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Robustly Optimal Reserve Price∗

Wei He† Jiangtao Li‡
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Abstract

We study a robust version of the single-unit auction problem. The

auctioneer has confidence in her estimate of the marginal distribution of a

generic bidder’s valuation, but does not have reliable information about the

joint distribution. In this setting, we analyze the performance of second-

price auctions with reserve prices in terms of revenue guarantee, that is,

the greatest lower bound of revenue across all joint distributions that are

consistent with the marginals. For any finite number of bidders, we solve

for the robustly optimal reserve price that generates the highest revenue

guarantee. Our analysis has interesting implications in large markets. For any

marginal distribution, the robustly optimal reserve price converges to zero

as the number of bidders gets large. Furthermore, the second-price auction

with no reserve price is asymptotically optimal among all mechanisms.
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1 Introduction

Suppose that you have an object to sell and you have confidence in your estimate
of the distribution of a generic buyer’s valuation F . Which mechanism should you
use to maximize expected revenue? If there is a single buyer, then the optimal
mechanism is to post a price p that maximizes p(1− F (p)); see, for example, Riley
and Zeckhauser (1983) and Manelli and Vincent (2007). When there are multiple
buyers, you realize that you would be better off, because you can leverage the
competition among the buyers to generate a higher expected revenue. But you
also realize that you do not want to rely on the competition alone, because there
may be cases in which one buyer’s valuation is very high and all the other buyers’
valuations are very low. Thus, you decide to also impose a reserve price, that is,
the lowest price you are willing to sell the object for, to protect yourself from these
cases.

Suppose that you do not have reliable information about the joint distribution
of the buyers’ valuations. How should you set the reserve price? Myerson (1981)
shows that if the buyers’ valuations are independent, under a regularity condition,
the optimal mechanism can be implemented via a second-price auction with a
reserve price such that the virtual value function evaluated at the reserve price
is zero. But you are skeptical that the valuations are independent. Crémer and
McLean (1988) and McAfee and Reny (1992) show that if the buyers’ valuations are
correlated, one can construct mechanisms that extract the entire surplus. However,
such mechanisms entail lotteries and unusual fee schedules that require complex
knowledge of the environment. The mere knowledge that the buyers’ valuations
are correlated (without knowing the exact correlation structure) is not enough for
the construction.

The question remains: how should you set the reserve price, when you do
not have reliable information about the correlation structure? We take on this
question in this paper. The auctioneer in our model has confidence in her estimate
of the marginal distribution of a generic bidder’s valuation, but has non-Bayesian
uncertainty about the correlation structure. We focus on second-price auctions
with reserve prices that are both theoretically appealing and widely adopted in
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practice.1 Lacking the knowledge of the correlation structure, our auctioneer
chooses among reserve prices according to their revenue guarantee, that is, the
greatest lower bound of revenue across all joint distributions that are consistent
with the marginals.

Traditional models in mechanism design make strong assumptions about
detailed knowledge of the auctioneer in the payoff environment. Our model is
motivated by the observation that while it is relatively easy to estimate the
distribution of a generic bidder’s valuation, it seems substantially more difficult
to estimate the correlation structure. For example, in wine auctions, it seems
plausible that the auction house (such as Christie’s or Sotheby’s) has an estimate
of the distribution of a generic buyer’s valuation for a lot of wine, but it is less
plausible that the auction house knows the joint distribution of all the bidders’
valuations. Besides the statistical aspect that the joint distribution is a much
higher-dimensional object, there are many practical reasons. For example, if the
auctioneer has never interacted with the same set of bidders in auctions held before,
there is no data for the estimation of the correlation structure. This scenario arises
in settings in which the bidder pool changes constantly. Furthermore, there are
instances in which the auctioneer cannot pin down the identities of the bidders
(for example, when bidders bid through proxies). In this case, the auctioneer has
no way of estimating the correlation structure.

It’s easy to see that the choice of the reserve price depends on the correlation
structure. For a simple example, suppose that there are two bidders I = {1, 2}
and each bidder’s valuation vi is uniformly distributed on the [0, 1] interval. If the
bidder’s valuations are maximally positively correlated, then the optimal reserve
prize is zero, as the competition among the bidders alone extracts the entire surplus.
The other extreme case is that the bidders’ valuations are maximally negatively
correlated. In this case, the auctioneer would want to set a strictly positive reserve
price. Setting the reserve price to 1

2 does not decrease the probability of selling,
but generates a strictly higher revenue for almost all valuations profiles. Note
that there is an infinite class of correlation structures that are consistent with the

1More rigorously, English auctions with reserve prices are widely adopted in practice. English
auctions and second-price auctions are strategically equivalent in our setting. To economize on
notations, we shall work with second-price auctions.
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marginals. Our objective in this paper is to understand the interaction of reserve
price versus competition (in the form of second-price auction) when the auctioneer
has non-Bayesian uncertainty about the joint distribution.

We first study the case in which the auctioneer is restricted to choosing
a deterministic reserve price. Formally, we work with a maxmin optimization
problem in which the auctioneer chooses a reserve price to maximize the worst-case
expected revenue, where the worst case is taken over all joint distributions that are
consistent with the marginals. Our main result, Theorem 1, solves for the robustly
optimal reserve price that generates the highest revenue guarantee. The result is
general in the sense that it applies to settings with any number of bidders and any
marginal distribution. Our analysis has interesting implications in large markets.
For any marginal distribution, the robustly optimal reserve price converges to zero
as the number of bidders gets large. Furthermore, the second-price auction with
no reserve price is asymptotically optimal among all mechanisms.

Our proof is interesting in its own right.2 Our maxmin optimization problem
can be interpreted as a two-player zero-sum game between the auctioneer and
Nature. The auctioneer first chooses a reserve price r. Following the choice of the
reserve price r, Nature chooses a correlation structure to minimize the expected
revenue of the auctioneer subject to the constraint that the correlation structure
is consistent with the marginals. This problem is not easy to work with, as the
space of such joint distributions is very large. The novelty in our analysis is that
we first solve an auxiliary problem in which we put a restriction on what Nature
can do. More explicitly, we consider an extreme restriction in the sense that if the
auctioneer chooses a reserve price r, Nature has one and exactly one strategy which

2In robust mechanism design, there are (at least) two common approaches to solve maxmin
optimization problems. In the first approach, the performance of the candidate mechanism is
independent of the uncertainty. The key step is to identify one realization of the uncertainty such
that the candidate mechanism performs the best among all mechanisms. For example, this is the
case in Chung and Ely (2007), Chen and Li (2018), and Yamashita and Zhu (2018) who study
the foundations of dominant-strategy mechanisms and in Carroll (2017) who studies separate
selling in multi-dimensional screening. The second approach works in settings in which a saddle
point solution exists. For example, this is the case in Bergemann, Brooks, and Morris (2017),
Du (2018), and Brooks and Du (2019) who study the design of informationally robust optimal
auctions. Our approach is different.
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we denote by πr. This auxiliary problem is substantially easier to solve. We show
that for the solution to the auxiliary problem r∗, the corresponding correlation
structure πr∗ is the worst-case correlation structure. Thus, we can conclude that
the solution to this auxiliary problem is the robustly optimal reserve price, because
for any reserve price r, there exists a correlation structure πr under which the
expected revenue of the reserve price r is weakly lower than the worst-case expected
revenue of the reserve price r∗. The construction of the correlation structures will
be made clear in the formal analysis, and we will provide the intuition behind our
construction.

To show that the corresponding correlation structure πr∗ is the worst-case
correlation structure for r∗, we adopt a duality approach. This step of our analysis
is closely related to the optimal transport theory (see, for example, Villani (2003)).
To wit, for any reserve price r, Nature’s minimization problem can be interpreted
as an optimal transportation problem in which Nature seeks to implement the
transportation at minimal cost. A transportation plan is a joint distribution that
is consistent with the marginals, and Nature’s cost function is the ex post revenue
function of the auctioneer. While the literature of optimal transport focuses on two
random variables, we work with multiple random variables. To be rigorous and
self-contained, we prove an n-dimensional generalization of the Kantorovich duality
theorem (see Villani (2003, Theorem 1.1.3)). This generalization is straightforward
and follows from a modification of the original proof.

We then extend our analysis to the case in which the auctioneer is allowed to
randomize over reserve prices. While a random reserve price may be less practical,
this is interesting from a theoretical perspective, as the auctioneer may want to
use the randomization in reserve prices to hedge against the uncertainty in the
correlation structure. If the auctioneer is allowed to randomize over reserve prices,
then the maxmin optimization problem admits a saddle point solution. Section
4 solves for the robustly optimal random reserve price under the condition that
the density function does not decrease too fast. The auctioneer randomizes over a
large interval of reserve prices, and generates a strictly higher revenue guarantee
than the highest revenue guarantee from using a deterministic reserve price.

While we consider two versions of this problem, namely, deterministic reserve
prices and random reserve prices, there is a third version of this problem that we
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do not address in this paper. Indeed, from a more theoretical perspective, one
could ask, which mechanism generates the highest revenue guarantee among all
mechanisms. We have not yet found a tractable approach to tackle this problem.
Nevertheless, it is important to understand the revenue guarantee of standard
auction formats3 such as second-price auctions with reserve prices. This is because,
when selecting an auction format, revenue guarantee is one of many criteria that
can be used. While second-price auctions with reserve prices studied in this paper
may not provide the highest revenue guarantee among all mechanisms, they are
nevertheless one of the most common forms of auctioning an object and have many
other desirable features aside from revenue guarantee.

