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Summary The robustness of the Lagrange Multiplier (LM) tests for spatial error dependence
of Burridge (1980) and Born and Breitung (2011) for the linear regression model, and Anselin
(1988) and Debarsy and Etur (2010) for the panel regression model with random or fixed
effects are examined. While all tests are asymptotically robust against distributional mis-
specification, their finite sample behaviour may be sensitive to the spatial layout. To overcome
this shortcoming, standardized LM tests are suggested. Monte Carlo results show that the new
tests possess good finite sample properties. An important observation made throughout this
study is that the LM tests for spatial dependence need to be both mean- and variance-adjusted
for good finite sample performance to be achieved. The former is, however, often neglected in
the literature.

Keywords: Bootstrap, Distributional mis-specification, Group interaction, LM test, Moran’s
I test, Robustness, Spatial layout, Spatial panel models.

1. INTRODUCTION

LM tests for spatial error correlation in the linear regression model (Burridge, 1980, and Born
and Breitung, 2011) and the panel regression model (Anselin, 1988, Baltagi et al., 2003, and
Debarsy and Ertur, 2010) are developed under the assumption that the model errors are normally
distributed. This leads to a natural question on how robust these tests are against mis-specification
of the error distribution. While these tests are robust asymptotically against distributional mis-
specification, as can be inferred from the results of Kelejian and Prucha (2001) for Moran’s I

test in the linear regression model, and proved in this article for the panel regression model, their
finite sample behaviour may not be so; it can also be sensitive to the spatial layout. The main
reason, as shown in this paper, is the lack of standardization of these tests, that is, subtracting
the mean and dividing by the standard deviation.1 In particular, when each spatial unit has many

1 Honda (1985) shows that the LM test for random individual effects in the panel data regression model is uniformly
most powerful and is robust against non-normality. Moulton and Randolph (1989) show that this test can perform poorly
when the number of regressors is large or the interclass correlation of some of the regressors is high. They suggest a
standardized LM test by centring and scaling Honda’s LM test. They show that the standardized LM test performs better
in small samples when asymptotic critical values from the normal distribution are used. However these papers do not
deal with spatial correlation.

C© 2013 The Author(s). The Econometrics Journal C© 2013 Royal Economic Society. Published by Blackwell Publishing Ltd, 9600
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104 B. H. Baltagi and Z. Yang

neighbours (the number of neighbours grows with the number of spatial units), the mean of these
tests can be far below zero even when the sample size is fairly large (e.g. 1000), causing severe
size distortion of these tests.

Standardized LM (SLM) tests are recommended, which correct both the mean and variance
of the existing LM tests under more relaxed assumptions on the error distributions. It is shown
that these LM tests are not only robust against distributional mis-specification, but are also
quite robust against changes in the spatial layout. Monte Carlo simulations show that SLM
tests have excellent finite sample properties and significantly outperform their non-standardized
counterparts. The Monte Carlo simulations also show that SLM tests are comparable to the
bootstrap counterparts (when they are available) in terms of size. Once size-adjusted, LM and
SLM tests have similar power.

It is well known in the statistics and econometrics literature that standardizing an LM test
improves its performance especially if asymptotic critical values are used. Moulton and Randolph
(1989) emphasized this for the panel data regression model with random individual effects,
see also Honda (1991), Baltagi et al. (1992), and Baltagi (2008). Koenker (1981) showed that
the standardization (or studentization in his terminology) leads to a robustified LM test for
heteroscedasticity. This point, however, is not emphasized in the spatial econometrics literature,
except for Anselin (1988), Kelejian and Prucha (2001), and Florax and de Graaff (2004), where
the authors mainly stressed variance correction but not mean correction. Recently, Robinson
(2008) proposed a general chi-squared test for non-spherical disturbances, including spatial
error dependence (SED), in a linear regression model. He pointed out that this test has an
LM interpretation and may not provide a satisfactory approximation in small samples. He
then introduced a couple of modifications directly on the chi-squared statistic. Our approach
of standardization is more in line with that of Koenker (1981). It works on the ‘standard normal’
version of an LM test, and thus is simpler. More importantly, our approach allows the errors to
be non-normal and is not restricted to linear regression models of non-spherical disturbances.

