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Strong Consistency of Spectral Clustering for Stochastic Block
Models

Liangjun Su* Wuyi Wang! Yichong Zhang?

May 16, 2019

Abstract

In this paper we prove the strong consistency of several methods based on the spectral clus-
tering techniques that are widely used to study the community detection problem in stochastic
block models (SBMs). We show that under some weak conditions on the minimal degree, the
number of communities, and the eigenvalues of the probability block matrix, the K-means al-
gorithm applied to the eigenvectors of the graph Laplacian associated with its first few largest
eigenvalues can classify all individuals into the true community uniformly correctly almost
surely. Extensions to both regularized spectral clustering and degree-corrected SBMs are also
considered. We illustrate the performance of different methods on simulated networks.

Key words and phrases: Community detection, degree-corrected stochastic block model,
K-means, regularization, strong consistency.

1 Introduction

Community detection is one of the fundamental problems in network analysis, where communities
are groups of nodes that are, in some sense, more similar to each other than to the other nodes.
The stochastic block model (SBM) that was first proposed by Holland, Laskey, and Leinhardt
(1983) is a common tool for model-based community detection that has been widely studied in
the statistics literature. Within the SBM framework, the most essential task is to recover the
community membership of the nodes from a single observation of the network. Various procedures
have been proposed to solve this problem in the last decade or so. These include method of
moments (Bickel, Chen, and Levina, 2011), modularity maximization (Newman and Girvan, 2004),
semidefinite programming (Abbe, Bandeira, and Hall, 2016; Cai and Li, 2015), spectral clustering
(Joseph and Yu, 2016; Lei and Rinaldo, 2015; Qin and Rohe, 2013; Rohe, Chatterjee, and Yu, 2011;
Sarkar and Bickel, 2015; Vu, 2018; Yun and Proutiere, 2014, 2016), likelihood methods (Amini,
Chen, Bickel, and Levina, 2013; Bickel and Chen, 2009; Choi, Wolfe, and Airoldi, 2012; Zhao,
Levina, and Zhu, 2012), and spectral embedding (Lyzinski, Sussman, Tang, Athreya, and Priebe,
2014; Sussman, Tang, Fishkind, and Priebe, 2012). Abbe (2018) provides an excellent survey on
recent developments on community detection and stochastic block models. Among the methods
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mentioned above, spectral clustering is arguably one of the most widely used methods due to its
computational tractability.

Bickel and Chen (2009) introduce the notion of strong consistency of community detection
as the number of nodes, n, grows.! By strong consistency, they mean that one can identify the
members of the block model communities perfectly in large samples. Based on the parameters of
the block model, properties of the modularities, and expected degree of the graph (A,), Bickel and
Chen (2009) give the sufficient conditions for strong consistency, which is A, /log(n) — oo. Zhao
et al. (2012) define weak consistency of community detection, which essentially means that the
number of misclassified nodes is of smaller order than the number of nodes. Bickel and Chen (2012)
find that weak consistency requires that A\, — oo for the SBM. Similarly, under the conditions
that A, /log(n) — oo (A, — 00), Zhao et al. (2012) establish the strong (weak) consistency under
both standard SBMs and degree-corrected SBMs.

If the community detection method is strongly consistent, then it means that the communities
are exactly recoverable. From an information-theory perspective, Abbe and Sandon (2015), Abbe
et al. (2016), Mossel, Neeman, and Sly (2014), and Vu (2018) study the phase transition threshold
for exact recovery, which requires A, = Q(log(n)). It is well known that some methods like the
modularity maximization of Newman and Girvan (2004) and the likelihood method of Bickel and
Chen (2009) yield strongly consistent community recovery, but they either rely on combinatorial
methods that are computationally demanding or are guaranteed to be successful only when the
starting values are well-chosen. Abbe et al. (2016) show that semidefinite programming can achieve
exact recovery when there are two equal-sized communities. Yun and Proutiere (2014), Yun and
Proutiere (2016), and Vu (2018) establish strong consistency for the variants of spectral method,
which involve graph splitting, trimming, and a final improvement step. The pure spectral clustering
method has been shown to enjoy weak consistency under standard or degree-corrected SBMs by
various researchers; see Joseph and Yu (2016), Lei and Rinaldo (2015), Qin and Rohe (2013), and
Rohe et al. (2011). Weak consistency here means that the fraction of misclassified nodes decreases
to zero as n grows. Because the decrease rates established in above papers are usually slower than
n, the above weak consistency results imply that the number of misclassified nodes still increases
to infinity as n grows. On the contrary, strong consistency implies that the number of misclassified
nodes is zero for sufficiently large n, which greatly improves upon weak consistency.

The aim of this paper is to formally establish the strong consistency of spectral clustering
for standard/regular SBMs without any extra refinement steps, under a set of conditions on the
minimal degree of nodes (u,,), the number of communities (K), the minimal value of the nonzero
eigenvalue of the normalized block probability matrix, and some other parameters of the block
model. In the special case where K is fixed and the normalized block probability matrix has
minimal eigenvalue bounded away from zero in absolute value, we show that u,/log(n) being
sufficiently large can ensure strong consistency. In other words, the spectral clustering method
achieves the optimal rate for exact recovery, as pointed out in Abbe et al. (2016) and Abbe and
Sandon (2015).

As demonstrated by Amini et al. (2013), the performance of spectral clustering can be consid-
erably improved via regularization. Joseph and Yu (2016) provide an attempt at quantifying this
improvement through theoretical analysis and find that the typical minimal degree assumption for
the consistency of spectral clustering can potentially be removed with suitable regularization. In
this paper, we also establish the strong consistency of regularized spectral clustering.

!Bickel and Chen (2009) use the terminology “asymptotic consistency” in place of strong consistency.



The SBM is limited by its assumption that all nodes within a community are stochastically
equivalent and thus provides a poor fit to real-world networks with hubs or highly varying node de-
grees within communities. For this reason, Karrer and Newman (2011) propose a degree-corrected
SBM (DC-SBM) to allow variation in node degrees within a community while preserving the over-
all block community structure. The DC-SBM greatly enhances the flexibility of modeling degree
heterogeneity and enables us to fit network data with varying degree distributions. We also prove
the strong consistency of spectral clustering for regularized DC-SBMs.

Our paper is mostly related to Abbe, Fan, Wang, and Zhong (2017). Abbe et al. (2017) derive
the Lo, bound for the entrywise eigenvector of random matrices with low expected rank. Then
they apply their general results to SBM with two communities, where both within- and cross-
community probabilities are of order log(n)/n and show that classifying nodes based on the sign
of the entries in the second eigenvector can achieve exact recovery. Our paper complements theirs
in the following three aspects. First, we consider the eigenvectors of normalized graph Laplacian
L rather than the adjacency matrix A. Therefore, the entrywise bound of the eigenvectors derived
in Abbe et al. (2017) cannot be directly used in our case. Our proof relies on the construction of a
contraction mapping for the entrywise bound, via which we can iteratively refine the bound. Such
strategy is different from that in Abbe et al. (2017).

Second, we consider SBM with a general block probability matrix whereas Abbe et al. (2017)
consider a 2 x 2 block probability matrix. Even though Abbe et al. (2017) establish general theories
of L, bound for the entrywise eigenvector of random matrices, when applying their theory to
SBMs, they only study the model with the following block probability matrix:

alog(n)  blog(n)
(blog(n) alo%(n)) : (11)
n n

Their block probability matrix assumes that there are two groups, the connection probability within
groups are the same for the two groups, and the within- and cross-group connection probabilities
are of the same order of log(n)/n. In contrast, our paper studies the general SBM with generic K
groups, where K is allowed to diverge to infinity at a slow rate and the decay rates for different
elements in the block probability matrix can be different. When there are two communities, Abbe
et al. (2017) use the sign of the eigenvector associated with the second largest eigenvalue (in
absolute value) to identify the node’s membership. When K > 2, just checking the sign is not
sufficient to identify all K groups. Our paper shows that applying the K-means algorithm to the
first K eigenvectors can achieve strong consistency.

Third, we consider SBM with both regularization and degree correction. We show that, by
regularization, the strong consistency is still possible even when the minimal degree does not
diverge at all. For the DC-SBM with regularization, we also derive the conditions for strong
consistency. Neither regularization nor degree-corrected SBM is discussed in Abbe et al. (2017).

In the simulation, we consider both standard SBMs and DC-SBMs. For standard SBMs, we
adopt Joseph and Yu (2016)’s regularization method and choose the tuning parameter 7 according
to their recommendation. The results show that in terms of classification, spectral clustering
tends to outperform the unconditional pseudo-likelihood (UPL) method, which also has the strong
consistency property (Amini et al., 2013). In contrast, for the DC-SBMs our simulations suggest
that the regularized spectral clustering tends to slightly underperform the conditional pseudo-
likelihood (CPL) method even though both are strongly consistent under some conditions. We
also show that an adaptive procedure helps the regularized spectral clustering to achieve much
better performance than the CPL method.



The rest of the paper is organized as follows. We study the strong consistency of spectral
clustering for the basic SBMs in Section 2. We consider the extensions to regularized spectral
clustering and degree-corrected SBMs in Section 3. Section 4 reports the numerical performance
of various spectral-clustering-based methods for a range of simulated networks. Section 5 describes
the proof strategy of the key theorem in our paper. Section 6 concludes. The proofs of the main
results are relegated to the mathematical appendix.

Notation. Throughout the paper, we use [M];; and [M];. to denote the (¢, j)-th entry and i-th
row of matrix M, respectively. Without confusion, we sometimes simplify [M];; as M;;. || M| and
||M || denote the spectral norm and Frobenius norm of M, respectively. Note that [|[M|| = | M| r
when M is a vector. In addition, let || M ||2— 00 = sup; ||[M];.||. We use 1 {-} to denote the indicator
function which takes value 1 when - holds and 0 otherwise. C7 and c; denote specific absolute
constants that remain the same throughout the paper.

2 Strong consistency of spectral clustering

2.1 Basic setup

Let A € {0,1}™*™ be the adjacency matrix. By convention, we do not allow self-connection,
ie, Ay = 0. Let d; = Z?’Zl A;; denote the degree of node i, D = diag(dl,...,dn), and L =
D~124D~1/2 be the graph Laplacian. The graph is generated from a SBM with K communities.
We assume that K is known and potentially depends on the number of nodes n. We omit the
dependence of K on n for notation simplicity. If K is unknown, it can be determined by either
Lei’s 2016 sequential goodness-of-fit testing procedure, the likelihood-based model selection method
proposed by Wang and Bickel (2017), or the network cross-validation method proposed by Chen
and Lei (2017). The communities, which represent a partition of the n nodes, are assumed to be
fixed beforehand. Denote these by C4,...,Ck. Let ng, for k= 1,..., K, be the number of nodes
belonging to each of the clusters.

Given the communities, the edge between nodes ¢ and j are chosen independently with proba-
bility depending on the communities ¢ and j belong to. In particular, for nodes ¢ and j belonging to
cluster C}, and Cy,, respectively, the probability of edge between i and j is given by P;; = By, k,,
where the block probability matric B = {By,k,}, k1,k2 = 1,..., K, is a symmetric matrix with
each entry between [0, 1]. The n x n edge probability matrix P = {F;;} represents the population
counterpart of the adjacency matrix A. Frequently we suppress the dependence of matrices and
their elements on n.

Denote Z = {Z;;} as the n x K binary matrix providing the cluster membership of each
node, i.e., Z;, = 1 if node i is in Cj, and Z;; = 0 otherwise. Then we have P = ZBZ". Let
D = diag(dy,...,d,) where d; = Z;;l P;j. The population version of the graph Laplacian is
L =D /2PD~Y2 The standard spectral clustering corresponds to classifying the eigenvectors of
L by K-means algorithm. In this paper, we focus on the strong consistency of both the standard
spectral clustering and its variant.

2.2 Identification of the group membership
Let mgp, = ng/n, Wi = [B]k.ZTLn/TL = Zl[ilBkm'ln, Dp = diag(Wh,...,Wk), and By =

Dgl/ 2BD;/ 2, where ¢, is a vector of ones in R". We can view W} as the weighted average
of the k-th row of B with weights given by 7,. Similarly, By is a normalized version of B. Note



that By is symmetric as B is. Let II,, = diag(m1n, ..., Txn). Throughout the paper, we allow for
the elements in the block probability matrix B to depend on n and decay to zero as n grows, which
leads to a sparse graph.

Assumption 1. By has rank K and the spectral decomposition of H}L/QBOH}/Q is Sp, S, in
which S, is a K x K matriz such that SIS, = Ik and Q, = diag(win,...,wkn) such that
‘w1n| >z |wKn| > 0.

Assumption 1 implies that B = DY T, "/%$,0, 5711, "*DY? and B, = 11,"/%5,9, 5711, /2.
The full-rank assumption is also made in Rohe et al. (2011), Lei and Rinaldo (2015), and Joseph
and Yu (2016) and can be relaxed at the cost of more complicated notation.? In addition, we
allows for the possibility that K — oo and/or wg, — 0 as n — oo below. This also mitigates
concern of the full-rank condition. Assumption 1 implies that £ has rank K and the following
spectral decomposition:

L=U,2UL = Uy, 21,UL,

where ¥, = diag(o1n,...,0Kn,0,...,0) is a n X n matrix that contains the eigenvalues of £ such
that |o1,| > |oon| = -+ > |ogn| > 0, X1, = diag(oin, ... ,0Kn), the columns of U,, contain the
eigenvectors of L associated with the eigenvalues in ¥, U,, = (Ui, Usy), and UEUn =1I,. As
shown in Theorem 2.1 below, oy, = wi, for k=1,..., K.

Assumption 2. There exist some constants C1 and ci such that

oo > C1 > limsupsupniK/n > liminfiréfnkK/n >c1 > 0.
n k n

Assumption 2 implies that the network has balanced communities. It is commonly assumed
in the literature on strong consistency of community detection; see, e.g., Bickel and Chen (2009),
Zhao et al. (2012), Amini et al. (2013), and Abbe and Sandon (2015).

Theorem 2.1. Let zl' = [Z], , the i-th row of Z. If Assumptions 1 and 2 hold, then Q, = X1,,
Ur, = Z(Z72)"128,, and

sup (n/K)V2 ] (27 2)71 28, <

In addition, for n sufficiently large, if z; # z;, then
(n/K))|(=F — 21)(27 2)" 128, = ¢; V2V > o,

Noting that the ith row of Uy, is given by ziT(ZTZ)*l/QSn. Theorem 2.1 indicates that the rows
of Uy, contain the same community information as Z for all nodes in the network. Therefore, we
can infer each node’s community membership based on the eigenvector matrix Uy, if £ is observed.

In practice, £ is not observed. But we can estimate it by L. We show below that the eigenvectors
of L associated with its K largest eigenvalues in absolute value consistently estimate those of £ up
to an orthogonal matrix so that the rows of the eigenvector matrix of L also contains the useful
community information.

2The first version of our paper only requires that By has distinct rows and rank K*, which can be less than K.
Then, researchers need to apply K-means algorithm to the first K* eigenvectors. By modifying the corresponding
assumptions accordingly, the strong consistency result in this paper still holds. We stick to the full rank case mainly
for notation simplicity.



2.3 Uniform bound for the estimated eigenvectors

To study the upper bound of the eigenvectors of L associated with its K largest eigenvalues, we
add the following assumption.

Assumption 3. Let i, = min; d; and p,, = max(supy, p, [Bolk,k,, 1). Then, for n being sufficiently
large,

M}L/QUKn K = log(n)

1/2 1/2
pnlog /< (n) <1+Pn+ <1+ log(5)) p}/2> < 107801—161/2.

Several remarks are in order. First, p, is a measure of heterogeneity of the normalized block
probability matrix Bp. If all the entries in B are of the same order of magnitude, then p,, is
bounded. In addition, by Assumption 2 and the fact that

(7Tk1n7rk2n) / Bklk‘g
(leil Tin Bry1) Y (Zl 1 TinBrst) /2 B

we have limsup,, p,, < ¢; ' K. Therefore, if the number of blocks is fixed, then p,, is also bounded.
Second, if K is fixed and liminf,, |0 x,| is bounded away from zero, then Assumption 3 reduces
to the requirement that u, > Clog(n) for some constant C. Therefore, Assumption 3 allows for
»n = 2(log(n)). Such condition is the minimal requirement for strong consistency (exact recovery),
as established in Abbe et al. (2016) and Abbe and Sandon (2015). Our results in Theorem 2.3
based on Assumption 3 imply that, in the baseline case, the spectral clustering method achieve
strong consistency under this minimal rate requirement.
Third, to provide a more detailed comparison between Assumption 3 and the phase transition
threshold, let us consider the special case where there are two equal sized communities and the

block probability matrix is
alog(n)  blog(n)
B = blog(n) alog(n) )

where a > b. In this case, K = 2, II,, = diag(0.5,0.5), Dp = dlag((a+b) log(n) (a+b)21°g(n)), and

n

(ThynThan) " ?[Bolkaks =

9

1/2 1/2 2a 2b

— D - — b b

Bo=Dp "BDp "~ = (aﬁ a2+a> :
a+b a+b

_ (a+b)log(n) 1/2 1/2 i

Note that p, = ——5—>-, p, = f_fb € (1,2), and o9y, the second eigenvalue of II,/” Byll,

Then, Assumption 3 boils down to

2a \* [72 (a+b\?_
c
a+b a+b\a—-b/) —~
for some small constant 0.0001 > ¢ > 0. Since 2—“ > 1 and a+b > 1, the above condition implies

that _(2a>2 5 <a+b>22\/m>\/6+\/5_ 1

> =
€ a+b a+b\a—>b a—b ~— a-b Va—+b

a+b

or equivalently,

Va—vb>cl>V2



Because v/2 is the information-theoretic threshold for exact recovery established in Abbe et al.
(2016), Assumption 3 ensures that the SBM under our consideration is in the region that exact
recovery is solvable.

