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Quantile Treatment Effects and Bootstrap Inference under

Covariate-Adaptive Randomization∗

Xin Zheng† Yichong Zhang‡

Abstract

This paper studies the estimation and inference of the quantile treatment effect under

covariate-adaptive randomization. We propose three estimation methods: (1) the simple quan-

tile regression (QR), (2) the QR with strata fixed effects, and (3) the inverse propensity score

weighted QR. For the three estimators, we derive their asymptotic distributions uniformly over

a set of quantile indexes and show that the estimator obtained from inverse propensity score

weighted QR weakly dominates the other two in terms of efficiency, for a wide range of random-

ization schemes. For inference, we show that the weighted bootstrap tends to be conservative

for methods (1) and (2) while has asymptotically exact type I error for method (3). We also

show that the covariate-adaptive bootstrap inference has the exact asymptotic size for all three

methods. We illustrate the finite sample performance of the new estimation and inference meth-

ods using both simulated and real datasets.

Keywords: Bootstrap inference, quantile treatment effect

JEL codes: C12, C14

1 Introduction

The randomized control trial (RCT), as pointed out in Angrist and Pischke (2008), is one of the

five most common methods (along with instrumental variable regressions, matching estimations,

differences-in-differences, and regression continuity designs) for causal inference. Researchers can

use it to estimate not only average treatment effects (ATEs) but also quantile treatment effects

(QTEs), which capture the heterogeneity of sign and magnitude of treatment effects varying depend-

ing on their place in the overall distribution of outcomes. RCTs have been routinely implemented

with covariate-adaption, so that individuals are first stratified based on some baseline covariates,

∗We are grateful to Jia Li for his valuable comments. Zhang acknowledges the financial support from Singapore

Ministry of Education Tier 2 grant under grant no. MOE2018-T2-2-169. Any and all errors are our own.
†Singapore Management University. E-mail address: xin.zheng.2015@phdecons.smu.edu.sg.
‡The corresponding author. Singapore Management University. E-mail address: yczhang@smu.edu.sg.
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and then, within each strata, the treatment status is assigned (independent of covariates) to achieve

some balance between the sizes of treatment and control groups. See, for example, Imbens and

Rubin (2015, Chapter 9) for a textbook treatment of the topic and Duflo, Glennerster, and Kre-

mer (2007) and Bruhn and McKenzie (2009) for two excellent surveys focused on implementing

RCTs in development economics. To achieve such balance, treatment status for each individual

is assigned sequentially and dependently, which introduces (negative) cross-sectional dependence.

The standard inference procedures that rely on cross-sectional independence are usually conserva-

tive and lack power. How to estimate QTEs under covariate-adaptive randomization? What are

the asymptotic distributions for the QTE estimators, and how to make proper inference? These

questions have yet to be addressed.

We propose three ways to estimate QTEs: (1) the simple QR, (2) the QR with strata fixed

effects, (3) the inverse propensity score weighted QR. We establish the weak limits for the three

estimators uniformly over a set of quantile indexes and show that the estimator obtained from

method (3) weakly dominates the other two in terms of efficiency, for a wide range of randomization

schemes. In particular, when strong balance1 is achieved, the three estimators are asymptotically

first-order equivalent. For inference, we show that the weighted bootstrap inference is conservative

for methods (1) and (2), but has asymptotically exact size for method (3). In addition, we also study

the covariate-adaptive bootstrap which respects the cross-sectional dependence when generating the

bootstrap sample. We show that the estimator based on the covariate-adaptive bootstrap sample

can mimic that of the original sample in terms of standard error. Thus, the covariate-adaptive

bootstrap inference can produce asymptotically exact size for all three estimators.

As originally proposed by Doksum (1974) and Firpo (2007), the QTE, for a fixed percentile,

corresponds to the horizontal difference between the marginal distributions of the potential out-

comes for treatment and control groups. Our estimators (1) and (3) directly follow those in Doksum

(1974) and Firpo (2007), respectively. When estimating ATEs, Bruhn and McKenzie (2009) rec-

ommend running a linear regression of outcomes on treatment assignment and indicators for each

of the strata. We modify such a regression and incorporate strata fixed effects when estimating

QTEs, which leads to our second method.

Under covariate-adaption, Shao, Yu, and Zhong (2010) first point out that the usual two-sample

t-test for the ATE is conservative. Then, they propose a covariate-adaptive bootstrap which can

produce the correct standard error. Shao and Yu (2013) extend the results to generalized linear

models. However, both papers parametrize the (transformed) conditional mean equation by a

specific linear model and focus on a specific randomization scheme (covariate-adaptive biased coin

method). Ma, Qin, Li, and Hu (2018) derive the theoretical properties of ATE estimators based

on general covariate-adjusted randomization under the linear model framework. Bugni, Canay,

and Shaikh (2018a) substantially generalize the previous results to a fully nonparametric setting

1We will define “strong balance” in Section 2.
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with a general class of randomization schemes. However, they mainly focus on the ATE and show

that the standard two-sample t-test and the t-test based on the linear regression with strata fixed

effects are conservative. Then, they obtain analytical estimators for the correct standard errors and

study the validity of permutation tests. More recently, Bugni, Canay, and Shaikh (2018b) study

the estimation of ATE with multiple treatments and propose a fully saturated estimator.

Our paper complements the above papers in four aspects. First, we consider the estimation

and inference for QTEs, which are functions of quantile index τ . We rely on the empirical pro-

cesses theories in van der Vaart and Wellner (1996) and Chernozhukov, Chetverikov, and Kato

(2014) to obtain uniformly weak convergence of our estimators over a compact set of τ . Based on

the uniform convergence, we can construct not only point-wise but also uniform confidence band.

Second, we study the asymptotic properties of the inverse propensity score weighted estimator

under covariate-adaptive randomization. We show it is weakly more efficient than the other two

estimators considered in the paper. Analogously, for estimating the ATE, we show that the inverse

propensity score weighted estimate is weakly more efficient than the two estimators considered in

Bugni et al. (2018a), and is asymptotically first-order equivalent to the fully saturated estimator

proposed by Bugni et al. (2018b). Third, we show that the weighted bootstrap inference ignores

the (negative) cross-sectional dependence generated due to the covariate-adaptive randomization

and is conservative for estimators (1) and (2). However, estimator (3) is robust to such dependence

because the randomization scheme does not affect its influence function. Therefore, the weighted

bootstrap inference is valid for estimator (3) under a wide range of randomization schemes. Fourth,

we establish that the covariate-adaptive bootstrap has the exact asymptotic size for all three esti-

mation methods paired with a wide range of randomization schemes. Shao et al. (2010) first propose

the covariate-adaptive bootstrap and establish its validity for the ATE in a linear regression model

under the null hypothesis that the treatment effect is not only zero but also homogeneous.2 We

modify the covariate-adaptive bootstrap and establish its validity for the QTE in the nonpara-

metric setting proposed by Bugni et al. (2018a). In addition, our results rely on neither the null

hypothesis nor homogeneity of the treatment effect. Compared with the analytical inference, the

two bootstrap inferences for QTEs studied in this paper avoid estimating the infinite-dimensional

nuisance parameters such as the densities of the potential outcomes, and thus, the choices of tuning

parameters. In addition, unlike the permutation tests studied in Bugni et al. (2018a), the validity

of bootstrap inferences does not require either the strong balance condition or studentization.

The rest of the paper is organized as follows. Section 2 describes the model set-up and notation.

Sections 3.1, 3.2, and 3.3 discuss the asymptotic properties for estimators (1), (2), and (3), respec-

tively. Sections 4 and 5 investigate the validity of the weighted bootstrap and covariate-adaptive

bootstrap inferences, respectively. Section 6 examines the finite-sample performance of the estima-

tion and inference methods. Section 7 applies the new methods to estimate and infer the average

2We say the average treatment effect is homogeneous if the conditional average treatment effect given covariates
is the same as the unconditional one.
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and quantile treatment effects of iron efficiency on educational attainment. Section 8 concludes.

An appendix provides proofs for all results.

2 Setup and Notation

First, denote the potential outcomes for treated and control groups as Y (1) and Y (0), respectively.

The treatment status is denoted as A, where A = 1 means treated and A = 0 means untreated. The

researcher can only observe {Yi, Zi, Ai}ni=1 where Yi = Yi(1)Ai+Yi(0)(1−Ai), and Zi is a collection

of baseline covariates. Stratum are constructed from Z using a function S : Supp(Z) 7→ S, where

S is a finite set. For 1 ≤ i ≤ n, Let Si = S(Zi) and p(s) = P(Si = s). We make the following

assumption on the data generating process (DGP) and the treatment assignment rule:

Assumption 1. 1. {Yi(1), Yi(0), Si}ni=1 is i.i.d.,

2. {Yi(1), Yi(0)}ni=1 ⊥⊥ {Ai}ni=1|{Si}ni=1,

3.

{{
Dn(s)√

n

}
s∈S

∣∣∣∣{Si}ni=1

}
 N(0,ΣD) a.s., where

Dn(s) =
n∑
i=1

(Ai − π)1{Si = s} and ΣD = diag{p(s)γ(s) : s ∈ S}

with 0 ≤ γ(s) ≤ π(1− π).

Several remarks are in order. First, Assumptions 1.2 and 1.3 are exactly the same as Bugni et al.

(2018a, Assumption 2.2). Assumption 1.1 is also maintained in Bugni et al. (2018a) implicitly. We

refer interested readers to Bugni et al. (2018a) for more discussion of these assumptions. Second,

note that, in Assumption 1.3, the parameter π is the target proportion of treatment for each strata

and Dn(s) measures the imbalance. Bugni et al. (2018b) study the more general case that π can

take distinct values for different stratum. Extending the results in this paper to this general set-

up is left as an interesting topic for future research. Third, we follow the terminology in Bugni

et al. (2018a), which follows Efron (1971) and Hu and Hu (2012), saying a treatment assignment

rule achieves strong balance if γ(s) = 0. Fourth, we do not require that the treatment status

is assigned independently. Instead, we only require Assumption 1.3, which is satisfied by several

treatment assignment rules such as simple random sampling (SRS), biased-coin design (BCD),

adaptive biased-coin design (WEI), and stratified block randomization (SBR). Bugni et al. (2018a,

Section 3) provides an excellent summary of these four examples. For completeness, we briefly

repeat their descriptions below. Note that both BCD and SBR assignment rules achieve strong

balance.
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Example 1 (SRS). Let {Ai}ni=1 be drawn independently and independent of {Si} as Bernoulli

random variables with success rate π, i.e.,

P
(
Ak = 1

∣∣{Si}ni=1, {Aj}kj=1

)
= P(Ak = 1) = π.

Then, Assumption 1.3 holds with γ(s) = π(1− π).

Example 2 (WEI). The design is first proposed by Wei (1978). Let Dk−1(s) =
∑k−1

i=1

(
Ai − 1

2

)
1{Si =

s}, nk−1(Sk) =
∑k−1

i=1 1{Si = Sk}, and

P
(
Ak = 1

∣∣{Si}ki=1, {Ai}k−1
i=1

)
= φ

(
Dk−1(Sk)

nk−1(Sk)

)
,

where φ(·) : [−1, 1] 7→ [0, 1] is a pre-specified non-increasing function satisfying φ(−x) = 1− φ(x).

Here, D0(S1)
0 is understood to be zero. Then, Bugni et al. (2018a) show that Assumption 1.3 holds

with π = 1
2 and γ(s) = 1

4(1− 4φ′(0))−1.

Example 3 (BCD). The treatment status is determined sequentially for 1 ≤ k ≤ n as

P
(
Ak = 1|{Si}ki=1, {Ai}k−1

i=1

)
=


1
2 if Dk−1(Sk) = 0

λ if Dk−1(Sk) < 0

1− λ if Dk−1(Sk) > 0,

where Dk−1(s) is defined as above and 1
2 < λ ≤ 1. Then, Bugni et al. (2018a) show that Assumption

1.3 holds with π = 1
2 and γ(s) = 0.

Example 4 (SBR). For each strata, bπn(s)c units are assigned to treatment and the rest is assigned

to control. Then, Bugni et al. (2018a) show that Assumption 1.3 holds with γ(s) = 0.

Our parameter of interest is the τ -th QTE defined as

q(τ) = q1(τ)− q0(τ),

where τ ∈ (0, 1) is a quantile index and qj(τ) is the τ -th quantile of random variable Y (j) for

j = 0, 1. The following regularity conditions are common in the literature of quantile estimations.

Assumption 2. For j = 0, 1, denote fj(·) and fj(·|s) as the PDFs of Yi(j) and Yi(j)|Si = s,

respectively. Then (1) fj(qj(τ)) and fj(qj(τ)|s) are bounded and bounded away from zero uniformly

over τ ∈ Υ and s ∈ S, where Υ is a compact subset of (0, 1); (2) fj(·) and fj(·|s) are Lipschitz

over {qj(τ) : τ ∈ Υ}.
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3 Estimation

3.1 Simple Quantile Regression

In this section, we propose to estimate q(τ) by a QR of Yi on Ai. Denote β(τ) = (β0(τ), β1(τ))′,

β0(τ) = q0(τ), and β1(τ) = q(τ). We estimate β(τ) by β̂, where

β̂(τ) = arg min
b=(b0,b1)′∈<2

n∑
i=1

ρτ

(
Yi − Ȧ′ib

)
,

Ȧi = (1, Ai)
′, and ρτ (u) = u(τ − 1{u ≤ 0}) is the standard check function.

Theorem 3.1. If Assumptions 1 and 2 hold, then, uniformly over τ ∈ Υ,

√
n
(
β̂1(τ)− q(τ)

)
 Bsqr(τ),

where Bsqr(·) is a Gaussian process with covariance kernel Σsqr(·, ·). The expression for Σsqr(·, ·)
can be found in the Appendix.

In particular, the asymptotic variance for
√
n
(
β̂1(τ)− β1(τ)

)
is ξ2

Y (π, τ) + ξ2
A(π, τ) + ξ2

S(τ),

where

ζ2
Y (π, τ) =

τ(1− τ)− Em2
1(S, τ)

πf2
1 (q1(τ))

+
τ(1− τ)− Em2

0(S, τ)

(1− π)f2
0 (q0(τ))

,

ζ2
A(π, τ) = Eγ(S)

(
m1(S, τ)

πf1(q1(τ))
+

m0(S, τ)

(1− π)f0(q0(τ))

)2

,

ζ2
S(τ) = E

(
m1(S, τ)

f1(q1(τ))
− m0(S, τ)

f0(q0(τ))

)2

,

and mj(s, τ) = E(τ − 1{Y (j) ≤ qj(τ)}|S = s). Note that, when the treatment assignment rule

achieves strong balance, ζ2
A(π, τ) = 0.

3.2 Quantile Regression with Strata Fixed Effects

The strata fixed effects estimator for the ATE is obtained by a linear regression of outcome Yi on

the treatment status Ai, controlling for strata dummies {1{Si = s}s∈S}. Bugni et al. (2018a) point

out that, due to the Frisch–Waugh–Lovell theorem, this estimator is equal to the linear coefficient

in the regression of Yi on Ãi, in which Ãi is the projection of Ai on the strata dummies. Unlike the

expectation, the quantile operator is nonlinear. Therefore, we cannot consistently estimate QTEs
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by a linear QR of Yi on Ai and strata dummies. Instead, based on the equivalence relationship,

we propose to run the QR of Yi on Ãi. Formally, let Ãi = Ai − π̂(Si) and ˙̃Ai = (1, Ãi)
′, where

π̂(s) = n1(s)/n(s), n1(s) =
∑n

i=1Ai1{Si = s}, and n(s) =
∑n

i=1 1{Si = s}. Then, the strata fixed

effects estimator for the QTE is β̂sfe,1(τ), where

β̂sfe(τ) ≡
(
β̂sfe,0(τ), β̂sfe,1(τ)

)′
= arg min

b=(b0,b1)′∈<2

n∑
i=1

ρτ

(
Yi − ˙̃A′ib

)
.

Theorem 3.2. If Assumptions 1 and 2 hold, then, uniformly over τ ∈ Υ,

√
n
(
β̂sfe,1(τ)− q(τ)

)
 Bsfe(τ),

where Bsfe(·) is a Gaussian process with covariance kernel Σsfe(·, ·). The expression for Σsfe(·, ·)
can be found in the Appendix.

In particular, the asymptotic variance for β̂sfe,1(τ) is

ζ2
Y (π, τ) + ζ ′2A (π, τ) + ζ2

S(τ),

where ζ2
Y (π, τ) and ζ2

S(τ) are the same as those defined below Theorem 3.1,

ζ ′2A (π, τ) =Eγ(S)

[
(m1(S, τ)−m0(S, τ))

(
1− π

πf1(q1(τ))
− π

(1− π)f0(q0(τ))

)
+ q(τ)

(
f1(q1(τ)|S)

f1(q1(τ))
− f0(q0(τ)|S)

f0(q0(τ))

)]2

,

and fj(·|s) is the conditional density of Y (j) given S = s.

Three remarks are in order. First, if the treatment assignment rule achieve strong balance,

then ζ ′2A = 0 and the asymptotic variances for β̂1(τ) and β̂sfe,1(τ) are the same. Second, if the

treatment assignment rule does not achieve strong balance, then it is difficult to compare the

asymptotic variances of β̂1(τ) and β̂sfe,1(τ). Based on our simulation results in Section 6, the

QR estimator with strata fixed effects usually has a smaller standard error. Third, in order to

analytically compute the asymptotic variance β̂sfe,1(τ), one needs to nonparametrically estimate

not only the unconditional densities fj(·) but also the conditional densities fj(·|s) for j = 0, 1 and

s ∈ S. However, such difficulty can be avoided by the bootstrap inference considered in Section 5.

3.3 Inverse Propensity Score weighted Quantile Regression

In the simple random sampling, π̂(Si) defined in the previous section is also an estimator of the

propensity score, i.e., π. In addition, Assumption 1.2 implies that the unconfoundedness condition

holds. Therefore, following the lead of Firpo (2007), we can estimate qj(τ) by the inverse propensity

7



score weighted quantile regression. Let

q̂1(τ) = arg min
q

1

n

n∑
i=1

Ai
π̂(Si)

ρτ (Yi − q) and q̂0(τ) = arg min
q

1

n

n∑
i=1

1−Ai
1− π̂(Si)

ρτ (Yi − q).

Then, we estimate q(τ) by q̂(τ) = q̂1(τ)− q̂0(τ).

Theorem 3.3. If Assumptions 1 and 2 hold, then, uniformly over τ ∈ Υ,

√
n (q̂(τ)− q(τ)) Bipw(τ),

where Bipw(·) is a scalar Gaussian process with covariance kernel Σipw(·, ·). The expression for

Σipw(·, ·) can be found in the Appendix.

In particular, the asymptotic variance for q̂(τ) is

ζ2
Y (π, τ) + ζ2

S(τ).

Because both ζ2
A(π, τ) and ζ ′2A (π, τ) are nonnegative, q̂(τ) is weakly more efficient than β̂1(τ) and

β̂sfe,1(τ) for all randomization schemes that satisfy Assumption 1:

Σipw(τ, τ) ≤ Σsqr(τ, τ) and Σipw(τ, τ) ≤ Σsfe(τ, τ).

When the strong balance is achieved, both ζ2
A(π, τ) and ζ ′2A (π, τ) are zero. In this case, the three

estimators are asymptotically first-order equivalent.

Analogously, we can also estimate the ATE by the inverse propensity score weighting method.

Let θ = E(Y (1)− Y (0)) denote the true ATE. Then, we can estimate it by

θ̂ipw =
1

n

n∑
i=1

YiAi
π̂(Si)

− 1

n

n∑
i=1

Yi(1−Ai)
1− π̂(Si)

.

Theorem 3.4. If Assumption 1 holds, E(Y 2
i (1)+Y 2

i (0)) <∞, and, for some s ∈ S and a ∈ {0, 1},
V(Yi(a)|Si = s) > 0, then

√
n(θ̂ipw − θ) N (0, σ2

ipw),

where N (0, σ2
ipw) is a normal distribution with mean 0 and variance

σ2
ipw =

{
E[Yi(1)− E(Yi(1)|Si)]2

π
+

E[Yi(0)− E(Yi(0)|Si)]2

1− π

}
+

{
E[E(Yi(1)|Si)− E(Yi(0)|Si)]2

}
≡ζ̄2

Y (π) + ζ̄2
S .

The proof of Theorem 3.4 is basically the same as that of Theorem 3.3, and thus, is omitted for
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brevity. Denote the two sample means and the strata fixed effects estimators proposed in Bugni

et al. (2018a) as θ̂ and θ̂sfe, defining them as

θ̂ =

∑n
i=1AiYi
n1(s)

−
∑n

i=1(1−Ai)Yi
n(s)− n1(s)

and

θ̂sfe =

∑n
i=1 ÃiYi∑n
i=1 Ã

2
i

,

respectively. Further denote the asymptotic variances for θ̂ and θ̂sfe as σ2
s and σ2

sfe, respectively.

Then, by Bugni et al. (2018a, Theorems 4.1 and 4.3), we have

σ2
s = ζ̄2

Y (π) + ζ̄2
S + ζ̄2

A and σ2
sfe = ζ̄2

Y (π) + ζ̄2
S + ζ̄2

π,

where both ζ̃2
A and ζ̃2

π are nonnegative. Therefore, the inverse propensity score estimator for ATE

has the smallest asymptotic variance among the three:

σ2
ipw ≤ σ2

s and σ2
ipw ≤ σ2

sfe.

Such efficiency is also achieved by the fully saturated linear regression proposed in Bugni et al.

(2018b).

4 Weighted Bootstrap Inference

In this section, we consider the weighted bootstrap inference. Let {ξi}ni=1 be a sequence of bootstrap

weights which will be specified later. Further denote nw1 (s) =
∑n

i=1 ξiAi1{Si = s}, nw(s) =∑n
i=1 ξi1{Si = s}, π̂w(s) = nw1 (s)/nw(s), Ȧi = (1, Ai)

′, Ãwi = Ai − π̂w(Si), and ˙̃Awi = (1, Ãwi )′.

Then, the weighted bootstrap counterparts of the three estimators studied in this paper can be

written as

β̂w(τ) = arg min
b

n∑
i=1

ξiρτ

(
Yi − Ȧ′ib

)
,

β̂wsfe(τ) = arg min
b

n∑
i=1

ξiρτ

(
Yi − ˙̃Awi b

)
,

9



and

q̂w(τ) = q̂w1 (τ)− q̂w0 (τ),

where

q̂w1 (τ) = arg min
q

n∑
i=1

ξiAi
π̂w(Si)

ρτ (Yi − q) and q̂w0 (τ) = arg min
q

n∑
i=1

ξi(1−Ai)
1− π̂w(Si)

ρτ (Yi − q) .

In particular, the second elements β̂w1 (τ) and β̂wsfe,1(τ) of vectors β̂w(τ) and β̂wsfe(τ), respectively,

and q̂w(τ) are the three bootstrap estimators of the τ -th QTE. Next, we specify the bootstrap

weights.

Assumption 3. Suppose {ξi}ni=1 is a sequence of nonnegative i.i.d. random variables with unit

expectation and variance and a sub-exponential upper tail.

The nonnegativity is required to maintain the convexity of the quantile regression objective

function. The other conditions in Assumption 3 are common for the weighted bootstrap inference.

In practice, we generate {ξi}ni=1 by the standard exponential distribution. In this case, the weighted

bootstrap is also known as the Bayesian bootstrap.

Theorem 4.1. If Assumptions 1–3 hold, then uniformly over τ ∈ Υ and conditionally on data,

√
n
(
β̂w1 (τ)− β̂1(τ)

)
 B̃sqr(τ),

√
n
(
β̂wsfe,1(τ)− β̂sfe,1(τ)

)
 B̃sfe(τ),

and

√
n (q̂w(τ)− q̂(τ)) Bipw(τ),

where B̃sqr(τ) and B̃sfe(τ) are two Gaussian processes with covariance kernels being equal to those

of Bsqr(τ) and Bsfe(τ) defined in Theorems 3.1 and 3.2, respectively, with γ(s) being replaced by

π(1− π), and Bipw(τ) is the same Gaussian process defined in Theorem 3.3.

Five remarks are in order. First, the weighted bootstrap sample does not preserve the negative

cross-sectional dependence in the original sample. Asymptotic variances of the weighted bootstrap

estimators equal to those of their original sample counterparts as if simple random sampling gener-

ated the data. This asymptotic variance is intuitive as the weight ξi is independent with each other,

which implies that, conditionally on data, the bootstrap sample observations are independent.
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Second, for both the QR with or without strata fixed effects, the weighted bootstrap inference

is conservative. In fact, the asymptotic variances for β̂w1 (τ) and β̂wsfe,1(τ) are

ζ2
Y (π, τ) + ζ̃2

A(π, τ) + ζ2
S(τ)

and

ζ2
Y (π, τ) + ζ̃ ′2A (π, τ) + ζ2

S(τ),

respectively, where

ζ̃2
A(π, τ) = Eπ(1− π)

(
m1(S, τ)

πf1(q1(τ))
+

m0(S, τ)

(1− π)f0(q0(τ))

)2

and

ζ̃ ′2A (π, τ) =Eπ(1− π)

[
(m1(S, τ)−m0(S, τ))

(
1− π

πf1(q1(τ))
− π

(1− π)f0(q0(τ))

)
+ q(τ)

(
f1(q1(τ)|S)

f1(q1(τ))
− f0(q0(τ)|S)

f0(q0(τ))

)]2

.

Because γ(s) ≤ π(1− π), we have

ζ2
A(π, τ) ≤ ζ̃2

A(π, τ) and ζ ′2A (π, τ) ≤ ζ̃ ′2A (π, τ).

The inequalities are strict if the treatment assignment rule achieves strong balance.

Third, the weighted bootstrap inference has the exact asymptotic size for the inverse propensity

score estimator. Theorem 3.3 shows that the asymptotic variance for q̂(τ) is invariant against the

treatment assignment rule applied. Therefore, even though the weighted bootstrap sample ignores

the cross-sectional dependence and behaves as if the treatment status is generated randomly, the

asymptotic variance for q̂w(τ) is still

ζ2
Y (π, τ) + ζ2

S(τ).

Fourth, by checking the proof of Theorem 4.1, the validity of weighted bootstrap for the inverse

propensity score weighted estimator still holds if Assumption 1.3 is relaxed to

sup
s∈S
|Dn(s)| = Op(

√
n).

Fifth, it is also possible to consider the conventional nonparametric bootstrap which generates

the bootstrap sample from the empirical distribution of the data. If the observations are i.i.d.,
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van der Vaart and Wellner (1996, Section 3.6) shows that the conventional bootstrap is first-order

equivalent to a weighted bootstrap with Poisson(1) weights. However, in the current setting,

{Ai}i≥1 is in general not independent. It is technically challenging to rigorously show that the

above equivalence still holds. We leave it as an interesting topic for future research.

5 Covariate-Adaptive Bootstrap Inference

In this section, we consider the covariate-adaptive bootstrap procedure as follows:

1. Draw {S∗i }ni=1 from the empirical distribution of {Si}ni=1 with replacement.

2. Generate {A∗i }ni=1 based on {S∗i }ni=1 and the treatment assignment rule.

3. For A∗i = a and S∗i = s, draw Y ∗i from the empirical distribution of Yi given Ai = a and

Si = s with replacement.

First, step 1 is the conventional nonparametric bootstrap. The sample {S∗i }ni=1 is obtained by

drawing from the empirical distribution of {Si}ni=1 with replacement n times. Second, step 2 re-

peats the treatment assignment rule, and thus preserves the cross-sectional dependence structure

of the bootstrap sample, even after conditioning on data. The weighted bootstrap sample, by con-

trast, is cross-sectionally independent given data. Third, step 3 applies the conventional bootstrap

procedure to the outcome Yi in the cell (Si, Ai) = (s, a) ∈ S × {0, 1}. Given that the original data

contain na(s) observations in this cell, in this step, the bootstrap sample {Y ∗i }i:A∗i=a,S∗i =s is ob-

tained by drawing from the empirical distribution of these na(s) outcomes with replacement n∗a(s)

times, where n∗a(s) =
∑n

i=1 1{A∗i = a, S∗i = s}. Unlike the conventional bootstrap, here both na(s)

and n∗a(s) are random and are not necessarily the same. Last, to implement the covariate-adaptive

bootstrap, researchers need to know the treatment assignment rule for the original sample. Unlike

in the observational study, in RCTs, such information is usually available. If one only knows that

the assignment rule achieves strong balance, then Theorem 5.1 below still holds, provided that the

bootstrap sample is generated from any assignment rule that achieves strong balance. Even worse,

if no information on the treatment assignment rule is available, then one cannot implement the

covariate-adaptive bootstrap inference. In this case, the weighted bootstrap for inverse propensity

score weighted estimator can still provide a non-conservative t-test, as shown in Theorem 4.1.

