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Central Place Theory and the Power Law
for Cities

Wen-Tai Hsu and Xin Zou

Abstract This chapter provides a review of the link between central place theory
and the power laws for cities. A theory of city size distribution is proposed via a
central place hierarchy a la Christaller (1933) either as an equilibrium results or an
optimal allocation. Under a central place hierarchy, it is shown that a power law for
cities emerges if the underlying heterogeneity in economies of scale across good is
regularly varying. Furthermore,we show that an optimal allocation of cities conforms
with a central place hierarchy if the underlying heterogeneity in economies of scale
across good is a power function.

Keywords Central place theory · Zipf’s law · City sizes ·
Dynamic programming · Optimal city hierarchy

1 Introduction

City size distribution is known to be well approximated by a power law with a tail
index around 1, i.e., a Zipf’s law. To visualize it, we first rank cities by city size
(population): #1 is New York, #2 Los Angeles etc., then we plot the city ranks
against city sizes on a log-log scale using U.S. 2000 census data for all Metropolitan
Statistical Areas (MSAs). The relationship for 362 MSAs, as shown in Fig. 1, is
close to a straight line (R2 = 0.9857), and the slope is close to −1 (−0.9491). Even
when the smaller cities and towns are consider and the overall city size distribution
does not follow the power law (Eeckhout 2004), the right tail of the distribution can
still be well approximated by a power law. This empirical regularity has been widely
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Fig. 1 Zipf plot for all 362 MSAs from 2000 U.S. Census

documented using data spanning acrossmany countries and time periods (see Gabaix
and Ioannides (2004) and Dittmar (2011)).

Formally, a power-law can be expressed as the tail probability of a city size
distribution following a power function such that

P(S > s) = a/sζ , s ≥ s,

where a, ζ , and s are some positive constants.
One popular explanation for power laws is proportional random growth (see

Champernowne (1953), Simon (1955)), based on which (Gabaix 1999) provides
an explanation for why the exponent ζ should be close to 1. In this chapter, we intro-
duce a very different theory for the power laws that is proposed by Hsu (2012) and
Hsu et al. (2014) and built on the insight of central place theory. The key difference
from the random growth approach is that central place theory explicitly accounts for
the spatial pattern of different sized cities based on geography and the heterogeneity
of industries/goods. In such a theory, cities of different sizes play different roles by
hosting different industries.

Central place theory was first proposed by Christaller (1933), who described how
a city hierarchy emerges from a uniformly populated plane of farmers as consumers.
Cities and towns provide a wide variety of goods to these farmers, as these cities and
towns have their market areas, they are referred to “central places” of these market
areas. The key feature is that goods differ in terms of their degrees of scale economies,
and the hierarchy property states that if a city provides a good with certain degree of
scale economies, it provides all goods with lower scale economies.1 Put it differently,

1This is often called “hierarchy principle” in the literature.
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Fig. 2 Central place
hierarchy on the plane

larger cities provide all goods that are provided by smaller ones. Some economists
started to pay their attention to geography and spatial economics around early 80s.
Although central place theory has developed into a main building block in economic
geography, its theoretical foundation is weak in economists’ point of view. Themajor
problem is that it largely remains a collections of assumptions and statements without
rigorous logical deduction, and how the central place hierarchy can emerge from
an equilibrium with economic agents optimizing given their constraints is unclear.
Hence, a microfoundation is needed.

What the picture below shows is a depiction of central place theory in Christaller’s
form. That is, on a uniformly populated plane of farmers, with uniform soil produc-
tivity, market areas of each central place is a hexagon. There are different layers of
central places, with central places of the same layer having the same size of market
area. A recently proven “honeycomb conjecture” in Hales (2001) provides a ground
for why the shape of market areas should be hexagon, as regular hexagons are the
most efficient way to partition the 2-D plane with least perimeter used. The hierarchy
property is implicitly shown here. When the larger central places provides all goods
and services provided by the smaller ones, we also see that the larger central places
are selected from a subset of the locations of the smaller central places in a regular
way. Of course reality wouldn’t conform the central place pattern as in Fig. 2, but it
provides a way to comprehend the complex locational patterns of cities and towns
on the maps that we see. Put it differently, the seemingly pattern-less, complex map
of cities and towns may indeed have some kind of sensible reasoning behind them,
only to be obscured by many other factors that distorted the underlying pattern.

Unfortunately, central place theory in Christaller’s form is too difficult the deal
with, mainly due to the 2-dimensional geographic space. Economists have made
several attempts to try to provide a “formal” central place theory in various ways,
and these include Eaton and Lipsey (1982), Quinzii and Thisse (1990), Fujita et al.
(1999), Tabuchi and Thisse (2006, 2011), Hsu (2012) and Hsu et al. (2014). The
common task of the above-mentioned papers are again the hierarchy property and
the locational patern. In all of these “modern” central place theories, the geographic
space is either two-location space or a one-dimensional space. What distinguishes
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Hsu (2012) and Hsu et al. (2014) from other economic models of central place theory
is that these two explain the power laws for cities. However, note that these papers are
not the first that link central place hierarchy with the power laws. Indeed, Beckmann
(1958) was the first to point out the link between central place theory and the power
law. Nevertheless, he provides no economic model for his hierarchical structure, and
his hierarchy lacks the dimension of industries, which is crucial in the theory by Hsu
(2012) and Hsu et al. (2014).