Fourth, the constants in Assumption 3, and thus, ¢ in the above remark, are not optimal.
We choose these constants purely for their technical ease. We conjecture that more sophisticated
arguments such as those in Abbe and Sandon (2015), Abbe et al. (2016), and Abbe et al. (2017)
are needed to establish the optimal constant for the exact recovery of spectral clustering method.
On the other hand, although our method cannot show the exact recovery all the way down to
the information-theoretic threshold, it can be easily extended to handle degree-corrected and/or
regularized SBM, as shown in Section 3.

Consider the spectral decomposition

= U, 2,0y,
where 3, = diag(G1n, .-, Onn) With |G1,| > |G2n| > -+ > |6pn] > 0, and U, is the correspondlng
eigenvectors. Let X1, = diag(d1in,...,0kn), Zon = dlag(aKH,n, vy Onn), and U, = (Uln,UQn)
where Uy, contains the eigenvectors associated with eigenvalues 614, ..., k,. Then, U 1nU n = Ik,

Uzj;f]ln =0, and

L = U1nS12U7, + Uan S0 Uy,
The following lemma indicates that L and Ui, are close to their population counterparts, and up
to an orthogonal matrix in the latter case.

Lemma 2.1. If Assumptions 1-3 hold, then there exists a K x K orthogonal (random) matrix On
such that
1L —L| < 7log"?(n)u;Y?  a.s.

and o
101,00 — Urn|| < 1010g"2(n)u; Y203k a.s.

Two variants of Lemma 2.1 have been derived in Joseph and Yu (2016) and Qin and Rohe
(2013) as special cases. The main difference is that we obtain the almost sure bound for the
objects of interest instead of the probability bound in those papers. As illustrated in Abbe et al.
(2017),

O, =0VT,
where UX V7 is the singular value decomposition of Uanln Apparently, O, is random.

In order to Study the strong consistency, we have to derive the uniform bound for 07,0, —ul ],

where @7, and ul, are the i-th rows of U1, and Uy, respectively.

Theorem 2.2. If Assumptions 1-3 hold, then
. logl/2 1 log(5 1/2
sup /K00 —uli < P (14 (1 B0 D) s,
/2 _2 log(n)
Hn Okn
where C* is the same absolute constant as in Theorem 3.5.

We consider the four-parameter SBM studied in Rohe et al. (2011) to illustrate the upper
bound in Theorem 2.2.



Example 2.1. The SBM is parametrized by K, s, v and p, where the K communities contain

s nodes each, and r and r + p denote the probability of a connection between two nodes in two

separate blocks and in the same block, respectively. For this model, p,, = (ZI:)I?, OKn = and

Kerp’
My = % — (p+71). Therefore, the probability bound of sup; /n/K||i1; — OXuy;|| is of order

<Kﬁ%w3yﬁ<@Hﬂfﬁﬂ) (2.1)

np+rK P

The above display is small if K°log (n) /(np) is small and rK /p — ¢ € (0,00), orif K*log (n) /(nr)
is small andr/p — ¢ € (0,00) . If we further restrict our attention to the dense SBM with both r and
p bounded away from zero, then the displayed item in (2.1) becomes small as long as K*log (n) /n
s small.

Since both Ui, and Uy, have orthonormal columns, they have a typical element of order
(n/K)~/2. This explains why we need the normalization constant (n/K)'/? in Theorem 2.2. An
important implication of Theorem 2.2 is that like Uy,,, the rows of Uln also contain the community
membership information. Let 3;, = (n/K)"/2aT. Let ¢0 € {1,..., K} denote the true community
that node ¢ belongs to. Theorems 2.1-2.2 and the fact that OAnOA,{ = Ix imply that there exist
Bin = (Kmpy) Y2[8,01 )., k =1,--- | K such that

A —1/2
(n/K)2uf,08 = Byons N1Brall < 1%,

)

and

1/2 1/2
’ « P 1og " (n) 1 log(5) 12
sup || Bin — Byonll < C 1+p +(+ p a.s.
A M}L/QJ%R " K = log(n) "

If the distance between Bm and f3,0,, is much smaller than that among distinctive {3 ,m}kK:l, then

K-means algorithm applying to { Bm}?zl are expected to recover the true community memberships.
The statistical properties of K-means method are studied in the next two sections.

2.4 Strong consistency of the K-means algorithm

With a little abuse of notation, let Bm € RX be a generic estimator of Byon € RE fori=1,...,n.

To recover the community membership structure (i.e., to estimate g?), it is natural to apply the
K-means clustering algorithm to {3;,}. Specifically, let A = {a1,...,ax} be a set of K arbitrary
K x 1 vectors: aq,...,ax. Define

n

N 1 o )
QulA) = > min 18, — ol

=1

and A, = {ai,...,ax}, where A, = arg min 4 @n(.A) Then we compute the estimated cluster
identity as R
i = argmin ||8;, — o],
1<IKK
where if there are multiple [’s that achieve the minimum, §; takes value of the smallest one. Next,
we consider the case in which the estimates {3;,}", and the true vectors {Brn | satisfy the
following restrictions.



Assumption 4. 1. There exists a constant M such that

limsup sup ||, [ <M < oo.
n 1<k<K

2. There exist some deterministic sequences c1, and ca, such that sup; ||, — Boonll < con <M
a.s. and inf1<pep<i || Brn — Bemll = c1n > 0.

3. (Qanci/2 + 16K3/4M1/20%2)2 <cié?,.

Assumption 4.1 requires that the centroids are uniformly bounded. Assumption 4.2 requires
that the centroids are well-separated and the vectors to be classified (i.e., {8;,}) are sufficiently
close to one of the centroids. Assumption 4.3 requires that the distance between the estimated
vector and the corresponding centroid is smaller than that among any of the two distinctive
centroids. When the number of clusters K is fixed and the gap ci, between the centroids is
bounded away from zero, Assumption 4.3 holds as long as ¢y, is sufficiently small. Note here, we
do not necessarily need cg, = o(1), i.e., Bm is not necessarily consistent.

Let H(-,-) denote the Hausdorff distance between two sets and B, = {B81,,.--,8kn}t- The
following lemma shows that the K-means algorithm can estimate the true centroids {8, }X_, up

to the rate Oa_s,(céng/‘L).

Lemma 2.2. Suppose that Assumptions 2 and 4 hold. Then
H(A,,B,) < (15M/01)1/2c;7/12K3/4 a.s.
Theorem 2.3. Suppose that Assumptions 2 and 4 hold. Then for sufficiently large n, we have

sup 1{gi # 2} =0 a.s.
1<i<n
Theorem 2.3 establishes that, under the given conditions, the K-means algorithm yields perfect
classification in large samples. Intuitively, as long as the estimated vectors {Bm}?zl are uniformly
much closer to the true centroid oOn rather than others, the K-means algorithm can divide each
individual into the right group. To achieve strong consistency for our SBM, we need the following
condition.

Assumption 5. For n sufficiently large,

3/2 1/2 1/2 3/2 ~—1
C*K pplog/*(n) <1+Pn+ <1+ 10%(5)> p711/2> < 2¢)""CY

uﬁ/zol‘%n K log(n) 257

where C* is the absolute constant in Theorem 2.2.
Colrollary 2.1. Suppose that Assumptions 1-3 and 5 hold and the K-means algorithm is applied
to B;, = (n/K)"20y; and Bgon = (n/K)20,uy; Then,

sup 1{g; # ¢V} =0 a.s.
1<i<n

Corollary 2.1 shows that the spectral-clustering-based K-means algorithm consistently recovers
the community membership for all nodes almost surely in large samples.



Example 2.1 (cont.). For the four-parameter model in Example 2.1, Assumption 3 is equivalent
to
(p +7)*K*®log(n)
pin(p +rK)

being sufficiently small. If rK /p is bounded, then the above display further reduces to K®log(n)/ (np),
which allows K = O((np/log(n))'/®). As long as p decays to zero no faster than log(n)/n, As-
sumption 3 holds even when K grows slowly to infinity. On the other hand, if r/p — ¢ € (0,00),
(2.2) reduces to K"log(n)/ (nr). In addition, if both p and r are bounded away from zero, then
(2.2) requires that K" log(n)/n is sufficiently small. In contrast, Rohe et al. (2011) find that when
K=0 (n1/4/log (n)) and p is bounded away from 0, the number of misclassified nodes from the

K-means algorithm in the four-parameter SBM is of order o (K3 log? (n)) =o0 (n3/4) .

(2.2)

2.5 Strong consistency of the modified K-means algorithm

It is possible to improve the rate requirement for the number of communities in Assumption 5 by
considering a modified K-means algorithm:

n

- 1 -
Qn(A) = - > o 1Bin — cull

=1

and A, = argmin 4 Q,,(A), where ||-|| still denote the Euclidean distance. Denote A as {ay, - - , dx }.
Then, we compute the estimated cluster identity as

g = argmin ||8;, — &,
1<I<K

where if there are multiple {’s that achieve the minimum, g; takes value of the smallest one.

Assumption 6. 1. There exist some deterministic sequences ci, and ca, such that sup; HBm -
Bgonll < con a.s. and infi<pep < ||Brn — Brnll = c1n > 0.

2. 15K62n § C1C1n.
The following two results parallel Lemma 2.2 and Theorem 2.3.

Lemma 2.3. Suppose that Assumptions 2 and 6 hold. Then
H(.Zn,Bn) < 3Kcl_1ch a.s.
Theorem 2.4. Suppose that Assumptions 2 and 6 hold. Then for sufficiently large n, we have

sup 1{gi # 0} =0 a.s.
1<i<n

In order to apply the modified K-means algorithm in spectral clustering, we only need to verify
conditions in Assumption 6.

Assumption 7. Suppose there exists some constant ¢* such that, for n sufficiently large,

1/2 1/2
15C*Kpnll/02g ) (14, 4 <1 . 108:(5)) V2| < o2 s,
ol "% K log(n)

where C* is the absolute constant in Theorem 2.2.
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Coyollary 2.2. Suppose that Assumptions 1-3 and 7 hold and the K-means algorithm is applied
to B;, = (n/K)20y; and Byon = (n/K)20,uy; Then,

sup g # ¢} =0 a.s.
1<i<n

Corollary 2.2 implies that the community memberships estimated by the modified K-means can
recover the truth. Assumption 7 implies a weaker requirement on the rate of K than Assumption
5, as the exponent for K is reduced from 1.5 in Assumption 5 to 1 in Assumption 7. To derive the
optimal rate for K may be much more difficult. We leave it as one topic for future research. We
investigate the performance of the K-means algorithm in Section 4.

Like spectral clustering, semidefinite programming (SDP) has also become very popular in the
community detection literature. Numerically, SDP relaxation enjoys the computational feasibility
that spectral clustering has, and various efficient algorithms have been proposed to solve different
types of SDP. Theoretically, under the ordinary SBM, SDP methods have been shown to be capable
in detecting communities; see, Abbe et al. (2016), Ames (2014), Bandeira, Boumal, and Voroninski
(2016), Chen, Sanghavi, and Xu (2012), Chen, Jalali, Sanghavi, and Xu (2014), Cai and Li (2015),
Hajek, Wu, and Xu (2016a), and Hajek, Wu, and Xu (2016b), among others, and Li, Chen, and Xu
(2018) for an excellent survey. In particular, Abbe et al. (2016) propose an efficient SDP algorithm
to solve a standard SBM with two communities, and show that it succeeds in recovering the true
communities with high probability when certain threshold conditions are satisfied; Cai and Li
(2015) propose a new SDP-based convex optimization method for a generalized SBM and show
that a SDP relaxation followed by a K-means clustering can accurately detect the communities with
small misclassification rate and the method is both computationally fast and robust to different
kinds of outliers. In contrast, Cai and Li (2015) and Joseph and Yu (2016) show that the standard
spectral clustering applied to the graph Laplacian may not work due to the existence of small and
weak clusters. The possible presence of weak clusters in SBMs motivates the use of regularization
to be studied in the following section.

3 Extensions

In this section we consider two extensions of the above results: regularized spectral clustering of
the standard and degree-corrected SBMs.

3.1 Regularized spectral clustering analysis for standard SBMs

The SBM is the same as considered in the previous section. Following Amini et al. (2013) and
Joseph and Yu (2016), we regularize the adjacency matrix A to be A, = A + 7n~" 'L, where
7 < n is the regularization parameter and ¢, is the n x 1 vector of ones. Given the regularized
adjacency matrix, we can compute the regularized degree for each node as a?[ = d; + 7 and
D, = diag(dAl +7,... ,dn + 7). The regularized version of P and D are denoted as P, and D, and
defined as

P.=P+m Yyl and D, =diag(dy +7,...,dn +7),

respectively. Consequently, the regularized graph Laplacian and its population counterpart are
denoted as L, and £, and written as

L. =D Y2A.D7'? and £, =D Y2P.D7Y/2

11



respectively. Noting that ¢, = Zi1x, we have
P.=P+m vyl =ZBZ" + a7 Zugel . 2T = ZBT 27,

where BT = B+mn~ 1, KL? Apparently, the block model structure is preserved after regularization.
Given B”, we can define Bj, the normalized version of B” as in the previous section. Let W} =
[B7).Z  tn/n = S0 [ BT \jiin, Dy = diag(W7, ..., Wg), and Bf = (D)~ V2B (Dp)~1/2.

In order to follow the identification analysis in the previous section, we need to modify As-
sumption 1 as follows.

Assumption 8. Suppose B has rank K and the spectral decomposition ofl'[,ll/QBgl_[}/2 is STQT(ST)T,
in which S is a K x K matriz such that (S5)T ST = Ik and QF, = diag(wT,,, . ..,w,,) such that
wWinl 2 -+ = Wi, | > 0.

We consider the eigenvalue decomposition of £, as

where X7 = diag(o7],,,...,0%,,0,...,0) is an n x n matrix that contains the eigenvalues of L,

such that |07, | > |03,| > -+ > |0%,| > 0, £],, = diag(o7,,...,0%,), the columns of U] contain

the eigenvectors of £, associated with the eigenvalues in X7, UT = (U7, U3 ), and (U)TUT = I,,.
The following theorem parallels Theorem 2.1 in Section 2.2.

Theorem 3.1. If Assumptions 2 and 8 hold, then Qf, = X7 U = Z(Z"Z)~'/2ST and

s (/) P (27 2)7 s < e

In addition, there exists a constant ¢ independent of n such that if z; # z;,
(n/K)' 2] = 2])(272)7 257 = o7 VR > 0.

Since £, = n~'ZBJZ, the proof of Theorem 3.1 is exactly the same as that of Theorem
2.1 with obvious modifications. Theorem 3.1 indicates that we can infer each node’s community
membership based on the eigenvector matrix U], if £, is observed.

As before, we consider the spectral decomposition of L, :

St (T i st (i T o T (7 \T
where 2; = dlag(a—ﬂl-nav&:m) = diag(ALw Agn) with |a—1n‘ > ‘OA—Zn’ > 2 ‘OA—:m’ > 0, i{n =
diag(67,,, - -+, 0ky), and X3, = diag(6k 41 - -0y ); Uy = (U7, Ug,,) is the corresponding eigen-
vectors such that (U],)TUy, = Ix and UL Uy, = 0. Note that U7, contains the eigenvectors

associated with eigenvalues 67,,,...,0,. To study the asymptotic properties of ﬁfn, we modify
Assumption 3 as follows.

Assumption 9. Denote pj, = min; d; + 7 and p], = max(supy, x, [Bflkik,» 1), Then, for n suffi-
ciently large,

Kpplog'/(n) 1 log(5)\"* 1) 81 1)2
"o V7 g T — i <1 .
TARECE + o, + K+log(n) (pr) <1078¢c e
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The above modification is natural because node i’s degree becomes d] = d; + 7 after regular-
ization. p] can be interpreted as the effective minimum expected degree after regularization.
Let (u];)T and (a7,)T be the i-th row of U], and U7,,, respectively.