Using the bootstrap sample {Y ∗i , A∗i , S∗i }ni=1, we can estimate QTE by the three methods consid-

ered in the paper, i.e., simple QR, QR with strata fixed effects, and inverse propensity score weighted

QR. Let n∗1(s) =
∑n

i=1A
∗
i 1{S∗i = s}, n∗(s) =

∑n
i=1 1{S∗i = s}, π̂∗(s) =

n∗1(s)
n∗(s) , Ȧ∗i = (1, A∗i )

′,

Ã∗i = A∗i − π̂∗(Si), and ˙̃A∗i = (1, Ã∗i )
′. Then, the three bootstrap estimators can be written as

β̂∗(τ) = arg min
b

n∑
i=1

ρτ

(
Y ∗i − Ȧ∗i b

)
,
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β̂∗sfe(τ) = arg min
b

n∑
i=1

ρτ

(
Y ∗i −

˙̃A∗i b
)
,

and

q̂∗(τ) = q̂∗1(τ)− q̂∗0(τ),

where

q̂∗1 = arg min
q

n∑
i=1

A∗i
π̂∗(S∗i )

ρτ (Y ∗i − q) and q̂∗0 = arg min
q

n∑
i=1

1−A∗i
1− π̂∗(S∗i )

ρτ (Y ∗i − q).

In particular, the second elements β̂∗1(τ) and β̂∗sfe,1(τ) of vectors β̂∗(τ) and β̂∗sfe(τ), respectively,

and q̂∗(τ) are the three bootstrap estimators of the τ -th QTE. Parallel to Assumption 1, we make

the following assumption on the bootstrap sample.

Assumption 4. Let D∗n(s) =
∑n

i=1(A∗i−π)1{S∗i = s}. Then,

{{
D∗n(s)√

n

}
s∈S

∣∣∣∣{S∗i }ni=1

}
 N(0,ΣD)

a.s.

Assumption 4 is a high-level assumption. Obviously, it holds for SRS. For WEI, this condition

holds by the same argument in Bugni et al. (2018a, Lemma B.12) with the fact that n∗(s)
n

p−→ p(s).

For BCD, as shown in Bugni et al. (2018a, Lemma B.11),

D∗n(s)|{S∗i }ni=1 = Op(1).

Therefore, D∗n(s)/
√
n

p−→ 0 and Assumption 4 holds with γ(s) = 0. For SBR, it is clear that

|D∗n(s)| ≤ 1. Therefore, Assumption 4 holds with γ(s) = 0 as well.

Theorem 5.1. If Assumptions 1, 2, and 4 hold, then, uniformly over τ ∈ Υ and conditionally on

data,

√
n
(
β̂∗1(τ)− q̂(τ)

)
 Bsqr(τ),

√
n
(
β̂∗sfe,1(τ)− q̂(τ)

)
 Bsfe(τ),

and

√
n(q̂∗(τ)− q̂(τ)) Bipw(τ),

where Bsqr(τ), Bsfe(τ), and Bipw(τ) are three Gaussian processes defined in Theorem 3.1, 3.2, and

3.3, respectively.

13



Several remarks are in order. First, unlike the weighted bootstrap estimator, the covariate-

adaptive bootstrap estimators are not centered on their corresponding counterparts from the orig-

inal sample, but rather the inverse propensity score weighted estimator q̂(τ). The reason is that

the treatment status A∗i is not generated by bootstrap. In the linear expansion of the bootstrap

estimator, the part of the influence function that accounts for the variation generated by A∗i need

not be centered. We also know from the proof of Theorem 3.3 that the linear expansion of q̂(τ)

do not have the influence function that represents the variation generated by Ai. Therefore, it is

natural to use it as the center.

Second, we do not necessarily need to estimate q̂(τ) in order to make bootstrap inference. Note

that the asymptotic distribution of the bootstrap estimator has the same dispersion as that of the

original estimator. Therefore, we can use interdecile range3 to estimate the standard error. Taking

β̂∗sfe,1(τ) as an example, we first compute the bootstrap estimator B times and denote them as

{β̂∗sfe,1,b(τ)}Bb=1. Then, the standard error estimator Σ̂sfe(τ, τ) can be computed as

Σ̂sfe(τ, τ) =
Q̂(0.9)− Q̂(0.9)

Φ−1(0.9)− Φ−1(0.1)
,

where Q̂(τ) is the τ -th empirical quantile of the sequence
{
β̂∗sfe,1,b(τ)

}B
b=1

and Φ(·) is the standard

normal CDF.

Third, for inferring the ATE, we can use the same bootstrap sample to compute the standard

errors for θ̂, θ̂sfe, and θ̂ipw and construct corresponding t-tests. We expect that all the conclusions

for QTEs hold for the ATE as well. The simulation results in Section G of the Appendix provide

some finite sample evidences.

6 Simulation

6.1 Data Generating Processes

We consider four DGPs with parameters γ = 4, σ = 2, and µ which will be specified later.

1. Let Z be the standardized β(2, 2) distributed, Si =
∑4

j=1{Zi ≤ gj}, and (g1, · · · , g4) =

(−0.25
√

20, 0, 0.25
√

20, 0.5
√

20). The outcome equation is

Yi = Aiµ+ γZi + ηi,

where ηi = σAiεi,1 + (1−Ai)εi,2 and (εi,1, εi,2) are jointly standard normal.

3It is valid to consider the difference of other two quantiles, such as 0.75 and 0.25. We recommend the interdecile
range because it performs well in finite sample.
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2. Let S be the same as in DGP1. The outcome equation is

Yi = Aiµ+ γZiAi − γ(1−Ai)(log(Zi + 3)1{Zi ≤ 0.5}) + ηi.

where ηi = σAiεi,1 + (1−Ai)εi,2 and (εi,1, εi,2) are jointly standard normal.

3. Let Z be uniformly distributed on [−2, 2], Si =
∑4

j=1{Zi ≤ gj}, and (g1, · · · , g4) = (−1, 0, 1, 2).

The outcome equation is

Yi = Aiµ+Aimi,1 + (1−Ai)mi,0 + ηi,

where mi,0 = γZ2
i 1{|Zi| ≥ 1}+ γ

4 (2−Z2
i )1{|Zi| < 1}, ηi = σ(1+Z2

i )Aiεi,1+(1+Z2
i )(1−Ai)εi,2,

and (εi,1, εi,2) are mutually independent T (3)/3 distributed.

4. Let Zi be normally distributed with mean 0 and variance 4, Si =
∑4

j=1{Zi ≤ gj}, (g1, · · · , g4) =

(2Φ−1(0.25), 2Φ−1(0.5), 2Φ−1(0.75),∞), and Φ(·) is the standard normal CDF. The outcome

equation is

Yi = Aiµ+Aimi,1 + (1−Ai)mi,0 + ηi,

where mi,0 = −γZ2
i /4, mi,1 = γZ2

i /4,

ηi = σ(1 + 0.5 exp(−Z2
i /2))Aiεi,1 + (1 + 0.5 exp(−Z2

i /2))(1−Ai)εi,2,

and (εi,1, εi,2) are jointly standard normal.

When π = 1
2 , for each DGP, we consider four randomization schemes:

1. SRS: Treatment assignment is generated as in Example 1.

2. WEI: Treatment assignment is generated as in Example 2 with φ(x) = (1− x)/2.

3. BCD: Treatment assignment is generated as in Example 3 with λ = 0.75.

4. SBR: Treatment assignment is generated as in Example 4.

When π 6= 0.5, WEI and BCD are not defined in the literature. Therefore, we only consider SRS

and SBR as in Bugni et al. (2018a). We conduct the simulations with sample sizes n = 200 and 400.

The numbers of simulation replications and bootstrap samples are 1000. Under the null, µ = 0

and the true parameters of interest are computed by simulations with 106 sample size and 104

replications. Under the alternative, we perturb the true values by µ = 1 and µ = 0.75 for n = 200

and 400, respectively. Throughout this section, we focus on the median QTE. The simulation

results for QTEs with τ = 0.25 and 0.75 can be found in Section G in the Appendix. Section G

also contains the simulation results for ATE. All the observations made in this section still apply.
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6.2 QTE, π = 0.5

For the inference of QTEs, we consider eight t-tests with 95% nominal rate. For all of them, we

construct the t-test statistics by one of the three point estimates studied in this paper and some

estimate of the standard error. The null hypothesis will be rejected when the absolute value of the

t-statistic is greater than 1.96. The details about the point estimates and standard errors are as

follows:

1. “s/naive”: the point estimator is computed by the simple QR and its standard error σnaive

is computed as

σ2
naive =

τ(1− τ)− 1
n

∑n
i=1 m̂

2
1(Si, τ)

πf̂2
1 (q̂1(τ))

+
τ(1− τ)− 1

n

∑n
i=1 m̂

2
0(Si, τ)

(1− π)f̂2
0 (q̂0(τ))

+
1

n

n∑
i=1

π(1− π)

(
m̂1(Si, τ)

πf̂1(q̂1(τ))
+

m̂0(Si, τ)

(1− π)f̂0(q̂0(τ))

)2

+
1

n

n∑
i=1

(
m̂1(Si, τ)

f̂1(q̂1(τ))
− m̂0(Si, τ)

f̂0(q̂0(τ))

)2

, (6.1)

where q̂j(τ) is the τ -the empirical quantile of Yi|Ai = j,

m̂i,1(s, τ) =

∑n
i=1Ai1{Si = s}(τ − 1{Yi ≤ q̂1(τ)})

n1(s)
,

m̂i,0(s, τ) =

∑n
i=1(1−Ai)1{Si = s}(τ − 1{Yi ≤ q̂0(τ)})

n(s)− n1(s)
,

and for j = 0, 1, f̂j(·) is computed by the kernel density estimation using the observations

Yi provided that Ai = j, bandwidth hj = 1.06σ̂jn
−1/5
j , and the Gaussian kernel function,

where σ̂j is the standard deviation of the observations Yi provided that Ai = j, and nj =∑n
i=1{Ai = j}, j = 0, 1.

2. “s/adj”: exactly the same as the “s/naive” method with one difference: replacing π(1−π) in

σ2
naive by γ(Si).

3. “s/B”: the point estimator is computed by the simple QR and its standard error σB is

computed by the weighted bootstrap procedure. The bootstrap weights {ξi}ni=1 are generated

from the standard exponential distribution. Denote {β̂w1,b}Bb=1 as the collection of B estimates

obtained by the simple QR applied to the samples generated by the weighted bootstrap

procedure. Then,

σB =
Q̂(0.9)− Q̂(0.1)

Φ−1(0.9)− Φ−1(0.1)
,
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where Φ(·) is the standard normal CDF and Q̂(τ) is the τ -th empirical quantile of {β̂w1,b}Bb=1.

4. “sfe/B”: the same as above with one difference: the estimation method for both the original

and bootstrap samples is the QR with strata fixed effects.

5. “ipw/B”: the same as above with one difference: the estimation method for both the original

and bootstrap samples is the inverse propensity score weighted QR.

6. “s/CA”: the point estimator is computed by the simple QR and its standard error σCA is

computed by the covariate-adaptive bootstrap procedure. Denote {β̂∗1,b}Bb=1 as the collection

of B estimates obtained by the simple QR applied to the samples generated by the covariate-

adaptive bootstrap procedure. Then,

σCA =
Q̂(0.9)− Q̂(0.1)

Φ−1(0.9)− Φ−1(0.1)
,

where Q̂(τ) is the τ -th empirical quantile of {β̂∗1,b}Bb=1.

7. “sfe/CA”: the same as above with one difference: the estimation method for both the original

and bootstrap samples is the QR with strata fixed effects.

8. “ipw/CA”: the same as above with one difference: the estimation method for both the original

and bootstrap samples is the inverse propensity score weighted QR.

Tables 1 and 2 present the coverage rates for the eight t-tests under the null with sample

sizes n = 200 and 400, respectively. In these two tables, column M and A represent DGPs and

treatment assignment rules, respectively. We can make six observations. First, the naive t-test

(“s/naive”) is conservative for WEI, BCD, and SBR, which is consistent with the findings for

ATE estimators discovered by Shao et al. (2010) and Bugni et al. (2018a). Second, although the

adjusted t-test (“s/adj”) is expected to have the exact asymptotic size, it does not perform well.

The main reason is that, in order to analytically compute the standard error, one needs to compute

nuisance parameters such as the unconditional densities of Y (0) and Y (1), which requires tuning

parameters. We further compute the standard errors following (6.1) with π(1− π) and the tuning

parameter hj replaced by γ(Si) and 1.06Cf σ̂jn
−1/5
j , respectively, for some constant Cf ∈ [0.5, 1.5].

Figure 1 plots the rejection probabilities of the “s/adj” t-tests against Cf for the BCD assignment

rule with n = 200, τ = 0.5, and π = 0.5. We see that (1) the rejection probability is sensitive

to the choice bandwidth, (2) there is no universal optimal bandwidth across different DGPs, and

(3) the covariate-adaptive bootstrap t-tests (“s/CA”) represented by the dotted dash lines are

quite stable across different DGPs and close to the nominal rate of rejection. Third, the weighted

bootstrap t-test for the simple QR estimator (“s/B”) is conservative, especially for the first two

DGPs with BCD and SBR assignment rules: both BCD and SBR achieve strong balance. Fourth,
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the weighted bootstrap t-test for the fixed effects estimator (“sfe/B”) is slightly conservative, even

for the assignment rule that achieve strong balance. For example, the rejection rates are 0.43 and

0.35 for DGP 2 and 4 with assignment rule SBR in Table 1. We will provide more evidence to

illustrate the conservatism later. Fifth, the rejection probabilities of the weighted bootstrap t-test

for the inverse propensity score weighted estimator (“ipw/B”) is close to the nominal rate even for

sample size n = 200. This is consistent with Theorem 4.1. Last, the rejection rates for the three

covariate-adaptive bootstrap t-tests (“s/CA”, “sfe/CA”, and “ipw/CA”) are close to the nominal

rate, which is also consistent with Theorem 5.1.

Table 1: H0, n = 200, τ = 0.5
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.058 0.058 0.065 0.039 0.042 0.044 0.039 0.038
WEI 0.009 0.055 0.019 0.042 0.039 0.045 0.039 0.038
BCD 0.002 0.054 0.002 0.041 0.047 0.048 0.041 0.044
SBR 0.002 0.057 0.001 0.050 0.051 0.049 0.047 0.049

2 SRS 0.049 0.049 0.046 0.054 0.059 0.044 0.054 0.060
WEI 0.040 0.063 0.045 0.057 0.061 0.068 0.061 0.063
BCD 0.014 0.055 0.022 0.048 0.058 0.056 0.061 0.058
SBR 0.020 0.057 0.019 0.043 0.054 0.052 0.051 0.055

3 SRS 0.015 0.015 0.052 0.055 0.063 0.053 0.056 0.055
WEI 0.012 0.012 0.052 0.051 0.060 0.058 0.054 0.059
BCD 0.016 0.017 0.058 0.059 0.063 0.062 0.062 0.063
SBR 0.013 0.015 0.054 0.052 0.057 0.057 0.057 0.058

4 SRS 0.021 0.021 0.064 0.052 0.063 0.061 0.053 0.061
WEI 0.017 0.017 0.052 0.044 0.061 0.059 0.057 0.058
BCD 0.018 0.019 0.057 0.048 0.060 0.062 0.062 0.061
SBR 0.017 0.018 0.048 0.035 0.051 0.054 0.053 0.054
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Table 2: H0, n = 400, τ = 0.5
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.040 0.040 0.048 0.031 0.030 0.039 0.029 0.031
WEI 0.009 0.036 0.008 0.033 0.033 0.030 0.035 0.033
BCD 0.000 0.041 0.000 0.035 0.036 0.037 0.034 0.035
SBR 0.000 0.047 0.001 0.047 0.051 0.046 0.046 0.047

2 SRS 0.061 0.061 0.061 0.052 0.052 0.054 0.046 0.048
WEI 0.027 0.060 0.030 0.058 0.064 0.059 0.065 0.065
BCD 0.017 0.049 0.015 0.043 0.051 0.055 0.051 0.047
SBR 0.015 0.047 0.016 0.047 0.055 0.057 0.056 0.056

3 SRS 0.016 0.016 0.045 0.049 0.054 0.048 0.048 0.054
WEI 0.017 0.017 0.053 0.049 0.056 0.059 0.054 0.055
BCD 0.012 0.012 0.055 0.056 0.055 0.060 0.057 0.058
SBR 0.007 0.007 0.064 0.063 0.067 0.065 0.064 0.066

4 SRS 0.017 0.017 0.041 0.043 0.050 0.042 0.050 0.052
WEI 0.020 0.020 0.073 0.054 0.073 0.072 0.064 0.072
BCD 0.020 0.020 0.046 0.037 0.054 0.049 0.050 0.054
SBR 0.020 0.020 0.035 0.036 0.039 0.037 0.042 0.041

0.5 1 1.5
0

0.05

0.1
DGP 1

0.5 1 1.5
0

0.05

0.1
DGP 2

0.5 1 1.5
0

0.05

0.1
DGP 3

0.5 1 1.5
0

0.05

0.1
DGP 4

Note: Rejection probabilities for BCD assignment rule with n = 200, π = 0.5, and
τ = 0.5. The X-axis is Cf . The solid lines are the rejection probabilities for “s/adj”.

The densities of Yj is computed using the tuning parameters hj = 1.06Cf σ̂jn
−1/5
j , for

j = 0, 1. The dotted dash lines are the rejection probability for “s/CA”.

Figure 1: Rejection Probabilities Across Different Bandwidth Values

Tables 3 and 4 show the powers of the eight t-tests for sample sizes n = 200 and 400, respectively.
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We can make three observations. First, for DGPs 2 and 4, “sfe/B” has lower power than “ipw/B”,

“sfe/CA” and “ipw/CA” for assignment rules “WEI”, “BCD”, and “SBR”, which illustrate that

the weighted bootstrap inference for QR with strata fixed effects is conservative. Second, for BCD

and SBR, the powers for “ipw/B”, “s/CA”, “sfe/CA”, and “ipw/CA” are close. This is because

both BCD and SBR achieve strong balance. In this case, the three estimators proposed in this

paper are asymptotically first-order equivalent. Third, for assignment rules SRS and WEI in Table

3, “ipw/CA” is more powerful than “sfe/CA” and “s/CA”. This confirms our theoretical finding

that the inverse propensity score weighted estimator is strictly more efficient than the other two

when the assignment rule does not achieve strong balance. In Table 4, “ipw/CA” is still more

powerful than “s/CA”. However, the power of “sfe/CA” is close to that of “ipw/CA”.

Table 3: H1, n = 200, τ = 0.5
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.198 0.198 0.210 0.435 0.438 0.209 0.420 0.432
WEI 0.132 0.303 0.150 0.442 0.443 0.320 0.431 0.440
BCD 0.077 0.463 0.101 0.442 0.443 0.420 0.443 0.443
SBR 0.068 0.483 0.089 0.445 0.452 0.446 0.448 0.444

2 SRS 0.256 0.256 0.253 0.361 0.372 0.263 0.361 0.372
WEI 0.207 0.287 0.205 0.303 0.326 0.292 0.320 0.333
BCD 0.205 0.359 0.212 0.318 0.343 0.333 0.343 0.342
SBR 0.211 0.375 0.214 0.350 0.371 0.357 0.369 0.354

3 SRS 0.800 0.800 0.905 0.895 0.902 0.907 0.900 0.907
WEI 0.805 0.809 0.905 0.902 0.908 0.912 0.901 0.904
BCD 0.795 0.797 0.904 0.901 0.906 0.902 0.906 0.903
SBR 0.808 0.817 0.913 0.916 0.916 0.913 0.914 0.914

4 SRS 0.170 0.170 0.295 0.266 0.319 0.307 0.296 0.315
WEI 0.170 0.171 0.298 0.268 0.319 0.307 0.308 0.318
BCD 0.180 0.187 0.312 0.291 0.319 0.318 0.318 0.318
SBR 0.168 0.171 0.290 0.269 0.311 0.318 0.312 0.312
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Table 4: H1, n = 400, τ = 0.5
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.216 0.216 0.227 0.500 0.502 0.227 0.495 0.493
WEI 0.133 0.343 0.161 0.507 0.506 0.353 0.493 0.497
BCD 0.093 0.503 0.098 0.491 0.489 0.476 0.482 0.479
SBR 0.094 0.493 0.109 0.470 0.471 0.469 0.473 0.473

2 SRS 0.276 0.276 0.275 0.389 0.424 0.285 0.395 0.419
WEI 0.266 0.370 0.254 0.398 0.415 0.359 0.414 0.409
BCD 0.263 0.455 0.269 0.409 0.432 0.432 0.434 0.434
SBR 0.257 0.443 0.268 0.417 0.438 0.438 0.447 0.436

3 SRS 0.897 0.897 0.954 0.949 0.953 0.953 0.948 0.952
WEI 0.886 0.887 0.946 0.949 0.948 0.947 0.947 0.949
BCD 0.888 0.889 0.945 0.941 0.945 0.945 0.943 0.944
SBR 0.889 0.889 0.946 0.947 0.949 0.949 0.948 0.948

4 SRS 0.239 0.239 0.360 0.347 0.355 0.353 0.360 0.355
WEI 0.245 0.245 0.356 0.341 0.373 0.360 0.368 0.369
BCD 0.208 0.213 0.352 0.329 0.359 0.363 0.356 0.355
SBR 0.222 0.223 0.344 0.330 0.351 0.358 0.362 0.359

6.3 QTE, π = 0.7

Tables 5–8 show the similar results with π = 0.7. In addition to the observations made previously,

we want to highlight that, under the null, the rejection rates of “sfe/B” for DGP 4 and assignment

rule SBR are 0.020 and 0.038 in Tables 5 and 6, respectively, which are below the nominal rate. Un-

der the alternative, the rejection rates are 0.186 and 0.239, which are lower than those of “ipw/B”,

“s/CA”, “sfe/CA”, and “ipw/CA”. Both observations indicate that “sfe/B” is conservative even

for the assignment rule that achieves strong balance, such as SBR.

Table 5: H0, n = 200, τ = 0.5
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.052 0.052 0.057 0.042 0.049 0.040 0.044 0.044
SBR 0.000 0.043 0.001 0.035 0.037 0.042 0.035 0.034

2 SRS 0.049 0.049 0.047 0.040 0.053 0.039 0.043 0.050
SBR 0.020 0.056 0.022 0.050 0.050 0.052 0.052 0.050

3 SRS 0.010 0.010 0.052 0.052 0.062 0.053 0.056 0.058
SBR 0.010 0.012 0.056 0.058 0.060 0.058 0.064 0.060

4 SRS 0.015 0.015 0.050 0.042 0.064 0.046 0.051 0.064
SBR 0.007 0.012 0.035 0.020 0.051 0.047 0.045 0.047
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Table 6: H0, n = 400, τ = 0.5
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.039 0.039 0.057 0.037 0.037 0.040 0.032 0.031
SBR 0.000 0.047 0.001 0.043 0.046 0.045 0.043 0.041

2 SRS 0.056 0.056 0.054 0.053 0.053 0.044 0.051 0.050
SBR 0.016 0.058 0.014 0.056 0.060 0.058 0.060 0.061

3 SRS 0.013 0.013 0.049 0.056 0.064 0.051 0.051 0.060
SBR 0.006 0.006 0.045 0.050 0.055 0.051 0.053 0.051

4 SRS 0.014 0.014 0.048 0.039 0.055 0.050 0.048 0.057
SBR 0.016 0.024 0.049 0.038 0.066 0.069 0.065 0.065

Table 7: H1, n = 200, τ = 0.5
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.186 0.186 0.195 0.407 0.419 0.181 0.397 0.400
SBR 0.037 0.446 0.061 0.424 0.438 0.423 0.410 0.410

2 SRS 0.261 0.261 0.248 0.319 0.333 0.247 0.320 0.331
SBR 0.228 0.381 0.225 0.359 0.380 0.353 0.363 0.368

3 SRS 0.774 0.774 0.883 0.866 0.881 0.885 0.866 0.879
SBR 0.801 0.815 0.904 0.900 0.909 0.917 0.910 0.913

4 SRS 0.125 0.125 0.262 0.197 0.289 0.269 0.231 0.280
SBR 0.104 0.142 0.274 0.186 0.323 0.322 0.323 0.321

Table 8: H1, n = 400, τ = 0.5
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.182 0.182 0.193 0.483 0.496 0.194 0.476 0.481
SBR 0.055 0.513 0.076 0.485 0.496 0.503 0.491 0.491

2 SRS 0.328 0.328 0.298 0.420 0.409 0.290 0.416 0.410
SBR 0.269 0.423 0.252 0.398 0.404 0.384 0.402 0.400

3 SRS 0.860 0.860 0.927 0.915 0.931 0.925 0.917 0.931
SBR 0.860 0.867 0.932 0.930 0.934 0.936 0.933 0.936

4 SRS 0.200 0.200 0.333 0.278 0.372 0.348 0.296 0.371
SBR 0.157 0.204 0.317 0.239 0.348 0.346 0.344 0.344

6.4 Summary

First, “s/naive”, “s/B”, and “sfe/B” are conservative while “s/adj”, “ipw/B”, “s/CA”, “sfe/CA”,

and “ipw/CA” are not. Second, among the non-conservative t-tests, when the treatment assign-

ment rule does not achieve strong balance (such as SRS and WEI), “ipw/B” and “ipw/CA” are

strictly more powerful than “s/adj”, “s/CA”, and “sfe/CA”. When the treatment assignment rule

does achieve strong balance (such as BCD and SBR), “s/adj”, “ipw/B”, “s/CA”, “sfe/CA”, and

“ipw/CA” are asymptotically first order equivalent. Third, the bootstrap based t-tests (“ipw/B”,
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“s/CA”, “sfe/CA”, and “ipw/CA”) have better finite sample performances than the analytically

adjusted t-test (“s/adj”).

7 Empirical Application

We illustrate our methods by estimating and inferring the average and quantile treatment effects

of iron efficiency on educational attainment. The dataset we use is the same as the one analyzed

by Chong, Cohen, Field, Nakasone, and Torero (2016) and Bugni et al. (2018a).

7.1 Data Description

The dataset consists of 215 students from one Peruvian secondary school during the 2009 school

year. About two thirds of students were assigned as treatment group (A = 1 or A = 2). The

other one third of students were assigned as control group (A = 0). One half of the students

in the treatment group were exposed to a video of encouraging iron supplements by a physician

(A = 1) and the other half were exposed to the same encouragement from a popular soccer player

(A = 2). Those assignments were stratified by the number of years of secondary school completed

(S = {1, · · · , 5}). The field experiment used a stratified block randomization scheme with fractions

(1/3, 1/3, 1/3) for each group, which achieves strong balance (γ(s) = 0).

In the following, we focus on the observations with A = 0 and A = 1, and estimate the treatment

effect of the exposure to a video of encouraging iron supplements by a physician only. This practice

was also implemented in Bugni et al. (2018a). In this case, the target proportions of treatment

is π = 1/2. As in Chong et al. (2016), it is also possible to combine the two treatment groups,

i.e., A = 1 and A = 2 and compute the treatment effects of exposure to a video of encouraging

iron supplements by either a physician or a popular soccer player. Last, one can use the method

developed in Bugni et al. (2018b) to estimate the treatment effects under multiple treatment status.

However, in this setting, the validity of bootstrap inference has not been investigated yet and is an

interesting topic for future research.

For each observation, we have three outcome variables: number of pills taken, grade point

average, and cognitive ability measured by the average score across different Nintendo Wii games.

For more details about the outcome variables, we refer interested readers to Chong et al. (2016).

In the following, we focus on the grade point average only as the other two outcomes are discrete.

7.2 Test Statistics

Based on our theoretical and simulation results, we consider four non-conservative t-statistics:

(1) the simple estimates (difference of the two sample means or sample quantiles) with covariate-

adaptive bootstrap standard errors, (2) the strata fixed effects estimates with covariate-adaptive
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bootstrap standard errors, (3) the inverse propensity score weighted estimates with covariate-

adaptive bootstrap standard errors, and (4) the inverse propensity score weighted estimates with

weighted bootstrap standard errors. We denote them as “s/CA”, “sfe/CA”, “ipw/CA”, “ipw/B”,

respectively. For the ATEs, we also compute the simple estimates with the adjusted standard errors

based on the analytical formula derived in Bugni et al. (2018a), i.e., “s/adj”. For QTE estimates,

we consider quantile indexes {0.1, 0.15, · · · , 0.90}. The number of replications for the two boot-

strap methods is 1000. For the weighted bootstrap, we use the standard exponentially distributed

weights.

