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Abstract: We propose a factor correlation matrix approach to forecast large covariance matrix of
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forecasting large covariance matrix. Our proposed method is found to perform better in reporting
smaller forecast errors. Empirical application to a portfolio of 100 NYSE and NASDAQ stocks
shows that our method provides lower out-of-sample realized variance in selecting global minimum
variance portfolio. It also provides higher information ratio for Markowitz portfolios.

JEL Codes: C410, G120

Keywords: Large correlation matrix, Nonlinear shrinkage, Dimension reduction, Eigenanalysis,
Factor model, High-Frequency data

Acknowledgment: Yingjie Dong acknowledges partial support provided by the Project 71803021
of NSFC, and the Fundamental Research Funds for the Central Universities in University of Inter-
national Business and Economics (UIBE) (CXTD8-01).

Corresponding Author: Yiu-Kuen Tse, School of Economics, Singapore Management University,
Singapore 178903, email: yktse@smu.edu.sg.



1 Introduction

Modeling time varying covariance matrix of asset returns plays a crucial role in modern financial risk

management and asset allocation. Multivariate GARCH (MGARCH) models, which are derived

from the ARCH/GARCH family, are useful tools to deal with this problem. MGARCH models

include the constant-correlation MGARCH (CC-GARCH) model of Bollerslev (1990), the BEKK

model of Engle and Kroner (1995), the Dynamic Conditional Correlation (DCC) model of Engle

(2002), and the Time-Varying Correlation model of Tse and Tsui (2002). MGARCH models,

however, are usually applied to low dimension portfolios and problems arise when the number of

assets are large. These include biases in large covariance matrix estimates, as well as computational

feasibility of the model. Aielli (2013) proposes a consistent corrected DCC (cDCC) method for high

dimension portfolios. Pakel et al. (2014) propose a composite quasi-likelihood estimate to tackle

the computational issue. The recent work by Engle et al. (2017) applies the nonlinear shrinkage

method to the DCC model to improve the estimation results.

MGARCH models are typically applied to daily data. With the availability of high-frequency

intraday data, researchers can model and forecast the variance and covariance of asset returns

using tick-by-tick transaction or quotation data. A naive estimator for high-frequency data can

be obtained by calculating each diagonal/off-diagonal element of the covariance matrix using the

realized variance/covariance estimates. Johnstone (2001) and Johnstone and Lu (2009), among

others, point out that as the size of the portfolio covariance matrix goes to infinity, this naive

estimator is inconsistent and the eigenvalues and eigenvectors of the estimated covariance matrix

may deviate substantially from the true values. To solve this problem, banding and thresholding

techniques are proposed to yield consistent large covariance matrices. The works of Bickel and

Levina (2008a), Bickel and Levina (2008b), Wang and Zou (2010), and Cai and Liu (2011), among

others, address this issue. Aı̈t-Sahalia and Xiu (2017) use principle component method to estimate

large covariance matrices. Ledoit and Wolf (2003), (2004) and (2017) propose to calculate large

covariance matrix using the shrinkage method. Compared against the MGARCH family of models,

these methods can deal with the curse of dimensionality quite successfully. However, they do not

assume any underlying dynamic structure of the covariance matrices and hence may have drawbacks

2



for forecasting.

The main focus of this paper is to propose a method to estimate and forecast large covariance

matrix. First, we modify the latent factor model of Tao et al. (2011) and apply it to correlation ma-

trix. We assume that the dynamic high-dimension correlation matrix is driven by a low-dimension

latent process, and this latent component can be estimated via principal component analysis. We

model the dynamic structure of the latent correlation factors by fitting a vector autoregressive

(VAR) model. This captures the short-memory dynamics of the latent factors. Forecasts for these

factors are then used to generate forecasts for the full correlation matrix. Second, we forecast the

volatility of individual asset returns using the Heterogeneous Autoregressive (HAR) model of Corsi