The remainder of this introduction discusses related literature. Section 2
presents the model. Section 3 solves for the robustly optimal reserve price if the
auctioneer is restricted to choosing a deterministic reserve price, and Section 4
extends our analysis to the case of random reserve prices. Section 5 provides
further discussions of our model and results. Section 6 concludes the paper with
some open questions. The appendix collects proofs omitted from the main body of
the paper.

1.1 Related literature

This paper joins the burgeoning literature of robust mechanism design. The
research agenda of this literature is to relax the strong assumptions about the
detailed knowledge of the designer in the environment. One strand of this literature
focuses on settings in which the designer does not have reliable information about
the agents’ beliefs; see, for example, Bergemann and Morris (2005), Chung and
Ely (2007), Chen and Li (2018), and Yamashita and Zhu (2018). Börgers and
Li (2019) propose strategically simple mechanisms in which the outcomes may
depend on agents’ first-order beliefs, but not on higher-order beliefs. Another
strand of the literature focuses on settings in which the designer is uncertain about

3In settings in which the auctioneer knows the distribution of the bidders’ valuations but is
uncertain about additional information that may be received by the bidders, Bergemann, Brooks,
and Morris (2017) study the revenue guarantee of first-price auctions and Bergemann, Brooks,
and Morris (2018) compare the revenue guarantee of several standard auction formats, including
first-price, second-price, and English auctions.
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the additional information that may be received by the agents; see, for example,
Bergemann, Brooks, and Morris (2017), Bergemann, Brooks, and Morris (2018),
Du (2018), Brooks and Du (2019), and Libgober and Mu (2019).

In a moral hazard problem, Carroll (2015) provides a foundation for linear
contracts in settings in which the principal has uncertainty about the agent’s
technology. Carroll and Segal (2018) consider a setting in which the auction’s
winner may resell to another bidder and the auctioneer has non-Bayesian uncertainty
about such resale opportunities. Nakada, Nitzan, and Ui (2018) study the choice
of a voting rule on a succession of two alternatives by a group of individuals who
are uncertain about their future preferences.

The focus of our paper is on the uncertainty about the payoff environment,
that is, the distribution of the bidders’ valuations. More explicitly, our auctioneer
has an estimate of the distribution of a generic bidder’s valuation, but has non-
Bayesian uncertainty about the correlation structure. In terms of the source of
uncertainty, the closest to our paper is Carroll (2017), who considers a multi-
dimensional screening setting in which the seller knows the marginal distribution of
the buyer’s valuation for each good but does not know the joint distribution. In a
screening environment, Carrasco, Luz, Kos, Messner, Monteiro, and Moreira
(2018) study the revenue maximization problem of a seller who is partially
informed about the distribution of the buyer’s valuation, only knowing its first m
moments. Relatedly, Suzdaltsev (2018) considers a second-price auction in which
the auctioneer knows an upper bound for valuations, the distribution’s mean (and
possibly variance), and further knows that the bidders’ valuations are identically
and independently distributed.

2 Preliminaries

2.1 Notations

We first introduce some notations that will be used in the sequel. For any real-
valued vector x ∈ Rl, we write x(k) for the k-th largest element of the vector. For
any set S, we denote by |S| its cardinality. If Y is a measurable set, then ∆Y is
the set of all probability measures on Y . If Y is a metric space, then we treat it as
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a measurable space with its Borel σ-algebra.

2.2 The auction environment

An auctioneer seeks to sell a single indivisible object. There are n ≥ 2 risk-neutral
bidders competing for the object. We denote by I = {1, 2, . . . , n} the set of bidders
and denote by i a typical bidder. Each bidder i holds private information about her
valuation for the object, which is modeled as a random variable vi with cumulative
distribution function Fi. We denote by Vi the set of possible valuations of bidder i.
The set of possible valuation profiles is V = ×i∈I Vi, and we write v for a typical
element of V . Apart from their private information, all bidders are identical. That
is, Fi = Fj for all i, j ∈ I. Without loss of generality, we assume that Vi = [0, 1]
for all i ∈ I, and we denote by F the common cumulative distribution function.
We assume that F has a positive density f on [0, 1].

While the auctioneer has confidence in her estimate of the marginal
distribution of each bidder’s valuation, she does not have reliable information about
the joint distribution. In other words, our auctioneer has non-Bayesian uncertainty
about the correlation structure. To the auctioneer, any joint distribution is plausible
as long as the joint distribution is consistent with the marginals. We denote by

Π(F ) =
{
π ∈ ∆V : ∀i ∈ I, ∀Ai ⊆ Vi, π(Ai × V−i) = F (Ai)

}
the collection of such joint distributions. When there is no confusion, we shall drop
the dependence of Π(F ) on the marginal distribution F .

2.3 Second-price auctions with reserve prices

We focus on second-price auctions with reserve prices. In a second-price auction
with a reserve price r, each bidder i submits a bid mi ∈ R+. Conditional on the
submitted bids m = (m1,m2, . . . ,mn), bidder i’s probability of winning the object
qi(m) and the payment from bidder i to the auctioneer ti(m) are given as follows:

qi(m) =


1

|W (m)| if i ∈ W (m)

0 otherwise
and ti(m) =


max(m(2),r)
|W (m)| if i ∈ W (m)

0 otherwise

where W (m) = {i ∈ I : mi = m(1), mi ≥ r}.
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We are interested in the expected revenue of second price auctions with
reserve prices in the dominant-strategy equilibrium in which each bidder submits a
bid that is equal to her valuation of the object. For any reserve price r, let

REV (r, v) =


0 if v(1) < r;

r if v(2) < r ≤ v(1);

v(2) if v(2) ≥ r,

and let
REV (r, π) =

∫
V
REV (r, v) dπ(v).

That is, we use REV (r, v) to denote the auctioneer’s ex post revenue by using the
second-price auction with a reserve price r when the realized valuation profile is v,
and we use REV (r, π) to denote the auctioneer’s expected revenue by using the
second-price auction with a reserve price r under the joint distribution π.

2.4 Revenue guarantee as a criterion

We say that R is a revenue guarantee of the second-price auction with a reserve
price r if for all π ∈ Π, REV (r, π) ≥ R. We say that R is the revenue guarantee
of the second-price auction with a reserve price r if it is a revenue guarantee and
there is no higher revenue guarantee.

Our auctioneer chooses among reserve prices according to the revenue
guarantee. Formally, the auctioneer solves the following maxmin optimization
problem:

sup
r∈[0,1]

inf
π∈Π

REV (r, π).

We refer to the solution to this maxmin optimization problem as the robustly
optimal reserve price.

Remark 1. An alternative interpretation is that our auctioneer is a maxmin
decision maker. Our auctioneer has non-Bayesian uncertainty about the correlation
structure, and chooses a reserve price to maximize the worst-case expected revenue,
where the worst case is taken over all joint distributions that are consistent with
the marginals.
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3 Main results

The maxmin optimization problem can be interpreted as a two-player zero-sum
game. The two players are the auctioneer and Nature. The auctioneer first chooses
a deterministic reserve price r ∈ [0, 1]. After observing the auctioneer’s choice of
the reserve price, Nature chooses a correlation structure π ∈ Π. The auctioneer’s
payoff is REV (r, π), and Nature’s payoff is −REV (r, π).

One may wish to solve this problem directly. That is, we first ask, is there a
systematic way of solving for the worst-case correlation structure for any reserve
price r ∈ [0, 1]? In principle, if we have a way of identifying the worst-case
correlation structure for any reserve price, we could first work out the worst-case
expected revenue for any reserve price, and then maximize the worst-case expected
revenue (now a function of the reserve price only) by choosing the reserve price.
However, it is not clear (at least to us) what would be the worst-case correlation
structure for any reserve price.

We take an indirect approach. In the maxmin optimization problem, for each
reserve price r, Nature can choose any joint distribution that is consistent with the
marginals. This is not easy to work with, as the space of such joint distributions is
very large. The novelty in our analysis is that we work with an auxiliary problem
which has the interpretation that we impose a restriction on what Nature can
do. More explicitly, for each reserve price r, we construct a correlation structure
πr that is consistent with the marginals. The auxiliary problem corresponds to
an extreme restriction on Nature’s strategies in the sense that if the auctioneer
chooses a reserve price r, Nature has no choice but to choose πr. We show that
the solution to the auxiliary problem

max
r∈[0,1]

REV (r, πr)

is also the solution to the maxmin optimization problem.4

The key step of our analysis is thus the construction of {πr}r∈[0,1]. The
construction of {πr}r∈[0,1] depends on the number of bidders and the marginal
distribution, and will be made clear in the formal analysis. But before we move
on to the formal analysis, we wish to provide a sketch of our analysis. The sketch

4Our construction of {πr}r∈[0,1] ensures that a solution to the auxiliary problem exists.
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highlights the requirements on {πr}r∈[0,1] and should also make our approach more
transparent.

In the first step, for each reserve price r, we explicitly construct a joint
distribution πr that is consistent with the marginals. At this stage, we do not know
whether the constructed joint distribution πr is the worst-case correlation structure
for the reserve price r. Nevertheless, since πr is consistent with the marginals, the
worst-case expected revenue of a reserve price r is weakly lower than its expected
revenue under the correlation structure πr. Formally, for any r,

inf
π∈Π

REV (r, π) ≤ REV (r, πr).

In the second step, we solve the following auxiliary maximization problem:

max
r∈[0,1]

REV (r, πr).

Our construction of {πr}r∈[0,1] ensures that a solution to the auxiliary problem
exists. Let r∗ denote a solution to the auxiliary problem. By definition,

REV (r∗, πr∗) ≥ REV (r, πr)

for all r.