Theorem 3.2. Suppose that Assumptions 2, 8, and 9 hold. Then there exists a K x K orthonormal
matriz O], such that

7 log'/2(n) 1 log(5)\"?
sup /n/K|@7)TOr —(u; <C*p— 1+p,+ | =+ 7)1/2 a.s.,
1<z£n / || 1 1) || (IU )1/2( Kn) p K 10g(n) (p )

where C* is the same absolute constant defined in Theorem 2.2.

The following assumption parallels Assumptions 5 and 7. The following theorem parallels
Theorem 2.2.

Assumption 10. 1. For n sufficiently large,

3/2 7 1 l/2 1/2 3/2 ~—1
C* K ,01 nlog™/*(n) 1407 + < 1 log(5)> (pT)M? ) < 2, 7C ’
(u7)Y2(0,)? K log(n) 257

where C* is the absolute constant in Theorem 3.2.

2. For n sufficiently large,

1/2 1/2

(un)l/ *(o Kn) log(n)

where C* is the absolute constant in Theorem 3.2.
The following theorem parallels Corollaries 2.1 and 2.2 in Section 2.3.
Theorem 3.3. Suppose that Assumptions 2, 8, and 9 hold.  If Assumption 10.1 holds and
the K-means algorithm defined in Section 2./ is applied to B3;, = /n/K(a],)T and Bgon =
(n/K)'207ul;. Denote the estimated community identities as {g;}*,. Then for sufficiently large

n, we have
sup 1H{gi #¢0} =0 a.s.

1<i<n
If Assumption 10.2 holds and the modified K-means algorithm defined in Section 2.5 is applied to
Bin = /n/K@])T and Bgon, = (n/K)Y20rul,. Denote the estimated community identities as

{Gi}7—,. Then, for suﬁﬁczently large n, we have

sup H{gi A0} =0 a.s.
1<i<n
As in the standard SBM case, O = U7 (V™) where U7S7 (V)7 is the singular value decompo-
sition of (U{n)TUfn.Theorem 3.3 indicates that the regularized spectral clustering, in conjunction
with the standard or modified K-means algorithm, consistently recovers the community member-
ship for all nodes almost surely in large samples.
To see the effect of regularization, let K be fixed and |o7,,| be bounded away from zero. Then,
Assumption 9 boils down to log(n)/u], < ¢ for some sufficiently small ¢. Even if min; d; grows
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slower than log(n) or does not grow to infinity at all, we can still choose 7 with 7/log(n) = (1)
such that Assumption 9 holds. This implies that we can obtain strong consistency for some SBMs
in which some nodes have very limited number of links.

In addition, regularization introduces a trade-off between |0}, | and u,. As 7 increases, pu;,
increases and the rows of Bj become more similar, which means that |07, | decreases. Rohe et al.
(2011) and Joseph and Yu (2016) explore such intuition to choose the regularizer. Following their
leads, we choose over a grid of 7 and find the one that minimizes

Q1) = [|Lr — Le[|/16%l,

where ﬁT is an estimator of £.. We refer to our Section 4 for more details.
The following is a non-trivial SBM which does not satisfy Assumption 3 but satisfies Assump-
tion 9.

Example 3.1. Consider a SBM with two groups such that ny = ny =n/2 and

5= (3 i)

In this case, d; = 0.4(%—1)+2-2 = 0.2n40.6 for node i in cluster 1 andd; = 2-24+2(2-1) =3-2

for node © in cluster 2. The;lej%re, Assumption 3 does not hold. However, for some T such that
7 = Q(log(n)), we have
BT — (0.4 +7/n (2+ T)/TL)
“\@+n/m @+

and d] = 0.2n+ 0.6+ 7(1 —n~t) for node i in cluster 1 and df =3 —4n~! +7(1 —n~1) for node
i in cluster 2. In addition, it is easy to see that

0.4+Tn71 241 8.421100 5 20;)»
T _ 0.2+ (1+7)n— 1 0.2n+(1+7)] /2 (3471172 2+co 2+co
BO - 2+T1 [ ( 42&]-7 ( ) - o 1 s
[0.2n4(14-7)]1/2(34-7)1/2 3+T 0.2+co

when ¢y = limy, oo 7/n € [0,1). Apparently, Bf has full rank and Assumption 9 holds. Therefore,
the strong consistency of the reqularized spectral clustering still holds.

Let 03 ,, denote the second eigenvalue of H}/ZB(?H}/Q. Then as n — oo,

T 0.34co— \/0(2) + 0.2¢p + 0.01 0.2
g = ,
2 2(co +0.2) 0.3 + co + /& + 0.2¢0 + 0.01

where ¢y € [0,1). The minimal degree pl, < 7. Then, Q(1) = O( 7z) where

1
o3 . (17)

1 _ 034 o+ +/c&+0.2¢0 +0.01
03 (i)? 0.271/2 '

In order to achieve mazimal convergence rate, we need co # 0. For simplicity, we just assume

3+co+4/c2+0.2c0+0.01

7 = con. Then, the constant 0 73 achieves minimum on (0,1) at c¢o = 0.2.
€

The previous example illustrates that the regularization works for the case where one cluster
has strong links and the other one has weak links. However, if both clusters have weak links, it is
hard to separate them.
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Example 3.2. Consider the above example with B replaced by

]

and 7/log(n) = Q(1). Then we can verify that

B ((44—7)/(3—1—7) (2+T)/(3+7‘)>

0= \2+7)/B+7) @A+7)/B+7)

such that Bf has two eigenvalues given by 2 and 2/ (3 + 7). But Assumption 9 cannot be satisfied
in this case because uf|o% |*/log(n) is converging to zero at rate 1/(73log(n)). Consequently, we
cannot show that sup, v/n||(O7)T47, — uT,| is sufficiently small or prove strong consistency in this
case.

The above example shows that the regularization may not work for the case in which we have
multiple clusters with weak links.

3.2 Regularized spectral clustering analysis for degree-corrected SBMs

In this subsection, we extend our early analyses to the spectral clustering for a degree-corrected
stochastic block model (DC-SBM).

3.2.1 Degree-corrected SBMs

Since Karrer and Newman (2011), degree-corrected SBMs have become widely used in communica-
tion detection. The major advantage of a DC-SBM lies in the fact that it allows variation in node
degrees within a community while preserving the overall block community structure. Given the K
communities, the edge between nodes ¢ and j are chosen independently with probability depending
on the communities that nodes ¢ and j belong to. In particular, for nodes ¢ and j belonging to
clusters C, and C},, respectively, the probability of edge between ¢ and j is given by

P’Lj = GiejBk1k27

where the block probability matrix B = {Bj,,}, k1,k2 = 1,..., K, is a symmetric matrix with
each entry between [0, 1]. The n x n edge probability matrix P = {P;;} represents the population
counterpart of the adjacency matrix A. We continue to use Z = {Z;;} to denote the cluster
membership matrix for all n nodes. Let © = diag(61,...,60,). Then we have

P=0zBz7"eT.
Note © and B are only identifiable up to scale. We adopt the following normalization rule:

d bi=mnp, k=1,... K (3.1)

Alternatively, one can follow the literature (e.g., (Qin and Rohe, 2013; Zhao et al., 2012)) and
apply the following normalization > ;. ¢; =1, k=1,..., K. We use the normalization in (3.1)
because it nests the standard SBM as a special case when 6; =1 fori=1,...,n.
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We first observe that, if we regularize both the adjacency matrix A and the degree matrix D,
we are unable to preserve the DC-SBM structure unless © is homogeneous. To see this, note that
when A is regularized to A, = A+ 7n 11,k its population counterpart is

P.=P+m vyl =02BZ270 + ' Zul Z.

Since © does not have the block structure, we are unable to find a K x K matrix BT and an n X n
diagonal matrix ©7 such that P, = ©"ZB7Z70O7. For this reason, we follow the lead of Qin and
Rohe (2013) and only regularize the degree matrix D as D, = D + 71,,. To differentiate from the
regularized graph Laplacian L, considered in Joseph and Yu (2016), we denote the new regularized
graph Laplacian as

I = D;l/zAD;l/Q,

and its population counterpart as
-1/2 py—1/2
L. =D 2ppIi2,

where P = ©ZBZ7O, D, = D + 71,, and D = diag(dy, ..., d,) with d; = Z?:l P;j.

3.2.2 Identification of the group membership

Let 7, Wi, D and By be as defined in Section 2.2. To facilitate the asymptotic study, we
assume the following:

Assumption 11. 1. There exists a sequence p,, such that p, > 1 and By < p,, element-wise.
2. Bg has full rank K.

As before, we consider the spectral decomposition of £/ :
T
L =U,,2,Uq,,

where %, = diag(o1p,...,0kn) is a K x K matrix that contains the eigenvalues of £/ such that
lo1n| > |oon| > -+ > |okn| > 0 and UL Uy, = Ix. Note that we suppress the dependence
of Uy, and %, on 7. Let ©, = diag(f7,...,0;,) where 0] = 0;d;/(d; + 7) for i = 1,...,n. Let

T T
ng = Zieck it

Theorem 3.4. Suppose Assumptions 11 holds and let g? and u,LT be the node i’s true community
identity and the i-th row of Uy, respectively. Then, (1) there exists a K x K matriz S], such

that Uy, = ©Y%2(270,.2)-1/287, (2) (n7)V2(07) 72|l || = 1, and (3) if 2 = 2, then || 4 —
= 0; if 2 # 2, then || — 4| = V2
\” ; Zle#zjv en || T T || .

[ g I Mgl

Theorem 3.4 follows Qin and Rohe (2013, Lemma 3.3). In particular, Theorem 3.4(3) provides
useful facts about the rows of Uy,. First, if two nodes ¢ and j belong to the same cluster, then the
corresponding rows of Uy, point to the same direction so that w;/||u;|| = w;/|lu;]|. Second, if two
nodes ¢ and j belong to the different clusters, then the corresponding rows of Uy, are orthogonal
to each other. As a result, we can detect the community membership based on a feasible version

of {ui/[luill}.
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3.2.3 Uniform consistency of the estimated eigenvectors and strong consistency of
the spectral clustering

To proceed, we add the following assumptions.

Assumption 12. There exist two constants Ci and c¢1 such that

oo > Cp > limsup sup n;QdZK/(ndi) > liminf inf n;QdZK/(ndi) >c; > 0.
n 1<i<n 7 n 1<i<n i

Assumption 12 holds for the simplest case in which the degrees are homogeneous within the
same cluster. Note that in this case, n;Q = ngd; /dl, which may be of smaller order of magnitude

of n/K if d;/T — 0. However, Assump‘zcion 12 still holds because the factor d;/d] is removed. In
general, Assumption 12 holds if d; is of the same order of magnitude for all 7 in the same cluster.

Assumption 13. Denote p,, = min; d;, ul, = p,, + 7, 0 = max; 0;, and § = min; 0;. Then, for n
sufficiently large,

§'/? log!/2(n)

-4
© 02 (up) 2, = 1077,
2.
172 1/9-1/4
1/2 i_’_ lgg(Z) o 0
K'O"k)g (n) <K fos( )> +p,+1 §10_807101/2, and
(7)1/2 2 oL/4 n e
1229 O%kn v

3. there exists a positive constant ¢ such that § > n=¢.

Assumption 13 specifies conditions on d;, 8;, and o g,. The same remarks after Assumption 3
apply. Admittedly, the constants in Assumption 13 are not optimal. We choose them purely for
technical ease. If 0 < < § < oo, then Assumption 13.1 is nested by Assumption 13.2, which is
similar to Assumption 3. If in addition, K is fixed and liminf,, |0 x,| > 0, then Assumption 13.2
further boils down to log(n)/u; < ¢ for some sufficiently small ¢. This indicates that even if the
minimal degree 1, is bounded, Assumption 13.2 still holds if 7 = Q(log(n)).

Consider the spectral decomposition of L, the sample counterpart of £, as

Lg_ = Uninﬁg; = Ulnilnﬁﬂ + UZniZnUg;u

where 3, = diag(61p,...,0m) = diag(S1n, Lop) With [61,] > [6on] > -+ > |Gan| > 0, S, =
diag(d1n, .- 0Kkn), oy = diag(6 k+1m,---,0nn), and U, = (Uln, Ugn) is the corresponding eigen-
vectors such that U{";LUM = Ig and Ug;lﬁln =0.

The following lemma parallels Lemma 2.1.

Lemma 3.1. If Assumptions 11-13 hold, then
12, — L2 < T(og(n)/ul)?  a.s.

and
10120 — Ut < 10(log(n)/pup) 2o gnl ™ a.s.,

where Op, = UVT is a K x K orthogonal matriz and USVT for some diagonal matriz ¥ is the
singular value decomposition of Ulj;lUln.
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In order to obtain the strong consistency, we need to derive the uniform bound for |47 O, —u!,
where @'f and u'f are the i-th rows of Uy,, and Uy, respectively.

Theorem 3.5. If Assumptions 11-13 hold, then

sup(ngo)*(07) " ||af On —uf | < C™ny acs.,
7 1

where C* is an absolute constant specified in the proof and

log(5)\ /2 1/251/4
B <pn log1/2(n)> <<;1( + 10§En))) pr "0

+p +1>.
\1/2 1/4 "
(1) ? 0%, 0"

Theorem 3.5 is essential to establish the strong consistency result. The following Assumption
specifies the rate requirement for strong consistency depending on whether the standard or modified
K-means algorithm is used.

n

Assumption 14. Let C* denote the absolute constant in Theorem 3.5. For n sufficiently large we
have

1. C*K3/%, < g

2. 30C*Kn,, < V2.

Corollary 3.1. If Assumptions 11-13 hold, then

@il | Opui

sup

7

‘ <2C*n, a.s. (3.2)

If Assumption 14.1 holds and the K-means algorithm is applied to Bm = d;/ ||l and B, =

Onuii/||uiil|. Denote the obtained community memberships as {g;}?_,. Then,
sup 1{g; #¢°} =0 a.s.
1<i<n

A

If Assumption 14.2 holds and the modified K-means algorithm is applied to B;, = G1;/|G1] and
gon = Onuii/[luril|. Denote the obtained community memberships as {gi};y. Then,

sup g # ¢} =0 a.s.
1<i<n

Corollary 3.1 justifies the use of standard and modified K-means algorithms on /|| ||
provided the bound on the right hand side of (3.2) is O (1/K3/2) and O(K), respectively, which
is ensured by Assumptions 14.1 and 14.2, respectively.
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3.2.4 An adaptive procedure

Given the strong consistency of the spectral clustering, it is possible to consistently estimate © by
some estimator, namely ©. Built upon O, we propose an adaptive procedure by spectral clustering

a new regularized graph Laplacian denoted as L, which is defined as

"n_ IN=1/2 Al y/1\—1/2
LT - (DT) AT(DT) ’

where A” = A4+ 71n"'01,.76 and D = diag(A”1,). The population counterpart of L” is denoted
as L and defined as
£ = (D) P,

where P! = P+1mn"101,, L0 = ©ZB!Z70, B! = B+mn 'yl , and D! = diag(P/t,) = D+70.
Provided © is consistent, we conjecture that one can show the adaptive procedure is strongly
consistent by applying the same proof strategy as used in the derivation of strong consistency of
the spectral clustering based on L, and L!.. We leave this important extension for future research.
In the following, we focus on establishing the consistency of ©.
Given the estimated group membership {g;}!" ;, we follow Wilson, Stevens, and Woodall (2016)
and estimate © by © = diag(fy, - - - ,0,), where

~ n n

Oi =15 _._, A”)/(Zw;gi,:gi ) (3.3)
and 1y = #{i : §; = k}. Next, we show 0, — 0; as. uniformly in 7 =1,--- ,n.

Assumption 15. 1. limsup,, § < co.

2. supi<icn HGi # 90} =0 as.

Assumption 15.1 requires that the degree of heterogeneity is bounded, which is common in
practical applications. Assumption 15.2 requires the preliminary clustering is strongly consistent.
For instance, this assumption can be verified by Corollary 3.1. However, we also allow for any
other strongly consistent clustering methods, such as the conditional pseudo likelihood method
proposed by Amini et al. (2013).

Let my, = Z?Zl HjBkg? and m,, = infy my. Note my = Zi,eck dir /ny is the average degree of
nodes in community k£ and m,, is the minimal average degree.

Theorem 3.6. If Assumption 15 holds, then sup;<;<, 10; — 0;] = Oq.5.(log(n)/m,,).

In order for © to be consistent, we need the average degree for each community to grow faster
than log(n). In some cases, the average degree and the minimal degree are of the same order of
magnitude. Then we basically need p,,/log(n) — oo for the consistency of ©. In our simulation
designs, u,,/log(n) — 0, which is, in some sense, the worst case for the adaptive procedure.
However, even in this case, the performance of the adaptive procedure improves upon that of the
spectral clustering based on L.