Our Monte Carlo simulation shows that the mean correction as well as variance correction
are both essential to attain good size and power. Section 2 deals with tests for SED in a
linear regression model. Section 3 deals with tests for SED in a panel data regression model
with random or fixed space-specific effects. Section 4 presents the Monte Carlo results, while
Section 5 concludes the paper. Proofs of all results are given in the Appendix.

2. TESTS FOR SED IN A LINEAR REGRESSION MODEL

This section studies LM-type tests for zero SED in a linear regression model. Moran’s (1950) I

tests, Burridge’s (1980) LM test based on the expected information (EI) and Born and Breitung’s
(2011) LM test based on the outer product of gradients (OPG) are considered. The standardized
versions of these two LM tests are proposed for improving their finite sample performance. A
bootstrap version of Burridge’s LM test, discussed in Lin et al. (2007), is used as a benchmark
for comparisons.

2.1. Moran’s I tests

The original form of Moran’s I test (Moran, 1950) is based a sample of observations Y =
{Y1, Y2, . . . , Yn}′ on a variable of interest Y , which takes the form

C© 2013 The Author(s). The Econometrics Journal C© 2013 Royal Economic Society.



SLM tests for spatial dependence 105

I =
∑

i

∑
j wij (Yi − Ȳ )(Yj − Ȳ )∑

i(Yi − Ȳ )2
,

(2.1)

where wij is an element of an N × N spatial weight matrix W with wii = 0 and
∑N

j=1 wij =
1, i = 1, . . . , N , and Ȳ is the average of the Yis. If the observations are normal, then the null
distribution of Moran’s I test statistic is shown to be asymptotic normal. Cliff and Ord (1972)
extended Moran’s I test to the case of a spatial linear regression model:

Y = Xβ + u, (2.2)

where Y is an N × 1 vector of observations on the response variable, X is an N × k matrix
containing the values of explanatory (exogenous) variables and u is an n × 1 vector of
disturbances with mean zero and variance σ 2

u . The extended Moran’s I test takes the form

I = ũ′Wũ

ũ′ũ
, (2.3)

where ũ is a vector of OLS residuals obtained from regressing Y on X. If u is normal, then the
distribution of I under the null hypothesis of no SED is asymptotically normal with mean and
variance given by:

E (I ) = 1

N − k
tr (MW ),

Var (I ) = tr (MWMW ′) + tr ((MW )2) − 2
N−k

[tr (MW )]2

(N − k)(N − k + 2)
.

Here M = IN − X(X′X)−1X′ and IN is an N -dimensional identity matrix. In empirical
applications, the test should be carried out based on I ∗ = (I − E I )/Var

1
2 (I ), and referred to

the standard normal distribution (see Anselin and Bera, 1998). However, most of the literature
suggested or hinted at the use of I ◦ = I/Var

1
2 (I ); see, for example, Anselin (2001), Kelejian and

Prucha (2001), and Florax and de Graaff (2004). The reason may be that the mean correction is
asymptotically negligible or may be that I ◦ = I/Var

1
2 (I ) corresponds directly to the Burridge

(1980) LM test described later.

2.2. LM and standardized LM tests based on EI

Consider the case where u in (2.2) follows either a spatial autoregressive (SAR) process u =
λWu + ε or a spatial moving average (SMA) process u = λWε + ε, where W is defined, λ

is the spatial parameter and ε is a vector of independent and identically distributed (iid) normal
innovations with mean zero and variance σ 2

ε . The hypothesis of no spatial error correlation can be
expressed explicitly as H0 : λ = 0 vs Ha : λ �= 0. For this model specification, Burridge (1980)
derived an LM test for H0 based on the EI:

LMEI = N√
S0

ũ′Wũ

ũ′ũ
, (2.4)

C© 2013 The Author(s). The Econometrics Journal C© 2013 Royal Economic Society.



106 B. H. Baltagi and Z. Yang

where S0 = tr (W ′W + W 2). Under the null hypothesis of no spatial error correlation,

LMEI
d−→ N (0, 1). LMEI resembles I ◦ except for a scale factor. Our Monte Carlo simulations

show that it is important to standardize it if one is using asymptotic critical values, especially for
certain spatial layouts. Some discussion on this is given after Theorem 2.1.