Similar to Beckmann (1958), there is a large literature in geography that examines
the relationships between central place systems and power laws via the angle of
fractal analysis. See, for examples, Arlinghaus (1985), Arlinghaus and Arlinghaus
(1989), Batty and Longley (1994), Frankhauser (1998), Chen and Zhou (2006), Chen
(2011, 2014). This strand of analysis is interesting as it examines different variants
of fractals that could link the system of cities with the power laws. Compared with
economic theories described above, we can thus see richer morphology of the system
of cities without the hands being tied with the need for a microfoundation. In this
sense, this strand of literature in geography and the attempts in economics to provide
microfoundation for central place theory complement each other.

Before we formally introduce the theory, we first peek at the result—a central
place hierarchy either as an equilibrium outcome or as an optimal allocation. Here,
we formally define a central place hierarchy as an allocation of production locations
such that both the hierarchy property and central place property hold. A central place
hierarchy in a one-dimensional geographic space can be illustrated by Fig. 3. As the
vertical axis is the commodity space, the hierarchy property is clearly seen in this
figure. The central place property is that any city is located in the middle between
two neighboring larger sized cities.

Fig. 3 Central place hierarchy on the line
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This chapter is organized as follows: Sects. 2 and 3 explain the city size distribution
by formalizing central place theory as an equilibrium outcome. With the hierarchy
property imposed, Sect. 4 show that how a central place hierarchy can emerge as an
optimal allocation. In particular, we apply dynamic programming to study the social
planner’s problem. We conclude this chapter in Sect. 5.

2 Central Place Theory

Wefirst lay out a basic model and derive the central place hierarchy as an equilibrium
outcome.

2.1 Model and One-Good Equilibrium

The geographic space is the real line, and the location is indexed as x ∈ R. There
is a continuum of consumption goods z ∈ [0, z1], where z1 is exogenously given.
There are two types of agents: farmers and firms. The farmers are immobile and are
uniformly distributed on the real line with a density of 1. Each farmer demands one
unit of each good z in [0, z1] inelastically.

For any production of good z ≤ z1, a fixed cost y = φ(z) is needed, and the (cumu-
lative) distribution function of y is denoted as F : [y, ȳ] ⊂ R+ → [0, 1]. Besides the
fixed cost, producing one unit of each good requires constant marginal cost c. More-
over, it occurs a transportation cost t per unit permile traveled. For each good, there is
an infinite pool of potential firms. The firms and farmers play the following two-stage
game (Lederer and Hurter 1986).

1. Entry and location stage
The potential firms simultaneously decide whether to enter. Upon entering, each
entrant chooses a location and pays the setup cost for the good it produces.Assume
the tie-breaking rule: if a potential firm sees a nonnegative opportunity, then it
enters.

2. Price competition stage
The firms deliver goods to the farmers. Given its own and other firms’ locations,
each firm sets a delivered price schedule over the real line. For each good, each
location on the real line is a market in which the firms engage in Bertrand com-
petition. Each farmer decides the specific firm from which to buy each good.

Now let’s consider the subgame perfect equilibrium (SPNE) based on the two-
stage game setting above. Denote the firm on the left-hand side as A located at x = 0
and that on the right-hand side as B located at x = L . Themarginal costs of delivering
the good to a consumer who is x distance from A are thus:
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Fig. 4 Second-stage competition: prices and gross profits

MCA = c + t x,

MCB = c + t (L − x).

Bertrand competition results in firm with the lower marginal cost dominating the
market and charging the price of its opponent’s marginal cost. Thus, the equilibrium
prices at each x on [0, L] can be written as

p(x) =
{
c + t (L − x) x ∈ [

0, L
2

]
,

c + t x x ∈ [
L
2 , L

]
.

Figure 4 shows the marginal costs, the equilibrium prices, and the gross profits from
the market area between A and B.

For a given good whose fixed cost is y, the firms producing the same given good
should be apart equally. Furthermore, since the gross profit of any of these given
firms with a market area of L is t L2

2 , and firms enter with nonnegative profits, we
present the following lemma as the derivation of an SPNE for any arbitrary good.

Lemma 2.1 Fix the level of fixed cost y and define L(y) as the solution to the
zero-profit condition t

[
L(y)

]2
/2 = y. Thus, L(y) = √

2y/t . There is a continuum
of equilibria in which one firm is located at every point in {x + nL}∞n=−∞, where
L ∈ [L(y), 2L(y)) and x ∈ [0, L(y)).

There exists a continuumof equilibria because any L in the interval
[
L(ȳ), 2L(y)

)
is an equilibrium distance; L ≥ L(y) implies that all firms earn a nonnegative profit
(no exit), whereas L < 2L(y) implies that any new entrant between any two existing
firms must earn a negative profit (no entry).