7.3 Main Results

Table 9 shows the estimates with the corresponding standard errors in the parenthesis. From the

table, we can make three remarks. First, for both ATE and QTE, the three estimates (simple,

strata fixed effects, and inverse propensity score) and their standard errors computed via analytical

formula, weighted bootstrap, and covariate-adaptive bootstrap are very close to each other. This is

consistent with our theory that, under strong balance, all these estimators are first-order equivalent.

Second, the four bootstrap-based p-values for the ATE are close to that of the adjust t-statistics

computed in Bugni et al. (2018a, Table 6). Third, we do not compute the adjusted standard

error for the QTEs as it requires tuning parameters. QTEs provide us a new insight that the

impact of supplementation on grade promotion is only significantly positive at 25% among the

three quantiles. This may imply that the policy of reducing iron deficiency is more effective for

lower-ranked students.

Table 9: Grades Points Average

s/adj s/CA sfe/CA ipw/B ipw/CA

ATE 0.35∗∗(0.16) 0.35∗∗(0.17) 0.37∗∗(0.17) 0.37∗∗(0.16) 0.37∗∗(0.17)
QTE,25% 0.43∗∗∗ (0.15) 0.42∗∗∗ (0.16) 0.43∗∗∗ (0.15) 0.43∗∗∗ (0.15)
QTE,50% 0.29(0.21) 0.30(0.22) 0.29(0.20) 0.29(0.21)
QTE,75% 0.35(0.24) 0.38(0.24) 0.36(0.26) 0.36(0.24)

Notes: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

In order to provide more details on the QTE estimates, we plot the 95% point-wise confidence

band in Figure 2 with quantile index ranging from 0.1 to 0.9. The blue line and the shadow area

represent the point estimate and its 95% point-wise confidence interval, respectively. The confidence

interval is constructed by

[β̂ − 1.96σ̂(β̂), β̂ + 1.96σ̂(β̂)],

where β̂ and σ̂(β̂) are computed in four combinations: “s/CA”, “sfe/CA”, “ipw/CA”,and “ipw/B”.

As we expected, all the four figures look the same and the estimates are only significantly positive

at low quantiles (15%-30%).
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Figure 2: 95% Point-wise Confidence Interval for Quantile Treatment Effects

7.4 Subsample Results

Following Chong et al. (2016), we further split the sample into two based on whether the student

is anemic, i.e., Anemi = 0 or 1. We anticipate that there is no treatment effect for the nonanemic

individuals and positive effects for anemic ones. In this subsample analysis, only the inverse propen-

sity score weighted estimator with the weighted bootstrap is applicable. There are two reasons.

First, the covariate-adaptive bootstrap is infeasible in the two subsamples, as the strong-balance

condition may be lost and the treatment assignment rule is not necessarily the stratified block

randomization anymore and is generally unknown. Second, however, the weighted bootstrap is still

feasible as it does not require the knowledge of the treatment assignment rule. According to the

fourth remark after Theorem 4.1, instead of Assumption 1.3, the weighted bootstrap for the inverse

propensity score weighted estimator is valid if

sup
s∈S
|D(1)

n (s)| =
n∑
i=1

(Ai − π)1{Si = s}1{Anemi = 1} = Op(
√
n)
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and

sup
s∈S
|D(0)

n (s)| =
n∑
i=1

(Ai − π)1{Si = s}1{Anemi = 0} = Op(
√
n).

We assume this weaker condition in this section.

From Table 10 and Figure 3, we see that the QTE estimates are significantly positive for the

anemic students when the quantile index is between around 20%–75%, while are insignificant for

nonanemic students.

Table 10: Grades Points Average

Total Anemic Nonanemic

ATE 0.37∗∗(0.16) 0.69∗∗∗(0.19) 0.19(0.21)
QTE, 25% 0.43∗∗∗(0.15) 0.76∗∗∗(0.25) 0.22(0.27)
QTE, 50% 0.29(0.22) 1.05∗∗∗(0.27) -0.14(0.25)
QTE, 75% 0.36(0.25) 0.76∗∗(0.32) 0.14( 0.40)

Notes: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Figure 3: 95% Point-wise Confidence Interval for Anemic and Nonanemic Students

8 Conclusion

This paper studies the estimation and bootstrap inference for QTEs under covariate-adaptive ran-

domization. We show that the weighted bootstrap inference is only valid for the inverse propensity

score weighted estimator while the covariate-adaptive bootstrap is valid for all three estimators

considered in the paper. In the empirical application, we find that the QTE of iron supplementa-

tion on grade promotion is trivial for nonanemic students, while the impact is significantly positive

for middle-ranked anemic students.
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A Proof of Theorem 3.1

Let u = (u0, u1)′ ∈ <2 and

Ln(u, τ) =

n∑
i=1

[
ρτ (Yi − Ȧ′iβ(τ)− Ȧ′iu/

√
n)− ρτ (Yi − Ȧ′iβ(τ))

]
.

Then, by the change of variable, we have that

√
n(β̂(τ)− β(τ)) = arg min

u
Ln(u, τ).

Notice that Ln(u, τ) is convex in u for each τ and bounded in τ for each u. In the following, we

aim to show that there exists

gn(u, τ) = −u′Wn(τ) +
1

2
u′Q(τ)u

such that (1) for each u,

sup
τ∈Υ
|Ln(u, τ)− gn(u, τ)| p−→ 0;

(2) the maximum eigenvalue of Q(τ) is bounded from above and the minimum eigenvalue of Q(τ)

is bounded away from 0, uniformly over τ ∈ Υ; (3) Wn(τ) B̃(τ) uniformly over τ ∈ Υ, in which

B̃(·) is some Gaussian process. Then by Kato (2009, Theorem 2), we have

√
n(β̂(τ)− β(τ)) = [Q(τ)]−1Wn(τ) + rn(τ),

where supτ∈Υ ||rn(τ)|| = op(1). In addition, by (3), we have, uniformly over τ ∈ Υ,

√
n(β̂(τ)− β(τ)) [Q(τ)]−1B̃(τ) ≡ B(τ).

The second element of B(τ) is Bsqr(τ) stated in Theorem 3.1. In the following, we prove require-

ments (1)–(3) in three steps.

Step 1. By Knight’s identity (Knight, 1998), we have

Ln(u, τ)

=− u′
n∑
i=1

1√
n
Ȧi

(
τ − 1{Yi ≤ Ȧ′iβ(τ)}

)
+

n∑
i=1

∫ Ȧiu√
n

0

(
1{Yi − Ȧ′iβ(τ) ≤ v} − 1{Yi − Ȧ′iβ(τ) ≤ 0}

)
dv

≡− u′Wn(τ) +Qn(u, τ),
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where

Wn(τ) =
n∑
i=1

1√
n
Ȧi

(
τ − 1{Yi ≤ Ȧ′iβ(τ)}

)
and

Qn(u, τ) =

n∑
i=1

∫ Ȧ′iu√
n

0

(
1{Yi − Ȧ′iβ(τ) ≤ v} − 1{Yi − Ȧ′iβ(τ) ≤ 0}

)
dv

=
n∑
i=1

Ai

∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv

+

n∑
i=1

(1−Ai)
∫ u0√

n

0
(1{Yi(0)− q0(τ) ≤ v} − 1{Yi(0)− q0(τ) ≤ 0}) dv

≡Qn,1(u, τ) +Qn,0(u, τ).

We first consider Qn,1(u, τ). Following Bugni et al. (2018a), define {(Y s
i (1), Y s

i (0)) : 1 ≤ i ≤ n}
as a sequence of i.i.d. random variables with marginal distributions equal to the distribution of

(Yi(1), Yi(0))|Si = s. The distribution of Qn,1(u, τ) is the same as the counterpart with units

ordered by strata and then ordered by Ai = 1 first and Ai = 0 second within strata, i.e.,

Qn,1(u, τ)
d
=
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

∫ u0+u1√
n

0

(
1{Y s

i (1)− q1(τ) ≤ v} − 1{Y s
i (1)− q1(τ) ≤ 0}

)
dv

=
∑
s∈S

[
Γsn(N(s) + n1(s), τ)− Γsn(N(s), τ)

]
, (A.1)

where N(s) =
∑n

i=1 1{Si < s}, n1(s) =
∑n

i=1 1{Si = s}Ai, and

Γsn(k, τ) =

k∑
i=1

∫ u0+u1√
n

0

(
1{Y s

i (1)− q1(τ) ≤ v} − 1{Y s
i (1)− q1(τ) ≤ 0}

)
dv.

In addition, note that

P( sup
t∈(0,1),τ∈Υ

|Γsn(bntc, τ)− EΓsn(bntc, τ)| > ε)

=P( max
1≤k≤n

sup
τ∈Υ
|Γsn(k, τ)− EΓsn(k, τ)| > ε)

≤3 max
1≤k≤n

P(sup
τ∈Υ
|Γsn(k, τ)− EΓsn(k, τ)| > ε/3)

≤9P(sup
τ∈Υ
|Γsn(n, τ)− EΓsn(n, τ)| > ε/30)
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≤270E supτ∈Υ |Γsn(n, τ)− EΓsn(n, τ)|
ε

= o(1). (A.2)

The first inequality holds due to Lemma F.1 with Sk = Γsn(k, τ)−EΓsn(k, τ) and ||Sk|| = supτ∈Υ |Γsn(k, τ)−
EΓsn(k, τ)|. The second inequality holds due to Montgomery-Smith (1993, Theorem 1). For the last

inequality of (A.2), consider the class of functions

F =

{∫ u0+u1√
n

0

(
1{Y s

i (1)− q1(τ) ≤ v} − 1{Y s
i (1)− q1(τ) ≤ 0}

)
dv : τ ∈ Υ

}

with envelope |u0+u1|√
n

and

sup
f∈F

Ef2 ≤ sup
τ∈Υ

E
[
u0 + u1√

n
1

{
|Y s
i (1)− q1(τ)| ≤ u0 + u1√

n

}]2

. n−3/2.

Note that F is a VC-class with a fixed VC index. Therefore, by Chernozhukov et al. (2014, Corollary

5.1),

E sup
τ∈Υ
|Γsn(n, τ)− EΓsn(n, τ)| = n||Pn − P||F . n

[√
log(n)

n5/2
+

log(n)

n3/2

]
= o(1).

Therefore, (A.2) implies that

sup
τ∈Υ

∣∣∣∣∣Qn(u, τ)−
∑
s∈S

E
[
Γsn(bn(N(s)/n+ n1(s)/n)c, τ)− Γsn(bn(N(s)/n)c, τ)

]∣∣∣∣∣ = op(1),

where following the convention in the empirical process literature,

E
[
Γsn(bn(N(s)/n+ n1(s)/n)c, τ)− Γsn(bn(N(s)/n)c, τ)

]
is interpreted as

E
[
Γsn(bnt2c, τ)− Γsn(bnt1c, τ)

]
t2=

N(s)
n

,t2=
N(s)+n1(s)

n

.

In addition, N(s)/n
p−→ F (s) = F (Si < s) and n1(s)/n

p−→ πp(s). Thus, uniformly over τ ∈ Υ,

E
[
Γsn(bn(N(s)/n+ n1(s)/n)c, τ)− Γsn(bn(N(s)/n)c, τ)

]
p−→ πf1(q1(τ))(u0 + u1)2

2
.
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Therefore, uniformly over τ ∈ Υ,

Qn,1(u, τ)
p−→ πf1(q1(τ))(u0 + u1)2

2
.

Similarly, we can show that, uniformly over τ ∈ Υ,

Qn,0(u, τ)
p−→ (1− π)f0(q0(τ))u2

0

2
,

and thus

Qn(u, τ)
p−→ 1

2
u′Q(τ)u,

where

Q(τ) =

(
πf1(q1(τ)) + (1− π)f0(q0(τ)) πf1(q1(τ))

πf1(q1(τ)) πf1(q1(τ))

)
.

Then,

sup
τ∈Υ
|Ln(u, τ)− gn(u, τ)| = sup

τ∈Υ
|Qn(u, τ)− 1

2
u′Q(τ)u| = op(1).

This concludes the first step.

Step 2. Note that det(Q(τ)) = π(1 − π)f1(q1(τ))f0(q0(τ)), which is bounded and bounded

away from zero. In addition, it can be shown that the two eigenvalues of Q are nonnegative. This

leads to the desired result.

Step 3. Let e1 = (1, 1)′ and e0 = (1, 0)′. Then, we have

Wn(τ) =e1

∑
s∈S

n∑
i=1

1√
n
Ai1{Si = s}(τ − 1{Yi(1) ≤ q1(τ)})

+ e0

∑
s∈S

n∑
i=1

1√
n

(1−Ai)1{Si = s}(τ − 1{Yi(0) ≤ q0(τ)}).

Let mj(s, τ) = E(τ − 1{Yi(j) ≤ qj(τ)}|Si = s) and ηi,j(s, τ) = (τ − 1{Yi(j) ≤ qj(τ)}) −mj(s, τ),

j = 0, 1. Then,

Wn(τ) =

[
e1

∑
s∈S

n∑
i=1

1√
n
Ai1{Si = s}ηi,1(s, τ) + e0

∑
s∈S

n∑
i=1

1√
n

(1−Ai)1{Si = s}ηi,0(s, τ)

]

+

[
e1

∑
s∈S

n∑
i=1

1√
n

(Ai − π)1{Si = s}m1(s, τ)− e0

∑
s∈S

n∑
i=1

1√
n

(Ai − π)1{Si = s}m0(s, τ)

]
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+

[
e1

∑
s∈S

n∑
i=1

1√
n
π1{Si = s}m1(s, τ) + e0

∑
s∈S

n∑
i=1

1√
n

(1− π)1{Si = s}m0(s, τ)

]
≡Wn,1(τ) +Wn,2(τ) +Wn,3(τ). (A.3)

By Lemma F.2, uniformly over τ ∈ Υ,

(Wn,1(τ),Wn,2(τ),Wn,3(τ)) (B1(τ),B2(τ),B3(τ)),

where (B1(τ),B2(τ),B3(τ)) are three independent two-dimensional Gaussian processes with covari-

ance kernels Σ1(τ1, τ2), Σ2(τ1, τ2), and Σ3(τ1, τ2), respectively. Therefore, uniformly over τ ∈ Υ,

Wn(τ) B̃(τ),

where B̃(τ) is a two-dimensional Gaussian process with covariance kernel

Σ̃(τ1, τ2) =

3∑
j=1

Σj(τ1, τ2).

Consequently,

√
n(β̂(τ)− β(τ)) [Q(τ)]−1B̃(τ) ≡ B(τ),

where B(τ) is a two-dimensional Gaussian process with covariance kernel

Σ(τ1, τ2) =[Q(τ1)]−1Σ̃(τ1, τ2)[Q(τ2)]−1

=
1

πf1(q1(τ1))f1(q1(τ2))
[min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)]

(
0 0

0 1

)

+
1

(1− π)f0(q0(τ1))f0(q0(τ2))
[min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)]

(
1 −1

−1 1

)

+
∑
s∈S

p(s)γ(s)

[
m1(s, τ1)m1(s, τ2)

π2f1(q1(τ1))f1(q1(τ2))

(
0 0

0 1

)
− m1(s, τ1)m0(s, τ2)

π(1− π)f1(q1(τ1))f0(q0(τ2))

(
0 0

1 −1

)

− m0(s, τ1)m1(s, τ2)

π(1− π)f0(q0(τ1))f1(q1(τ2))

(
0 1

0 −1

)
+

m0(s, τ1)m0(s, τ2)

(1− π)2f0(q0(τ1))f0(q0(τ2))

(
1 −1

−1 1

)]

+
Em1(S, τ1)m1(S, τ2)

f1(q1(τ1))f1(q1(τ2))

(
0 0

0 1

)
+

Em1(S, τ1)m0(S, τ2)

f1(q1(τ1))f0(q0(τ2))

(
0 0

1 −1

)

+
Em0(S, τ1)m1(S, τ2)

f0(q0(τ1))f1(q1(τ2))

(
0 1

0 −1

)
+

Em0(S, τ1)m0(S, τ2)

f0(q0(τ1))f0(q0(τ2))

(
1 −1

−1 1

)
.
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Focusing on the (2, 2)-element of Σ(τ1, τ2), we can conclude that

√
n(β̂1(τ)− q(τ)) Bsqr(τ),

where the Gaussian process Bsqr(τ) has a covariance kernel

Σsqr(τ1, τ2)

=
min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)

πf1(q1(τ1))f1(q1(τ2))
+

min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)

(1− π)f0(q0(τ1))f0(q0(τ2))

+ Eγ(S)

[
m1(S, τ1)m1(S, τ2)

π2f1(q1(τ1))f1(q1(τ2))
+

m1(S, τ1)m0(S, τ2)

π(1− π)f1(q1(τ1))f0(q0(τ2))

+
m0(S, τ1)m1(S, τ2)

π(1− π)f0(q0(τ1))f1(q1(τ2))
+

m0(S, τ1)m0(S, τ2)

(1− π)2f0(q0(τ1))f0(q0(τ2))

]
+ E

[
m1(S, τ1)

f1(q1(τ1))
− m0(S, τ1)

f0(q0(τ1))

][
m1(S, τ2)

f1(q1(τ2))
− m0(S, τ2)

f0(q0(τ2))

]
.

B Proof of Theorem 3.2

Define β̃1(τ) = q(τ), β̃0(τ) = πq1(τ) + (1 − π)q0(τ), β̃(τ) = (β̃0(τ), β̃1(τ))′, and Ăi = (1, Ai − π)′.

For arbitrary b0 and b1, let u0 =
√
n(b0 − β̃0(τ)), u1 =

√
n(b1 − β̃1(τ)), u = (u0, u1)′ ∈ <2, and

Lsfe,n(u, τ) =

n∑
i=1

[
ρτ (Yi − Ă′iβ̃(τ)− ( ˙̃A′ib− Ă′iβ̃(τ)))− ρτ (Yi − Ă′iβ̃(τ))

]
.

Then, by the change of variable, we have that

√
n(β̂sfe(τ)− β̃(τ)) = arg min

u
Lsfe,n(u, τ).

Notice that Lsfe,n(u, τ) is convex in u for each τ and bounded in τ for each u. In the following, we

aim to show that there exists

gsfe,n(u, τ) = −u′Wsfe,n(τ) +
1

2
u′Qsfe(τ)u

such that (1) for each u,

sup
τ∈Υ
|Lsfe,n(u, τ)− gsfe,n(u, τ)− hsfe,n(τ)| p−→ 0,

where hsfe,n(τ) does not depend on u; (2) the maximum eigenvalue of Qsfe(τ) is bounded from

above and the minimum eigenvalue of Qsfe(τ) is bounded away from 0 uniformly over τ ∈ Υ; (3)
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Wsfe,n(τ) B̃(τ) uniformly over τ ∈ Υ for some B̃(τ).4 Then by Kato (2009, Theorem 2), we have

√
n(β̂sfe(τ)− β̃(τ)) = [Qsfe(τ)]−1Wsfe,n(τ) + rsfe,n(τ),

where supτ∈Υ ||rsfe,n(τ)|| = op(1). In addition, by (3), we have, uniformly over τ ∈ Υ,

√
n(β̂sfe(τ)− β̃(τ)) [Qsfe(τ)]−1B̃(τ) ≡ B(τ).

The second element of B(τ) is Bsfe(τ) stated in Theorem 3.2. Next, we prove requirements (1)–(3)

in three steps.

Step 1. By Knight’s identity (Knight, 1998), we have

Lsfe,n(u, τ)

=−
n∑
i=1

( ˙̃A′i(β̃(τ) +
u√
n

)− Ă′iβ̃(τ))
(
τ − 1{Yi ≤ ˙̃A′iβ̃(τ)}

)

+
n∑
i=1

∫ ˙̃A′i(β̃(τ)+ u√
n

)−Ă′iβ̃(τ)

0

(
1{Yi − ˙̃A′iβ̃(τ) ≤ v} − 1{Yi − ˙̃A′iβ̃(τ) ≤ 0}

)
dv

≡− L1,n(u, τ) + L2,n(u, τ).

Step 1.1. We first consider L1,n(u, τ). Note that β̃1(τ) = q(τ) and

L1,n(u, τ)

=

n∑
i=1

∑
s∈S

Ai1{Si = s}
(
u0√
n

+ (1− π̂(s))
u1√
n

+ (π − π̂(s))q(τ)

)
(τ − 1{Yi(1) ≤ q1(τ)})

+
n∑
i=1

∑
s∈S

(1−Ai)1{Si = s}
(
u0√
n
− π̂(s)

u1√
n

+ (π − π̂(s))q(τ)

)
(τ − 1{Yi(0) ≤ q0(τ)})

≡L1,1,n(u, τ) + L1,0,n(u, τ). (B.1)

Let ι1 = (1, 1− π)′ and ι0 = (1,−π)′. Note that π̂(s)− π = Dn(s)
n(s) . Then, for L1,1,n(u, τ), we have

L1,1,n(u, τ)

=

n∑
i=1

∑
s∈S

Ai1{Si = s}
[
u′ι1√
n

+ (π − π̂(s))

(
q(τ) +

u1√
n

)]
(τ − 1{Yi(1) ≤ q1(τ)})

=
u′ι1√
n

n∑
i=1

∑
s∈S

Ai1{Si = s} (τ − 1{Yi(1) ≤ q1(τ)})

4We abuse the notation and denote the weak limit of Wsfe,n(τ) as B̃(τ). This limit is different from the weak
limit of Wn(τ) in the proof of Theorem 3.1.
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−
∑
s∈S

Dn(s)√
n

u1

n(s)

n∑
i=1

Ai1{Si = s} (τ − 1{Yi(1) ≤ q1(τ)})

+
∑
s∈S

(π − π̂(s))q(τ)
n∑
i=1

Ai1{Si = s} (τ − 1{Yi(1) ≤ q1(τ)})

=
∑
s∈S

u′ι1√
n

n∑
i=1

[
Ai1{Si = s}ηi,1(s, τ) + (Ai − π)1{Si = s}m1(s, τ) + π1{Si = s}m1(s, τ)

]

−
∑
s∈S

Dn(s)√
n

u1

n(s)

n∑
i=1

[
Ai1{Si = s}ηi,1(s, τ) + (Ai − π)1{Si = s}m1(s, τ) + π1{Si = s}m1(s, τ)

]
+ h1,1(τ)

=
∑
s∈S

u′ι1√
n

n∑
i=1

[
Ai1{Si = s}ηi,1(s, τ) + (Ai − π)1{Si = s}m1(s, τ) + π1{Si = s}m1(s, τ)

]
−
∑
s∈S

u1Dn(s)πm1(s, τ)√
n

+ h1,1(τ) +Rsfe,1,1(u, τ), (B.2)

where

h1,1(τ) =
∑
s∈S

(π − π̂(s))q(τ)
n∑
i=1

Ai1{Si = s} (τ − 1{Yi(1) ≤ q1(τ)})

and

Rsfe,1,1(u, τ) = −
∑
s∈S

u1Dn(s)√
nn(s)

n∑
i=1

[
Ai1{Si = s}ηi,1(s, τ) + (Ai − π)1{Si = s}m1(s, τ)

]
.

By the same argument in Lemma F.2 and Assumption 1.3, we have for every s ∈ S,

sup
τ∈Υ

∣∣∣∣∣ 1√
n

n∑
i=1

Ai1{Si = s}ηi,1(s, τ)

∣∣∣∣∣ = Op(1) (B.3)

and

sup
τ∈Υ

∣∣∣∣∣ 1√
n

n∑
i=1

[
(Ai − π)1{Si = s}m1(s, τ)

]∣∣∣∣∣ = sup
τ∈Υ

∣∣∣∣Dn(s)m1(s, τ)√
n

∣∣∣∣ = Op(1).

In addition, note that n(s)/n
p−→ p(s). Therefore,

sup
τ∈Υ
|Rsfe,1,1(u, τ)| = Op(

1√
n

) = op(1).

Similarly, we have

L1,0,n(u, τ)
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=
∑
s∈S

u′ι0√
n

n∑
i=1

[
(1−Ai)1{Si = s}ηi,0(s, τ)− (Ai − π)1{Si = s}m0(s, τ) + (1− π)1{Si = s}m0(s, τ)

]
−
∑
s∈S

u1Dn(s)(1− π)m0(s, τ)√
n

+ h1,0(τ) +Rsfe,1,0(u, τ), (B.4)

where

h1,0(τ) =
∑
s∈S

(π − π̂(s))q(τ)
n∑
i=1

(1−Ai)1{Si = s} (τ − 1{Yi(0) ≤ q0(τ)}) ,

Rsfe,1,0(u, τ) = −
∑
s∈S

u1Dn(s)√
nn(s)

n∑
i=1

[
(1−Ai)1{Si = s}ηi,0(τ)− (Ai − π)1{Si = s}m0(s, τ)

]
,

and

sup
τ∈Υ
|Rsfe,1,0(τ)| = Op(

1√
n

) = op(1).

Combining (B.1), (B.2), (B.4) and letting ι2 = (1, 1− 2π)′, we have

L1,n(u, τ) =
1√
n

∑
s∈S

n∑
i=1

[
u′ι1Ai1{Si = s}ηi,1(s, τ) + u′ι0(1−Ai)1{Si = s}ηi,0(s, τ)

]
+
∑
s∈S

u′ι2
Dn(s)√

n
(m1(s, τ)−m0(s, τ))

+
1√
n

n∑
i=1

(
u′ι1πm1(Si, τ) + u′ι0(1− π)m0(Si, τ)

)
+Rsfe,1,1(u, τ) +Rsfe,1,0(u, τ) + h1,1(τ) + h1,0(τ). (B.5)

Step 1.2. Next, we consider L2,n(u, τ). Denote En(s) =
√
n(π̂(s)− π). Then,

{En(s)}s∈S =

{
Dn(s)√

n

n

n(s)

}
s∈S
 N (0,Σ′D) = Op(1),

where Σ′D = diag(γ(s)/p(s) : s ∈ S). In addition,

L2,n(u, τ)

=
∑
s∈S

n∑
i=1

Ai1{Si = s}
∫ u′ι1√

n
−En(s)√

n

(
q(τ)+

u1√
n

)
0

(1{Yi(1) ≤ q1(τ) + v} − 1{Yi(1) ≤ q1(τ)}) dv
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+
∑
s∈S

n∑
i=1

(1−Ai)1{Si = s}
∫ u′ι0√

n
−En(s)√

n

(
q(τ)+

u1√
n

)
0

(1{Yi(0) ≤ q0(τ) + v} − 1{Yi(0) ≤ q0(τ)}) dv

≡L2,1,n(u, τ) + L2,0,n(u, τ). (B.6)

By the same argument in (A.1), we have

L2,1,n(u, τ)
d
=
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

∫ u′ι1√
n
−En(s)√

n

(
q(τ)+

u1√
n

)
0

(1{Y s
i (1) ≤ q1(τ) + v} − 1{Y s

i (1) ≤ q1(τ)}) dv

≡
∑
s∈S

[Γsn(N(s) + n1(s), τ, En(s))− Γsn(N(s), τ, En(s))] , (B.7)

where

Γsn(k, τ, e) =
k∑
i=1

∫ u′ι1−e(q(τ)+
u1√
n

)
√
n

0
(1{Y s

i (1) ≤ q1(τ) + v} − 1{Y s
i (1) ≤ q1(τ)}) dv.