In the third step, we show that for the reserve price r∗, the correlation
structure πr∗ is indeed the worst-case correlation structure. Formally, we show
that

REV (r∗, πr∗) = min
π∈Π

REV (r∗, π).

Our logic can be succinctly summarized below via a series of inequalities and
equalities. For any r,

inf
π∈Π

REV (r, π) ≤ REV (r, πr) ≤ REV (r∗, πr∗) = min
π∈Π

REV (r∗, π).

Thus, r∗ is a solution to the maxmin optimization problem.

Section 3.1 considers the setting with only two bidders. In this case, the
construction of {πr}r∈[0,1] is fairly intuitive. We also present a direct proof that
shows πr∗ is the worst-case correlation structure for the reserve price r∗. Section
3.2 studies the general setting with n bidders. The construction of the correlation
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structures {πr}r∈[0,1] is slightly more complicated, but it is still somewhat intuitive.
It is also more difficult to show that πr∗ is the worst-case correlation structure
for the reserve price r∗ directly. We present an indirect proof based on a duality
approach.5

For ease of exposition, we now introduce one more notation. For any r ∈ [0, 1]
and any subset of bidders S ⊆ I, let

V r,S := {v ∈ V : vi ≥ r if and only if i ∈ S}.

In words, for any valuation profile v ∈ V r,S, bidders in S have valuations weakly
higher that r and bidders not in S have valuations lower than r. When S consists
of a single bidder i, we write V r,i rather than V r,{i}.

3.1 Two bidders

For the sake of clarity, we first consider the case in which there are only two bidders.
We allow for arbitrary distribution F .

To understand the intuition behind our construction of {πr}r∈[0,1], it is
instructive to study the worst-case correlation structure when there is no reserve
price.

Observation 1. If there is no reserve price, then the worst-case correlation
structure is the maximally negative correlation, which is defined by randomly
drawing q ∼ U [0, 1] and taking

v1 = F−1(q) and v2 = F−1(1− q).

An equivalent but indirect way of defining the maximally negative correlation
is as follows. The maximally negative correlation is the unique joint distribution
such that (1) the probability concentrates on the following curve

L0 : F (1)− F (v2) = F (v1)− F (0), v1 ∈ [0, 1];

5To be clear, our analysis in the case of n bidders can be easily adopted in the setting with
only two bidders. We organize our analysis in the current form so as to present the intuition of
our analysis in the clearest way possible.
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and (2) the joint distribution is consistent with the marginals. While indirect, this
alternative definition is somewhat more intuitive. For this reason, in the reminder
of the paper, we shall construct joint distributions indirectly.

To see why this is the worst case, note that in the second-price auction with
no reserve price, the auctioneer’s ex post revenue function is simply REV (0, v) =
v(2) = min(v1, v2), which is a supermodular function. Since Nature chooses a
joint distribution to minimize the expected value of a supermodular function, the
worst-case correlation structure for the auctioneer is indeed the maximally negative
correlation.6

We now consider an arbitrary reserve price r ∈ [0, 1]. It is less clear what
would be the worst-case correlation structure for an arbitrary r. Nevertheless, we
have a similar observation as in the case of no reserve price if Nature can only put
positive probability in the regions V r,∅ and V r,{1,2}.

Observation 2. Fix an arbitrary reserve price r ∈ [0, 1]. In the constrained
minimization problem in which Nature can only put positive probability in the
regions V r,∅ and V r,{1,2}, the worst-case correlation structure is such that

1. in the region V r,{1,2}, the probability concentrates on the following curve

Lr : F (1)− F (v2) = F (v1)− F (r), v1 ∈ [r, 1];

2. in the region V r,∅, the probability concentrates on the following curve

v2 = v1, v1 ∈ [0, r];

3. the joint distribution is consistent with the marginals.

We denote this joint distribution by πr (see Figure 1 for a graphical illustration of
πr in the case in which F is the uniform distribution on the [0, 1] interval).

6A function g : V → R is supermodular if

g(v ∨ v′) + g(v ∧ v′) ≥ g(v) + g(v′)

for all v, v′ ∈ V , where ∨ denotes the component-wise maximum and ∧ denotes the component-
wise minimum. For detailed discussions on the ordering of joint distributions based on the
integrals of supermodular functions, see for example Meyer and Strulovici (2012).
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To see why this is a worst-case correlation structure when Nature is
constrained to put positive probability only in the regions V r,∅ and V r,{1,2}, note that
we can think of Nature’s minimization problem as two sub-problems, as the choice
of the joint distribution in the region V r,∅ and the choice of the joint distribution
in the region V r,{1,2} do not interact with each other. In the region V r,{1,2}, the
auctioneer’s ex post revenue function is REV (r, v) = v(2) = min(v1, v2), which is
a supermodular function. Therefore, our logic in Observation 1 applies here. In
the region V r,∅, the exact distribution does not matter as long as it is consistent
with the marginals, as the ex post revenue for any valuation profile in this region
is zero. For concreteness, when constructing πr, we pick a joint distribution such
that the probability in the region V r,∅ concentrates on the curve v2 = v1, v1 ∈ [0, r].
This particular choice plays no role in our analysis.

0

r

1

r 1

V r,∅ V r,{1}

V r,{2} V r,{1,2}

0

r

1

r 1

Figure 1: For each r ∈ [0, 1], the figure on the left depicts the four regions given by V r,∅,

V r,1, V r,2, and V r,{1,2}. The figure on the right depicts the correlation structure πr that

we construct in the case in which F is the uniform distribution on the [0, 1] interval.

Our logic so far is incomplete to pin down the worst-case correlation structure
for an arbitrary r, as Nature may want to allocate some probability to the regions
V r,1 and V r,2.

Nevertheless, our observations lead us to consider an auxiliary maximization
problem that we formulate below. Now that we have constructed the correlation
structure πr for each r ∈ [0, 1], the expected revenue of the reserve price r under
πr can be calculated as follows:

REV (r, πr) =
∫

[r,1]2
min(v1, v2) dπr(v) = 2

∫ c(r)

r
x dF (x),
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where c(r) := F−1(1+F (r)
2 ). Consider the following auxiliary maximization problem:

max
r∈[0,1]

REV (r, πr) = 2
∫ c(r)

r
x dF (x).

Proposition 1 below shows that the solution to this auxiliary maximization problem
is the robustly optimal reserve price and generates the highest revenue guarantee
of REV (r∗, πr∗).

Proposition 1. Suppose that there are two bidders and each bidder’s valuation is
distributed according to F . Let r∗ denote a solution to the following maximization
problem:

max
r∈[0,1]

REV (r, πr) = 2
∫ c(r)

r
x dF (x).

Then, r∗ is the robustly optimal reserve price and generates the highest revenue
guarantee of REV (r∗, πr∗).

It suffices to show that for the reserve price r∗, the correlation structure
πr

∗ that we construct is the worst-case correlation structure. This is because the
worst-case expected revenue of any reserve price r is weakly lower than its expected
revenue under πr, which is weakly lower than the expected revenue of the reserve
price r∗ under πr∗ .

The details of the proof can be found in the Appendix. Here, we provide a
sketch of the proof. We first show that r∗ necessarily satisfies that

F (2r∗) = 1 + F (r∗)
2 .

This is derived from the first-order condition of the auxiliary problem. We proceed
to show that for any r such that F (2r) = 1+F (r)

2 , the correlation structure πr that
we construct is the worst-case correlation structure. To prove this, we use a direct
approach, which highlights the role played by the condition that F (2r) = 1+F (r)

2 .
More explicitly, we show that for any correlation structure π that is consistent
with the marginals, there exists a correlation structure π̂ such that

1. π̂ is consistent with the marginals;

2. π̂ only puts positive probability in the regions V r,∅ and V r,{1,2}; and

3. the auctioneer’s expected revenue is weakly lower under π̂ than under π.
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Thus, to solve for the worst-case correlation structure, we only have to consider
joint distributions that are consistent with the marginals and only put positive
probability in the regions V r,∅ and V r,{1,2}. This, combined with Observation 2,
implies that πr is indeed the worst-case correlation structure.

Remark 2. Note that we have not imposed any condition on the marginal
distribution F . Thus, there is nothing much we can say about r∗ except that
F (2r∗) = 1+F (r∗)

2 . Nevertheless, for any distribution F , it is easy to solve for the
solution to the auxiliary problem.

Example 1 below applies our analysis to the case in which each bidder’s
valuation is uniformly distributed on the [0, 1] interval.

Example 1 (Two bidders and uniform distribution). Suppose that there are two
bidders and each bidder’s valuation is uniformly distributed on the [0, 1] interval.
From our analysis above, r∗ necessarily satisfies that 2r∗ = 1+r∗

2 . The robustly
optimal reserve price is 1

3 , and generates the highest revenue guarantee of 1
3 .

3.2 n bidders

In the case of two bidders, our analysis relies on the observation that when both
bidders’ valuations are weakly higher than r, the ex post revenue is REV (r, v) =
min(v1, v2), which is a supermodular function. This simple observation leads us
to construct the correlation structures {πr}r∈[0,1] and to work with an auxiliary
maximization problem in which the objective function is REV (r, πr) and the
choice variable is r. By first-order condition, the solution of the auxiliary problem
necessarily satisfies F (2r) = 1+F (r)

2 . For any such r, we can directly verify that πr

is the worst-case correlation structure.

When there are more than two bidders, we need to deal with two difficulties
that are absent in the case of two bidders. The first difficulty is that, when there
are more than two bidders, even in the case in which the reserve price is set to zero,
the ex post revenue function REV (0, v) = v(2) is not a supermodular function.
This means that the construction of the correlation structures does not generalize
in a straightforward manner.