Central Place Theory and the Power Law for Cities 61

2.2 Hierarchy Equilibrium

An equilibrium is a collection of locations of firms, delivered price schedules, and
farmers’ consumption choices such that the allocation for each good y is an SPNE.
In this section, we consider a hierarchy equilibrium in which the hierarchy property
holds.

Definition 2.1 A hierarchy equilibrium is an equilibrium inwhich, at any production
location, the set of goods produced must take the form [y, y] for some level of fixed
cost y.

In a hierarchy equilibrium, there exists a decreasing sequence ȳ = y1 > y2 >

· · · > yI ≥ y, for some I ∈ N ∪ {∞}, denoting the cutoffs. A hierarchy equilibrium
is said to satisfy the central place property if the market area of the firms producing
(yi+1, yi ] is half that of the firms producing (yi , yi−1].
Definition 2.2 A hierarchy equilibrium that satisfies the central place property is
called a central place hierarchy.

In fact, any hierarchy equilibrium is a central place hierarchy. Let L1 = mL[ȳ], m
∈ [1, 2), and Li = L1/2i−1. Due to the hierarchy property, any production location
produces goods in the range of [y, yi ] for some yi so that it is called a layer-i city,
and the cutoff yi is given by the zero-profit condition:

yi = t L2
i

2
∀ 1 ≤ i ≤ I, (2.1)

where the number of layers is:

I = �
2 ln(m) + ln(ȳ/y)

2 ln(2)
+ 1�, (2.2)

Figure 5 depicts four layers of such location configuration in which we can see
that both the hierarchy and central place property are satisfied and the foregoing
construction is an equilibrium.

Proposition 2.2 (Central place hierarchy) For each L1 = mL(ȳ), m ∈ [1, 2), let
Li = L1/2i−1, i ∈ [1, I ], yi be given by the zero-profit condition (2.1), and the num-
ber of layers I be given by (2.2). Fix an x ∈ R, and set the grid for (yi+1, yi ] as
{x + nLi }∞n=−∞. Then, for eachm ∈ [1, 2), the location configuration so constructed
is the unique hierarchy equilibrium and satisfies the central place property.
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Fig. 5 A central place hierarchy. Notes The layer-i cities produce goods in [y, yi ]. The cutoffs yi
are determined by the zero-profit conditions. The market areas for goods (yi+1, yi ] are half of that
for (yi , yi−1]

3 Power Law for Cities

We now explain how a power law for cities emerges. In a central place hierarchy,
the output of the firms in range (yk+1, yk] is Lk[F(yk) − F(yk+1)]. Define the size
of a layer-i city by the total units produced in that city (as a measure of the level of
economic activity):

Yi =
I∑

k=i

Lk[F(yk) − F(yk+1)]

Figure 6 illustrates the definitions ofYi . The green (shadedwith lines) and red (shaded
with dots) areas represent the total quantity produced in a layer-1 and layer-2 city,
respectively.

For every layer-1 city, there is one layer-2 city and 2i−2 layer-i cities. Thus, the
total number of cities up to layer-i is

Ri = 1 + 1 +
i∑

k=3

2k−2 = 2i−1

Note that Ri represents the rank, by the rank-size rule, since the rank doubles from
layer-i to the next layer-i + 1, Zipf’s law can be approximated if city size shrinks
by around half from layer-i to the next layer. Similarly, if city size shrinks by an
approximately constant fraction from any layer-i to the next, then the power law is



Central Place Theory and the Power Law for Cities 63

Fig. 6 City size. Notes The green (shaded with lines) and red (shaded with dots) areas denote the
size of a layer-1 and layer-2 city, respectively. Both shaded areas are composed of rectangles, each
of which represents the total production of the respective range of goods

approximated. It means that power laws can be generated by the fractal structures.2

Therefore, a natural question arises: under what conditions can we guarantee such
fractal structures?

There is, indeed, a simple but powerful condition that directly links central place
hierarchies and the power law, regardless of the underlying economics behind that
hierarchy. Given a central place hierarchy, the location patterns of cities of different
layers are fixed, and different underlying economicsmatter only in relation to how the
fractions of goods (zi = F(yi )) in the different layers are determined. The following
proposition specifies the condition for the fractions of goods that renders the central
place hierarchy a fractal structure.

Proposition 3.1 (Bounds on fraction ratios) Suppose that there are infinitely many
layers in a central place hierarchy. Let zi denote the fraction of goods produced in
a layer-i city, and let �k = zk − zk+1. Suppose that there is a δ > 0 and a ρ > 1,
such that for all i ∈ N,

δ

ρ
≤ �i+1

�i
≤ ρδ.

Then,

1

2
(ρ−1 − 1)δ ≤ Yi+1

Yi
− δ

2
≤ 1

2
(ρ − 1)δ. (3.1)

Observe that δ is approximately the ratio of the increments (�k) when ρ is
approaching 1, hence, the slope is

2A fractal structure is a structure in which smaller parts of it resemble the entire structure.
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ln(Ri+1/Ri )

ln(Yi+1/Yi )
≈ ln(2)

ln(δ/2)
= − ln(2)

ln(2) − ln(δ)
.