We want to show, for some any sufficiently large constant M ,

sup
0<t≤1,τ∈Υ,|e|≤M

|Γsn(bntc, τ, e)− EΓsn(bntc, τ, e)| = op(1). (B.8)

By the same argument in (A.2), it suffices to show that

sup
τ∈Υ,|e|≤M

n||Pn − P||F = op(1),

where

F =


∫ u′ι1−e(q(τ)+

u1√
n

)
√
n

0
(1{Y s

i (1) ≤ q1(τ) + v} − 1{Y s
i (1) ≤ q1(τ)}) dv : τ ∈ Υ, |e| ≤M


with an envelope F =

|u0|+|u1|+M supτ∈Υ |q(τ)|+ |u1|√
n√

n
. Note that

sup
f∈F

Ef2 ≤ sup
τ∈Υ

E

 |u0|+ |u1|+M |q(τ)|+ |u1|√
n√

n
1

|Y s
i (1)− q1(τ)| ≤

|u0|+ |u1|+M |q(τ)|+ |u1|√
n√

n


2

.n−3/2,
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and F is a VC-class with a fixed VC index. Then, by Chernozhukov et al. (2014, Corollary 5.1),

E sup
τ∈Υ,|e|≤M

|Γsn(n, τ, e)− EΓsn(n, τ, e)| = n||Pn − P||F . n

[√
log(n)

n5/2
+

log(n)

n3/2

]
= o(1). (B.9)

In addition, we have

EΓsn(bntc, τ, e) =bntc
∫ u′ι1−e(q(τ)+

u1√
n

)
√
n

0
[F1(q1(τ) + v|s)− F1(q1(τ)|s)]dv

=t
f1(q1(τ)|s)

2
(u′ι1 − eq(τ))2 + o(1), (B.10)

where Fj(·|s) and fj(·|s), j = 0, 1 are the conditional CDF and PDF for Y (j) given S = s,

respectively, and the o(1) term holds uniformly over {τ ∈ Υ, |e| ≤ M}. Combining (B.8) and

(B.10) with the fact that n1(s)
n

p−→ πp(s), we have

L2,1,n(u, τ) =
∑
s∈S

πp(s)
f1(q1(τ)|s)

2
(u′ι1 − En(s)q(τ))2 +R′sfe,2,1(u, τ)

=
πf1(q1(τ))

2
(u′ι1)2 −

∑
s∈S

f1(q1(τ)|s)πDn(s)u′ι1√
n

q(τ) + h2,1(τ) +Rsfe,2,1(u, τ), (B.11)

where

sup
τ∈Υ
|R′sfe,2,1(u, τ)| = op(1), sup

τ∈Υ
|Rsfe,2,1(u, τ)| = op(1),

and

h2,1(τ) =
∑
s∈S

πf1(q1(τ)|s)
2

p(s)E2
n(s)β̃2

1(τ).

Similarly, we have

L2,0,n(u, τ) =
(1− π)f0(q0(τ))

2
(u′ι0)2 −

∑
s∈S

(1− π)f0(q0(τ)|s)Dn(s)u′ι0√
n

q(τ)

+ h2,0(τ) +Rsfe,2,0(u, τ), (B.12)

where

sup
τ∈Υ
|Rsfe,2,0(u, τ)| = op(1) and h2,0(τ) =

∑
s∈S

(1− π)f0(q0(τ)|s)
2

p(s)E2
n(s)β̃2

1(τ).
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Combining (B.6), (B.11), and (B.12), we have

L2,n(u, τ) =
1

2
u′Qsfe(τ)u−

∑
s∈S

q(τ)
[
f1(q1(τ)|s)πu′ι1 + f0(q0(τ)|s)(1− π)u′ι0

] Dn(s)√
n

+Rsfe,2,1(u, τ) +Rsfe,2,0(u, τ) + h2,1(τ) + h2,0(τ). (B.13)

where

Qsfe =πf1(q1(τ))ι1ι
′
1 + (1− π)f0(q0(τ))ι0ι

′
0

=

(
πf1(q1(τ)) + (1− π)f0(q0(τ)) π(1− π)(f1(q1(τ))− f0(q0(τ)))

π(1− π)(f1(q1(τ))− f0(q0(τ))) π(1− π)((1− π)f1(q1(τ)) + πf0(q0(τ)))

)
.

Step 1.3. Last, by combining (B.5) and (B.13), we have

Lsfe,n(u, τ) = −u′Wsfe,n(τ) +
1

2
u′Qsfe(τ)u+Rsfe(u, τ) + hsfe,n(τ),

where

Wsfe,n(τ)

=
1√
n

∑
s∈S

n∑
i=1

[
ι1Ai1{Si = s}ηi,1(s, τ) + ι0(1−Ai)1{Si = s}ηi,0(s, τ)

]
+
∑
s∈S

{
ι2 (m1(s, τ)−m0(s, τ)) + q(τ)

[
f1(q1(τ)|s)πι1 + f0(q0(τ)|s)(1− π)ι0

]}
Dn(s)√

n

+
1√
n

n∑
i=1

(ι1πm1(Si, τ) + ι0(1− π)m0(Si, τ))

≡Wsfe,n,1(τ) +Wsfe,n,2(τ) +Wsfe,n,3(τ), (B.14)

Rsfe(u, τ) = Rsfe,1,1(u, τ) +Rsfe,1,0(u, τ) +Rsfe,2,1(u, τ) +Rsfe,2,0(u, τ)

such that supτ∈Υ |Rsfe(u, τ)| = op(1), and

hsfe,n(τ) = h1,1(τ) + h1,0(τ) + h2,1(τ) + h2,0(τ).

This concludes the proof of Step 1.

Step 2. Note that det(Qsfe(τ)) = π(1− π)f0(q0(τ))f1(q1(τ)), which is bounded and bounded

away from zero. In addition, it can be shown that the two eigenvalues of Qsfe(τ) are nonnegative.

This leads to the desired result.

38



Step 3. Lemma F.3 establishes the weak convergence that

(Wsfe,1,n(τ),Wsfe,2,n(τ),Wsfe,3,n(τ)) (Bsfe,1(τ),Bsfe,2(τ),Bsfe,3(τ)),

where (Bsfe,1(τ),Bsfe,2(τ),Bsfe,3(τ)) are three independent two-dimensional Gaussian processes

with covariance kernels Σ1(τ1, τ2), Σ2(τ1, τ2), and Σ3(τ1, τ2), respectively. Therefore, uniformly

over τ ∈ Υ,

Wsfe,n(τ) B̃(τ),

where B̃(τ) is a two-dimensional Gaussian process with covariance kernel

Σ̃(τ1, τ2) =
3∑
j=1

Σj(τ1, τ2).

Consequently,

√
n(β̂sfe(τ)− β̃(τ)) B(τ) ≡ Q−1

sfe(τ)B̃(τ),

where Σ(τ1, τ2), the covariance kernel of B(τ), has the expression that

Σ(τ1, τ2)

=Q−1
sfe(τ1)Σ̃(τ1, τ2)Q−1

sfe(τ2)

=

{
1

πf1(q1(τ1))f1(q1(τ2))
[min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)]

(
π2 π

π 1

)

+
1

(1− π)f0(q0(τ1))f0(q0(τ2))
[min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)]

(
(1− π)2 π − 1

π − 1 1

)}

+

{
Eγ(S)

[
(m1(S, τ1)−m0(S, τ1))

(
π

f0(q0(τ1)) + 1−π
f1(q1(τ1))

1−π
πf1(q1(τ1)) −

π
(1−π)f0(q0(τ1))

)
+ q(τ1)

f1(q1(τ1)|S)

f1(q1(τ1))

(
π

1

)

+ q(τ1)
f0(q0(τ1)|S)

f0(q0(τ1))

(
1− π
−1

)]
×
[
(m1(S, τ2)−m0(S, τ2))

(
π

f0(q0(τ2)) + 1−π
f1(q1(τ2))

1−π
πf1(q1(τ2)) −

π
(1−π)f0(q0(τ2))

)

+ q(τ2)
f1(q1(τ2)|S)

f1(q1(τ2))

(
π

1

)
+ q(τ2)

f0(q0(τ2)|S)

f0(q0(τ2))

(
1− π
−1

)]}

+

{
E
[
m1(S, τ1)

f1(q1(τ1))

(
π

1

)
+
m0(S, τ1)

f0(q0(τ1))

(
1− π
−1

)][
m1(S, τ2)

f1(q1(τ2))

(
π

1

)
+
m0(S, τ2)

f0(q0(τ2))

(
1− π
−1

)]′}
.
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By checking the (2, 2)-element of Σ(τ1, τ2), we have

Σsfe(τ1, τ2)

=
min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)

πf1(q1(τ1))f1(q1(τ2))
+

min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)

(1− π)f0(q0(τ1))f0(q0(τ2))

+ Eγ(S)

[
(m1(S, τ1)−m0(S, τ1))

(
1− π

πf1(q1(τ1))
− π

(1− π)f0(q0(τ1))

)
+ q(τ1)

(
f1(q(τ1)|S)

f1(q1(τ1))
− f0(q(τ1)|S)

f0(q0(τ1))

)]
×
[
(m1(S, τ2)−m0(S, τ2))

(
1− π

πf1(q1(τ2))
− π

(1− π)f0(q0(τ2))

)
+ q(τ2)

(
f1(q(τ2)|S)

f1(q2(τ2))
− f0(q(τ2)|S)

f0(q0(τ2))

)]
+ E

[
m1(S, τ1)

f1(q1(τ1))
− m0(S, τ1)

f0(q0(τ1))

][
m1(S, τ2)

f1(q1(τ2))
− m0(S, τ2)

f0(q0(τ2))

]
.

C Proof of Theorem 3.3

By Knight’s identity, we have

√
n(q̂1(τ)− q1(τ)) = arg min

u
Ln(u, τ),

where

Ln(u, τ) ≡
n∑
i=1

Ai
π̂(Si)

[
ρτ (Yi − q1(τ)− u√

n
)− ρτ (Yi − q1(τ))

]
=− L1,n(τ)u+ L2,n(u, τ),

L1,n(τ) =
1√
n

n∑
i=1

Ai
π̂(Si)

(τ − 1{Yi ≤ q1(τ)})

and

L2,n(u, τ) =
n∑
i=1

Ai
π̂(Si)

∫ u√
n

0
(1{Yi ≤ q1(τ) + v} − 1{Yi ≤ q1(τ)})dv.

We aim to show that there exists

gipw,n(u, τ) = −Wipw,n(τ)u+
1

2
Qipw(τ)u2 (C.1)

such that (1) for each u,

sup
τ∈Υ
|Ln(u, τ)− gipw,n(u, τ)| p−→ 0;
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(2) Qipw(τ) is bounded and bounded away from zero uniformly over τ ∈ Υ. In addition, as a

corollary of claim (3) below, supτ∈Υ |Wipw,1,n(τ)| = Op(1). Therefore, by Kato (2009, Theorme 2),

we ave

√
n(q̂1(τ)− q1(τ)) = Q−1

ipw,1(τ)Wipw,1,n(τ) +Ripw,1,n(τ),

where supτ∈Υ |Ripw,1,n(τ)| = op(1). Similarly, we can show that

√
n(q̂0(τ)− q0(τ)) = Q−1

ipw,0(τ)Wipw,0,n(τ) +Ripw,0,n(τ),

where supτ∈Υ |Ripw,0,n(τ)| = op(1). Therefore,

√
n(q̂(τ)− q(τ)) = Q−1

ipw,1(τ)Wipw,1,n(τ)−Q−1
ipw,0(τ)Wipw,0,n(τ) +Ripw,1,n(τ)−Ripw,0,n(τ).

Last, we aim to show that, (3) uniformly over τ ∈ Υ,

Q−1
ipw,1(τ)Wipw,1,n(τ)−Q−1

ipw,0(τ)Wipw,0,n(τ) Bipw(τ),

where Bipw(τ) is a scalar Gaussian process with covariance kernel Σipw(τ1, τ2). We prove statements

(1)–(3) in three steps.

Step 1. For L1,n(τ), we have

L1,n(τ) =
1√
n

n∑
i=1

∑
s∈S

Ai
π

1{Si = s}(τ − 1{Yi(1) ≤ q1(τ)})

−
n∑
i=1

∑
s∈S

Ai1{Si = s}(π̂(s)− π)√
nπ̂(s)π

(τ − 1{Yi(1) ≤ q1(τ)})

=
1√
n

n∑
i=1

∑
s∈S

Ai
π

1{Si = s}(τ − 1{Yi(1) ≤ q1(τ)})

−
n∑
i=1

∑
s∈S

Ai1{Si = s}Dn(s)

n(s)
√
nπ̂(s)π

ηi,1(s, τ)−
∑
s∈S

Dn(s)m1(s, τ)

n(s)
√
nπ̂(s)π

Dn(s)−
∑
s∈S

Dn(s)m1(s, τ)√
nπ̂(s)

=
∑
s∈S

1√
n

n∑
i=1

Ai1{Si = s}
π

ηi,1(s, τ) +
∑
s∈S

Dn(s)√
nπ

m1(s, τ) +

n∑
i=1

m1(Si, τ)√
n

−
n∑
i=1

∑
s∈S

Ai1{Si = s}Dn(s)

n(s)
√
nπ̂(s)π

ηi,1(s, τ)−
∑
s∈S

Dn(s)m1(s, τ)

n(s)
√
nπ̂(s)π

Dn(s)−
∑
s∈S

Dn(s)m1(s, τ)√
nπ̂(s)

=Wipw,1,n(τ) +Ripw(τ),
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where

Wipw,1,n(τ) =
∑
s∈S

1√
n

n∑
i=1

Ai1{Si = s}
π

ηi,1(s, τ) +
n∑
i=1

m1(Si, τ)√
n

(C.2)

and

Ripw(τ) = −
n∑
i=1

∑
s∈S

Ai1{Si = s}Dn(s)

n(s)
√
nπ̂(s)π

ηi,1(s, τ)−
∑
s∈S

Dn(s)m1(s, τ)

n(s)
√
nπ̂(s)π

Dn(s) +
∑
s∈S

Dn(s)m1(s, τ)√
n

(
1

π
− 1

π̂(s)
).

Because of (B.3) and the facts that Dn(s)√
n

= Op(1), sups∈S,τ∈Υ |m1(s, τ)| is bounded, and

1

π
− 1

π̂(s)
=

Dn(s)

n(s)ππ̂(s)
= Op(

1√
n

),

we have

sup
τ∈Υ
|Ripw(τ)| = op(1).

For L2,n(u, τ), by the same argument in (B.7), we have

L2,n(u, τ) =
∑
s∈S

1

π̂(s)

N(s)+n1(s)∑
i=N(s)+1

∫ u√
n

0
(1{Y s

i (1) ≤ q1(τ) + v} − 1{Y s
i (1) ≤ q1(τ) + v})dv

=
∑
s∈S

1

π̂(s)
[Γsn(N(s) + n1(s), τ)− Γsn(N(s), τ)] ,

where

Γsn(k, τ) =
k∑
i=1

∫ u√
n

0
(1{Y s

i (1) ≤ q1(τ) + v} − 1{Y s
i (1) ≤ q1(τ) + v})dv.

By the same argument in (B.8), we can show that

sup
t∈(0,1),τ∈Υ

|Γsn(bntc, τ)− EΓsn(bntc, τ)| = op(1).

In addition,

EΓsn(N(s) + n1(s), τ)− EΓsn(N(s), τ)
p−→ πp(s)f1(q1(τ)|s)u2

2
.
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Therefore,

sup
τ∈Υ

∣∣∣∣L2,n(u, τ)− f1(q1(τ))u2

2

∣∣∣∣ = op(1),

where we use the fact that π̂(s)
p−→ π and∑
s∈S

p(s)f1(q1(τ)|s) = f1(q1(τ)).

This establishes (C.1) with Qipw,1(τ) = f1(q1(τ)) and Wipw,n(τ) defined in (C.2).

Step 2. Statement (2) holds by Assumption 2.

Step 3. By a similar argument in Step 1, we have

Wipw,0,n(τ) =
∑
s∈S

1√
n

n∑
i=1

(1−Ai)1{Si = s}
1− π

ηi,0(s, τ) +
n∑
i=1

m0(Si, τ)√
n

and Qipw,0(τ) = f0(q0(τ)). Therefore,

√
n(q̂ − q) =

1√
n

∑
s∈S

n∑
i=1

[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1−Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

]

+

[
1√
n

n∑
i=1

(
m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

)]
+Ripw,n(τ)

=Wn,1(τ) +Wn,2(τ) +Ripw,n(τ) (C.3)

where supτ∈Υ |Ripw,n(τ)| = op(1). Last, Lemma F.4 establishes that

(Wn,1(τ),Wn,2(τ)) (Bipw,1(τ),Bipw,2(τ)),

where (Bipw,1(τ),Bipw,2(τ)) are two mutually independent scalar Gaussian processes with covariance

kernels

Σipw,1(τ1, τ2) =
min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)

πf1(q1(τ1))f1(q1(τ2))
+

min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)

(1− π)f0(q0(τ1))f0(q0(τ2))

and

Σipw,2(τ1, τ2) = E
(
m1(S, τ1)

f1(q1(τ1))
− m0(S, τ1)

f0(q0(τ1))

)(
m1(S, τ2)

f1(q1(τ2))
− m0(S, τ2)

f0(q0(τ2))

)
,

respectively. In particular, the asymptotic variance for q̂ is

ζ2
Y (π, τ) + ζ2

S(τ),
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where ζ2
Y (π, τ) and ζ2

S(τ) are the same as those in the proof of Theorems 3.1 and 3.2.

D Proof of Theorem 4.1

We focus on the strata fixed effects estimator and derive the asymptotic distribution of its bootstrap

counterpart. The argument for the simple QR estimator is similar but easier. Therefore, the details

are omitted. Last, we will highlight parts of the derivation for the inverse propensity score estimator

to show that why its bootstrap inference is valid.

Note that

√
n(β̂wsfe − β̃) = arg min

u
Lwsfe,n(u, τ),

where

Lwsfe,n(u, τ) =

n∑
i=1

ξi

[
ρτ (Yi − ˙̃Aw′i (β̃(τ) +

u√
n

))− ρτ (Yi − ˙̃Aw′i β̃(τ))

]
,

˙̃Awi = (1, Ãwi )′, Ãwi = Ai − π̂w(Si), and

π̂w(s) =

∑n
i=1 ξiAi1{Si = s}∑n
i=1 ξi1{Si = s}

.

Similar to the proof of Theorem 3.2, we divide the proof into two steps. In the first step, we

show that there exists

gwsfe,n(u, τ) = −u′Ww
sfe,n(τ) +

1

2
u′Qsfe(τ)u

and hwsfe,n(τ) independent of u such that for each u

sup
τ∈Υ
|Lwsfe,n(u, τ)− gwsfe,n(u, τ)− hwsfe,n(τ)| p−→ 0.

In addition, we will show that supτ∈Υ ||Ww
sfe,n(τ)|| = Op(1). Then, by Kato (2009, Theorem 2), we

have

√
n(β̂wsfe(τ)− β̃(τ)) = [Qsfe(τ)]−1Ww

sfe,n(τ) +Rwsfe,n(τ),

where

sup
τ∈Υ
||Rwsfe,n(τ)|| = op(1).
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In the second step, we show that, conditionally on data,

√
n(β̂wsfe,1(τ)− β̂sfe,1(τ)) B̃sfe(τ).

Step 1. Following Step 1 in the proof of Theorem 3.2, we have

Lwsfe,n(u, τ) ≡ −Lw1,n(u, τ) + Lw2,n(u, τ),

where

Lw1,n(u, τ)

=

n∑
i=1

∑
s∈S

ξiAi1{Si = s}
(
u0√
n

+ (1− π̂w(s))
u1√
n

+ (π − π̂w(s))q(τ)

)
(τ − 1{Yi ≤ q1(τ)})

+
n∑
i=1

∑
s∈S

ξi(1−Ai)1{Si = s}
(
u0√
n
− π̂w(s)

u1√
n

+ (π − π̂w(s))q(τ)

)
(τ − 1{Yi ≤ q0(τ)})

≡Lw1,1,n(u, τ) + Lw1,0,n(u, τ),

Lw2,n(u, τ)

=
∑
s∈S

n∑
i=1

ξiAi1{Si = s}
∫ u′ι1√

n
−E

w
n (s)√
n

(
q(τ)+

u1√
n

)
0

(1{Yi ≤ q1(τ) + v} − 1{Yi ≤ q1(τ)}) dv

+
∑
s∈S

n∑
i=1

ξi(1−Ai)1{Si = s}
∫ u′ι0√

n
−E

w
n (s)√
n

(
q(τ)+

u1√
n

)
0

(1{Yi ≤ q0(τ) + v} − 1{Yi ≤ q0(τ)}) dv

≡Lw2,1,n(u, τ) + Lw2,0,n(u, τ),

and Ewn (s) =
√
n(π̂w(s)− π).

Step 1.1. Recall that ι1 = (1, 1−π)′ and ι0 = (1,−π)′. In addition, denote π̂w(s)−π = Dwn (s)
nw(s) ,

where

Dw
n (s) =

n∑
i=1

ξi(Ai − π)1{Si = s} and nw(s) =
n∑
i=1

ξi1{Si = s}.

Then, we have

Lw1,1,n(u, τ)

=
∑
s∈S

u′ι1√
n

n∑
i=1

ξi [Ai1{Si = s}ηi,1(s, τ) + π1{Si = s}m1(s, τ)] +
∑
s∈S

u′ι2D
w
n (s)m1(s, τ)√

n

+ hw1,1(τ) +Rwsfe,1,1(u, τ), (D.1)
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where ηi,1(s, τ) = (τ − 1{Yi(1) ≤ q1(τ)})−m1(s, τ),

hw1,1(τ) =
∑
s∈S

(π − π̂w(s))q(τ)

(
n∑
i=1

ξiAi1{Si = s}(τ − 1{Yi ≤ q1(τ)})

)
,

and

Rwsfe,1,1(u, τ) = −
∑
s∈S

u1D
w
n (s)√

nnw(s)

{
n∑
i=1

ξi [Ai1{Si = s}ηi,1(s, τ) + (Ai − π)1{Si = s}m1(s, τ)]

}
.

(D.2)

By Lemma F.5, we have

sup
τ∈Υ
|Rwsfe,1,1(u, τ)| = op(1).

Similarly, we have

Lw1,0,n(u, τ)

=
∑
s∈S

n∑
i=1

ξi

{
u′ι0√
n

[(1−Ai)1{Si = s}ηi,0(s, τ) + π1{Si = s}m1(s, τ)]− u′ι2√
n

(Ai − π)1{Si = s}m0(s, τ)

}
+ hw1,0(τ) +Rwsfe,1,0(u, τ), (D.3)

where

sup
τ∈Υ
|Rwsfe,1,0(u, τ)| = op(1).

Combining (D.1) and (D.3), we have

Lw1,n(u, τ)

=
1√
n

∑
s∈S

n∑
i=1

ξi

[
u′ι1Ai1{Si = s}ηi,1(u, τ) + u′ι0(1−Ai)1{Si = s}ηi,0(u, τ)

+ u′ι2(Ai − π)1{Si = s}(m1(s, τ)−m0(s, τ)) + 1{Si = s}(u′ι1πm1(s, τ) + u′ι0(1− π)m0(s, τ))

]
+Rwsfe,1,1(u, τ) +Rwsfe,1,0(u, τ) + hw1,1(τ) + hw1,0(τ).

Furthermore, by Lemma F.6, we have

Lw2,1,n(u, τ) =
πf1(q1(τ))

2
(u′ι1)2 −

∑
s∈S

f1(q1(τ)|s)πD
w
n (s)u′ι1√
n

q(τ) + hw2,1(τ) +Rwsfe,2,1(u, τ) (D.4)
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and

Lw2,0,n(u, τ) =
(1− π)f0(q0(τ))

2
(u′ι0)2 −

∑
s∈S

f0(q0(τ)|s)(1− π)Dw
n (s)u′ι0√
n

q(τ) + hw2,0(τ) +Rwsfe,2,0(u, τ),

(D.5)

where

hw2,1(τ) =
∑
s∈S

πf1(q1(τ)|s)
2

p(s)(Ewn (s))2q2(τ),

hw2,0(τ) =
∑
s∈S

(1− π)f0(q0(τ)|s)
2

p(s)(Ewn (s))2q2(τ),

sup
τ∈Υ
|Rwsfe,2,1(u, τ)| = op(1),

and

sup
τ∈Υ
|Rwsfe,2,0(u, τ)| = op(1).

Therefore,

Lw2,n(u, τ) =
1

2
u′Qsfe(τ)u−

∑
s∈S

q(τ)
[
f1(q1(τ)|s)πu′ι1 + f0(q0(τ)|s)(1− π)u′ι0

] Dw
n (s)√
n

+Rwsfe,2,1(u, τ) +Rwsfe,2,0(u, τ) + hw2,1(τ) + hw2,0(τ).

Combining (D.1), (D.3), (D.4), and (D.5), we have

Lwsfe,n(u, τ) = −u′W̃w
sfe,n(τ) +

1

2
u′Qsfeu+ R̃wsfe,n(u, τ) + hwsfe,n(τ),

where

Ww
sfe,n(τ)

=
1√
n

∑
s∈S

n∑
i=1

ξi

[
ι1Ai1{Si = s}ηi,1(s, τ) + ι0(1−Ai)1{Si = s}ηi,0(s, τ)

]

+
1√
n

∑
s∈S

n∑
i=1

ξi

{
ι2(m1(s, τ)−m0(s, τ)) + q(τ)

[
f1(q1(τ)|s)πι1 + f0(q0(τ)|s)(1− π)ι0

]}
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× (Ai − π)1{Si = s}+
1√
n

n∑
i=1

ξi(ι1πm1(Si, τ) + ι0(1− π)m0(Si, τ)),

hwsfe,n(τ) = hw1,1(τ) + hw1,0(τ) + hw2,1(τ) + hw2,0(τ),

and

sup
τ∈Υ
|R̃wsfe,n(u, τ)| = op(1).

In addition, by Lemma F.7, supτ∈Υ |Ww
sfe,n(τ)| = Op(1). Then, by Kato (2009, Theorem 2), we

have

√
n(β̂wsfe(τ)− β̃(τ)) = [Qsfe(τ)]−1Ww

sfe,n(τ) +Rwsfe,n(τ),

where

sup
τ∈Υ
||Rwsfe,n(τ)|| = op(1).

This concludes Step 1.

Step 2. We now focus on the second element of β̂wsfe(τ). From Step 1, we know that

√
n(β̂wsfe,1(τ)− q(τ)) =

1√
n

∑
s∈S

n∑
i=1

ξiJi(s, τ) +Rwsfe,n,1(τ),

where

Ji(s, τ) =

[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1−Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

]
+

{(
1− π

πf1(q1(τ))
− π

(1− π)f0(q0(τ))

)
(m1(s, τ)−m0(s, τ))

+ q(τ)

[
f1(q1(τ)|s)
f1(q1(τ))

− f0(q0(τ)|s)
f0(q0(τ))

]}
(Ai − π)1{Si = s}

+

(
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)
1{Si = s}

and

sup
τ∈Υ
|Rwsfe,n,1(τ)| = op(1).
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By (B.14), we have

√
n(β̂sfe,1(τ)− q(τ)) =

1√
n

∑
s∈S

n∑
i=1

Ji(s, τ) +Rsfe,n,1(τ),

where

sup
τ∈Υ
|Rsfe,n,1(τ)| = op(1).

Taking the difference of the above two equations, we have

√
n(β̂wsfe,1(τ)− β̂sfe,1(τ)) =

1√
n

∑
s∈S

n∑
i=1

(ξi − 1)Ji(s, τ) +Rw(τ),

where

sup
τ∈Υ
|Rw(τ)| = op(1).

Lemma F.8 shows that, conditionally on data,

1√
n

∑
s∈S

n∑
i=1

(ξi − 1)Ji(s, τ) B̃sfe(τ),

where B̃sfe(τ) is a Gaussian process with covariance kernel

Σ̃sfe(τ1, τ2)

=
min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)

πf1(q1(τ1))f1(q1(τ2))
+

min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)

(1− π)f0(q0(τ1))f0(q0(τ2))

+ Eπ(1− π)

[
(m1(S, τ1)−m0(S, τ1))

(
1− π

πf1(q1(τ1))
− π

(1− π)f0(q0(τ1))

)
+ q(τ1)

(
f1(q(τ1)|S)

f1(q1(τ1))
− f0(q(τ1)|S)

f0(q0(τ1))

)]
×
[
(m1(S, τ2)−m0(S, τ2))

(
1− π

πf1(q1(τ2))
− π

(1− π)f0(q0(τ2))

)
+ q(τ2)

(
f1(q(τ2)|S)

f1(q2(τ2))
− f0(q(τ2)|S)

f0(q0(τ2))

)]
+ E

[
m1(S, τ1)

f1(q1(τ1))
− m0(S, τ1)

f0(q0(τ1))

][
m1(S, τ2)

f1(q1(τ2))
− m0(S, τ2)

f0(q0(τ2))

]
. (D.6)

This concludes the proof for the strata fixed effects estimator. Next, we turn to the inverse propen-

sity score weighted estimator. Denote q̂wj (τ), j = 0, 1 the weighted bootstrap counterpart of q̂j(τ).
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We have

√
n(q̂w1 (τ)− q1(τ)) = arg min

u
Lwn (u, τ),

where

Lwn (u, τ) =
n∑
i=1

ξiAi
π̂w(Si)

[
ρτ (Yi − q1(τ)− u√

n
)− ρτ (Yi − q1(τ))

]
≡− Lw1,n(τ)u+ Lw2,n(u, τ),

where

Lw1,n(τ) =
1√
n

n∑
i=1

MniAi
π̂w(Si)

(τ − 1{Yi ≤ q1(τ)})

and

Lw2,n(τ) =

n∑
i=1

ξiAi
π̂w(Si)

∫ u√
n

0
(1{Yi ≤ q1(τ) + v} − 1{Yi ≤ q1(τ)})dv.