(2009). This model captures the long-memory properties of realized variances.1 Finally, we combine

the realized volatility forecasts with the large correlation matrix forecasts to obtain large covariance

matrix forecasts. This method enables us to model the dynamics of the large covariance matrix by

focusing on a reduced number of latent factors. It also utilizes rich information of high-frequency

intraday transaction data in calculating large correlation matrix.2

Our method differs from that of Tao et al. (2011) in two aspects. First, Tao et al. (2011) model

the covariance matrix process by assuming a short-memory dynamic structure of the vectorized

factor covariance matrices. Instead, we model the correlation matrix process and the univariate

volatility processes separately. We assume a short-memory structure for the vectorized latent

factors and a long-memory structure for the volatility processes. Second, to obtain raw large

covariance matrix for the eigen-analysis, Tao et al. (2011) use a truncation method on elements of

the realized covariance matrix. Instead, we calculate the raw large correlation matrix by regulating

the eigenvalues of the matrix using the nonlinear shrinkage method of Ledoit and Wolf (2017).3

We perform an empirical comparison of our method against the following methods: the factor

covariance matrix method of Tao et al. (2011), the cDCC method of Aielli (2013), and the DCC-

1See Ding et al. (1993), Bollerslev and Mikkelsen (1996) and Baillie (1996), among others, for discussion of
long-memory properties of volatility.

2See Andersen et al. (2013) for discussion of the advantages of high-frequency volatility estimates over traditional
ARCH/GARCH family estimates.

3We thank Ledoit and Wolf for providing the codes (www.econ.uzh.ch/en/people/faculty/wolf/publications.html).
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shrinkage method of Engle et al. (2017). Our method performs the best in reporting smaller

forecast errors in our Monte Carlo simulation study. Also, it has better performance in terms

of out-of-sample portfolio allocation for constructing both the global minimum variance (GMV)

portfolio and the Markowitz portfolio with momentum signal.

The plan of the rest of this paper is as follows. In Section 2, we describe the construction of our

factor correlation matrix approach. Some Monte Carlo results for the performance of our estimates

are reported in Section 3. Section 4 describes an empirical investigation of the performance of

different large covariance matrix forecasts in terms of out-of-sample asset allocation. Some con-

cluding remarks are given in Section 5. A summary of the implementation procedure of our method

is described in the Appendix.

2 Forecasting Large Covariance Matrix

2.1 Model Set-up

Let Xt = (X1t, · · · , Xdt)
′ be an Itô process given by

dXt = µtdt+ σ′tdBt, t = 1, · · · , T, (1)

where the stochastic processes Xt,Bt,µt, and σt are defined on the filtered probability space

denoted by (Ω,F , {Ft, t ∈ [0, T ]}, P ). Bt is a d-dimensional standard Brownian motion with

respect to Ft, µt is a d-dimensional drift vector, σt is a d× d matrix, and µt and σt are assumed

to be predictable processes with respect to the filtration Ft. We assume d to be large, typically in

the hundreds.

The integrated covariance matrix of Xt for the tth period (from time t− 1 to time t) is defined

as the d× d matrix

Σt =

∫ t

t−1
σ′sσs ds, t = 1, · · · , T, (2)

and the integrated correlation matrix for the tth period is the d× d matrix

Γt = Σ̃
− 1

2
t ΣtΣ̃

− 1
2

t , t = 1, · · · , T, (3)

where Σ̃t is obtained by replacing off-diagonal elements of Σt by zero.
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We denote til as the lth trading time stamp of asset i and nit as the total number of observed

transactions in period t for asset i, where i = 1, · · · , d and l = 1, · · · , nit,. At time stamp til, we

observe the trading price Ytil , which is the contaminated price of the efficient price Xtil due to

market microstructure noise. Thus,

Ytil = Xtil + εtil , i = 1, · · · , d, l = 1, · · · , nit, (4)

where εtil are assumed to be iid microstructure noise with mean zero and (time invariant) variance

ηi at the lth time stamp for stock i. We also assume that εtil and Xtil are independent. Our

objective is to estimate and forecast the integrated covariance matrix of Xt using high-frequency

data.