The Zipf’s law requires only that the increments of the fraction of goods of two
adjacent layers do not vary too much (δ ≈ 1), whereas the power law relaxes the
ratio of increments between two layers from 1.

Besides the constrains on zi = F(yi ), the further question is how the behavior of
F(.) translates into a power law for cities. In order to answer this formally, we first
need to introduce a few basic concepts of regular variation.

Definition 3.1 A measurable, positive function g is said to be regularly varying at
zero (at infinity) if, for any u > 0, and for some α ∈ R,

lim
y↓0 (→∞)

g(uy)

g(y)
= uα.

If α = 0, then g is said to be slowly varying. A function g is regularly varying with
index α if and only if there exists a slowly varying function �(y) such that

g(y) = yα�(y).

In what follows, g ∈ RVα denotes that g is regularly varying at zero with index α.
Suppose that y = 0, and hence there are infinitely many layers. Recall from Proposi-
tion 2.2 that yk+1 = yk/4 for all k ≥ 2. Observe that the ratio between the increments
between two layers can be written as

δk ≡ �k+1

�k
= F(yk+1) − F(yk+2)

F(yk) − F(yk+1)
= 1 − F(yk+1/4)

F(yk+1)

F(4yk+1)

F(yk+1)
− 1

.

According to Definition 3.1, if F ∈ RVα , then in a small enough neighbourhood of
0, there are infinitely many k’s such that

δk ≈ 1 − (
1
4

)α
4α − 1

=
(
1

4

)α

. (3.2)

By Proposition 3.1, the power law is approximated with a tail index close to 1/(1 +
2α).

A distribution function F on (0, ȳ] can be regularly varying only with a nonnega-
tive index α because an F ∈ RVα on (0, ȳ]with α < 0 must be decreasing in a small
neighbourhood of 0, which violates the requirement of a distribution function. How-
ever, a distribution function can be defined via a transformation of a non-increasing
function G ∈ RVα with α < 0:
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F(y) ≡ G(y) − G(y)

G(y) − G(ȳ)
, (3.3)

where the domain of F is [y, ȳ] for some y > 0. For a y that is close enough to zero,
such an F behaves like a regularly varying function with a negative index α. This is
because, for a y close enough to 0, there exists a sufficiently small neighbourhood
of y such that, for all yk+1 in that neighbourhood:

δk = F(yk+1) − F(yk+2)

F(yk) − F(yk+1)
= G(yk+2) − G(yk+1)

G(yk+1) − G(yk)
=

1 − G(yk+1/4)
G(yk+1)

G(4yk+1)
G(yk+1)

− 1
≈ 1 − ( 1

4

)α
4α − 1

=
(
1

4

)α

.

In any case, when the index α associated with the distribution function is positive
(negative), then the slope of the Zipf plot is smaller (greater) than 1. The following
proposition summarises the foregoing discussion and provides statements based on
the density functions.

Proposition 3.2 (Regularly varying distributions)Let δ = (1/4)α and fix anyρ > 1.
Then, for a sufficiently small y ≥ 0, there exists an integer K > 0 such that condition
(3.1) holds for all layers I ≥ i ≥ K (with the possibility that I = ∞), if one of the
following conditions is met:

(a) the distribution function of fixed cost F ∈ RVα with α ∈ [0,∞);
(b) G ∈ RVα with α ∈ (−1/2, 0) such that F is defined by (3.3);
(c) the density function of fixed cost f ∈ RVα−1, for α ∈ (−1/2,∞).

In all cases, the approximate slope of the Zipf plot, i.e., the plot of log of rank on log
of size, is −1/(1 + 2α).

Therefore, the power law arises when F(.) has a regularly varying right tail, which
is rather general, as it includes several well-known, commonly used distributions,
such as the Pareto, Weibull, F, Beta (which subsumes the uniform), and Gamma,
which subsumes the Chi-square, exponential, and Erlang.

Note that the sizes of cities of the same layer are equal and such city size distribu-
tion is understood as an approximation to the power laws. To fully conform with the
relatively smooth city size distribution, some random factors to create differences
among cities of the same layer is needed. Indeed, all central-place models for the city
size distribution would need this random disturbance. See, for example, Beckmann
(1958, p. 245).

4 A Dynamic Programming Approach to Central Place
Theory

In this section, taking hierarchy property as given, we consider the social planner’s
problem about how to construct the optimal city hierarchy via a dynamic program-
ming formulation (Hsu et al. 2014). There must be one and only one immediate
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smaller city between two neighboring larger-sized cities in any optimal solution.
Furthermore, if the fixed cost of setting up a city is a power function, then the
immediate smaller city will lie in the middle, which confirms the locational pattern
suggested by Christaller, and further provides a rationale for central place theory of
city hierarchy.