Recall

Dw
n (s) =

n∑
i=1

ξi(Ai − π)1{Si = s}, nw(s) =
n∑
i=1

ξi1{Si = s},

and

π̂w(s) =

∑n
i=1 ξiAi1{Si = s}

nw(s)
= π +

Dw
n (s)

nw(s)
.

Then, for Lw1,n(τ), we have

Lw1,n(τ) =
1√
n

n∑
i=1

∑
s∈S

ξiAi
π

1{Si = s}(τ − 1{Yi(1) ≤ q1(τ)})

−
n∑
i=1

∑
s∈S

ξiAi1{Si = s}(π̂w(s)− π)√
nπ̂w(s)π

(τ − 1{Yi(1) ≤ q1(τ)})

=
1√
n

n∑
i=1

∑
s∈S

ξiAi
π

1{Si = s}(τ − 1{Yi(1) ≤ q1(τ)})

−
n∑
i=1

∑
s∈S

ξiAi1{Si = s}Dw
n (s)

nw(s)
√
nπ̂(s)π

ηi,1(s, τ)−
∑
s∈S

Dw
n (s)m1(s, τ)

nw(s)
√
nπ̂w(s)π

Dw
n (s)−

∑
s∈S

Dw
n (s)m1(s, τ)√
nπ̂w(s)

=
∑
s∈S

1√
n

n∑
i=1

ξiAi1{Si = s}
π

ηi,1(s, τ) +
∑
s∈S

Dw
n (s)√
nπ

m1(s, τ) +

n∑
i=1

ξim1(Si, τ)√
n

50



−
∑
s∈S

Dw
n (s)

n∑
i=1

ξiAi1{Si = s}
nw(s)

√
nπ̂w(s)π

ηi,1(s, τ)−
∑
s∈S

Dw
n (s)m1(s, τ)

nw(s)
√
nπ̂w(s)π

Dw
n (s)−

∑
s∈S

Dw
n (s)m1(s, τ)√
nπ̂w(s)

=Ww
ipw,1,n(τ) +Rwipw(τ),

where

Ww
ipw,1,n(τ) =

∑
s∈S

1√
n

n∑
i=1

ξiAi1{Si = s}
π

ηi,1(s, τ) +

n∑
i=1

ξim1(Si, τ)√
n

(D.7)

and

Rwipw(τ)

=−
∑
s∈S

Dw
n (s)

n∑
i=1

ξiAi1{Si = s}
nw(s)

√
nπ̂w(s)π

ηi,1(s, τ)−
∑
s∈S

Dw
n (s)m1(s, τ)

nw(s)
√
nπ̂w(s)π

Dw
n (s) +

∑
s∈S

Dw
n (s)m1(s, τ)√

n
(
1

π
− 1

π̂w(s)
).

By Step 1 in the proof of F.5, we have sups∈S |Dw
n (s)| = Op(

√
n). By the standard bootstrap

argument, we have nw(s)
n

p−→ p(s) > 0. Therefore, π̂w(s) − π p−→ 0. In addition, by Step 2 in the

proof of Lemma F.5, we have

sup
τ∈Υ,s∈S

|
n∑
i=1

ξiAi1{Si = s}ηi,1(s, τ)| = Op(
√
n).

Therefore,

sup
τ∈Υ
|Rwipw(τ)| = op(1).

Similar to the strata fixed effects estimator, we can show that

sup
τ∈Υ
|Lw2,n(u, τ)− f1(q1(τ))u2

2
| = op(1).

Therefore,

√
n(q̂w1 (τ)− q1(τ)) =

Ww
ipw,1,n(τ)

f1(q1(τ))
+Rw1 (τ),

where supτ∈Υ |Rw1 (τ)| = op(1). Similarly,

√
n(q̂w0 (τ)− q0(τ)) =

Ww
ipw,0,n(τ)

f0(q0(τ))
+Rw0 (τ),
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where

Ww
ipw,0,n(τ) =

∑
s∈S

1√
n

n∑
i=1

ξi(1−Ai)1{Si = s}
1− π

ηi,0(s, τ) +
n∑
i=1

ξim0(Si, τ)√
n

and supτ∈Υ |Rw0 (τ)| = op(1). Therefore,

√
n(q̂w(τ)− q̂(τ))

=
∑
s∈S

1√
n

n∑
i=1

(ξi − 1)

{
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1−Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

+

[
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

]
1{Si = s}

}
+ op(1),

where the op(1) term holds uniformly over τ ∈ Υ. In order to show the conditional weak convergence,

we only need to show the conditionally stochastic equicontinuity and finite-dimensional convergence.

The former can be shown in the same manner as the strata fixed effects estimator. For the latter,

we note that

1

n

∑
s∈S

n∑
i=1

{
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1−Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))
+

[
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

]
1{Si = s}

}2

=
∑
s∈S

1

n

n∑
i=1

{
(1−Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

}2

+
∑
s∈S

1

n

n∑
i=1

{
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))

}2

+
∑
s∈S

1

n

n∑
i=1

{[
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

]
1{Si = s}

}2

+
∑
s∈S

2

n

n∑
i=1

{
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))

}[
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

]

−
∑
s∈S

2

n

n∑
i=1

{
(1−Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

}[
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

]
p−→ζ2

Y (π, τ) + ζ2
S(τ).

Note that the RHS of the above display is the same as the asymptotic variance of the original

estimator q̂(τ). This concludes the proof.

E Proof of Theorem 5.1

We focus on the strata fixed effects estimator and aim to show that, uniformly over τ ∈ Υ and

conditionally on data,

√
n(β̂∗sfe,1(τ)− q̂(τ)) Bsfe(τ).
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The results for β̂∗1(τ) and q̂∗(τ) can be established by a similar but simpler argument.

Recall the definition of β̃(τ) = (β̃0(τ), β̃1(τ))′ in the proof of Theorem 3.2. Let u0 =
√
n(b0 −

β̃0(τ)), u1 =
√
n(b1 − β̃1(τ)) and u = (u0, u1)′ ∈ <2. Then,

√
n(β̂∗sfe(τ)− β̃(τ)) = arg min

u
L∗sfe,n(u, τ),

where

L∗sfe,n(u, τ) =
n∑
i=1

[
ρτ (Y ∗i −

˙̃A∗′i (β̃(τ) +
u√
n

))− ρτ (Y ∗i − Ă∗′i β̃(τ))

]

and Ă∗i = (1, A∗i − π)′. Following the proof of Theorem 3.2, we divide the current proof into two

steps. In the first step, we show that there exist

g∗sfe,n(u, τ) = −u′W ∗sfe,n(τ) +
1

2
u′Qsfe(τ)u

and h∗sfe,n(τ) independent of u such that for each u

sup
τ∈Υ
|L∗sfe,n(u, τ)− g∗sfe,n(u, τ)− h∗sfe,n(τ)| p−→ 0.

In addition, we show that supτ∈Υ ||W ∗sfe,n(τ)|| = Op(1). Then, by Kato (2009, Theorem 2), we

have

√
n(β̂∗sfe(τ)− β̃(τ)) = [Qsfe(τ)]−1W ∗sfe,n(τ) +R∗sfe,n(τ),

where

sup
τ∈Υ
||R∗sfe,n(τ)|| = op(1).

In the second step, we show that, conditionally on data,

√
n(β̂∗sfe,1(τ)− q̂(τ)) Bsfe(τ).

Step 1. Following Step 1 in the proof of Theorem 3.2, we have

L∗sfe,n(u, τ) ≡ −L∗1,n(u, τ) + L∗2,n(u, τ),

where

L∗1,n(u, τ)
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=

n∑
i=1

∑
s∈S

A∗i 1{S∗i = s}
(
u0√
n

+ (1− π̂∗(s)) u1√
n

+ (π − π̂∗(s))q(τ)

)
(τ − 1{Y ∗i ≤ q1(τ)})

+
n∑
i=1

∑
s∈S

(1−A∗i )1{S∗i = s}
(
u0√
n
− π̂∗(s) u1√

n
+ (π − π̂∗(s))q(τ)

)
(τ − 1{Y ∗i ≤ q0(τ)})

≡L∗1,1,n(u, τ) + L∗1,0,n(u, τ),

L∗2,n(u, τ)

=
∑
s∈S

n∑
i=1

A∗i 1{S∗i = s}
∫ u′ι1√

n
−E
∗
n(s)√
n

(
q(τ)+

u1√
n

)
0

(1{Y ∗i ≤ q1(τ) + v} − 1{Y ∗i ≤ q1(τ)}) dv

+
∑
s∈S

n∑
i=1

(1−A∗i )1{S∗i = s}
∫ u′ι0√

n
−E
∗
n(s)√
n

(
q(τ)+

u1√
n

)
0

(1{Y ∗i ≤ q0(τ) + v} − 1{Y ∗i ≤ q0(τ)}) dv

≡L∗2,1,n(u, τ) + L∗2,0,n(u, τ),

and E∗n(s) =
√
n(π̂∗(s)− π).

Step 1.1. Recall that ι1 = (1, 1− π)′ and ι0 = (1,−π)′. In addition, π̂∗(s)− π = D∗n(s)
n∗(s) . Then,

L∗1,1,n(u, τ)

=
∑
s∈S

u′ι1√
n

n∑
i=1

[
A∗i 1{S∗i = s}η∗i,1(s, τ) + (A∗i − π)1{S∗i = s}m1(s, τ) + π1{S∗i = s}m1(s, τ)

]
−
∑
s∈S

u1D
∗
n(s)πm1(s, τ)√

n
+ h∗1,1(τ) +R∗sfe,1,1(u, τ), (E.1)

where η∗i,1(s, τ) = (τ − 1{Y ∗i (1) ≤ q1(τ)})−m1(s, τ),

h∗1,1(τ) =
∑
s∈S

(π − π̂∗(s))q(τ)

(
n∑
i=1

A∗i 1{S∗i = s}(τ − 1{Y ∗i ≤ q1(τ)})

)
,

and

R∗sfe,1,1(u, τ) = −
∑
s∈S

u1D
∗
n(s)√

nn∗(s)

{
n∑
i=1

A∗i 1{S∗i = s}η∗i,1(s, τ) + (A∗i − π)1{S∗i = s}m1(s, τ)

}
. (E.2)

Lemma F.9 shows that

sup
τ∈Υ
|R∗sfe,1,1(u, τ)| = Op(1/

√
n).

54



Similarly, we have

L∗1,0,n(u, τ)

=
∑
s∈S

u′ι0√
n

n∑
i=1

[
(1−A∗i )1{S∗i = s}η∗i,1(s, τ)− (A∗i − π)1{S∗i = s}m0(s, τ) + (1− π)1{S∗i = s}m0(s, τ)

]
−
∑
s∈S

u1D
∗
n(s)(1− π)m0(s, τ)√

n
+ h∗1,0(τ) +R∗sfe,1,0(u, τ), (E.3)

where

h∗1,0(τ) =
∑
s∈S

(π − π̂∗(s))q(τ)

(
n∑
i=1

(1−A∗i )1{S∗i = s}(τ − 1{Y ∗i ≤ q0(τ)})

)
,

and

R∗sfe,1,0(u, τ) = −
∑
s∈S

u1D
∗
n(s)√

nn∗(s)

{
n∑
i=1

(1−A∗i )1{S∗i = s}η∗i,0(s, τ)− (A∗i − π)1{S∗i = s}m0(s, τ)

}
.

(E.4)

Lemma F.9 shows that

sup
τ∈Υ
|R∗sfe,1,0(u, τ)| = Op(1/

√
n).

Therefore,

L∗1,n(u, τ) =
1√
n

∑
s∈S

n∑
i=1

[
u′ι1A

∗
i 1{S∗i = s}η∗i,1(s, τ) + u′ι0(1−A∗i )1{S∗i = s}η∗i,0(s, τ)

]
+
∑
s∈S

u′ι2
D∗n(s)√

n
(m1(s, τ)−m0(s, τ))

+
1√
n

n∑
i=1

(u′ι1πm1(S∗i , τ) + u′ι0(1− π)m0(S∗i , τ))

+R∗sfe,1,1(u, τ) +R∗sfe,1,0(u, τ) + h1,1(τ) + h1,0(τ).

Furthermore, by Lemma F.10, we have

L∗2,1,n(u, τ) =
πf1(q1(τ))

2
(u′ι1)2 −

∑
s∈S

f1(q1(τ)|s)πD
∗
n(s)u′ι1√
n

q(τ) + h∗2,1(τ) +R∗sfe,2,1(u, τ) (E.5)
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and

L∗2,0,n(u, τ) =
(1− π)f0(q0(τ))

2
(u′ι0)2 −

∑
s∈S

f0(q0(τ)|s)(1− π)D∗n(s)u′ι0√
n

q(τ) + h∗2,0(τ) +R∗sfe,2,0(u, τ),

(E.6)

where

h∗2,1(τ) =
∑
s∈S

πf1(q1(τ)|s)
2

p(s)(E∗n(s))2q2(τ),

h∗2,0(τ) =
∑
s∈S

(1− π)f0(q0(τ)|s)
2

p(s)(E∗n(s))2q2(τ),

sup
τ∈Υ
|R∗sfe,2,1(u, τ)| = op(1),

and

sup
τ∈Υ
|R∗sfe,2,0(u, τ)| = op(1).

Therefore,

L∗2,n(u, τ) =
1

2
u′Qsfe(τ)u−

∑
s∈S

q(τ)
[
f1(q1(τ)|s)πu′ι1 + f0(q0(τ)|s)(1− π)u′ι0

] D∗n(s)√
n

+R∗sfe,2,1(u, τ) +R∗sfe,2,0(u, τ) + h∗2,1(τ) + h∗2,0(τ).

Combining (E.1), (E.3), (E.5), and (E.6), we have

L∗sfe,n(u, τ) = −u′W ∗sfe,n(τ) +
1

2
u′Qsfeu+ R̃∗sfe,n(u, τ) + h∗sfe,n(τ),

where

W ∗sfe,n(τ)

=
1√
n

∑
s∈S

n∑
i=1

[
ι1A
∗
i 1{S∗i = s}η∗i,1(s, τ) + ι0(1−A∗i )1{S∗i = s}η∗i,0(s, τ)

]
+
∑
s∈S

{
ι2(m1(s, τ)−m0(s, τ)) + q(τ)

[
f1(q1(τ)|s)πι1 + f0(q0(τ)|s)(1− π)ι0

]}
D∗n(s)√

n
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+
1√
n

n∑
i=1

(ι1πm1(S∗i , τ) + ι0(1− π)m0(S∗i , τ)),

h∗sfe,n(τ) = h∗1,1(τ) + h∗1,0(τ) + h∗2,1(τ) + h∗2,0(τ),

and

sup
τ∈Υ
|R̃∗sfe,n(u, τ)| = op(1).

By Lemma F.11, supτ∈Υ |W ∗sfe,n(τ)| = Op(1). Then, by Kato (2009, Theorem 2), we have

√
n(β̂∗sfe(τ)− β̃(τ)) = [Qsfe(τ)]−1W ∗sfe,n(τ) +R∗sfe,n(τ),

where

sup
τ∈Υ
||R∗sfe,n(τ)|| = op(1).

This concludes Step 1.

Step 2. We now focus on the second element of β̂∗sfe(τ). From Step 1, we know that

√
n(β̂∗sfe,1(τ)− q(τ))

=
1√
n

∑
s∈S

n∑
i=1

[
A∗i 1{S∗i = s}η∗i,1(s, τ)

πf1(q1(τ))
−

(1−A∗i )1{S∗i = s}η∗i,0(s, τ)

(1− π)f0(q0(τ))

]
+
∑
s∈S

{(
1− π

πf1(q1(τ))
− π

(1− π)f0(q0(τ))

)
(m1(s, τ)−m0(s, τ)) + q(τ)

[
f1(q1(τ)|s)
f1(q1(τ))

− f0(q0(τ)|s)
f0(q0(τ))

]}
D∗n(s)√

n

+
1√
n

n∑
i=1

(
m1(S∗i , τ)

f1(q1(τ))
− m0(S∗i , τ)

f0(q0(τ))

)
+R∗sfe,n,1(τ)

≡W ∗sfe,n,1(τ) +W ∗sfe,n,2(τ) +W ∗sfe,n,3(τ) +R∗sfe,n,1(τ),

where

sup
τ∈Υ
|R∗sfe,n,1(τ)| = op(1).

By (C.3), we have

√
n(q̂(τ)− q(τ))

=
1√
n

∑
s∈S

n∑
i=1

[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1−Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

]
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+
1√
n

n∑
i=1

(
m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

)
+Ripw,n(τ)

≡Wn,1(τ) +Wn,2(τ) +Ripw,n(τ),

where

sup
τ∈Υ
|Ripw,n(τ)| = op(1).

Taking the difference of the above two equations, we have

√
n(β̂∗sfe,1(τ)− q̂(τ)) = (W ∗sfe,n,1(τ)−Wn,1(τ)) +W ∗sfe,n,2(τ) + (W ∗sfe,n,3(τ)−Wn,2(τ)) +R∗(τ),

(E.7)

where

sup
τ∈Υ
|R∗(τ)| = op(1).

Lemma F.11 shows that, conditionally on data,

(W ∗sfe,n,1(τ)−Wn,1(τ)),W ∗sfe,n,2(τ), (W ∗sfe,n,3(τ)−Wn,2(τ)) (B1(τ),B2(τ),B3(τ)),

where (B1(τ),B2(τ),B3(τ)) are three independent Gaussian processes and
∑3

j=1 Bj(τ)
d
= Bsfe(τ).

This concludes the proof.

F Technical Lemmas

Lemma F.1. Let Sk be the k-th partial sum of Banach space valued independent identically dis-

tributed random variables, then

P( max
1≤k≤n

||Sk|| ≥ ε) ≤ 3 max
1≤k≤n

P(||Sk|| ≥ ε/3).

When Sk takes values on <, Lemma F.1 is Peña, Lai, and Shao (2008, Exercise 2.3).

Proof. First suppose maxk P(||Sn − Sk|| ≥ 2ε/3) ≤ 2/3. In addition, define

Ak = {||Sk|| ≥ ε, ||Sj || < ε, 1 ≤ j < k}.
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Then,

P(max
k
||Sk|| ≥ ε) ≤P(||Sn|| ≥ ε/3) +

n∑
k=1

P(||Sn|| ≤ ε/3, Ak)

≤P(||Sn|| ≥ ε/3) +
n∑
k=1

P(||Sn − Sk|| ≥ 2ε/3)P(Ak)

≤P(||Sn|| ≥ ε/3) +
2

3
P(max

k
||Sk|| ≥ ε).

This implies,

P(max
k
||Sk|| ≥ ε) ≤ 3P(||Sn|| ≥ ε/3).

On the other hand, if maxk P(||Sn − Sk|| ≥ 2ε/3) > 2/3, then there exists k0 such that P(||Sn −
Sk0 || ≥ 2ε/3) > 2/3. Thus,

P(||Sn|| ≥ ε/3) + P(||Sk0 || ≥ ε/3) ≥ 2/3.

This implies,

3 max
1≤k≤n

P(||Sk|| ≥ ε/3) ≥ 3 max(P(||Sn|| ≥ ε/3),P(||Sk0 || ≥ ε/3)) ≥ 1 ≥ P( max
1≤k≤n

||Sk|| ≥ ε).

This concludes the proof.

Lemma F.2. Let Wn,j(τ), j = 1, 2, 3 be defined as in (A.3). If Assumptions in Theorem 3.1 hold,

then uniformly over τ ∈ Υ,

(Wn,1(τ),Wn,2(τ),Wn,3(τ)) (B1(τ),B2(τ),B3(τ)),

where (B1(τ),B2(τ),B3(τ)) are three independent two-dimensional Gaussian processes with covari-

ance kernels Σ1(τ1, τ2), Σ2(τ1, τ2), and Σ3(τ1, τ2), respectively. The expressions for the three kernels

are derived in the proof below.

Proof. We follow the general argument in the proof of Bugni et al. (2018a, Lemma B.2). We divide

the proof into two steps. In the first step, we show that

(Wn,1(τ),Wn,2(τ),Wn,3(τ))
d
= (W ?

n,1(τ),Wn,2(τ),Wn,3(τ)) + op(1),

where the op(1) term holds uniformly over τ ∈ Υ, W ?
n,1(τ) ⊥⊥ (Wn,2(τ),Wn,3(τ)), and, uniformly
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over τ ∈ Υ,

W ?
n,1(τ) B1(τ).

In the second step, we show that

(Wn,2(τ),Wn,3(τ)) (B2(τ),B3(τ))

uniformly over τ ∈ Υ and B2(τ) ⊥⊥ B3(τ).

Step 1. Let η̃i,j(s, τ) = τ − 1{Y s
i (j) ≤ qj(τ)} −mj(s, τ), for j = 0, 1, where {Y s

i (0), Y s
i (1)}i≥1

are the same as defined in Step 1 in the proof of Theorem 3.1. In addition, denote

W̃n,1(τ) = e1

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

1√
n
η̃i,1(s, τ) + e0

∑
s∈S

N(s)+n(s)∑
i=N(s)+n1(s)+1

1√
n
η̃i,0(s, τ),

where n(s) =
∑n

i=1 1{Si = s}. Then, we have

{Wn,1(τ)|{Ai, Si}ni=1}
d
= {W̃n,1(τ)|{Ai, Si}ni=1}.

Because both Wn,2(τ) and Wn,3(τ) are only functions of {Ai, Si}ni=1, we have

(Wn,1(τ),Wn,2(τ),Wn,3(τ))
d
= (W̃n,1(τ),Wn,2(τ),Wn,3(τ)).

Let

W ?
n,1(τ) = e1

∑
s∈S

bn(F (s)+πp(s))c∑
i=bnF (s)c+1

1√
n
η̃i,1(s, τ) + e0

∑
s∈S

bn(F (s)+p(s))c∑
i=bn(F (s)+πp(s))c+1

1√
n
η̃i,0(s, τ).

Note that W ?
n,1(τ) is a function of only (Y s

i (1), Y s
i (0))i≥1, which is independent of {Ai, Si}ni=1 by

construction. Therefore, W ?
n,1(τ) ⊥⊥ (Wn,2(τ),Wn,3(τ)).

Furthermore, note that

N(s)

n

p−→ F (s),
n1(s)

n

p−→ πp(s), and
n(s)

n

p−→ p(s).

Denote Γn,j(s, t, τ) =
∑bntc

i=1
1√
n
η̃i,j(s, τ). In order to show supτ∈Υ |W̃n,1(τ)−W ?

n,1(τ)| = op(1) and

W ?
n,1(τ) B1(τ), it suffices to show that, (1) for j = 0, 1 and s ∈ S, the stochastic processes

{Γn,j(s, t, τ) : t ∈ (0, 1), τ ∈ Υ}

in stochastically equicontinuous; and (2) W ?
n,1(τ) converges to B1(τ) in finite dimension.
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Claim (1). We want to bound

sup |Γn,j(s, t2, τ2)− Γn,j(s, t1, τ1)|,

where supremum is taken over 0 < t1 < t2 < t1 +ε < 1 and τ1 < τ2 < τ1 +ε such that τ1, τ1 +ε ∈ Υ.

Note that,

sup |Γn,j(s, t2, τ2)− Γn,j(s, t1, τ1)|

≤ sup
0<t1<t2<t1+ε<1,τ∈Υ

|Γn,j(s, t2, τ)− Γn,j(s, t1, τ)|+ sup
t∈(0,1),τ1,τ2∈Υ,τ1<τ2<τ1+ε

|Γn,j(s, t, τ2)− Γn,j(s, t, τ1)|.

(F.1)

Let m = bnt2c − bnt1c ≤ bnεc+ 1. Then, for an arbitrary δ > 0, by taking ε = δ4, we have

P( sup
0<t1<t2<t1+ε<1,τ∈Υ

|Γn,j(s, t2, τ)− Γn,j(s, t1, τ)| ≥ δ)

=P( sup
0<t1<t2<t1+ε<1,τ∈Υ

|
i=bnt2c∑
i=bnt1c+1

η̃i,j(s, τ)| ≥
√
nδ)

=P( sup
0<t≤ε,τ∈Υ

|
bntc∑
i=1

η̃i,j(s, τ)| ≥
√
nδ)

≤P( max
1≤k≤bnεc

sup
τ∈Υ
|Sk(τ)| ≥

√
nδ)

≤
270E supτ∈Υ |

∑bnεc
i=1 η̃i,j(s, τ)|√

nδ

.

√
nε√
nδ
. δ,

where in the first inequality, Sk(τ) =
∑k

i=1 η̃i,j(s, τ) and the second inequality holds due to the

same argument in (A.2). For the third inequality, denote

F = {η̃i,j(s, τ) : τ ∈ Υ}

with an envelope function F = 2. In addition, because F is a VC-class with a fixed VC-index, we

have

J(1,F) <∞,
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where

J(δ,F) = sup
Q

∫ δ

0

√
1 + logN(ε||F ||Q,2,F , L2(Q))dε,

N(ε||F ||Q,2,F , L2(Q)) is the covering number, and the supremum is taken over all discrete proba-

bility measures Q. Therefore, by van der Vaart and Wellner (1996, Theorem 2.14.1)

270E supτ∈Υ |
∑bnεc

i=1 η̃i,j(s, τ)|√
nδ

.

√
bnεc

[
E
√
bnεc||Pbnεc − P||F

]
√
nδ

.

√
bnεcJ(1,F)√

nδ
.

For the second term on the RHS of (F.1), by taking ε = δ4, we have

P( sup
t∈(0,1),τ1,τ2∈Υ,τ1<τ2<τ1+ε

|Γn,j(s, t, τ2)− Γn,j(s, t, τ1)| ≥ δ)

=P( max
1≤k≤n

sup
τ1,τ2∈Υ,τ1<τ2<τ1+ε

|Sk(τ1, τ2)| ≥
√
nδ)

≤
270E supτ1,τ2∈Υ,τ1<τ2<τ1+ε |

∑n
i=1(η̃i,j(s, τ2)− η̃i,j(s, τ1))|

√
nδ

. δ

√
log(

C

δ2
),

where in the first equality, Sk(τ1, τ2) =
∑k

i=1(η̃i,j(s, τ2)− η̃i,j(s, τ1)) and the first inequality follows

the same argument as in (A.2). For the last inequality, denote

F = {η̃i,j(s, τ2)− η̃i,j(s, τ1) : τ1, τ2 ∈ Υ, τ1 < τ2 < τ1 + ε}

with a constant envelope function F = C and

σ2 = sup
f∈F

Ef2 ∈ [c1ε, c2ε],

for some constant 0 < c1 < c2 < ∞. Last, F is nested by some VC class with a fixed VC index.

Therefore, by Chernozhukov et al. (2014, Corollary 5.1),

270E supτ1,τ2∈Υ,τ1<τ2<τ1+ε |
∑n

i=1(η̃i,j(s, τ2)− η̃i,j(s, τ1))|
√
nδ

.

√
nE||Pn − P||F

δ
.

√
σ2 log(Cσ )

δ2
+
C log(Cσ )
√
nδ

. δ

√
log(

C

δ2
),

where the last inequality holds by letting n be sufficiently large. Note that δ
√

log( C
δ2 ) → 0 as

δ → 0. This concludes the proof of Claim (1).
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Claim (2). For a single τ , by the triangular CLT,

W ?
n,1(τ) N(0,Σ1(τ)),

where Σ1(τ) = π[τ(1− τ)−Em2
1(S, τ)]e1e

′
1 + (1−π)[τ(1− τ)−Em2

0(S, τ)]e0e
′
0. The convergence in

finite dimension can be proved by using the Cramér-Wold device. In particular, we can show that

the covariance kernel is

Σ1(τ1, τ2) =π[min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)]e1e
′
1

+ (1− π)[min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)]e0e
′
0.

This concludes the proof of Claim (2), and thus leads to the desired results in Step 1.

Step 2. We first consider the marginal distributions for Wn,2(τ) and Wn,3(τ). For Wn,2(τ), by

Assumption 1 and the fact that mj(s, τ) is continuous in τ ∈ Υ j = 0, 1, we have, conditionally on

{Si}ni=1,

Wn,2(τ) =
∑
s∈S

Dn(s)√
n

[e1m1(s, τ)− e0m0(s, τ)] B2(τ), (F.2)

where B2(τ) is a two-dimensional Gaussian process with covariance kernel

Σ2(τ1, τ2)

=
∑
s∈S

p(s)γ(s)

[
e1e
′
1m1(s, τ1)m1(s, τ2)− e1e

′
0m1(s, τ1)m0(s, τ2)

− e0e
′
1m0(s, τ1)m1(s, τ2) + e0e

′
0m0(s, τ1)m0(s, τ2)

]
.