The three test statistics (I ∗, I ◦ and LMEI ) are derived under the assumption that the errors
are normally distributed. Theorem 2.1 shows that all three tests behave well asymptotically under
non-normality. But how do they behave in finite samples? We first present a modified version of
these tests allowing the error distributions to be non-normal, and then give some discussion
answering why the finite sample performance of I ◦ and LMEI can be poor. The following
regularity conditions are necessary for studying the asymptotic behaviour of these test statistics.

ASSUMPTION 2.1. The innovations {εi} are iid with mean zero, variance σ 2
ε and excess

kurtosis κε. Also, the moment E|εi |4+η exists for some η > 0.

ASSUMPTION 2.2. The elements {wij } of W are at most of order h−1
N uniformly for all i, j,

with the rate sequence {hN }, bounded or divergent, satisfying hN/N → 0 as N goes to infinity.
The N × N matrices {W} are uniformly bounded in both row and column sums with wii = 0
and

∑
j wij = 1 for all i.

ASSUMPTION 2.3. The elements of the N × k matrix X are uniformly bounded for all N, and
limN→∞ 1

N
X′X exists and is non-singular.

Assumptions 2.1–2.3 are essentially the same as those in Yang (2010) for a spatial error
components (SEC) model where the disturbance vector u has two independent components with
the first being spatially correlated, i.e., u = Wv + ε, in contrast to the SED model considered in
this paper where u = λWu + ε or u = λWε + ε.

THEOREM 2.1. Under Assumptions 2.1–2.3, the standardized LMEI test for testing H0 : λ = 0
versus Ha : λ �= 0 (or λ < 0, or λ > 0) takes the form

SLMEI = Nũ′(W − S1IN )ũ

(κ̃εS2 + S3)
1
2 ũ′ũ

, (2.5)

where S1 = 1
N−k

tr (WM), S2 = ∑N
i=1 a2

ii and S3 = tr (AA′ + A2), A = MWM − S1M , aii are
the diagonal elements of A, and κ̃ε is the excess sample kurtosis of ũ. Under H0, we have (a)

SLMEI
d−→ N (0, 1); (b) the four test statistics, I ∗, I ◦, LMEI and SLMEI are asymptotically

equivalent.

To help in understanding the theory, we outline the key steps leading to the standardization
given in (2.5). First note that ũ′Wũ, the key quantity appearing in the numerators of (2.3)–(2.5),
is not centred because E(ũ′Wũ) = σ 2

ε tr (WM) �= 0. This motivates us to consider ũ′Wũ −
σ 2

ε tr (WM), or its feasible version ũ′Wũ − 1
n−k

(ũ′ũ)tr (WM) = u′Au. Upon finding the variance
of u′Au and replacing σ 2

ε in the variance expression by its MLE, we obtain (2.5). Some remarks
follow.

The SLM statistic given in Theorem 2.1 has an identical form as that for the SEC model given
in Yang (2010). The difference is that in Yang (2010) W is replaced by WW ′. As a result, LMEI ,
and SLMEI are asymptotically equivalent due to the fact that W has zero diagonal elements.

C© 2013 The Author(s). The Econometrics Journal C© 2013 Royal Economic Society.
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In contrast, the LM and SLM statistics for the SEC model are not asymptotically equivalent in
general due to the fact that the diagonal elements of WW ′ are not zero. See the proofs for the
two sets of results for details.

It is important to note that the standardization of Moran’s I in earlier work based on
ũ′Wũ/ũ′ũ and its mean and variance are derived under the assumption that u ∼ N (0, σ 2

ε IN ).
Robinson’s (2008) approach works on LM2

EI or (ũ′Wũ/ũ′ũ)2. Again, the derivations of the
mean and variance depend on the normality assumption. Our approach works on the quadratic
form u′Au with its mean and variance readily available as long as the first four moments of
the elements of u exist. Thus, our approach is simpler and does not depend on the normality
assumption. It is applicable to other models with more complicated structure.

Although both Moran’s I and the LMEI test statistics are derived under the assumption
that the innovations are normally distributed, Theorem 2.1 shows that they are asymptotically
equivalent to the SLM test derived under relaxed conditions on the error distribution. This means
that all four tests are robust against distributional mis-specification when the sample size is large.
But will the four tests behave similarly under finite samples? The following discussion points out
that their finite sample performance may be different.

