ω(λ3)|+ log |B1(λ1)|. (3.6)

Maximizing �cSTLE(λ1, λ3) gives the conditional QML (CQML) estimators λ̃1 and λ̃3 of λ1 and
λ3, and thus the CQML estimators of θ1 and σ2

v as θ̃1 ≡ θ̃1(λ̃1, λ̃3) and σ̃2
v ≡ σ̃2

v(λ̃1, λ̃3).
Note that �STLE(ψ) is a quasi Gaussian loglikelihood both in the traditional sense that

{vit} are not exactly Gaussian but Gaussian likelihood is used, and the sense that Δy1 is
not exogenous but is treated as exogenous. The latter causes inconsistency of the CQML
estimators when T is small. We see from the results presented below that even T increases
with n, the CQML estimators may encounter an asymptotic bias. We now introduce a method
that not only gives a consistent estimator of the model parameters when T is small, but
also eliminates the asymptotic bias when T is large. To simplify the notation, a parametric
quantity (scalar, vector or matrix) evaluated at the general values of the parameters is denoted
by dropping its arguments, e.g., B1 ≡ B1(λ1), B1 ≡ B1(λ1), Ω ≡ Ω(λ3), and similarly for
Br and Br, r = 2, 3; and that evaluated at the true values of the parameters is denoted by
dropping its argument and then adding a subscript 0, e.g., B10 ≡ B1(λ10), Ω0 ≡ Ω(λ30).
Let C = C ⊗ In. Denote Δu ≡ Δu(θ0). The usual expectation, variance and covariance
operators, ‘E’, ‘Var’ and ‘Cov’, correspond to the true parameter values.

Let SSTLE(ψ) = ∂
∂ψ�STLE(ψ) be the conditional quasi score (CQS) function. We have

SSTLE(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σ2

v
ΔX ′Ω−1Δu(θ),

1
2σ4

v
Δu(θ)′Ω−1Δu(θ) − n(T−1)

2σ2
v
,

1
σ2

v
Δu(θ)′Ω−1ΔY−1,

1
σ2

v
Δu(θ)′Ω−1W1ΔY − tr(B−1

1 W1),
1
σ2

v
Δu(θ)′Ω−1W2ΔY−1,

1
2σ2

v
Δu(θ)′(C−1 ⊗ A3)Δu(θ) − (T − 1)tr(G3),

(3.7)
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where A3 = W ′
3B3 +B′

3W3 and G3 = W3B
−1
3 .

Under mild conditions, maximizing the conditional loglikelihood �STLE(ψ) is equivalent to
solving the estimating equation SSTLE(ψ) = 0. It is well known that the QML type estimation
or an extremum type estimation is special case of M -estimation and that for a regular M -
estimation problem, a necessary condition for the M -estimators to be consistent is that the
probability limit of the estimating function (in this case, the averaged conditional quasi score)
at the true parameter value is zero, i.e.,

limn→∞ 1
nT SSTLE(ψ0)

p−→ 0,

see, e.g., van der Vaart (1998). However, as shown below this is not the case unless T also
goes to infinity. Thus, the CQMLEs are not consistent unless T → ∞. Further, even if
T goes to infinity with n (proportionally), the CQMLEs encounter a bias of order O(T−1),
giving the so-called the asymptotic bias.9 To overcome this major problem, and to avoid the
stringent initial conditions and the difficulty in modelling the initial differences under the
FE-SDPD models with SL and/or STL effects, we first derive E[SSTLE(ψ0)], and then adjust
the quasi scores SSTLE(ψ) so that the adjusted quasi score (AQS) vector, say S∗

STLE(ψ), is such
that plimn→∞ 1

nT S
∗
STLE(ψ0) = 0.

In contrast with Hsiao et al . (2002), Elhorst (2010), and Su and Yang (2015), we only
need to have very minimum knowledge about the processes in the past.

Assumption A: Under Model (2.1), (i) the processes started m periods before the start
of data collection, the 0th period, and (ii) if m ≥ 1, Δy0 is independent of future errors
{vt, t ≥ 1}; if m = 0, y0 is independent of future errors {vt, t ≥ 1}.

Assumption A implies that the proposed method does not impose the conditions that
{ys, s = −m, . . . ,−1} follow the same processes as {yt, t = 0, 1, . . . , T}, and {xit} be trend-
stationary or first-difference stationary. It has a much weaker requirement on the processes
starting positions ym. We have an important lemma based on the reduced form of (3.1):

Δyt = B0Δyt−1 +B−1
10 ΔXtβ0 +B−1

10 B
−1
30 Δvt, t = 2, . . . , T, (3.8)

where B ≡ B(ρ, λ1, λ2) = B−1
1 (λ1)B2(ρ, λ2).

Lemma 3.1 Suppose Assumption A holds. Assume further that, for i = 1, . . . , n and
t = 0, 1, . . . , T , (i) the idiosyncratic errors {vit} in Model (2.1) are iid across i and t with
mean 0 and variance σ2

v0, (ii) the time-varying regressors Xt are exogenous, and (iii) both
B−1

10 and B−1
30 exist. We have

E(ΔY−1Δv′) = −σ2
v0D−10B−1

30 , (3.9)

E(ΔYΔv′) = −σ2
v0D0B−1

30 , (3.10)

9To be exact, if 1
nT

E[SSTLE(ψ0)] = O( 1
T

), then 1√
nT

E[SSTLE(ψ0)] = O(( n
T

)
1
2 ), implying E[

√
nT (ψ̃ − ψ0)] =

O(( n
T

)
1
2 ). The latter says that

√
nT (ψ̃−ψ0) would converge to a non-centered normal if n

T
→ c > 0. If n

T
→ 0

(large T case), the asymptotic bias vanishes, but this would not be a case of interest to a spatial panel model.
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where D−1 ≡ D−1(ρ, λ1, λ2) and D ≡ D(ρ, λ1, λ2), having the following expressions,

D−1 =

⎛⎜⎜⎜⎜⎝
In, 0, . . . 0, 0
B − 2In, In, . . . 0, 0
...

...
. . .

...
...

BT−4(In − B)2, BT−5(In − B)2, . . . B − 2In, In

⎞⎟⎟⎟⎟⎠B−1
1 ,

D =

⎛⎜⎜⎜⎜⎝
B − 2In, In, . . . 0
(In − B)2, B − 2In, . . . 0
...

...
. . .

...
BT−3(In − B)2, BT−4(In −B)2, . . . B − 2In

⎞⎟⎟⎟⎟⎠B−1
1 .

The results of Lemma 3.1 lead immediately to

E(Δu′Ω−1
0 ΔY−1) = −σ2

v0tr(C
−1D−10), (3.11)

E(Δu′Ω−1
0 W1ΔY ) = −σ2

v0tr(C
−1D0W1), (3.12)

E(Δu′Ω−1
0 W2ΔY−1) = −σ2

v0tr(C
−1D−10W2), (3.13)

showing that the (ρ, λ1, λ2) elements of E[S(ψ0)] are not zero, typically of order O(n).10

Hence, plimn→∞
1
nT

∂
∂ρ�STLE(ψ0), plimn→∞

1
nT

∂
∂λ1

�STLE(ψ0), and plimn→∞
1
nT

∂
∂λ2

�STLE(ψ0) are
all non-zero, suggesting that the conditional QMLEs of (ρ, λ1, λ2), treating Δy1 as exogenous,
cannot be consistent in general.

Very interestingly, these results are derived under only a very minimum set of conditions
given in Assumption A and in Lemma 3.1, they are free from the initial conditions usually
set for short dynamic panels, and are independent of the way the past observations being
generated, i.e., when the processes started and how the process evolved before the start of
data collection. These provide a simple way to adjust the quasi scores so as to give a set of
unbiased estimating functions. The adjusted quasi score (AQS) functions are:

S∗
STLE(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σ2

v
ΔX ′Ω−1Δu(θ),

1
2σ4

v
Δu(θ)′Ω−1Δu(θ) − n(T−1)

2σ2
v
,

1
σ2

v
Δu(θ)′Ω−1ΔY−1 + tr(C−1D−1),

1
σ2

v
Δu(θ)′Ω−1W1ΔY + tr(C−1DW1),

1
σ2

v
Δu(θ)′Ω−1W2ΔY−1 + tr(C−1D−1W2),

1
2σ2

v
Δu(θ)′(C−1 ⊗ A3)Δu(θ) − (T − 1)tr(G3),

(3.14)

which lead to, as shown in Theorems 3.1 and 3.2, an estimator of ψ that not only is consistent
but also has a centered asymptotic distribution, whether T is fixed or grows with n. The latter

10It is shown in Sec. 4.1 that when λ1 = λ2 = 0, plim 1
nT

∂
∂ρ
�STLE(ψ0) =

1−ρT
0

T2(1−ρ0)2
− 1

T (1−ρ0)
. Thus, ρ̃ has a

bias of order O( 1
T

). As all the matrices involved in (3.11)-(3.13) are uniformly bounded in row and column
sums, this result would hold for the general model, and the bias in ρ̃ would spill over to the other CQMLEs.

10



implies that when T grows with n, the estimation based on the AQS functions eliminates the
asymptotic bias incurred in the conditional QML approach. The ‘adjustments’ in the AQS
functions have another interesting feature: they are independent of the SE structure, i.e., free
from B3. This means that the adjustments to the conditional quasi scores of (3.7) remain the
same if the SAR error is replaced by SMA error, or the spatial errors are of higher order.11

Comparing (3.14) with (3.7), we see that after the adjustments, both ρ and λ2 parameters
become non-linear in the sense that their estimation has to be done through a nonlinear root-
finding process. Evidently, the adjustments recovered the ‘neglected’ information contained
in the initial observations (by the conditional likelihood) about these parameters.

Solving S∗
STLE(ψ) = 0 leads to the M -estimator ψ̂M of ψ. This root-finding process can

be simplified by first solving the equations for β and σ2
v , given δ = (ρ, λ′)′, resulting in the

constrained M -estimators of β and σ2
v as

β̂(δ) = (ΔX ′Ω−1ΔX)−1ΔX ′Ω−1(B1ΔY −B2ΔY−1), (3.15)

σ̂2
v(δ) = 1

n(T−1)Δû(δ)
′Ω−1Δû(δ), (3.16)

where Δû(δ) = Δu(β̂(δ), ρ, λ1, λ2). Substituting β̂(δ) and σ̂2
v(δ) back into the last four

components of the AQS function in (3.14) gives the concentrated AQS functions:

S∗c
STLE(δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
σ̂2

v,M(δ)
Δû(δ)′Ω−1ΔY−1 + tr(C−1D−1),

1
σ̂2

v,M(δ)
Δû(δ)′Ω−1W1ΔY + tr(C−1DW1),

1
σ̂2

v,M(δ)
Δû(δ)′Ω−1W2ΔY−1 + tr(C−1D−1W2),

1
2σ̂2

v,M(δ)
Δû(δ)′(C−1 ⊗A3)Δû(δ)− (T − 1)tr(G3).

(3.17)

Solving the resulted concentrated estimating equations, S∗c
STLE(δ) = 0, we obtain the un-

constrained M -estimators δ̂M of δ. The unconstrained M -estimators of β and σ2
v are thus

β̂M ≡ β̂(δ̂M) and σ̂2
v,M ≡ σ̂2

v(δ̂M). Denote ψ̂M = (β̂′M, σ̂2
v,M, ρ̂M, λ̂

′
M)

′.
We end this subsection by noting that Model (3.1) and its M -estimation strategy can

even be further extended to allow for higher-order spatial lags:

Δyt = ρΔyt−1 +
∑k1

j=1 λ1jW1jΔyt +
∑k2

j=1 λ2jW2jΔyt−1 + ΔXtβ + Δut,

Δut =
∑k3

j=1 λ3jW3jΔut + Δ,

for t = 2, 3, · · · , T . Now, let λr = (λrj, j = 1, . . . , k1)′, r = 1, 2, 3; Br(λr) = In−
∑kr

j=1 λrjWrj,
r = 1, 3, and B(ρ, λ1, λ2) = B−1

1 (ρIn +
∑k2

j=1 λ2jW2j). The M -estimation proceeds in the
same manner. In this paper, we focus on Model (3.1) as it is general enough for most of the
empirical applications and it leads to a set of inference theories that are fairly simple and yet
can be extended to suit a larger model in a straightforward manner.

11This feature may also hold if the SE structure is replaced by the other forms of cross-section dependence
induced by common factors; see, e.g., Andrews (2005), Pesaran (2006), Bai (2009), Pesaran and Tosetti (2011).
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3.2 Asymptotic properties of the M-estimators

In this section we study the consistency and asymptotic normality of the proposed M -
estimators for the FE-SDPD model with the general spatial dependence structure. To facil-
itate the discussions of the asymptotic properties of the proposed M -estimators, first recall,
ψ0 denotes the true value of the parameter vector ψ; and a parametric function at the true
parameter value is differentiated from that at a general parameter value by adding a subscript
‘0’, e.g., B1 ≡ B1(λ1) and B10 ≡ B1(λ10), Ω ≡ Ω(λ3) and Ω0 ≡ Ω(λ30), etc.; Δu ≡ Δu(θ0);
and the common expectation, variance and covariance operators ‘E’ ‘Var’ and ‘Cov’ corre-
spond to the true parameter vector ψ0. Second, some general notation and convention are as
follows: (i) δ denotes the vector of parameters in the concentrated modified score function,
and Δ the space from which δ takes values; (ii) tr(·), |·| and ‖·‖ denote, respectively, the trace,
determinant, and Frobenius norm of a matrix; (iii) γmax(A) and γmin(A) denote, respectively,
the largest and smallest eigenvalues of a real symmetric matrix A; and (iv) diag(ak) forms
a diagonal matrix using the elements {ak} and blkdiag(Ak) forms a block-diagonal matrix
using the matrices {Ak}.

Assumption B: The innovations vit are iid for all i and t with E(vit) = 0, Var(vit) = σ2
v,

and E|vit|4+ε0 <∞ for some ε0 > 0.

Assumption C: The space Δ is compact, and the true parameter δ0 lies in its interior.

Assumption D: The time-varying regressors {Xt, t = 0, 1, . . . , T} are exogenous, their
values are uniformly bounded, and limn→∞ 1

nTΔX ′ΔX exists and is nonsingular.

Assumption E: (i) For r = 1, 2, 3, the elements wr,ij of Wr are at most of order h−1
n ,

uniformly in all i and j, and wr,ii = 0 for all i; (ii) hn/n→ 0 as n→ ∞; (iii) {Wr, r = 1, 2, 3}
and {B−1

r0 , r = 1, 3} are uniformly bounded in both row and column sums; (iv) For r = 1, 3,
{B−1

r } are uniformly bounded in either row or column sums, uniformly in λr in a compact
parameter space Λr, and 0 < cr ≤ infλr∈Λr γmin(B′

rBr) ≤ supλr∈Λr
γmax(B′

rBr) ≤ c̄r <∞.

Assumption F: For an n×n matrix Φ uniformly bounded in either row or column sums,
with elements of uniform order h−1

n , and an n × 1 vector φ with elements of uniform order
h
−1/2
n , (i) hn

n Δy′1ΦΔy1 = Op(1) and hn
n Δy′1ΦΔv2 = Op(1); (ii) hn

n (Δy1 −E(Δy1))′φ = op(1);
(iii) hn

n [Δy′1ΦΔy1 − E(Δy′1ΦΔy1)] = op(1), and (iv) hn
n [Δy′1ΦΔv2 − E(Δy′1ΦΔv2)] = op(1).

Assumptions B-E are standard in the spatial econometrics literature (see, e.g., Lee (2004a),
Lee and Yu (2010), Su and Yang (2015)). Assumption F imposes some fairly mild conditions
on the initial differences Δy1. These conditions clearly hold if the process starting position
y−m is exogenous with m = 0 or 1. They can also be proved for a general m if, in addition
to Assumptions A, B, and D, it is further assumed that the processes start at exogenous
positions y−m at time −m, and then evolves according to (2.6).

Now, the consistency of the proposed M -estimators ψ̂M lies with the consistency of δ̂M,
as under Assumptions D and E, the consistency of β̂M and σ̂2

v,M follows almost immediately
that of δ̂M. The concentrated estimating function (CEF) S∗c

STLE(δ) and its population counter
part play a major role for the consistency of δ̂M for δ. We present theories and proofs for the
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most general model, and then discuss in Section 4 how the general theories reduce to a given
submodel and how the assumptions are simplified.

Define S̄∗
STLE(ψ) = E[S∗

STLE(ψ)], the population counter part of the joint estimating function
JEF given in (3.14). Given δ, the population joint estimation equation (JEE) S̄∗

STLE(ψ) = 0
is partially solved, by working with its first two components, at

β̄(δ) = (ΔX ′Ω−1ΔX)−1ΔX ′Ω−1(B1EΔY −B2EΔY−1), (3.18)

σ̄2
v(δ) = 1

n(T−1)E[Δū(δ)′Ω−1Δū(δ)], (3.19)

where Δū(δ) = Δu(θ)|β=β̄(δ) = B1ΔY − B2ΔY−1 − ΔXβ̄(δ). These lead to the population
counter part of the CEF given in (3.17), upon substituting β̄(δ) and σ̄2

v(δ) back into the
δ-component of S̄∗

STLE(ψ), as

S̄∗c
STLE(δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
σ̄2

v,M(δ)
E[Δū(δ)′Ω−1ΔY−1] + tr(C−1D−1),

1
σ̄2

v,M(δ)
E[Δū(δ)′Ω−1W1ΔY ] + tr(C−1DW1),

1
σ̄2

v,M(δ)
E[Δū(δ)′Ω−1W1ΔY−1] + tr(C−1D−1W1),

1
2σ̄2

v,M(δ)
E[Δū(δ)′(C−1 ⊗ A3)Δū(δ)]− (T − 1)tr(G3).

(3.20)

Note that more detailed expressions for σ̄2
v(δ) and thus S̄∗c

STLE(δ) can be obtained through
the following very useful identity:

Δū∗(δ) = M(B∗
1ΔY − B∗

2ΔY−1) + P(B∗
1ΔY

◦ −B∗
2ΔY

◦
−1), (3.21)

where Δū∗(δ) = Ω− 1
2 Δū(δ), B∗

r = Ω− 1
2Br, ΔY ◦ = ΔY −E(ΔY ), ΔY ◦

−1 = ΔY−1 −E(ΔY−1),
Ω

1
2 is the square-root matrix of Ω, M = In(T−1) − Ω− 1

2 ΔX(ΔX ′Ω−1ΔX)−1ΔX ′Ω− 1
2 , and

P = In(T−1)−M. Also note that the quantities E(ΔY ), E(ΔY−1), Var(ΔY ), Cov(ΔY,ΔY−1),
etc., involved in (3.18)-(3.20) are functions of ψ0, but not ψ.

Clearly, the M -estimator δ̂M of δ0 is a zero of S∗c
STLE(δ). It is easy to see that S̄∗c

STLE(δ0) = 0
trough β̄(δ0) = β0 and σ̄2

v(δ0) = σ2
v0, i.e., δ0 is a zero of S̄∗c

STLE(δ). Thus, by Theorem 5.9 of van
der Vaart (1998), δ̂M will be consistent for δ0 if supδ∈Δ

1√
n(T−1)

∥∥S∗c
STLE(δ) − S̄∗c

STLE(δ)
∥∥ p−→ 0,

and the following identification condition holds.

Assumption G: infδ: d(δ,δ0)≥ε
∥∥S̄∗c

STLE(δ)
∥∥ > 0 for every ε > 0, where d(δ, δ0) is a measure

of distance between δ0 and δ.

For a simpler model (see Section 4), the corresponding expression for S̄∗c
M (δ) can be easily

obtained by dropping the relevant terms. The identification condition becomes simpler,
allowing us to gain insights on the nature of such a condition. See Lee and Yu (2015b)
and references therein for a detailed discussion on the identification of the SDPD models.

Theorem 3.1 Suppose Assumptions A-G hold. Assume further that (i) γmax[Var(ΔY )]
and γmax[Var(ΔY−1)] are bounded, and (ii) infδ∈Δ γmin

(
Var(B1ΔY − B2ΔY−1)

) ≥ cy > 0.
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We have, as n→ ∞, ψ̂M
p−→ ψ0.

To derive the asymptotic distribution of ψ̂M, we start with a Taylor expansion of the JEE
S∗
STLE(ψ̂M) = 0 at ψ0, and then verify that the AQS function S∗

STLE(ψ0) is asymptotically normal
and that the adjusted Hessian ∂

∂ψ′S
∗
STLE(ψ̄) has proper asymptotic behavior, for some ψ̄ lying

between ψ̂M and ψ0 elementwise. To most of the static models or dynamic models where
the initial conditions are specified, both problems are fairly standard in that the regular law
of large numbers and central limit theorem (CLT) for linear-quadratic forms (e.g., Kelejian
and Prucha, 2001) would be sufficient. In our approach, the initial conditions need not
be specified, and thus an extended CLT for bilinear-quadratic form (given in Lemma A.5) is
required for establishing the asymptotic normality of S∗

STLE(ψ0). The following representations
for ΔY and ΔY−1 in terms of Δy1 = 1T−1 ⊗ Δy1 and Δv are crucial.

Lemma 3.2 Under the assumptions of Lemma 3.1, we have,

ΔY = R Δy1 + η + SΔv, (3.22)

ΔY−1 = R−1Δy1 + η−1 + S−1Δv, (3.23)

where R = blkdiag(B0,B2
0, . . . ,BT−1

0 ), R−1 = blkdiag(In,B0, . . . ,BT−2
0 ), η = BB−1

10 ΔXβ0,
η−1 = B−1B−1

10 ΔXβ0, S = BB−1
10 B−1

30 , S−1 = B−1B−1
10 B−1

30 ,

B =

⎛⎜⎜⎜⎜⎝
In 0 . . . 0 0
B0 In . . . 0 0
...