For Wn,3(τ), by the fact that mj(s, τ) is continuous in τ ∈ Υ j = 0, 1, we have that, uniformly

over τ ∈ Υ,

Wn,3(τ) =
1√
n

n∑
i=1

[e1πm1(Si, τ) + e0(1− π)m0(Si, τ)] B3(τ), (F.3)

where B3(τ) a two-dimensional Gaussian process with covariance kernel

Σ3(τ1, τ2) =e1e
′
1π

2Em1(S, τ1)m1(S, τ2) + e1e
′
0π(1− π)Em1(S, τ1)m0(S, τ2)

+ e0e
′
1π(1− π)Em0(S, τ1)m1(S, τ2) + e0e

′
0(1− π)2Em0(S, τ1)m0(S, τ2).
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In addition, we note that, for any fixed τ ,

P(Wn,2(τ) ≤ w1,Wn,3(τ) ≤ w2) =EP(Wn,2(τ) ≤ w1|{Si}ni=1)1{Wn,3(τ) ≤ w2}

=EP(N(0,Σ2(τ, τ)) ≤ w1)1{Wn,3(τ) ≤ w2}+ o(1)

=P(N(0,Σ3(τ, τ)) ≤ w2)P(N(0,Σ2(τ, τ)) ≤ w1) + o(1).

This implies B2(τ) ⊥⊥ B3(τ). By using the Cramér-Wold device, we can show that

(Wn,2(τ),Wn,3(τ)) (B2(τ),B3(τ))

jointly in finite dimension, where by an abuse of notation, B2(τ) and B3(τ) have the same marginal

distributions of those in (F.2) and (F.3), respectively, and B2(τ) ⊥⊥ B3(τ). Last, because both

Wn,2(τ) and Wn,3(τ) are tight marginally, so be the joint process (Wn,2(τ),Wn,3(τ)). This concludes

the proof of Step 2, and thus the whole lemma.

Lemma F.3. Let Wsfe,n,j(τ), j = 1, 2, 3 be defined as in (B.14). If Assumptions in Theorem 3.2

hold, then uniformly over τ ∈ Υ,

(Wsfe,n,1(τ),Wsfe,n,2(τ),Wsfe,n,3(τ)) (Bsfe,1(τ),Bsfe,2(τ),Bsfe,3(τ)),

where (Bsfe,1(τ),Bsfe,2(τ),Bsfe,3(τ)) are three independent two-dimensional Gaussian process with

covariance kernels Σsfe,1(τ1, τ2), Σsfe,2(τ1, τ2), and Σsfe,3(τ1, τ2), respectively. The expressions for

the three kernels are derived in the proof below.

Proof. The proofs of weak convergence and the independence among (Bsfe,1(τ),Bsfe,2(τ),Bsfe,3(τ))

are similar to that in Lemma F.2, and thus, are omitted. In the following, we focus on deriving the

covariance kernels.

First, similar to the argument in the proof of Lemma F.2,

Wsfe,n,1(τ)
d
= ι1

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

1√
n
η̃i,1(s, τ) + ι0

∑
s∈S

N(s)+n(s)∑
i=N(s)+n1(s)+1

1√
n
η̃i,0(s, τ).

Therefore,

Σ1(τ1, τ2) =π[min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)]ι1ι
′
1

+ (1− π)[min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)]ι0ι
′
0.

For Wsfe,n,2(τ), we have

Σ2(τ1, τ2) =Eγ(S)

[
ι2(m1(S, τ1)−m0(S, τ1)) + q(τ1)

(
f1(q1(τ1)|S)πι1 + f0(q0(τ1)|S)(1− π)ι0

)]
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×
[
ι2(m1(S, τ2)−m0(S, τ2)) + q(τ2)

(
f1(q1(τ2)|S)πι1 + f0(q0(τ2)|S)(1− π)ι0

)]′
.

Next, we have

Σ3(τ1, τ2) = E(ι1πm1(S, τ1) + ι0(1− π)m0(S, τ1))(ι1πm1(S, τ2) + ι0(1− π)m0(S, τ2))′.

In addition,

[Qsfe(τ)]−1 =

(
1−π

f0(q0(τ)) + π
f1(q1(τ))

1
f1(q1(τ)) −

1
f0(q0(τ))

1
f1(q1(τ)) −

1
f0(q0(τ))

1
(1−π)f0(q0(τ)) + 1

πf1(q1(τ))

)
.

Therefore,

Σ(τ1, τ2)

=

{
1

πf1(q1(τ1))f1(q1(τ2))
[min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)]

(
π2 π

π 1

)

+
1

(1− π)f0(q0(τ1))f0(q0(τ2))
[min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)]

(
(1− π)2 π − 1

π − 1 1

)}

+

{
Eγ(S)

[
(m1(S, τ1)−m0(S, τ1))

(
π

f0(q0(τ1)) + 1−π
f1(q1(τ1))

1−π
πf1(q1(τ1)) −

π
(1−π)f0(q0(τ1))

)
+ q(τ1)

f1(q1(τ1)|S)

f1(q1(τ1))

(
π

1

)

+ q(τ1)
f0(q0(τ1)|S)

f0(q0(τ1))

(
1− π
−1

)]
×
[
(m1(S, τ2)−m0(S, τ2))

(
π

f0(q0(τ2)) + 1−π
f1(q1(τ2))

1−π
πf1(q1(τ2)) −

π
(1−π)f0(q0(τ2))

)

+ q(τ2)
f1(q1(τ2)|S)

f1(q1(τ2))

(
π

1

)
+ q(τ2)

f0(q0(τ2)|S)

f0(q0(τ2))

(
1− π
−1

)]}

+

{
E
[
m1(S, τ1)

f1(q1(τ1))

(
π

1

)
+
m0(S, τ1)

f0(q0(τ1))

(
1− π
−1

)][
m1(S, τ2)

f1(q1(τ2))

(
π

1

)
+
m0(S, τ2)

f0(q0(τ2))

(
1− π
−1

)]′}
.

Lemma F.4. Let Wn,j(τ), j = 1, 2 be defined as in (C.3). If Assumptions in Theorem 3.3 hold,

then uniformly over τ ∈ Υ,

(Wn,1(τ),Wn,2(τ)) (Bipw,1(τ),Bipw,2(τ)),

where (Bipw,1(τ),Bipw,2(τ)) are two independent two-dimensional Gaussian process with covari-

ance kernels Σipw,1(τ1, τ2) and Σipw,2(τ1, τ2), respectively. The expressions for Σipw,1(τ1, τ2) and

Σipw,2(τ1, τ2) are derived in the proof below.

Proof. The proof of weak convergence and the independence between (Bipw,1(τ),Bipw,2(τ)) are
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similar to that in Lemma F.2, and thus, are omitted. Next, we focus on deriving the covariance

kernels.

First, similar to the argument in the proof of Lemma F.2,

Wn,1(τ)
d
=
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

1√
nf1(q1(τ))

η̃i,1(s, τ)−
∑
s∈S

N(s)+n(s)∑
i=N(s)+n1(s)+1

1√
nf0(q0(τ))

η̃i,0(s, τ).

Because (η̃i,1(s, τ), η̃i,0(s, τ)) are independent across i, n1(s)/n
p−→ πp(s), and (n(s)−n1(s))/n

p−→
(1− π)p(s), we have

Σipw,1(τ1, τ2) =
min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)

πf1(q1(τ1))f1(q1(τ2))
+

min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)

(1− π)f0(q0(τ1))f0(q0(τ2))
.

Obviously,

Σipw,2(τ1, τ2) = E
(
m1(S, τ1)

f1(q1(τ1))
− m0(S, τ1)

f0(q0(τ1))

)(
m1(S, τ2)

f1(q1(τ2))
− m0(S, τ2)

f0(q0(τ2))

)
,

Lemma F.5. Recall the definition of Rwsfe,1,1(u, τ) in (D.2). If Assumptions 1 and 2 hold, then

sup
τ∈Υ
|Rwsfe,1,1(u, τ)| = op(1).

Proof. We divide the proof into two steps. In the first step, we show that sups∈S |Dw
n (s)| = Op(

√
n).

In the second step, we show that

sup
τ∈Υ,s∈S

|
n∑
i=1

ξiAi1{Si = s}ηi,1(s, τ)| = Op(
√
n). (F.4)

Then,

sup
τ∈Υ
|Rwsfe,1,1(u, τ)|

≤
∑
s∈S

|u1|
nw(s)

sup
s∈S

∣∣∣∣Dw
n (s)√
n

∣∣∣∣ [ sup
τ∈Υ,s∈S

∣∣∣∣ n∑
i=1

ξiAi1{Si = s}ηi,1(s, τ)

∣∣∣∣+ sup
s∈S
|Dw

n (s)|
]

=Op(1/
√
n),

as nw(s)/n
p−→ p(s) > 0.
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Step 1. Because

sup
s∈S
|Dn(s)| = Op(

√
n),

we only need to bound the difference Dw
n (s)−Dn(s). Note that

n−1/2Dw
n (s)− n−1/2Dn(s) = n−1/2

n∑
i=1

(ξi − 1)(Ai − π)1{Si = s}. (F.5)

We aim to prove that, conditionally on data, for s ∈ S,

n−1/2
n∑
i=1

(ξi − 1)(Ai − π)1{Si = s} N(0, p(s)π(1− π)) (F.6)

and they are independent across s ∈ S. The independence is straightforward because

1

n

n∑
i=1

(ξi − 1)2(Ai − π)21{Si = s}1{Si = s′} = 0 for s 6= s′.

For the limiting distribution, let Dn = {Yi, Ai, Si}ni=1 denote data. According to the Lindeberg-

Feller central limit theorem, (F.6) holds because (1)

n−1
n∑
i=1

E[(ξi − 1)2(Ai − π)21{Si = s}|Dn] =n−1
n∑
i=1

(Ai − 2Aiπ + π2)1{Si = s}

=n−1
n∑
i=1

(Ai − π − 2(Ai − π)π + π − π2)1{Si = s}

=
1− 2π

n

n∑
i=1

(Ai − π)1{Si = s}+ π(1− π)
n(s)

n

p−→π(1− π)p(s),

and (2) for every ε > 0,

n−1
n∑
i=1

(Ai − π)21{Si = s}E
[
(ξi − 1)21{|ξi − 1|(Ai − π)21{Si = s} > ε

√
n}|Dn

]
≤4E(ξi − 1)21{2|ξi − 1| ≥ ε

√
n} → 0,

where we use the fact that |Ai − π|1{Si = s} ≤ 2. This concludes the proof of Step 1.
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Step 2. By the same rearrangement argument and the fact that {ξi}ni=1 ⊥⊥ Dn, we have

sup
τ∈Υ,s∈S

∣∣∣∣ 1n
n∑
i=1

ξiAi1{Si = s}ηi,1(s, τ)

∣∣∣∣ d= sup
τ∈Υ,s∈S

∣∣∣∣ 1n
N(s)+n1(s)∑
i=N(s)+1

ξiη̃i,1(s, τ)

∣∣∣∣.
Let Γn,1(s, t, τ) =

∑bntc
i=1

ξiη̃i,1(s,τ)√
n

and F = {ξiη̃i,1(s, τ) : τ ∈ Υ, s ∈ S} with envelope Fi = Cξi

and ||Fi||P,2 <∞. By Lemma F.1 and van der Vaart and Wellner (1996, Theorem 2.14.1), for any

ε > 0, by , we can choose M sufficiently large such that

P( sup
0<t≤1,τ∈Υ,s∈S

|Γn,1(s, t, τ)| ≥M) ≤
270E supτ∈Υ,s∈S |Γn,1(s, 1, τ)|

M

=
270E

√
n||Pn − P||F
M

.
J(1,F)||Fi||P,2

M
< ε.

Therefore,

sup
0<t≤1,τ∈Υ,s∈S

|Γn,1(s, t, τ)| = Op(1)

and

sup
τ∈Υ,s∈S

∣∣∣∣ 1n
n∑
i=1

ξiAi1{Si = s}ηi,1(s, τ)

∣∣∣∣ d= sup
τ∈Υ,s∈S

1√
n

∣∣∣∣Γn,1(s, N(s) + n1(s)

n
, τ

)
− Γn,1

(
s,
N(s)

n
, τ

)∣∣∣∣
=Op(1/

√
n). (F.7)

This concludes the proof of Step 2.

Lemma F.6. If Assumptions 1 and 2 hold, then D.4 and D.5 hold.

Proof. We focus on (D.4). Note that

Lw2,1,n(u, τ)

=
∑
s∈S

n∑
i=1

ξiAi1{Si = s}
∫ u′ι1√

n
−E

w
n (s)√
n

(
q(τ)+

u1√
n

)
0

(1{Yi(1) ≤ q1(τ) + v} − 1{Yi(1) ≤ q1(τ)}) dv

=
∑
s∈S

n∑
i=1

ξiAi1{Si = s}[φi(u, τ, s, Ewn (s))− Eφi(u, τ, s, Ewn (s)|Si = s)]

+
∑
s∈S

n∑
i=1

ξiAi1{Si = s}Eφi(u, τ, s, Ewn (s)|Si = s),

(F.8)
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where by Lemma F.5, Ewn (s) =
√
n(π̂w(s)− π) = n

nw(s)
Dwn (s)√

n
= Op(1),

φi(u, τ, s, e) =

∫ u′ι1√
n
− e√

n

(
q(τ)+

u1√
n

)
0

(1{Yi(1) ≤ q1(τ) + v} − 1{Yi(1) ≤ q1(τ)}) dv,

and Eφi(u, τ, s, Ewn (s)|Si = s) is interpreted as E(φi(u, τ, s, e)|Si = s) with e being evaluated at

Ewn (s).

For the first term on the RHS of (F.8), by the rearrangement argument in Lemma F.2, we have

∑
s∈S

n∑
i=1

ξiAi1{Si = s}[φi(u, τ, s, Ewn (s))− Eφi(u, τ, s, Ewn (s)|Si = s)]

d
=
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

ξi[φ
s
i (u, τ, s, E

w
n (s))− Eφsi (u, τ, s, Ewn (s))],

where

φsi (u, τ, s, e) =

∫ u′ι1√
n
− e√

n

(
q(τ)+

u1√
n

)
0

(1{Y s
i (1) ≤ q1(τ) + v} − 1{Y s

i (1) ≤ q1(τ)}) dv.

Similar to (B.9), we can show that, as n→∞,

sup
τ∈Υ,s∈S

∣∣∣∣∣∣
N(s)+n1(s)∑
i=N(s)+1

ξi [φsi (u, τ, s, E
w
n (s))− Eφsi (u, τ, s, Ewn (s))]

∣∣∣∣∣∣ = op(1). (F.9)

For the second term in (F.8), we have

∑
s∈S

n∑
i=1

ξiAi1{Si = s}Eφi(u, τ, s, Ewn (s)|Si = s)

=
∑
s∈S

∑n
i=1 ξiπ1{Si = s}

n
nEφsi (u, τ, s, Ewn (s)) +

∑
s∈S

Dw
n (s)

n
nEφsi (u, τ, s, Ewn (s))

=
∑
s∈S

πp(s)

[
f1(q1(τ)|s)

2
(u′ι1 − Ewn (s)q(τ))2 + op(1)

]
+
∑
s∈S

Dw
n (s)

n

[
f1(q1(τ)|s)

2
(u′ι1 − Ewn (s)q(τ))2 + op(1)

]
=
πf1(q1(τ))

2
(u′ι1)2 −

∑
s∈S

f1(q1(τ)|s)πD
w
n (s)u′ι1√
n

q(τ) + hw2,1(τ) + op(1), (F.10)

where the op(1) term holds uniformly over (τ, s) ∈ Υ× S. The second equality holds by the same

calculation in (B.10) and the fact that
∑n

i=1 ξi1{Si = s}/n p−→ p(s). The last inequality holds
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because Dwn (s)
n = op(1), Ewn (s) = n

nw(s)
Dwn (s)√

n
= Op(1), n

nw(s)

p−→ 1/p(s), and

hw2,1(τ) =
∑
s∈S

πf1(q1(τ)|s)
2

p(s)(Ewn (s))2q2(τ).

Combining (F.8)–(F.10), we have

Lw2,1,n(u, τ) =
πf1(q1(τ))

2
(u′ι1)2 −

∑
s∈S

f1(q1(τ)|s)πD
w
n (s)u′ι1√
n

q(τ) + hw2,1(τ) +Rwsfe,2,1(u, τ),

where

hw2,1(τ) =
∑
s∈S

πf1(q1(τ)|s)
2

p(s)(Ewn (s))2q2(τ)

and

sup
τ∈Υ
|Rwsfe,2,1(u, τ)| = op(1).

This concludes the proof.

Lemma F.7. If Assumptions 1 and 2 hold, then supτ∈Υ ||Ww
sfe,n(τ)|| = Op(1).

Proof. It suffices to show that

sup
τ∈Υ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

ξiAi1{Si = s}ηi,1(s, τ)

∣∣∣∣∣ = Op(1) (F.11)

sup
τ∈Υ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

ξi(1−Ai)1{Si = s}ηi,0(s, τ)

∣∣∣∣∣ = Op(1), (F.12)

sup
s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

ξi(Ai − π)1{Si = s}

∣∣∣∣∣ = Op(1), (F.13)

and

sup
τ∈Υ

∥∥∥∥∥ 1√
n

n∑
i=1

ξi(ι1πm1(Si, τ) + ι0(1− π)m0(Si, τ))

∥∥∥∥∥ = Op(1). (F.14)

Note that (F.11) holds by the argument in step 2 in the proof of Lemma F.5, (F.12) holds similarly,
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(F.13) holds by (F.5) and (F.6), and (F.14) holds by the usual maximal inequality, e.g., van der

Vaart and Wellner (1996, Theorem 2.14.1). This concludes the proof.

Lemma F.8. If Assumptions 1 and 2 hold, then conditionally on data,

1√
n

∑
s∈S

n∑
i=1

(ξi − 1)Ji(s, τ) B̃sfe(τ),

where B̃sfe(τ) is a Gaussian process with covariance kernel Σ̃sfe(·, ·) defined in (D.6).

Proof. In order to show the weak convergence, we only need to show (1) conditional stochastic

equicontinuity and (2) conditional convergence in finite dimension. We divide the proof into two

steps accordingly.

Step 1. In order to show the conditional stochastic equicontinuity, it suffices to show that, for

any ε > 0, as n→∞ followed by δ → 0,

Pξ

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji(s, τ2)− Ji(s, τ1))

∣∣∣∣∣ ≥ ε
)

p−→ 0,

where Pξ(·) means that the probability operator is with respect to ξ1, · · · , ξn and conditional on

data. Note

EPξ

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji(s, τ1)− Ji(s, τ1))

∣∣∣∣∣ ≥ ε
)

=P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji(s, τ2)− Ji(s, τ1))

∣∣∣∣∣ ≥ ε
)

≤P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,1(s, τ2)− Ji,1(s, τ1))

∣∣∣∣∣ ≥ ε/3
)

+ P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,2(s, τ2)− Ji,2(s, τ1))

∣∣∣∣∣ ≥ ε/3
)

+ P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,3(s, τ2)− Ji,3(s, τ1))

∣∣∣∣∣ ≥ ε/3
)
,

where

Ji,1(s, τ) =
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1−Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))
,

Ji,2(s, τ) = F1(s, τ)(Ai − π)1{Si = s},
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F1(s, τ) =

(
1− π

πf1(q1(τ))
− π

(1− π)f0(q0(τ))

)
(m1(s, τ)−m0(s, τ))+q(τ)

[
f1(q1(τ)|s)
f1(q1(τ))

− f0(q0(τ)|s)
f0(q0(τ))

]
,

Ji,3(s, τ) =

(
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)
1{Si = s}.

Further note that

n∑
i=1

(ξi − 1)Ji,1(s, τ)
d
=

N(s)+n1(s)∑
i=N(s)+1

(ξi − 1)η̃i,1(s, τ)

πf1(q1(τ))
−

N(s)+n(s)∑
i=N(s)+n1(s)+1

(ξi − 1)η̃i,0(s, τ)

(1− π)f0(q0(τ))

By the same argument in Claim (1) in the proof of Lemma F.2, we have

P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,1(s, τ2)− Ji(s, τ1))

∣∣∣∣∣ ≥ ε/3
)

≤
3E supτ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣ 1√
n

∑n
i=1(ξi − 1)(Ji,1(s, τ2)− Ji,1(s, τ1))

∣∣∣
ε

≤
3
√
c2δ log( C

c1δ
) +

3C log( C
c1δ

)
√
n

ε
,

where C, c1 < c2 are some positive constants that are independent of (n, ε, δ). By letting n → ∞
followed by δ → 0, the RHS vanishes.

For Ji,2, we note that F1(s, τ) is Lipschitz in τ . Therefore,

P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,2(s, τ2)− Ji,2(s, τ1))

∣∣∣∣∣ ≥ ε/3
)

≤
∑
s∈S

P

(
Cδ

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ai − π)1{Si = s}

∣∣∣∣∣ ≥ ε/3
)
→ 0

as n→∞ followed by δ → 0, in which we use the fact that, by (F.6),

sup
s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ai − π)1{Si = s}

∣∣∣∣∣ = Op(1).

Last, by the standard maximal inequality (e.g., van der Vaart and Wellner (1996, Theorem 2.14.1))

and the fact that (
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)
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is Lipschitz in τ , we have, as n→∞ followed by δ → 0,

P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,3(s, τ2)− Ji,3(s, τ1))

∣∣∣∣∣ ≥ ε/3
)
→ 0

This concludes the proof of the conditional stochastic equicontinuity.

Step 2. We focus on the one-dimension case and aim to show that, conditionally on data, for

fixed τ ∈ Υ,

1√
n

∑
s∈S

n∑
i=1

(ξi − 1)Ji(s, τ) N (0, Σ̃sfe(τ, τ)).

The finite-dimensional convergence can be established similarly by the Cramér-Wold device. In

view of Lindeberg-Feller central limit theorem, we only need to show that (1)

1

n

n∑
i=1

[
∑
s∈S
Ji(s, τ)]2

p−→ ζ2
Y (π, τ) + ξ̃′2A(π, τ) + ξ2

S(π, τ)

and (2)

1

n

n∑
i=1

[
∑
s∈S
Ji(s, τ)]2Eξ(ξ − 1)21{|

∑
s∈S

(ξi − 1)Ji(s, τ)| ≥ ε
√
n} → 0.

(2) is obvious as |Ji(s, τ)| is bounded. Next, we focus on (1). We have

1

n

n∑
i=1

[
∑
s∈S
Ji(s, τ)]2

=
1

n

n∑
i=1

∑
s∈S

{[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1−Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

]

+ F1(s, τ)(Ai − π)1{Si = s}+

[(
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)
1{Si = s}

]}2

≡σ2
1 + σ2

2 + σ2
3 + 2σ12 + 2σ13 + 2σ23,

where

σ2
1 =

1

n

∑
s∈S

n∑
i=1

[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1−Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

]2

,

σ2
2 =

1

n

∑
s∈S

F 2
1 (s, τ)

n∑
i=1

(Ai − π)21{Si = s},
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σ2
3 =

1

n

n∑
i=1

[(
m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

)]2

,

σ12 =
1

n

n∑
i=1

∑
s∈S

[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1−Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

]
F1(s, τ)(Ai − π)1{Si = s},

σ13 =
1

n

n∑
i=1

∑
s∈S

[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1−Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

][(
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)]
,

and

σ23 = σ12 =
1

n

n∑
i=1

∑
s∈S

F1(s, τ)(Ai − π)1{Si = s}
[(

m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)]
.

For σ2
1, we have

σ2
1 =

1

n

∑
s∈S

n∑
i=1

[
Ai1{Si = s}η2

i,1(s, τ)

π2f2
1 (q1(τ))

−
(1−Ai)1{Si = s}η2

i,0(s, τ)

(1− π)2f2
0 (q0(τ))

]
d
=

1

n

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

η̃2
i,1(s, τ)

π2f2
1 (q1(τ))

+
1

n

∑
s∈S

N(s)+n(s)∑
i=N(s)+n1(s)+1

η̃2
i,0(s, τ)

(1− π)2f2
0 (q0(τ))

p−→τ(1− τ)− Ems
1(S, τ)

πf2
1 (q1(τ))

+
τ(1− τ)− Ems

0(S, τ)

(1− π)f2
0 (q0(τ))

= ζ2
Y (π, τ),

where the second equality holds due to the rearrangement argument in Lemma F.2 and the con-

vergence in probability holds due to uniform convergence of the partial sum process.

For σ2
2, by Assumption 1,

σ2
2 =

1

n

∑
s∈S

F 2
1 (s, τ)(Dn(s)− 2πDn(s) + π(1− π)1{Si = s}) p−→ π(1− π)EF 2

1 (Si, τ) = ξ̃′2A(π, τ).

For σ2
3, by the law of large number,

σ2
3

p−→ E
[(

m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

)]2

= ξ2
S(π, τ).

For σ12, we have

σ12 =
1

n

∑
s∈S

(1− π)F1(s, τ)

n∑
i=1

Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− 1

n

∑
s∈S

πF1(s, τ)

n∑
i=1

(1−Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))
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d
=

1

n

∑
s∈S

(1− π)F1(s, τ)

N(s)+n1(s)∑
i=N(s)+1

η̃i,1(s, τ)

πf1(q1(τ))
− 1

n

∑
s∈S

πF1(s, τ)

N(s)+n(s)∑
i=N(s)+n1(s)+1

η̃i,0(s, τ)

(1− π)f0(q0(τ))

p−→ 0,

where the last convergence holds because by Lemma F.2,

1

n

N(s)+n1(s)∑
i=N(s)+1

η̃i,1(s, τ)
p−→ 0 and

1

n

N(s)+n(s)∑
i=N(s)+n1(s)+1

η̃i,0(s, τ)
p−→ 0.

By the same argument, we can show that

σ13
p−→ 0.

Last, for σ23, by Assumption 1,

σ23 =
∑
s∈S

F1(s, τ)

[(
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)]
Dn(s)

n

p−→ 0.

Therefore, we have

1

n

n∑
i=1

[
∑
s∈S
Ji(s, τ)]2

p−→ ζ2
Y (π, τ) + ξ̃′2A(π, τ) + ξ2

S(π, τ).

Lemma F.9. Recall R∗sfe,1,1(u, τ) and R∗sfe,1,0(u, τ) defined in (E.2) and (E.4), respectively. If

Assumptions in Theorem 5.1 hold, then

sup
τ∈Υ
|R∗sfe,1,1(u, τ)| = Op(1/

√
n) and sup

τ∈Υ
|R∗sfe,1,0(u, τ)| = Op(1/

√
n).

Proof. We focus on R∗sfe,1,1(u, τ). Note that

sup
s∈S,τ∈Υ

|
n∑
i=1

(A∗i − π)1{S∗i = s}m1(s, τ)| = sup
s∈S,τ∈Υ

|D∗n(s)m1(s, τ)| = Op(
√
n).

If

sup
s∈S,τ∈Υ

|
n∑
i=1

A∗i 1{S∗i = s}η∗i,1(s, τ)| = Op(
√
n), (F.15)

then, we have

sup
τ∈Υ
|R∗sfe,1,1(u, τ)|
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≤
∑
s∈S

sup
s∈S

∣∣∣∣u1D
∗
n(s)√

nn∗(s)

∣∣∣∣ [ sup
s∈S,τ∈Υ

|
n∑
i=1

A∗i 1{S∗i = s}η∗i,1(s, τ)|+ sup
s∈S,τ∈Υ

|
n∑
i=1

(A∗i − π)1{S∗i = s}m1(s, τ)|
]

=Op(1/
√
n).

Therefore, it suffices to show (F.15). Recall {Y s
i (0), Y s

i (1)}ni=1 as defined in the proof of Theorem

3.1 and

η̃i,j(s, τ) = τ − 1{Y s
i (j) ≤ qj(τ)} −mj(s, τ),

j = 0, 1. In addition, let Ψn = {ηi,1(s, τ)}ni=1,

Nn = {n(s)/n, n1(s)/n, n∗(s)/n, n∗1(s)/n}s∈S

and given Nn, {Mni}ni=1 be a sequence of random variables such that the n1(s)× 1 vector

M1
n(s) = (Mn,N(s)+1, · · · ,Mn,N(s)+n1(s))

and the (n(s)− n1(s))× 1 vector

M0
n(s) = (Mn,N(s)+n1(s)+1, · · · ,Mn,N(s)+n(s))

satisfy:

1. M1
n(s) =

∑n∗1(s)
i=1 mi and M0

n(s) =
∑n∗(s)−n∗1(s)

i=1 m′i, where {mi}
n∗1(s)
i=1 and {m′i}

n∗(s)−n∗1(s)
i=1

are n∗1(s) i.i.d. multinomial(1, n−1
1 (s), · · · , n−1

1 (s)) random vectors and n∗(s) − n∗1(s) i.i.d.

multinomial(1, (n(s)− n1(s))−1, · · · , (n(s)− n1(s))−1) random vectors, respectively;

2. M0
n(s) ⊥⊥M1

n(s)|Nn; and

3. {M0
n(s),M1

n(s)}s∈S are independent across s given Nn and are independent of Ψn.