The major difference between LMEI and SLMEI lies in the mean correction of the statistic
ũ′Wũ/ũ′ũ. This correction may quickly become negligible as the sample size increases under
certain spatial layouts, but not necessarily under other spatial layouts. From (A.1) in the
Appendix, we see that this mean correction factor is of the magnitude

NS1

(κ̃εS2 + S3)
1
2

= Op

(
(hN/N )

1
2
)
,

which shows that the magnitude of the mean correction depends on the ratio (hN/N )
1
2 .

For example, when hN = N0.8, (hN/N)
1
2 = N−0.1. Thus, if N = 20, 100 and 1000, N−0.1 =

0.74, 0.63 and 0.50. This shows that the means of LMEI and I ◦ can differ from the means
of LM∗

EI and I ∗ by 0.74 when N = 20, 0.63 when N = 100 and 0.50 when N = 1000. Note
that situations leading to hN = N0.8 may be the spatial layouts constructed under large group
interactions, where the group sizes are large and the number of groups is small.2 Our results show
that in this situation, the non-standardized LM test or Moran’s I test without the mean correction
may be misleading. Monte Carlo simulations presented in Section 4 confirm these findings.

2.3. LM and standardized LM tests based on OPG

Recently, Born and Breitung (2011) derived an OPG variant of Burridge’s LM test based on an
elegant idea: decomposing the score into a sum of uncorrelated components making use of the
fact that the diagonal elements of the W matrix are zero, so that the variance of the score can be
estimated by the OPG method. The test can be expressed simply as follows:

LMOPG = ũ′Wũ√
(ũ � ũ)′(ξ̃ � ξ̃ )

, (2.6)

where � denotes the Hadamard product, ξ̃ = (Wl + W ′
u)ũ, Wl and Wu are the lower and upper

triangular matrices such that Wl + Wu = W , and LMOPG|H0

d−→ N (0, 1). An important feature

2 See Lee (2007) for a detailed discussion of spatial models with group interactions.

C© 2013 The Author(s). The Econometrics Journal C© 2013 Royal Economic Society.



108 B. H. Baltagi and Z. Yang

of this test is that it is robust against heteroscedasticity of unknown form. However, the test
statistic is not centred and thus is expected to suffer from the same problem as Burridge’s LM
test even when the innovations are homoscedastic.

Combining the idea leading to SLMEI and the idea leading to LMOPG, we obtain a
standardized OPG-based LM test. Decompose the matrix A defined in Theorem 2.1 as A = Al +
Au + Ad , where Ad = diag(A), Al = tril(A) − Ad and Au = triu(A) − Ad , with diag(A),
tril(A) and triu(A) denoting, respectively, the diagonal, lower triangular and upper triangular
matrices of a square matrix A.

THEOREM 2.2. Under Assumptions 2.1–2.3, the standardized LMOPG test for testing H0 : λ =
0 versus Ha : λ �= 0 (or λ < 0, or λ > 0) takes the form

SLMOPG = ũ′(W − S1IN )ũ√
(ũ � ũ)′[ζ̃ � ζ̃ + (Adũ) � (Adũ)]

, (2.7)

where ζ̃ = (Al + A′
u)ũ. UnderH0, (a) SLMOPG

d−→ N (0, 1), and (b) SLMOPG ∼ LMOPG.

Like LMOPG, SLMOPG is also asymptotically robust against heteroscedasticity. However, the
finite sample mean correction is derived under the assumption that the errors are homoscedastic.
Monte Carlo results presented in Section 4 show that SLMOPG improves LMOPG significantly
in terms of the finite sample null distribution, and that it is generally comparable, in terms of the
tail probabilities, to the bootstrap LM test suggested below.

2.3.1. Tests based on bootstrapP values. We end this section by describing the bootstrap LM
test that serves as the benchmark for the finite sample performance of our SLM tests. Essentially,
each of the tests presented above has a bootstrap counterpart in the spirit of Lin et al. (2007). One
of the simplest is that based on LMEI , denoted as BLMEI . Note that LMEI = N√

S0

u′MWMu
u′Mu

. Our
suggested bootstrap procedure is as follows:

Step 1. Draw a bootstrap sample ũb from the OLS residuals ũ;
Step 2. Compute the bootstrap value of LMEI as BLMb

EI = N√
S0

ũb′MWMũb

ũb′Mũb ;

Step 3. Repeat (a)–(b) B times to give {BLMb
EI }Bb=1, and thus the bootstrap P -value.