The second difficulty is that, if we somehow manage to select the appropriate
correlation structures, we still have to show that for the solution to the auxiliary
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problem, the corresponding correlation structure that we construct is the worst-case
correlation structure for the auctioneer. This is somewhat straightforward in the
case of two bidders, because there are only three types of regions, namely, regions
in which both bidders’ valuations are weakly higher than r, exactly one bidder’s
valuation is weakly higher than r, and none of the bidders’ valuations is weakly
higher than r. We exploit the property of the solution to the auxiliary problem
and show that the worst-case correlation structure puts zero probability in the
regions in which exactly one bidder’s valuation is weakly higher than r. The proof
is done by shifting probability from these regions to the other regions in a way that
respects the marginals and weakly decreases the auctioneer’s expected revenue.
This procedure is less hopeful when there are more bidders, because there are many
more types of regions.

What would be the appropriate correlation structures to work with? As in
the case of two bidders, we get some intuition by first working with the case of no
reserve price.

Observation 3. Suppose that there are n ≥ 3 bidders. In the second-price
auction with no reserve price, Nature’s objective is to minimize the expectation of
v(2) by choosing a joint distribution that is consistent with the marginals. The
key observation is that if we fix v(1) and v(2), Nature would want to choose
v(3), v(4), . . . , v(n) such that v(2) = v(3) = . . . = v(n). This is because for any
values of v(3), v(4), . . . , v(n), the ex post revenue is always v(2) and Nature’s
objective is to minimize the expectation of v(2) by choosing a joint distribution that
is consistent with the marginals.

This observation leads us to work with the correlation structures {πr}r∈[0,1]

as follows. For each reserve price r ∈ [0, 1], the correlation structure πr is such that

1. it only puts positive probability in the regions V r,∅ and V r,I ;

2. in the region V r,I , the probability concentrates on n curves L1
r, L

2
r, . . . , V

n
r

where

Lir :=
{
v ∈ V r,I : F (vj)− F (r) = (n− 1)(1− F (vi)), ∀j 6= i,

vi ∈ [F−1((n+ 1)− F (r)
n

), 1]
}

;
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3. in the region V r,∅, the probability concentrates on the following curve

vi = v1, ∀i ∈ I, v1 ∈ [0, r];

4. the joint distribution is consistent with the marginals.

The interpretation of the curve Lir is that in the region in which every bidder’s
valuation is weakly higher than r and bidder i has the highest valuation, Nature
puts probability in a way such that bidders other than i have the same valuation,
and bidder i’s valuation is maximally negatively correlated with the other bidders’
valuation.

We consider the auxiliary problem as follows:

max
r∈[0,1]

REV (r, πr) =
∫

[0,1]n
v(2) dπr(v) = n

n− 1

∫ cn(r)

r
x dF (x)

where F (cn(r)) = (n−1)+F (r)
n

. Let r∗n be the solution of the auxiliary problem.
Theorem 1 below shows that r∗n is the robustly optimal reserve price and generates
the highest revenue guarantee of REV (r∗n, πr

∗
n).

Theorem 1. Suppose that there are n bidders and each bidder’s valuation is
distributed according to F . Let r∗n denote a solution to the following maximization
problem:

max
r∈[0,1]

REV (r, πr) = n

n− 1

∫ cn(r)

r
x dF (x).

Then, r∗n is the robustly optimal reserve price and generates the highest revenue
guarantee of REV (r∗n, πr

∗
n).

The auxiliary problem is easy to solve. By the first-order condition, r∗n
necessarily satisfies that

cn(r) = nr.

Before we present the proof of Theorem 1, we provide an example to illustrate how
to apply the theorem to solve for the robustly optimal reserve price.

Example 2 (n bidders and uniform distribution). Suppose that there are n bidders
and each bidder’s valuation is uniformly distributed on the [0, 1] interval. From our
analysis above, r∗ necessarily satisfies that nr∗n = (n−1)+r∗

n

n
. The robustly optimal

reserve price is r∗n = 1
n+1 , and generates the highest revenue guarantee of n

2(n+1) .
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3.3 Proof of Theorem 1

It suffices to show that for the reserve price r∗n, πr
∗
n is the worst-case correlation

structure for the auctioneer. Since r∗n is a solution to the auxiliary maximization
problem, for any reserve price r, there exists a correlation structure πr such that
the expected revenue of the reserve price r under πr is weakly lower than the
worst-case expected revenue of the reserve price r∗n. This establishes that r∗n is
the robustly optimal reserve price and generates the highest revenue guarantee of
REV (r∗n, πr

∗
n). The proof proceeds as follows. We first show that the r∗n satisfies

F (nr∗n) = (n− 1) + F (r∗n)
n

.

We then show that for any r such that F (nr) = (n−1)+F (r)
n

, πr is the worst-case
correlation structure.

The first step is straightforward. This requirement on r∗n is an immediate
implication of the first-order condition. Consider the auxiliary maximization
problem:

max
r∈[0,1]

REV (r, πr) = n

n− 1

∫ cn(r)

r
x dF (x).

By the first-order condition, we have dREV (r,πr)
dr

= n
n−1 f(r)( cn(r)

n
− r). Let

Rn :={r ∈ [0, 1] : n

n− 1 f(r)(cn(r)
n
− r) = 0}

={r ∈ [0, 1] : F (nr) = (n− 1) + F (r)
n

}

denote the set of stationary points. Note that the auxiliary problem has an interior
solution, since the first-order derivative has a positive value at r = 0 and has a
negative value at r = 1. Thus, it must be that r∗n ∈ Rn.

In what follows, we show that for any reserve price r ∈ Rn, πr is the worst-
case correlation structure. That is, πr is a solution to the following minimization
problem,

min
π∈Π

REV (r, π). (Primal)

The minimization problem is hard to solve directly. In particular, the direct
approach that we use to prove the analogous statement in the case of two bidders

20



does not easily generalize to the general setting. In what follows, we adopt a duality
approach. We shall refer to this minimization problem as the primal minimization
problem.

We construct the dual maximization problem of the primal minimization
problem and show that the optimal value of the maximization problem is weakly
less than the optimal value of the minimization problem. That is, we establish
a weak duality property. The weak duality property that we establish can be
viewed as the n-dimensional generalization of the weak duality property in the
Kantorovich duality theorem. We then proceed to construct the primal variables
and dual variables such that the value of the objective function of the minimization
problem under the constructed primal variables and the value of the objective
function of the maximization problem under the constructed dual variables are
the same. This implies that the constructed primal variables is a solution to the
primal minimization problem.

Consider the following dual maximization problem of the primal minimization
problem:

max
µ1,µ2,...,µn

J(µ1, µ2, . . . , µn) =
∑
i∈I

∫
Vi

µi(vi) dF (vi) (Dual)

subject to for all v ∈ V,
∑
i∈I

µi(vi) ≤ REV (r, v).

Lemma 1 (n-dimensional generalization of the Kantorovich duality theorem). The
optimal value of the dual maximization problem is weakly less than the optimal
value of the primal minimization problem.

Remark 3. The Kantorovich duality theorem shows a strong duality result in the
case of two random variables. For our results, it suffices to prove the weak duality
result. The extension to the case of n random variables is a straightforward. To
be self-contained, we present the short proof here.

Proof of Lemma 1. It suffices to show that, for any feasible variables µ =
(µ1, µ2, . . . , µN) of the dual maximization problem and any feasible variables π of
the primal minimization problem, the value of the maximization problem under µ
is weakly less than the value of the minimization problem under π. As we shall see
below, this follows immediately from the respective feasibility constraints of the
primal minimization problem and the dual maximization problem.
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Let π be feasible variables of the primal minimization problem. That is, for
all i ∈ I and for all measurable sets Ai ∈ Vi,

π(Ai × V−i) = F (Ai). (1)

Let µ = (µ1, µ2, . . . , µN) be feasible variables of the dual maximization problem.
That is, for all v ∈ V , ∑

i∈I
µi(vi) ≤ REV (r, v). (2)

Thus, we have

J(µ) =
∑
i∈I

∫
Vi

µi(vi) dF (vi)

=
∑
i∈I

∫
V
µi(vi) dπ(v)

=
∫
V

∑
i∈I

µi(vi) dπ(v)

≤
∫
V
REV (r, v) dπ(v)

= REV (r, π),

where the second line follows from (1) and the fourth line follows from (2).

We are now ready to show that for any reserve price r ∈ Rn, πr is the
worst-case correlation structure. The proof proceeds as follows. Step (1) calculates
the value of the objective function of the primal minimization problem under πr.
Step (2) constructs dual variables and calculates the value of the objective function
of the dual maximization problem under the constructed dual variables. Step (3)
verifies that these two values are the same for any r ∈ Rn.

Step (1). The value of the objective function of the primal minimization
problem under πr is

n

n− 1

∫ cn(r)

r
x dF (x)

where cn(r) = F−1( (n−1)+F (r)
n

).