Recall that, by Bugni et al. (2018a), the original observations can be rearranged according to

s ∈ S and then within strata, treatment group first and then the control group. Then, given Nn
which is determined in Step 1 and 2 of the covariate-adaptive bootstrap procedure, the Step 3

implies that the bootstrap observations {Y ∗i }ni=1 can be generated by drawing with replacement

from the empirical distribution of the outcomes in each (s, a) cell for (s, a) ∈ S×{0, 1}, n∗a(s) times,

a = 0, 1, where n∗0(s) = n∗(s)− n∗1(s). Therefore,

n∑
i=1

A∗i 1{S∗i = s}η∗i,1(s, τ)
d
=

N(s)+n1(s)∑
i=N(s)+1

Mniη̃i,1(s, τ). (F.16)

Following the standard approach in dealing with the nonparametric bootstrap, we want to
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approximate

Mni, i = N(s) + 1, · · · , N(s) + n1(s)

by a sequence of i.i.d. Poisson(1) random variables. We construct this sequence as follows. Let

M̃1
n(s) =

∑N(n1(s))
i=1 mi, where N(k) is a Poisson number with mean k and is independent of Nn.

The n1(s) elements of vector M̃1
n(s) is denoted as {M̃ni}N(s)+n1(s)

i=N(s)+1 , which is a sequence of i.i.d.

Poisson(1) random variables, given Nn. Therefore,

{M̃ni, i = N(s) + 1, · · · , N(s) + n1(s)|Nn}
d
= {ξsi , i = N(s) + 1, · · · , N(s) + n1(s)|Nn}

where {ξsi }ni=1, s ∈ S are i.i.d. sequences of Poisson(1) random variables such that {ξsi }ni=1 are

independent across s ∈ S and against Nn.

Following the argument in van der Vaart and Wellner (1996, Section 3.6), given n1(s), n∗1(s),

and N(n1(s)) = k, |ξsi −Mni| is binomially (|k − n∗1(s)|, n1(s)−1)-distributed. In addition, there

exists a sequence `n = O(
√
n) such that

P(|N(n1(s))− n∗1(s)| ≥ `n) ≤P(|N(n1(s))− n1(s)| ≥ `n/3) + P(|n∗1(s)− n1(s)| ≥ 2`n/3)

≤EP(|N(n1(s))− n1(s)| ≥ `n/3|n1(s)) + P(|n∗1(s)− n1(s)| ≥ 2`n/3)

≤ε/3 + P(|n∗1(s)− n1(s)| ≥ 2`n/3)

≤ε/3 + P(|D∗n(s)|+ |Dn(s)|+ π|n∗(s)− n(s)| ≥ 2`n/3)

≤2ε/3 + P(π|n∗(s)− n(s)| ≥ `n/3)

≤ε,

where the first inequality holds due to the union bound inequality, the second inequality holds

by the law of iterated expectation, the third inequality holds because (1) conditionally on n1(s),

N(n1(s)) − n1(s) = Op(
√
n1(s)) and (2) n1(s)/n → πp(s) > 0, the fourth inequality holds by the

fact that

n∗1(s)− n1(s) = D∗n(s)−Dn(s) + π(n∗(s)− n(s)),

the fifth inequality holds because by Assumptions 1 and 4, |D∗n(s)| + |Dn(s)| = Op(
√
n), and

the sixth inequality holds because {S∗i }ni=1 is generated from {Si}ni=1 by the standard bootstrap

procedure, and thus, by van der Vaart and Wellner (1996, Theorem 3.6.1),

n∗(s)− n(s) =
n∑
i=1

(Mw
ni − 1)(1{Si = s} − p(s)) = Op(

√
n),

where (Mw
n1, · · · ,Mw

nn) is independent of {Si}ni=1 and multinomially distributed with parameters n
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and (probabilities) 1/n, · · · , 1/n. Therefore, by direct calculation, as n→∞,

P( max
N(s)+1≤i≤N(s)+n1(s)

|ξsi −Mni| > 2)

≤P( max
N(s)+1≤i≤N(s)+n1(s)

|ξsi −Mni| > 2, n1(s) ≥ nε) + P(n1(s) ≤ nε)

≤ε+ E
N(s)+n1(s)∑
i=N(s)+1

P(|ξsi −Mni| > 2, |N(n1(s))− n∗1(s)| ≤ `n, n1(s) ≥ nε|n1(s), n∗1(s)) + ε

≤2ε+ nEP(bin(`n, n
−1
1 (s)) > 2|n1(s), n∗1(s))1{n1(s) ≥ nε} → 2ε,

where we use the fact that

nP(bin(`n, n
−1
1 (s)) > 2|n1(s), n∗1(s))1{n1(s) ≥ nε} . n

(
`n
n

)3( n

n1(s)

)3

1{n1(s) ≥ nε} . 1√
nε3

.

Because ε is arbitrary, we have

P
(

max
N(s)+1≤i≤N(s)+n1(s)

|ξsi −Mni| > 2

)
→ 0. (F.17)

Note that |ξsi −Mni| =
∑∞

j=1 1{|ξsi −Mni| ≥ j}. Let Ijn(s) be the set of indexes i ∈ {N(s) +

1, · · · , N(s)+n1(s)} such that |ξsi −Mni| ≥ j. Then, ξsi −Mni = sign(N(n1(s))−n1(s))
∑∞

j=1 1{i ∈
Ijn(s)}. Thus,

1√
n

N(s)+n1(s)∑
i=N(s)+1

(ξsi −Mni)η̃i,1(s, τ) = sign(N(n1(s))− n1(s))

∞∑
j=1

#Ijn(s)√
n

1

#Ijn(s)

∑
i∈Ijn(s)

η̃i,1(s, τ)

 .
(F.18)

In the following, we aim to show that the RHS of (F.18) converges to zero in probability

uniformly over s ∈ S, τ ∈ Υ. First, note that, by (F.17), maxN(s)+1≤i≤N(s)+n1(s) |ξsi −Mni| ≤ 2

occurs with probability approaching one. In the event set that maxN(s)+1≤i≤N(s)+n1(s) |ξsi −Mni| ≤
2, only the first two terms of the first summation on the RHS of (F.18) can be nonzero. In addition,

for any j, we have j(#Ijn(s)) ≤ |N(n1(s))−n1(s)| = Op(
√
n), and thus, #Ijn(s)√

n
= Op(1) for j = 1, 2.

Therefore, it suffices to show that, for j = 1, 2,

sup
s∈S,τ∈Υ

∣∣∣∣∣∣ 1

#Ijn(s)

∑
i∈Ijn(s)

η̃i,1(s, τ)

∣∣∣∣∣∣ = op(1).
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Note that

1

#Ijn(s)

∑
i∈Ijn(s)

η̃i,1(s, τ) =

N(s)+n1(s)∑
i=N(s)+1

ωniη̃i,1(s, τ), (F.19)

where ωni =
1{|ξsi−Mni|≥j}

#Ijn(s)
, i = N(s) + 1, · · · , N(s) + n1(s) and by construction, {ωni}N(s)+n1(s)

i=N(s)+1

is independent of {ηi,1(s, τ)}ni=1. In addition, because {ωni}N(s)+n1(s)
i=N(s)+1 is exchangeable conditional

on Nn, so be it unconditionally. Third,
∑N(s)+n1(s)

i=N(s)+1 ωni = 1 and maxi=N(s)+1,··· ,N(s)+n1(s) |ωni| ≤
1/#Ijn(s)

p−→ 0. Then, by the same argument in the proof of van der Vaart and Wellner (1996,

Lemma 3.6.16), for some r ∈ (0, 1) and any n0 = N(s) + 1, · · · , N(s) + n1(s), we have

E

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣
N(s)+n1(s)∑
i=N(s)+1

ωniη̃i,1(s, τ)

∣∣∣∣∣∣
r

|Ψn,Nn


≤(n0 − 1)E

[
max

N(s)+n0≤i≤N(s)+n1(s)
ωrni|Nn

] 1

n1(s)

N(s)+n1(s)∑
i=N(s)+1

sup
τ∈Υ,s∈S

|η̃ri,1(s, τ)|


+ (n1(s)E(ωni|Nn))r max

n0≤k≤n1(s)
E

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
N(s)+k∑

j=N(s)+n0

η̃Rj(N(s),n1(s)),1(s, τ)

∣∣∣∣∣∣
r

|Nn,Ψn

 , (F.20)

where (Rk1+1(k1, k2), · · · , Rk1+k2(k1, k2)) is uniformly distributed on the set of all permutations of

k1 +1, · · · , k1 +k2 and independent of Nn and Ψn. First note that sups∈S,τ∈Υ |ηi,1(s, τ)| is bounded

and

max
N(s)+1≤i≤N(s)+n1(s)

ωrni ≤ 1/(#Ijn(s))r
p−→ 0.

Therefore, the first term on the RHS of (F.20) converges to zero in probability for every fixed n0.

For the second term, because ωni|Nn is exchangeable,

n1(s)E(ωni|Nn) =

N(s)+n1(s)∑
i=N(s)+1

E(ωni|Nn) = 1.

In addition, let Sn(k1, k2) be the σ-field generated by all functions of {η̃i,1(s, τ)}i≥1 that are

symmetric in their k1 + 1 to k1 + k2 arguments. Then,

max
n0≤k≤n1(s)

E

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
N(s)+k∑

j=N(s)+n0

η̃Rj(N(s),n1(s)),1(s, τ)

∣∣∣∣∣∣
r

|Nn,Ψn


= max
n0≤k≤n1(s)

E

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
N(s)+k∑

j=N(s)+n0

η̃j,1(s, τ)

∣∣∣∣∣∣
r

|Nn,Sn(N(s), n1(s))


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≤2E

max
n0≤k

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
N(s)+k∑
j=N(s)+1

η̃j,1(s, τ)

∣∣∣∣∣∣
r |Nn, Sn(N(s), n1(s))


=2E

max
n0≤k

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
k∑
j=1

η̃j,1(s, τ)

∣∣∣∣∣∣
r |Nn, Sn(0, n1(s))

 ,

where the inequality holds by the Jansen’s inequality and the triangle inequality and the last

equality holds because {η̃j,1(s, τ)}j≥1 is an i.i.d. sequence. Apply expectation on both sides, we

obtain that

E max
n0≤k≤n1(s)

E

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
N(s)+k∑

j=N(s)+n0

η̃Rj(N(s),n1(s)),1(s, τ)

∣∣∣∣∣∣
r

|Nn,Ψn


≤2E max

n0≤k≤n

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
k∑
j=1

η̃j,1(s, τ)

∣∣∣∣∣∣
r . (F.21)

By the usual maximal inequality, as k →∞,

sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
k∑
j=1

η̃j,1(s, τ)

∣∣∣∣∣∣ a.s.−→ 0,

which implies that as n0 →∞

max
n0≤k≤n

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
k∑
j=1

η̃j,1(s, τ)

∣∣∣∣∣∣
r ≤ max

n0≤k

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
k∑
j=1

η̃j,1(s, τ)

∣∣∣∣∣∣
r a.s.−→ 0.

In addition, supτ∈Υ,s∈S

∣∣∣ 1k∑k
j=1 η̃j,1(s, τ)

∣∣∣ is bounded. Then, by the bounded convergence theorem,

we have, as n0 →∞,

E max
n0≤k≤n

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
k∑
j=1

η̃j,1(s, τ)

∣∣∣∣∣∣
r→ 0.

which implies that,

E max
n0≤k≤n1(s)

E

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
N(s)+k∑

j=N(s)+n0

η̃Rj(N(s),n1(s)),1(s, τ)

∣∣∣∣∣∣
r

|Nn,Ψn

 p−→ 0.

Therefore, the second term on the RHS of (F.20) converges to zero in probability as n0 → ∞.
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Then, as n→∞ followed by n0 →∞,

E

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣
N(s)+n1(s)∑
i=N(s)+1

ωniη̃i,1(s, τ)

∣∣∣∣∣∣
r

|Ψn,Nn

 p−→ 0.

Hence, by the Markov inequality and (F.19), we have

sup
s∈S,τ∈Υ

∣∣∣∣∣∣ 1

#Ijn(s)

∑
i∈Ijn(s)

η̃i,1(s, τ)

∣∣∣∣∣∣ p−→ 0.

Consequently, following (F.18)

sup
s∈S,τ∈Υ

∣∣∣∣∣∣
N(s)+n1(s)∑
i=N(s)+1

(ξsi −Mni)η̃i,1(s, τ)

∣∣∣∣∣∣ = op(
√
n). (F.22)

Furthermore,

N(s)+n1(s)∑
i=N(s)+1

M̃niη̃i,1(s, τ)
d
=

N(s)+n(s)∑
i=N(s)+1

ξsi η̃i,1(s, τ) = Γ∗n

(
s,
N(s) + n1(s)

n
, τ

)
− Γ∗n

(
s,
N(s)

n
, τ

)
,

where

Γ∗n(s, t, τ) =

bntc∑
i=1

ξsi η̃i,1(s, τ) and Γ∗n(s, 0, τ) = 0.

Then, for any ε > 0, we can choose a constant M > 0 sufficiently large such that

P( sup
0<t≤1,τ∈Υ,s∈S

|Γ∗n(s, t, τ)| ≥
√
nM) ≤

∑
s∈S

270E supτ∈Υ |
∑n

i=1 ξ
s
i η̃i,1(s, τ)|√

nM
≤ ε,

where the first inequality is due to Lemma F.1 and a similar argument in (A.2), and the second

inequality follows Chernozhukov et al. (2014, Corollary 5.1) with the fact that ξsi has an exponential

tail. In addition, because, n1(s)/n
p−→ p(s)π ∈ (0, 1), we have

sup
τ∈Υ,s∈S

|
N(s)+n1(s)∑
i=N(s)+1

M̃niη̃i,1(s, τ)| = Op(
√
n). (F.23)

Combining (F.16), (F.22), and (F.23), we establish (F.15). This concludes the proof.

Lemma F.10. Recall R∗sfe,2,1(u, τ) and R∗sfe,2,0(u, τ) defined in (E.5) and (E.6), respectively. If
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Assumptions in Theorem 5.1 hold, then (E.5) and (E.6) hold and

sup
τ∈Υ
|R∗sfe,2,1(u, τ)| = op(1) and sup

τ∈Υ
|R∗sfe,2,0(u, τ)| = op(1).

Proof. We focus on (E.5). Following the definition of Mni in the proof of Lemma F.9 and the

argument in the Step 1.2 of the proof of Theorem 3.2, we have

L∗2,1,n(u, τ)

=
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

Mni

∫ u′ι1√
n
−E
∗
n(s)√
n

(
q(τ)+

u1√
n

)
0

(1{Y s
i (1) ≤ q1(τ) + v} − 1{Y s

i (1) ≤ q1(τ)}) dv

=
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

Mni [φi(u, τ, s, E
∗
n(s))− Eφi(u, τ, E∗n(s))] +

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

MniEφi(u, τ, s, E∗n(s)),

(F.24)

where E∗n(s) =
√
n(π̂∗(s)− π) = n

n∗(s)
D∗n(s)√

n
= Op(1),

φi(u, τ, s, e) =

∫ u′ι1√
n
− e√

n

(
q(τ)+

u1√
n

)
0

(1{Y s
i (1) ≤ q1(τ) + v} − 1{Y s

i (1) ≤ q1(τ)}) dv,

and Eφi(u, τ, s, E∗n(s)) is interpreted as Eφi(u, τ, s, e) with e being evaluated at E∗n(s).

For the first term on the RHS of (F.24), similar to (F.22), we have

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

Mni [φi(u, τ, s, E
∗
n(s))− Eφi(u, τ, s, E∗n(s))]

=
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

ξsi [φi(u, τ, s, E
∗
n(s))− Eφi(u, τ, s, E∗n(s))] +

∑
s∈S

rn(u, τ, s, E∗n(s)), (F.25)

where {ξsi }ni=1 is a sequence of i.i.d. Poisson(1) random variables and is independent of everything

else, and

rn(u, τ, s, e) = sign(N(n1(s))− n1(s))

∞∑
j=1

#Ijn(s)√
n

1

#Ijn(s)

∑
i∈Ijn(s)

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)] .

We aim to show

sup
|e|≤M,τ∈Υ,s∈S

|rn(u, τ, s, e)| = op(1), (F.26)
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Recall that the proof of Lemma F.9 relies on (F.21) and the fact that

E sup
n≥k≥n0

sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
k∑
j=1

η̃j,1(s, τ)

∣∣∣∣∣∣→ 0.

Using the same argument and replacing η̃j,1(s, τ) by
√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)], in order to

show (F.26), we only need to verify that, as n→∞ followed by n0 →∞,

E sup
n≥k≥n0

sup
|e|≤M,τ∈Υ,s∈S

∣∣∣∣∣∣1k
k∑
j=1

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)]

∣∣∣∣∣∣→ 0

Because sup|e|≤M,τ∈Υ,s∈S

∣∣∣ 1k∑k
j=1

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)]

∣∣∣ is bounded as shown below, it

suffices to show that, for any ε > 0, as n→∞ followed by n0 →∞,

P

 sup
n≥k≥n0

sup
|e|≤M,τ∈Υ,s∈S

∣∣∣∣∣∣1k
k∑
j=1

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)]

∣∣∣∣∣∣ ≥ ε
→ 0. (F.27)

Define the class of functions Fn as

Fn = {
√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)] : |e| ≤M, τ ∈ Υ, s ∈ S}.

Then, Fn is nested by a VC-class with fixed VC-index. In addition, for fixed u, Fn has a bounded

(and independent of n) envelope function

F = |u′ι1|+M

(
max
τ∈Υ
|q(τ)|+ |u1|

)
.

Last, define Il = {2l, 2l + 1, · · · , 2l+1 − 1}. Then,

P

 sup
n≥k≥n0

sup
|e|≤M,τ∈Υ,s∈S

∣∣∣∣∣∣1k
k∑
j=1

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)]

∣∣∣∣∣∣ ≥ ε


≤
blog2(n)c+1∑
l=blog2(n0)c

P

sup
k∈Il

sup
|e|≤M,τ∈Υ,s∈S

∣∣∣∣∣∣1k
k∑
j=1

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)]

∣∣∣∣∣∣ ≥ ε


≤
blog2(n)c+1∑
l=blog2(n0)c

P

 sup
k≤2l+1

sup
|e|≤M,τ∈Υ,s∈S

∣∣∣∣∣∣
k∑
j=1

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)]

∣∣∣∣∣∣ ≥ ε2l


≤
blog2(n)c+1∑
l=blog2(n0)c

9P

 sup
|e|≤M,τ∈Υ,s∈S

∣∣∣∣∣∣
2l+1∑
j=1

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)]

∣∣∣∣∣∣ ≥ ε2l/30


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≤
blog2(n)c+1∑
l=blog2(n0)c

270E sup|e|≤M,τ∈Υ,s∈S

∣∣∣∑2l+1

j=1

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)]

∣∣∣
ε2l

≤
blog2(n)c+1∑
l=blog2(n0)c

C1

ε2l/2

≤ 2C1

ε
√
n0
→ 0,

where the first inequality holds by the union bound, the second inequality holds because on Il,
2l+1 ≥ k ≥ 2l, the third inequality follows the same argument in the proof of Theorem 3.1, the

fourth inequality is due to the Markov inequality, the fifth inequality follows the standard maximal

inequality such as van der Vaart and Wellner (1996, Theorem 2.14.1) and the constant C1 is

independent of (l, ε, n), and the last inequality holds by letting n→∞. Because ε is arbitrary, we

have established (F.27), and thus, (F.26), which further implies that

sup
τ∈Υ,s∈S

|rn(u, τ, s, E∗n(s))| = op(1),

For the leading term of (F.25), we have

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

ξsi [φi(u, τ, s, E
∗
n(s))− Eφi(u, τ, s, E∗n(s))]

=
∑
s∈S

[Γs∗n (N(s), τ, E∗n(s))− Γs∗n (N(s) + n1(s), τ, E∗n(s))] ,

where

Γs∗n (k, τ, e) =

k∑
i=1

ξsi

∫ u′ι1−e(q(τ)+
u1√
n

)
√
n

0
(1{Y s

i (1) ≤ q1(τ) + v} − 1{Y s
i (1) ≤ q1(τ)}) dv

− kE

∫
u′ι1−e(q(τ)+

u1√
n

)
√
n

0
(1{Y s

i (1) ≤ q1(τ) + v} − 1{Y s
i (1) ≤ q1(τ)}) dv

 .
By the same argument in (B.8), we can show that

sup
0<t≤1,τ∈Υ,|e|≤M

|Γs∗n (k, τ, e)| = op(1),
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where we need to use the fact that the Poisson(1) random variable has an exponential tail and thus

E sup
i∈{1,··· ,n},s∈S

ξsi = O(log(n)).

Therefore,

sup
τ∈Υ

∣∣∣∣∣∣
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

Mni [φi(u, τ, E
∗
n(s))− Eφi(u, τ, E∗n(s))]

∣∣∣∣∣∣ = op(1). (F.28)

For the second term on the RHS of (F.24), we have

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

MniEφi(u, τ, s, e) =
∑
s∈S

n∗1(s)Eφi(u, τ, s, e)

=
∑
s∈S

πp(s)
f1(q1(τ)|s)

2
(u′ι1 − eq(τ))2 + o(1), (F.29)

where the o(1) term holds uniformly over (τ, e) ∈ Υ × [−M,M ], the first equality holds because∑N(s)+n1(s)
i=N(s)+1 Mni = n∗1(s) and the second equality holds by the same calculation in (B.10) and the

facts that n∗(s)/n
p−→ p(s) and

n∗1(s)

n
=
D∗n(s) + πn∗(s)

n

p−→ πp(s).

Combining (E.5), (F.24), (F.28), (F.29), and the facts that E∗n(s) = n
n∗(s)

D∗n(s)√
n

and n
n∗(s)

p−→
1/p(s), we have

L∗2,1,n(u, τ) =
πf1(q1(τ))

2
(u′ι1)2 −

∑
s∈S

f1(q1(τ)|s)πD
∗
n(s)u′ι1√
n

q(τ) + h∗2,1(τ) +R∗sfe,2,1(u, τ),

where

h∗2,1(τ) =
∑
s∈S

πf1(q1(τ)|s)
2

p(s)(E∗n(s))2q2(τ)

and

sup
τ∈Υ
|R∗sfe,2,1(u, τ)| = op(1).

This concludes the proof.

Lemma F.11. Recall the definition of (W ∗sfe,n,1(τ) −Wn,1(τ),W ∗sfe,n,2(τ),W ∗sfe,n,3(τ) −Wn,2(τ))
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in (E.7). If Assumptions in Theorem 5.1 hold, then conditionally on data,

(W ∗sfe,n,1(τ)−Wn,1(τ),W ∗sfe,n,2(τ),W ∗sfe,n,3(τ)−Wn,2(τ)) (B1(τ),B2(τ),B3(τ)),

where (B1(τ),B2(τ),B3(τ)) are three independent Gaussian processes with covariance kernels

Σ1(τ1, τ2) =
min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)

πf1(q1(τ1))f1(q1(τ2))
+

min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)

(1− π)f0(q0(τ1))f0(q0(τ2))
,

Σ2(τ1, τ2)

=Eγ(S)

[
(m1(S, τ1)−m0(S, τ1))

(
1− π

πf1(q1(τ1))
− π

(1− π)f0(q0(τ1))

)
+ q(τ1)

(
f1(q(τ1)|S)

f1(q1(τ1))
− f0(q(τ1)|S)

f0(q0(τ1))

)]
×
[
(m1(S, τ2)−m0(S, τ2))

(
1− π

πf1(q1(τ2))
− π

(1− π)f0(q0(τ2))

)
+ q(τ2)

(
f1(q(τ2)|S)

f1(q2(τ2))
− f0(q(τ2)|S)

f0(q0(τ2))

)]
,

and

Σ3(τ1, τ2) = E
[
m1(S, τ1)

f1(q1(τ1))
− m0(S, τ1)

f0(q0(τ1))

][
m1(S, τ2)

f1(q1(τ2))
− m0(S, τ2)

f0(q0(τ2))

]
,

respectively.

Proof. Let An = {(A∗i , S∗i , Ai, Si) : i = 1, · · · , n}. Following the definition of Mni and arguments

in the proof of Lemma F.9, we have

{W ∗sfe,n,1(τ)−Wn,1(τ)|An}

d
=

∑
s∈S

1√
n

N(s)+n1(s)∑
i=N(s)+1

(Mni − 1)

(
η̃i,1(s, τ)

πf1(q1(τ))

)
−

N(s)+n(s)∑
i=N(s)+n1(s)+1

(Mni − 1)

(
η̃i,0(s, τ)

(1− π)f0(q0(τ))

) ∣∣∣∣An


=

∑
s∈S

1√
n

N(s)+n1(s)∑
i=N(s)+1

(ξsi − 1)
η̃i,1(s, τ)

πf1(q1(τ))
−

N(s)+n(s)∑
i=N(s)+n1(s)+1

(ξsi − 1)
η̃i,0(s, τ)

(1− π)f0(q0(τ))

+R1(τ)

∣∣∣∣An
 ,

where supτ∈Υ |R1(τ)| = op(1) and {ξsi }ni=1, s ∈ S are sequences of i.i.d. Poisson(1) random variables

that are independent of An and across s ∈ S. In addition, by the same argument in the proof of

Lemma F.2, we have

∑
s∈S

1√
n

N(s)+n1(s)∑
i=N(s)+1

(ξsi − 1)
η̃i,1(s, τ)

πf1(q1(τ))
−

N(s)+n(s)∑
i=N(s)+n1(s)+1

(ξsi − 1)
η̃i,0(s, τ)

(1− π)f0(q0(τ))


=
∑
s∈S

1√
n

bn(F (s)+πp(s))c∑
i=bnF (s)c+1

(ξsi − 1)
η̃i,1(s, τ)

πf1(q1(τ))
−

bn(F (s)+p(s))c∑
i=bn(F (s)+πp(s))c+1

(ξsi − 1)
η̃i,0(s, τ)

(1− π)f0(q0(τ))

+R2(τ)
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≡W ∗1 (τ) +R2(τ),

where supτ∈Υ |R2(τ)| = op(1). Because both W ∗sfe,n,2(τ) and W ∗sfe,n,3(τ)−Wn,2(τ) are in the σ-field

generated by An, we have

(W ∗sfe,n,1(τ)−Wn,1(τ),W ∗sfe,n,2(τ),W ∗sfe,n,3(τ)−Wn,2(τ))

d
=(W ∗1 (τ) +R1(τ) +R2(τ),W ∗sfe,n,2(τ),W ∗sfe,n,3(τ)−Wn,2(τ)).

In addition, note that {ξsi }ni=1 and {η̃i,1(s, τ), η̃i,1(s, τ)}ni=1 are independent ofAn, therefore, W ∗1 (τ) ⊥
⊥ (W ∗sfe,n,2(τ),W ∗sfe,n,3(τ)−Wn,2(τ)). Applying van der Vaart and Wellner (1996, Theorem 2.9.6)

to each segment

bnF (s)c+ 1, · · · , bn(F (s) + πp(s))c or bn(F (s) + πp(s))c+ 1, · · · , bn(F (s) + p(s))c

for s ∈ S and noticing that {η̃i,1(s, τ)}ni=1 and {η̃i,0(s, τ)}ni=1 are two i.i.d. sequences for each s ∈ S,

independent of each other, and independent across s, we have, conditionally on {η̃i,1(s, τ), η̃i,0(s, τ)}ni=1,

s ∈ S,

W ∗1 (τ) B1(τ)

with the covariance kernel Σ1(τ1, τ2).

For W ∗sfe,n,2(τ), we note that it depends on data only through {S∗i }ni=1. By Assumption 4,

W ∗sfe,n,2(τ)|{S∗i }ni=1  B2(τ)

with the covariance kernel Σ2(τ1, τ2).

Last, for W ∗sfe,n,3(τ)−Wn,2(τ), note that {S∗i } is sampled by the standard bootstrap procedure.