The suggested bootstrap procedure is simpler than that of Lin et al. (2007) in that each
bootstrap value of the tests statistic is based on a bootstrap sample of the OLS residuals, and
thus the re-estimation of the spatial parameter in each bootstrap sample is avoided.3

3. TESTS FOR SED IN A PANEL LINEAR REGRESSION MODEL

This section studies the LM and standardized LM tests for zero SED in a panel linear regression
with random or fixed effects. When repeated observations are made on the same set of N spatial

3 We thank an anonymous referee for suggesting the bootstrap test. By noting that LMEI |H0 is free of the parameters
and is asymptotically robust against error distribution, the validity of the suggested bootstrap procedure can be inferred
from the work of Hall and Horowitz (1996).

C© 2013 The Author(s). The Econometrics Journal C© 2013 Royal Economic Society.
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units over time, Model (2.2) becomes

Yt = Xtβ + ut , t = 1, . . . , T , (3.1)

resulting in a panel data regression model, where {Yt ,Xt } denote the data collected at the t th time
period. A defining feature of a panel data model is that the error vector ut is allowed to possess
a general structure of the form

uit = μi + εit , i = 1, . . . , N, t = 1, . . . , T , (3.2)

where μi denotes the unobservable space-specific effect, due to aspects of regional structure,
firm’s specific feature, etc. Spatial units may be dependent. To allow for such a possibility,
Anselin (1988) introduced an SAR process into the disturbance vector εt = {ε1t , . . . , εNt }′,

εt = λWεt + vt , t = 1, . . . , T , (3.3)

where the spatial weight matrix W is defined similarly to that in model (2.2), and vt is an N × 1
vector of iid remainder disturbances with mean zero and variance σ 2

v .
We are interested in testing the hypothesis H0 : λ = 0. We consider the scenario where the

time dimension T is small and the ‘space’ dimension N is large. This is the typical feature for
many micro-level panel data sets. The space-specific effects μi can be random or fixed. As T is
small, the time-specific effects can be directly built into the model.

3.1. Panel linear regression with random effects

Let B = IN − λW . Stacking the vectors (Yt , ut , vt ) and the matrix Xt , the model can be written
in matrix form:

Y = Xβ + u, u = (ιT ⊗ IN )μ + (IT ⊗ B−1)v, (3.4)

where ιm represents an m × 1 vector of ones, Im represents an m × m identity matrix.
Assume (a) the elements of μ are iid with mean zero and variance σ 2

μ, (b) the elements of
v are iid with mean zero and variance σ 2

v and (c) μ and v are independent. The log-likelihood
function, assuming μ and v are both normally distributed, is given by:

�
(
β, σ 2

v , σ 2
μ, λ

) = −NT

2
log

(
2πσ 2

v

)− 1

2
log |
| − 1

2σ 2
v

u′
−1u, (3.5)

where 
 = 1
σ 2

v
E (uu′) = φ(JT ⊗ IN ) + IT ⊗ (B ′B)−1, 
−1 = J̄T ⊗ (T φIN + (B ′B)−1)−1 +

ET ⊗ (B ′B), φ = σ 2
μ/σ 2

v , JT = ιT ι′T , J̄T = 1
T
JT and ET = IT − J̄T . See Anselin (1988) and

Baltagi et al. (2003) for details. Maximizing (3.3) gives the MLE of the model parameters if
the error components are normally distributed, otherwise it gives a quasi-maximum likelihood
estimator (QMLE).

Anselin (1988, p. 155) presents an LM test of H0 : λ = 0 for Model (3.4) in the presence of
random space-specific effects, which can be written in the form

LMRE = ũ′[ρ̃2(J̄T ⊗ W ) + ET ⊗ W ]ũ

σ̃ 2
v [(T − 1 + ρ̃2)S0]

1
2

, (3.6)

C© 2013 The Author(s). The Econometrics Journal C© 2013 Royal Economic Society.