4 Numerical Examples on Simulated Networks

In this section, we consider the finite sample performance of spectral clustering with two and three
communities, i.e., K = 2 and K = 3. The corresponding numbers of community members have
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ratio 1: 1 and 1: 1 : 1 for these two cases, respectively. The number of nodes is given by 50 and
200 for each community, which indicates n = 100 and 400 for the case of K = 2 and 150 and 600
for the case of K = 3. We use four variants of graph Laplacian to conduct the spectral clustering,
namely, L, L, L, and L” defined in Sections 2 and 3.

1. L = D"Y2AD~'/2 where D = diag(At,). It is possible that for some realizations, the
minimum degree is 0, yielding singular D.

2. L, = DT_l/zATDT_l/2 where A, = A+ 7J,, D, = diag(A,1,,), and J,, = n" el

n
3. L = DT_1/2ADT_1/2 where D, = D + 71, and I, is an n X n identity matrix.

4. LV = (D")~1247(D")~1/2 where A” = A+ 710" '01,.16 and D" = diag(A”1,).

The theoretical results in Sections 2 and 3 suggest the strong consistency of the spectral clus-
tering with L, and L for the standard SBM and DC-SBM, respectively under some conditions.
In Sections 4.1 and 4.2, we consider these two cases. In addition, for the DC-SBM, we will also
consider the adaptive procedure introduced in Subsection 3.2.4. Additional simulation results of
spectral clustering with L and L for the standard SBM and L and L, for the DC-SBM can be
found in the supplementary Appendix D.

For the standard SBM, after obtaining the eigenvectors corresponding to the largest K eigen-
values of the graph Laplacian (L, L; and L), we classify them based on K-means algorithm
(Matlab “kmedoids” function, which is more robust to noise and outliers than “kmeans” function,
with default options). For the DC-SBM, before classification, we normalize each row of the n x K
eigenvectors so that its Lo norm equals 1. For comparison, we apply the unconditional pseudo-
likelihood method (UPL) and conditional pseudo-likelihood method (CPL) proposed by Amini
et al. (2013) to detect the communities in the SBM and the DC-SBM, respectively.> To evalu-
ate the classification performance, we consider two criteria: the Correct Classification Proportion
(CCP) and the Normalized Mutual Information (NMI). All the simulation results below are com-
puted using the modified K-means algorithm. The simulation results for the standard K-means
algorithm can be found in previous versions of this paper. When the regularizer 7 is small, the
modified K-means algorithm can produce slightly more accurate classification while at the optimal
7 selected by our data-driven method explained below, the classification results in terms of CCP
and NMI for the two algorithms are basically the same.

4.1 The standard SBM

We consider two data generating processes (DGPs).
DGP 1: Let K = 2. Each community has n/2 nodes. The matrix B is set as

2 (log*(n)  0.2log(n)
B= n (O.Qlog(n) 0.8 log(n)> '

The expected degrees are of order log?(n) and log(n) respectively for communities 1 and 2.

3 As Amini et al. (2013) remark, the UPL and CPL are correctly fitting the SBM and the DC-SBM, respectively.
In both UPL and CPL, the initial classification is generated by spectral clustering with perturbations (SCP). The
SCP is spectral clustering based on L, with 7 = d/4 and d being the average degree.
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DGP 2: Let K = 3. Each community has n/3 nodes. The matrix B is set as

3 nt/? 0.110g”%(n) 0.110g%(n)
B==0110g"%n) log*?(n)  0.11log"%(n)
0.110g%%(n) 0.110g”%(n) 0.810g”%(n)

The expected degrees are of order n'/2, log3/ 2(n) and log5/ 6(n) respectively for communities 1, 2
and 3.

We follow Joseph and Yu (2016) and select the regularizer 7 that minimizes a feasible version
of

1Lr = Lol /|oknl-

In particular, for a given 7, we can obtain the community identities Z based on the spectral
clustering of L. Given Z, we can estimate the block probability matrix B by the fraction of links
between the estimated communities, which is denoted as B. Let P = ZBZT, P. =P+ T,
D, = diag(Prip), Ly = D5 V2p pt ? and 0%y be the K-th largest in absolute value eigenvalue
of £,. Then we can compute )

Q(7) = [ILr = Lr|l/16nl-

We search for some 77¥ that minimizes Q(7) over a grid of 20 points, 74, on the interval [Tmin, Tmax] ,
where j = 1,...,20, Tmin = 107 and 7.y is set to be the expected average degree. We set
T1I = Tmin, T2 = 1, and 740 = (7'max)j/18 for 5 = 1,...,18. Qin and Rohe (2013) suggested
choosing 7 as the average degree of nodes, which is approximately equal to the expected average
degree.

All results reported here are based on 500 replications. For DGPs 1 and 2, we report the
classification results based on L, = D, 1 2ATD; 12 0 Figures 1 and 2. The results based on L
and L/ are relegated to the supplementary Appendix D.

In Figures 1 and 2, the first and second rows correspond to the results with n = 100 and n = 400,
respectively. For each replication, we can compute the feasible 77Y as mentioned above. Their
averages across all replications are reported in each subplot of Figures 1 and 2. In particular, the
green dashed line represents 77Y, which can be easily compared with the expected average degree,
the rightmost vertical border.

We summarize our findings from Figures 1 and 2. First, despite the fact that the minimal
degrees for neither DGP satisfies Assumption 3 so that the standard spectral clustering may not
be consistent, the regularized spectral clustering performs quite well in both DGPs. This confirms
our theoretical finding that the regularization can help to relax the requirement on the minimal
degree and to achieve the strong consistency. In addition, when a proper 7 is used, the spectral
clustering based on L, outperforms the UPL method of Amini et al. (2013). Both results are in
line with the theoretical analysis by Joseph and Yu (2016).

4.2 The DC-SBM

The next two DGPs consider the degree-corrected SBM.

DGP 3: This DGP is the same as DGP 1 except that here P = ©ZBZ7 0T, where 0 is a diagonal
matrix with each diagonal element taking a value from {0.5,1.5} with equal probability.

DGP 4: This one is the same as DGP 2 except that here P = 0ZBZ70" and © is generated as
in DGP 3.
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Figure 1: Classification results for K-means for DGP 1 (K = 2) based on L; = D, 124 p;i/2
and for UPL method. The z-axis marks 7 values, and the y-axis is either CCP (left column) or
NMI (right column). The green vertical line in each subplot indicates the estimated 7 value by
using the method of Joseph and Yu (2016). The first and second rows correspond to n/K = 50

and 200, respectively.
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Figure 3: Classification results for DGP 3 (K = 2, degree-corrected) based on L. = D, 12 op; 12

and L = Dy 1 2A7D; 2 The red and black vertical lines correspond to the optimal regularizers
7Y and 7YY, respectively. (See Figure 1 for the explanation of other features of the figure.)

To compute the feasible regularizer for the DC-SBM, we modify the previous procedure to
incorporate the degree heterogeneity. In particular, given 7, by spectral clustering L, we can
obtain a classification Z = (Zl, ce Zn)T, where Z; is a K by 1 vector with its g;th entry being
1 and the rest being 0 and §; is an estimator of node i’s community membership. Let nip =
#{i : g, = k}. Then we can estimate the block probability matrix B and © by B = [Bkl]lgk,ng

and © = diag(@l, ... ,én), where 0; is defined in (3.3) and By = (Z(i,j):gi:k@j:l Ai;)/(fgny). Let

P = 0zBz70T, D, = diag(Pt,) + 71, and L = D PPDIY?. Let 6%, denote the K-th
largest eigenvalue of £ (in absolute value). Let

Q'(r) = L7 — L2N/16%nl-
We search for some 7/?Y that minimizes Q’(7) over the same aforementioned grid.

For DGPs 3 and 4, we report the classification results based on L. = D, 1 QADT_ 2 a5 the
orange lines in Figures 3 and 4. For each subplot, the rightmost border line and the red vertical line
represent the averages of d and 7Y, respectively. Figures 3 and 4 show the regularized spectral
clustering based on L’ is slightly outperformed by CPL in DC-SBMs. However, 7Y has the
close-to-optimal performance in terms of both CCP and NMI over a range of values for 7.

Table 1 reports the classification results for the spectral clustering with 7 = 77Y for DGPs
1-2 (or 7Y for DGPs 3-4) and d in comparison with those for the UPL (or CPL for DGPs 3-4)

method over 500 replications. In general, the spectral clustering with 7 = 77Y outperforms the
UPL method in DGPs 1-2 but slightly underperforms the CPL method for DGPs 3 and 4. In all
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7Y and 7Y, respectively. (See Figure 1 for the explanation of other features of the figure.)

cases, we observe that the increase of the probability of correct classification as n increases. This
is consistent with the theory because both the UPL/CPL method and our regularized spectral
clustering method are strongly consistent.

Table 1: Comparison of classification results

CCP NMI
Spectral clustering UPL/CPL | Spectral clustering UPL/CPL

DGP K n/K d 7Y 1Y d Y /7Y
1 2 50 0.9998  0.9998 0.9980 0.9989  0.9989 0.9865
2 200 1.0000 1.0000 0.9994 1.0000 1.0000 0.9947
2 3 50 0.9951 0.9956 0.9941 0.9795 0.9812 0.9748
3 200 | 0.9992 0.9995 0.9979 0.9954 0.9972 0.9889
3 2 50 0.9576 0.9596 0.9623 0.7857 0.7964 0.8134
2 200 | 0.9764 0.9777 0.9769 0.8564 0.8689 0.8658
4 3 50 0.9460  0.9513 0.9600 0.8308  0.8444 0.8668
3 200 |0.9624  0.9701 0.9745 0.8696  0.8902 0.9022

Figures 3 and 4 also report the classification results based on LY, which are shown as the dark
lines. We find the performance of spectral clustering based on L is better than those using the
CPL method. In addition, our choice of 7?Y, marked as the dark vertical line in each subplot,
performs well in both DGPs 3 and 4.
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5 Proof strategy

In this section we outline the proof strategies for the main results in Section 3.2. First, noting that
the regularized spectral clustering for the DC-SBM nests standard SBM without regularization
by setting 7 = 0 and §; = 1 V¢ = 1,--- ,n, all the main results in Section 2 follow that in
Section 3.2. Second, based on the results in Section 2, the results for the standard SBM with
regularization in Section 3.1 can be derived by replacing By, p,,, p,,, and o i, by their counterparts
with regularization, i.e., B{, u;,, p;,, and o7, , respectively.

Section 3.2 contains Theorems 3.4, 3.5 and 3.6, Lemma 3.1 and Corollary 3.1. Since the proofs
of Theorems 3.4 and 3.6, Lemma 3.1 and Corollary 3.1 are relatively simple, below we focus on
the proof strategy for Theorem 3.5.

Theorem 3.5 aims to establish a uniform upper bound for each row of the gap between sample
and population eigenvectors (up to some rotation), i.e., sup; ]\QZZTO” —ul'||, where 4} and u! are
the i-th rows of Uy, and Uln, respectively. Let A= L’TUann = U1,30n0n, A = LU, = UinXn,
A = U; Ty On, and A; = u; I'y,. Our proof strategy is to obtain the upper and lower bounds for
(n, )1/2(97) 12)|A; — Ayl both of which involve (n, )1/2(97) 12147 0,, — ul||. The two bounds

produce a contraction mapping for Supl(ngo)l/ 207)~ 1/ 2|aT O, —uT||. By iterating the contraction

mapping sufficiently many times, we obtain the desired bound.
Lower bound. In order to derive the lower bound for (n;?)l/ 2||A; — Ay||, we note that
(ngo)2(07) 2N Ai = Ail| = (njo)/2(67) 2|0 £00n — uf i
> (ng )1/2( D7V2(@] On = ul ) Zall = (nge) 2(07) ™l (B0 — )
( so) 2O TV a] (£4,.0n —OnEn)II
= - Hi —III;. (5.1)

Clearly, by the Hoffman-Wielandt inequality, Lemma 3.1, and Assumption 13.2,

. log(n) 1/2
|6kn] > |oKn| =7 ol lokn| > 0.99|0k,| a.s.,
n” Kn

and thus,
sup [; > 0.999|0 k| a.s.,
i

where I';, = sup; |(n;?)1/2(9Z)_1/2||ﬁiTOn —ul||. Tt is the leading term of the lower bound involving

I'n. In the online Appendix B, we show that sup; IT; < 7(log(n)/u;)/? a.s. and sup, ITI; <
34(log(n)/ul)Y?|okn| " (Tp +1)  a.s. It follows that

sup(ngp)!2(07) 2 [Ai = Aill 2(0:999]0 snl — 34(10g(n)/ 1) 2l )T — 41008 (n) /117) o)
>0.99]0 1n [T — 41(log(n) /7)o, (5.2)

where we use the fact that 34(log(n)/uf)"/?jo 2| < 0.09.
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Upper bound. To derive the upper bound for Supi(n;Q)l/Q(QZ)*l/QHf\i — A;l|, we first denote
A=D7Y? P70y, and A; = (dr)~1/? [P]i.DT_l/zUln as the i-th row of A. Then, we have

sup(ng 0)/2(67) 7121 As — Al < sup(ng 0)/2(67) 7121 — A||+sup( 0)'2(67) 2] A; — A
=T+ Ts. (5.3)
For Ty, we have
Ty = sup(n, 50) 2OD) T VI(D) Y2 [A). D V2010 — (d]) 2 [P Dy UL

< sup(ngo)/2(67)~2(d]) 2| [P)i. D /(010 O — Una) |

i

+Sup( )1/2(97) V2(dD) T2 ([A)s = [P (D72 = DY) U1 O
+Sup( 1)1/2(97) V2(dD) 72 ([ALi. — [Pi) D201 On||
=To1+Too+1o3. (5.4)

Lemma C.5 in the online Appendix C provides the upper bounds for 77, T5 1, T 2, and T3 3. Taking
T5 3 as an example, we note that

T273 = sup sup ( : 1/2 97 1/22 i — deT) 1/2hj-
i h=U1nOnf,feSK-1 :

Here, h; denotes the jth element of h. Lemma C.4 builds a Bernstein-type concentration inequality
to upper bound 753, which involves the [, and lp norms of h, In particular, ||h|| depends

on the rough upper bound (5%0) for I',,.4 One of the technical difficulties is that, due to the
correlation between the sample graph Laplacian and its eigenvectors, the sequence of random
variables A;; : j = 1,--- ,n are not independent of h = [71nénf for some f € SE~=1. To deal with
it, we rely on the “leave-one-out” technique used in Abbe et al. (2017), Bean, Bickel, El Karoui,
and Yu (2013), Javanmard and Montanari (2015), and Zhong and Boumal (2018). The idea is to
approximate the eigenvector by a vector which is independent of one particular row of the sample
graph Laplacian. This helps to restore the independence. Then, the approximation errors are
bounded in Lemma C.7, which further calls upon Lemmas C.6 and C.8.
At the end, Lemma C.5 establishes that

sup(n, 2o 2O TR — A

log(5) \ /2 1/251/4
_ K og(n
<3450C1¢; 2 p,, log 2 () (u7) /2o |[ +1+4p, + < Logf 9)2/4 . a.s., (5.5)

where we can choose 5\ = n'/29=1/2 Combining the lower and upper bounds in (5.2) and (5.5)
for supl-(n;(_))l/ 2(0T)=1/2||A; — A4]| and applying Assumption 13, we have

0.00169) + 3527Cye; Y, > Ty, (5.6)

“In fact, the upper bound for ||h||e in the proof, which is denoted as ,,, is s 4.
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where 7),, is defined in Theorem 3.5.

Iteration. (5.6) suggests that the initial rough upper bound 5% for T, can be refined to

(5%1) = 0.0015510) + 3527C101_1/277n. Then we can take this new upper bound into the previous

calculations to obtain
0.00168) + 3527Cy¢; /?n,, > T,

Therefore, we have constructed a contraction mapping, through which we can refine our upper
bound for I',, via iterations. We iterate the above calculation ¢ times for some arbitrary integer ¢,
and obtain that

I, <60, 50 =0.00160Y +3527C,¢; /*n,,.

This implies
59 = (0.001)" |8© — 3527C e 2, | + 3527C e 2

n-
Letting t = n, we have

T, <6 <1000~ "n'/2071/2 4 3527C; ¢/ ?n,, < 3528C1¢; /%y

ns

where we denote C* in Theorem 3.5 as 3528010171/2 and we use the fact that it is possible to
choose (5%0) = nl/ZQ_l/2 as the initial rough bound for I',,.