Step (2). For each i ∈ I, let

µi(vi) =


0, if vi < r;

1
n−1(vi − r), if r ≤ vi < nr;

r, if vi ≥ nr.
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It is easy to verify that these dual variables satisfy the constraints of the dual
maximization problem. Indeed, since µi(vi) is an increasing function of vi,

1. if v(1) ≥ v(2) ≥ nr, then ∑i∈I µi(vi) ≤ nr ≤ v(2) = REV (r, v);

2. if v(1) ≥ nr > v(2) ≥ r, then
∑
i∈I

µi(vi) ≤ r + (n− 1) 1
n− 1(v(2)− r) = v(2) = REV (r, v);

3. if v(1) ≥ nr and r > v(2), then ∑i∈I µi(vi) = r = REV (r, v);

4. if nr > v(1) ≥ v(2) ≥ r, then
∑
i∈I

µi(vi) ≤
1

n− 1(nr − r) + (n− 1) 1
n− 1(v(2)− r) = v(2) = REV (r, v);

5. if nr > v(1) ≥ r > v(2), ∑i∈I µi(vi) = 1
n−1(v(1)− r) < r = REV (r, v); and

6. if r > v(1), then ∑i∈I µi(vi) = 0 = REV (r, v).

We now calculate the value of the objective function of the dual maximization
problem under the constructed dual variables as follows:

J(µ1, µ2, . . . , µn) =
∑
i∈I

∫
Vi

µi(vi) dF (vi)

= n
∫
V1
µ1(v1) dF (v1)

= n
∫ nr

r

1
n− 1(v1 − r) dF (v1) + n

∫ 1

nr
r dF (v1)

= n

n− 1

∫ nr

r
v1 dF (v1)− n

n− 1

∫ nr

r
r dF (v1) + n

∫ 1

nr
r dF (v1).

(3)

Step (3). Recall that Rn = {r ∈ [0, 1] : F (nr) = (n−1)+F (r)
n

}. Thus, for
any r ∈ Rn, cn(r) = nr, and the value of the objective function of the primal
minimization problem under πr is simply

n

n− 1

∫ nr

r
x dF (x).

The value of the objective function of the dual maximization problem under the
dual variables constructed in Step (2) is also

n

n− 1

∫ nr

r
x dF (x),

since the last two terms in (3) cancel off. This completes the proof.
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3.4 Large number of bidders

Our analysis so far solves for the robustly optimal reserve price for any number of
bidders and any marginal distribution. In this subsection, we consider the setting
with a large number of bidders.

Example 3 (large number of bidders and uniform distribution). Suppose that
there are n bidders and the marginal distribution is the uniform distribution on
[0, 1]. As n gets large, the robustly optimal reserve price r∗n = 1

n+1 converges to zero,
and the highest revenue guarantee n

2(n+1) converges to 1
2 which is the expectation of

a generic bidder’s valuation.

These features generalize to any marginal distribution. Indeed, Theorem 1
has immediate implications as follows.

Corollary 1. For any marginal distribution F ,

1. r∗n < 1
n
for any n;

2. limn→∞ r∗n → 0;

3. limn→∞ REV (r∗n, πr
∗
n)→

∫ 1
0 x dF (x); and

4. The second-price auction with no reserve price is asymptotically optimal
among all mechanisms.

In words, Corollary 1 says that for any marginal distribution F , the robustly
optimal reserve price converges to zero as the number of bidders gets large. Thus,
our analysis lends extra support to the observation that in reality the reserve
price is typically set at a very low level. Furthermore, our analysis gives a special
role to the second-price auction with no reserve price even if the auctioneer can
choose any mechanism. That is, the second-price auction with no reserve price is
asymptotically optimal among all mechanisms.

The first three statements In Corollary 1 are immediate implications of our
analysis in the case of n bidders. By Theorem 1, r∗n necessarily satisfies that

r∗n ∈ Rn = {r ∈ [0, 1] : F (nr) = (n− 1) + F (r)
n

}.

Thus, it must be that r∗n < 1
n
for any n. Subsequently, we have limn→∞ r∗n → 0. We

also note that limn→∞ cn(r∗n) = limn→∞ F−1(n−1+F (r∗
n)

n
) = 1. Again by Theorem
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1, the highest revenue guarantee with n bidders is

REV (r∗n, πr
∗
n) = n

n− 1

∫ cn(r∗
n)

r∗
n

x dF (x)→
∫ 1

0
x dF (x)

as n→∞.

The third statement is of particular interest. We interpret
∫ 1

0 x dF (x) as the
“full surplus” in our setting. This is because our auctioneer can never rule out the
possibility that all the bidders’ valuations are the same. Thus, the expectation
of a generic bidder’s valuation is the best revenue guarantee that the auctioneer
can hope for. Thus, for whatever mechanism that the auctioneer might use, be
it a second-price auction or a more complex mechanism, the expectation of a
generic bidder’s valuation is always an upper bound of the revenue guarantee of
the mechanism.

The fourth statement in Corollary 1 follows from the above arguments and
an additional observation. Fix any joint distribution that is consistent with the
marginals. The expected revenue of the second-price auction with a sufficiently
small reserve price and the revenue of the second-price auction with no reserve price
are sufficiently close, since the ex post revenue function of the two mechanisms are
the same except in regions in which at most one bidder’s valuation is weakly larger
than the reserve price. When the reserve price is sufficiently small, the probability
of these regions is sufficiently close to zero.

4 Extension to random reserve price

In this section, we extend our analysis to the case in which the auctioneer is allowed
to randomize over reserve prices.

By allowing the auctioneer to randomize over reserve prices, we are enlarging
the auctioneer’s strategy space. Let G denote the set of all cumulative distribution
functions on the [0, 1] interval. The auctioneer now chooses a distribution G ∈ G
rather than a deterministic reserve price r ∈ [0, 1]. For any random reserve price
G, let

REV (G, v) =
∫ 1

0
REV (r, v) dG(r)

and let
REV (G, π) =

∫
V
REV (G, v) dπ(v).
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That is, we use REV (G, v) to denote the auctioneer’s ex post revenue by using
a random reserve price G when the realized valuation profile is v, and we use
REV (G, π) to denote the auctioneer’s expected revenue by using a random reserve
price G under the joint distribution π.

The auctioneer solves the following maxmin optimization problem:

sup
G∈G

inf
π∈Π

REV (G, π).

We refer to the solution of this maxmin optimization problem as the robustly
optimal random reserve price.

Note that both G and Π are convex, and REV (G, π) is linear in both G

and π. Thus, maxG∈G minπ∈Π REV (G, π) = minπ∈Π maxG∈G REV (G, π). Our
approach is thus to identify a saddle point (G∗, π∗) such that

REV (G∗, π) ≥ REV (G∗, π∗) ≥ REV (G, π∗)

for all G ∈ G and π ∈ Π. Since

max
G∈G

min
π∈Π

REV (G, π) ≥ min
π∈Π

REV (G∗, π)

= REV (G∗, π∗)

= max
G∈G

REV (G, π∗)

≥ min
π∈Π

max
G∈G

REV (G, π)

= max
G∈G

min
π∈Π

REV (G, π),

we can conclude that G∗ is the robustly optimal random reserve price, and
REV (G∗, π∗) is the highest revenue guarantee.

Section 4.1 studies the setting in which there are n bidders and each bidder’s
valuation is uniformly distributed on the [0, 1] interval. Section 4.2 extends our
analysis to the class of distributions that satisfy the condition that xf(x) is weakly
increasing in x. For example, this holds if the distribution is convex.

4.1 Uniform distribution

For the sake of clarity, we first study the case in which there are n ≥ 2 bidders
and each bidder’s valuation is uniformly distributed on the [0, 1] interval. We
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construct a particular random reserve price G∗ and a correlation structure π∗ such
that (G∗, π∗) is a saddle point.

We first construct the correlation structure π∗. Some intuition behind the
construction is as follows: π∗ is such that given that the auctioneer knows the joint
distribution is π∗, the auctioneer is indifferent among a range of reserve prices.

Construction of π∗. Let b̄ = 2n−1
2n . The correlation structure π∗ is such

that

1. it only puts positive probability in the regions V b̄,∅ and V b̄,i for each i ∈ I;

2. in the region V b̄,i, π∗ is uniformly distributed on the following region

Di :=
{

(v1, v2, . . . , vn) : b̄ ≤ vi ≤ 1,

0 ≤ v1 = v2 = . . . = vi−1 = vi+1 = . . . = vn < b̄
}

with total measure 1− b̄;

3. in the region V b̄,∅, π∗ is uniformly distributed on the following line

D0 := {(v1, v2, . . . , vn) : 0 ≤ v1 = . . . = vn < b̄}

with total measure 1
2 .

In words, in the region V b̄,i, bidders other than bidder i have the same valuation
which is independent of vi. In the region V b̄,∅, all the bidders have the same
valuation. It is straightforward to verify that π∗ is consistent with the marginals.
Figure 2 illustrates π∗ in the case in which there are two bidders.

Before we proceed, let us discuss some intuition behind the construction of
the correlation structure π∗. One intuition that we have already mentioned is
that π∗ creates a lot of indifferences for the choice of the reserve price. The other
intuition is described as follows. We focus on the region in which only bidder i’s
valuation is weakly larger than b̄. The ex post revenue for each v in this region and
each realization of the random reserve price is then the maximum of v−i(1) and
the realization of the random reserve price, which is a submodular function. To
minimize the expectation of a submodular function, in this region, bidders other
than bidder i have the same valuation.
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Figure 2: The figure depicts the correlation structure π∗ that we construct in the case

in which there are two bidders and F is the uniform distribution on [0, 1]. In this case,

b̄ = 3
4 .

We now calculate the expected revenue for each reserve price r ∈ [0, 1] against
π∗. It is straightforward to calculate that

REV (r, π∗) =


2n−1

4n , if r ∈ [0, b̄];

nr(1− r), if r ∈ (b̄, 1].

Since b̄ = 2n−1
2n ≥

1
2 , nr(1− r) < nb̄(1− b̄) = 2n−1

4n whenever r > b̄. Thus,

arg max
r∈[0,1]

REV (r, π∗) = [0, b̄].