...
. . .

...
...

BT−2
0 BT−3

0 . . . B0 In

⎞⎟⎟⎟⎟⎠ , and B−1 =

⎛⎜⎜⎜⎜⎝
0 0 . . . 0 0
In 0 . . . 0 0
...

...
. . .

...
...

BT−3
0 BT−4

0 . . . In 0

⎞⎟⎟⎟⎟⎠ .

The representations for ΔY and ΔY−1 given in Lemma 3.2 turn out to be very useful.
They lead to a simple way for establishing the asymptotic normality of the AQS vector,
and a simple way for estimating the variance-covariance (VC) matrix of it. Using these
representations and Δu = B−1

30 Δv, the AQS function at ψ0 can be written as

S∗
STLE(ψ0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δv′Π1,

Δv′Φ1Δv − n(T−1)
2σ2

v0
,

Δv′Ψ1Δy1 + Δv′Π2 + Δv′Φ2Δv + tr(C−1D−10),

Δv′Ψ2Δy1 + Δv′Π3 + Δv′Φ3Δv + tr(C−1D0W1),

Δv′Ψ3Δy1 + Δv′Π4 + Δv′Φ4Δv + tr(C−1D−10W2),

Δv′Φ5Δv − (T − 1)tr(G30),

(3.24)

where Π1= 1
σ2

v0
CbΔX , Π2= 1

σ2
v0

Cbη−1, Π3= 1
σ2

v0
CbW1η, Π4= 1

σ2
v0

CbW2η−1, Φ1= 1
2σ4

v0
(C−1⊗In),

Φ2= 1
σ2

v0
CbS−1, Φ3= 1

σ2
v0

CbW1S, Φ4= 1
σ2

v0
CbW2S−1, Φ5= 1

σ2
v0

[C−1⊗(G′
30+G30)], Ψ1= 1

σ2
v0

CbR−1,

Ψ2= 1
σ2

v0
CbW1R, Ψ3= 1

σ2
v0

CbW2R−1, and Cb=C−1 ⊗ B30.

14



Theorem 3.2 Assume Assumptions A-F hold. We have, as n→ ∞,√
n(T − 1)

(
ψ̂M − ψ0

) D−→ n
[
0, lim
n→∞Σ∗−1

STLE(ψ0)Γ∗
STLE(ψ0)Σ∗−1

STLE(ψ0)
]
,

where Σ∗
STLE(ψ0) = − 1

n(T−1)E[ ∂
∂ψ′S

∗
STLE(ψ0)] and Γ∗

STLE(ψ0) = 1
n(T−1)Var[S∗

STLE(ψ0)], both as-
sumed to exist and Σ∗

STLE(ψ0) to be positive definite, for sufficiently large n.

3.3 The OPMD estimation of robust VC matrix

The practical applications of the M -estimation of the FE-SDPD models, i.e., model in-
ferences, depend on the availability of a consistent estimate of Σ∗−1

STLE(ψ0)Γ∗
STLE(ψ0)Σ∗−1

STLE(ψ0),
the VC matrix of ψ̂M. As Σ∗

STLE(ψ0) is the expected negative modified Hessian, its observed
counter part immediately offers a consistent estimate of it, i.e.,

Σ∗
STLE(ψ̂M) = − 1

n(T−1)
∂
∂ψ′S

∗
STLE(ψ)

∣∣
ψ=ψ̂M

. (3.25)

The detailed expression of ∂
∂ψ′S

∗
STLE(ψ) for the most general model is given in the proof of

Theorem 3.2 in Appendix C, which can easily be simplified to various submodels by deleting
relevant terms. The consistency of Σ∗

STLE(ψ̂M) is also proved in the proof of Theorem 3.2.
However, the traditional plug-in method of estimation of Γ∗

STLE(ψ0), the VC matrix of the
joint AQS function S∗

STLE(ψ0), runs into a similar problems as the QML estimation of the
model – initial differences Δy1 need to be specified or modeled when T is fixed and small
as seen from (3.24). To make the estimation of Γ∗

STLE(ψ0) also free from the specification of
initial conditions so that the inferences for the general FE-SDPD model is fully free from
the initial conditions. We propose a martingale difference (M.D.) method, i.e., decompose
the AQS function into the sum of a vector M.D. sequence so that the ‘average’ of the outer
products of the elements of the M.D. sequence gives a consistent estimate of Γ∗

STLE(ψ0).
From (3.24) we see that the AQS function S∗

STLE(ψ0) contains three types of elements:

Π′Δv, Δv′ΦΔv, and Δv′ΨΔy1,

where Π,Φ and Ψ are nonstochastic matrices (depending on ψ0) with Π being n(T −1)×p or
n(T −1)×1, and Φ and Ψ being n(T −1)×n(T −1). Clearly, the closed form expressions for
variances of Π′Δv and Δv′ΦΔv, and their covariance can readily be derived, so that a plug-
in method may be used to estimate these variances and covariances. However, closed-form
expression for the variance of Δv′ΨΔy1 and its covariances with Π′Δv and Δv′ΦΔv depend
on the knowledge of the distribution of Δy1, which is unavailable.

To give a unified method of estimating the variance of AQS function so that it is also
free from the specifications of the initial conditions, we first write the AQS function as a
sum of a vector M.D. array, taking the advantage that Δvit are independent across i for
each t and that T is small. We show in the following lemma that Φ′Δv can be written as
a sum of n independent terms, and Δv′ΦΔv − E(Δv′ΦΔv) can be written as the sum of a
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M.D. array. Under the assumption that Δy0 depends only on the current and past errors
(vs, s ≤ 0) but not the future errors (vt, t ≥ 1), we show that Δv′ΦΔy1 can also be written
as the sum of a M.D. sequence. Note from (3.24) that S∗

STLE(ψ0) is a function of ψ0, Δv and
Δy1, where ψ0 is consistently estimated by ψ̂M, Δv is consistently estimated by Δ̂v, and Δy1
itself is observed. A new method for estimating the variance of the AQS function, namely
the outer-product-of-martingale-difference (OPMD) method, arises.

For a square matrix A, let Au, Al and Ad be, respectively, its upper-triangular, lower-
triangular, and diagonal matrix such that A = Au +Al +Ad. Denote by Πt, Φts and Ψts the
submatrices of Π, Φ and Ψ partitioned according to t, s = 2, . . . , T . Define Ψt+ =

∑T
s=2 Ψts,

t = 2, . . . , T , Θ = Ψ2+(B30B10)−1, Δy◦1 = B30B10Δy1, and Δy∗1t = Ψt+Δy1. Let {Gn,i}
be the increasing sequence of σ-fields generated by (vj1, . . . , vjT , j = 1, . . . , i), i = 1, . . . , n,
n ≥ 1. Let Fn,0 be the σ-field generated by (v0,Δy0), and define Fn,i = Fn,0 ⊗ Gn,i. Clearly,
Fn,i−1 ⊆ Fn,i, i.e., {Fn,i}ni=1 is an increasing sequence of σ-fields, for each n ≥ 1.

Lemma 3.3 Consider Model (3.1), and suppose the assumptions of Lemma 3.1 hold.
Consider the general Π which is n(T − 1) × p, and let Πit be the ith row of Πt. Define

g1i =
∑T

t=2 Π′
itΔvit, (3.26)

g2i =
∑T

t=2(ΔvitΔξit + ΔvitΔv∗it − σ2
v0dit), (3.27)

g3i = Δv2iΔζi + Θii(Δv2iΔy◦1i + σ2
v0) +

∑T
t=3 ΔvitΔy∗1it, (3.28)

where for (3.27), ξt =
∑T

s=2(Φ
u′
st + Φl

ts)Δvs, Δv∗t =
∑T

s=2 Φd
tsΔvs, and {dit} are the diagonal

elements of CΦ; for (3.28), {Δζi} = Δζ = (Θu + Θl)Δy◦1, and diag{Θii} = Θd. Then,

Π′Δv =
∑n

i=1 g1i,

Δv′ΦΔv − E(Δv′ΦΔv) =
∑n

i=1 g2i,

Δv′ΨΔy1 − E(Δv′ΨΔy1) =
∑n

i=1 g3i,

and {(g′1i, g2i, g3i)′,Fn,i}ni=1 form a vector M.D. sequence.

Now, following Lemma 3.3, for each Πr, r = 1, 2, 3, 4, defined in (3.24), define g1ri ac-
cording to (3.26); for each Φr, r = 1, . . . , 5, define g2ri according to (3.27); and for each
Ψr, r = 1, 2, 3, define g3ri according to (3.28). Define

gi = (g′11i, g21i, g31i + g12i + g22i, g32i + g13i + g23i, g33i + g14i + g24i, g25i)′.

Then, S∗
SELE(ψ0) =

∑n
i=1 gi, and {gi,Fn,i} form a vector M.D. sequence. It follows that

Var[S∗
SELE(ψ0)] =

∑n
i=1 E(gig′i). The ‘average’ of the outer products of the estimated g′is, i.e.,

Γ̂∗
STLE = 1

n(T−1)

∑n
i=1 ĝiĝ

′
i, (3.29)

thus gives a consistent estimator of the variance of Γ∗
STLE(ψ0), where ĝi is obtained by replacing

ψ0 in gi by ψ̂M and Δv in gi by its observed counterpart Δ̂v. Noting that Δy1 is observed,
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we have the following theorem.

Theorem 3.3 Under the assumptions of Theorem (3.1), we have, as n→ ∞,

Γ̂∗
STLE − Γ∗

STLE(ψ0) =
1

n(T − 1)

n∑
i=1

[
ĝiĝ

′
i − E(gig′i)

] p−→ 0,

and hence, Σ∗−1
STLE(ψ̂M)Γ̂∗

STLEΣ
∗−1
STLE(ψ̂M) − Σ∗−1

STLE(ψ0)Γ∗
STLE(ψ0)Σ∗−1

STLE(ψ0)
p−→ 0.

The estimator Σ∗−1
STLE(ψ̂M)Γ̂∗

STLEΣ
∗−1
STLE(ψ̂M) of the VC matrix of ψ̂M is referred to as the OPMD

estimator in this paper, to reflect the fact that Γ̂∗
STLE is obtained from the outer products of

the elements of a martingale difference (OPMD) sequence.12

4 Unified Estimation and Inference for Some Submodels

Certain submodels deserve some special attention. We concentrate on the submodels that
contain spatial dependence, namely, the FE-DPD model with only SE dependence, the FE-
DPD model with only SL dependence, the FE-DPD model with both SL and STL dependence,
and the FE-DPD model with both SL and SE dependence. We are particularly interested in
comparing our approach with the standard small T or large T approaches, to demonstrate
that when T is small our approach provides results that are comparable with the standard
full QML approach when the initial model is correctly specified. However, our approach
provides results that are more robust against misspecification of the initial model than does
the full QML approach. When T is large, our approach provides results that are less biased
compared with the conditional QML approach.

4.1 The FE-SDPD model with SE effect

Setting λ1 = λ2 = 0, Model (3.1) reduces to an FE-SDPD with only SE dependence of a
SAR form, which has been rigorously treated in Su and Yang (2015) based on a full QML
approach where the initial differences are modeled. It would be certainly interesting to see
how the proposed approach compares with this full QML approach. The conditional quasi
Gaussian loglikelihood (3.3) simplifies to:

�SE(ψ) = −n(T−1)
2 log(σ2

v)− 1
2 log |Ω| − 1

2σ2
v
Δu(θ)′Ω−1Δu(θ), (4.1)

where ψ = {β′, σ2
v , ρ, λ3}′ and θ = (β′, ρ)′ and u(θ) = ΔY −ρΔY−1 −ΔXβ. Given λ3, �SE(ψ)

is maximized at θ̃(λ3) = (ΔX′Ω−1ΔX)−1ΔX′ΩΔY and σ̃2
v(λ3) = 1

n(T−1)
Δũ′(λ3)Ω−1Δũ(λ3),

12Practical implementations of the OPMD estimator of the VC matrix of the AQS vector can be greatly
facilitated by the vector and matrix representation of the quantities defined in Lemma 3.3. For example, to
compute g1 = {g1i}, let πk be the kth column of Π. Reshape πk and Δv into n × (T − 1) matrices πk and
Δv. Then g1 equals the vector of row sums of πk � Δv, where � denotes the Hadamard product.

Moreover, the partial derivatives of D and D−1 defined in Lemma 3.1 are needed for the evaluation of the
Hessian matrix, which can be algebraically tedious if T is not so small. In this case, these partial derivatives can
be replaced by the numerical partial derivatives without losing much of the accuracy of the OPMD estimator.
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where Δũ(λ3) = ΔY − ΔX θ̃(λ3), and ΔX = (ΔX,ΔY−1). Substituting θ̃(λ3) and σ̃2
v(λ3)

back into �SE(ψ) gives the concentrated quasi loglikelihood function of λ3,

�cSE(λ3) = −n(T−1)
2 log(σ̃2

v(λ3))− 1
2 log |Ω|. (4.2)

Maximizing �cSE(λ3) gives the CQMLE λ̃3 of λ3, and thus the CQMLEs θ̃ ≡ θ̃(λ̃3) and
σ̃2
v ≡ σ̃2

v(λ̃3) of β and σ2
v , respectively.

Now, SSE(ψ) = ∂
∂ψ �SE(ψ) has elements: 1

σ2
v
ΔX ′Ω−1Δu(θ), 1

2σ4
v
Δu(θ)′Ω−1Δu(θ) − n(T−1)

2σ2
v

,
1
σ2

v
Δu(θ)′Ω−1ΔY−1, 1

2σ2
v
Δu(θ)′(C−1 ⊗ A3)Δu(θ) − (T − 1)tr(G3). Only the ρ-element of

E[SSE(ψ0)] is non-zero, noting that D−1 in Lemma 3.1 reduces to D(ρ)⊗ In,

σ−2
v0 E(Δu′Ω−1Y−1) = −ntr[C−1D(ρ0)], (4.3)

where the (T − 1)× (T − 1) matrix D(ρ) has the following expression:

D(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
ρ− 2 1 · · · 0 0

(1− ρ)2 ρ− 2 · · · 0 0
...

...
. . .

...
...

ρT−5(1− ρ)2 ρT−6(1 − ρ)2 · · · 1 0
ρT−4(1− ρ)2 ρT−5(1 − ρ)2 · · · ρ− 2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

It is easy to see that, when |ρ| < 1, tr[C−1D(ρ)] = 1
1−ρ − 1−ρT )

T (1−ρ)2 , a result that has appeared
in the literature of non-spatial dynamic panel data models (e.g., Nickell, 1981; Lancaster,
2002; and Alvarez and Arellano, 2004), and was derived from different angles.

The result suggests that the ρ-element of the conditional quasi score function is such
that plimn→∞

1
nTσ2

v
Δu′Ω−1ΔY−1 �= 0, unless T also approaches ∞. A necessary condition for

consistency is violated, and hence the conditional QMLE of ρ is inconsistent when T is fixed.
This result also suggests that even under the large n and large T set up, the conditional
QMLE of ρ would incur a bias of order O(T−1) as shown in Hahn and Kuersteiner (2002)
for the regular DPD model. With (3.6) and the fact that other score elements have zero
expectation, the adjusted quasi score becomes

S∗
SE(ψ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
σ2

v
ΔX ′Ω−1Δu(θ),

1
2σ4

v
Δu(θ)′Ω−1Δu(θ) − n(T−1)

2σ2
v
,

1
σ2

v
Δu(θ)′Ω−1ΔY−1 + ntr(C−1D(ρ)),

1
2σ2

v
Δu(θ)′(C−1 ⊗ A3)Δu(θ)− (T − 1)tr(G3).

(4.4)

Solving S∗
SE(ψ) = 0 leads to the M -estimator ψ̂M of ψ. This root-finding process can

be simplified by first solving the equations for β and σ2
v , given δ = (ρ, λ3)′, resulting in

the constrained M -estimators of β and σ2
v as β̂(δ) = (ΔX ′Ω−1ΔX)−1ΔX ′Ω−1ΔY (ρ) and

σ̂2
v(δ) = 1

n(T−1)Δû(δ)
′Ω−1Δû(δ), where ΔY (ρ) = ΔY − ρΔY−1 and Δû(δ) = Δu(β̂(δ), ρ).
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Substituting β̂(δ) and σ̂2
v(δ) into the last two components of the AQS function in (4.4) gives

the concentrated AQS functions:

S∗c
SE(δ) =

⎧⎨⎩
1

σ̂2
v,M(δ)

Δû(δ)′Ω−1ΔY−1 + ntr(C−1D(ρ)),
1

2σ̂2
v,M(δ)

Δû(δ)′(C−1 ⊗ A3)Δû(δ) − (T − 1)tr(G3).
(4.5)

Solving the resulted concentrated estimating equations, S∗c
SE(δ) = 0, we obtain the uncon-

strained M -estimators δ̂M = (ρ̂M, λ̂3,M)′ of δ. The unconstrained M -estimators of β and σ2
v are

thus β̂M ≡ β̂(δ̂M) and σ̂2
v,M ≡ σ̂2

v(δ̂M).
Compared with the full QML estimation of Su and Yang (2015), the proposed M -

estimation, though slightly less efficient, is much simpler as it is free from the specification
of the initial conditions, and is thus robust against misspecifications of initial conditions. In
contrast, the full QML estimation requires that the process starting time m is known a priori
and that the processes evolve in the same manner before and after the data collection. Our
Monte Carlo results and those in Su and Yang (2015) confirm these points.

4.2 The FE-SDPD model with SL effect

Setting λ2 = λ3 = 0, Model (3.1) reduces to a FE-SDPD model with only SL dependence.
Now, ψ = (β′, σ2

v , ρ, λ1)′. The conditional quasi Gaussian loglikelihood of ψ reduces to:

�SL(ψ) = −n(T−1)
2 log(σ2

v) + log |B1| − 1
2 log |C| − 1

2σ2
v
Δv(θ)′C−1Δv(θ), (4.6)

where θ = (θ′1, λ1)′, θ1 = (β′, ρ)′, and v(θ) = B1ΔY −ρΔY−1−ΔXβ. Given λ1, �SL(ψ) is max-
imized at θ̃1(λ1) = (ΔX′C−1ΔX)−1ΔX′C−1B1ΔY and σ̃2

v(λ1) = 1
n(T−1)Δṽ

′(λ1)C−1Δṽ(λ1),

where Δṽ(λ1) = B1ΔY −ΔX θ̃(λ1), and ΔX = (ΔX,ΔY−1). Substituting θ̃1(λ1) and σ̃2
v(λ1)

back into �SL(ψ) gives the concentrated conditional loglikelihood function of λ1,

�cSL(λ1) = log |B1| − n(T−1)
2 log(σ̃2

v(λ1))− 1
2 log |C|. (4.7)

Maximizing �cSL(λ1) gives the CQMLE λ̃1 of λ1, and thus the CQMLEs θ̃ ≡ θ̃(λ̂1) and
σ̃2
v ≡ σ̃2

v(λ̃1) of θ and σ2
v , respectively.

The CQS function SSL(ψ) has elements: 1
σ2

v
ΔX ′C−1Δv(θ), 1

2σ4
v
Δv(θ)′C−1Δv(θ)− n(T−1)

2σ2
v

,
1
σ2

v
Δv(θ)′C−1ΔY−1, 1

σ2
v
Δv(θ)′C−1W1ΔY − tr(B−1

1 W1). The expectations of the first two
components of SSL(ψ0) are zero, but these of the last two are not as by Lemma 3.1,

E(Δv′C−1ΔY−1) = −σ2
v0tr(C

−1D−10), and (4.8)

E(Δv′C−1W1ΔY ) = −σ2
v0tr(C

−1D0W1), (4.9)

where D−1 and D are given in Section 3.1 with B simplifies to ρB1(λ1)−1. These show that
the last two elements of plimn→∞

1
nSSL(ψ0) are not zero, showing that the CQMLEs of the SL

model are inconsistent. Even when T grows with n, it can be shown that the CQMLE of ρ
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has a bias of order O(T−1) instead of the desired order O((nT )−1). Some modifications are
thus necessary whether T is fixed or not. The adjusted quasi score function is,

S∗
SL(ψ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
σ2

v
ΔX ′C−1Δv(θ),

1
2σ4

v
Δv(θ)′C−1Δv(θ) − n(T−1)

2σ2
v
,

1
σ2

v
Δv(θ)′C−1ΔY−1 + tr(C−1D−1),

1
σ2

v
Δv(θ)′C−1W1ΔY + tr(C−1DW1).

(4.10)

The M -estimator for the FE-SDPD-SLD model is thus defined as ψ̂M = arg{S∗
SL(ψ) = 0}.

The root-finding process can be simplified by first solving the equations for β and σ2
v , given

δ = (ρ, λ1)′, leading to the constrainedM -estimators β̂(δ) = (ΔX ′C−1ΔX)−1ΔX ′C−1ΔY (δ)
and σ̂2

v(δ) = 1
n(T−1)Δṽ(δ)

′C−1Δṽ(δ) for β and σ2
v , where ΔY (δ) = B1ΔY − ρΔY−1 and

Δv̂(δ) = Δv(β̂(δ), δ). Substituting β̂(δ) and σ̂2
v(δ) into the last two components of (4.10)

gives the concentrated AQS function of δ:

S∗c
SL(δ) =

⎧⎪⎨⎪⎩
1

σ̂2
v,M(δ)

Δv̂(δ)′C−1ΔY−1 + tr(C−1D−1),

1
σ̂2

v,M(δ)
Δv̂(δ)′C−1W1ΔY + tr(C−1DW1).

(4.11)

Solving the concentrated equations, S∗c
SL(δ) = 0, gives the unconstrained M -estimator δ̂M of δ.

The unconstrained M -estimators of β and σ2
v are thus β̂M ≡ β̂(δ̂M) and σ̂2

v,M ≡ σ̂2
v(δ̂M).