4.1 The Sequence Problem

The basic environment is similar to Sect. 2.1, we further assume the hierarchy prop-
erty: at any location x , if a good z ≤ z1 is produced, then all z̃ ∈ [0, z] are also
produced. We label a location that produces all goods up to z as a z-city. Denote the
cost of setting up a z-city as 	(z) ≡ ∫ z

0 φ (u) du. According to the hierarchy prop-
erty, z also refers to a city’s size. Assume that two neighboring z1-cities are located
at 0 and �1, respectively. Thus, the social planner needs to determine �1 first,3 then
taken �1 as given, to find the optimal city hierarchy, i.e., the locations and sizes of
cities on the interval (0, �1).

Given �1, let the discrete set of cities on (0, �1) be denoted as

W ≡
{(

zi , Lzi , I
) |zi ∈ (0, z1], i = 1, 2, . . . , I, I ∈ N ∪ {∞} , zi > zi+1,

Lzi is the set of locations of zi -cities

}
.

That is, zi is the i-th largest among all cities on (0, �1). For now, there may be
multiple zi cities, and Lzi and |Lzi | denote the set of locations and the number of zi
-cities on (0, �1), respectively. The number I is the number of layers of cities, and
I can be (countably) infinite. The optimization problem, given �1, is to search for
a city hierarchy W that minimizes the per capita cost of production to serve every
consumer a unit of each good in [0, z1]:

C∗ (�1, z1) ≡ inf
W

1

�1

[∑
zi

|Lzi |	(zi ) + total transport cost

]
, (4.1)

4.2 The Dynamic Programming Problem

The following two lemmas provide key characteristics of an optimal hierarchy that
enables us to set up the planner’s problem as a dynamic programming problem.

Lemma 4.1 It is never optimal to have an interval without any city in it.

3We do not discuss how to decide the optimal distance �1 here, since our focus is the city hierarchy
between any two largest cities. Nevertheless, this is very crucial question for presenting a complete
and meaningful model, please see Sect. 3.5 in Hsu et al. (2014) for the solution.
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Proof Consider adding a z′-city in the middle in between with z′ ≤ z. Then, the
savings in transport cost per good is

2
∫ �/2

0
t xdx − 4

∫ �/4

0
t xdx = t�2/8

so the he net saving from having a z′-city is given by

S
(
z′; �

) ≡
∫ z′

0

[
t�2

8
− φ(y)

]
dy

Because φ is continuous and strictly increasing, and φ (0) = 0, S
(
z′; �

)
> 0 for

sufficiently small z′ > 0, given �. The result follows from the fact that there always
exists sufficiently small z′ such that adding a z′-city improves the allocation. �
Lemma 4.2 It is never optimal to have two cities of the same size z′ < z1 without a
larger city in between.

The intuition behind this lemma is that, without a larger city in between, the two
neighboring cities cannot be the same size in the optimal solution. We can produce
another good more with a infinitesimally higher set-up cost at one of the two cities in
order to save the transport cost, in which case there always exists a better allocation
whose net cost is less. A full proof can be found in Sect. 2.3 in Hsu et al. (2014).

Lemmas 4.1 and 4.2 indicate that in between two z1-cities it is optimal to place one
and only one immediate sub-city, which is denoted as a z2-city. Notice that z2-city is
not necessarily located in the middle.4 Let �2,1 and �2,2 represent the distances from
the z2-city to the z1-city on the left and right side, respectively.When the values of z2,
�2,1 and �2,2 are chosen, the recursive nature of the problem becomes apparent: given
z2, �2,1 and �2,2, we search for the optimal solutions for endless iterated bifurcations
as the one given z1 and �1. Figure 7 illustrates the city building process for the first
three rounds of bifurcations. In general, the i-th round of bifurcation involves setting
up cities of sizes zi+1,1, zi+1,2, . . . , zi+1,Ki , where Ki = 2i−1, which divides intervals
of length �i,1, �i,2, . . . , �i,Ki , respectively. Formally, let z1 ≡ {z1}, and for all i ∈ N,

let �i ≡ {
�i,k

}Ki

k=1 and zi+1 ≡ {
zi+1,k

}Ki

k=1, where �1,1 ≡ �1 and z2,1 ≡ z2. We define


1 (�1, z1) ≡ 
 (�1, z1) ≡ {
(�2, z2) |z2 ∈ [0, z1] , �2,1, �2,2 ∈ (0, �1) and �2,1 + �2,2 = �1

}
.

(4.2)
and for i ≥ 2,


i (�i , zi ) ≡
{

(�i+1, zi+1) |zi+1,2k−1, zi+1,2k ∈ [
0, zi,k

]
for all k = 1, 2, . . . , Ki−1,

�i+1,2k−1, �i+1,2k ∈ (
0, �i,k

)
and �i+1,2k−1 + �i+1,2k = �i,k , for all k = 1, 2, . . . , Ki .

}

4For example, let t = z1 = �1 = 1. Consider a discontinuous setup cost requirement function: for an
arbitrarily small e ∈ (0, 1) , φ (y) = 1/13 for y ∈ [0, e] and φ (y) = 1 for y ∈ (e, 1]. It is readily
verified that, in between two z1-cities, the per capita cost is minimized by evenly placing two
immediate sub-cities with z′ = e.
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Fig. 7 Illustration of sequence problem

Then, define

�(�1, z1) ≡ {
(�i , zi )∞i=1 | (�i+1, zi+1) ∈ 
i (�i , zi ) , for all i = 1, 2, . . .