Construction of G∗. Let

G∗(r) = b̄−
1

n−1 r
1

n−1

with support [0, b̄]. Since every reserve price in the support of G∗ maximizes the
auctioneer’s expected revenue against π∗,

G∗ ∈ arg max
G∈G

REV (G, π∗).

Thus, REV (G∗, π∗) is an upper bound of the revenue guarantee.

Proposition 2. Suppose that there are n bidders and each bidder’s valuation is
uniformly distributed on the [0, 1] interval. Then, G∗ is the robustly optimal random
reserve price, and generates the highest revenue guarantee of 2n−1

4n .
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It remains to show that

π∗ ∈ arg min
π∈Π

REV (G∗, π).

Here, as in the case of a deterministic reserve price, we adopt the duality
approach. In words, the revenue guarantee of G∗ is REV (G∗, π∗). Since we
have established that REV (G∗, π∗) is an upper bound of the revenue guarantee,
G∗ is the robustly optimal random reserve price, and achieves the highest revenue
guarantee REV (G∗, π∗). The details of the proof can be found in the Appendix.

4.2 General distribution

We now extend our analysis to a large class of marginal distributions. Throughout
this section, we make the following assumption: xf(x) is weakly increasing in x.
In words, this assumption says that the density function does not decrease too fast.
Our analysis here parallels that in the case of uniform distribution. In the case of
uniform distribution, it is relatively easy to construct π∗ such that the auctioneer
is indifferent among a range of reserve prices against π∗. In the general case, the
construction of such a correlation structure is more complicated.

We first present the following technical lemma which is used in the
construction of the saddle point. The lemma is a consequence of the assumption
that xf(x) is weakly increasing in x, and the detailed proof can be found in the
appendix.

Lemma 2. Fix a marginal distribution F such that xf(x) is weakly increasing in
x. Let ψ(x) := x− 1−F (x)

f(x) , and let

γ(x) := 1− F (x)− 1
n− 1x

− n
n−1

∫ x

0
y

n
n−1f(y) dy.

Then,

1. limx→0 xf(x) = 0;

2. there exists a unique b∗ ∈ (0, 1) such that ψ(b∗) = 0; and

3. there exists x ∈ [b∗, 1] such that γ(x) = 0.

29



Let b̄F be such that b̄F ∈ [b∗, 1] and γ(b̄F ) = 0. We are now ready to construct
a particular random reserve price G∗F and a correlation structure π∗F such that
(G∗F , π∗F ) is a saddle point.

Construction of π∗F . As in the case of uniform distribution, π∗F only puts
positive probability in the regions V b̄F ,∅ and V b̄F ,i for each i ∈ I.

In V b̄F ,i, π∗F concentrates on the following region

Di =
{

(v1, v2, . . . , vn) : b̄F ≤ vi ≤ 1,

0 ≤ v1 = v2 = . . . = vi−1 = vi+1 = . . . = vn < b̄F

}
.

The marginal of π∗F coincides with the restriction of F on [b̄F , 1] ⊆ Vi. Restricted
in V b̄F ,i, all the {vj}j 6=i are maximally positively correlated with the marginal of
π∗F being H on [0, b̄F ) ⊆ Vj for each j 6= i, where

H(x) = 1
n− 1x

− n
n−1

∫ x

0
y

n
n−1f(y) dy.

Then the restriction of π∗F on V b̄F ,i is the product measure on Vi and
∏
j 6=i Vj ; that

is, vi and (v1, v2, . . . , vi−1, vi+1, . . . , vn) are independently distributed. Note that
H is a feasible measure on [0, b̄F ), because

1. limx→0H(x) = 0 and H(b̄F ) = 1− F (b̄F );

2. H is continuous;

3. H is weakly increasing since the derivative of H is

h(x) = 1
n− 1

[
− n

n− 1 · x
− 2n−1

n−1 ·
∫ x

0
y

n
n−1f(y) dy + f(x)

]
≥ 1
n− 1

[
− n

n− 1 · x
− 2n−1

n−1 · xf(x) ·
∫ x

0
y

1
n−1 dy + f(x)

]
= 0.

In the region V b̄F ,∅, π∗F concentrates on the following line

D0 = {(v1, . . . , vn) : 0 ≤ v1 = . . . = vn < b̄F},

with the density on any dimension Vj being f(vi)− (n− 1)h(vj). The density is
well defined since by the construction of H, we have that f(vi)− (n− 1)h(vj) ≥ 0
for vj ∈ [0, b̄F ].
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In words, in the region V b̄F ,i, bidders other than bidder i have the same
valuation which is independent of vi. In the region V b̄F ,∅, all the bidders have
the same valuation. It is straightforward to verify that π∗F is consistent with the
marginal distribution F . The intuition behind the construction here is similar to
the case of uniform distribution, and we shall not repeat the arguments.

Now that we have constructed the correlation structure π∗F , we can calculate
REV (r, π∗F ) for all r ∈ [0, 1]. If r ∈ (b̄F , 1], then REV (r, π∗F ) = nr(1 − F (r)). If
r ∈ [0, b̄F ], then

REV (r, π∗F ) =
∫ b̄F

r
x
[
f(x)− (n− 1)h(x)

]
dx+ n

[ ∫ b̄F

r
xh(x) dx+ rH(r)

]
,

which is the sum of the expected revenue in the region V b̄F ,∅ and the expected
revenue in the n symmetric regions {V b̄F ,i}i∈I . The expected revenue in each of
the n symmetric regions is the sum of

∫ b̄F
r xh(x) dx and rH(r), where

∫ b̄F
r xh(x) dx

(resp. rH(r)) is the expected revenue from valuations profiles such that the second
highest valuation is weakly higher than (resp. lower than) the reserve price r. This
simplifies to

REV (r, π∗F ) =
∫ b̄F

r
x
[
f(x) + h(x)

]
dx+ nrH(r)

= n
∫ b̄F

r

[
xh(x) +H(x)

]
dx+ nrH(r)

= n
∫ b̄F

r
xh(x) dx+ n

[
b̄FH(b̄F )− rH(r)−

∫ b̄F

r
x dH(x)

]
+ nrH(r)

= nb̄FH(b̄F )

= nb̄F (1− F (b̄F )).

The second equality holds since by the construction of H, nH(x) + (n− 1)xh(x) =
xf(x) for any x ∈ [0, b̄F ]. The third equality uses integration by parts, and the last
equality follows from that H(b̄F ) = (1− F (b̄F )).

Note that the derivative of x(1−F (x)) is 1−F (x)−xf(x), which is negative
for x > b∗. Since b̄F ≥ b∗, for any r > b̄F , nr(1− F (r)) < nb̄F (1− F (b̄F )). Thus,

arg max
r∈[0,1]

REV (r, π∗F ) = [0, b̄F ].

Construction of G∗F . Let

G∗F (r) = b̄
− 1

n−1
F r

1
n−1
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with support [0, b̄F ]. Since every reserve price in the support of G∗F maximizes the
auctioneer’s expected revenue against π∗F ,

G∗F ∈ arg max
G∈G

REV (G, π∗F ).

Thus, REV (G∗F , π∗F ) is an upper bound of the revenue guarantee.

Theorem 2. Suppose that there are n bidders and each bidder’s valuation is
distributed according to F . Then, G∗F is the robustly optimal random reserve price,
and generates the highest revenue guarantee of

REV (G∗F , π∗F ) = nb̄F (1− F (b̄F )).

It remains to show that

π∗F ∈ arg min
π∈Π

REV (G∗F , π).

In words, the revenue guarantee of G∗F is REV (G∗F , π∗F ). Since we have established
that REV (G∗F , π∗F ) is an upper bound of the revenue guarantee, G∗F is the
robustly optimal random reserve price, and achieves the highest revenue guarantee
REV (G∗F , π∗F ). The details of the proof can be found in the Appendix.

Remark 4. For any fixed marginal distribution F such that xf(x) is weakly
increasing in x, when the number of bidders gets large, b̄F converges to 1, the
robustly optimal random reserve price is G∗F (r) = b̄

− 1
n−1

F r
1

n−1 which converges to
the dirac measure on zero, and the highest revenue guarantee is

REV (G∗F , π∗F ) = nb̄F (1− F (b̄F )) = nb̄F
1

n− 1 b̄
− n

n−1
F

∫ b̄F

0
y

n
n−1f(y) dy

which converges to
∫ 1

0 x dF (x).

5 Discussions

This section provides further discussions of our model and results. Section 5.1
discusses an alternative model in which the auctioneer has local uncertainty about
the marginal distribution. Section 5.2 compares our robustly optimal reserve price
with the reserve price in Myerson (1981). Section 5.3 revisits our construction of
the correlation structures {πr}r∈[0,1].

32



5.1 Local uncertainty about the marginal distribution

Our modeling of the auctioneer’s knowledge of the joint distribution and the
marginals is somewhat extreme. To capture the idea that the auctioneer has
no reliable information about the joint distribution, we impose non-Bayesian
uncertainty over a large set of joint distributions. But on the other hand, we
assume that the auctioneer has confidence in her estimate of the marginals.

Here, we briefly discuss an alternative model in which the auctioneer has
local uncertainty about the marginal distribution. By local uncertainty, we mean
that the auctioneer has uncertainty about the true marginal distribution, but is
confident that the true marginal distribution is sufficiently close to F . We denote
by F̃ the true marginal distribution. We denote by r∗F the robustly optimal reserve
price calculated under F , and denote by r∗

F̃
the robustly optimal reserve price

calculated under F̃ .