4.3 The FE-SDPD model with SL and STL effects

Setting λ3 = 0, Model (3.1) reduces to a FE-SDPD model with SL and STL dependence.
Now, ψ = (β′, σ2

v , ρ, λ1, λ2)′. The conditional quasi Gaussian loglikelihood of ψ reduces to:

�STL(ψ) = −n(T−1)
2 log(σ2

v) + log |B1| − 1
2 log |C| − 1

2σ2
v
Δv(θ)′C−1Δv(θ), (4.12)

where θ = (β′, ρ, λ1, λ2)′, θ1 = (β′, ρ, λ2)′, and v(θ) = B1ΔY − (ρIn + λ2W2)ΔY−1 − ΔXβ.
Given λ1, �STL(ψ) is maximized at θ̃1(λ1) = (ΔX′C−1ΔX)−1ΔX′C−1B1ΔY and σ̃2

v(λ1) =
1

n(T−1)Δṽ
′(λ1)C−1Δṽ(λ1), where ΔX = (ΔX,ΔY−1,W2ΔY−1) and Δṽ(λ1) = B1ΔY −

ΔX θ̃(λ1). Thus, the concentrated conditional quasi loglikelihood function of λ1 is,

�cSTL(λ1) = + log |B1| − n(T−1)
2 log(σ̃2

v(λ1))− 1
2 log |C|. (4.13)

Maximizing �cSTL(λ1) gives the CQMLE λ̃1, and thus the CQMLEs θ̃ ≡ θ̃(λ̂1) and σ̃2
v ≡ σ̃2

v(λ̃1).
The CQS function SSTL(ψ) contains elements: 1

σ2
v
ΔX ′C−1Δv(θ), 1

2σ4
v
Δv(θ)′C−1Δv(θ) −

n(T−1)
2σ2

v
, 1
σ2

v
Δv(θ)′C−1ΔY−1, 1

σ2
v
Δv(θ)′C−1W1ΔY − tr(B−1

1 W1), 1
σ2

v
Δv(θ)′C−1W2ΔY−1. It is

easy to see that the first two components of E[SSL(ψ0)] are zero, but these of the last three
components are not, and are obtained from (3.11)-(3.13). Thus a necessary condition for the
consistency of parameter estimators is violated, suggesting that with T fixed the conditional
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QMLEs of the FE-DPD-SLD model are inconsistent. Even when T grows with n, it can be
shown that the conditional QMLE of ρ has a bias of order O(T−1) instead of the desired
order O((nT )−1). Some modifications are thus necessary whether T is fixed or not, and the
adjusted quasi score function is,

S∗
STL(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σ2

v
ΔX ′C−1Δv(θ),

1
2σ4

v
Δv(θ)′C−1Δv(θ)− n(T−1)

2σ2
v
,

1
σ2

v
Δv(θ)′C−1ΔY−1 + tr(C−1D−1),

1
σ2

v
Δv(θ)′C−1W1ΔY + tr(C−1DW1),

1
σ2

v
Δv(θ)′C−1W2ΔY−1 + tr(C−1D−1W2).

(4.14)

The M -estimator for the FE-SDPD-SLD model is thus defined as ψ̂SL = arg{S∗
M(ψ) = 0}. The

root-finding process can be simplified by first solving the equations for β and σ2
v , given δ =

(ρ, λ1, λ2)′, leading to the constrained M -estimators β̂(δ) = (ΔX ′C−1ΔX)−1ΔX ′C−1ΔY (δ)
and σ̂2

v(δ) = 1
n(T−1)Δv̂(δ)

′C−1Δv̂(δ), where ΔY (δ) = B1ΔY − (ρIn + λ2W2)ΔY−1 and

Δv̂(δ) = Δv(β̂(δ), δ). Substituting β̂(δ) and σ̂2
v(δ) into the last two components of (4.14)

gives the concentrated AQS function of δ:

S∗c
STL(δ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

σ̃2
v,M(δ)

ṽ(δ)′C−1ΔΔY−1 + tr(C−1D−1),
1

σ̃2
v,M(δ)

Δṽ(δ)′C−1W1ΔY + tr(W1C−1D),
1

σ̃2
v,M(δ)

Δṽ(δ)′C−1W2ΔY−1 + tr(C−1D−1W2).

(4.15)

Solving the concentrated equations, S∗c
SL(δ) = 0, gives the M -estimator δ̂M of δ. The M -

estimators of β and σ2
v are, thus, β̂M ≡ β̂(δ̂M) and σ̂2

v,M ≡ σ̂2
v(δ̂M).

4.4 The FE-SDPD model with SL and SE effects

Setting λ2 = 0 in Model (3.1) yields an FE-SDPD model with both SL and SE dependence.
The conditional quasi Gaussian loglikelihood of ψ = (β′, σ2

v , ρ, λ1, λ3)′ reduces to,

�SLE(ψ) = −n(T−1)
2 log(σ2

v) + log |B1| − 1
2 log |Ω| − 1

2σ2
v
Δu(θ)′Ω−1Δu(θ), (4.16)

where θ = (β′, ρ, λ1)′ and Δu(θ) = B1ΔY − ρΔY−1 − ΔXβ. Given λ = (λ1, λ3)′, �SLE(ψ) is
maximized at θ̃(λ) = (ΔX

′Ω−1ΔX)−1ΔX
′Ω−1B1ΔY and σ̃2

v(λ) = 1
n(T−1)Δũ

′(λ)Ω−1Δũ(λ),

where Δũ(λ) = B1ΔY −ΔX θ̃(λ), and ΔX = (ΔX,ΔY−1). Substituting θ̃(λ) and σ̃2
v(λ) back

into �SLE(ψ) gives the concentrated loglikelihood function of λ,

�cSLE(λ) = log |B1| − n(T−1)
2 log(σ̃2

v(λ))− 1
2 log |Ω|. (4.17)

Maximizing �cSLE(λ) gives the CQMLE λ̃, and thus the CQMLEs θ̃ ≡ θ̃(λ̂) and σ̃2
v ≡ σ̃2

v(λ̃).
The CQS function SSLE(ψ) has the components: 1

σ2
v
ΔX ′Ω−1Δu(θ), 1

2σ4
v
Δu(θ)′Ω−1Δu(θ)−
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n(T−1)
2σ2

v
, 1
σ2

v
Δu(θ)′Ω−1ΔY−1, 1

σ2
v
Δu(θ)′Ω−1W1ΔY −tr(B−1

1 W1), 1
2σ2

v
Δu(θ)′(C−1⊗A3)Δu(θ)−

(T − 1)tr(G3). The β, σ2
v and λ3 components of E[SSLE(ψ0)] are zero, but the ρ and λ1

components are not as seen from Lemma 3.1: E(Δu′Ω−1ΔY−1) = −σ2
v0tr(C

−1D−10) and
E(Δu′Ω−1W1ΔY ) = −σ2

v0tr(C
−1D0W1), which are of identical forms as those for the SLD

model. The results show that the CQMLEs are not consistent unless T also approaches
infinity. To achieve consistency, the conditional quasi score function should be modified as:

S∗
SLE(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σ2

v
ΔX ′Ω−1Δu(θ),

1
2σ4

v
Δu(θ)′Ω−1Δu(θ) − n(T−1)

2σ2
v
,

1
σ2

v
Δu(θ)′Ω−1ΔY−1 + tr(C−1D−1),

1
σ2

v
Δu(θ)′Ω−1W1ΔY + tr(C−1DW1),

1
2σ2

v
Δu(θ)′(C−1 ⊗ A3)Δu(θ)− (T − 1)tr(G3).

(4.18)

The M -estimator of the FE-DPD-SLE model is defined as ψ̂M = arg{S∗
SLE(ψ) = 0}. The

root-finding process can be simplified by first solving the equations for β and σ2
v , resulting

in the constrained M -estimators β̂(δ) = (ΔX ′Ω−1ΔX)−1ΔX ′Ω−1ΔY (ρ, λ1) and σ̂2
v(δ) =

1
n(T−1)Δû(δ)

′Ω−1Δû(δ), given δ = (ρ, λ1, λ3)′, where ΔY (ρ, λ1) = B1ΔY − ρΔY−1 and

Δû(δ) = Δu(β̂(δ), ρ, λ1). Substituting β̂(δ) and σ̂2
v,M(δ) into the last three components of

S∗
SLE(ψ) gives the concentrated AQS function:

S∗c
SLE(δ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

σ̂2
v,M(δ)

Δû(δ)′Ω−1ΔY−1 + tr(C−1D−1),
1

σ̂2
v,M(δ)

Δû(δ)′Ω−1W1ΔY + tr(C−1DW1),
1

2σ̂2
v,M(δ)

Δû(δ)′(C−1 ⊗ A3)Δû(δ)− (T − 1)tr(G3).

(4.19)

Solving the concentrated equations, S∗c
SLE(δ) = 0, gives the M -estimator δ̂M of δ. The M -

estimators of β and σ2
v are thus β̂M ≡ β̂(δ̂M) and σ̂2

v,M ≡ σ̂2
v(δ̂M).

5 Monte Carlo Results

Monte Carlo experiments are carried out to investigate (i) the finite sample performance
of the M -estimators of three FE-SDPD models considered in this paper, and (ii) the finite
sample performance of the proposed OPMD estimates of the robust standard errors. We use
the following three data generating processes (DGPs):

SE : yt = ρyt−1 + β0ιn +Xtβ1 + Zγ + μ+ ut, ut = λ3W3ut + vt,

SL : yt = ρyt−1 + λ1W1yt + β0ιn +Xtβ1 + Zγ + μ+ vt,

SLE : yt = ρyt−1 + λ1W1yt + β0ιn +Xtβ1 + Zγ + μ+ ut, ut = λ3W3ut + vt,

STLE : yt = ρyt−1 + λ1W1yt + λ2W2yt−1 + β0ιn +Xtβ1 + Zγ + μ+ vt,

STLE : yt = ρyt−1 + λ1W1yt + λ2W2yt−1 + β0ιn +Xtβ1 + Zγ + μ+ ut, ut = λ2W3ut + vt.
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The elements of Xt are generated in a similar fashion as in Hsiao et al. (2002),13 and the
elements of Z are randomly generated from Bernoulli(0.5). The spatial weight matrices are
generated according to Rook or Queen contiguity, or group interaction schemes.14 We choose
β0 = 5, β1 = 1, γ = 1, σμ = 1, σv = 1 or 2, a set of values for ρ ranging from −0.9 to 0.9, a set
of values for λ1 and/or λ2 in a similar range, T = 3 or 6, and N = 50, 100, and 200. Each set
of Monte Carlo results, corresponding to a combination of the values of (n, T,m, ρ, λ′s, σv),
is based on 2000 samples. The error (vt) distributions can be (i) normal, (ii) normal mixture
(10% N (0, 4) and 90% N (0, 1)), or (iii) chi-square with 3 degrees of freedom.15 The fixed
effects μ are generated according to either 1

T

∑T
t=1Xt + e or e, where e ∼ (0, IN), resulting

in the fixed effects that are either correlated or uncorrelated with the regressors.
The reported results are the Monte Carlo mean and Monte Carlo standard deviation (sd)

for the conditional QMLEs (CQMLE) and the proposed M -estimators. The standard errors
(ses): s̃e calculated based on Γ̂∗−1

M , ŝe calculated based on Σ∗−1
M (ψ̂M) and the robust ses r̂se

calculated based on Σ∗−1
M (ψ̂M)Γ̂∗

MΣ
∗−1
M (ψ̂M), are also reported for the proposed M -estimators,

for Model M = SE, SL, SLE, STL and STLE. Due to the space constraints, only a subset of
results, corresponding to the case of correlated fixed effects, are reported.

Table 1a presents empirical means and sds for the SE model and Table 1b presents the
corresponding ses for the M -estimators. For this model, the full QMLE (FQMLE) is available
from Su and Yang (2015) and thus is included in the Monte Carlo experiments for comparison
purpose. The results show an excellent performance of the proposed M -estimators, and an
excellent performance of the proposed OPMD estimate of the robust standard error (rse).
The M -estimator of the dynamic parameter is nearly unbiased, as is the FQMLE, whereas
the CQMLE can be quite biased and as n increases it does not show a sign of convergence. As
expected, the M -estimator is slightly less efficient than the FQMLE, but when T is increased
from 3 to 7, the difference becomes negligible. However, the FQMLE depends on m value
and a wrong specification of it may result in poor estimate when ρ is negative and large
(see Su and Yang, 2015). In contrast, the m value does not have any significant impact on
either CQMLE or the M -estimator. The OPMD estimates of the rses are very close to the
corresponding Monte Carlo sds. In contrast, the non-robust se of σ̂2

v can be quite different
from the corresponding Monte Carlo sd when the errors are nonnormal. When T is increased
from 3 to 7, the CQMLE of ρ improves significantly. Both FQMLE and M -estimator of the
spatial parameter λ3 show some bias (the CQMLE is more biased). This is perhaps due to
the intrinsic nature of the QML-type estimation of the spatial effects.16 The

√
n-consistency

of the FQMLE and M -estimator is clearly demonstrated by the Monte Carlo sds.
13The detail is: Xt = μx +gt1n + ζt, (1−φ1L)ζt = εt +φ2εt−1, εt ∼ N(0, σ2

1In), μx = e+ 1
T+m+1

PT
t=−m εt,

and e ∼ N(0, σ2
2In). Let θx = (g, φ1, φ2, σ1, σ2). Alternatively, Xt can be randomly generated fromN(0, σ2

1In).
The σ2

1 is the key parameter that controls the variability of the regressors, and thus the signal-to-noise ratio.
14The Rook and Queen schemes are standard. For group interaction, we first generate k = nα groups of

sizes ng ∼ U(.5n̄, 1.5n̄), g = 1, · · · , k, where 0 < α < 1 and n̄ = n/k, and then adjust ng so that
Pk

g=1 ng = N .
The reported results correspond to α = 0.5. See Yang (2015) for details in generating these spatial layouts.

15In both (ii) and (iii), the generated errors are standardized to have mean zero and variance σ2
v .

16See Yang (2015) for a detailed examination on the bias of estimating a spatial lag model and the general
methodology on finite sample bias corrections for nonlinear estimators.
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Table 2a presents empirical means and sds for the SL model and Table 2b the correspond-
ing ses for the M -estimators. The results again show excellent performance of the proposed
M -estimation strategy, which offers dramatic improvements over the conditional QML esti-
mation method when T is small. The results also show that the proposed OPMD estimates
of standard errors also perform excellently. As discussed in Section 2, a spatial model with
SL effects may be more popular due to the fact that it is able to capture the neighborhood or
spatial effects on both the mean and variance levels, and hence it is important to have simple
and reliable estimation and inference methods for the SDPD models with SL effects.

Tables 3a and 3b present results for the model SLE model, i.e., the FE-DPD model with
both SL and SE effects. Similar observations as in the two simpler models can be made, except
that the estimators for the spatial parameters, in particular the spatial error parameter, are
more biased, and that the OPMD se estimates of them are slightly less accurate.

Tables 4a and 4b present results for the STL model that incorporates both SL and STL

effects into the FE-DPD model. Our Monte Carlo results show that the numerical stability in
the estimation of the STL effect requires a larger signal-to-noise ratio (the σ1/σv value given at
the bottom of Table 4a). With a larger signal-to-noise ratio, however, the CQMLE performs
better, though it is still inconsistent and clearly outperformed by the proposed M -estimator.

Tables 5a and 5b present results for the STLE model with all the three spatial effects.
The results show that the proposed M -estimators of the model parameters, and the proposed
OPMD-based standard error estimates of the M -estimators perform very well. Similar to the
STL model, the estimation of this model requires a larger signal-to-noise ratio than a model
without the STL effect. Finally, for all the models, the nonnormality can have a significant
effect on the se of the error variance σ2

v , and hence it is important to use the OPMD-based
robust standard errors in statistical inferences when the normality of the errors is in doubt.
More Monte Carlo results and Matlab codes are available from the author upon request.

6 Conclusion

We introduce a general strategy (M -estimation) for estimating a fixed-effects dynamic
panel data (DPD) model with three major forms of spatial effects: the spatial lag, space-time
lag, and spatial error, based on short panels. The proposed M-estimation method is simple
as it is based on the adjusted quasi score functions, and is robust in the sense that it is free
from the specification of the initial conditions and allowing errors to be nonnormal. A initial
condition free method for estimating the robust standard errors of the M -estimators is also
given. These together lead to a complete set of inference methods for the fixed-effects spatial
DPD models that are free from the specification of the initial conditions, and robust against
error distributions. The simplicity and generality of the proposed methods render them to
be very attractive to the practitioners.
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Appendix A: Some Basic Lemmas

The following lemmas are essential for the proofs of the main results in this paper.

Lemma A.1 (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two se-
quences of n× n matrices that are uniformly bounded in both row and column sums. Let Cn
be a sequence of conformable matrices whose elements are uniformly O(h−1

n ). Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,
(ii) the elements of An are uniformly bounded and tr(An) = O(n), and
(iii) the elements of AnCn and CnAn are uniformly O(h−1

n ).

Lemma A.2 (Lee, 2004a, p.1918): For W1 and B1 defined in Model (3.1), if ‖W1‖ and
‖B−1

10 ‖ are uniformly bounded, where ‖ · ‖ is a matrix norm, then ‖B−1
1 ‖ is uniformly bounded

in a neighborhood of λ10.

Lemma A.3 (Lee, 2004a, p.1918): Let Xn be an n × p matrix. If the elements Xn are
uniformly bounded and limn→∞ 1

nX
′
nXn exists and is nonsingular, then Pn = Xn(X ′

nXn)−1X ′
n

and Mn = In − Pn are uniformly bounded in both row and column sums.

Lemma A.4 (Lemma B.4, Yang, 2015, extended): Let {An} be a sequence of n × n

matrices that are uniformly bounded in either row or column sums. Suppose that the elements
an,ij of An are O(h−1

n ) uniformly in all i and j. Let vn be a random n-vector of iid elements
with mean zero, variance σ2 and finite 4th moment, and bn a constant n-vector of elements
of uniform order O(h−1/2

n ). Then

(i) E(v′nAnvn) = O( nhn
), (ii) Var(v′nAnvn) = O( n

hn
),

(iii) Var(v′nAnvn + b′nvn) = O( n
hn

), (iv) v′nAnvn = Op( n
hn

),

(v) v′nAnvn − E(v′nAnvn) = Op(( n
hn

)
1
2 ), (vi) v′nAnbn = Op(( nhn

)
1
2 ),

and (vii), the results (iii) and (vi) remain valid if bn is a random n-vector independent of vn
such that {E(b2ni)} are of uniform order O(h−1

n ).

Lemma A.5 (Central Limit Theorem for bilinear quadratic forms). Let {Φn}
be a sequence of n× n matrices with row and column sums uniformly bounded, and elements
of uniform order O(h−1

n ). Let vn = (v1, · · · , vn)′ be a random vector of iid elements with
mean zero, variance σ2

v, and finite (4 + 2ε0)th moment for some ε0 > 0. Let bn = {bni} be
a sequence of n × 1 random vectors such that (i) {E(b2ni)} are of uniform order O(h−1

n ), (ii)
supiE|bni|2+ε0 < ∞, (iii) hn

n

∑n
i=1[φn,ii(bni − Ebni)] = op(1) where {φn,ii} are the diagonal

elements of Φn, and (iv) hn
n

∑n
i=1[bni − E(b2ni)] = op(1). Define the bilinear-quadratic form:

Qn = b′nvn + v′nΦnvn − σ2
vtr(Φn),

and let σ2
Qn

be the variance of Qn. If limn→∞h
1+2/ε0
n /n = 0 and {hn

n σ
2
Qn

} are bounded away

from zero, then Qn/σQn

d−→ N (0, 1).
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Proof of Lemma A.5: The proof proceeds by assuming (W.L.O.G.) Φn being sym-
metric, with elements denoted by φn,ij. Write Qn =

∑n
i=1[bnivi + viξni + φn,ii(v2

i − σ2
v)] ≡∑n

i=1 Yni, where ξni = 2
∑i−1

j=1 φn,ijvj. Consider the σ-fields Gi = σ(v1, . . . , vi) generated
by (v1, . . . , vi), i = 1, . . . , n. By construction, Gi−1 ⊆ Gi. Define the σ-field Fn0 generated
by bn. By independence between bn and vn, Fni = Fn0 × Gi is the σ-field generated by
(bn, v1, . . . , vi). Clearly, Yni is Fni-measurable and ξni is Fn,i−1-measurable. It follows that
E(Yni|Fn,i−1) = bniE(vi) + E(vi)ξni + φn,iiE(v2

i − σ2
v) = 0, and hence {Yni,Fni, 1 ≤ i ≤ n}

forms a martingale difference (M.D.) array, and σ2
Qn

=
∑n

i=1 E(Y 2
ni). Define Zni = Yni/σQn .

Then, {Zni,Fni, 1 ≤ i ≤ n} also forms a M.D. array. The proof of the lemma thus amounts to
verify the conditions for the central limit theorem (CLT) for M.D. arrays, e.g., the condition
(A.1) or (A.3) and condition (A.2) of Theorem A.1 in Kelejian and Prucha (2001):

(a)
∑n

i=1 E[E(|Zni|2+δ|Fn,i−1)] −→ 0, for some δ > 0;

(b)
∑n

i=1 E(Z2
ni|Fn,i−1)

p−→ 1.

The details for the proof of (a) follow closely that of Theorem 1 of Kelejian and Prucha
(2001), where the quantities |bni|, b2ni, |bni|q are replaced by their expectations, and references
are made to the proof of Lemma A.13 of Lee (2004b) to take care of the case when hn is
unbounded.