}
.

Any (�, z) ≡ (�i , zi )∞i=1 ∈ �(�1, z1) is called a feasible sequence, given (�1, z1).
Let � be the distance between the two neighboring larger-sized z-cities, hence the

distances of a immediate sub-city z′ to the two cities are α� and (1 − α)�, where
α ∈ (0, 1). The savings in transport costs for each good in

[
0, z′] is

s1 (�, α) ≡ 2
∫ �

2

0
t xdx −

(
2
∫ α�

2

0
t xdx + 2

∫ (1−α)�

2

0
t xdx

)
= t�2

2
α (1 − α) ,

(4.3)
Then, the optimal magnitude of z′ is determined by

s1 (�, α) = t�2

2
α (1 − α) = φ

(
z′) . (4.4)

The left-hand side of (4.4) is the savings in transport costs when increasing z′
marginally, whereas the right-hand side is the corresponding setup cost. If z′ is low
such that φ

(
z′) < t�2

2 α (1 − α), it incurs positive net savings (savings in transport

costs net of setup costs) by increasing z′. Similarly, when φ
(
z′) > t�2

2 α (1 − α), one
can improve the allocation by decreasing z′. In sum, Lemmas 4.1 and 4.2 and (4.4)
imply that in any optimal city hierarchy the following constraint holds:
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⎧⎨
⎩
zi+1,2k−1, zi+1,2k ∈ (

0, zi,k
)

�i+1,2k−1, �i+1,2k ∈ (
0, �i,k

)
, �i+1,2k−1 + �i+1,2k = �i,k

zi+1,k = φ−1
(
t
2�i+1,2k−1�i+1,2k

)
⎫⎬
⎭ . (4.5)

Equivalently, any optimal city hierarchy is associated with a sequence α = {
αi,k

}
such that �i+1,2k−1 = αi,k�i,k (hence �i+1,2k = (

1 − αi,k
)
�i,k) and (4.5) holds.

Note that in defining the choice set of (�, z) ≡ (�i , zi )∞i=1 by 
i and � above,
we leave (4.4) implicit and take the closure of

(
0, zi,k

)
. According to Lemmas 4.1

and 4.2, we know that situations in which zi+1,2k−1 or zi+1,2k equals 0 or zi,k are
never optimal (except possibly for i = 1), but we do not lose any generality by
including this possibility. When the choice of zi+1,2k−1, according to (4.4) and given
�i,2k−1, is such that zi+1,2k−1 > zi,k , one can always relabel i, k to ensure that the
constraint zi+1,2k−1, zi+1,2k ∈ [

0, zi,k
]
is obeyed. Thus, the choice set defined by �

encompasses all possible candidates for an optimal city hierarchy. In other words,
any sequence (�, z) that satisfies all constraints in (4.5) is included in �(�1, z1).
If one would like to make the constraint (4.4) explicit, one could redefine 
i by
replacing zi+1,2k−1, zi+1,2k ∈ [

0, zi,k
]
with

zi+1,2k−1 = min

{
φ−1

(
t

2
�i+1,4k−1�i+1,4k−2

)
, zi,k

}

and

zi+1,2k = min

{
φ−1

(
t

2
�i+1,4k−3�i+1,4k−4

)
, zi,k

}
.

Suppose the social planner has two z-cities with distance � and nothing in between
them, then the total cost in this interval of � is

A (�, z) ≡ 	(z) + zt�2

4
.

Note that only one setup cost of a z-city is counted in this definition. When a z′-city
divides an interval of � bounded by two cities producing at least up to z, the total
cost for the range of goods (z′, z] is given by A (�, z) − A

(
�, z′) = 	(z) − 	

(
z′) +(

z − z′) t�2/4. We can view the per capita cost for the goods [0, z1] on �1 as the sum
of the per capita cost of different ranges of goods on different market areas within
�1. Namely, the sequence problem is

C∗(�1, z1) ≡ inf
(�,z)∈�(�1,z1),
z1>0 given.

1

�1

⎡
⎣ A (�1, z1) − A (�1, z2)

+∑∞
i=2

∑Ki−1
k=1

[
A
(
�i,2k−1, zi,k

) − A
(
�i,2k−1, zi+1,2k−1

)
+A

(
�i,2k , zi,k

) − A
(
�i,2k , zi+1,2k

)
]
⎤
⎦ .

(SP)

Besides sequence problem, it can also be represented by a dynamic programming
problem. Given state variables � and z, the social planner needs to decide the size and
location of the immediate sub-city, z′-city. Denote the length of the intervals to the
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left/right of z′-city as �l/�r . Then, �l + �r = �. Alternatively, let �l = α� and �r =
(1 − α) � for α ∈ (0, 1). We present the following dynamic programming problem.