We claim that the revenue guarantee of r∗F is close to the revenue guarantee
of r∗

F̃
under the true marginal distribution F̃ . We provide the intuition below

without presenting the formal proof. The key observation is that, for any joint
distribution π that is consistent with F , there exists a joint distribution π̃ that
is consistent with F̃ such that for any reserve price r, REV (r, π) and REV (r, π̃)
are sufficiently close, and vice versa. This implies that the revenue guarantee of
the reserve price r∗F when Nature chooses π ∈ Π(F ) and when Nature chooses
π ∈ Π(F̃ ) cannot be far apart. The same is true for the revenue guarantee of the
reserve price r∗

F̃
. The claim then follows because by the definition of r∗F (resp. r∗

F̃
),

the revenue guarantee of r∗F (resp. r∗
F̃
) is weakly higher than the revenue guarantee

of r∗
F̃
(resp. r∗F ) under F (resp. F̃ ).

5.2 Comparison with Myerson (1981)

In a seminal paper, Myerson (1981) studies the design of optimal auction in settings
with independent private value. We now compare our robustly optimal reserve
price and the optimal reserve price in the setting of Myerson (1981). For ease
of comparison, we assume that there are n bidders, the marginal distribution of
each bidder’s valuation is F with support [0, 1], and that F satisfies the regularity
condition that x− 1−F (x)

f(x) is weakly increasing in x.
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In Myerson (1981), the bidders’ valuations are independent, and the optimal
mechanism can be implemented via a second-price auction with a reserve price rM
such that

rM −
1− F (rM)
f(rM) = 0.

Note that rM is bounded away from zero. Furthermore, rM is independent of
the number of bidders. In the special case in which F (x) = x, rM = 1

2 . In our
model, we relax the auctioneer’s knowledge of the joint distribution of the bidders’
valuations. The robustly optimal reserve price typically varies with the number of
the bidders. Corollary 1 shows that for any n, r∗n < 1

n
, and the robustly optimal

reserve price converges to zero as the number of bidders gets large. This implies
that there exists N such that when there are more than N bidders, our robustly
optimal reserve price is strictly lower than rM .7 In the special case in which
F (x) = x, r∗n = 1

n+1 .

5.3 The correlation structures {πr}r∈[0,1]

The key step in our analysis in the case of a deterministic reserve price is the
construction of the correlation structures {πr}r∈[0,1]. When there are n bidders
and the marginal distribution is F , we show in Section 3 that for any r such
that F (r) = (n−1)+F (r)

n
, the correlation structure πr is the worst-case correlation

structure. This suffices for our purpose of solving for the robustly optimal reserve
price, sparing us the need to solve for the worst-case correlation structure for any
r ∈ [0, 1].

While the correlation structure πr that we construct is indeed the worst case
for any r such that F (r) = (n−1)+F (r)

n
, this is not the case for any r. The easiest

way to see this is to consider a reserve price that is sufficiently small. Note that
the ex post revenue for each valuation profile in the regions in which exactly one
bidder’s valuation is weakly higher than the reserve price is simply the reserve
price. Thus, if the reserve price is sufficiently small, Nature would want to allocate
positive probability to these regions. We provide such an example below.

7There exists F that satisfies the regularity condition such that our robustly optimal reserve
price is larger than rM when n is small.
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Example 4. Suppose that n = 2 and F (x) = x. Let r = 1
6 . By the construction

of πr, REV (r, πr) = 2
∫ 1+r

2
r x dx = 5

16 . We now consider a correlation structure
π′ ∈ Π such that (1) π′(V r,∅) = 0, π′(V r,1) = π′(V r,2) = 1

6 , and π′(V r,{1,2}) = 2
3 ;

and (2) in the region V r,{1,2}, the probability is uniformly distributed on the line
v2 = 7

6 − v1, v1 ∈ [1
6 , 1]. It is straightforward to calculate that REV (r, π′) = 11

36 <

REV (r, πr) = 5
16 .

6 Conclusion

We consider a robust version of the single-unit auction problem. In particular, we
relax the assumption about the detailed knowledge of the auctioneer about the
payoff environment and solve for the robustly optimal reserve price that generates
the highest revenue guarantee.

This paper focuses on second-price auctions with reserve prices. These
auction formats are both theoretically appealing and widely adopted in practice.
However, from a more theoretical perspective, our analysis is not entirely complete.
Indeed, an intriguing question that we have not addressed in this paper is the
following: which mechanism generates the highest revenue guarantee among all
mechanisms? Our analysis relies on the structure of the ex post revenue function
in second-price auctions with reserve prices, and it is not yet clear to us how to
extend our technique to address this more demanding research question. We leave
this question for future research.

Further research might also consider additional restrictions on the set of joint
distributions that the auctioneer perceives plausible. While classical papers such
as Myerson (1981) consider one extreme formulation of the single-unit auction
problem in the sense that the auctioneer knows the exact correlation structure, we
consider the other extreme formulation in the sense that the auctioneer has no
additional information besides the marginal distribution. It might be fruitful to
investigate settings in which the auctioneer has some additional information besides
the marginals, such as the knowledge that the bidders’ valuations are positively
correlated.
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A Appendix

A.1 Proof of Proposition 1

We first show that r∗ necessarily satisfies that F (2r∗) = 1+F (r∗)
2 . Consider the

auxiliary maximization problem:

max
r∈[0,1]

REV (r, πr) = 2
∫ c(r)

r
x dF (x).

By the first-order condition, we have that dREV (r,πr)
dr

= 2f(r)( c(r)2 − r). Let

R :={r ∈ [0, 1] : 2f(r)(c(r)2 − r) = 0}

={r ∈ [0, 1] : c(r) = 2r}

={r ∈ [0, 1] : F−1(1 + F (r)
2 ) = 2r}

={r ∈ [0, 1] : F (2r) = 1 + F (r)
2 }

denote the set of stationary points. Note that the first-order derivative takes a
positive value at r = 0, and takes a negative value at r = 1. Thus, the auxiliary
problem has an interior solution. That is, r∗ ∈ R.

We proceed to show that for any r ∈ R, πr is the worst-case correlation
structure. That is,

πr ∈ arg min
π∈Π

REV (r, π).

Without loss of generality, we consider only symmetric joint distributions. We
show that for any π ∈ Π that is symmetric, there exists π′ such that

1. π′ ∈ Π;

2. π′ puts zero probability in the regions V r,1 and V r,2; and

3. REV (r, π′) ≤ REV (r, π).

Thus, to solve for the worst-case correlation structure, we only have to consider
joint distributions that are consistent with the marginals and only put positive
probability in the regions V r,∅ and V r,{1,2}. This, combined with Observation 2,
implies that πr is indeed the worst-case correlation structure.
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The idea behind the construction of π′ for any symmetric π is intuitive.
Unfortunately, the construction does require quite a bit of notations. For ease of
reference, we define nine segments as follows (see Figure 3):

A1 = [0, r]× [0, r]; A2 = [r, c(r)]× [0, r]; A3 = [c(r), 1]× [0, r];

A4 = [0, r]× [r, c(r)]; A5 = [0, r]× [c(r), 1]; A6 = [r, c(r)]× [r, c(r)];

A7 = [c(r), 1]× [r, c(r)]; A8 = [r, c(r)]× [r, 1]; A9 = [r, 1]× [r, 1].

For 1 ≤ j ≤ 9, we also write Aj = [xj, x̄j] × [yj, ȳj]. For example, x2 = r,
x̄2 = c(r), y2 = 0, and ȳ2 = r.

0

r

c(r)

1

r c(r) 1

A1 A2 A3

A4 A6 A7

A5 A8 A9

Figure 3: The nine segments that we define on the basis of r and c(r).

Fix any π ∈ Π that is symmetric. For 1 ≤ j ≤ 9, let aj := π(Aj) denote
the total measure of π on Aj. For any [c1, c2] ⊆ [0, 1], [d1, d2] ⊆ [0, 1] and any
1 ≤ j ≤ 9, let

πjx([c1, c2]) = π([c1, c2]× [yj, ȳj]) and πjy([d1, d2]) = π([xj, x̄j]× [d1, d2]).

We consider two cases. In the first case, a2 ≥ a3. In the second case, a2 < a3.
Suppose that a2 ≥ a3. Since π is symmetric, a4 ≥ a3. If a3 6= 0, we construct
a correlation structure π′ from π by shifting all the measure from A3 to A7 and
shifting the same measure from A4 to A1 in a way that respects the marginals.
Otherwise, we skip this step. This weakly decreases the auctioneer’s expected
revenue, since the ex post revenue is r for any v ∈ A3 ∪A4 and the ex post revenue
is capped at c(r) = 2r for any v ∈ A7. Formally, π′ is such that

1. π′ coincides with π on A2, A5, A6, A8, and A9;
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2. π′(A3) = 0;

3. for any [c1, c2]× [d1, d2] ⊆ A7,

π′([c1, c2]× [d1, d2]) = π([c1, c2]× [d1, d2]) +
π3
x([c1, c2]) · π4

y([d1, d2])
a4

;

4. for any [c1, c2]× [d1, d2] ⊆ A4,

π′([c1, c2]× [d1, d2]) = π([c1, c2]× [d1, d2])− a3

a4
· π([c1, c2]× [d1, d2]);

5. for any [c1, c2]× [d1, d2] ⊆ A1,

π′([c1, c2]× [d1, d2]) = π([c1, c2]× [d1, d2]) +
π4
x([c1, c2]) · π3

y([d1, d2])
a4

.

Analogously, one can construct a correlation structure π′′ from π′ by shifting
all the measure from A5 to A8 and shifting the same measure from A2 to A1 in a
way that respects the marginals and weakly decreases the auctioneer’s expected
revenue. Note that

π′′(A3) = π′′(A5) = 0 and π′′(A2) = π′′(A4) = a2 − a3.