To prove (b), we have
∑n

i=1 E[Z2
ni|Fn,i−1] − 1 = σ−2

Qn

∑n
i=1[E(Y 2

ni|Fn,i−1) − E(Y 2
ni)], and

hn
n

∑n
i=1[E(Y 2

ni|Fn,i−1)− E(Y 2
ni)]

= σ2
v
hn
n

∑n
i=1(ξ

2
ni − τ2

ni) + 2σ2
v
hn
n

∑n
i=1(bniξni) + 2μ3

hn
n

∑n
i=1(φn,iiξni)

+2μ3
hn
n

∑n
i=1[φn,ii(bni − Ebni)] + σ2

v
hn
n

∑n
i=1[b

2
ni − E(b2ni)]

≡ σ2
vQ1 + 2σ2

vQ2 + 2μ3Q3 + 2μ3Q4 + σ2
vQ5,

where τ2
ni = Var(ξni) = 4σ2

v

∑i−1
j=1 φ

2
n,ij . We have

Q1 = hn
n

∑n
i=1(ξ

2
ni − τ2

ni) = 4hn
n

∑n−1
j=1 anj(v

2
j − σ2

v) + 8hn
n

∑n−1
j=1 vjεnj .

where anj =
∑n

i=j+1 φ
2
n,ij , εnj =

∑j−1
k=1 cn,ikvk, and cn,ik =

∑n
i=j+1 φn,ijφn,ik. Clearly, both

{(v2
j − σ2

v), Gi} and {vjεnj , Gi} are M.D. arrays, and hence their convergence in probability
to zero is proved by applying the weak law of large numbers (WLLN) for M.D. arrays of
Davidson (1994, p. 299). It follows that Q1

p−→ 0.
By applying Chebyshev inequality, we show that Q2

p−→ 0. Now, it is easy to see that
Q3 = hn

n

∑n−1
j=1 dn,jvj where dn,j =

∑n
i=j+1 φn,iiφij. Thus, the convergence of Q3 is proved

by applying Chebyshev inequality. Finally, by Assumptions (iii) and (iv) stated in Lemma
A.5, both Q4 and Q5 converge to zero in probability. This completes the proof Lemma A.5
(details, in particular the proof of (a), are available from the author upon request).
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Appendix B: Proofs of Lemmas 3.1-3.3

Proof of Lemma 3.1: Using Δyt = B0Δyt−1 + B−1
10 ΔXt + B−1

10 B
−1
30 Δvt, t = 2, . . . , T

given in (3.8), we have under Assumption A: if m ≥ 1, then

E(Δy1Δv′2) = B−1
10 B

−1
30 E(Δv1Δv′2) = −σ2

v0B
−1
10 B

−1
30 ;

if m = 0, then E(Δy1Δv′2) = B−1
10 B

−1
30 E(y1Δv′2) = B−1

10 B
−1
30 E(v1Δv′2) = −σ2

v0B
−1
10 B

−1
30 .

Now, for t ≥ 2, we have, E(ΔytΔv′t+1) = B−1
10 B

−1
30 E(vtΔv′t+1) = −σ2

v0B
−1
10 B

−1
30 ,

E(ΔytΔv′t) = B0E(Δyt−1Δv′t) +B−1
10 B

−1
30 E(ΔvtΔv′t) = σ2

v0(2In −B0)B−1
10 B

−1
30 , and

E(Δyt+1Δv′t) = B0E(ΔytΔv′t) +B−1
10 B

−1
30 E(Δvt+1Δv′t) = −σ2

v0(In − B0)2B−1
10 B

−1
30 .

For t ≥ 3, we have, E(ΔytΔv′2) = −σ2
v0Bt−3

0 (In − B0)2B−1
10 B

−1
30 ,

For t ≥ 4, we have, E(ΔytΔv′3) = −σ2
v0Bt−4

0 (In − B0)2B−1
10 B

−1
30 , etc.

Summarize above, we obtain results of Lemma (3.1).

Proof of Lemma 3.2: By (3.8), continuous substitution gives, for t = 2, . . . , T ,

Δyt = Bt−1
0 Δy1 + Bt−2

0 B−1
10 ΔX2β0 + . . .+B−1

10 ΔXtβ0

+Bt−2
0 B−1

10 B
−1
30 Δv2 + . . .+ B−1

10 B
−1
30 Δvt

= Bt−1
0 Δy1 +

{Bt−2
0 ,Bt−3

0 , . . . , In, 0, . . . , 0
}
B−1

10 ΔXβ0

+
{Bt−2

0 ,Bt−3
0 , . . . , In, 0, . . . , 0

}
B−1

10 B−1
30 Δv.

The results of Lemma 3.2 thus follow.

Proof of Lemma 3.3: First, for the terms linear in Δv, we have,

Π′Δv =
∑T

t=2 Π′
tΔvt

=
∑T

t=2

∑n
i=1 Π′

itΔvit
=

∑n
i=1

∑T
t=2 Π′

itΔvit
=

∑n
i=1 g1i.

Clearly, {g1i} are independent with mean zero, and thus form a vector M.D. sequence. Now,
for the terms quadratic in Δv, we have,

E(Δv′ΦΔv) = σ2
v0tr[(C ⊗ In)Φ]

= σ2
v0

∑T
t=2

∑T
s=2 tr(ctsΦst)

= σ2
v0

∑n
i=1

∑T
t=2

∑T
s=2(ctsΦii,st)

=
∑n

i=1

∑T
t=2 dit,

where {cts, t, s = 2, . . . , T} are the elements of the matrix C given in Section 3.1, {Φii,ts, i =
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1, . . . , n} are the diagonal elements of Φts, and dit = σ2
v0

∑T
s=2(ctsΦii,st); and

Δv′ΦΔv − E(Δv′ΦΔv) =
∑T

t=2

∑T
s=2 Δv′tΦtsΔvs −

∑n
i=1

∑T
t=2 dit

=
∑T

t=2

∑T
s=2 Δv′t(Φu

ts + Φl
ts + Φd

ts)Δvs −
∑n

i=1

∑T
t=2 dit

=
∑T

t=2

∑T
s=2

[
Δv′sΦu′

tsΔvt + Δv′t(Φl
ts + Φd

ts)Δvs
]−∑n

i=1

∑T
t=2 dit

=
∑T

t=2 Δv′tΔξt +
∑T

t=2 Δv′tΔv∗t −
∑n

i=1

∑T
t=2 dit,

=
∑n

i=1

∑T
t=2

(
ΔvitΔξit + ΔvitΔv∗it − dit

)
≡ ∑n

i=1 g2i,

where Δξt =
∑T

s=2(Φ
u′
st + Φl

ts)Δvs, and Δv∗t =
∑T

s=2 Φd
tsΔvs. Noting that Δξit is Gn,i−1-

measurable, it is easy to see that E(g2i|Gn,i−1) = 0. Thus, {g2i, Gn,i} form a M.D. sequence.
Finally, for the terms bilinear in Δv and Δy1 = 1T−1 ⊗ Δy1, we have,

Δv′Ψy1 =
∑T

t=2

∑T
s=2 Δv′tΨtsΔy1

=
∑T

t=2 Δv′t
(∑T

s=2 Ψts

)
Δy1

=
∑T

t=2 Δv′tΨt+Δy1
= Δv′2Ψ2+Δy1 +

∑T
t=3 Δv′tΨt+Δy1

= Δv′2ΘΔy◦1 +
∑T

t=3 Δv′tΔy∗1t,

where Δy◦1 = B30B10Δy1 and Δy∗1t = Ψt+Δy1. The second term equals
∑n

i=1(
∑T

t=3 ΔvitΔy∗1ti),
which is the sum of n uncorrelated terms of mean zero, due to the fact that Δy1 is independent
of Δvt, t ≥ 3. The term Δv′2ΘΔy◦1 needs some special attention. Noting that

Δy◦1 = B30B10Δy1 = B30B20Δy0 + B30Δx1β0 + Δv1, (B.1)

and as Δy0 is independent of vt, t ≥ 1 by Assumption A, E(Δv′2ΘΔy◦1) = −σ2
v0tr(Θ), and

Δv′2ΘΔy◦1 − E(Δv′2ΘΔy◦1) = Δv′2(Θ
u + Θl + Θd)Δy◦1 + σ2

v0tr(Θ)

= Δv′2(Θu + Θl)Δy◦1 + Δv′2ΘdΔy◦1 + σ2
v0tr(Θ)

=
∑n

i=1 Δv2iΔζi +
∑n

i=1 Θii(Δv2iΔy◦1i + σ2
v0),

where {Δζi} = Δζ = (Θu+Θl)Δy◦1. As Δζi is measurable w.r.t. Fn,i−1 and {Δv1,i+1, . . .Δv1,n},
the first term is the sum of a M.D. sequence. The second term is easily seen to be the sum of
n uncorrelated terms by (B.1). It follows that Δv′ΨΔy1 − E(Δv′ΨΔy1) =

∑n
i=1 g3i, where

g3i = Δv2iΔζi + Θii(Δv2iΔy◦1i + σ2
v0) +

∑T
t=3 ΔvitΔy∗1it.

It is easy to see that E(g3i|Fn,i−1) = 0. Hence, {g3i,Fn,i} form a M.D. sequence. Finally, it
is easy to verify that E[(g′1i, g2i, g3i)|Fn,i−1] = 0. Hence, {(g′1i, g2i, g3i)′,Fn,i} form a vector
M.D. sequence.
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Appendix C: Proofs of Theorems 3.1-3.3

In proving the theorems, the following matrix results are used: (i) the eigenvalues of a
projection matrix are either 0 or 1; (ii) the eigenvalues of a positive definite (p.d.) matrix are
strictly positive; (iii) γmin(A)tr(B) ≤ tr(AB) ≤ γmax(A)tr(B) for symmetric matrix A and
positive semidefinite (p.s.d.) matrix B; (iv) γmax(A+B) ≤ γmax(A)+γmax(B) for symmetric
matrices A and B; and (v) γmax(AB) ≤ γmax(A)γmax(B) for p.s.d. matrices A and B. See,
e.g, Bernstein (2009).

Proof of Theorem 3.1: From (3.17) and (3.20), we have

S∗c
STLE(δ)− S̄∗c

STLE(δ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
σ̂2

v,M(δ)
Δû(δ)′Ω−1ΔY−1 − 1

σ̄2
v,M(δ)

E[Δū(δ)′Ω−1ΔY−1],
1

σ̂2
v,M(δ)

Δû(δ)′Ω−1W1ΔY − 1
σ̄2

v,M(δ)
E[Δū(δ)′Ω−1W1ΔY ],

1
σ̂2

v,M(δ)
Δû(δ)′Ω−1W2ΔY−1 − 1

σ̄2
v,M(δ)

E[Δū(δ)′Ω−1W2ΔY−1],
1

σ̂2
v,M(δ)

Δû(δ)′ΥΔû(δ)− 1
σ̄2

v,M(δ)
E[Δū(δ)′ΥΔū(δ)],

where Υ = 1
2 (C−1 ⊗A3). With Assumption G, consistency of δ̂M follows from:

(a) infδ∈Δσ̄
2
v,M(δ) is bounded away from zero,

(b) supδ∈Δ

∣∣σ̂2
v,M(δ)− σ̄2

v,M(δ)
∣∣ = op(1),

(c) supδ∈Δ
1

n(T−1)

∣∣Δû(δ)′Ω−1ΔY−1 − E[Δū(δ)′Ω−1ΔY−1]
∣∣ = op(1),

(d) supδ∈Δ
1

n(T−1)

∣∣Δû(δ)′Ω−1W1ΔY − E[Δū(δ)′Ω−1W1ΔY ]
∣∣ = op(1),

(e) supδ∈Δ
1

n(T−1)

∣∣Δû(δ)′Ω−1W2ΔY−1 − E[Δū(δ)′Ω−1W2ΔY−1]
∣∣ = op(1),

(f) supδ∈Δ
1

n(T−1)

∣∣Δû(δ)′ΥΔû(δ)− E[Δū(δ)′ΥΔū(δ)]
∣∣ = op(1).

Proof of (a). By Δū∗(δ) = M(B∗
1ΔY − B∗

2ΔY−1) + P(B∗
1ΔY

◦ − B∗
2ΔY

◦
−1) given in

(3.21), and the fact that the two projection matrices M and P are orthogonal to each other,
we have,

σ̄2
v,M(δ) = 1

n(T−1)
E[Δū∗′(δ)Δū∗(δ)]

= 1
n(T−1)

E[(B∗
1ΔY − B∗

2ΔY−1)′M(B∗
1ΔY −B∗

2ΔY−1)]

+ 1
n(T−1)E[(B∗

1ΔY
◦ − B∗

2ΔY
◦−1)

′P(B∗
1ΔY

◦ −B∗
2ΔY

◦−1)]

= 1
n(T−1)tr[Var(B∗

1ΔY −B∗
2ΔY−1)]

+ 1
n(T−1)(B

∗
1EΔY −B∗

2EΔY−1)′M(B∗
1EΔY −B∗

2EΔY−1).

As M is p.s.d., the second term is nonnegative uniformly in δ ∈ Δ. The first term is
1

n(T−1)
tr[Ω−1Var(B1ΔY−B2ΔY−1)] ≥ 1

n(T−1)
γmin(C−1)γmin(B′

3B3)tr[Var(B1ΔY−B2ΔY−1)]
> c > 0, uniformly in δ ∈ Δ, by the definition of the matrix C, Assumption E(iv) and the
assumption given in the theorem. It follows that infδ∈Δσ̄

2
v,M(δ) > c > 0.
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Proof of (b). Noting that Δû∗(δ) = M(B∗
1ΔY −B∗

2ΔY−1), we have,

σ̂2
v,M(δ) = 1

n(T−1)Δû
∗′(δ)Δû∗(δ) = 1

n(T−1)(B
∗
1ΔY −B∗

2ΔY−1)′M(B∗
1ΔY −B∗

2ΔY−1).

It follows that

σ̂2
v,M(δ) − σ̄2

v,M(δ) = 1
n(T−1)

(B∗
1ΔY −B∗

2ΔY−1)′M(B∗
1ΔY −B∗

2ΔY−1)

− 1
n(T−1)

E[(B∗
1ΔY −B∗

2ΔY−1)′M(B∗
1ΔY −B∗

2ΔY−1)]

− 1
n(T−1)E[(B∗

1ΔY
◦ −B∗

2ΔY
◦−1)

′P(B∗
1ΔY

◦ − B∗
2ΔY

◦−1)]

= 1
n(T−1) [ΔY

′B∗′
1 MB∗

1ΔY − E(ΔY ′B∗′
1 MB∗

1ΔY )]

+ 1
n(T−1) [ΔY

′
−1B

∗′
2 MB∗

2ΔY−1 − E(ΔY ′
−1B

∗′
2 MB∗

2ΔY−1)]

− 2
n(T−1) [ΔY

′B∗′
1 MB∗

2ΔY−1 − E(ΔY ′B∗′
1 MB∗

2ΔY−1)]

− 1
n(T−1)

E[(B∗
1ΔY

◦ −B∗
2ΔY

◦
−1)

′P(B∗
1ΔY

◦ − B∗
2ΔY

◦
−1)]

≡ (Q1 − EQ1) + (Q2 − EQ2)− (Q3 − EQ3) − EQ4.

The results follows if Qj − EQj
p−→ 0, j = 1, 2, 3, and EQ4−→0, uniformly in δ ∈ Δ.

First, by ΔY = R Δy1 + η + SΔv in Lemma 3.2, and letting M∗ = Ω− 1
2MΩ− 1

2 , we have,

Q1 = 1
n(T−1)ΔY

′B∗′
1 MB∗

1ΔY

= 1
n(T−1)

(
Δy′

1R
′B′

1M
∗B1RΔy1 + η′B′

1M
∗B1η + Δv′S′B′

1M
∗B1SΔv

+2Δy′
1R

′B′
1M

∗B1η + Δy′
1R

′B′
1M

∗B1SΔv + 2η′B′
1M

∗B1SΔv
)
,

which leads to Q1 − EQ1 =
∑5

�=1(Q1,� − EQ1,�), where Q1,�, � = 1, . . . , 5, denote the five
stochastic terms of Q1, and EQ1,5 = 0.

Second, by ΔY−1 = R−1ΔΔy1 + η−1 + S−1Δv given in Lemma 3.2, we have,

Q2 = 1
n(T−1)ΔY

′−1B
∗′
2 MB∗

2ΔY−1

= 1
n(T−1)

(
Δy′

1R
′
−1B

′
2M

∗B2R−1Δy1 + η′
−1B

′
2M

∗B2η−1 + Δv′S′
−1B

′
2M

∗B2S−1Δv

+2Δy′
1R

′
−1B

′
2M

∗B2η−1 + 2Δy′
1R

′B′
2M

∗B2S−1Δv + 2η′
−1B

′
2M

∗B2S−1Δv
)
,

leading to Q2−EQ2 =
∑5

�=1(Q2,�−EQ2,�), where Q2,�, � = 1, . . . , 5, denote the five stochastic
terms of Q2, and EQ2,5 = 0.

Third, by both identities given in Lemma 3.2, we have

Q3 = 1
n(T−1)ΔY

′B∗′
1 MB∗

2ΔY−1

= 1
n(T−1)

(
Δy′

1R
′B′

1M
∗B2R−1Δy1 + η′B′

1M
∗B2η−1 + Δv′S′B′

1M
∗B2S−1Δv

+Δy′
1R

′B′
1M

∗B2η−1 + η′B′
1M

∗B2R−1Δy1 + Δy′
1R′B′

1M
∗B2S−1Δv

+Δv′S′B′
1M

∗B2R−1Δy′
1 + η′B′

1M
∗B2S−1Δv + Δv′S′B′

1M
∗B2η−1

)
,
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leading to Q3−EQ3 =
∑8

�=1(Q3,�−EQ3,�), where Q3,�, � = 1, . . . , 8, denote the eight random
terms in Q3 and the last two terms have expectations zero.

Thus, Qk, k = 1, 2, 3, are decomposed into sums of terms of the forms: 1
n(T−1)

Δy′
1ΦΔy1,

1
n(T−1)

Δv′ΠΔv, 1
n(T−1)

Δy′
1ΨΔv, 1

n(T−1)
Δy′

1φ, and 1
n(T−1)

Δv′ψ, where the matrices Φ, Π and
ξ, and the vectors φ and ξ are defined in terms of R, R−1, S, S−1, η, η−1, B1, B2 and M∗.
Note that R, R−1, S, S−1, η and η−1 depend on true parameter values, whereas B1 depends
on λ1, B2 depends on ρ and λ2, and M∗ depends on λ3.

For the terms quadratic in Δy1, they can be written as 1
nΔy′1Φ++(δ)Δy1 where Φ++(δ) =∑

t

∑
s Φt,s(δ). It can easily be seen by Lemma A.1 and Lemma A.3 that for each δ ∈ Δ,

Φt,s(δ) are uniformly bounded in either row or column sums. The pointwise convergence of
1
n [Δy′1Φ++(δ)Δy1 − E(Δy′1Φ++(δ)Δy1)] thus follows from Assumption F(ii). For the terms
quadratic in Δv, they can be written as 1

n(T−1)

∑T
t=1

∑T
s=1 v

′
tΠtsvs. The pointwise conver-

gence of 1
n [v′tΠtsvs − E(v′tΠtsvs)] follows from Lemma A.4 (v), for each t, s = 1, . . . , T . The

pointwise convergence of 1
n(T−1) [Δy′

1ΨΔv − E(Δy′
1ΨΔv)] follows by writing Δy′

1ΨΔv =∑
s Δy1Ψ+sΔvs and then applying Lemma A.4 (vii) and Assumption F(iii). The pointwise

convergence of 1
n(T−1)

[Δy′
1φ − E(Δy′

1φ) follows from Assumption F(ii), and of 1
n(T−1)

Δv′ψ

from Chebyshev inequality. Thus, Qk,�(δ) − EQk,�(δ)
p−→ 0, for each δ ∈ Δ, and all k and �.

Now, for all the Qk,�(δ) terms, let δ1 and δ2 be in Δ. We have by the mean value theorem:

Qk,�(δ2) −Qk,�(δ1) = ∂
∂δ′Qk,�(δ̄)(δ2 − δ1),

where δ̄ lies between δ1 and δ2 elementwise. Note that Qk,�(δ) is linear or quadratic in ρ, λ1

and λ2, and thus the corresponding partial derivatives takes simple form. It is easy to show
that supδ∈Δ | ∂∂ωQk,�(δ)| = Op(1), for ω = ρ, λ1, λ2. For ∂

∂λ3
Qk,�(δ), note that only the matrix

M∗ involves λ3. Some algebra leads to the following simple expression for its derivative:

d
dλ3

M∗ = M∗ΩΩ̇−1ΩM∗,

where Ω̇−1 = d
dλ3

Ω−1 = C−1⊗A3. Thus, the results supδ∈Δ | ∂
∂λ3

Qk,�(δ)| = Op(1) can be easily
proved for all the Qk,�(δ) quantities. For example, for Q1,1(δ), noting that γmax(M) = 1,

supδ∈Δ |Q1,1(δ)| = supδ∈Δ | 1
n(T−1)

∂
∂λ3

Δy′
1R′B′

1M
∗B1RΔy1|

= supδ∈Δ
1

n(T−1) |Δy′
1R

′B′
1M

∗ΩΩ̇−1ΩM∗B1RΔy1|
≤ supδ∈Δ

1
n(T−1) |Δy′

1R
′B′

1Ω̇
−1B1RΔy1|

≤ γmax(Ω̇−1)γmax(B′
1B1) 1

n(T−1) |Δy′
1R

′
RΔy1|

= O(1)×O(1)× Op(1) = Op(1), by Assumption F(i).