Given an arbitrary positive definite matrix V , we define the correlation matrix transformation

(CMT) of V , denoted by V ∗, by

V
∗

= Ṽ −
1
2V Ṽ −

1
2 , (5)

where Ṽ is V with the off-diagonal elements replaced by zero. Note that V ∗ is a positive definite

matrix with its diagonal elements being unity, and is thus a well-defined correlation matrix.4

2.2 Estimation of Large Correlation Matrix using High-Frequency Data

We adopt the matrix factor model of Tao et al. (2011) for high-frequency covariance matrix

estimation and apply it to large correlation matrix. Specifically, we assume

Γt = AΓf
t A
′ + Γ0, (6)

where Γf
t , t = 1, · · · , T , are r × r (r � d) positive definite matrices treated as a dynamical factor

correlation process, A is a d × r factor loading matrix with A′A = Ir, and Γ0 is a d × d positive

definite time invariant matrix. Thus, to capture the dynamics of the d× d correlation matrices Γt,

we control the parametric dimension by modeling the r × r latent factor matrices Γf
t .5

4Note that Ṽ − 1
2 is the diagonal matrix with diagonal elements being the reciprocal of the square-root of the

diagonal elements of V . Γt of equation (3) is the CMT of Σt in equation (2).

5Note that Γf
t need not be a well-defined correlation matrix. We assume, however, this is a latent factor matrix

generating the large correlation matrix Γt.
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We first estimate the covariance matrix Σt, from which the correlation matrix Γt can be calcu-

lated using the CMT. To estimate Σt, we adopt the nonlinear shrinkage method proposed by Ledoit

and Wolf (2017).6 The corresponding estimate of the correlation matrix will then be denoted by

Γ̂t.

To calculate the time invariant matrices A and Γ0 in (6), we use the method of Tao et al. (2011)

for covariance matrices and apply it to our model. Thus, we define

Ŝ =
1

n

n∑
t=1

(Γ̂t − Γ̂)2, (7)

where Γ̂ = 1
n

∑n
t=1 Γ̂t. We use the r orthonormal eigenvectors corresponding to the r largest

eigenvalues of Ŝ as the columns of the factor loading matrix A, and denote this estimate by Â.

The estimated factor matrix is then computed as

Γ̂f
t = Â′Γ̂tÂ, (8)

and the estimate of Γ0 is

Γ̂0 = Γ̂− ÂÂ′Γ̂ÂÂ′. (9)

2.3 Forecasting Factor Correlation Matrix and Large Correlation Matrix

We use the Vector Autoregressive (VAR) Model to capture the short-run dynamics of the latent

factors. For a r × r matrix Γ, let vech(Γ) denote the vector obtained by stacking together all

elements on and below the diagonal of Γ. The VAR model for Γf
t is given by

vech(Γf
t ) = α0 +

q∑
j=1

αjvech(Γf
t−j) + et, (10)

where α0 is a r̃× 1 vector with r̃ = r(r+ 1)/2, and αj , for j = 1, · · · , q, are r̃× r̃ square matrices.

et is a r̃× 1 vector white noise process with zero mean and finite fourth moments. Empirically, we

fit equation (10) using Γ̂f
t as observed values of Γf

k , for k = 1, · · · , t − 1, to obtain the estimated

coefficients α̂j for j = 0, 1, · · · , q, and then α̂j are used to compute the out-of-sample forecasted

latent factors matrix for the tth period.

6Engle, Ledoit and Wolf (2017) show that the nonlinear shrinkage method has superior performance when applied
to the Dynamic Conditional Correlation (DCC) Model. An alternative method is the threshold multi-scale realized
volatility matrix (TMSRVM) estimator proposed by Tao et al. (2013). This method will also be considered in our
empirical application.
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We denote the forecast of Γf
t conditional upon information up to time t− 1 using the estimated

VAR model by Γ̌f
t . Then, the forecast of the d× d large correlation matrix Γ̌t is computed as

Γ̌t = ÂΓ̌f
t Â
′ + Γ̂0. (11)

Note that Γ̌t may not be a well defined correlation matrix (positive definite matrix with unit

diagonal elements). To resolve this problem we apply the CMT on Γ̌t to obtain Γ̌∗t as the forecasted

correlation matrix. On the other hand, if Γ̌t is not positive definite, we project the matrix onto the

space of positive definite matrices using the method of Fan et al. (2012).