110 B. H. Baltagi and Z. Yang

where S0 = tr (W ′W ) + W 2), ρ̃ and σ̃ 2
v are the constrained QMLEs of ρ = σ 2

v /(T σ 2
μ + σ 2

v ) and
σ 2

v under H0, and ũ is the vector of constrained QMLE residuals.4

A nice feature of the LM test is that it requires only the estimates of the model under
H0. However, even under H0, the constrained QMLE of ρ (or φ) does not posses an explicit
expression, meaning that ρ̃ has to be obtained via numerical optimization. In fact, under H0, the
partially maximized log-likelihood (with respect to β and σ 2

v ) is given by:

�max(ρ) = constant − NT

2
log σ̃ 2

v (ρ) + N

2
log ρ, (3.7)

where σ̃ 2
v (ρ) = 1

NT
ũ′(ρ)
−1

0 ũ(ρ), ũ(ρ) = Y − Xβ̃(ρ), β̃(ρ) = (X′
−1
0 X)−1X′
−1

0 Y and

−1

0 = 
−1|λ=0 = ρJ̄T ⊗ IN + ET ⊗ IN . Maximizing (3.7) gives the constrained QMLE
(under H0) ρ̃ of ρ, which in turn gives the constrained QMLEs β̃ ≡ β̃(ρ̃), σ̃ 2

v ≡ σ̃ 2
v (ρ̃),


̃−1
0 ≡ ρ̃J̄T ⊗ IN + ET ⊗ IN , and ũ ≡ ũ(ρ̃), for β, σ 2

v , 
−1
0 and u(ρ), respectively.

Similar to the LM test in the linear regression model, the numerator of LMRE given in
(3.6) is again a quadratic form in the disturbance vector u, but now u contains two independent
components. The large sample mean of this quadratic form is zero, but its finite sample mean
is not necessarily zero. This may distort the finite sample distribution of the test statistic, in
particular the tail probability. We now present a standardized version of the LMRE test, which
corrects both the mean and the variance and has a better finite sample performance in the situation
where each spatial unit has ‘many’ neighbours. Lemma A.3 given in the Appendix is essential in
deriving the modified test statistics. Some basic regularity conditions are listed later.

ASSUMPTION 3.1. The random effects {μi} are iid with mean zero, variance σ 2
μ and excess

kurtosis κμ. The idiosyncratic errors {vit } are iid with mean zero, variance σ 2
v and excess kurtosis

κv . Also, the moments E|μi |4+η1 and E|vit |4+η2 exist for some η1, η2 > 0.

ASSUMPTION 3.2. The elements {wij } of W are at most of order h−1
N uniformly for all i, j, with

the rate sequence {hN }, bounded or divergent, satisfying hN/N → 0 as N goes to infinity. The
N × N matrices {W} are uniformly bounded in both row and column sums with wii = 0 and∑

j wij = 1 for all i.

ASSUMPTION 3.3. The elements of the NT × k matrix X are uniformly bounded for all N and
limN→∞ 1

N
X′X exists and is non-singular.

Now, define A(ρ) = ρ2(J̄T ⊗ W ) + ET ⊗ W , M(ρ) = INT − X(X′
−1
0 X)−1X′
−1

0 ,
C(ρ) = M ′(ρ)[A(ρ) − a0(ρ)
−1

0 ]M(ρ) and a0(ρ) = 1
NT −k

tr [
0M
′(ρ)A(ρ)M(ρ)]. Let

diagv(A) be a column vector formed by the diagonal elements of a square matrix A. We
have the following theorem.

THEOREM 3.1. Assume that the constrained QMLE ρ̃ under H0 is a consistent estimator of
ρ. Under Assumptions 3.1–3.3, for testing H0 : λ = 0, the standardized LM test which corrects

4 Baltagi et al. (2003) considered the joint, marginal and conditional LM tests for λ and/or σ 2
μ, which includes (3.6) as

a special case, and presented Monte Carlo results under spatial layouts with a fixed number of neighbours. Apparently,
the LM test given in (3.6) does not fit into the framework of Robinson (2008), but it does if the test concerns H0 : λ =
0, σμ = 0. We note that our approach is applicable to all scenarios similar to (3.6), that is, testing spatial effect allowing
other type of effects (such as random effects, heteroscedasticity, etc.) to exist in the model.
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both the mean and variance takes the form:

SLMRE = ũ′(Ã − ã0
̃
−1
0

)
ũ

[φ̃2κ̃μã′
1ã1 + κ̃vã

′
2ã2 + tr (
̃(C̃ ′ + C̃)
̃C̃)]

1
2 σ̃ 2

v

, (3.8)

where Ã = A(ρ̃), C̃ = C(ρ̃), ã0 = a0(ρ̃), κ̃μ is the sample excess kurtosis of μ̃ = (J̄T ⊗ IN )ũ,
κ̃v is the sample excess kurtosis of ṽ = ũ − (ι ⊗ IN )μ̃, ã1 = diagv[(ι′T ⊗ IN )C̃(ιT ⊗ IN )] and

ã2 = diagv(C̃). Under H0, we have (a) SLMRE
d−→ N (0, 1) and (b) SLMRE ∼ LMRE .