6 Conclusion

In this paper, we show that under suitable conditions, the K-means algorithm applied to the
eigenvectors of the graph Laplacian associated with its first few largest eigenvalues can classify
all individuals into the true community uniformly correctly almost surely in large samples. In
the special case where the number of communities is fixed and the probability block matrix has
minimal eigenvalue bounded away from zero, the strong consistency essentially requires that the
minimal degree diverges to infinity at least as fast as log(n), which is the minimal rate requirement
for the strong consistency discussed in Abbe (2018). Similar results are also established for the
regularized DC-SBMs. The simulations confirm our theoretical findings and indicate that an
adaptive procedure can improve the finite sample performance of the regularized spectral clustering
for DC-SBMs.
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Online Supplement to “Strong Consistency of Spectral
Clustering for Stochastic Block Models”

Abstract

This supplement is composed of four parts. Sections A and B provide the proofs of the
main results in Sections 2 and 3, respectively. Section C contains some lemmas that are used

in the proofs of the main results. Section D presents some additional simulation results.

Key words and phrases: Community detection, degree-corrected stochastic block model,

K-means, regularization, strong consistency.

A  Proofs of the results in Section 2

In this section, we prove the main results in Section 2, viz., Theorems 2.1-2.3, Lemmas 2.1-2.2,
and Corollary 2.1. In particular, we note that the standard SBM is a special case of regularized
DC-SBM with regularizer 7 = 0 and degree-corrected parameter 6; = 1. Therefore, Lemma 2.1
and Theorem 2.2 follow Lemma 3.1 and Theorem 3.5, respectively.

Proof of Theorem 2.1. By the proof of Rohe et al. (2011, Lemma 3.1), we have £ = n~'ZByZ".
Therefore, £2 = n"1ZBy(Z1Z/n)BoZT. Let I,, = ZT Z/n = diag(r1n, ..., Tkn). By the spectral

decomposition in Assumption 1, we have

I1}/2BylIl, Boll}/? = 5,92 5T, (A1)
where Q,, = diag(win,...,wky) such that |wi,| > |woy| > -+ > |wky| > 0 and S, is a K x K

matrix such that SIS, = I. Let Uj, = Z(Z"Z)~/2S,,. Then, we have
UL QU = £2 = U, 23,U7,. (A.2)

In addition, U;lUy, = SIS, = Ix. Therefore the columns of Uj, are the eigenvectors of £
associated with eigenvalues o1y,...,0K,, Up to sign normalization. Without loss of generality
(W.lLo.g.), we can take Uy, = U, and §,, = ¥q,,.

Furthermore, if node i is in cluster Cy,, then 2] (Z72)~1/28, = n,;lﬂ[Sn]kl., where [Sy]k.
denotes the k-th row of S,,. Therefore, by Assumption 2 and the fact that ||[Sy]x,.|| = 1,

(n/ K)V2|20 (27 2) 728, < e 1Sl | = o1 2

Taking sup, on both sides establishes the first desired result.
Similarly, by Assumption 2, we can also establish the lower bound: for node j in cluster Cy,
with k1 # ko

(/K2 (zi — 2)T(272) 728, ]| = (I, [Sulky. — 13, [Sulia|| = €7 *V2 = ¢ > 0.



This concludes the proof. ]

Proof of Lemma 2.1. Lemma 2.1 is a special case of Lemma 3.1 with §;, =1fori=1,---,n
and 7 = 0. We prove the general result in Lemma 3.1 later. O
Proof of Theorem 2.2. Theorem 2.2 is a special case of Theorem 3.5 when 6; = 1 for ¢ =
1,--- ,n and 7 = 0. We prove Theorem 3.5 with C* = 35286’10;1/2 later. O

Proof of Lemma 2.2. Let Q,(A) = fo:l miny<;<x || By — ul|*Tkn. We first derive the conver-
gence rate of Qp(A) — Qn(A) uniformly over A € M = {(ay, ..., ak): supy << llowll < 2M} for
some constant M independent of n. Let R, = sup; ||3;, — 8 gonll - Then, by Assumption 4.3,

R, <con <M a.s. (A.3)
In addition,

1B = cuall® = 11840, — cull® = 21(Bgon = Bin) " (Bgow — )| = 1840, = Binll?
> [|B40, — ull® = 2[1B 00 = Binll1 18405 — cullo — R,
> 1By — cll® = 2VER[|Bgo, — cul| — Ry,
> [|Bg0, — ctll® = 2VE Ra([1B 0l + lleull) — R,

where the third inequality follows the Cauchy-Schwarz inequality with the fact that both 3 o, and

Bin are K x 1 vectors. Taking minj<j<x on both sides and averaging over i, we have
Qn(A) > Qu(A) — (6VE +1)Mez,.
Similarly, we have @, (A) < Qn(A) + (6K + 1)Mcy,. By (A.3),

R, = sup |Qn(A) — Qu(A)| < (6VK + 1)Mcy,  as.
AeM
Next, we show ,Zn € M. Denote .Zn ={ay,...,ax}. By Assumption 4.1,
Sup || Binll < R+ sup By, |l < 2M.
i 1<k<K

Denote I, (k) = {i : k = argmin; ;< 18;,, — @ul|} for some k < K. If |G| > 2M and I,,(k) = 0,
then we can choose

A ~ ~ ~ o~ ~
An - {alu ey O 1,0, Okt 1, - - 'aaK})



where al, = B, for some arbitrary i < n. Therefore, we have ||&}|| < 2M < ||| and Qn(A,) <
Qn(A,), which is a contradiction. On the other hand, if ||a| > 2M and I,,(k) # 0, then we can
choose

A ~ ~ ~] ~ —~
An = {alv sy 1, O, Oy, - 'aaK}’

where o), = |I ol Zzeln B, and | I, (k)| is the cardinality of I,,(k). This means [|a}|| < 2M < ||ax|
and Qn(.A’ ) < Qn(A,), which is a contradiction too. Therefore, ||@|| < 2M. Since k is arbitrary,
A, € M.

Third, we show for any n > 0,

. €1 .o 2 2
inf A) > — min(n~, cf,,/2), A4
where B, = {B1n, .- -, Bkn} and ¢ is the constant defined in Assumption 4.2. If there exist some

lo€{1,...,K} and two indexes k; and k2 such that
lo = arg min |, — au| = arg min | By,,, — oull
1<ISK 1<ISK
then by Assumption 4.2

Qn(A) = Tyl Bryn — ol + Thonl| Bryn — az0||2

2
ci1C
Hﬁkln Bk27n||2 Z ﬁ

> (81 — ] + 1By — 1, )2 2 L

- 2K
On the other hand, if there does not exist such an [y, then there is a one-to-one mapping h :
{1,...,K} —{1,..., K} such that

h(k) = argmin || 8, — au.
1<I<K

Therefore,

K
A) = 3 whnll B — ango I > (nf 7o) HA (A, By) > exrf? /K.
k=1

Last, we show H(A,,B,) < (15M/cl)1/2c§£2[(3/4. For any ¢ > 0 and sufficiently large Co,

P(H(A,,By) > (15M/c1) 22 K3* o)
= P(H(Ay, By) > (15M/c1) 2P K34 Qu(A,) > Qu(By)
+min(15M02nK1/2 acd,/2K)) i.0.)
< P(Qn(An) + Ry > Qu(By) — Ry + min(15M e, K2, 0163, /(2K))  i.0.)
= P(2R, > Qu(B,) — Qn(A,) + min(15M e, K2 ¢163, /(2K))  i.0.)
< P(2R, > min(15Mep, KV2, 12, /(2K)) i.0.) =0,



where the first equality holds due to (A.4) and the fact that Q,(B,) = 0, the last inequality holds
because Qn(By) — Qn(An) > 0, and the last equality holds because, by Assumption 4.3,

2R, < 2(6VK + 1)Meg, < 15VK Mey, < 162,/ (2K).

This concludes the proof. ]

Proof of Theorem 2.3. By Lemma 2.2 and Assumption 4.2 and (iii), for each n, there is a
one-to-one mapping F, : {1,..., K} — {1,..., K}, such that

SUp |kn = B, iyl < (15M/er) 26,2 K3 as.
W.lo.g., we can assume F, (k) = k such that

R, = sup ||Qkn — Brnll < (15M/01)1/20§{L2K3/4 a.s. (A.5)
k

If §; # ¢°, then |3, — Qgnll < 185 — @0, - This, in conjunction with the triangle inequality,
implies that

It follows that ||3;,, — ag?nn > 2 {|tig,n — aggnn. By (A.3), (A.5), and the repeated use of the triangle

inequality, we have

N =N 1, . .
> HIB’LTL - Ctg?n” Z §Ha§zn - ag?nH

o~

1 ~

= 5”(65}111 - Bg?n) + (Odgin - Bgm) + (ﬁg?n - ag?n)||
1 ~ -

> 5”59”1 - Bg?nH — Rp = c1n/2 — Rn.

This implies 1{g; # ¢°} < 1{R,, + 2R, > c1,/2}. Noting that the RHS of the above display is

independent of i, we have
P(sup1{@; # ¢7} >0 i.0.) < P(can + 2R, > ¢1,/2 i.0.)
i

= P(copn + 2(15M/cl)1/zc¥l2K3/4 > c1p/2  i.0.)

= 0 under Assumption 4.3.

This concludes the proof. O



Proof of Corollary 2.1. We note that 8, = (Kmgn)~2[SnOL k., M = ||B1,|| < 01_1/2, Bin =

(n/K)Y2aT, e1p = 01_1/2\/5 > 0, and

log/2 1 log(5)\"?
P ) <1+pn+(K+°g”) 2

:“711/20%@ log(n)

Then, by Theorem 2.3 and Assumption 3, we have
(2caney® + 16 K34 MV20)/%)2 < 16,022 K%/ Mey, < 257K, Py < 201071,

where the first inequality holds because by Assumption 3 and the facts that C* = 3528C'1cfl/ 2
and
2eancy’? < 2(1078C et/ 2C*) 2l < 0.02042.

This verifies Assumption 4.3. O

Proof of Lemma 2.3. Following the first step in the proof of Lemma 2.2, we can show that
R, = Slj\p ’@H(A) — Qn(A)| < can. (A.6)

Suppose H(A,B,) > n for any n > 0. Then, by Step 3 in the proof of Lemma 2.2, if there exist
some [y € {1,..., K} and two indexes k; and ks such that

lo = arg min | By, , — | = arg min |, —
1<IKK 1<IKK
then by Assumption 4.2

Qn(-A) > Trkln”ﬁkjn - alo” —+ ﬂk2nH5k2n - aloH

C1
> EH/B/ﬁn - Bkg,n” > Clcln/K-

On the other hand, if there does not exist such an ly, then there is a one-to-one mapping h :
{1,...,K} — {1,..., K} such that

h(k) = arg min || By, — |
1<I<K

Therefore,
K
Qn(A) = Tl Brn — ngell = (inf mn ) H (A, Bn) 2 crn/K
k=1
and
. C1 (Cln A 7’)
f n > —— A7
A:H(}é{}Bn)>nQ (A) B K ( )



3K con

By Step 4 of the proof of Lemma 2.2 and letting n = o, we have
~ 3K
P(H(A,,By) > =20 o)
1
_ 3K B c1(ein A M) .
=P(H(An, B) = ==, Qu(An) = Qu(By) +min ————— i.0.)

where the first equality is due to (A.7), the first inequality is due to Assumption 6.2, the second
inequality is because é}n(ﬂn) < @n(ﬂn), and the third inequality is due to (A.6). O

Proof of Theorem 2.4. By Lemma 2.3 and Assumption 4.2, for each n, there is a one-to-one
mapping F,, : {1,..., K} — {1,..., K}, such that

S‘;P [Ckn = BE, (kynll < 3Kclea, as.
W.lo.g., we can assume F), (k) = k such that

Ry, = sup || — Binll < 3Keptean  as. (A.8)
k

If §; # ¢?, then 1B, — gnll < 11Bin — @40, |- This, in conjunction with the triangle inequality,
implies that

[Ggin — Gyl — 1Bin — yall < 180 — Ggunll < 1310 — Gl
It follows that ||3;,, — g, > 1 agin — a0, |l- By (A.6), (A.8), and the repeated use of the triangle
inequality, we have

~ . 1 _
> HIB’Ln - aglon” > §||a§i7’b - agion”
1 ~ ~
= §H(ﬁgm - Bg?n) + (aém - thn) + (/Bg?n - ag?n)”
1 - ~
> QHBgm - Bg?n“ — Ry = c1n/2 — Ry

This implies 1{g; # ¢7} < 1{can + 2R,, > c1,/2}. Noting that the RHS of the above display is
independent of i, we have

P(sup 1{g; # ¢} > 0 i.0.) < P(con + 2Ry > c10/2 i.0.)
3

= P(copn + 6chlcgn > cin/2  i.0.)

= 0 under Assumption 6.2.



This concludes the proof. ]

Proof of Corollary 2.2. By Theorems 2.1 and 2.2, we have ¢, = 01—1/2\/5 and

1/2 1/2
A ) (HW <1+log<5>) p%ﬂ).

”}Z/Qa%{n K log(n)

Then, the result directly follows Theorem 2.4. O

B Proofs of the results in Section 3

In this appendix, we prove the main results in Section 3, viz., Theorems 3.1-3.6, Lemma 3.1, and
Corollary 3.1. The proof of Lemma 3.1 calls upon Lemma C.2 and that of Theorem 3.5 calls
upon Lemmas C.3, C.4 and C.5 in Appendix C. Theorems 3.1 and 3.2 can be proved in the same
manner as Theorems 2.1 and 2.2, respectively, while Theorem 2.2 is a special case of Theorem 3.5.
Therefore, the key part of this section is to prove Lemma 3.1 and Theorem 3.5.

Proof of Theorem 3.1. Since L, = n‘lZBgZ, the proof follows that of Theorem 2.1 with A,
By, and S, replaced by A-, Bj, and S}, respectively. O

Proof of Theorem 3.2. The proof of part (i) is analogous to that of Theorem 2.2. The main
difference is that we need to use Theorem 3.1 in place of Theorem 2.1.

Theorem 3.1 and the first part of Theorem 3.2 verify Assumptions 4.1 and (ii) and Assumption
4 (iii), respectively, with By, = (K7rn) " 2[S7(O7) 1. and B;, = (n/K)Y?(a7,)T. Assumption 2

is maintained. Then part (ii) follows from Theorem 2.3. O

To prove the results in Section 3.2, we follow the notation there. In particular, we consider the
spectral decomposition of £ :
L. =U, XUl

where %, = diag(o1p,...,0kn) is @ K x K matrix that contains the eigenvalues of £/ such that
lo1n| > |o2n| > -+ > |okn| > 0 and U{ Uy, = Ix. The sample normalized graph Laplacian is
denoted as L”. We consider the spectral decomposition

Lg— - Uninff;{ - ﬁlnﬁ:ln[jlj;z + (72712271[72,1;17

where 3, = diag(61p,...,0mm) = diag(S1n, Yop) With |61, > [62n] > -+ > |Gpn| > 0, S1 =
diag(G1in, ..., 0Kn), Yon = diag(Gx+1,ns---,0nn), and U, = (Uiy, Uay,) is the corresponding eigen-

vectors such that Uﬂﬁln = Ix and Ug;f]ln = 0.



Proof of Theorem 3.4. Let ¢0 € {1,..., K} denote node i’s membership. Similar to Qin and
Rohe (2013, Lemma 3.2), we have by (3.1)

d; _ZPJ = 0; Ze Byogo = i Z > 0By = nb; meB op = n0iWyo. (B.1)

k=1j€Cy

Therefore,
[C1)i; = Pij((di + 7)(dj + 7)) /% = Byog (0:05)((di + 7)(d; + )12
= Byogo (0767)"/2(0,0,)"2(did;) "1/
—1 TnT\1/2 —1/2
=n"" Byogo (0767) /2 (W Wo) "/
_ —1/2 —1/2
'}z, BD; 2 2T 0l
“llel2zByzTel?,;.
That is, £ = n~10Y?ZByZTOY*. Then
(L)% =n"'0Y%2ZBy(270,2Z/n)ByzT0Y? = n~1e}2Z B, ByZT0}/2,

where II7, = Z70,Z/n = diag(r7,,...,7%,), and 7L = nl/n = > icc, 07 /n. By the spectral
decomposition, we have
(IT) /2 Bolly Bo(I1}) /% = 76, (57)", (B.2)

where Q,, = diag(wp,...,wkn) such that w, > wa, > -+ > wgy > 0 and S7 is a K x K matrix
such that (S7)TST = Ix. Let U, = ©Y*2(270,2)~Y/257. Then, we have

UannUfg = (52-)2 = UlnE%Ulj;r

In addition, U;TUT, = (S7)TST = Ix. Therefore the columns of U, are the eigenvectors of £
associated with eigenvalues oy, ..., 0 gy, up to sign normalization. W.l.o.g., we can take Uy, = U7,
to obtain the first result.

Now we turn to the second result. If node ¢ is in cluster C},, then
L= (0012 (Z7 0. 2)7 V28] = (07) 2 (nf) TSk
where [S]]. denotes the k-th row of S]. Therefore,
() 2O "2l || = 1S3k, | = 1.