If a2 = a3, then we have proved the desired result. If a2 > a3, then the last
step in this case is to construct a correlation structure π̂ from π′′ by shifting all
the measure from A2 to A6 and shifting the same measure from A4 to A1 in a way
that respects the marginals. This weakly decreases the expected revenue, since
the ex post revenue is r for any v ∈ A2 ∪ A4 and the ex post revenue is capped at
c(r) = 2r for any v ∈ A6. Formally, π̂ is such that

1. π̂ coincides with π′′ on A3, A5, A7, A8, and A9;

2. π̂(A2) = π̂(A4) = 0;

3. for any [c1, c2]× [d1, d2] ⊆ A1,

π̂([c1, c2]× [d1, d2]) = π′′([c1, c2]× [d1, d2]) +
π′′4x ([c1, c2]) · π′′2y ([d1, d2])

a2 − a3
;

4. for any [c1, c2]× [d1, d2] ⊆ A6,

π̂([c1, c2]× [d1, d2]) = π′′([c1, c2]× [d1, d2]) +
π′′2x ([c1, c2]) · π′′4y ([d1, d2])

a2 − a3
.
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This completes the proof for the first case since

π̂(A2) = π̂(A3) = π̂(A4) = π̂(A5) = 0.

Next, we study the case in which a2 < a3. Since π is consistent with the
marginals and F (2r) = 1+F (r)

2 , a2 + a6 + a8 = F (c(r)) − F (r) = 1 − F (c(r)) =
a3 + a7 + a9. Since π is symmetric, a7 = a8. Thus, a2 + a6 = a3 + a9 ≥ a3, which
implies a6 ≥ a3− a2. We further divide A6 by the 45-degree line into three regions:
Au6 = {v ∈ A6 : v1 < v2} (above the 45-degree line), Am6 = {v ∈ A6 : v1 = v2}
(the 45-degree line), and Ad6 = {v ∈ A6 : v1 > v2} (below the 45-degree line).
Without loss of generality, we can work with π such that π(Am6 ) = 0.8 Thus,
π(Au6) = π(Ad6) = a6

2 . For any [c1, c2]× [d1, d2] ⊆ A6, let

πdx([c1, c2]) = π
(
([c1, c2]× [y6, ȳ6]) ∩ Ad6

)
and

πdy([d1, d2]) = π
(
([x6, x̄6]× [d1, d2]) ∩ Ad6

)
.

We construct a correlation structure π′ from π by shifting measure a3−a2
2

from A3 to A2 and shifting the same measure from Ad6 to A7 in a way that respects
the marginals and does not change the expected revenue. Formally, π′ is such that

1. π′ coincides with π on A1, A4, A5, Au6 , Am6 , A8, and A9;

2. for any [c1, c2]× [d1, d2] ⊆ A2,

π′([c1, c2]× [d1, d2]) = π([c1, c2]× [d1, d2])+(a3−a2) ·
πdx([c1, c2]) · π3

y([d1, d2])
a3 · a6

;

3. for any [c1, c2]× [d1, d2] ⊆ A3,

π′([c1, c2]× [d1, d2]) = π([c1, c2]× [d1, d2])− a3 − a2

2 · π([c1, c2]× [d1, d2])
a3

;

8Otherwise, let πm
6 be the restriction of π on Am

6 , and πm
x and πm

y be the marginal of πm
6

on V1 and V2, respectively. Then we can construct another finite measure π̄m
6 having the same

marginals πm
x and πm

y as follows: π̄m
6 concentrates on the curve with the maximally negative

correlation on A6: πm
x [x6, v1] = πm

y [v2, ȳ
6] for (v1, v2) ∈ A6. Let π̄′ be the finite measure by

restricting π on V \ Am
6 , and π̄ = π̄′ + π̄m

6 . Then π̄ respects the marginals, π̄(Am
6 ) = 0, and

REV (r, π̄) ≤ REV (r, π).
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4. for any [c1, c2]× [d1, d2] ⊆ Ad6,

π′([c1, c2]× [d1, d2]) = π([c1, c2]× [d1, d2])− (a3 − a2) · π([c1, c2]× [d1, d2])
a6

;

5. for any [c1, c2]× [d1, d2] ⊆ A7,

π′([c1, c2]× [d1, d2]) = π([c1, c2]× [d1, d2])+(a3−a2) ·
π3
x([c1, c2]) · πdy([d1, d2])

a3 · a6
.

Analogously, one can construct a correlation structure π′′ from π′ by shifting
measure from A5 to A4 and shifting the same measure from Au6 to A8 in a way
that respects the marginals and does not change the expected revenue. Note that
π′′(A2) = π′′(A3) = π′′(A4) = π′′(A5) = a2+a3

2 . We can then adopt our approach in
the first case. This completes the proof.

A.2 Proof of Proposition 2

In what follows, we show that

π∗ ∈ arg min
π∈Π

REV (G∗, π).

We first calculate the ex post revenue of the auctioneer as follows:

REV (G∗, v) =


b̄−

1
n−1

[
1
n
v(1)

n
n−1 + n−1

n
v(2)

n
n−1
]
, if v(1) ≤ b̄;

b̄
n

+ n−1
n
b̄−

1
n−1v(2)

n
n−1 , if v(2) ≤ b̄ < v(1);

v(2), if v(2) > b̄.

Let

u(x) =


1
n
b̄−

1
n−1x

n
n−1 , if x ≤ b̄;

b̄
n
, if x > b̄.

One can easily verify that

REV (G∗, v) ≥
∑
i∈I

u(vi)

for all v ∈ V . It follows that for any π ∈ Π,

REV (G∗, π) =
∫
V
REV (G, v) dπ(v)

≥
∫
V

∑
i∈I

u(vi) dπ(v)
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=
∑
i∈I

∫
V
u(vi) dπ(v)

= n
∫ 1

0
u(x) dx

= 2n− 1
4n .

Since REV (G∗, π∗) = 2n−1
4n , we conclude that

π∗ ∈ arg min
π∈Π

REV (G∗, π).

This completes the proof.

A.3 Proof of Lemma 2

1. Suppose that limx→0 xf(x) = c > 0. Since xf(x) is weakly increasing in x, for
any x > 0, we have that xf(x) ≥ c and f(x) ≥ c

x
. But then F (x) ≥

∫ x
0

c
y
dy =∞

for any x > 0. We have a contradiction.

2. Let η(x) := xf(x) − (1 − F (x)). Since xf(x) is weakly increasing in x,
η(x) is increasing in x. Since limx→0 η(x) < 0 and η(1) > 0, there exists a unique
b∗ such that

η(x)


< 0, x < b∗;

= 0, x = b∗;

> 0, x > b∗.

Since ψ(x) = η(x)
f(x) , we have that

ψ(x)


< 0, x < b∗;

= 0, x = b∗;

> 0, x > b∗.

3. We show that (1) limx→0 γ(x) > 0; and (2) for any x ≤ b∗ such that
γ(x) ≤ 0, we have that γ′(x) ≥ 0. It then follows that γ(b∗) ≥ 0. Since γ(1) < 0,
there exists x ∈ [b∗, 1] such that γ(x) = 0.

For (1),

lim
x→0

γ(x) = 1− 1
n− 1 lim

x→0

∫ x
0 y

n
n−1f(y) dy
x

n
n−1
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= 1− 1
n− 1 lim

x→0

x
n

n−1f(x)
n
n−1x

1
n−1

= 1− 1
n

lim
x→0

xf(x)

= 1.

For (2), for any x ≤ b∗ and γ(x) ≤ 0,

γ′(x) = − n

n− 1f(x) + n

(n− 1)2x
− 2n−1

n−1

∫ x

0
y

n
n−1f(y) dy

≥ − n

n− 1f(x) + n

(n− 1)
1− F (x)

x

≥ 0,

where the first inequality follows from the definition of the function γ and the
assumption that γ(x) ≤ 0, and the second inequality is due to the fact that
ψ(x) ≤ 0 for x ≤ b∗.

A.4 Proof of Theorem 2

In what follows, we show that

π∗F ∈ arg min
π∈Π

REV (G∗F , π).

We calculate the ex post revenue of the auctioneer as follows:

REV (G∗F , v) =


b̄
− 1

n−1
F

[
1
n
v(1)

n
n−1 + n−1

n
v(2)

n
n−1
]
, if v(1) ≤ b̄F ;

b̄F

n
+ n−1

n
b̄
− 1

n−1
F v(2)

n
n−1 , if v(2) ≤ b̄F < v(1);

v(2), if v(2) > b̄F .

Let

u(x) =


1
n
b̄
− 1

n−1
F x

n
n−1 , if x ≤ b̄F ;

b̄F

n
, if x > b̄F .

One can easily verify that

REV (G∗F , v) ≥
∑
i∈I

u(vi)

for all v ∈ V . It follows that for any π ∈ Π,

REV (G∗F , π) ≥
∑
i∈I

∫
V
u(vi) dπ(v)
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= n
∫ 1

0
u(x) dF (x)

= n

[∫ b̄F

0

1
n
b̄
− 1

n−1
F x

n
n−1 dF (x) + b̄F

n
(1− F (b̄F ))

]

= nb̄F (1− F (b̄F )),

where the last equality follows from the construction of b̄F .

Since REV (G∗F , π∗F ) = nb̄F (1− F (b̄F )), we conclude that

π∗F ∈ arg min
π∈Π

REV (G∗F , π).

This completes the proof.
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