It follows that Qk,�(δ) are stochastic equicontinuous, and by Theorem 1 of Andrews (1992)
Qk,�(δ) − EQk,�(δ)

p−→ 0, uniformly in δ ∈ Δ. Thus, Qk(δ) − EQk(δ)
p−→ 0, uniformly in

δ ∈ Δ, k = 1, 2, 3. It left to show that EQ4(δ) → 0, uniformly in δ ∈ Δ. We have
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EQ4 = 1
n(T−1)

E[(B∗
1ΔY

◦ −B∗
2ΔY

◦−1)
′P(B∗

1ΔY
◦ −B∗

2ΔY
◦−1)]

= 1
n(T−1)tr[Ω

−1ΔX(ΔX ′Ω−1ΔX)−1ΔX ′Ω−1Var(B1ΔY −B2ΔY−1)]

≤ 1
n(T−1)γmax(Ω−2)γ−1

min(ΔX
′Ω−1ΔX) tr[ΔX ′Var(B1ΔY −B2ΔY−1)ΔX ]

= 1
n(T−1)γmax(Ω−2)γ−1

min

(
ΔX ′Ω−1ΔX
n(T−1)

)
1

n(T−1)tr[ΔX
′Var(B1ΔY −B2ΔY−1)ΔX ].

As Ω−1 = C−1 ⊗ B′
3B3, we have by the matrix C defined at the beginning of Section 3.1

and Assumption E(iv), 0 < cw ≤ infλ3∈Λ3 γmin(Ω−1) ≤ supλ3∈Λ3
γmin(Ω−1) ≤ c̄w < ∞. By

Assumption D, we have, 0 < cx ≤ infλ3∈Λ3 γmin(Ω−1)γmin

(
ΔX ′ΔX
n(T−1)

) ≤ γmin

(ΔX ′Ω−1)ΔX
n(T−1)

) ≤
γmax

(ΔX ′Ω−1)ΔX
n(T−1)

) ≤ supλ3∈Λ3
γmax(Ω−1)γmax

(
ΔX ′ΔX
n(T−1)

) ≤ c̄x <∞. It follows that

EQ4 ≤ 1
n(T−1) c̄

2
wcx

1
n(T−1)tr[ΔX

′Var(B1ΔY − B2ΔY−1)ΔX ]

≤ 1
n(T−1) c̄

2
wcxc̄y

1
n(T−1)tr[ΔX

′ΔX ], by the assumption in Theorem 3.1

= O(n−1), by Assumption D.

Hence, σ̂2
v,M(δ)− σ̄2

v,M(δ)
p−→ 0, uniformly in δ ∈ Δ, completing the proof of (b).

Proofs of (c)-(f). By the expressions of Δû(δ) and Δū(δ) given earlier, we have,

Δû(δ)′Ω−1ΔY−1 − E[Δū(δ)′Ω−1ΔY−1]

= [ΔY ′B′
1M

∗ΔY−1 − E(ΔY ′B′
1M

∗ΔY−1)]− [ΔY ′−1B
′
2M

∗ΔY−1 − E(ΔY ′−1B
′
2M

∗ΔY−1)]

−E(ΔY ◦′B′
1P

∗ΔY ◦
−1) + E(ΔY ◦′

−1B
′
2P

∗ΔY ◦
−1);

Δû(δ)′Ω−1W1ΔY − E[Δū(δ)′Ω−1W1ΔY ]

= ΔY ′B′
1M

∗W1ΔY − E(ΔY ′B′
1M

∗W1ΔY )− ΔY ′
−1B

′
2M

∗W1ΔY

−E(ΔY ′
−1B

′
2M

∗W1ΔY ] − E(ΔY ◦′B′
1P

∗W1ΔY ◦) + E(ΔY ◦′
−1B

′
2P

∗W1ΔY ◦);

Δû(δ)′Ω−1W2ΔY−1 − E[Δū(δ)′Ω−1W2ΔY−1]

= ΔY ′B′
1M

∗W2ΔY−1 − E(ΔY ′B′
1M

∗W2ΔY−1) − ΔY ′−1B
′
2M

∗W2ΔY−1

−E(ΔY ′
−1B

′
2M

∗W2ΔY−1]− E(ΔY ◦′B′
1P

∗W2ΔY ◦
−1) + E(ΔY ◦′

−1B
′
2P

∗W2ΔY ◦
−1); and

Δû(δ)′ΥΔû(δ)− E[Δū(δ)′

= ΔY ′B′
1M

◦′ΥM◦B1ΔY − E(ΔY ′B′
1M

◦′ΥM◦B1ΔY )

+ΔY ′
−1B

′
2M

◦′ΥM◦B2ΔY−1 − E(ΔY ′
−1B

′
2M

◦′ΥM◦B2ΔY−1)

−2ΔY ′B′
1M

◦′ΥM◦B2ΔY−1 + 2E(ΔY ′B′
1M

◦′ΥM◦B2ΔY−1)

+2E[(B1ΔY ◦ − B2ΔY ◦
−1)

′M◦′ΥP◦(B1ΔY ◦ −B2ΔY ◦
−1)]

+2E[(B1ΔY ◦ − B2ΔY ◦
−1)

′P◦′ΥP◦(B1ΔY ◦ −B2ΔY ◦
−1)],

where M◦ = MΩ− 1
2 . By Lemma 3.2, all the quantities involving ΔY and ΔY−1 can be

decomposed into sums of quadratic, bilinear and linear forms in Δy1 and/or Δv, and all the
quantities involving ΔY ◦ and ΔY ◦

−1 can be handled in a similar manner as for Q4 in (b).
The rest of the proof proceeds in a similar manner as for the proof of (b).
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Proof of Theorem 3.2: We have by the mean value theorem,

0 = 1√
n(T−1)

S∗
STLE(ψ̂STLE) = 1√

n(T−1)
S∗
STLE(ψ0) +

[
1

n(T−1)
∂
∂ψ′S∗

STLE(ψ̄)
]√

n(T − 1)(ψ̂M − ψ0),

where ψ̄ lies elementwise between ψ̂M and ψ0. The result of the theorem follows if

(a) 1√
n(T−1)

S∗
STLE(ψ0)

D−→ N
[
0, limn→∞ Γ∗

STLE(ψ0)
]
,

(b) 1
n(T−1)

[
∂
∂ψ′S

∗
STLE(ψ̄) − ∂

∂ψ′S
∗
STLE(ψ0)

] p−→ 0, and

(c) 1
n(T−1)

[
∂
∂ψ′S

∗
STLE(ψ0) − E

(
∂
∂ψ′S

∗
STLE(ψ0)

)] p−→ 0.

Proof of (a). From (3.24), we see that S∗
STLE(ψ0) consists of three types of elements:

Π′Δv, Δv′ΦΔv and Δv′ΨΔy1, which can be written as

Π′Δv =
∑T

t=1 Π∗′
t vt, ΔvΦΔv =

∑T
t=1

∑T
s=1 v

′
tΦ

∗
tsvs, and Δv′ΨΔy1 =

∑T
t=1 v

′
tΨ

∗
tΔy1,

where Π∗
t , Φ∗

ts and Ψ∗
t are formed by the elements of the partitioned Π, Φ and Ψ, respectively.

By (2.1), y1 = B−1
10 B20y0 + η1 + B−1

10 B
−1
30 v1, leading to

∑T
t=1 v

′
tΨ

∗
tΔy1 =

∑T
t=1 v

′
tΨ

∗∗
t y0 +∑T

t=1 v
′
tΨ

∗+
t v1, for suitably defined non-stochastic quantities η1, Ψ∗∗

t and Ψ∗+
t . These show

that, for every non-zero (p+ 5) × 1 vector of constants c, c′S∗
STLE(ψ0) can be expressed as

c′S∗
STLE(ψ0) =

T∑
t=1

T∑
s=1

v′tAtsvs +
T∑
t=1

v′tBtv1 +
T∑
t=1

v′tg(y0),

for suitably defined non-stochastic matrices Ats and Bt, and the function g(y0) linear in y0.
As, {y0, v1, . . . , vT} are independent, the asymptotic normality of 1√

n(T−1)
c′S∗

STLE(ψ0) follows

from Lemma A.5. Finally, the Cramér-Wold devise leads to the joint asymptotic normality.

Proof of (b). The Hessian matrix, H∗
STLE(ψ) = ∂

∂ψ′S
∗
STLE(ψ), has the elements:

H∗
ββ = − 1

σ2
v
ΔX ′Ω−1ΔX, H∗

σ2
vσ

2
v

= − 1
σ6

v
Δu(θ)′Ω−1Δu(θ) + n(T−1)

2σ4
v
,

H∗
βσ2

v
= − 1

σ4
v
ΔX ′Ω−1Δu(θ), H∗

σ2
vλ2

= − 1
σ4

v
ΔY ′

−1W
′
2Ω

−1Δu(θ),

H∗
βρ = − 1

σ2
v
ΔX ′Ω−1ΔY−1, H∗

σ2
vλ3

= 1
2σ4

v
Δu(θ)′Ω̇−1Δu(θ),

H∗
βλ1

= − 1
σ2

v
ΔX ′Ω−1W1ΔY, H∗

ρρ = − 1
σ2

v
ΔY ′

−1Ω
−1ΔY−1 + tr(C−1D−1,ρ),

H∗
βλ2

= − 1
σ2

v
ΔX ′Ω−1W2ΔY−1, H∗

ρλ1
= − 1

σ2
v
ΔY ′−1Ω

−1W1ΔY + tr(C−1D−1,λ1),

H∗
βλ3

= 1
σ2

v
ΔX ′Ω̇−1Δu(θ), H∗

ρλ2
= − 1

σ2
v
ΔY ′

−1Ω
−1W2ΔY−1 + tr(C−1D−1,λ2),

H∗
σ2

vρ
= − 1

σ4
v
ΔY ′

−1Ω
−1Δu(θ), H∗

λ1λ1
= − 1

σ2
v
ΔY ′W′

1Ω
−1W1ΔY + tr(C−1Dλ1W1),

H∗
σ2

vλ1
= − 1

σ4
v
ΔY ′W′

1Ω
−1Δu(θ), H∗

λ1λ2
= − 1

σ2
v
ΔY ′W′

1Ω
−1W2ΔY−1 + tr(C−1Dλ2W1),

H∗
ρλ3

= 1
σ2

v
ΔY ′

−1Ω̇
−1Δu(θ), H∗

λ2λ2
= − 1

σ2
v
ΔY ′

−1W
′
2Ω

−1W2ΔY−1 + tr(C−1D−1,λ2W2),

H∗
λ1λ3

= 1
σ2

v
ΔY ′W′

1Ω̇
−1Δu(θ), H∗

λ3λ3
= − 1

σ2
v
Δu(θ)′[C−1 ⊗ (W ′

3W3)]Δu(θ)− tr(G2
3).

H∗
λ2λ3

= 1
σ2

v
ΔY ′

−1W
′
2Ω̇

−1Δu(θ),

where Ω̇−1 = ∂
∂λ3

Ω−1, D−1,ω = ∂
∂ωD−1 and Dω = ∂

∂ωD, ω = ρ, λ1, λ2, and G3 = W3B−1
3 .
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It is easy to show that 1
n(T−1)H

∗
STLE(ψ0) = Op(1) by Lemma A.1 and the model assump-

tions. Thus, 1
n(T−1)

H∗
STLE(ψ̄) = Op(1) because ψ̄−ψ0 = op(1) which is implied by ψ̂M

p−→ ψ0.

As σ̄2 p−→ σ2
0, σ̄

−r = σ−r0 + op(1), r = 2, 4, 6. Noting that σr appears in H∗
STLE(ψ) multiplica-

tively, 1
n(T−1)H

∗
STLE(ψ̄) = 1

n(T−1)H
∗
STLE(β̄, σ2

0, ρ̄, λ̄) + op(1), i.e., replacing σ̄2 by σ2
v0 results in

an asymptotically negligible error. The proof of (b) is thus equivalent to the proof of

1
n(T−1)

[
H∗

STLE(β̄, σ
2
0, ρ̄, λ̄) −H∗

STLE(ψ0)
] p−→ 0.

From Δu(θ) = Δu− (λ1 − λ10)W1ΔY − (ρ− ρ0)ΔY−1 − (λ2 − λ20)W2ΔY−1 −ΔX(β− β0),
Ω−1(λ3) − Ω−1(λ30) = (λ2

3 − λ2
30)C

−1 ⊗ (W ′
3W3) − (λ3 − λ30)C−1 ⊗ (W ′

3 +W3), and Ω̇−1 =
C−1 ⊗ (W ′

3B3 +B′
3W3), we see that all the random elements of H∗

STLE(ψ) are linear, bilinear,
or quadratic in ΔY , ΔY−1 or Δu, and linear or quadratic in β, ρ, and λ. This means that all
the corresponding elements in 1

n(T−1)

[
H∗

STLE(β̄, σ
2
0, ρ̄, λ̄) − H∗

STLE(ψ0)
]

are linear, bilinear, or
quadratic in ΔY , ΔY−1 or Δu, and linear, bilinear or quadratic in β̄−β0, ρ̄− ρ0, and λ̄−λ0,
and thus are all op(1) by the consistency of ψ̂M, Lemma 3.2, Lemma A.1 and Assumption F.
This can be easily seen for all the terms linear in ΔY or ΔY−1, quadratic in ΔY or ΔY−1,
or bilinear in ΔY and ΔY−1. For example, for the term corresponding to H∗

λ1λ1
, we have, by

the consistency of λ̂M, Lemma 3.2, Lemma A.1, and Assumption F,

1
n(T−1) [− 1

σ2
v
ΔY ′W′

1Ω
−1(λ̄3)W1ΔY + 1

σ2
v
ΔY ′W′

1Ω
−1
0 (λ30)W1ΔY ]

= 1
n(T−1)

1
σ2

v0
ΔY ′W′

1[−Ω−1(λ̄3) + Ω−1
0 (λ30)]W1ΔY ]

= (λ̄3 − λ30) 1
n(T−1)σ2

v0
ΔY ′W′

1[C
−1 ⊗ (W ′

3 +W3)]W1ΔY

−(λ̄2
3 − λ2

30)
1

n(T−1)σ2
v0

ΔY ′W′
1[C

−1 ⊗ (W ′
3W3)]W1ΔY

= op(1)×Op(1)− op(1) ×Op(1) = op(1).

Now, all the remaining terms involve Δu(θ). We have, for example,

H∗
σ2

vλ1
(β̄, σ2

0, ρ̄, λ̄) −H∗
σ2

vλ1
(ψ0)

= − 1
σ4

v0
ΔY ′W′

1[Ω
−1(λ̄3)Δu(θ̄) − Ω−1

0 Δu]

= − 1
σ4

v0
ΔY ′W′

1

{
[Ω−1

0 + (λ̄2
3 − λ2

30)C
−1 ⊗ (W ′

3W3) − (λ̄3 − λ30)C−1 ⊗ (W ′
3 +W3)]

×[Δu− (λ̄1 − λ10)W1ΔY − (ρ̄− ρ0)ΔY−1 − (λ̄2 − λ20)W2ΔY−1 − ΔX(β̄ − β0] − Ω−1
0 Δu

}
,

from which one sees clearly that it is linear, bilinear or quadratic in ΔY , ΔY−1, or Δu, and
linear, bilinear or quadratic in β̄ − β0, ρ̄− ρ0, and λ̄− λ0. The proof of

1
n(T−1) [H

∗
σ2

vλ1
(β̄, σ2

0, ρ̄, λ̄) −H∗
σ2

vλ1
(ψ0)] = op(1)

boils down to show that the quantities 1
n(T−1)ΔY

′W′
1Ω

−1
0 W1ΔY , 1

n(T−1)ΔY
′W′

1Ω
−1
0 ΔY−1,

1
n(T−1)ΔY

′W′
1Ω

−1
0 ΔX , etc., are all Op(1), which can be done easily by Lemma 3.2, Lemma

A.1 and Assumption F. The proofs for the other terms involving Δu(θ) proceed in the same
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manner. It left to show that

(a) 1
n(T−1) [tr(C

−1D−1,ρ(ρ̄, λ̄1, λ̄2)) − tr(C−1D−1,ρ(ρ0, λ10, λ20))] = op(1)

(b) 1
n(T−1)

[tr(C−1D−1,λ1(ρ̄, λ̄1, λ̄2))− tr(C−1D−1,λ1(ρ0, λ10, λ20))] = op(1)

(c) 1
n(T−1)

[tr(C−1D−1,λ2(ρ̄, λ̄1, λ̄2))− tr(C−1D−1,λ2(ρ0, λ10, λ20))] = op(1)

(d) 1
n(T−1) [tr(C

−1Dλ1(ρ̄, λ̄1, λ̄2)W1) − tr(C−1Dλ1(ρ0, λ10, λ20)W1)] = op(1)

(e) 1
n(T−1) [tr(C

−1Dλ2(ρ̄, λ̄1, λ̄2)W1) − tr(C−1Dλ2(ρ0, λ10, λ20)W1)] = op(1)

(f) 1
n(T−1) [tr(C

−1D−1,λ2(ρ̄, λ̄1, λ̄2)W2))− tr(C−1D−1,λ2(ρ0, λ10, λ20)W2))] = op(1)

(g) 1
n(T−1) [tr(G(λ̄3)2) − tr(G(λ30)2)] = op(1).

It is easy to show the last result. By the mean value theorem, tr(G(λ̄3)2) − tr(G(λ30)2) =
2(λ̄3 − λ30)tr(G(λ∗3)

3), where λ∗3 lies between λ̄3 and λ30. By Lemmas A.1 and A.2, the
elements of G(λ∗3)

3 is uniformly bounded. Thus, 1
n(T−1)tr(G(λ∗3)

3) = Op(1), leading to (g).
The proofs of (a)-(f) are similar, and some details are given for the most complicate case (d).
Let (ρ∗, λ∗1, λ

∗
2) be between (ρ̄, λ̄1, λ̄2) and (ρ0, λ10, λ20). By the mean value theorem,

1
n(T−1) [tr(C

−1Dλ1(ρ̄, λ̄1, λ̄2)W1) − tr(C−1Dλ1(ρ0, λ10, λ20)W1)]

= ρ̄−ρ0
n(T−1)tr(C

−1Dρ∗
λ1

W1) + λ̄1−λ10
n(T−1)tr(C

−1Dλ∗1
λ1

W1) + λ̄2−λ20
n(T−1)tr(C

−1Dλ∗2
λ1

W1),

where Dρ∗
λ1

, Dλ∗1
λ1

and Dλ∗2
λ1

are the partial derivatives of Dλ1 evaluated at (ρ∗, λ∗1, λ∗2). Consider,
W.L.O.G., T = 3. Recall B1 = In − λW1, B2 = ρIn + λ2W2 and B = B−1

2 B2. We have

D(ρ, λ1, λ2) =

(
B−1

1 B2B
−1
1 , B−1

1

(In − B−1
1 B2)2B−1

1 , B−1
1 B2B

−1
1

)
.

This shows that the elements of Dλ1 are the multiplications of the matrices W1, B−1
1 and

B2. Subsequently, Dρ
λ1

, Dλ1
λ1

and Dλ2
λ1

have elements being the multiplications of the ma-
trices W1, W2, B−1

1 (λ1), and B2(ρ, λ2), and hence are uniformly bounded in the neighbor-
hood of (ρ0, λ10, λ20) by Lemmas A.1 and A.2. Therefore, 1

n(T−1)
tr(C−1Dρ∗

λ1
W1) = Op(1),

1
n(T−1)

tr(C−1Dλ∗1
λ1

W1) = Op(1), and 1
n(T−1)

tr(C−1Dλ∗2
λ1

W1) = Op(1), leading to (d).

Proof of (c). First, for the terms involving only Δu (linear or quadratic), the results
follows Lemma A.4(v)-(vi), noticing Δu = B−1

30 Fv where Fv = Δv. For example,

H∗
σ2

vλ3
(ψ0) − E[H∗

σ2
vλ3

(ψ0)] = 1
2σ4

v0
[Δu′Ω̇−1

0 Δu− E(Δu′Ω̇−1
0 Δu)] = 1

2σ4
v0

[v′Av − E(v′Av)],

where A = F′B′−1
30 Ω̇−1

0 B−1
30 F, which is easily seen to be uniformly bounded in both row and

column sums. Thus, Lemma A.4(v) leads to 1
n(T−1){H∗

σ2
vλ3

(ψ0)− E[H∗
σ2

vλ3
(ψ0)]} = op(1).

Second, by Lemma 3.2 all the terms involving ΔY and ΔY−1 can be written as sums of
the terms linear in Δy, quadratic in Δy, bilinear in Δy and Δv, or quadratic in Δv. Thus,
the results follow by repeatedly applying Lemma A.1, Lemma A.4, and Assumption F.

Proof of Theorem 3.3: First, the result Σ∗
STLE(ψ̂M) − Σ∗

STLE(ψ0)
p−→ 0 is implied by
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the result (b) in the proof of Theorem 3.2. The result 1
n(T−1)

∑n
i=1[ĝiĝ

′
i − E(gig′i)]

p−→ 0

follows from 1
n(T−1)

∑n
i=1[ĝiĝ

′
i − gig

′
i]

p−→ 0 and 1
n(T−1)

∑n
i=1[gig

′
i − E(gig′i)]

p−→ 0. The proof
of the former is straightforward by applying the mean value theorem. We focus on the
proof of the latter result. As the elements of S∗

STLE(ψ0) are mixtures of terms of the forms
Π′Δv =

∑n
i=1 g1i, Δv′ΦΔv =

∑n
i=1 g2i and Δv′ΨΔy1 =

∑n
i=1 g2i, it suffices to show that

1
n(T−1)

∑n
i=1[gkig

′
ri − E(gkig′ri)] = op(1), k, r = 1, 2, 3.

To facilitate the proof, the following dot notation is convenient: (a) for an n(T − 1) × 1
vector Δv with elements {Δvit} double indexed by i = 1, . . . , n for each t = 2, . . . , T , Δv·t is
the subvector that contains all the elements with the same t, and Δvi· is the subvector that
picks up the elements with the same i; (b) for an n(T −1)×n(T −1) matrix Φ with elements
{Φit,js, i, j = 1, . . . , n; t, s = 2, . . . , T}, where it is the double index for the rows and js the
double index for the columns, Φ·t,·s is the n×n submatrix corresponding to the (t, s) periods,
Φi·,j· the (T − 1)× (T − 1) submatrix corresponding to the (i, j) units, Φit,j· the (T − 1)× 1
subvector that picks up the element from the itth row corresponding to s = 2, . . . , T .