T
Last, we note that T TII [ST] . Therefore, if z; # z;, then g # gj and

T T
U; U1y H ||[S7'] T
= 0. — [Shlgo.ll = V2.
’ [ i e
.. . 0 0 ul Uf]
Similarly, if z; = z;, then g; = g; ”ui_f” = W O
i J



Lemma 3.1 derives an upper bound for spectral norm of the gap between the first K columns of
sample and population eigenvectors. By Lemma C.2, we first derive the upper bound for spectral
norm of the gap between sample and population graph Laplacians. Then, we use the Davis-Kahan
theorem (Lemma C.1) to establish the bound for the eigenvectors.

Proof of Lemma 3.1. The proof is similar to that in Joseph and Yu (2016) and Qin and Rohe
(2013). Let L, = Dy /*AD; Y. Then

12, — L < |2, — Lol + IL, — L) = T+ IT.

Let d] = d; + 7, Yy = (d[d})""*(Aij — Pyj)(eiel + ejel) for 1 < i < j < n, and YVj; =
—(diT)_lpii«fjZ , where e; is the n x 1 vector with its ¢-th coordinate being 1 and the rest be-
ing 0. Then {Yj;}1<icj<n is a sequence of independent symmetric random matrices such that
EY;; =0,

n

L, — £ + diag(£") = Z Y;;, and diag(L]) = Z(d{)_lpﬁeie?
1<i<j<n =1

In addition, we note that sup;<; <, [|Yi;l| < V2/ul and

S BV = |diag(Y " pii(1 - pij)/ Y o (L= poy) /(d7d5)) |

1<i<j<n j#1 j#n
< 1
! max pr —pig)/d] < (u5,)”

By Lemma C.2, for n sufficiently large and C' = 2.6, we have

P(| Ly — £} + diag( £})|| = C(log(n)/up)"/?)
=P(| Y Yyl = Cllog(n)/up)"?)

1<i<j<n
(2 T
< om eXp( C=log(n)/pr, >
3(u7,) 1+ 20V2(log(n) /) V2 ()~
<2on (B.3)

where for the last inequality, we use the fact that (log(n)/u7)"/? < 0.01 and 2.6% > 2.1 x (3 +
2.6v/2/50). This implies

> P(ILr — £ + diag(£])]| = 2.6(log(n)/u7)'?) <

n=1

and thus, ||L, — £/ + diag(£.)| < 2.6(log(n)/u7)*/? a.s. In addition, for n sufficiently large,

[diag(£])]| < (17,) " < 0.01(log(n) /7).



Therefore,
I < ||Lr — £ + diag(£.)|| + ||diag(£L)]| < 2.61(logn/ul)'/?  a.s. (B.4)

Now we turn to I1. Let chT =d; + . By Bernstein inequality, for some C = 2.09, we have,

—C?(d])*log(n)/ 115, >
2d7 + 2C(logn/up)'/2d7 /3

P(sup |d7 — df|/dT > C(log(n)/uf)/?) < 2Zexp(
t i=1
<2onH, (B.5)

where the last inequality holds because (log(n)/u?)'/? < 0.01 and 2.092 > 2.1 x (2+2 x 2.09/300).
Therefore, sup; |d7 — d7|/dT < 2.09(log(n)/u7)*/? a.s., and thus,

ID7Y2DY2 — 1)) = ma |(d7 /d7) /2 — 1] < max | (d7 /d7) — 1] < 2.09(log(n)/u)/? .
In addition, by Chung (1997, Lemma 1.7), ||L.|| < ||L|| < 1. Therefore,

L — L} = |, = D7 V2D L DY* D72
<||D7Y2DY2L; — D7V DYRL, DYDY + || L - D7 2D L |
< D7 2Dy — 1| D7DV + |D 2Dy 1)
<2.09(log(n)/pp)"* (1 + 2.09(log(n) /pup,) /%) + 2.09(log(n) / uy,) '/
<4.39(log(n)/ul)?  a.s. (B.6)

Combining (B.4) and (B.6), we can conclude the first part of the proof. Then, by Lemma C.1 and
fact that 7(log(n)/ul)/? < %, we have

A V2||LL — £ , _
1U1n.Opn — Ury]| < —H I < 10(10g(n)/,un)1/2|aKn| L as.
0.99[0 xen

Proof of Theorem 3.5. We aim to show the result with C* = 35280101_1/2. First, by the
Hoffman-Wielandt inequality and Lemma 3.1

120 — Sl < |5 = £7]] < 7(log(n) /pp) '/ as. (B.7)
Then, by Lemmas C.5 and 3.1,

17(log(n)/up) " ?lokal ™ = A = A|
- HUAvlnzA]n An - UlnEnH
> ‘|Uln(0n2n - 2A]nOAn)H - H(Ulnén - Uln)i]nH - ||U1n(in - En)”

= HOni}n - ZA)nOAn” - 17(10g(n)/ﬁ‘;)1/2|01(n|_1 a.s.

10



Therefore,
10030 — 2000 || < 34(log(n) /)2 |lokal ™" a.s. (B.8)

In addition,
(n70)/2(07) 2 |As = Adl) = () 2(67) 207 £,0, — T S|
> (n70)2(07) "2 (@f On — ul )20l = (n70)/2(07) "2 ] (20 — )|
— (nge)"2(67) 7V ||a] (£00n — OnLn)|

Next, we bound the three terms on the RHS of the above display. By Assumption 13 and Lemma
3.1, |6 kn| > 0.999|0 kp| a.s., and thus,

I > 0.999\0Kny<n;_0)1/2<9;)—1/2Hagfon —u!| as.

By Theorem 3.4 and (B.7),
sup I1; < sup(njo)"2(07) "' /2||u]|[[|Zn — Sn|| < 7(log(n)/up)*  a.s.

Denote T',, = Supi(n;?)l/Q(QiT )24l O, — ul||. By (B.8) and Theorem 3.4.2,

sup I11; < 34(log(n)/pp) ?lokn 7 (Tn +1)  a.s.

i
Therefore, we have
sgp(n;g)m(@?)‘”?!\& — Ail| >(0.999|0 1n| — 34(log(n)/pi7,) /|0, )T — 41(log(n) /i) 05|
>0.99|0 [T — 41(log(n) /p17) |0, (B.9)

where we use the fact that 34(log(n)/uf)"/?|o 2| < 0.09 under Assumption 13.2.
On the other hand, if I, < 6%0) a.s. for some deterministic sequence {5,(10)}n21, then by Theorem
3.4.2,
sup(n7o)2(07) V2] < 60 +1 s,
s i

Applying Lemma C.5 with ¢, = 51(10) + 1, we have

K log(n)
91/4

1 log(s) ) 1/2 JL/2gHA

345001¢; /% p,, Jog! 2 (n) () V2 oL [559) + 1+ po + (
> 0.99]0 kn|Tn — 41(log(n)/7) ' ? |0 |
By combining and rearranging terms and the fact that p,, > 1, we have,

3485(3’101_1/2 logl/Q(n)(u;)_l/zal_{ipn} 50 4 35270101_1/217n > T, (B.10)

11



where

1 log(5) 1/2 1/2*1/4
(ralog ) ( Uk + iy o o
"\ ) o8 61/1 o2

OKkn

In addition, for n sufficiently large, Assumption 13.2 ensures that
3485C, ¢;  *1og "2 (n) (1)~ %032 p, < 0.001.
This, in conjunction with (B.10), implies that
T, <60 =0.00160 + 3527Cyc; /*n,,.
We iterate the above calculation ¢ times for some arbitrary integer ¢, and obtain that for n > nq,
T, <60, 60 =0.00160" +3527C1c; /*n,,.

This implies
50 = (0.001)" |6 — Cyey P, | + 3527C1e; P,

In addition, because sup; n7 (0D 6s]1? < n8 Y| Urn||%/K = n8~", we have

sup(ngo)2(67) 2 i) < /2712

1

Therefore, we can set 5;0) =nt/ QQ*I/ 2 and choose ny > ny sufficiently large and ¢ = n such that

for n > no,
T, < 6 <1000 "n'/297Y/2 4 3527C1¢; /21, < 3528C1e; 20,

where the last inequality holds because n,, is either bounded away from zero or at most decays

polynomially. This concludes the proof. O

Proof of Corollary 3.1. By the triangle inequality and Theorem 3.5,

sup al _ uZTOA;‘C — sup &ZTOAn B ul ’
T % T 7E i HafOnll il
~T A ~T A
u: Oy u; Oy 1/2 —1/21+T A T
<sup||—t—— — L +supn 5> (00) V2 |al O, — o]
P faro,q ~ Ty | TP G On ]

1/2 _
P logl/Q(n) (% + llgg((i))) p}L/291/4

< 20" ((n )1/2 - > ( G + o, + 1> a.s.,
M?TL OKn =

where C* = 35280101_1/2.

12



A AT
The second result follows Theorem 2.3 with 3, = ”Z—ZTH, Bin = STk, M =1, c1, = V2, and

log(5) ) 1/2 L/21/4

1/2 F+ = p
CQn_20*<Pnlolg/2 (;))((K Tog( )1/4 —i—pn—i—l),
(17) " 0% ol

where S is defined in Theorem 3.4. In addition, Assumption 4.3 holds because

(2cones’® + 16K3/A M2 /22
<16.022K3/2¢y,,

log(5) \ /2 1/251/4
og ) w0

1/2 ot p
91/4 n

N1/2
()" 0%,

<2c1 = c1ci,,

where the first inequality holds because cznc}/ 2 < 0.010%2 by Assumption 13 and the last inequality
holds by Assumption 14.1.
Similarly, the third result follows Theorem 2.4 with the same ¢y, and co, as above. The

Assumption 14.2 verifies Assumption 6.2. O

Proof of Theorem 3.6. Let ¢, = C'log(n)/m,,, for some positive constant C' which is sufficiently
large.

P< sup |9Z —0;| > ep i.o.)

1<i<n

<P(sup =00 25, i, sup Hai#olh=0)+P( s 15 £40) >0 io)
1<i<n 1<i<n

1<i<n

§P< sup Ingg(Z:j:1 Aij)/(zi,:gg:go iy Aig) = bil > en 20>

1<i<n

where the last inequality holds by Assumption 15.2. In order to show the RHS of the above
equation is zero, it suffices to show

o

Z ZP(’nQ?(Z;~;1 Aij)/(zi,:gq/:go 7'1:1 Aij) —0;] > 5n> < o0. (B.11)
n=1 i=1 i i

J

For the simplicity of notation, from now on, we assume g? = k. Then, we have

g (> A/ (Y gy — o) = iz ik~ Dvec, Avif)

p . 1 . . 1 (2 .

ot (i A2 yp 20jms A0 S Svecy Ar

For the denominator, note that EE?Zl Ei,eok Ay = myny, EE?Zl Zi’eCk Al%j < myng. Then,
by Bernstein inequality, for any A > 0,

n , A 1)\2m2n2
P<‘Ea—1 Lo, Avi 1] > A) < 2exp< T ) = Zexp(=Cymyny),
mEng mEng + g)\mknk

13



322
6+2X1°

and Z;"Zl E(Aijnk — D ieco, Ayi0;)? < n? — 0?myng. Then, by Assumption 15.1 and Bernstein

inequality,

2 =1 (Asgni — Piee, Avibi)
mrgng

where C) = Similarly, for the numerator, we note that |A;jng — > _cc, Ai0il < ng(0; + 1)

1.2, .2 2
5EL, LN
P(| 3 En M, >

>en) <2exp (—
|2 en) n? — 02myny, + tepmipn2(0; + 1)

<Cexp(—C'epmy).

Therefore,

Zj:l Zi/eCk Ai’j
<P <‘ > i1 (A — e, Aigbi)

mgng

| > en(1— A)) + 2 exp(—Chmgny)
<Cexp(—C'en(1l — Nmy,) + 2exp(—Crmy,ny,).

By construction, e,m,, = C'log(n) for C sufficiently large. Therefore, (B.11) holds, which concludes
the proof. O

C Some technical lemmas

In this appendix we collect some technical lemmas that are used in the proofs of the main results
in the paper.

We first state a version of Davis-Kahan sin © theorem that is closely related to the results in
Davis and Kahan (1970), Yu, Wang, and Samworth (2015) and Abbe et al. (2017).

Lemma C.1. Let A and A* be two n X n matrices with spectral decompositions given by
A=VsVT and A*=V*ar(VvHT,

where ¥ = diag(o1,09,--- ,0p), ¥ = diag(o},05,--- ,0k), |o1| > -+ > |op| >0, |o]| > -+ >
lox| > 0, and V and V* are the associated eigenvectors. Suppose that A* has rank K. Let Vy
and V* be the first K columns of V' and V*, respectively. Suppose there exists some rate vy, | 0
such that |0} — v, > 0 and ||A — A*|| < 7, a.s. Let Q = diag(cos(01),--- ,cos(0k)), where
O € (0,7/2), k =1,--- K, denote the principal angles between the column spaces of V and V*
such that 01 < --- < 0.

Then
Val(A- AVl

|O-*K‘ —Tn
where O = 0101 and V'V has the singular value decomposition O1Q03% so that O1 and Oy are
K x K orthogonal matrices such that OTVI'V*Oq = Q.

V10 = Vil <

*)

14



Proof of Lemma C.1. By the proof of Yu et al. (2015, Theorem 2),

Vi0=Vr|? = [|[(i0 = V)T (Vi0 = V)| = 2| Ik — 0200 |
< 21 —cos(0x)] < 2(1 — [cos(0x)]?) < 2[sin(fk)]* .

In addition, by the sin © theorem in Davis and Kahan (1970) (see also Appendix A.1 in Abbe et

al. (2017)),
[(A = A"V
Ak ’

where Ag = (|0} | — |ok+1]) V0. In addition, by Weyl’s inequality,

sin(@K) <

oK1l = [ok11 = 0kqa| < s

Therefore,

2[|(A— A")V*

VoA - AW
|O-K‘_’Yn

V10 = Vil <
O

The following lemma states a version of Bernstein inequality for random matrix that is used
in the proof of Lemma 3.1.

Lemma C.2. Consider an independent sequence (Yy)r>1 of real symmetric d x d random matrices
that satisfy EY), = 0 and ||Yx|| < R for each index k. Then for allt >0 and o2 = || D k1 EYZ,

—42
P(]| Zyk” >1) < deXp<302+2Rt>'
k>1

Proof of Lemma C.2. See Corollary 5.2 in Mackey, Jordan, Chen, Farrell, and Tropp (2014).
O

To prove Theorem 3.5 in Section 3.2, we need the following three lemmas.
Lemma C.3. If Assumption 11 holds, then Py; < p,n~'(0;0;)"/(d;d;)"/?.

Proof. Consider the case in which nodes ¢ and j are in C}, and Cjy,, respectively. Then by the
definition of By and (B.1)

Pij = 030;Bg,k, = n10:0;(n Wi, )2 [Boly ey (n Wiy )/
= 01 (0:0;)"[Bo] gy, (did)/? < pun ™ (0:0,)"2(diddy) /.