Similar to the results of Theorem 2.1, the results of Theorem 3.1 show that the mean
correction factor for the standardized LM test is also of the order Op((hN/N )

1
2 ). Thus, the LMRE

test can have large mean bias when hN is large.5

3.2. Panel linear regression with fixed effects

When the space-specific effects {μi} are treated as fixed, the incidental parameters problem
occurs. The standard practice is to remove these fixed effects by some kind of transformation.
Recently, Lee and Yu (2010) studied the asymptotic properties of QML estimation of spatial
panel models with fixed effects, which contain the above model as a special case. They used an
orthogonal transformation to the model specified by (3.1)–(3.3) to obtain

Y ∗
t = X∗

t β + ε∗
t , ε

∗
t = λWε∗

t + v∗
t , t = 1, . . . , T − 1,

where (Y ∗
1 , Y ∗

2 , . . . , Y ∗
T −1) = (Y1, Y2, . . . , YT )FT ,T −1, FT ,T −1 is a T × (T − 1) matrix whose

columns are the eigenvectors of IT − 1
T
ιT ι′T corresponding to the eigenvalues of one, and

similarly ε∗
t , v∗

t and the columns of X∗
t are defined.

Debarsy and Ertur (2010) followed up with LM tests for spatial dependence. In case of a
spatial error panel model with fixed space-specific effects, the LM test takes the form:

LMFE = N (T − 1)√
S0

ε̃∗′
Wε̃∗

ε̃∗′ε̃∗ , (3.9)

where ε̃∗ is OLS residuals from regressing Y ∗ on X∗ with Y ∗ being the stacked {Y ∗
t } and X∗

the stacked {X∗
t }, S0 = (T − 1)S0 and W = IT −1 ⊗ W . With the fixed effects specification, the

model wipes out time-invariant regressors.

ASSUMPTION 3.4. The idiosyncratic errors {vit } are iid with mean zero, variance σ 2
v and

excess kurtosis κv . Also, the moment E |vit |4+η exists for some η > 0.

ASSUMPTION 3.5. The elements of the NT × k matrix X are uniformly bounded for all N and
limN→∞ 1

N

∑T
t=1(Xt − X̄)′(Xt − X̄) exists and is non-singular, where X̄ = 1

T

∑T
t=1 Xt .

Define M = IN(T −1) − X∗(X∗′X∗)−1X∗′, A = (FT ,T −1 ⊗ IN )(MWM − S1M)(F ′
T ,T −1 ⊗ IN )

and aii as the diagonal elements of A. We have the following theorem:

5 The condition in Theorem 3.1 may be relaxed to allow ρ̃ to be an arbitrary consistent estimator of ρ.
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THEOREM 3.2. Under Assumptions 3.2, 3.4 and 3.5, for testing H0 : λ = 0, the standardized
LM test which corrects both the mean and variance takes the form:

SLMFE = N (T − 1)√
κ̃vS2 + S3

ε̃∗′(W − S1IN(T −1))ε̃∗

ε̃∗′ε̃∗ , (3.10)

where S1 = 1
N(T −1)−k

tr (WM), S2 = ∑N(T −1)
i=1 a2

ii , S3 = tr (AA
′ + A

2) and κ̃v is a consistent

estimator of κv . Under H0, we have (a) SLMFE
d−→ N (0, 1) and (b) SLMFE ∼ LMFE .

For practical applications of the above theorem, one needs a consistent estimator of κv . While
the elements of ε∗ are uncorrelated, they may not be independent and thus the sample kurtosis of
ε̃∗ may not provide a consistent estimator for κv as in the case of a linear regression model. The
following corollary provides the needed result.

COROLLARY 3.1. Under the assumptions of Theorem 3.2, a method of moments type estimator
for κv that is consistent under H0 takes the form:

κ̃v = (T − 1)2∑T
t=1 c4

t

(∑N
i=1(1′

T −1ε̃
∗
i·)

4

N−1(ε̃∗′ε̃∗)2
− 3

)
, (3.11)

where ct is the t-th element of FT ,T −11T −1, and ε̃∗′
i· is the i-th row of (ε̃∗

1, ε̃
∗
2, . . . , ε̃

∗
T −1).