With the vector dot notation, the gri, r = 1, 2, 3, defined in Lemma 3.3 can be written as
g1i = Π′

i·Δvi·, g2i = Δv′i·Δξi·+Δv′i·Δv
∗
i·−1′T−1di·, and g3i = Δv2iΔζi+Θii(Δv2iΔy◦1i+σ2

v0)+
Δv′i−Δy∗1i− where ‘−’ plays the same role as ‘·’ but corresponds to t = 3, . . . , T . Note that
under Assumptions D and E, one can easily see by Lemma A.1 that the elements of all the
Π’s, Φ’s,, and Ψ’s, defined in (3.24), are uniformly bounded. The proofs proceed by applying
the weak law of large numbers (WLLN) for M.D. arrays, see, e.g., Davidson (1994, p. 299).

First, with g1i = Π′
i·Δvi·,

1
n(T−1)

∑n
i=1 g1ig

′
1i − E(g1ig′1i)] = 1

n(T−1)

∑n
i=1 Π′

i·(Δvi·Δv
′
i· −

σ2
v0C)Πi· ≡ 1

n(T−1)

∑n
i=1 Un,i, where C is defined below (3.2). Without loss of generality,

assume Uni is a scalar, as if not we can work on each element of it. Clearly, {Un,i} are
independent, thus form a M.D. array. By Assumption B and using the fact that the elements
of Πi· are uniformly bounded, it is easy to show that E|Un,i|1+ε ≤ Ku < ∞, for ε > 0.
Thus, {Un,i} are uniformly integrable. With the constant coefficients 1

n(T−1) the other two

conditions of WLLN for M.D. arrays of Davidson are satisfied. Thus, 1
n(T−1)

∑n
i=1 Un,i

p−→ 0.

Second, with g2i = Δv′i·Δξi· + Δv′i·Δv
∗
i· − 1′T−1di·, we have,

1
n(T−1)

∑n
i=1[g

2
2i − E(g2

2i)]

= 1
n(T−1)

∑n
i=1[(Δv

′
i·Δξi·)

2 − E((Δv′i·Δξi·)
2)]

+ 1
n(T−1)

∑n
i=1[(Δv

′
i·Δv

∗
i·)

2 − E((Δv′i·Δv
∗
i·)

2)]

+ 2
n(T−1)

∑n
i=1(Δv

′
i·Δξi·)(Δv

′
i·Δv

∗
i·) − 2

n(T−1)

∑n
i=1(1

′
T−1di·)(Δv

′
i·Δξi·)

− 2
n(T−1)

∑n
i=1[(1

′
T−1di·)(Δv

′
i·Δv

∗
i· − E(Δv′i·Δv

∗
i·))] ≡ ∑5

r=1 Hr.

Now, H1 = 1
n(T−1)

∑n
i=1[Δξ

′
i·(Δvi·Δv

′
i·−σ2

voC)Δξi·]+
σ2

v0
n(T−1)

∑n
i=1[Δξ

′
i·CΔξi·−E(Δξ′i·CΔξi·)].

For the first term, let Vn,i = Δξ′i·(Δvi·Δv
′
i· − σ2

voC)Δξi·. As Δξi· is Gn,i−1-measurable,
E(Vn,i|Gn,i−1) = 0. Thus, {Vn,i, Gn,i} form a M.D. array. It is easy to see that E|V 1+ε

n,i | ≤
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Kv < ∞, for some ε > 0. Thus, {Vn,i} is uniformly integrable. The other two conditions of
the WLLN for M.D. arrays of Davidson are satisfied. Thus, 1

n(T−1)

∑n
i=1 Vn,i

p−→ 0.

For the second term of H1, recall ξt =
∑T

s=2(Φ
u′
ts + Φ�

ts)Δvs. We have,

Δξit =
∑T

s=2

∑i−1
j=1(Φjt,is + Φit,js)Δvjs =

∑i−1
j=1

∑T
s=2(Φjt,is + Φit,js)Δvjs =

∑i−1
j=1 φijtΔvj·,

where φijt = (Φji,t· +Φij,t·). Thus, (Δξit)2−E[(Δξit)2] =
∑i−1

j=1[φ
′
ijt·(Δvj·Δv

′
j·−σ2

v0C)φijt·]+
2
∑i−1

j=1

∑j−1
k=1 Δv′j·φijt·φ

′
ikt·Δvk·. It follows that

1
n(T−1)

∑n
i=1{(Δξit)2 − E[(Δξit)2]}

= 1
n(T−1)

∑n
i=1

∑i−1
j=1[φ

′
ijt·(Δvj·Δv

′
j· − σ2

v0C)φijt·]

+2 1
n(T−1)

∑n
i=1

∑i−1
j=1

∑j−1
k=1 Δv′j·φijt·φ

′
ikt·Δvk·

= 1
n(T−1)

∑n−1
j=1

{∑n
i=j+1[φ

′
ijt·(Δvj·Δv

′
j· − σ2

v0C)φijt·]
}

+2 1
n(T−1)

∑n−1
j=1 Δv′j·

{∑n
i=j+1

∑j−1
k=1 φijt·φ

′
ikt·Δvk·

}
.

Clearly, the first term is the ‘average’ of n − 1 independent terms, and the second is the
‘average’ of a M.D. array as the term in the curling brackets is Gn,j−1-measurable. Conditions
of Theorem 19.7 of Davidson (1994) are easily verified, and hence 1

n(T−1)

∑n
i=1{(Δξit)2 −

E[(Δξit)2]} = op(1). Similarly, one shows that 1
n(T−1)

∑n
i=1{ΔξitΔξis−E[(ΔξitΔξis)]} = op(1)

for s �= t. Thus, σ2
v0

n(T−1)

∑n
i=1[Δξ

′
i·CΔξi· − E(Δξ′i·CΔξi·)] = op(1), and H1 = op(1).

The proofs for H3 and H4 can be done in a similar manner as the proof for the second
term of H1. The proofs for H2 and H5 are similar to the proof of the first part of H1, as they
each involves a sum of n independent terms.

Third, with g3i = Δv2iΔζi + Θii(Δv2iΔy◦1i + σ2
v0) + Δv′i−Δy∗1i−, we obtain,

1
n(T−1)

∑n
i=1[g

2
3i − E(g2

3i)]

= 1
n(T−1)

∑n
i=1[(Δv

2
2i − 2σ2

v0)Δζ
2
i ] +

2σ2
v0

n(T−1)

∑n
i=1[Δζ

2
i − E(Δζ2

i )]

+ 1
n(T−1)

∑n
i=1 Θ2

ii[(Δv2iΔy
◦
1i)

2 − E((Δv2iΔy◦1i)
2)]

+ 2σ2
v0

n(T−1)

∑n
i=1 Θ2

ii[Δv2iΔy
◦
1i − E(Δv2iΔy◦1i)]

+ 1
n(T−1)

∑n
i=1[(Δv

′
i−Δy∗1i−)2 − E((Δv′i−Δy∗1i−)2)]

+ 2
n(T−1)

∑n
i=1 Θii[Δv2

2iΔζiΔy
◦
1i − E(Δv2

2iΔζiΔy
◦
1i)] +

2σ2
v0

n(T−1)

∑n
i=1 ΘiiΔv2iΔζi

+ 2
n(T−1)

∑n
i=1[Δv2iΔζi(Δv

′
i−Δy∗1i−)− E(Δv2iΔζi(Δv′i−Δy∗1i−))]

+ 2
n(T−1)

∑n
i=1 Θii[(Δv2iΔy◦1i)(Δv

′
i−Δy∗1i−) − E((Δv2iΔy◦1i)(Δv

′
i−Δy∗1i−))]

+ 2σ2
v0

n(T−1)

∑n
i=1 Θii[Δv′i−Δy∗1i− − E(Δv′i−Δy∗1i−)] ≡ ∑10

r=1 Qr.

As Δζ2
i is Fn,i−1-measurable, Q1 is the average of a M.D. array and its convergence follows

from WLLN for M.D. array, and the convergence of Q7 immediately follows. ForQ2, note that
Δζ = (Θu,′+Θ�)Δy◦1 = (Θu′+Θ�)B30B10Δy1. It follows that Q2 = 2σ2

v0
n(T−1)

∑n
i=1(Δy

′
1AΔy1−

E(Δy′1AΔy1)] = op(1) by Assumption F, where A = ((Θu′ + Θ�)B30B10)′(Θu′ + Θ�)B30B10

is easily seen to be uniformly bounded in both row and column sums. Writing Δy◦1 =
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B30B10Δy0+B30Δx1β0+Δv1 ≡ g(y0, v0)+v1, the convergence of Q3, Q4 andQ6 can be easily
proved though tedious. The results for Q5 and Q10 are proved by the independence between
Δv′i− and Δy∗1i− are independent, Δy∗1t = Φt+Δy1, and Assumption F. Finally, the results
for Q8 and Q9 can be proved by further writing Δy∗1t = Φt+Δy1 = Φt+(B30B10)−1Δy◦1 ≡
q(Δy0, v0) + Φt+(B30B10)−1v1.

Subsequently, for the cross-product terms, we have,

1
n(T−1)

∑n
i=1[g1ig2i − E(g1ig2i)]

= 1
n(T−1)

∑n
i=1[Π

′
i·(Δvi·Δv

′
i· − σ2

v0C)Δξi·] + σ2
v0

n(T−1)

∑n
i=1(Π

′
i·CΔξi·)

+ 1
n(T−1)

∑n
i=1 Π′

i·[Δvi·Δv
′
i·Δv

∗
i· − E(Δvi·Δv′i·Δv

∗
i·)] + 1

n(T−1)

∑n
i=1[(1

′
T−1di·)Π

′
i·Δvi·].

1
n(T−1)

∑n
i=1[g1ig3i − E(g1ig3i)]

= 1
n(T−1)

∑n
i=1 Π′

i·[Δvi·Δv2iΔζi − E(Δvi·Δv2iΔζi)]

+ 1
n(T−1)

∑n
i=1 ΘiiΠ′

i·[Δvi·(Δv2iΔy
◦
1i + σ2

v0) − E(Δvi·(Δv2iΔy◦1i + σ2
v0))]

+ 1
n(T−1)

∑n
i=1 Π′

i·[Δvi·Δv
′
i−Δy∗1i− − E(Δvi·Δv′i−Δy∗1i−)].

1
n(T−1)

∑n
i=1[g2ig3i − E(g2ig3i)]

= 1
n(T−1)

∑n
i=1[(Δv

′
i·Δξi)(Δv2iΔζi)− E((Δv′i·Δξi)(Δv2iΔζi))]

+ 1
n(T−1)

∑n
i=1 Θii[(Δv′i·Δξi)(Δv2iΔy

◦
1i + σ2

v0)− E((Δv′i·Δξi)(Δv2iΔy
◦
1i + σ2

v0))]

+ 1
n(T−1)

∑n
i=1[(Δv

′
i·Δξi)(Δv

′
i−Δy∗1i−) − E((Δv′i·Δξi)(Δv

′
i−Δy∗1i−))]

+ 1
n(T−1)

∑n
i=1[(Δv

′
i·Δv

∗
i·)(Δv2iΔζi) − E((Δv′i·Δv

∗
i·)(Δv2iΔζi))]

+ 1
n(T−1)

∑n
i=1[(Δv

′
i·Δv

∗
i·)(Δv2iΔy

◦
1i + σ2

v0)− E((Δv′i·Δv
∗
i·)(Δv2iΔy

◦
1i + σ2

v0))]

+ 1
n(T−1)

∑n
i=1[(Δv

′
i·Δv

∗
i·)(Δv

′
i−Δy∗1i−) − E((Δv′i·Δv

∗
i·)(Δv

′
i−Δy∗1i−))]

+ 1
n(T−1)

∑n
i=1[(1

′
T−1di·)Δv2iΔζi] + 1

n(T−1)

∑n
i=1[(1

′
T−1di·)Θii(Δv2iΔy◦1i + σ2

v0)]

+ 1
n(T−1)

∑n
i=1[(1

′
T−1di·)(Δv

′
i−Δy∗1i− − E(Δv′i−Δy∗1i−))]

The convergence of each of the terms above can be proved in a similarly manner as these
terms appear in similar forms as the terms appeared in the Hr and Qr.
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Sevestre, P. (Eds.), The Econometrics of Panel Data: Fundamentals and Recent Devel-
opments in Theory and Practice. Springer-Verlag, Berlin Heidelberg, pp. 625-660.

[9] Bai, J., 2009. Panel data models with interactive fixed effects. Econometrica 77, 1229-
1279.

[10] Baltagi, B. H., Egger, P., Pfaffermayr, M., 2013. A generalized spatial panel model with
random effects. Econometric Reviews 32, 650-685.

[11] Bernstein, D. S., 2009. Matrix Mathematics: Theory, Facts, and Formulas. 2nd edition.
Princeton University Press, Princeton.

[12] Bhargava, A., Sargan, J. D., 1983. Estimating dynamic random effects models from panel
data covering short time periods. Econometrica 51, 1635-1659.

[13] Binder, M., Hsiao, C., Pesaran, M. H., 2005. Estimation and inference in short panel
vector autoregressions with unit roots and cointegration. Econometric Theory 21, 795-
837.

[14] Bun, M.J., Carree, M.A., 2005. Bias-corrected estimation in dynamic panel data models.
Journal of Business and Economic Statistics 23, 200-210.
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Table 1a. Empirical Mean(sd) of CQMLE, FQMLE and M-Estimator, SE Model, T = 3, m = 5
n = 50 n = 200

dgp ψ CQMLE FQMLE M-Est CQMLE FQMLE M-Est

1 1 1.0152(.096) 1.0017(.100) 1.0015(.100) 1.0109(.050) 1.0021(.052) 1.0020(.053)
1 0.9154(.135) 0.9678(.148) 0.9719(.154) 0.9080(.065) 0.9960(.079) 0.9962(.080)
.5 0.3605(.055) 0.4995(.065) 0.5015(.066) 0.2869(.033) 0.5009(.043) 0.5013(.044)
.5 0.4702(.107) 0.4761(.093) 0.4793(.105) 0.4775(.073) 0.4877(.060) 0.4907(.070)

2 1 1.0142(.098) 1.0007(.102) 1.0002(.102) 1.0099(.050) 1.0015(.053) 1.0014(.053)
1 0.9176(.266) 0.9662(.284) 0.9785(.307) 0.9045(.128) 0.9920(.152) 0.9935(.155)
.5 0.3610(.066) 0.4975(.069) 0.5023(.078) 0.2876(.041) 0.5002(.047) 0.5018(.052)
.5 0.4701(.106) 0.4770(.092) 0.4803(.104) 0.4741(.075) 0.4844(.063) 0.4883(.072)

3 1 1.0133(.099) 1.0001(.103) 0.9997(.103) 1.0090(.047) 1.0003(.049) 1.0003(.049)
1 0.9192(.198) 0.9678(.212) 0.9771(.227) 0.9060(.099) 0.9938(.119) 0.9947(.121)
.5 0.3585(.059) 0.4953(.066) 0.4992(.071) 0.2881(.036) 0.5018(.046) 0.5029(.048)
.5 0.4681(.110) 0.4736(.093) 0.4786(.106) 0.4741(.075) 0.4852(.062) 0.4884(.073)

1 1 1.0525(.100) 1.0035(.103) 1.0012(.104) 1.0517(.052) 1.0009(.053) 0.9999(.053)
1 0.9204(.138) 0.9255(.126) 0.9702(.154) 0.9313(.069) 0.9712(.066) 0.9915(.078)
0 -0.1524(.065) -0.0036(.074) 0.0032(.078) -0.1825(.035) -0.0032(.042) 0.0005(.043)
.5 0.4731(.106) 0.4848(.085) 0.4807(.105) 0.4820(.072) 0.4897(.059) 0.4881(.070)

2 1 1.0528(.099) 1.0042(.102) 1.0006(.104) 1.0479(.053) 0.9979(.055) 0.9962(.055)
1 0.9230(.265) 0.9032(.241) 0.9764(.299) 0.9327(.133) 0.9596(.129) 0.9940(.150)
0 -0.1529(.071) -0.0091(.076) 0.0022(.086) -0.1821(.039) -0.0042(.043) 0.0018(.047)
.5 0.4741(.103) 0.4880(.086) 0.4805(.102) 0.4806(.073) 0.4917(.059) 0.4873(.072)

3 1 1.0515(.100) 1.0021(.103) 0.9990(.104) 1.0497(.053) 0.9998(.054) 0.9985(.054)
1 0.9250(.200) 0.9194(.185) 0.9767(.224) 0.9319(.102) 0.9661(.100) 0.9924(.115)
0 -0.1543(.068) -0.0077(.076) 0.0014(.083) -0.1831(.037) -0.0045(.043) 0.0001(.045)
.5 0.4740(.107) 0.4855(.088) 0.4811(.105) 0.4834(.072) 0.4929(.057) 0.4906(.070)

1 1 1.0484(.103) 0.9987(.104) 1.0015(.104) 1.0418(.053) 0.9989(.054) 0.9997(.054)
1 0.9504(.139) 0.9552(.135) 0.9764(.147) 0.9641(.072) 0.9849(.071) 0.9909(.075)

-.5 -0.6034(.059) -0.4915(.067) -0.4978(.070) -0.6070(.030) -0.4970(.035) -0.4988(.036)
.5 0.4798(.108) 0.4830(.090) 0.4815(.108) 0.4889(.072) 0.4880(.060) 0.4905(.072)

2 1 1.0494(.102) 0.9980(.102) 1.0024(.103) 1.0419(.054) 0.9981(.054) 0.9997(.054)
1 0.9380(.271) 0.9261(.250) 0.9642(.284) 0.9661(.138) 0.9775(.131) 0.9933(.145)

-.5 -0.6028(.065) -0.4885(.070) -0.4981(.075) -0.6072(.032) -0.4949(.035) -0.4989(.037)
.5 0.4792(.104) 0.4831(.090) 0.4822(.102) 0.4849(.073) 0.4889(.060) 0.4862(.073)

3 1 1.0481(.105) 0.9971(.106) 1.0009(.106) 1.0409(.054) 0.9975(.054) 0.9989(.054)
1 0.9388(.195) 0.9340(.182) 0.9647(.205) 0.9658(.103) 0.9808(.099) 0.9928(.108)

-.5 -0.6059(.061) -0.4924(.068) -0.5005(.072) -0.6092(.030) -0.4974(.034) -0.5008(.035)
.5 0.4744(.108) 0.4790(.091) 0.4764(.108) 0.4841(.073) 0.4871(.059) 0.4856(.072)

Note: Par = ψ = (β, σ2
v, ρ, λ2)′; dgp=1 (normal), 2 (normal mixture), and 3 (chi-square).

Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 1, .5), as in Footnote 11.
W3 is generated according to Group Interaction scheme as in Footnote 12.
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Table 1a. Cont’d, T = 7
n = 50 n = 100

dgp ψ CQMLE FQMLE M-Est CQMLE FQMLE M-Est

1 1 1.0248(.044) 1.0015(.044) 1.0013(.044) 1.0231(.033) 1.0018(.033) 1.0017(.033)
1 0.9771(.081) 0.9888(.083) 0.9893(.083) 0.9821(.059) 0.9949(.060) 0.9956(.061)
.5 0.4456(.028) 0.4987(.029) 0.4990(.029) 0.4407(.021) 0.4990(.022) 0.4994(.022)
.5 0.4928(.057) 0.4920(.055) 0.4947(.056) 0.4931(.047) 0.4904(.044) 0.4953(.046)

2 1 1.0247(.045) 1.0012(.045) 1.0010(.045) 1.0232(.033) 1.0020(.033) 1.0019(.033)
1 0.9776(.183) 0.9887(.186) 0.9899(.187) 0.9806(.129) 0.9931(.132) 0.9942(.133)
.5 0.4461(.028) 0.4988(.029) 0.4992(.029) 0.4412(.022) 0.4991(.022) 0.4996(.022)
.5 0.4919(.058) 0.4914(.055) 0.4941(.057) 0.4906(.048) 0.4882(.046) 0.4928(.047)

3 1 1.0250(.044) 1.0015(.044) 1.0013(.044) 1.0214(.033) 1.0003(.033) 1.0002(.033)
1 0.9751(.130) 0.9863(.133) 0.9872(.134) 0.9779(.095) 0.9908(.097) 0.9915(.097)
.5 0.4458(.028) 0.4986(.029) 0.4990(.029) 0.4413(.020) 0.4996(.021) 0.5000(.021)
.5 0.4903(.057) 0.4896(.056) 0.4923(.057) 0.4919(.048) 0.4898(.045) 0.4940(.047)

1 1 1.0342(.048) 1.0017(.048) 1.0009(.048) 1.0360(.035) 1.0021(.035) 1.0016(.036)
1 0.9840(.083) 0.9660(.077) 0.9922(.084) 0.9873(.059) 0.9807(.056) 0.9961(.060)
0 -0.0603(.036) -0.0020(.037) -0.0005(.038) -0.0632(.026) -0.0012(.027) -0.0003(.028)
.5 0.4932(.055) 0.4953(.052) 0.4945(.055) 0.4932(.047) 0.4946(.044) 0.4941(.047)

2 1 1.0345(.047) 1.0024(.047) 1.0013(.047) 1.0341(.034) 1.0006(.034) 0.9999(.034)
1 0.9860(.182) 0.9575(.170) 0.9943(.185) 0.9805(.133) 0.9666(.126) 0.9893(.135)
0 -0.0603(.037) -0.0028(.038) -0.0008(.039) -0.0631(.027) -0.0018(.027) -0.0005(.028)
.5 0.4920(.057) 0.4959(.054) 0.4931(.057) 0.4917(.048) 0.4943(.045) 0.4928(.047)

3 1 1.0327(.046) 1.0004(.046) 0.9994(.047) 1.0343(.035) 1.0005(.035) 0.9999(.035)
1 0.9882(.134) 0.9642(.125) 0.9966(.135) 0.9863(.093) 0.9759(.088) 0.9951(.094)
0 -0.0606(.038) -0.0025(.039) -0.0007(.039) -0.0637(.027) -0.0018(.028) -0.0007(.029)
.5 0.4933(.056) 0.4958(.052) 0.4942(.056) 0.4930(.047) 0.4953(.044) 0.4941(.046)

1 1 1.0244(.047) 0.9977(.047) 1.0002(.047) 1.0251(.034) 0.9988(.034) 1.0003(.034)
1 0.9822(.082) 0.9705(.078) 0.9867(.082) 0.9906(.058) 0.9859(.056) 0.9952(.059)

-.5 -0.5454(.037) -0.4945(.038) -0.4992(.039) -0.5472(.027) -0.4973(.028) -0.5002(.029)
.5 0.4919(.057) 0.4920(.054) 0.4923(.057) 0.4959(.047) 0.4952(.044) 0.4963(.047)

2 1 1.0262(.047) 0.9983(.047) 1.0019(.047) 1.0241(.036) 0.9969(.036) 0.9992(.036)
1 0.9859(.177) 0.9655(.165) 0.9906(.179) 0.9945(.128) 0.9834(.121) 0.9992(.129)

-.5 -0.5460(.037) -0.4931(.039) -0.5000(.040) -0.5466(.027) -0.4950(.029) -0.4995(.029)
.5 0.4903(.059) 0.4924(.055) 0.4904(.059) 0.4944(.046) 0.4955(.043) 0.4947(.046)

3 1 1.0251(.047) 0.9977(.047) 1.0008(.047) 1.0246(.035) 0.9978(.035) 0.9998(.035)
1 0.9791(.132) 0.9630(.123) 0.9837(.133) 0.9892(.095) 0.9816(.090) 0.9939(.096)

-.5 -0.5462(.036) -0.4943(.039) -0.5002(.039) -0.5468(.027) -0.4962(.029) -0.4998(.029)
.5 0.4924(.055) 0.4932(.051) 0.4927(.055) 0.4956(.046) 0.4952(.043) 0.4958(.046)
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Table 1b. Empirical sd and average of estimated standard errors of M-Estimator
SE Model, T = 3, m = 5, Parameter configurations as in Table 1a.

n = 50 n = 100 n = 200
dgp ψ sd s̃e ŝe r̂se sd s̃e ŝe r̂se sd s̃e ŝe r̂se

1 1 .100 .112 .099 .096 .071 .073 .070 .069 .053 .053 .051 .051
1 .154 .165 .150 .146 .113 .114 .110 .109 .080 .081 .079 .080
.5 .066 .068 .064 .065 .059 .054 .054 .056 .044 .040 .042 .044
.5 .105 .111 .099 .096 .083 .086 .081 .080 .070 .070 .068 .068

2 1 .102 .124 .099 .093 .071 .078 .069 .068 .053 .055 .051 .050
1 .307 .117 .152 .263 .209 .076 .110 .198 .155 .050 .079 .147
.5 .078 .071 .064 .070 .065 .053 .054 .063 .052 .037 .042 .051
.5 .104 .126 .099 .090 .089 .095 .082 .078 .072 .074 .068 .067

3 1 .103 .117 .099 .095 .070 .075 .069 .069 .049 .053 .051 .051
1 .227 .133 .151 .203 .162 .089 .110 .153 .121 .061 .079 .113
.5 .071 .070 .064 .066 .062 .053 .054 .060 .048 .039 .042 .047
.5 .106 .118 .099 .093 .088 .091 .082 .079 .073 .072 .068 .067

1 1 .104 .113 .102 .100 .072 .074 .071 .071 .053 .054 .052 .052
1 .154 .165 .149 .144 .111 .112 .107 .106 .078 .078 .076 .076
.0 .078 .081 .075 .075 .056 .057 .055 .055 .043 .042 .042 .042
.5 .105 .111 .099 .094 .087 .086 .082 .081 .070 .071 .069 .068

2 1 .104 .126 .103 .131 .074 .078 .071 .070 .055 .056 .052 .052
1 .299 .117 .157 .568 .211 .073 .107 .196 .150 .048 .076 .143
.0 .086 .086 .077 .173 .065 .058 .055 .060 .047 .041 .042 .046
.5 .102 .126 .099 .094 .087 .094 .082 .078 .072 .075 .069 .067

3 1 .104 .120 .102 .099 .073 .076 .071 .071 .054 .054 .052 .052
1 .224 .132 .150 .203 .156 .086 .107 .149 .115 .058 .076 .109
.0 .083 .084 .075 .077 .059 .057 .055 .057 .045 .042 .042 .044
.5 .105 .117 .099 .093 .084 .091 .082 .079 .070 .072 .068 .067

1 1 .104 .115 .104 .101 .072 .075 .072 .071 .054 .054 .053 .052
1 .147 .161 .145 .140 .103 .108 .103 .101 .075 .075 .073 .072

-.5 .070 .077 .069 .067 .048 .051 .048 .047 .036 .036 .035 .035
.5 .108 .111 .099 .095 .086 .087 .082 .081 .072 .070 .068 .068

2 1 .103 .126 .103 .099 .072 .081 .072 .071 .054 .056 .053 .052
1 .284 .107 .143 .255 .215 .067 .104 .196 .145 .043 .073 .142

-.5 .075 .085 .069 .067 .051 .054 .048 .049 .037 .037 .035 .036
.5 .102 .127 .099 .089 .084 .095 .082 .077 .073 .075 .069 .067

3 1 .106 .120 .103 .100 .074 .077 .072 .071 .054 .055 .053 .053
1 .205 .124 .143 .194 .151 .081 .103 .147 .108 .054 .073 .106

-.5 .072 .080 .069 .068 .049 .052 .048 .048 .035 .037 .035 .035
.5 .108 .118 .100 .094 .088 .092 .083 .079 .072 .073 .069 .067
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Table 1b. Cont’d, T = 7
n = 50 n = 100 n = 200

dgp ψ sd s̃e ŝe r̂se sd s̃e ŝe r̂se sd s̃e ŝe r̂se

1 1 .044 .047 .044 .043 .033 .034 .032 .032 .025 .026 .025 .025
1 .083 .090 .084 .082 .061 .062 .059 .058 .042 .043 .042 .042
.5 .029 .031 .028 .028 .022 .022 .021 .021 .016 .016 .016 .015
.5 .056 .060 .055 .054 .046 .048 .046 .045 .039 .040 .039 .039

2 1 .045 .050 .044 .043 .033 .035 .032 .032 .025 .026 .025 .025
1 .187 .050 .084 .172 .133 .032 .059 .127 .093 .021 .042 .092
.5 .029 .032 .028 .028 .022 .023 .021 .021 .017 .016 .016 .016
.5 .057 .066 .055 .052 .047 .051 .046 .045 .040 .041 .039 .038

3 1 .044 .049 .044 .043 .033 .034 .032 .032 .026 .026 .025 .025
1 .134 .062 .083 .128 .097 .041 .059 .092 .069 .028 .042 .066
.5 .029 .031 .028 .028 .021 .022 .021 .021 .017 .016 .016 .016
.5 .057 .063 .056 .053 .047 .049 .046 .046 .039 .040 .039 .038

1 1 .048 .051 .047 .047 .036 .036 .035 .035 .027 .027 .027 .027
1 .084 .090 .083 .082 .060 .061 .059 .058 .040 .042 .042 .042
0 .038 .042 .039 .038 .028 .029 .028 .028 .021 .021 .021 .021
.5 .055 .061 .055 .054 .047 .048 .046 .046 .040 .040 .039 .039

2 1 .047 .054 .047 .046 .034 .038 .035 .034 .027 .028 .027 .027
1 .185 .050 .084 .174 .135 .031 .058 .126 .095 .021 .042 .092
0 .039 .045 .039 .037 .028 .030 .028 .028 .021 .022 .021 .021
.5 .057 .066 .055 .052 .047 .051 .046 .045 .040 .041 .039 .038

3 1 .047 .052 .047 .047 .035 .037 .035 .035 .027 .028 .027 .027
1 .135 .062 .084 .128 .094 .040 .059 .093 .068 .027 .042 .066
0 .039 .043 .039 .038 .029 .030 .028 .028 .021 .021 .021 .021
.5 .056 .063 .055 .052 .046 .049 .046 .045 .039 .040 .039 .039

1 1 .047 .051 .047 .046 .034 .036 .035 .035 .027 .027 .027 .027
1 .082 .089 .083 .081 .059 .061 .059 .058 .041 .042 .041 .041

-.5 .039 .043 .040 .040 .029 .030 .029 .028 .021 .021 .021 .021
.5 .057 .061 .056 .054 .047 .048 .046 .045 .039 .040 .039 .039

2 1 .047 .054 .047 .046 .036 .038 .035 .035 .027 .028 .027 .026
1 .179 .048 .083 .174 .129 .031 .059 .127 .095 .020 .041 .091

-.5 .040 .048 .040 .038 .029 .032 .029 .028 .021 .022 .021 .020
.5 .059 .067 .056 .052 .046 .051 .046 .045 .038 .041 .039 .038

3 1 .047 .052 .047 .046 .035 .037 .035 .034 .026 .027 .027 .027
1 .133 .061 .082 .125 .096 .040 .059 .093 .067 .027 .041 .066

-.5 .039 .045 .040 .039 .029 .031 .029 .028 .021 .021 .021 .021
.5 .055 .063 .056 .053 .046 .049 .046 .045 .039 .040 .039 .039
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Table 2a. Empirical Mean(sd) of CQMLE and M-Estimator, SL Model, T = 3, m = 5
n = 50 n = 100 n = 200

dgp ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est

1 1 1.0160(.045) 0.9999(.047) 0.9881(.039) 1.0001(.040) 0.9993(.025) 0.9997(.026)
1 0.9384(.135) 0.9665(.144) 0.9510(.094) 0.9850(.101) 0.9659(.069) 0.9942(.074)
.5 0.4365(.038) 0.4991(.042) 0.4186(.030) 0.4985(.034) 0.4331(.020) 0.5005(.022)
.2 0.2327(.064) 0.1975(.068) 0.2078(.069) 0.1971(.074) 0.1986(.043) 0.1983(.046)

2 1 1.0162(.046) 1.0004(.047) 0.9877(.038) 0.9996(.039) 0.9988(.025) 0.9992(.025)
1 0.9415(.268) 0.9713(.285) 0.9494(.193) 0.9844(.208) 0.9622(.138) 0.9907(.146)
.5 0.4370(.043) 0.4997(.045) 0.4200(.033) 0.4998(.036) 0.4330(.022) 0.5000(.022)
.2 0.2310(.064) 0.1960(.068) 0.2067(.070) 0.1965(.075) 0.1979(.043) 0.1977(.046)

3 1 1.0148(.044) 0.9988(.046) 0.9884(.040) 1.0004(.041) 0.9984(.025) 0.9988(.026)
1 0.9461(.207) 0.9755(.220) 0.9516(.148) 0.9861(.159) 0.9627(.104) 0.9909(.110)
.5 0.4388(.041) 0.5021(.044) 0.4209(.033) 0.5011(.036) 0.4334(.020) 0.5003(.021)
.2 0.2294(.060) 0.1938(.064) 0.2058(.068) 0.1954(.074) 0.1985(.042) 0.1978(.045)

1 1 1.0289(.048) 0.9990(.049) 1.0153(.039) 0.9999(.039) 1.0167(.026) 1.0000(.026)
1 0.9452(.138) 0.9712(.146) 0.9527(.094) 0.9814(.100) 0.9696(.069) 0.9927(.073)
0 -0.0752(.046) 0.0001(.051) -0.0876(.034) -0.0019(.038) -0.0681(.022) 0.0006(.023)
.2 0.2012(.093) 0.1891(.094) 0.1980(.074) 0.1942(.075) 0.1995(.046) 0.1986(.046)

2 1 1.0283(.047) 0.9982(.048) 1.0160(.039) 1.0005(.040) 1.0157(.026) 0.9991(.026)
1 0.9538(.277) 0.9814(.292) 0.9527(.194) 0.9823(.205) 0.9668(.141) 0.9901(.148)
0 -0.0746(.049) 0.0008(.052) -0.0845(.038) 0.0011(.041) -0.0678(.024) 0.0006(.025)
.2 0.2034(.088) 0.1919(.089) 0.1982(.074) 0.1947(.076) 0.1988(.045) 0.1981(.046)

3 1 1.0271(.048) 0.9969(.050) 1.0172(.040) 1.0015(.041) 1.0169(.026) 1.0002(.026)
1 0.9487(.201) 0.9753(.212) 0.9591(.142) 0.9885(.150) 0.9696(.104) 0.9928(.109)
0 -0.0745(.049) 0.0007(.055) -0.0869(.037) -0.0008(.040) -0.0691(.022) -0.0003(.024)
.2 0.1994(.092) 0.1870(.094) 0.1974(.076) 0.1934(.078) 0.1993(.047) 0.1984(.047)

1 1 1.0205(.047) 0.9975(.048) 1.0209(.041) 0.9989(.042) 1.0222(.027) 1.0005(.028)
1 0.9613(.140) 0.9749(.144) 0.9703(.097) 0.9864(.100) 0.9809(.069) 0.9936(.071)

-.5 -0.5505(.045) -0.4955(.049) -0.5646(.034) -0.5004(.037) -0.5521(.022) -0.4992(.024)
.2 0.1886(.090) 0.1913(.092) 0.1947(.068) 0.1942(.068) 0.1896(.045) 0.1975(.046)

2 1 1.0224(.049) 0.9997(.050) 1.0228(.041) 1.0008(.041) 1.0210(.027) 0.9994(.027)
1 0.9533(.270) 0.9673(.277) 0.9684(.199) 0.9848(.205) 0.9778(.140) 0.9905(.144)

-.5 -0.5515(.048) -0.4969(.051) -0.5614(.035) -0.4974(.038) -0.5526(.023) -0.4998(.024)
.2 0.1843(.086) 0.1865(.088) 0.1948(.067) 0.1945(.068) 0.1888(.044) 0.1971(.044)

3 1 1.0222(.049) 0.9991(.050) 1.0227(.040) 1.0009(.041) 1.0209(.027) 0.9992(.028)
1 0.9589(.214) 0.9726(.220) 0.9693(.145) 0.9854(.149) 0.9809(.106) 0.9936(.109)

-.5 -0.5527(.046) -0.4979(.049) -0.5630(.034) -0.4992(.037) -0.5522(.023) -0.4993(.024)
.2 0.1894(.088) 0.1915(.090) 0.1946(.068) 0.1947(.069) 0.1912(.044) 0.1991(.044)

Note: Par = ψ = (β, σ2
v, ρ, λ2)′; dgp=1 (normal), 2 (normal mixture), and 3 (chi-square).

Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 2, 1), as in Footnote 11.
W1 is generated according to Queen Contiguity scheme.
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Table 2b. Empirical sd and average of estimated standard errors of M-Estimator
SL Model, T = 3, m = 5, Parameter configurations as in Table 2a.

n = 50 n = 100 n = 200
dgp ψ sd s̃e ŝe r̂se sd s̃e ŝe r̂se sd s̃e ŝe r̂se

1 1 .047 .050 .045 .043 .040 .041 .039 .038 .026 .026 .026 .025
1 .144 .156 .141 .137 .101 .108 .102 .101 .074 .074 .073 .072
.5 .042 .044 .041 .040 .034 .034 .033 .033 .022 .021 .021 .021
.2 .068 .066 .065 .068 .074 .065 .070 .079 .046 .040 .043 .047

2 1 .047 .055 .045 .043 .039 .044 .039 .038 .025 .027 .025 .025
1 .285 .104 .142 .252 .208 .066 .102 .192 .146 .042 .072 .140
.5 .045 .047 .040 .041 .036 .035 .033 .034 .022 .021 .021 .022
.2 .068 .072 .064 .068 .075 .070 .070 .078 .046 .042 .043 .047

3 1 .046 .052 .045 .044 .041 .042 .039 .038 .026 .027 .025 .025
1 .220 .121 .142 .195 .159 .080 .103 .146 .110 .053 .072 .106
.5 .044 .044 .041 .042 .036 .033 .033 .035 .021 .021 .021 .022
.2 .064 .070 .065 .068 .074 .068 .070 .078 .045 .041 .043 .047

1 1 .049 .053 .048 .047 .039 .041 .039 .038 .026 .027 .026 .026
1 .146 .156 .141 .137 .100 .107 .101 .100 .073 .074 .072 .072
.0 .051 .054 .049 .048 .038 .039 .038 .038 .023 .024 .024 .024
.2 .094 .100 .085 .076 .075 .079 .068 .061 .046 .047 .043 .040

2 1 .048 .059 .048 .046 .040 .044 .039 .038 .026 .028 .026 .026
1 .292 .103 .143 .256 .205 .065 .102 .193 .148 .041 .072 .141
.0 .052 .058 .049 .049 .041 .041 .038 .039 .025 .024 .024 .024
.2 .089 .111 .084 .073 .076 .085 .068 .060 .046 .049 .043 .039

3 1 .050 .056 .048 .047 .041 .042 .039 .039 .026 .027 .026 .026
1 .212 .121 .142 .195 .150 .079 .102 .147 .109 .053 .072 .106
.0 .055 .055 .049 .050 .040 .039 .038 .039 .024 .025 .024 .023
.2 .094 .105 .085 .076 .078 .082 .068 .060 .047 .048 .043 .039

1 1 .048 .054 .049 .047 .042 .043 .041 .040 .028 .028 .027 .027
1 .144 .155 .140 .136 .100 .106 .101 .099 .071 .073 .071 .071

-.5 .049 .054 .048 .047 .037 .039 .037 .037 .024 .025 .024 .023
.2 .092 .094 .081 .076 .068 .068 .062 .060 .046 .044 .042 .040

2 1 .050 .059 .048 .046 .041 .046 .041 .040 .027 .029 .027 .027
1 .277 .098 .139 .252 .205 .062 .100 .192 .144 .040 .071 .140

-.5 .051 .059 .048 .047 .038 .041 .037 .037 .024 .025 .024 .024
.2 .088 .104 .081 .073 .068 .072 .062 .058 .044 .046 .041 .039

3 1 .050 .056 .048 .047 .041 .044 .041 .040 .028 .028 .027 .027
1 .220 .118 .140 .193 .149 .078 .100 .143 .109 .052 .071 .105

-.5 .049 .055 .048 .047 .037 .040 .037 .037 .024 .025 .024 .024
.2 .090 .099 .081 .074 .069 .070 .062 .059 .044 .045 .041 .040
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Table 3a. Empirical Mean(sd) of CQMLE and M-Estimator, SLE Model, T = 3, m = 5
n = 50 n = 100 n = 200

dgp ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est

1 1 0.9955(.055) 0.9980(.056) 1.0091(.037) 0.9993(.038) 1.0038(.025) 1.0008(.025)
1 0.9264(.134) 0.9589(.144) 0.9500(.099) 0.9766(.105) 0.9573(.068) 0.9851(.072)
.5 0.4224(.043) 0.4991(.048) 0.4366(.028) 0.4994(.030) 0.4336(.020) 0.5000(.022)
.2 0.1869(.108) 0.1882(.109) 0.2125(.078) 0.1968(.079) 0.2094(.057) 0.1972(.058)
.2 0.1320(.210) 0.1421(.193) 0.1318(.164) 0.1510(.151) 0.1561(.128) 0.1678(.120)

2 1 0.9951(.056) 0.9976(.058) 1.0081(.035) 0.9984(.036) 1.0021(.024) 0.9991(.025)
1 0.9260(.263) 0.9603(.283) 0.9544(.190) 0.9819(.201) 0.9587(.137) 0.9870(.145)
.5 0.4224(.046) 0.4989(.048) 0.4356(.030) 0.4985(.031) 0.4336(.022) 0.5001(.023)
.2 0.1811(.128) 0.1831(.126) 0.2087(.081) 0.1933(.081) 0.2073(.057) 0.1955(.058)
.2 0.1357(.204) 0.1461(.185) 0.1323(.170) 0.1514(.157) 0.1567(.130) 0.1681(.121)

3 1 0.9969(.057) 0.9993(.058) 1.0085(.035) 0.9986(.036) 1.0029(.025) 0.9999(.025)
1 0.9214(.196) 0.9540(.209) 0.9499(.142) 0.9767(.150) 0.9606(.099) 0.9887(.105)
.5 0.4249(.044) 0.5007(.048) 0.4372(.028) 0.5002(.031) 0.4332(.021) 0.4997(.023)
.2 0.1913(.108) 0.1912(.109) 0.2077(.078) 0.1923(.079) 0.2102(.057) 0.1977(.058)
.2 0.1221(.210) 0.1352(.192) 0.1364(.161) 0.1551(.149) 0.1498(.129) 0.1607(.122)

1 1 1.0247(.053) 0.9971(.055) 1.0205(.038) 0.9973(.039) 1.0202(.026) 0.9991(.027)
1 0.9409(.140) 0.9550(.145) 0.9605(.097) 0.9726(.100) 0.9769(.068) 0.9902(.070)

-.5 -0.5629(.048) -0.4978(.054) -0.5548(.031) -0.5001(.034) -0.5546(.023) -0.4996(.025)
.2 0.1920(.119) 0.1878(.135) 0.1750(.108) 0.1784(.125) 0.1763(.076) 0.1894(.085)
.2 0.1292(.211) 0.1272(.227) 0.1722(.172) 0.1618(.191) 0.1822(.139) 0.1635(.153)

2 1 1.0260(.054) 0.9984(.055) 1.0207(.039) 0.9973(.040) 1.0204(.027) 0.9996(.027)
1 0.9456(.275) 0.9603(.283) 0.9573(.199) 0.9694(.204) 0.9731(.142) 0.9865(.145)

-.5 -0.5643(.053) -0.4994(.057) -0.5530(.034) -0.4984(.036) -0.5542(.023) -0.4995(.025)
.2 0.1868(.119) 0.1819(.135) 0.1790(.106) 0.1802(.130) 0.1788(.077) 0.1922(.085)
.2 0.1390(.211) 0.1381(.228) 0.1666(.171) 0.1592(.192) 0.1854(.131) 0.1663(.145)

3 1 1.0242(.052) 0.9968(.054) 1.0210(.040) 0.9976(.041) 1.0214(.027) 1.0003(.027)
1 0.9398(.210) 0.9542(.216) 0.9665(.146) 0.9789(.150) 0.9754(.105) 0.9886(.108)

-.5 -0.5617(.049) -0.4964(.054) -0.5536(.034) -0.4985(.036) -0.5541(.023) -0.4993(.024)
.2 0.1877(.117) 0.1838(.132) 0.1778(.106) 0.1805(.125) 0.1788(.078) 0.1922(.087)
.2 0.1321(.209) 0.1297(.226) 0.1686(.174) 0.1595(.193) 0.1846(.136) 0.1660(.150)

Note: Par = ψ = (β, σ2
v, ρ, λ2)′; dgp=1 (normal), 2 (normal mixture), and 3 (chi-square).

Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 2, 1), as in Footnote 11.
Spatial weights: Group Interaction for both SE and SL effects; see Footnote 12.
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Table 3b. Empirical sd and average of estimated standard errors of M-Estimator
SLE Model, T = 3, m = 5, Parameter configurations as in Table 3a.

n = 50 n = 100 n = 200
dgp ψ sd s̃e ŝe r̂se sd s̃e ŝe r̂se sd s̃e ŝe r̂se

1 1 .056 .064 .056 .055 .038 .038 .036 .036 .025 .025 .025 .024
1 .144 .159 .141 .138 .105 .107 .101 .100 .072 .074 .072 .072
.5 .048 .049 .045 .045 .030 .030 .029 .029 .022 .021 .021 .021
.2 .109 .087 .102 .132 .079 .068 .074 .086 .058 .051 .056 .064
.2 .193 .190 .173 .179 .151 .149 .141 .143 .120 .120 .117 .118

2 1 .058 .070 .056 .055 .036 .041 .036 .036 .025 .027 .025 .024
1 .283 .111 .142 .248 .201 .067 .101 .189 .145 .043 .072 .140
.5 .048 .053 .045 .046 .031 .031 .029 .030 .023 .021 .021 .022
.2 .126 .098 .103 .135 .081 .074 .075 .087 .058 .053 .057 .065
.2 .185 .213 .172 .174 .157 .162 .142 .141 .121 .126 .117 .116

3 1 .058 .066 .056 .055 .036 .040 .036 .036 .025 .026 .025 .024
1 .209 .126 .141 .189 .150 .080 .101 .143 .105 .054 .072 .105
.5 .048 .050 .045 .046 .031 .030 .029 .030 .023 .021 .021 .022
.2 .109 .089 .100 .129 .079 .071 .075 .086 .058 .052 .056 .064
.2 .192 .203 .173 .175 .149 .155 .141 .140 .122 .123 .118 .118

1 1 .055 .059 .053 .051 .039 .041 .039 .039 .027 .028 .027 .027
1 .145 .156 .139 .135 .100 .106 .099 .098 .070 .074 .071 .071

-.5 .054 .058 .053 .052 .034 .036 .034 .034 .025 .025 .024 .024
.2 .135 .122 .110 .109 .125 .099 .103 .113 .085 .076 .076 .079
.2 .227 .227 .201 .199 .191 .176 .171 .177 .153 .143 .140 .141

2 1 .055 .066 .052 .051 .040 .044 .039 .039 .027 .029 .027 .027
1 .283 .108 .140 .247 .204 .064 .099 .187 .145 .041 .071 .139

-.5 .057 .065 .053 .052 .036 .039 .034 .034 .025 .026 .024 .025
.2 .135 .138 .111 .110 .130 .106 .103 .116 .085 .079 .075 .077
.2 .228 .257 .200 .192 .192 .192 .172 .177 .145 .151 .139 .138

3 1 .054 .061 .052 .051 .041 .043 .039 .039 .027 .028 .027 .027
1 .216 .123 .139 .189 .150 .079 .100 .144 .108 .052 .071 .105

-.5 .054 .061 .053 .053 .036 .037 .034 .034 .024 .025 .024 .024
.2 .132 .127 .110 .111 .125 .103 .103 .112 .087 .077 .076 .078
.2 .226 .241 .201 .195 .193 .185 .172 .177 .150 .145 .139 .140

49



Table 4a. Empirical Mean(sd) of CQMLE and M-Estimator, STL Model, T = 3, m = 5
n = 50 n = 100 n = 200

dgp ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est

1 1 0.9997(.019) 1.0001(.019) 1.0002(.017) 1.0003(.017) 0.9982(.010) 0.9998(.010)
1 0.9548(.137) 0.9584(.138) 0.9729(.100) 0.9774(.101) 0.9845(.069) 0.9901(.070)
.5 0.4910(.016) 0.5002(.016) 0.4886(.012) 0.4998(.012) 0.4864(.009) 0.4999(.009)
.2 0.1951(.042) 0.1969(.042) 0.1997(.033) 0.1981(.033) 0.2012(.022) 0.1992(.023)
.2 0.2110(.041) 0.2025(.041) 0.2093(.030) 0.2017(.030) 0.2095(.020) 0.2011(.020)

2 1 1.0003(.020) 1.0007(.020) 0.9998(.016) 1.0000(.016) 0.9983(.011) 0.9999(.011)
1 0.9594(.277) 0.9632(.280) 0.9726(.201) 0.9773(.203) 0.9807(.136) 0.9863(.138)
.5 0.4908(.015) 0.5001(.015) 0.4890(.012) 0.5002(.012) 0.4867(.009) 0.5002(.009)
.2 0.1948(.043) 0.1966(.043) 0.1990(.033) 0.1974(.033) 0.2014(.023) 0.1994(.023)
.2 0.2111(.041) 0.2027(.041) 0.2096(.031) 0.2020(.031) 0.2086(.020) 0.2002(.020)

3 1 0.9997(.019) 1.0002(.019) 1.0004(.016) 1.0006(.016) 0.9983(.011) 0.9999(.011)
1 0.9605(.218) 0.9643(.219) 0.9760(.151) 0.9806(.153) 0.9819(.106) 0.9875(.107)
.5 0.4906(.016) 0.4999(.016) 0.4892(.012) 0.5005(.012) 0.4859(.010) 0.4994(.010)
.2 0.1960(.043) 0.1978(.043) 0.2006(.034) 0.1990(.034) 0.2011(.023) 0.1991(.023)
.2 0.2103(.042) 0.2018(.042) 0.2084(.030) 0.2008(.030) 0.2100(.021) 0.2016(.021)

1 1 1.0058(.022) 1.0002(.022) 1.0032(.017) 0.9994(.017) 1.0053(.011) 1.0002(.011)
1 0.9580(.138) 0.9612(.139) 0.9779(.100) 0.9813(.101) 0.9833(.069) 0.9872(.070)

-.5 -0.5129(.023) -0.4997(.023) -0.5128(.016) -0.4996(.017) -0.5156(.013) -0.5000(.013)
.2 0.1951(.049) 0.1958(.049) 0.2005(.037) 0.1972(.037) 0.1992(.025) 0.1989(.025)
.2 0.2013(.051) 0.2005(.052) 0.2059(.034) 0.2009(.034) 0.2025(.026) 0.1993(.027)

2 1 1.0056(.022) 1.0001(.022) 1.0036(.018) 0.9999(.018) 1.0054(.011) 1.0002(.011)
1 0.9530(.281) 0.9564(.283) 0.9823(.203) 0.9859(.205) 0.9894(.144) 0.9934(.145)

-.5 -0.5134(.023) -0.5003(.024) -0.5136(.017) -0.5004(.017) -0.5157(.012) -0.5000(.013)
.2 0.1938(.050) 0.1944(.050) 0.2022(.037) 0.1989(.037) 0.1998(.024) 0.1995(.024)
.2 0.2010(.050) 0.2003(.051) 0.2059(.035) 0.2009(.035) 0.2036(.027) 0.2005(.027)

3 1 1.0062(.022) 1.0006(.022) 1.0033(.017) 0.9996(.017) 1.0050(.011) 0.9998(.011)
1 0.9520(.212) 0.9553(.213) 0.9744(.153) 0.9779(.154) 0.9874(.105) 0.9914(.106)

-.5 -0.5124(.024) -0.4992(.024) -0.5130(.017) -0.4999(.017) -0.5157(.012) -0.4999(.013)
.2 0.1954(.049) 0.1960(.049) 0.2011(.037) 0.1978(.037) 0.2001(.024) 0.1998(.024)
.2 0.2023(.050) 0.2015(.050) 0.2063(.035) 0.2014(.035) 0.2029(.026) 0.1997(.027)

Note: Par = ψ = (β, σ2
v, ρ, λ2)′; dgp=1 (normal), 2 (normal mixture), and 3 (chi-square).

Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 5, 1), as in Footnote 11.
Spatial weights: Queen Contiguity for both SL and ST effects.
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Table 4b. Empirical sd and average of estimated standard errors of M-Estimator
STL Model, T = 3, m = 5, Parameter configurations as in Table 4a.

n = 50 n = 100 n = 200
dgp ψ sd s̃e ŝe r̂se sd s̃e ŝe r̂se sd s̃e ŝe r̂se

1 1 .019 .021 .019 .018 .017 .017 .016 .016 .010 .011 .011 .010
1 .138 .153 .136 .132 .101 .105 .098 .097 .070 .073 .070 .070
.5 .016 .017 .015 .016 .012 .012 .012 .013 .009 .009 .009 .010
.2 .042 .046 .045 .048 .033 .035 .035 .036 .023 .023 .023 .024
.2 .041 .042 .042 .046 .030 .031 .032 .037 .020 .019 .020 .023

2 1 .020 .024 .019 .018 .016 .018 .016 .016 .011 .011 .011 .010
1 .280 .099 .137 .248 .203 .061 .098 .188 .138 .039 .070 .139
.5 .015 .019 .015 .015 .012 .013 .012 .013 .009 .010 .009 .010
.2 .043 .051 .045 .048 .033 .037 .034 .035 .023 .024 .023 .023
.2 .041 .047 .042 .045 .031 .033 .032 .036 .020 .020 .020 .023

3 1 .019 .022 .019 .018 .016 .018 .016 .016 .011 .011 .011 .010
1 .219 .118 .137 .189 .153 .077 .099 .142 .107 .051 .070 .103
.5 .016 .018 .015 .015 .012 .013 .012 .013 .010 .009 .009 .010
.2 .043 .048 .045 .049 .034 .036 .035 .036 .023 .023 .023 .023
.2 .042 .044 .042 .046 .030 .032 .032 .037 .021 .020 .020 .023

1 1 .022 .024 .021 .021 .017 .018 .017 .017 .011 .012 .011 .011
1 .139 .154 .136 .133 .101 .105 .099 .097 .070 .073 .070 .070

-.5 .023 .026 .023 .023 .017 .017 .017 .016 .013 .013 .013 .013
.2 .049 .052 .050 .054 .037 .038 .037 .037 .025 .025 .024 .025
.2 .052 .048 .053 .064 .034 .032 .035 .040 .027 .023 .027 .033

2 1 .022 .027 .021 .020 .018 .019 .017 .017 .011 .012 .011 .011
1 .283 .099 .136 .245 .205 .062 .099 .190 .145 .040 .071 .140

-.5 .024 .029 .023 .022 .017 .019 .016 .016 .013 .014 .013 .013
.2 .050 .057 .049 .053 .037 .041 .037 .036 .024 .026 .024 .025
.2 .051 .054 .052 .063 .035 .034 .035 .040 .027 .024 .027 .033

3 1 .022 .025 .021 .021 .017 .018 .017 .017 .011 .012 .011 .011
1 .213 .117 .136 .186 .154 .076 .098 .142 .106 .051 .070 .104

-.5 .024 .027 .023 .023 .017 .018 .016 .016 .013 .013 .013 .013
.2 .049 .053 .050 .053 .037 .040 .037 .036 .024 .025 .024 .025
.2 .050 .051 .052 .063 .035 .032 .035 .040 .027 .023 .027 .033
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Table 5a. Empirical Mean(sd) of CQMLE and M-Estimator, STLE Model, T = 3, m = 5
n = 50 n = 100 n = 200

dgp ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est

1 1 1.0025(.024) 1.0004(.024) 1.0030(.014) 0.9996(.014) 1.0019(.010) 0.9999(.010)
1 0.9406(.135) 0.9462(.137) 0.9665(.099) 0.9718(.100) 0.9841(.070) 0.9885(.071)
.3 0.2855(.020) 0.3009(.021) 0.2861(.014) 0.3003(.014) 0.2886(.009) 0.3001(.009)
.2 0.1961(.060) 0.1978(.061) 0.1968(.032) 0.1994(.032) 0.1968(.026) 0.1990(.026)
.2 0.2054(.051) 0.2004(.053) 0.2051(.033) 0.1995(.034) 0.2024(.023) 0.2013(.024)
.2 0.1454(.186) 0.1438(.187) 0.1751(.120) 0.1725(.121) 0.1897(.087) 0.1882(.087)

2 1 1.0019(.024) 0.9998(.024) 1.0035(.014) 1.0001(.014) 1.0018(.011) 0.9998(.011)
1 0.9468(.280) 0.9528(.284) 0.9708(.194) 0.9763(.196) 0.9788(.145) 0.9832(.146)
.3 0.2840(.021) 0.2994(.021) 0.2853(.014) 0.2996(.014) 0.2883(.009) 0.2997(.009)
.2 0.1995(.059) 0.2012(.060) 0.1967(.031) 0.1993(.031) 0.1977(.026) 0.2000(.026)
.2 0.2035(.052) 0.1986(.053) 0.2053(.033) 0.1998(.034) 0.2012(.024) 0.2001(.024)
.2 0.1556(.179) 0.1538(.180) 0.1775(.121) 0.1749(.122) 0.1910(.088) 0.1895(.088)

3 1 1.0027(.024) 1.0006(.024) 1.0035(.014) 1.0000(.014) 1.0020(.011) 1.0000(.011)
1 0.9499(.209) 0.9557(.212) 0.9697(.151) 0.9752(.153) 0.9826(.105) 0.9870(.106)
.3 0.2844(.020) 0.2999(.021) 0.2857(.014) 0.2999(.014) 0.2887(.009) 0.3001(.009)
.2 0.1970(.062) 0.1987(.063) 0.1971(.031) 0.1997(.032) 0.1971(.026) 0.1993(.027)
.2 0.2062(.051) 0.2012(.053) 0.2057(.033) 0.2002(.034) 0.2018(.024) 0.2007(.024)
.2 0.1478(.180) 0.1460(.182) 0.1786(.120) 0.1759(.122) 0.1870(.089) 0.1854(.090)

1 1 1.0050(.025) 0.9999(.026) 1.0066(.015) 0.9997(.015) 1.0052(.012) 1.0001(.012)
1 0.9425(.141) 0.9474(.142) 0.9698(.100) 0.9746(.101) 0.9822(.070) 0.9866(.071)

-.3 -0.3191(.027) -0.3004(.027) -0.3170(.018) -0.2997(.018) -0.3157(.012) -0.3002(.012)
.2 0.1988(.066) 0.1995(.066) 0.2008(.032) 0.1996(.032) 0.1975(.026) 0.1995(.026)
.2 0.2044(.057) 0.1997(.058) 0.1989(.041) 0.2015(.042) 0.1961(.028) 0.2000(.029)
.2 0.1487(.187) 0.1478(.190) 0.1757(.123) 0.1781(.125) 0.1884(.087) 0.1874(.088)

2 1 1.0050(.026) 0.9999(.026) 1.0062(.016) 0.9993(.016) 1.0047(.011) 0.9996(.011)
1 0.9489(.277) 0.9541(.280) 0.9703(.200) 0.9752(.202) 0.9799(.145) 0.9844(.146)

-.3 -0.3185(.027) -0.2997(.027) -0.3170(.018) -0.2997(.018) -0.3156(.012) -0.3000(.012)
.2 0.1989(.066) 0.1996(.066) 0.2013(.032) 0.2003(.033) 0.1979(.026) 0.2000(.026)
.2 0.2040(.057) 0.1992(.058) 0.1957(.041) 0.1979(.042) 0.1962(.028) 0.2002(.029)
.2 0.1448(.181) 0.1438(.184) 0.1693(.121) 0.1714(.123) 0.1895(.087) 0.1886(.088)

3 1 1.0052(.024) 1.0002(.025) 1.0070(.016) 1.0002(.016) 1.0050(.012) 0.9999(.012)
1 0.9379(.203) 0.9429(.205) 0.9705(.148) 0.9753(.149) 0.9804(.108) 0.9847(.109)

-.3 -0.3185(.026) -0.2999(.026) -0.3174(.017) -0.3001(.018) -0.3153(.011) -0.2998(.012)
.2 0.1980(.066) 0.1987(.067) 0.1998(.034) 0.1989(.034) 0.1977(.026) 0.1998(.026)
.2 0.2041(.056) 0.1995(.057) 0.1969(.042) 0.1991(.043) 0.1975(.030) 0.2014(.030)
.2 0.1509(.182) 0.1502(.184) 0.1691(.123) 0.1711(.125) 0.1880(.086) 0.1870(.087)

Note: Par = ψ = (β, σ2
v, ρ, λ2)′; dgp=1 (normal), 2 (normal mixture), and 3 (chi-square).

Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 5, 1), as in Footnote 11.
Spatial weights: Queen Contiguity for all the SL, ST and SE effects.
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Table 5b. Empirical sd and average of estimated standard errors of M-Estimator
STLE Model, T = 3, m = 5, Parameter configurations as in Table 5a.

n = 50 n = 100 n = 200
dgp ψ sd s̃e ŝe r̂se sd s̃e ŝe r̂se sd s̃e ŝe r̂se

1 1 .024 .027 .024 .024 .014 .015 .014 .014 .010 .011 .011 .011
1 .137 .155 .135 .132 .100 .106 .098 .096 .071 .073 .070 .070
.3 .021 .023 .020 .020 .014 .015 .014 .014 .009 .009 .009 .009
.2 .061 .065 .061 .064 .032 .033 .034 .036 .026 .026 .027 .029
.2 .053 .048 .053 .070 .034 .029 .035 .046 .024 .018 .024 .036
.2 .187 .202 .177 .179 .121 .130 .121 .123 .087 .090 .087 .088

2 1 .024 .031 .024 .023 .014 .017 .014 .014 .011 .012 .011 .011
1 .284 .106 .136 .243 .196 .063 .099 .188 .146 .041 .070 .138
.3 .021 .026 .020 .020 .014 .016 .014 .014 .009 .009 .009 .009
.2 .060 .074 .061 .063 .031 .037 .034 .035 .026 .028 .027 .029
.2 .053 .054 .053 .068 .034 .031 .035 .046 .024 .019 .024 .035
.2 .180 .233 .176 .171 .122 .144 .121 .118 .088 .096 .087 .086

3 1 .024 .029 .024 .024 .014 .016 .014 .014 .011 .011 .011 .011
1 .212 .122 .137 .190 .153 .078 .098 .141 .106 .052 .070 .104
.3 .021 .024 .020 .020 .014 .015 .014 .014 .009 .009 .009 .009
.2 .063 .069 .061 .064 .032 .035 .034 .036 .027 .027 .027 .029
.2 .053 .050 .053 .071 .034 .030 .035 .046 .024 .018 .024 .035
.2 .182 .216 .177 .177 .122 .136 .121 .120 .090 .092 .087 .088

1 1 .026 .028 .025 .025 .015 .017 .016 .016 .012 .012 .011 .011
1 .142 .155 .135 .132 .101 .105 .098 .097 .071 .073 .070 .070

-.3 .027 .029 .026 .026 .018 .019 .018 .018 .012 .012 .012 .012
.2 .066 .069 .065 .067 .032 .034 .035 .039 .026 .027 .028 .029
.2 .058 .049 .054 .068 .042 .033 .043 .062 .029 .022 .029 .040
.2 .190 .204 .179 .182 .125 .131 .123 .126 .088 .090 .088 .090

2 1 .026 .032 .025 .024 .016 .018 .016 .015 .011 .012 .011 .011
1 .280 .107 .136 .243 .202 .063 .098 .188 .146 .041 .070 .138

-.3 .027 .033 .026 .025 .018 .020 .018 .018 .012 .013 .012 .012
.2 .066 .078 .064 .066 .033 .037 .035 .038 .026 .028 .027 .029
.2 .058 .055 .054 .066 .042 .036 .043 .060 .029 .023 .029 .040
.2 .184 .239 .180 .176 .123 .145 .123 .123 .088 .096 .088 .087

3 1 .025 .030 .025 .024 .016 .017 .016 .015 .012 .012 .011 .011
1 .205 .121 .135 .185 .149 .078 .098 .141 .109 .052 .070 .103

-.3 .026 .031 .026 .025 .018 .019 .018 .018 .012 .012 .012 .012
.2 .067 .073 .065 .067 .034 .035 .035 .039 .026 .027 .027 .029
.2 .057 .052 .054 .067 .043 .034 .043 .061 .030 .022 .029 .040
.2 .184 .219 .179 .178 .125 .137 .123 .125 .087 .093 .088 .089
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