15



Lemma C.4. Let Vn(i), t=1,---.,n, be n x K random matrices. Suppose Vn(i) and [A];. — [P];. are
independent for i = 1,--- ,n and there exist two deterministic sequences {¢1,tn>1 and {pa, }n>1
such that sup; HVTSZ)H < ¢, and sup; HVéi)HQ_)oo < ¢y, a.s. Suppose that Assumptions 11-13
hold. Then

T T\— T\— 1 2
sup (g (0) 2ar) 2L - (PP 2V ) <66 2 as,

7

_ 1/2
$o, (log(n)+log(5) K)n'/? v [ Uog(n)+log(5)K)py, 2.0 /
15 (K0)1/2 un KoL/? '

where r, = [
1/2
Proof. Let C = 3C,’". Define

£, — {Sup<(7’L;Q)1/2(9:)_1/2(51:)_1/2||([A}’L" _ [P]Z)D;I/QV’;Z)H> > 207“11}’ and

i
Em = {Sup IV, < ¢y, and sup IV, 200 < Go}-
It suffices to show that P(&, i.0.) = 0. By the assumptions in Lemma C.4, we have
P(&5, i.0.) =0. (C.1)

It follows that

P&, ZO) P(NpZ, Un>k Ein)
P(N 1 Un>k (gln N 8211)) + P(ﬂioﬂ Un>k (gln N ggn))
P(N 1 Un>k (gln N 8211)) + P(ﬂiozl Un>k gzcn)

PNy Unsk (E1n N E2m)),

IN

(
(N2
(N2
(

where the last step is due to (C.1). Therefore, we only need to show that
P(Eln N Esyp, ZO)

= (sup  (0p) V207)2(ar) (4L~ [PRIDF VO ) 2 267,18 0. ) = 0.

i
By the Borel-Cantelli lemma and union bound, it suffices to show that

ZZP< )2OD) )T (AL — (PP AV 22Crnﬂfzn> < oo,

n>1i=1
Now, let SK=1 = {g € RE : ||g|| = 1} and F be a 1/2-net of SK=1. By Vershynin (2018,
Lemma 4.4.1), |F| < 5%. Then,

ZP( )2OD AT ([AL - [Pl DAV H>2Cm€2n)

<;5K;33P(< 1) V2(07) V2 ) V2 (AL~ [Pl R >\>0rn,szn)

=I,, (C.2)
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where the first inequality holds due the union bound and Vershynin (2018, Corollary 4.2.13, Lemma
4.4.1). Let

H={heR":[|h] < ¢1,, and sup|h;] < ¢a,},
J

where h; is the j-th element of h. Note that for any f € SK-1 | HVTSi)fH = Han)H < ¢y,, and
Vi 115 < 1IVA), 0l < oy as. Thus, under &, {Vi\” f : f € SK-1} C . For any h € H,

(n0)/2(67) ™2 (Agy — Pig) (d7d})™/2hy] < C1F g 2(0K) 2 (uT) !
In addition, by Lemma C.3,
T T\— T 4T\ — - T T\— T JT\— al/2 50— — T\—
> o (67) " E(Ay— Py (7 d7) T h2 < Y nio(07) 7 Py (] d) " hE < Crp, 807 RK T () 6,
i j=1

and for n sufficiently large,

(nTo)2(07) V2| Ayi — Pa(d]) ™ bl < O 60, 2 (K0)™2(u7) ™ < O /100. (C.3)

Then, by the Bernstein inequality in Lemma C.2,

I, <n5%  sup P<(n;oﬂ/?(92)‘1/2<dz>—1/2|([A]i.—[P]Z-.w;l/ﬁv,&“ﬁzcm,szn)
i=1, n,feSK-1 ‘

<n5%  sup P<( ngo )207) TP (Aij — Pij)(didy) T Phy| > 0.99CT, [V f = h>
i=1, ,n,heH
e J#i

<n5%  sup P<(”§o)1/2(9§)1/2| D (Aij — Piy)(didy)~?hy| > 0'9907%)
i=1,-- n,heH t

J#i
0.99C)2%r2
< 2n5% exp 2 = ) =D
1.98CC, “rpgy,nt/2 | 2C1p, 3,0
3uj, (K0)1/? Kpup0'/?

< on5K eXp(—(O.QQC)QT%(Iog(n) —|—10g(5)K)> < o(5m) 1, (C.4)

(1.98CC1"% /3 + 201 )r2

where the second inequality holds by the Bayes rule and (C.3), the third inequality holds because
we assume that ([A];. —[P];.) and V) are independent, the fourth inequality holds by the Bernstein
inequality, and the fifth inequality holds because of the definition of r,, and the sixth inequality
holds because (0.99 x 3)2 > 2.1 x (1.98 + 2) and we have set C = 3011/2.

Combining (C.2) and (C.4), we have

5= 3 P (200 (a1 - (PR V01 2 200, ) < oo

n=1i=1

This leads to the desired result. O
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Recall A = L U1,0, = U1,%,0,, A = L.U1, = U1y, Aj = 07'3,0,, and A; = u!'S,,, where
ﬂZT and ulT are the i-th rows of Ui, and Uy, respectively. In order to state and prove the next
lemma, we need to introduce some extra notation. Let A() be the matrix obtained by replacing

)

all the elements in the i-th row and column of A by their expectations, except A’E’Z which is set as

zero. Following the notation in Abbe et al. (2017), we denote
H, = UL Uy,
Then -
O, =UVT,
where UX V7 is the singular value decomposition of H,. Similarly, let

LW = D12 AOD-12 — g0 H)

where 253) = diag(agg ,O'ST)L) and \a§2| > > |a£f7)L . Further denote ffl(;) and igg as the first
K eigenvectors of L) and the corresponding eigenvalues diag(a%{ ,ag?n), respectively. We
denote

7 - G0

and

()7(;') - [j'(i)(f/(i))T7
where UOEO (V)T is the singular value decomposition of alh.
Lemma C.5. Suppose that Assumptions 11-13 hold. Then there exists a sufficiently large positive
constant C such that

JA = All < 17(0g(n) /1) lokal ™ as.

n

If, in addition, there exists a deterministic sequence {1, }n>1 such that supj(n;?)l/Z(Q;)fl/ZHﬁjH <

¥, almost surely, then

S‘%P(n;g)l/z(gf)_l/2|![\i — A4l

o —1/4
(% + 1105((2)))1/2,071/29 /

01/4

~1/2 .
<3450C1c; " p,,(log(n) /1) 21| | + o +
Proof. By Chung (1997, Lemma 1.7), || L”|| < ||L|| < 1. Then, by Lemma 3.1

IA = Al = |2, U1nOn — £ Unn|
<L (10 On = Uin) || + (L = £5) Ut
< U1nOn — Unnl| + ||, = LL|
< 17(log(n) /7)) ?lokal " a.s.

This proves the first result.
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For the second result, denote A = DT_l/QPDT_lmUln and A; = (@[)*I/Q[P]i.DT_l/QUln as the
i-th row of A. Then we have

sup(ngo)'/2(67) 712 || A; — — Aill < sup(n 0)72(67) 7121 A||+sup( 0)'2(67) 2] As — A

i

=T+ T15. (C5)
We can further decompose T5 as follows:

sup(ngo)'/2(67) VIR — A

%

= sup(njo)/2(67) "2 ||(d]) 2 [A]i. D7 201 O — (d7) 2 [P D 2 UL|

< sup(ngo)/2(67)~2(d]) 2| [P)i. D7 /2 (U1nOn — Uil

+Sup( ngo) V2(07) 7 2(dD) T2 ([AL — [Pli) (D72 = DY) U1 On|

+Sup( ngo) /2(07) 7 2(d) 2| (AL — [Pli) D7 201 O

=To1+To2+To3. (C.6)

In the following, we bound 77, T5 1, T2, and T3 3 in four steps.
Step 1: Bound for T

For Ty, we have
Ty < sup | (ngy)2(67) /() " 2(PY DT V2 = (df) (P D) U
<Sup( )1/2(97) 1/2H(d7) 1/2[ Ji D;l/Q—(dT) 1/2[ 1. D 1/2H
<Sup( 9l>1/2(97) 1/2(d7 1/2H[ Ji T—1/2HHDi/2DT—1/2_IH
+sup( )1/2(9T) V2)(dn)=1/2 — (an)=12)|[P),. D2
=T+ Thp.

By Assumption 12, Lemma C.3, and the fact that >>%_; 0; = n,
T T\— - T T 1/2
(70 V2(67) 2 [P D2 = () V2(67) 2 ZP? LYV < O, (A K2, (C.T)

where the constant C is defined in Assumption 12. In addition, by (B.5) in the proof of Lemma
3.1, foralli=1,---,n
1—0.0209 < (d7)Y2(d7)~/% <1+ 0.0209,

which implies that
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sup |(d])~/2(d])"/? — 1] < 0.0214 a.s. (C.8)

and
|DY2D-Y2 — 1)) < 0.0214  a.s. (C.9)
Therefore,
Tiq <1 02201/2 log!/?(n)(Kpur)~Y?p, a.s.,
Ty < 1.022C % log"2(n) (K ) %p,  a.s.,
and
Ty < 2.044C "% 10g 2 (n) (K )" 2p,,  a.s. (C.10)

Step 2: Bound for 75
By Lemma 3.1 and (C.7)—(C.9),

Ty <C1/%(1.022)% x 10 x sup(d])~Y/(di/ K)/?p,, (log(n) /1]) 2|0 1| !
<10.45C,"%p, 1og 2 (n) (K p7) " |ognl ™" a.s. (C.11)

Step 3: Bound for 75 -
For T5 9, we have
sup(n gz)m(@T) V2(d7)TV2|([AL = [Pl (DY = DY) 01,0,

<1. 02201/ SUp(nK/H )1/2(d7) 1/2 sup i(A — by )(dT dT) )

ij
geSK-1 j=1 \/ﬁ\/CTT \/>)

|Aij — Pyl log!/*(n) (n ngo)~2(07) "2,

<1.022 x 2.09C}/2 sup(nk /0 YL/2(gr) 1/ Z
j=1

d]T-dJT-
" AZ—Pllo 1/2 1/2
§2'24011/26171/28111)z:| J 12 g () (2
=t AR
Az"_Pz 1o 1/2 1/2 N n P,;'lo 1/2 1/2 .
<2.24C,¢; " sup Z( ! 1;3 B "m0y +448C1 2T P sup 3 2 1/g2 ()0 "y
g 0;'"(d})'/2d] i 0Dy
(C.12)

where the first inequality holds by the definition of spectral norm; the second inequality holds by
the facts that sup, (n;?)1/2(95)71/2||7:6j|\ <, and that, by Bernstein inequality,

sup |(d] )% — (d])'/?] < 2.091og"*(n) a.s., (C.13)
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the third inequality holds by Assumption 12 and the fact that
(dD)Y? > 0.9791(d))Y?  a.s.,

and the last inequality holds because |A;; — P;;| < (Ai; — Pij) + 2P;;. In addition, by Lemma C.3
and Assumptions 11 and 12,

n Pz’j logl/Q(n)e;/an n 10g1/2(n),0n(didj)l/Q(OiGj)l/Qe}/%n
sup <sup

to= 93/2(0@7)1/%} I Rt n01/2(d7)1/2d7.
log” ? )Puthn _log!2(n)p by
<=~ Lnn SE ZG TALE a.s. (C.14)
By the Bernstein inequality and the facts that
(Aij — Pij)H;/Q §'/*
sup — < —
and E(A;; — P;;)%0 P60 d;0
vy — Lij) Yy < 15 < i ’
LT@E St Gy
we have
Aij — Pij) log"2(n)6'*y,, 1 4671
g | S50 e el < H e
i | 0,/ (d])V/2d; 0,“(d7)V/ pnb
(C.15)
Combining (C.12)(C.15) with the fact that 2&7209" 0.7 we
ombining (C.12)—(C.15) wi e fact that v~ < 0.01, we have
_ log!/?
sy ) VA07) (7)Y (A= [P (D5 V2D ) 0,0, ] < a7 ey PP,
@ ! J28
(C.16)
Step 4: Bound for 753
By the triangle inequality,
sup(njo)'/2(07)"V/2(d7) " |[([ALi — [P)i) Dy VU1 On||
<SUP( R C R D i [P — [P:) D7 20300
+sup(f)/2(07) /A7) V2 (A ~ [PL)D; Y2 (01000~ DD
=T531+ 1232 (C.17)
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Let NV, = diag((n;?)l/z(ﬁf)*l/z, I (n;%)l/Q(QZL)*l/Q). Note that
0510820 < sup | (7)™ H2(95)' /2] sup)/2(67) OO |
,J

S(OK/(nCl))l/2 sup [N U1, O oo

<(BK (1)) V2 <sup VW@ DOW — 01Ol see + ||Nn01nén||2%o>

/27 1/2 (L + log(5 ))1/2p1/291/4
—1/2 - 1/2 167601 log (TL) K 10g( )
< 0K
<L01e; P2OK/n) 2, + 1), (C.18)

where the second inequality holds by Assumption 12, the third inequality holds by triangle in-
equality, the fourth inequality holds by Lemma C.7, and the last inequality holds because under
Assumption 13

o 1/4
(i + 1Og( ))1/2p1/29
1676C} g 2(n) )2  + ) <o

Then, by Lemma C.4, (C.8), and the facts that U1(:1) O is independent of [A];.—[P];., ||U(Z l)|| <

1, we have
T30 =sup(ng 0)'/2(67) 72 (d) V2| ([Al — [Pli)D; D20 O

<1022 sup(ngy)/2(67) ~/2(d7) 2 (AL ~ (PP 2070

<6140 (1.01011/2(log(n) +log(5)K)8"? (0 4 1)y 18O+ log(5)K)1/2p71/201/4)
70" " (up) 120/ K2

<6.2101/2-1/2  (og(n ) +1oEG)K)DE | (log(n) +log(5))! o5 (C.19)
p50"2 " (Hp) /20 K2 ’ |

where the last inequality holds because

1.01(log(n) + 10g(5)K)91/2 < 0.01(log(n) + log(5)K)1/2p,1/251/4
R0 B (7)) V201" '

In addition, from the derivation of (C.18), we have

1[T120n — T 0G|

fo) —1/4
(% + *foéfi)))”?pkﬂe /

91/4

<1676C1 ¢y 2 (0,5 /n) 2 1og" 2 (n) (1) 2|0l | (wn +pn +

=1676C; *c; /2 (0, K /n)" /25, (C.20)
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4 log(5) log(5) )1/2p:l/2§1/4
91/4 .

~ T\~ - ( og(n

where 3, = log!2(n) () 2loh) (v + g + 7L

Let V(g) = (U1nO,, — UI(QOAELZ))g for some g € SE~1 and Vj(g) be the j-th element of V(g).
Then,

n —F;;
61/ (dr)\/2(d7) /2

1532 <C’1/ sup(n/K)l/2 sup Z (Aij ;) Vi(g)

- Vi(g)
geSK— |1y 93/2(@)1/2(@)1/2

—Fy
0,/ (d7)1/2(d7) /2

Vi(g)| +

<1.0209C; " sup(n/K)1/2 sup {Z (Ayy = Byj) Vi(9)

2 T T
gesi1 | (51 0,2 () V/2(dr)1/?

|

_ A + P /2 P..
§171201c11/2sqp[2 (A 1+ Pg)0y “]~

5
/2 a7 T T
0P )iz g

1/2 n 1/2

172 (Aij — Pij)0; 2859 ;

<1712C1¢; SUFP[Z /2 1\1/2 :1/2 2 V2 qryi/2(gryi/2

i L5 0, (ap)v2(dp) 210,77 (d7) 2 (d7)

3w/ > log!/*(n)f
(720"

1/4

<1712C1c; Y/ 2< + 2pn> 5, < 3425C1c; 2, A,

(C.21)

where the first inequality holds due to the definition of Lo norm of a K x 1 vector and Assumption
12, the second inequality holds by (C.8), the third inequality holds by (C.20), the fourth inequality
holds by the triangle inequality, the fifth inequality holds because by Bernstein inequality,

Z (Aij — Pij)ejlﬂ <3 ,0}/2 logl/Q(n)gl/4 v log(n)@l/2 s
ol TN et e )

7

and

Zn: Pijg;/z < o~ pnldid;) 6 <
— 7—— > Pns
S0 a2 (dny e T nld]) R ()

and the last inequality holds because M < 0.0001.
p

g1/2

Combining (C.17), (C.19), and (C. 21) we have

(L+ log(5))1/2p1/291/4
T3 < 34320161_1/2pn log%(n)(ul)~ 1/2|c7Kn| [@Z)n +p, + log(:;)l/4 a.s., (C.22)
where we use the fact that
log(n —|—log5K§1/2 e _
ogtn) £ 8GN~ < 1og1/2(m) i) 210z |
pro"
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Step 5: Bound for 77 + Tg’l + T2,2 + T273
Combining (C.10), (C.11), (C.16), and (C.22), we have

sup(ngo)'/2(607) "V ?||A; — A

3 k3

(% n llog(5))1/2p%/2§1/4
<8450C1¢; 0, Tog () ) 2o [+ 4

O]

In the proof of Lemma C.5 we utilize Lemma C.7 below whose proof calls Lemmas C.6 and

C.8.

Lemma C.6. Suppose that conditions in Theorem 3.5 hold. Then,

sup | L) — £1] < 4.4(log(n)/u})'"* a.s.

Proof. Let L, = Dy "/*AD:"?. Note that HL@ — L <Ly = L7 + | Ly — L(Ti)H. In the proof of

Lemma 3.1, we have shown that
1Er — L4 < 4.39(log(n) /1) /2 a.s.
It remains to show that, for n sufficiently large,

sup | £, — L0 = sup [D7Y2(AD — AYD7Y2|| < 0.01(log(n) /115) /2 a.s.

By construction,

0 s#Ei,tF£1
. Asi_Psi S i,t:i
[A— AW, = # . (C.23)
At — Py S:iat#i
0 s=t=1
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Then, for n sufficiently large,

sup | L, — LY|| < sup [ D7 /2(AY — A)D7 2| e

Aij — P2\ 2
<oy (23 )

b g
< (2 )
P noop.\ Y2
ssep(mzwwzdfzf)
g g j=1 17
<<8.4610g1/2(n) 8.46 log(n) 4)1/2

+ +—
(u7)3/? (u7)? 17

< 0.01(log(n)/ui)? a.s.,

where the first inequality holds because ||A|| < ||A| r for a generic matrix A, the second inequality
holds by (C.23), the third inequality holds because |A;; — P;;| < 1, the fourth inequality holds
because |A;; — P;j| < Ajj — P;j + 2P, the fifth inequality holds by the fact that

n n

P, P
ZdT(}’.— SZ - //J’n,
j=1 177

= dTun

and by (C.13),

|dT — 5| = [(d])"* — (d5) 2] |(d])M* + (d]) /3] < 2.091og?(n) x 2.0209(d})"/? = 4.23(log(n)d])"/?,
(C.24)

and

Aij — Pij 10g1/2( ) log(n)
sup Z W <4.23 < + a.s.