C(�, z) = inf
�l ,�r∈(0,�),�l+�r=�,z′∈[0,z]

1

�

[
A (�, z) − A

(
�, z′

) + �lC(�l , z
′) + �rC(�r , z

′)
]

= inf
α∈(0,1),z′∈[0,z]

1

�
[A (�, z) − A

(
�, z′

)] + αC(α�, z′) + (1 − α)C((1 − α)�, z′).
(DP)

Equivalently, we can consider infimum of the total cost of all the goods [0, z1]
on the interval of length �1. By defining D∗ (�1, z1) = �1C∗ (�1, z1), and D (�, z) =
�C (�, z), it transforms (SP) and (DP) to (SPD) and (DPD) as following:

D∗ (�1, z1) = inf
(�,z)∈�(�1,z1),
z1>0 given.

A (�1, z1) − A (�1, z2)

+∑∞
i=2

∑Ki−1
k=1

[
A
(
�i,2k−1, zi,k

) − A
(
�i,2k−1, zi+1,2k−1

)
+A

(
�i,2k , zi,k

) − A
(
�i,2k , zi+1,2k

)
]
,

(SPD)

and

D (�, z) = inf
α∈(0,1),z′∈[0,z]

A (�, z) − A
(
�, z′) + D

(
α�, z′) + D

(
(1 − α) �, z′) .

(DPD)

For showing the equivalence between the sequence problem(SPD) and the respec-
tive dynamic programming problem (DPD), i.e., the principle of optimality, we
present the following corollary.

Corollary 1 For any two positive real numbers �1 and z1, let X = [0, �1] × [0, z1],
and let D (X) denote the set of all real-valued continuous functions d : X → R+
such that

0 ≤ d (�, z) ≤ A (�, z) . (4.6)

Then a feasible sequence
(
�∗, z∗) ∈ �(�1, z1) attains the infimum in (SPD) if and

only if it satisfies (DPD) recursively, i.e.,

D∗(�∗
i,k , z

∗
i,k) = A

(
�∗
i,k , z

∗
i,k

) − A
(
�∗
i,k , z

∗
i+1,k

) + D∗(�∗
i+1,2k−1, z

∗
i+1,k) + D∗(�∗

i+1,2k , z
∗
i+1,k).

Now, the question left is: under what conditions can we be sure that there is a
unique solution to (SPD) as well as (DPD)?

Corollary 2 Let D (X) be given by Corollary 1. Let T : D (X) → D (X) be given
by, for each d ∈ D (X),

T d(�, z) ≡ inf
α∈(0,1),z′∈[0,z]

A (�, z) − A
(
�, z′) + d(α�, z′) + d((1 − α)�, z′). (4.7)
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Then,

(i) T d is continuous. Hence, T is a self-mapping on D (X).
(ii) The minimum is attained; so inf in the definition of T in (4.7) can be replaced

with min. Moreover, the set of minimizers is an upper hemi-continuous corre-
spondence on X.

(iii) D∗ is the unique solution to (DPD) in D (X) and hence the unique fixed point
of the mapping T on D (X).

(iv) For any d ∈ D (X), the sequence {T nd} converges to D∗.

Corollary 2 allows the numerical solution for any arbitrary φ/or any initial guess.
We have implemented this iterative method via Matlab in which the approximation
works well. The proofs of corollary 1 and 2 can be seen from Sect. 3.2 and 3.3 in
Hsu et al. (2014), which starts from the routine pursue of principle of optimality as in
almost all the dynamic programming problems. For a very intriguing and thorough
introduction of such recursive problems in economics, please refer to Ljungqvist and
Sargent (2012).

4.3 The Central Place Property

It turns out that the central place property holds when the setup cost is a power
function: φ(z) = azb, for a > 0 and b > 0. Under this functional form, the total
setup cost for a z-city is 	(z) = a

b+1 z
b+1. The power function assumption of φ, in

fact, means that the distribution of setup costs across goods is also a power function.
Let Y denote the random variable of setup cost for a good. Then, for y ∈ [0, φ (z1)],

Pr [Y ≤ y] = φ−1 (y)

z1
= 1

z1

( y
a

) 1
b
.

As shown in the hierarchy equilibrium, Sect. 2.2, this distribution of setup cost is a
prototype of a class of distributions that leads to a power law distribution of city size.

Recall that it is possible that the optimal z2 = z1 if �1 is too large. Note from
(4.4) that savings s1 (�1, α) is bounded by s1 (�1, 1/2) = t�21/8. Define �̄ (z) by the
solution of � in the following equation.

t�2

8
= φ (z) . (4.8)

Then, for any �1 < �̄ (z1), optimal z2 < z1, and thus the two z1-cities with distance
�1 are neighboring. For the rest of the analyses in this paper, we impose the condition
that �1 < �̄ (z1).

Proposition 4.3 Suppose that �1 < �̄ (z1), where �̄ (z) is defined as the solution to
(4.8). Suppose that the setup cost function φ (y) = azb, for positive constants a and
b. Then, the central place property holds.
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Proof For ease of presentation, let a = 1. A general a > 0 does not change the result.
From (4.4),

z′ =
(
t�2

2
α (1 − α)

) 1
b

=
(
t

2
α (1 − α)

) 1
b

�
2
b ≡ κ (α) �

2
b . (4.9)

Equation (4.9) implicitly assumes that z′ < z. Recall that Lemma 4.2 rules out
zi+1,2k−1 = zi,k or zi+1,2k−1 = zi,k as an optimal solution, and hence (4.9) is nec-
essarily true for all optimal choices of zi,k , except possibly for i = 2. However, the
constraint �1 < �̄ (z1) ensures that optimal z2 < z1.