2.4 Forecasting Realized Variance and Large Covariance Matrix

We further forecast the variance of individual assets separately using the Heterogenous Autoregres-

sive (HAR) model of realized volatility proposed by Corsi (2009). We estimate the HAR equation

as follows

RVi,t = ωi + αiRVi,t−1 + βiRV
w
i,t−1 + γiRV

m
i,t−1, i = 1, · · · , d, (12)

where RVi,t is the calculated realized variance of asset i in period t, RV w
i,t−1 = 1

5

∑5
s=1RVi,t−s,

RV m
i,t−1 = 1

22

∑22
s=1RVi,t−s. To compute RVi,t, we use the subsampling method of Zhang et al.

(2005) at 3-min intervals. The estimated models in equation (12) are used to forecast the realized

variances. These forecasts are then collected to form the matrix Ďt, which is a d × d diagonal

matrix with its ith diagonal element being the forecasted realized variance.

Finally, we compute the forecasted large covariance matrix as

Σ̌t = Ď
1
2
t Γ̌

∗
t Ď

1
2
t . (13)

We call this forecast procedure M1, which is summarized in the Appendix.

3 Monte Carlo Simulation

We conduct a Monte Carlo study to investigate the finite sample performance of our proposed

factor correlation matrix method.
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3.1 Simulation Model Set-up

The following price generation process is assumed in our Monte Carlo experiment:

d logXt = ς ′tdWt, (14)

Σt = D
1
2
t ΓtD

1
2
t , where Σt = ς ′tςt (15)

dσ2it = κ(αi − σ2it)dt+ γσitdBit, i = 1, · · · , d, (16)

where Bit is a 1-dimensional standard Brownian motion, Dt is a d × d diagonal matrix with its

ith diagonal element being σ2it, and Wt is a d-dimensional standard Brownian motion which is

uncorrelated with Bit, for i = 1, · · · , d. We assume κ = 5, γ = 0.4. At each simulation run αi are

randomly drawn from the uniform distribution in the interval [0.1, 0.2].

We assume that the correlation matrix Γt follows a factor model as in (6) and the number of

factors r is 3. We generate the diagonal elements of Γf
t from three AR(1) processes with mean,

AR coefficients and noise variance being (12, 0.55, 3), (5, 0.4, 1.2), and (3, 0.25, 0.7), respectively.

Moreover, we assume the off-diagonal elements of Γf
t to be equal to 0. For S and Γ0 in (6), we use

empirically calculated values based on tick-by-tick transactions of 100 largest capitalization stocks

from the NYSE and NASDAQ (as of 2015) in the period 2004 through 2016. We then simulate

Γt from the factor model, with the loading matrix A being the eigenvectors corresponding to the

three largest eigenvalues of Ŝ. We update each individual price process every 10 sec and update

the correlation matrix Γt daily.

We generate simulated transactions with initial value of X0 = log(60) and σ0 being randomly

drawn from the uniform distribution in the interval [0.1, 0.2]. We add iid microstructure noise to

the simulated price process with noise-to-signal ratio being 0.005%.7 We let d = 100 and repeat

the simulation procedure 100 times.

3.2 Monte Carlo Simulation Results

We calculate the forecasted covariance matrices using our proposed factor correlation matrix

method M1. For comparison, we also vary M1 by modeling the factor covariance matrix pro-

7See Dong and Tse (2017b) for empirical estimates of the market microstructure noise variance.
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cess instead of the factor correlation matrix process, and call this method M2. Similar to M1,

M2 uses nonlinear shrinkage method to estimate the raw covariance matrix and a VAR model to

capture the dynamics of the latent covariances (not correlations). For M1 and M2, we use 1-min

returns for the nonlinear shrinkage estimate of Ledoit and Wolf (2017) to calculate the raw covari-

ance estimate. M2 differs from M1 in that the HAR forecast for the realized variance of individual

assets is not performed and the dynamic covariances are directly modelled using the VAR model.

For further comparison, we also include the method of Tao et al. (2011) in our MC simulation and

denote this estimate as M3. For M3, we calculate the d × d realized covariance matrices Σ̂t using

the threshold multi-scale realized volatility matrix (TMSRVM) estimator of Tao et al. (2013) and

treat them as raw estimates of Γt. We use the threshold values 0.95 and 0.98 for TMSRVM and

intraday returns are also sampled at 1-min frequency. We then compute the forecasted covariance

matrices by enforcing the factor covariance matrix method. Thus, M3 is the same as M2 except

for the method in estimating the raw large covariance matrix. We fit a VAR(1) model for the

estimated vectorized factor correlation/covariance matrices for M1, M2 and M3.