Therefore, directly applying van der Vaart and Wellner (1996, Theorem 3.6.2), we have

W ∗sfe,n,3(τ)−Wn,2(τ) =
1√
n

n∑
i=1

(ξ′i − 1)

[
m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

]
+R3(τ)

where supτ∈Υ |R3(τ)| = op(1), {ξ′i}ni=1 is a sequence of i.i.d. Poisson(1) random variables that is

independent of data and {ξsi }ni=1, s ∈ S. By van der Vaart and Wellner (1996, Theorem 3.6.2),

conditionally on data {Si}ni=1,

1√
n

n∑
i=1

(ξ′i − 1)

[
m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

]
 B3(τ),

where B3(τ) has the covariance kernel Σ3(τ1, τ2). Furthermore, B2(τ) and B3(τ) are independent
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as Σ2(τ1, τ2) is not a function of {S∗i }ni=1. This concludes the proof.

G Additional Simulation Results

G.1 QTE, H0, π = 0.5

Table 11: H0, n = 200, τ = 0.25
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.044 0.044 0.058 0.051 0.058 0.048 0.049 0.054
WEI 0.007 0.035 0.014 0.044 0.045 0.043 0.039 0.042
BCD 0.002 0.040 0.003 0.040 0.039 0.040 0.037 0.037
SBR 0.003 0.036 0.004 0.033 0.035 0.037 0.037 0.034

2 SRS 0.046 0.046 0.064 0.063 0.061 0.055 0.059 0.057
WEI 0.026 0.041 0.047 0.054 0.064 0.053 0.055 0.063
BCD 0.016 0.037 0.032 0.048 0.051 0.053 0.053 0.051
SBR 0.013 0.027 0.027 0.045 0.052 0.049 0.050 0.049

3 SRS 0.055 0.055 0.055 0.058 0.056 0.056 0.057 0.058
WEI 0.049 0.052 0.054 0.053 0.054 0.056 0.054 0.053
BCD 0.052 0.057 0.054 0.058 0.059 0.060 0.058 0.054
SBR 0.046 0.048 0.053 0.058 0.056 0.062 0.059 0.057

4 SRS 0.075 0.075 0.060 0.059 0.053 0.055 0.054 0.057
WEI 0.069 0.069 0.054 0.043 0.059 0.058 0.054 0.058
BCD 0.063 0.066 0.055 0.041 0.061 0.063 0.063 0.060
SBR 0.066 0.070 0.048 0.034 0.064 0.062 0.063 0.062
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Table 12: H0, n = 200, τ = 0.75
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.051 0.051 0.058 0.042 0.039 0.041 0.045 0.037
WEI 0.012 0.052 0.015 0.037 0.040 0.052 0.034 0.034
BCD 0.000 0.047 0.002 0.046 0.042 0.045 0.036 0.037
SBR 0.000 0.032 0.002 0.034 0.036 0.039 0.035 0.035

2 SRS 0.044 0.044 0.065 0.051 0.053 0.048 0.046 0.047
WEI 0.035 0.062 0.041 0.061 0.059 0.068 0.062 0.058
BCD 0.012 0.044 0.022 0.046 0.049 0.056 0.053 0.048
SBR 0.009 0.043 0.011 0.036 0.047 0.039 0.042 0.042

3 SRS 0.065 0.065 0.066 0.072 0.062 0.064 0.071 0.058
WEI 0.068 0.070 0.063 0.067 0.073 0.066 0.067 0.073
BCD 0.058 0.061 0.051 0.054 0.059 0.055 0.058 0.056
SBR 0.044 0.048 0.039 0.042 0.044 0.041 0.043 0.042

4 SRS 0.045 0.045 0.065 0.057 0.072 0.059 0.054 0.069
WEI 0.039 0.040 0.050 0.028 0.063 0.064 0.049 0.063
BCD 0.032 0.038 0.044 0.019 0.055 0.056 0.050 0.054
SBR 0.028 0.029 0.036 0.015 0.047 0.041 0.039 0.040

Table 13: H0, n = 400, τ = 0.25
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.040 0.040 0.059 0.048 0.049 0.051 0.048 0.046
WEI 0.012 0.043 0.017 0.038 0.037 0.046 0.042 0.039
BCD 0.003 0.052 0.007 0.048 0.048 0.052 0.052 0.053
SBR 0.003 0.046 0.007 0.048 0.046 0.045 0.047 0.044

2 SRS 0.038 0.038 0.052 0.050 0.050 0.047 0.046 0.044
WEI 0.027 0.044 0.038 0.055 0.059 0.054 0.059 0.059
BCD 0.018 0.034 0.029 0.042 0.045 0.044 0.048 0.051
SBR 0.027 0.047 0.045 0.062 0.065 0.062 0.064 0.065

3 SRS 0.053 0.053 0.053 0.058 0.063 0.055 0.058 0.064
WEI 0.061 0.061 0.054 0.054 0.058 0.060 0.057 0.060
BCD 0.043 0.046 0.053 0.051 0.053 0.055 0.051 0.053
SBR 0.053 0.057 0.042 0.044 0.049 0.047 0.047 0.051

4 SRS 0.075 0.075 0.052 0.062 0.058 0.056 0.052 0.062
WEI 0.063 0.063 0.045 0.032 0.057 0.047 0.049 0.056
BCD 0.058 0.062 0.050 0.036 0.059 0.052 0.055 0.058
SBR 0.066 0.070 0.045 0.033 0.057 0.059 0.060 0.056
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Table 14: H0, n = 400, τ = 0.75
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.047 0.047 0.049 0.039 0.037 0.039 0.039 0.038
WEI 0.011 0.042 0.022 0.050 0.049 0.048 0.053 0.054
BCD 0.003 0.052 0.004 0.050 0.048 0.046 0.046 0.045
SBR 0.005 0.048 0.006 0.048 0.050 0.047 0.049 0.048

2 SRS 0.042 0.042 0.053 0.047 0.054 0.044 0.045 0.051
WEI 0.016 0.049 0.029 0.059 0.064 0.057 0.065 0.062
BCD 0.007 0.033 0.015 0.041 0.051 0.044 0.042 0.051
SBR 0.012 0.047 0.021 0.055 0.067 0.065 0.063 0.064

3 SRS 0.052 0.052 0.044 0.041 0.052 0.050 0.048 0.048
WEI 0.057 0.060 0.045 0.047 0.046 0.048 0.044 0.046
BCD 0.051 0.053 0.050 0.051 0.053 0.048 0.049 0.050
SBR 0.054 0.057 0.044 0.043 0.040 0.043 0.041 0.041

4 SRS 0.046 0.046 0.056 0.061 0.057 0.053 0.059 0.055
WEI 0.053 0.056 0.057 0.048 0.063 0.064 0.066 0.064
BCD 0.055 0.060 0.053 0.028 0.059 0.057 0.057 0.053
SBR 0.031 0.032 0.038 0.016 0.048 0.041 0.039 0.040

G.2 QTE, H1, π = 0.5

Table 15: H1, n = 200, τ = 0.25
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.197 0.197 0.218 0.364 0.366 0.230 0.361 0.360
WEI 0.135 0.293 0.159 0.360 0.369 0.301 0.353 0.360
BCD 0.097 0.372 0.120 0.359 0.370 0.347 0.357 0.358
SBR 0.110 0.420 0.134 0.373 0.378 0.405 0.369 0.367

2 SRS 0.293 0.293 0.318 0.365 0.359 0.323 0.362 0.356
WEI 0.239 0.282 0.268 0.322 0.329 0.319 0.344 0.330
BCD 0.229 0.303 0.264 0.317 0.332 0.329 0.326 0.326
SBR 0.260 0.335 0.292 0.330 0.352 0.365 0.347 0.344

3 SRS 0.719 0.719 0.686 0.716 0.706 0.699 0.713 0.702
WEI 0.727 0.731 0.702 0.705 0.720 0.713 0.705 0.712
BCD 0.723 0.727 0.702 0.712 0.713 0.726 0.711 0.712
SBR 0.705 0.714 0.691 0.677 0.689 0.708 0.689 0.682

4 SRS 0.186 0.186 0.136 0.126 0.148 0.153 0.135 0.144
WEI 0.193 0.200 0.149 0.099 0.154 0.161 0.148 0.151
BCD 0.176 0.189 0.132 0.098 0.145 0.148 0.143 0.142
SBR 0.196 0.203 0.145 0.103 0.162 0.173 0.164 0.164
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Table 16: H1, n = 200, τ = 0.75
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.214 0.214 0.229 0.392 0.388 0.231 0.395 0.383
WEI 0.135 0.296 0.161 0.369 0.369 0.317 0.367 0.366
BCD 0.097 0.390 0.125 0.392 0.395 0.373 0.387 0.389
SBR 0.092 0.383 0.119 0.402 0.398 0.370 0.406 0.391

2 SRS 0.252 0.252 0.291 0.385 0.412 0.313 0.387 0.407
WEI 0.234 0.345 0.289 0.401 0.436 0.392 0.404 0.429
BCD 0.197 0.381 0.272 0.404 0.424 0.418 0.425 0.428
SBR 0.187 0.382 0.256 0.418 0.438 0.420 0.439 0.429

3 SRS 0.693 0.693 0.626 0.603 0.621 0.639 0.613 0.610
WEI 0.695 0.698 0.620 0.608 0.636 0.638 0.617 0.634
BCD 0.706 0.711 0.635 0.641 0.647 0.651 0.640 0.641
SBR 0.679 0.686 0.601 0.639 0.646 0.618 0.647 0.648

4 SRS 0.165 0.165 0.173 0.131 0.194 0.187 0.139 0.201
WEI 0.162 0.174 0.171 0.101 0.187 0.190 0.177 0.185
BCD 0.167 0.179 0.183 0.105 0.206 0.205 0.189 0.200
SBR 0.145 0.153 0.172 0.097 0.203 0.193 0.204 0.204

Table 17: H1, n = 400, τ = 0.25
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.222 0.222 0.228 0.420 0.420 0.244 0.416 0.416
WEI 0.137 0.289 0.166 0.407 0.410 0.308 0.405 0.410
BCD 0.136 0.435 0.151 0.432 0.427 0.414 0.429 0.428
SBR 0.117 0.428 0.127 0.398 0.403 0.429 0.403 0.401

2 SRS 0.324 0.324 0.350 0.405 0.406 0.355 0.401 0.400
WEI 0.300 0.343 0.328 0.380 0.397 0.380 0.390 0.399
BCD 0.322 0.382 0.324 0.394 0.405 0.402 0.405 0.400
SBR 0.323 0.395 0.344 0.391 0.398 0.416 0.407 0.398

3 SRS 0.806 0.806 0.777 0.766 0.781 0.785 0.769 0.778
WEI 0.771 0.775 0.738 0.745 0.752 0.749 0.744 0.744
BCD 0.777 0.781 0.753 0.746 0.756 0.759 0.751 0.754
SBR 0.796 0.799 0.770 0.752 0.761 0.775 0.760 0.754

4 SRS 0.180 0.180 0.146 0.128 0.156 0.153 0.134 0.158
WEI 0.203 0.206 0.151 0.123 0.151 0.156 0.155 0.157
BCD 0.187 0.197 0.143 0.097 0.162 0.155 0.153 0.157
SBR 0.216 0.230 0.164 0.121 0.184 0.180 0.178 0.179
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Table 18: H1, n = 400, τ = 0.75
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.228 0.228 0.234 0.430 0.432 0.251 0.430 0.432
WEI 0.156 0.324 0.177 0.412 0.414 0.327 0.409 0.409
BCD 0.112 0.421 0.137 0.412 0.412 0.407 0.408 0.407
SBR 0.102 0.433 0.132 0.438 0.439 0.431 0.449 0.444

2 SRS 0.298 0.298 0.328 0.456 0.482 0.325 0.464 0.481
WEI 0.260 0.369 0.302 0.423 0.446 0.416 0.448 0.454
BCD 0.264 0.467 0.311 0.460 0.487 0.486 0.486 0.481
SBR 0.258 0.472 0.317 0.488 0.510 0.495 0.516 0.508

3 SRS 0.759 0.759 0.697 0.693 0.701 0.702 0.691 0.697
WEI 0.730 0.736 0.675 0.677 0.683 0.690 0.682 0.673
BCD 0.754 0.759 0.710 0.700 0.713 0.717 0.704 0.708
SBR 0.742 0.747 0.695 0.712 0.719 0.704 0.718 0.712

4 SRS 0.212 0.212 0.218 0.151 0.227 0.229 0.172 0.236
WEI 0.192 0.195 0.199 0.117 0.212 0.218 0.191 0.213
BCD 0.180 0.189 0.202 0.117 0.218 0.227 0.214 0.222
SBR 0.171 0.176 0.178 0.104 0.211 0.203 0.213 0.213

G.3 QTE, H0, π = 0.7

Table 19: H0, n = 200, τ = 0.25
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.027 0.027 0.044 0.031 0.037 0.030 0.026 0.037
SBR 0.002 0.026 0.002 0.029 0.029 0.027 0.027 0.027

2 SRS 0.042 0.042 0.055 0.047 0.046 0.053 0.047 0.051
SBR 0.019 0.024 0.038 0.043 0.051 0.055 0.049 0.052

3 SRS 0.053 0.053 0.062 0.059 0.056 0.063 0.058 0.060
SBR 0.047 0.059 0.048 0.054 0.054 0.062 0.058 0.056

4 SRS 0.076 0.076 0.054 0.061 0.070 0.055 0.052 0.058
SBR 0.059 0.073 0.045 0.024 0.061 0.062 0.063 0.063

Table 20: H0, n = 200, τ = 0.75
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.044 0.044 0.058 0.050 0.047 0.043 0.047 0.049
SBR 0.002 0.045 0.008 0.052 0.060 0.058 0.053 0.055

2 SRS 0.047 0.047 0.053 0.052 0.053 0.050 0.050 0.051
SBR 0.013 0.041 0.021 0.044 0.054 0.046 0.048 0.046

3 SRS 0.068 0.068 0.062 0.078 0.067 0.063 0.079 0.066
SBR 0.052 0.053 0.050 0.048 0.056 0.058 0.056 0.056

4 SRS 0.029 0.029 0.062 0.058 0.063 0.063 0.066 0.066
SBR 0.023 0.028 0.056 0.046 0.059 0.059 0.057 0.059
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Table 21: H0, n = 400, τ = 0.25
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.041 0.041 0.059 0.049 0.049 0.052 0.050 0.051
SBR 0.005 0.051 0.004 0.045 0.044 0.042 0.043 0.043

2 SRS 0.042 0.042 0.061 0.068 0.060 0.059 0.065 0.057
SBR 0.022 0.026 0.043 0.047 0.054 0.050 0.050 0.049

3 SRS 0.047 0.047 0.043 0.037 0.046 0.045 0.037 0.046
SBR 0.039 0.044 0.043 0.044 0.045 0.048 0.047 0.050

4 SRS 0.070 0.070 0.048 0.060 0.047 0.052 0.045 0.048
SBR 0.070 0.081 0.035 0.021 0.056 0.051 0.055 0.052

Table 22: H0, n = 400, τ = 0.75
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.045 0.045 0.052 0.041 0.044 0.039 0.044 0.042
SBR 0.002 0.040 0.004 0.041 0.042 0.039 0.042 0.042

2 SRS 0.039 0.039 0.044 0.046 0.049 0.042 0.045 0.049
SBR 0.018 0.046 0.025 0.048 0.061 0.061 0.064 0.065

3 SRS 0.087 0.087 0.060 0.060 0.074 0.063 0.059 0.078
SBR 0.061 0.063 0.045 0.040 0.047 0.051 0.051 0.051

4 SRS 0.024 0.024 0.039 0.039 0.042 0.046 0.040 0.046
SBR 0.037 0.039 0.056 0.048 0.059 0.059 0.057 0.057

G.4 QTE, H1, π = 0.7

Table 23: H1, n = 200, τ = 0.25
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.150 0.150 0.173 0.324 0.309 0.178 0.318 0.323
SBR 0.060 0.178 0.100 0.341 0.346 0.367 0.337 0.337

2 SRS 0.273 0.273 0.312 0.334 0.336 0.315 0.338 0.349
SBR 0.269 0.301 0.312 0.327 0.352 0.361 0.353 0.352

3 SRS 0.725 0.725 0.677 0.679 0.678 0.702 0.689 0.707
SBR 0.738 0.749 0.711 0.719 0.728 0.736 0.731 0.729

4 SRS 0.130 0.130 0.100 0.090 0.118 0.102 0.090 0.123
SBR 0.138 0.167 0.112 0.046 0.150 0.143 0.145 0.142
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Table 24: H1, n = 200, τ = 0.75
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.178 0.178 0.200 0.355 0.362 0.190 0.340 0.336
SBR 0.063 0.319 0.074 0.342 0.348 0.326 0.334 0.339

2 SRS 0.280 0.280 0.311 0.423 0.446 0.320 0.415 0.436
SBR 0.195 0.378 0.250 0.388 0.417 0.400 0.422 0.412

3 SRS 0.669 0.669 0.586 0.572 0.602 0.599 0.573 0.598
SBR 0.671 0.679 0.617 0.605 0.633 0.634 0.633 0.636

4 SRS 0.145 0.145 0.198 0.172 0.211 0.203 0.180 0.213
SBR 0.137 0.146 0.179 0.155 0.194 0.197 0.204 0.194

Table 25: H1, n = 400, τ = 0.25
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.208 0.208 0.229 0.402 0.398 0.231 0.390 0.395
SBR 0.075 0.372 0.100 0.352 0.359 0.373 0.350 0.349

2 SRS 0.345 0.345 0.381 0.404 0.408 0.382 0.396 0.414
SBR 0.343 0.376 0.391 0.406 0.425 0.425 0.421 0.420

3 SRS 0.786 0.786 0.756 0.758 0.763 0.758 0.756 0.763
SBR 0.785 0.800 0.749 0.758 0.766 0.771 0.761 0.765

4 SRS 0.173 0.173 0.113 0.081 0.136 0.118 0.089 0.133
SBR 0.134 0.167 0.082 0.037 0.118 0.120 0.126 0.125

Table 26: H1, n = 400, τ = 0.75
M A s/naive s/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.195 0.195 0.209 0.384 0.384 0.216 0.377 0.378
SBR 0.086 0.375 0.099 0.396 0.394 0.385 0.387 0.391

2 SRS 0.296 0.296 0.337 0.452 0.471 0.351 0.440 0.463
SBR 0.315 0.478 0.356 0.491 0.507 0.502 0.510 0.503

3 SRS 0.737 0.737 0.690 0.649 0.691 0.697 0.664 0.696
SBR 0.717 0.721 0.670 0.641 0.678 0.673 0.672 0.671

4 SRS 0.169 0.169 0.235 0.221 0.224 0.238 0.222 0.227
SBR 0.162 0.164 0.204 0.171 0.218 0.219 0.213 0.223
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G.5 ATE, π = 0.5

Table 27: H0, n = 200, π = 0.5
M A s/naive s/adj sfe/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.058 0.057 0.050 0.061 0.055 0.053 0.055 0.049 0.044
WEI 0.003 0.058 0.064 0.004 0.067 0.068 0.061 0.059 0.062
BCD 0.000 0.069 0.054 0.000 0.057 0.058 0.054 0.053 0.053
SBR 0.000 0.063 0.053 0.000 0.058 0.057 0.061 0.056 0.056

2 SRS 0.053 0.054 0.058 0.051 0.052 0.051 0.053 0.053 0.046
WEI 0.031 0.059 0.064 0.032 0.061 0.064 0.062 0.064 0.064
BCD 0.014 0.062 0.058 0.015 0.060 0.061 0.060 0.055 0.054
SBR 0.008 0.045 0.046 0.010 0.047 0.048 0.045 0.047 0.047

3 SRS 0.059 0.059 0.063 0.064 0.070 0.067 0.061 0.062 0.061
WEI 0.053 0.053 0.056 0.056 0.062 0.062 0.058 0.056 0.055
BCD 0.062 0.063 0.064 0.063 0.066 0.064 0.061 0.061 0.061
SBR 0.051 0.054 0.053 0.054 0.056 0.056 0.057 0.056 0.056

4 SRS 0.072 0.072 0.077 0.077 0.075 0.076 0.074 0.075 0.074
WEI 0.073 0.073 0.075 0.074 0.075 0.078 0.077 0.073 0.075
BCD 0.071 0.073 0.073 0.074 0.073 0.075 0.073 0.072 0.072
SBR 0.070 0.070 0.070 0.069 0.069 0.071 0.070 0.070 0.070

Table 28: H1, n = 200, π = 0.5
M A s/naive s/adj sfe/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.384 0.386 0.937 0.389 0.941 0.941 0.384 0.942 0.942
WEI 0.321 0.667 0.935 0.331 0.939 0.939 0.674 0.940 0.941
BCD 0.256 0.922 0.937 0.265 0.944 0.944 0.894 0.938 0.938
SBR 0.271 0.947 0.955 0.278 0.959 0.958 0.944 0.954 0.955

2 SRS 0.523 0.518 0.745 0.529 0.747 0.762 0.525 0.742 0.752
WEI 0.504 0.642 0.725 0.513 0.719 0.724 0.639 0.723 0.725
BCD 0.497 0.744 0.737 0.498 0.740 0.746 0.729 0.741 0.740
SBR 0.508 0.737 0.741 0.521 0.740 0.745 0.731 0.741 0.741

3 SRS 0.772 0.774 0.774 0.781 0.778 0.782 0.773 0.771 0.771
WEI 0.786 0.791 0.793 0.791 0.794 0.799 0.788 0.786 0.788
BCD 0.785 0.786 0.784 0.790 0.794 0.795 0.787 0.785 0.786
SBR 0.765 0.769 0.772 0.766 0.774 0.772 0.771 0.773 0.773

4 SRS 0.201 0.199 0.216 0.209 0.206 0.210 0.198 0.203 0.208
WEI 0.207 0.211 0.213 0.212 0.208 0.220 0.204 0.206 0.211
BCD 0.213 0.215 0.216 0.222 0.223 0.232 0.213 0.214 0.215
SBR 0.220 0.221 0.221 0.220 0.219 0.229 0.222 0.221 0.221
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Table 29: H0, n = 400, π = 0.5
M A s/naive s/adj sfe/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.063 0.061 0.042 0.063 0.043 0.045 0.055 0.042 0.042
WEI 0.005 0.050 0.050 0.006 0.052 0.052 0.052 0.050 0.050
BCD 0.000 0.067 0.052 0.000 0.059 0.059 0.051 0.059 0.059
SBR 0.000 0.059 0.058 0.000 0.057 0.057 0.063 0.060 0.060

2 SRS 0.061 0.057 0.055 0.058 0.055 0.054 0.061 0.054 0.051
WEI 0.018 0.051 0.064 0.019 0.063 0.064 0.052 0.064 0.064
BCD 0.009 0.045 0.046 0.006 0.046 0.047 0.043 0.049 0.049
SBR 0.014 0.062 0.060 0.016 0.065 0.065 0.063 0.063 0.063

3 SRS 0.050 0.049 0.050 0.050 0.049 0.051 0.052 0.048 0.048
WEI 0.046 0.047 0.049 0.047 0.046 0.047 0.048 0.047 0.046
BCD 0.049 0.049 0.049 0.049 0.050 0.050 0.050 0.050 0.050
SBR 0.055 0.056 0.056 0.059 0.058 0.059 0.055 0.056 0.056

4 SRS 0.057 0.057 0.055 0.056 0.056 0.059 0.054 0.051 0.056
WEI 0.051 0.051 0.053 0.052 0.054 0.054 0.051 0.051 0.052
BCD 0.056 0.056 0.056 0.054 0.056 0.056 0.054 0.053 0.053
SBR 0.056 0.058 0.058 0.055 0.056 0.057 0.057 0.057 0.057

Table 30: H1, n = 400, π = 0.5
M A s/naive s/adj sfe/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.453 0.453 0.965 0.452 0.966 0.966 0.454 0.963 0.963
WEI 0.361 0.710 0.954 0.367 0.960 0.958 0.704 0.953 0.953
BCD 0.322 0.964 0.973 0.331 0.975 0.974 0.955 0.971 0.971
SBR 0.325 0.956 0.956 0.328 0.958 0.959 0.956 0.954 0.954

2 SRS 0.578 0.576 0.811 0.580 0.803 0.814 0.576 0.803 0.812
WEI 0.593 0.707 0.798 0.595 0.794 0.799 0.705 0.797 0.795
BCD 0.624 0.821 0.828 0.625 0.830 0.830 0.810 0.824 0.824
SBR 0.586 0.800 0.808 0.586 0.804 0.807 0.802 0.805 0.806

3 SRS 0.817 0.819 0.829 0.826 0.823 0.827 0.811 0.817 0.815
WEI 0.801 0.802 0.804 0.802 0.803 0.807 0.803 0.800 0.801
BCD 0.804 0.806 0.807 0.809 0.814 0.814 0.807 0.806 0.806
SBR 0.798 0.800 0.800 0.808 0.810 0.809 0.805 0.805 0.805

4 SRS 0.211 0.211 0.220 0.213 0.214 0.223 0.220 0.224 0.224
WEI 0.223 0.223 0.219 0.222 0.219 0.220 0.224 0.220 0.220
BCD 0.212 0.215 0.217 0.221 0.220 0.221 0.217 0.215 0.215
SBR 0.226 0.227 0.228 0.231 0.228 0.231 0.228 0.230 0.230
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G.6 ATE, π = 0.7

Table 31: H0, n = 200, π = 0.7
M A s/naive s/adj sfe/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.050 0.047 0.054 0.052 0.054 0.061 0.050 0.054 0.056
SBR 0.000 0.054 0.043 0.000 0.051 0.056 0.053 0.049 0.049

2 SRS 0.050 0.050 0.079 0.047 0.053 0.058 0.045 0.052 0.056
SBR 0.014 0.045 0.044 0.013 0.022 0.045 0.046 0.041 0.041

3 SRS 0.061 0.064 0.074 0.067 0.065 0.069 0.061 0.062 0.061
SBR 0.054 0.057 0.056 0.058 0.050 0.063 0.060 0.061 0.058

4 SRS 0.055 0.054 0.055 0.059 0.056 0.069 0.058 0.056 0.064
SBR 0.055 0.059 0.057 0.055 0.041 0.063 0.060 0.059 0.061

Table 32: H1, n = 200, π = 0.7
M A s/naive s/adj sfe/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.343 0.344 0.935 0.347 0.945 0.945 0.341 0.938 0.938
SBR 0.159 0.941 0.936 0.166 0.944 0.947 0.939 0.942 0.941

2 SRS 0.539 0.540 0.656 0.550 0.608 0.734 0.539 0.592 0.723
SBR 0.547 0.733 0.736 0.556 0.647 0.753 0.724 0.736 0.743

3 SRS 0.762 0.764 0.747 0.775 0.738 0.777 0.766 0.734 0.766
SBR 0.785 0.788 0.788 0.790 0.775 0.803 0.792 0.793 0.790

4 SRS 0.159 0.153 0.115 0.162 0.149 0.178 0.161 0.143 0.162
SBR 0.139 0.161 0.160 0.147 0.103 0.166 0.168 0.164 0.164

Table 33: H0, n = 400, π = 0.7
M A s/naive s/adj sfe/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.041 0.036 0.055 0.043 0.050 0.049 0.040 0.050 0.048
SBR 0.000 0.053 0.046 0.000 0.047 0.050 0.054 0.051 0.051

2 SRS 0.047 0.048 0.072 0.046 0.050 0.060 0.048 0.051 0.055
SBR 0.024 0.053 0.055 0.023 0.029 0.052 0.049 0.053 0.048

3 SRS 0.068 0.067 0.075 0.067 0.065 0.067 0.065 0.066 0.066
SBR 0.044 0.047 0.047 0.047 0.041 0.051 0.048 0.048 0.048

4 SRS 0.054 0.051 0.050 0.055 0.053 0.059 0.052 0.053 0.058
SBR 0.049 0.056 0.056 0.051 0.032 0.058 0.055 0.054 0.055
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Table 34: H1, n = 400, π = 0.7
M A s/naive s/adj sfe/adj s/B sfe/B ipw/B s/CA sfe/CA ipw/CA

1 SRS 0.361 0.364 0.965 0.371 0.966 0.968 0.361 0.967 0.967
SBR 0.211 0.961 0.956 0.222 0.960 0.960 0.963 0.958 0.958

2 SRS 0.628 0.630 0.735 0.629 0.675 0.785 0.628 0.674 0.789
SBR 0.665 0.806 0.810 0.667 0.731 0.818 0.810 0.816 0.822

3 SRS 0.804 0.802 0.799 0.810 0.785 0.825 0.809 0.786 0.818
SBR 0.808 0.812 0.813 0.810 0.804 0.823 0.822 0.821 0.821

4 SRS 0.174 0.175 0.132 0.181 0.160 0.205 0.181 0.156 0.195
SBR 0.164 0.183 0.184 0.168 0.126 0.191 0.187 0.187 0.188
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