Recall from (4.5) that there is a sequence α = {
αi,k

}
associatedwith any sequence

(�, z) ∈ �(�1, z1). The fact that the optimal solution of z′ is separable in � and α

implies that, except for z1, we can write zi,k = �
2/b
1 hi,k (α) and �i,k = �1gi,k (α), for

some functions hi,k and gi,k . Thus, both A
(
�i,2k−1, zi,k

) − A
(
�i,2k−1, zi+1,2k−1

)
and

A
(
�i,2k, zi,k

) − A
(
�i,2k, zi+1,2k

)
are multiplicatively separable in �

2(b+1)/b
1 and some

functions of α. Thus, for some function H , (SP) can be rewritten as

C∗(�1, z1) = zb+1
1

(b + 1) �1
+ z1t�1

4
+ �

b+2
b

1 H
(
α∗) .

By Corollarys 1 and 2, an optimal α∗ exists, and as such, H (α∗) is well defined.
Note that H (α∗) < 0, and �

(b+2)/b
1 |H (α∗)| is the per capita savings from building

the optimal city hierarchy. Given the equivalence between (SP) and (DP), observe
that the negative of per capita savings from having an optimal city hierarchy in an
interval of � is given by

S̃ (�, z) ≡ C(�, z) − A (�, z)

�
= C(�, z) − zb+1

(b + 1) �
− zt�

4
= �

b+2
b H

(
α∗) .

(4.10)
This says that the S̃ function is homogenous of degree (b + 2) /b in � and independent
of z. With a little abuse of notation, we write S̃ (�) = S̃ (�, z). Given (4.9) and (4.10),
(DP) can be rewritten as

S̃ (�) = min
z′∈(0,z),α∈(0,1)

A
(
α�, z′

) + A
(
(1 − α) �, z′

) − A
(
�, z′

)
�

+
[
α

2(b+1)
b + (1 − α)

2(b+1)
b

]
S̃ (�)

(4.11)
Thus,

S̃ (�) = −b

b + 1

(
t

2

) b+1
b

�
b+2
b max

α∈(0,1)

[α (1 − α)]
b+1
b

1 − α
2(b+1)

b − (1 − α)
2(b+1)

b

. (4.12)

We show in the separate appendix in Hsu et al. (2014) that the unique solution to the
maximization problem in (4.12) is α = 1/2. �
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Observe that the optimal sequence α∗ does not depend on �1. The recursive nature
implies that for all i, k, the optimal sequence in the interval of �i,k , i.e.,

{
αi ′,k

}
i ′≥i , does

not depend on the magnitude of �i,k . Thus, under this power function distribution
of setup costs, the optimal city hierarchy in any interval of �i,k resembles that of
the entire one in �1. As Sect. 3 shows that this scale-free property gives the city
hierarchy a fractal structure; specifically, the structure of the smaller part of the
hierarchy resembles that of the larger.

5 Concluding Remarks

This chapter presents a parsimonious model in which central place hierarchies arise
from both equilibria and optimal allocations. In the equilibrium model, we show
that hierarchy property can arise as an equilibrium outcome. Even though there
are possible deviations from the hierarchy property that could still constitute an
equilibrium, Hsu (2012) shows that such deviations can be ruled out by adding in the
homemarket effect of the central places. In the social planner’s problem, the problem
of location choice is complex, but we show that if the distribution of the fixed cost
follows a power function, the central place property holds. As such distribution is
also regularly varying, a power law also emerges from an optimal allocation.

One potential criticism is that the primary industry (agriculture, fishing, forestry,
mining, etc.) and its employment have become a small fraction of the economy in
developed countries, and thus central place theory is not quite relevant for these
countries. Such a criticism is, however, not well grounded because the reason why a
central place hierarchy emerges has nothing to do with the number/fraction of immo-
bile consumers in the economy. It is the fact that they are immobile and dispersed
over the entire geographic space that prompts the central places that serve them. A
smaller relative size of the primary industry may make the cities and towns more
sparse in spacing and smaller in their sizes, but it does not qualitatively alter the
fractal structure of the central place hierarchy. Hence, it does not affect the power
law for cities either.

Recall that the hierarchy property posits that larger cities are more diverse not
only because they have more industries than smaller cities but also because they
specialise in industries with more scale economies. This is arguably a reasonable
view, especially when we look at industries in broader classifications. Mori et al.
(2008) and Landman et al. (2011) find that the hierarchy property holds well for 3-
digit JSIC but dissipates for 4-digit JSIC (the finest Japanese industrial classification).
These findings hint that, at the finest levels, specialisation matters to the extent that
heavy industries can be located in small towns due to numerous factors outside central
place theory.Thedevelopment of a comprehensive theory that producesmore realistic
patterns of diversity and specialisation is a desirable direction for future research.
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