Since the true number of factors is 3, we select the number of factors r to be 2, 3 or 4 for M1, M2

and M3 in our computation. Finally, we also include the DCC model with nonlinear shrinkage of

Engle, Ledoit, and Wolf (2017) for comparison. This method uses daily return data and is denoted

as the DCC-shrinkage method.

We compare all estimates by investigating their performance in calculating the d×d covariance

matrices in terms of the Frobenius norm errors and spectral norm errors, as well as errors of the

estimated inverse covariance matrices. In Table 1 we report the out-of-sample norm errors of the

forecasted covariance matrices as well as the norm errors of the inverse covariance matrices.

From Table 1 we can see that our proposed forecast M1 performs the best by reporting smaller

Frobenius norm errors and spectral norm errors, both for the forecasted covariance matrices and

the forecasted inverse of covariance matrices. M1, M2 and M3 produce similar results whether r is

2, 3 or 4. Comparing M1 and M2, we can see that the use of the factor correlation matrix model

together with long-memory forecasts of realized variances outperforms the factor covariance matrix

approach. Comparing M2 and M3, we can see that the use of nonlinear shrinkage method rather
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than the TMSRVM method produces better results. As expected, methods using high-frequency

data performs better than the DCC-Shrinkage method using daily data only.

We also do some robustness checks by varying some settings of our Monte Carlo simulation

studies. For M1 and M2, we implement the nonlinear shrinkage method using returns at 30-sec

and 90-sec sampling frequencies. Results are quite similar to those of 1-min frequency. For M1,

M2 and M3, we also fit a VAR(2) model for the estimated vectorized factor correlation/covariance

matrices. Results are also very similar.

4 Empirical Comparison of Portfolio Selection

We compare the performance of various forecasts of variance matrix based on out-of-sample asset

allocation. We select 100 largest market capitalization stocks (as of 2015) that are listed in NYSE

or NASDAQ, with at least 200 trading days in any calendar year between 2004 and 2016 (3171

trading days). Tick-by-tick millisecond data are compiled and downloaded from the WRDS Daily

TAQ (DTAQ) database.

4.1 Portfolio Selection Problems

We compare the performance of various variance forecast methods based on selection for the global

minimum variance (GMV) portfolio and the Markowitz portfolio with momentum signal.

For the GMV portfolio, we choose the portfolio weights to minimize the portfolio variance by

solving the following minimization problem

min
w

w′Σtw, subject to w′1 = 1, (17)

where w is the vector of portfolio weights, 1 is the vector of ones, and Σt is the portfolio covariance

matrix at t. The analytical solution of this portfolio is

w =
Σ−1t 1

1′Σ−1t 1
. (18)

We also investigate the problem of choosing portfolio weights such that the portfolio variance

is minimized given a specific expected rate of return rp. Thus, we solve the following minimization

problem

min
w

w′Σtw, subject to w′1 = 1 and w′µ = rp, (19)
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where µ is the expected rate of return of the constituents stocks. The analytical solution of this

problem is

w = Σ−1t [µ,1]

a b

b c

−1 rp
1

 , (20)

where a = µ′Σ−1µ, b = µ′Σ−11, and c = 1′Σ−11.

Empirically, we replace Σt in equations (18) and (20) with the forecasted covariance matrices.