N o i (u7)%%  (up)?
O

Lemma C.7. Recall N, =diag((n” )1/2(07) 172 ... ,(ngo)l/Z(eg)*l/Z). Suppose that conditions in
Theorem 3.5 hold and H./\/nUlan_mo <,. Then,

1 log(d)\1/2 1/25 1/4
D AG A A 16760, log'/*(n (% + Togtmy) /20
sup [N () OD 11,0015 o0 < Lo ’( Vg, +p + og(;m a.5.

Proof. Recall the definitions of H,, Oy, 1, and OY before Lemma C.5. Let ¥, = (log(n)/ul)/?
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and recall that || — £.|| < Tv,, a.s. By Lemma 3 in Abbe et al. (2017)° and Lemma 3.1, we have

Trn/(|okn] — Trn)
T 1=Trn/(Jokn| — Trn)

where we use the fact that

10w — ]| < < 7.01(0g(n) /1) o h| as. (C.25)
(log(n)/p) 2o kp| ' < 0.0001.
Similarly, by Lemma C.6, we have
sup |05) — HY||V/2 < 4.41(log(n) /) 2|0 | a.s. (C.26)
Then

NG (01200 — U OD) 00
<IN U1 (On = Hy) 200 + INGU(OD — HD)|lasoe + N (Ui o — U HDY 500

1n
<|WNaltnll200lOn = Hn| + N2 2500 |09 — HD ||+ [|NGy (Ui i — 033 HD) 200

<49.15¢, 72072 + 19.45| N, U O H%Mna;m + [N (T Hy — TDHDY o0
<68.60,720 12 + 19.45| Ny (U120 — U0 |2 40072032 + [N (Urn Hy — T HO | oo,

1n

where the first inequality holds by the triangle inequality, the second inequality holds by the fact
that ||AB||2—00 < [|A]l2—00||B]|, the third inequality holds by (C.25), (C.26), and the assumption
that |[N,Uinll2—ee < ®,,, and the last inequality holds by the triangle inequality and another use
of |NuUtnll2—s00 < %,,. By rearranging terms and the fact that v, |0 %L | < 0.0001, we have

HNn(ﬁln An U(Z )HQ—)OO < 68.74 log( )(:u’n) 101_511% + ”N (UlnH U() )H2—>OO:|

(C.27)
In addition, by Lemma 3 in Abbe et al. (2017),° Lemma 3.1, and Lemma C.6, we have

|10 Hy — HyS1n|| < 2|28 — £1]| < 147, a.s.

and
sup HE HY — A% H < 2||LY) — £ < 8.8y, a.s.

5Note that in the notation of Abbe et al. (2017), (H,sgn(H)) = (Hn, Oy,) (or (ﬁﬁ“, OAff))), U'=Un, E=L,-L,
(or LY — L), and ¥ = 7v,,/(|okn| — 77,,) for some absolute constant ¢ > 0.
®Note that in the notation of Abbe et al. (2017), H = H,, (or H"), E = L. — £. (or LY — £.), and A = 51,

(or 252) for some absolute constant ¢ > 0.
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Therefore,

N (O — U5 B 200

< Naltn (S1n B — Hn310) 57 l2soo + NG U (S0 AP — AOSO) S0 7 l2m00
+ [N (O1n S0 Hn S5, = U S0 AD (S5) ™) 2500

<|NaTtnll2msoolEtnHn — HuStalIS5H + N2 oo ST AD — ADSE (ST
+ N (LU S5) = LU (SE) ™) 2500

<{22.80,, + 8.8| Ny (01,0, —U(l)o(i))||2—>oo}’)’n|‘ff<1n’

NG LU (S0 = (D) ) oo + W (LY = E)ULL(5) ™ 900
<(22.8¢,, + 8.8 Ny (U1,0,, — Uf”o“ M2-s00)Vnloh]
+5.017, 0%k | + LOLNL (LD — LU llasool o i |, (C.28)

where the first inequality holds by the triangle inequality, the second inequality holds by the fact
that || AB|l2500 < ||All2—se0l|Bl, Hn = UL Uy, and HY = (U))TUy,, the third inequality holds
by the fact that H/\/'nUlanﬁoo <, and

INGT o 00 =[INGTHOD 1900 < N (T1200 = TP OD) 1900 + INwT1nOn| 2500
=, + | Ny (U1nOn — UDOD) |50 acs.,

ln

and the last inequality holds by Lemma C.8(iii) below. Finally, we bound the term HNR(LQ) —
L )Uip|2—500- We have

INW(LE — L) Uy |20
=|[Nou(DFZAUDYZ — DIVEAD YU |2 500
<IN DF V(AW — D20 flaso0 + [NW(DF 2 = DIV ADI U1 12500
+ [N DFY2AMDY? — DY UL, 2o
<|NZDIY2(AY — AYDZY2U1, |la—00 + 450,77, @-5. (C.29)

where the first inequality hold by the triangle inequality and the second inequality holds by Lemma
C.8. In addition, by (C.23) we have

TN2(9T\ =12 (qmam V" Y2( Ao — P .

N D= V2(AD — A) D120, 1, || = 1(nge)*/2(07)~/2(dzd])~/?(Asi PSZ)UZHl2 s i
(7 /2(67) V2 (A — [PL)Ds Ul s =1,

(C.30)

where u] is the i’s row of Uy,. By Assumption 12 and the fact that H(ngo)l/?(ef)—l/?uiﬂ =1,

sup | (ngg)/2(07) 2@ d]) A (At = Pyuill < €1y CP e () s (C31)
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By Lemma C.4 and the facts that
1Utnll2osoe < ¢ 282 (K/n)Y2 and U] = 1 a.s.,
we have

sup(ng 0)'/2(67) 72 (d]) TV (A — [Pli) D7 V2 ULl

—1/4
g2 (T log(n) +1og(B)K) |, (log(n) + log(3)K)" 71
pi0'? (17 /201 K12 ;

Combining (C.30)—(C.32) with the fact that
log(n) + log(5)K 1/2p}/2§1/4 o2 log(n) + log(5)K
s G
(up) /201 4 K1/ N pr0'?

51/2(10g(n) +log(5)K)K
<~ - 7_01/2
1HRZ " P

<1

under Assumption 13 (as p,, > 1), we have

6C1/%(log(n) + log(5) K)/2pi/ 26"

—1/20 4(G) _ —-1/2
||NnD7— (A A)'DT U1n||2%oo > ( )1/291/4K1/2

a.s.

Substituting (C.33) into (C.29), we have

log(5 ))1/2p1/291/4
91/4 a.s.

(# t 1
INW(LD — LY Uslloe0 < 6C1% (Pn+ K " log(n)

Combining (C.34) with (C.27)-(C.28), we have

\M@ﬁwﬂ%Wmm

<68.74 [(22 99, + 8.8 N (010 O — UL OD) |20 )l ol | + 5.017, |07 |
1 log(5) \1/2 1/2(91/4
1/2 (7 + Tog(ny) /Pn _

<604.927,,0 1 11010 0n — TD0D 500

1/271/4
(K1 llogén)))lmp / 0 / )
a.s.

By rearranging terms and the fact that vn\al}m < 0.0001, we have,

K 7 log(n)

(L + log(5))1/2p1/291/4

N@mov<l>2m<wm&@mo(w+%+ g7
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Lemma C.8. Let v,, = (log(n)/un)"/?. Suppose that conditions in Theorem 3.5 hold. Then,
almost surely,

(i) sup(ngy)/(6) =/ (d7) = [ALi.(D7 * — D) il <2250, ¢, p,

(i4) sup (ngo) /> (7)1 2I|(dF) "2 = (df) )AL D7 ) Una| < 22501 ey pyoy

(i) [N LU (5 = (I l2msm0 < 5017, |07k .

Proof. We prove (i) and (iii) as (ii) can be proved in the same manner as (i). In fact, (i) and (ii)
still hold if [A];. is replaced by [P];. or ([A];. — [P];.) as the proof of (i) suggests that the dominant
term is given by [P];.. To show (i), let S¥~! = {g € R ||g|| = 1}. Then,

sup(ngo)'/2(67)~1/2(d]) " 2|I[A]i. (D712 = D7) U

Z 7

<sup sup (ngo)/2(07)2(d]) "V 2|[ALi(D7 Y2 = DI VAING N U]
i geSkK-1

Let V(g) = NpUing, which is an n x 1 vector and Vj(g) be the j-th element of V(g). Then, we

have
sup sup|Vj(g)| < [NuUtnll2—o0 = 1.

geSK-1 j
Note that
(4 - Py)e;” "7
0,2y 2y 01 )
and

ZE<(A7LJ' - Pij)gjl'/2>2 < Pij@j < 6
1/2, 5+ - - AT(AT)2 — T)2°
=\ 6Pan) e = 0idi(d7)* T O(k7)

Then, by Bernstein inequality,
(Aij — Py)0j” -

Z J

1/2 T T
iz 9 (di)l/de

3 g'* log!/?(n) v g'/* log(n) | g'* log!/?(n)
A e R LT

sup a.s., (C.35)

where the last equality holds because log(n)/un < 1.
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Therefore,

() /2(07) "2 (d) 2L (D72 — DNV ()

1/2/ o T
AijV;(9)8)* (d7 — dF)

§ (d7d}) V2 ((d5) V2 + (d5)12)

i 1022 X423 Z Aij0% log!?(n)
‘1 0.9791 x 1.9791 91/2(617)1/2&

<CyPe] oM A (dr)

(Ayj — Pz‘j)e;/2 N N

+ Z S B logl/2 (n)

1/2 —1/2
224671 = 01 (ar)12dr
=1" i j

1/2 T T
0

1/2 120,
_ 1
<9, 24Cl/z 1/2 [39 910/% T( )+pn(,u£)_1/2} log!/2(n)

<2. 25(71/2 1_1/ P ln, ~1/2 logl/Z(n) a.s.,
where the first inequality holds Assumption 12, the second inequality holds by (C.8), (C.24), and
the fact that sup cgr-1sup; [Vj(g)| < 1, the third inequality is due to the triangle inequality, the
fourth inequality is due to (C.35) and the fact that

Pz‘j91~/2 p,0;
J § nYj —1/2
J#i

)y ey
i 0/ (di)1/2dj
and the last inequality holds because
1/2, 172
""" log /*(n) 1/2
———————2<0.001p,,(u5,)~ /
0",
Next, we show (iii). First note that, by Lemmas 3.1 and C.6, and the facts that ||N;,Utn|l2—00 =
1 and log'/2(n)(u) =12 < 0.01|0 kx|, we have

~ (z)

- Okn n
(bt (E( )Y < sup sup |7(;“] < 5,052 a.s. (C.36)
v k=1, K OknO Ly,
and
-1 &(1)\—1 Ukn(a-kn_ ](gz'r)b)
IS5 = (S <sup sup | I < Byl | as. (C.37)
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Note that
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where the first inequality holds by the triangle inequality, the second inequality holds because
L U1y, = U1 X1p, the third inequality holds by the fact that ||AB|l2—e00 < [|A|l2—00l| B, and the
last inequality is due to (C.36) and (C.37).

It remains to bound || N, (L. — LL)U1y||2—00. Note we have

[N (L] = L7)Uinll200
= Nn(D7Y2ADS Y2 — DIV PDIY) Uyl
<|Nw(D7 2 = DY) PDI U |2 500 + [N D2 A(DS Y2 = DY) U 1900
+ |NaDSY2(A = PYD; VU 200
=T + Ty + Ts. (C.39)

By (C.8) and (C.24), we have

d7 — d7 " Pilu;g]
Ty <sup(n’y)/2(67)"1/? | — Lt su L
1= ZP( g?) ( z) (d;d{)l/g((dnlﬂ"’ (dz')l/Q) 9653—1; (djr)l/Q
L NS
§225011/20;1/2 Z 12J—] 10g1/2 (n)
j=1 91/ d;—(d‘;‘—)l/2
§2.25C11/201_1/2’ynpn a.s.. (C.40)
For T, by Lemma C.8(i), we have

T, < 2.25(711/201_1/2,0”7” a.s. (C.41)

For T3, we have
Ty =sup [(n7p)/2(6) " /2(d]) " /2([A). — [P)i)D; 2 Un|

<1.03sup [|(np)V2(67) " /2(d7) V2 ([A]i. — [P):) D7 201,
12 (e (log(n) +log(5)K)8"*  (log(n) + log(5)K)"/2pi/ 9"
<6.18C; — v
0" K1V2(uz) 126"/

12 172 (log(n) + log(5) K ) /2 ph/"*

:61801 Cl (M£)1/261/4K1/2

a.s., (C.42)

where the first inequality holds because of (C.8), the second inequality holds by Lemma C.4 and
the fact that
[Urnll2-s00 = sup(0F /n7)/? < e V2K /m) 2,

and the last equality holds because

718" (log(n) + log(5)K) K

<1
0" p,,
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Combining (C.39)—(C.42), we have

1/271/4 log(5
1/2 —1/2 pr. "0 (% + 105((71)))1/2

NG (L — L) Ui |20 < 6.18C, 7] "y | o+ v (C.43)
Substituting (C.43) into (C.38), we have
LU (53] = ()™ l2500 < 5.017, )07k a.s.,
where we use the fact that
1/251/4, 1 | log(5) y1/2
prl 0 (et raei )Y
log!/2(n) (Pn + ;/41 £) >
5 x 6.18C 2c;/? <0.01
b (17) 2|0 kel
under Assumption 13. O

D Additional simulation results

In this section, we report some additional simulation results for DGPs 1-4 studied in the paper.

Table 2 reports the classification results based on the eigenvectors corresponding to the largest
K eigenvalues of L = D=Y/2AD~1/2. Given an adjacency matrix A, D is not invertible when there
exists a node which has degree 0. We also report the percentage of replications which generate A
with strictly positive degrees for each node in the table, denoted as Ratio. For these realizations, we
report the classification results. In Table 2, “CCP” indicates the Correct Classification Proportion
criterion; “NMI” means the Normalized Mutual Information criterion, and “kmeans” correspond
to the classification methods K-means with default options (Matlab “kmedoids”). We summarize
some important findings from Table 2. First, we have a fair large probability to obtain zero degree
for some nodes in DGPs 1-4 because we allow the minimum degree to diverge to infinity at a very
slow rate, namely at rate-log(n) in DGPs 1 and 3 and rate-log”®(n) in DGPs 2 and 4. Second,
the performance of the spectral classification based on L is not as satisfactory as that based on its
regularized version studied in the paper. This is especially true when n/K is small.

Table 2: Classification results based on L = D~1/24D~1/2
DGP K n/K Ratio CCP  NMI

1 2 50 0.646 0.9805 0.8827

2 200 0.638 0.9927 0.9476
2 3 50 0.364 0.9751 0.9073
3 200 0.166 0.9906 0.9585
3 2 50 0.104 0.9651 0.7523
2 200 0.000 - -
4 3 50 0.038 0.9543 0.7458
3 200 0.000 - -
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Figure 5: Classification results for CPL and K-means for DGP 1 (K = 2) based on L. =
D;?AD;Y?. The z-axis marks the 7 values and the y-axis is either CCP (left column) or
NMI (right column). The green dashed vertical line in each subplot indicated the estimated 7Y
value by using the method of Joseph and Yu (2016). The first and second rows correspond to
n/K = 50 and 200, respectively.

Figures 5-8 report the classification results based on L. = D, 1/ QAD; 1/2 and L, = D, 1/ ZATD; 1/2
for DGPs 1-2 and DGPs 3-4, respectively. As in the paper, the left column uses the CCP criterion
and the right column uses the NMI criterion to evaluate the classification performance. The z-axis
marks the 7 values, i.e., [107% (Tmax)?s (Tmax) 7%, . . ., (Tmax) /18], where Ty is the expected
average degree. There are two curves in each subplot. As marked in the legend and explained in
the paper, they represent classification results by using different classification methods. In each
subplot, the green dashed line is the pseudo 7 value as defined in Joseph and Yu (2016). We sum-
marize some findings from Figures 5-8. First, the spectral classification results first improve and
then deteriorate as 7 increases. Second, as Figures 5 and 6 suggest, the spectral clustering based on
L = DT_l/QADT_l/2 with 7 = d or 77Y is slightly worse than the UPL method. Third, as Figures
7 and 8 suggest, the method of Joseph and Yu (2016) tends to select too large a regularization
parameter, but still yields classification results that are much better than those of CPL.
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