We follow Engle et al. (2017) and treat the momentum factor of Jegadeesh and Titman (1993)

as the required portfolio return rp. We construct portfolios based on the calculated out-of-sample

optimal weights, and then evaluate different methods by comparing the corresponding portfolio’s

realized variance and information ratio. The latter is defined as the portfolio return divided by

the portfolio volatility and is particularly relevant as a performance measure for the Markowitz

portfolio with momentum signal.8

4.2 Epps Effect and Sampling Frequency

Due to transaction asynchronicity, selection of sampling frequency is an important issue in high-

frequency data analysis of multiple stocks. The well known Epps effect due to Epps (1979) highlights

the problem that stock return correlation tends to go to zero when the tick data are sampled at

higher frequencies. For illustration, we calculate the daily realized correlation of XOM and IBM in

2016. Figure 1 reports the average daily correlation when transactions are sampled at frequencies

from 1 min to 30 min. We observe that the mean realized correlation increases as the sampled

transactions become more sparse. The estimates tend to be stable after 15-min frequency. We

check this phenomenon using other Dow Jones Industry Average (DJIA) stocks and obtain similar

results. To mitigate the Epps effect, we sample transactions at 15-min frequency in our study.9

8Note that focusing on the out-of-sample standard deviation is now inappropriate due to estimation error in the
momentum signal.

9Aı̈t-Sahalia and Xiu (2017) suggest sampling transactions at frequencies between 15 min and 30 min. In contrast,
Tao et al. (2011) use 5-min returns. We sample intraday transactions based on the Calendar Time Sampling scheme.
For comparison of schemes of Calender Time, Tick Time and Business Time, see Oomen (2006) and Dong and Tse
(2017a). We also add that we incorporate the close-to-open overnight returns in our sampled data.
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4.3 Out-of-Sample Comparison of Portfolio Selection

We compare the performance of different covariance estimates in terms of their ability to select

portfolios with lowest variance for the GMV portfolio and higher information ratio for the Markowitz

portfolio with momentum signal. We calculate the optimal portfolio weights based on (18) and (20)

using the out-of-sample forecasted covariance matrices. We then construct optimal portfolios of the

next period based on the calculated optimal weights. To avoid an excessive amount of turnover and

thus transaction costs, we update all portfolios at biweekly frequency, that is, every 10 consecutive

trading days.10 To calculate the volatility of the constructed portfolio, we use the RV method using

portfolio intraday returns at 15-min frequency.

To select the number of factors r in equation (6), we calculate the shrinked biweekly correlation

matrices Γ̂t, for t = 1, · · · , 317, and plot 100 sorted eigenvalues of Ŝ in Figure 2. We observe that

the largest eigenvalue is substantially larger than others. We also calculate the eigenvalues for

the shrinked biweekly covariance matrices and report the results in Figure 3. Similar observation

is obtained, except that the magnitude of the eigenvalues declines more gradually.11 Thus, to

fit the factor correlation/covariance matrices we let the number of factors r be 3, 4 and 5 in our

empirical implementation. The number of coefficients of the VAR model increases quickly as the lag

parameter q or the number of factors r increases. Thus, we fit the diagonal-VAR(q) models for the

vectorized factor matrices, with q = 1. We fit the cDCC model of Aielli (2013) and the shrinkage

DCC method of Engle et al. (2017) using the biweekly close-to-close returns. For the cDCC model,

we compute the DCC coefficients using the bivariate composite quasi-likelihood method of Pakel

et al. (2014) based on contiguous pairs.12

We report the calculated mean portfolio realized variance and information ratio in Table 2, for

both the GMV portfolio and the Markowitz portfolio with momentum signal problem. We observe

that empirically M1 performs the best in reporting smaller mean portfolio realized variance and

10As there are 3171 trading days in our sample, we have a total of 317 periods. We start to calculate the out-of-
sample portfolio weights at t = 251. To calculate the forecasted biweekly variance, we use a model similar to HAR
and select daily RV, weekly RV and monthly RV as explanatory variables.

11Results for the TMSRVM covariance matrices are similar.

12We also fit these models using daily close-to-close returns. But poorer results are obtained.
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larger portfolio information ratio. The cDCC estimates have rather poor performance. The factor

correlation/covariance matrix models are robust with respect to the choice of r. The results further

confirm our finding in the MC simulation study of the advantage of using the factor correlation

matrix model set-up, as well as the use high-frequency data. We also achieve better results by using

the nonlinear shrinkage estimate for the covariance matrices. Interestingly, although the DCC-

Shrinkage estimate of Engle et al. (2017) does not utilize high-frequency data, it performs quite

well compared against M2 and M3 for the Markowitz portfolio with momentum signal problem.

This may further suggests the good performance of the nonlinear shrinkage estimate of Ledoit and

Wolf (2017).13

5 Conclusions

We have proposed a factor correlation matrix approach to model and forecast large covariance

matrices using high-frequency data. The dynamical structure of the large correlation matrices is

assumed to be driven by a low-dimension latent process. We compute the low-dimension latent

process using the principle component analysis on the shrinked correlation matrices and model

the vectorized components using a short-memory VAR model. In contrast, the realized variance

of individual assets is forecasted using the HAR model. We then forecast the large covariance

matrix by combining the short-memory estimated correlation matrix and the long-memory realized

volatilities. Our Monte Carlo simulation and empirical studies show that our method performs the

best among alternative methods in the literature.
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tion for high-dimensional Itô processes with measurement errors.” The Annals of Statistics 41,

no. 4 (2013): 1816-1864.

[32] Tao, Minjing, Yazhen Wang, Qiwei Yao, and Jian Zou. “Large volatility matrix inference via

combining low-frequency and high-frequency approaches.” Journal of the American Statistical

Association 106, no. 495 (2011): 1025-1040.

[33] Tse, Yiu K., and Albert K. C. Tsui. “A multivariate generalized autoregressive conditional

heteroscedasticity model with time-varying correlations.” Journal of Business & Economic

Statistics 20, no. 3 (2002): 351-362.

[34] Wang, Yazhen, and Jian Zou. “Vast volatility matrix estimation for high-frequency financial

data.” The Annals of Statistics 38, no. 2 (2010): 943-978.

16



[35] Zhang, Lan, Per A. Mykland, and Yacine Aı̈t-Sahalia. “A tale of two time scales: Determin-

ing integrated volatility with noisy high-frequency data.” Journal of the American Statistical

Association 100, no. 472 (2005): 1394-1411.

Appendix

Suggested Procedure of Forecasting Large Covariance Matrix

We suggest a method of forecasting large covariance matrix of asset returns using high-frequency

data. This method assumes long-memory property of realized volatility and short-memory property

of correlation matrix. We call this method M1, and the forecasting steps are as follows.

(1) Compute the d× d covariance matrix of asset returns in the period from time t− 1 to time

t using 15-min intraday returns and close-to-open returns (overnight jumps) using the nonlinear

shrinkage method of Ledoit and Wolf (2017). Denote this matrix by Σ̂t and compute the correlation

matrix in this period, denoted by Γ̂t, by applying the CMT to Σ̂t.

(2) Compute

Γ̂ =
1

n

n∑
t=1

Γ̂t,

and

Ŝ =
1

n

n∑
t=1

(Γ̂t − Γ̂)2.

(3) Specify the number of latent factors r (r � d) of the correlation matrix. Compute the d× r

matrix Â as the r orthonormal eigenvectors of Ŝ corresponding to the r largest eigenvalues. Also,

compute

Γ̂0 = Γ̂− ÂÂ′Γ̂ÂÂ′. (21)

and calculate the estimated latent factor matrix for period t as

Γ̂f
t = Â′Γ̂tÂ, t = 1, · · · , T. (22)

(4) Estimate the parameters αj , for j = 0, 1, · · · , q, in the VAR model

vech(Γ̂f
t ) = α0 +

q∑
j=1

αjvech(Γ̂f
t−j) + et, (23)
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where α0 is a r̃× 1 vector with r̃ = r(r+ 1)/2, and αj , for j = 1, · · · , q, are r̃× r̃ square matrices.

Use the estimated coefficients α̂j to compute the forecasted r × r latent factor matrix conditional

on information up to time t− 1 and denote it by Γ̌f
t .

(5) Forecast the d×d correlation matrix in period t conditional on information up to time t− 1

using the factor model as

Γ̌t = ÂΓ̌f
t Â
′ + Γ̂0.

To ensure a well defined correlation matrix, apply the CMT to Γ̌t and estimate the correlation

matrix of the d asset returns by

Γ̌
∗
t = ˜̌Γ− 1

2

t Γ̌t
˜̌Γ− 1

2

t ,

where ˜̌Γt is Γ̌t with off-diagonal elements replaced by zero. If Γ̌t is not positive-definite, project

the matrix onto the space of positive definite matrices using the method of Fan et al. (2012). This

procedure ensure that Γ̌
∗
t is a well-defined correlation matrix.

(6) Forecast the realized volatilities using the HAR method as in Section 2.4. Denote Ďt as the

d×d diagonal matrix with its ith element being the forecasted realized variance of asset i in period

t. Finally, compute the forecasted d× d covariance matrix as

Σ̌t = Ď
1
2
t Γ̌

∗
t Ď

1
2
t .
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Table 1. Norms of errors of estimated covariance matrices and their inverses

Error of covariance matrix Error of inverse covariance matrix
Method r Frobenius

Norm (×10−3)
Spectral norm

(×10−3)
Frobenius norm Spectral norm

M1 2 2.5444 2.0188 22367 11944
3 2.5432 2.0183 22368 11945
4 2.5433 2.0180 22371 11945

M2 2 3.7947 2.7714 25509 13986
3 3.5904 2.6057 25558 14002
4 3.4367 2.4834 25558 13998

M3 95% 2 13.5865 13.0353 4.57×108 4.57×108

3 13.5864 13.0351 5.31×108 5.31×108

4 13.5863 13.0349 14.29×108 14.29×108

98% 2 14.5765 13.8933 4.19×108 4.19×108

3 14.5763 13.8930 5.38×108 5.38×108

4 14.5761 13.8928 10.57×108 10.57×108

DCC-Shrinkage 6.9558 5.0044 48907 16576

Notes: M1 uses the factor correlation matrix method, where the raw large correlation matrices are
calculated using CMT on the covariance matrices computed using nonlinear shrinkage method of
Ledoit and Wolf (2017) and the volatilities are calculated using the HAR method of Corsi (2009).
M2 calculates covariance matrices using the factor covariance matrix method, where the raw large
covariances matrices are calculated using the nonlinear shrinkage method. M3 is the same as M2,
except that the covariance matrices are calculated using the TMSRVM method of Tao et al. (2011).
r is the number of low-dimension factors in the factor model. The DCC-Shrinkage method is due
to Engle, Ledoit, and Wolf (2017), which applies nonlinear shrinkage to the DCC model.



Table 2. Estimated realized variance of constructed portfolios

GMV Markowitz portfolio with a signal
Method r Volatility (%) Information ratio Volatility (%) Information ratio

M1 3 9.7373 1.4246 9.8131 1.5702
4 9.6986 1.5344 9.7853 1.6455
5 9.6904 1.5157 9.7846 1.6292

M2 3 9.8345 0.9158 9.9533 1.0761
4 10.1826 0.7693 10.2871 0.9157
5 10.1832 0.7730 10.2874 0.9195

M3 3 10.9701 1.1198 11.0449 1.1279
4 10.9777 1.1083 11.0519 1.1179
5 10.9741 1.1298 11.0484 1.1379

DCC-Shrinkage 11.0258 1.1662 11.0845 1.1918

cDCC 20.0295 0.8213 27.1846 0.8643

Notes: The figures are the mean realized daily volatility (annualized standard deviation) and infor-
mation ratio of the constructed portfolios. Out-of-sample optimal portfolio weights are calculated
for the global minimum variance (GMV) portfolio and the Markowitz portfolio with momentum
signal. M1 uses the factor correlation matrix method, where the raw large correlation matrices are
calculated using CMT on the covariance matrices computed using nonlinear shrinkage method of
Ledoit and Wolf (2017) and the volatilities are calculated using the HAR method of Corsi (2009).
M2 calculates covariance matrices using the factor covariance matrix method, where the raw large
covariances matrices are calculated using the nonlinear shrinkage method. M3 is the same as M2,
except that the covariance matrices are calculated using the TMSRVM method of Tao et al. (2011).
r is the number of low-dimension factors in the factor model. The DCC-Shrinkage method is due to
Engle, Ledoit, and Wolf (2017), which applies nonlinear shrinkage to the DCC model. The cDCC
model is due to Aielli (2013).
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Figure 1: Averaged estimated daily realized correlation at different frequencies.
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Figure 2: Estimated eigenvalues for the calculated correlation matrices.
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Figure 3: Estimated eigenvalues for the calculated covariance matrices.
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