3.2.1. Tests based on bootstrap P -values. Again, for each of the LM tests presented, one may
construct a bootstrap counterpart by extending the procedure given at the end of Section 2. This
is typically the case for the fixed effects model as seen later, but for the random effects model
there are two complications: one is the existence of error components that makes it unclear on the
way of re-sampling, and the other is that the parameter σ 2

μ has to be estimated in each bootstrap
sample, making the bootstrap procedure computationally more demanding. We thus present a
bootstrap version only for LMFE, denoted as BLMFE . Noting that LMFE = N(T −1)√

S0

ε∗′
MWMε∗
ε∗′Mε∗ , a

bootstrap procedure similar to that for LMEI can be obtained as follows:

Step 1. Draw a bootstrap sample ε̃∗b from the OLS residuals ε̃∗;
Step 2. Compute the bootstrap value of LMFE as BLMb

FE = N(T −1)√
S0

ε̃∗b′
MWMε̃∗b

ε̃∗b′Mε̃∗b ;

Step 3. Repeat (a) and (b) B times to give {BLMb
FE}Bb=1, and thus the bootstrap P -value.

The suggested BLMFE test can be used as a benchmark for the finite sample performance of
the SLM tests. Its validity can again be inferred from Hall and Horowitz (1996).

4. MONTE CARLO RESULTS

The finite sample performance of the test statistics introduced in this paper are evaluated based
on a series of Monte Carlo experiments. These experiments involve a number of different
error distributions and a number of different spatial layouts. Comparisons are made between
the standardized tests and their non-standardized counterparts to see the effects of the error
distributions, the spatial layouts and the design of the regression model. In cases of a linear
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regression and panel linear regression with fixed effects, LM tests referring to bootstrap P -values
are also implemented to serve as benchmarks for the comparison.

4.1. Spatial layouts and error distributions

Three general spatial layouts are considered in the Monte Carlo experiments and they are applied
to all the test statistics involved in the experiments. The first is based on the Rook contiguity, the
second is based on Queen contiguity and the third is based on the notion of group or social
interactions with the number of groups G = Nd where 0 < d < 1. In the first two cases, the
number of neighbours for each spatial unit stays the same (2–4 for Rook and 3–8 for Queen)
and does not change when sample size N increases. However, in the last case, the number of
neighbours for each spatial unit increases with the sample size but at a slower rate, and changes
from group to group.

The details for generating the W matrix under Rook contiguity is as follows: (a) index the
N spatial units by (1, 2, . . . , N), randomly permute these indices and then allocate them into
a lattice of r × m(≥ N ) squares, (b) let Wij = 1 if the index j is in a square which is on the
immediate left, or right, or above, or below the square which contains the index i, otherwise
Wij = 0 and (c) divide each element of W by its row sum. The W matrix under Queen contiguity
is generated in a similar way, but with additional neighbours which share a common vertex with
the unit of interest.

To generate the W matrix according to the group interaction scheme, (a) calculate the
number of groups according to G = Round(Nd ), and the approximate average group size m =
N/G, (b) generate the group sizes (n1, n2, . . . , nG) according to a discrete uniform distribution
from m/2 to 3m/2, (c) adjust the group sizes so that

∑G
i=1 ni = N and (d) define W =

diag{Wi/(ni − 1), i = 1, . . . ,G}, a matrix formed by placing the sub-matrices Wi along the
diagonal direction, where Wi is an ni × ni matrix with ones on the off-diagonal positions and
zeros on the diagonal positions. In our Monte Carlo experiments, we choose d = 0.2, 0.5 and 0.8,
representing, respectively, the situations where (a) there are few groups and many spatial units in
a group, (b) the number of groups and the sizes of the groups are of the same magnitude and (c)
there are many groups with few elements in each. Under Rook or Queen contiguity, hN defined
in the theorems is bounded, whereas under group interaction hN is divergent with rate N1−d . This
spatial layout covers the scenario considered in Case (1991). Lee (2007) shows that the group
size variation plays an important role in the identification and estimation of econometric models
with group interactions, contextual factors and fixed effects. Yang (2010) shows that it also plays
an important role in the robustness of the LM test of SEC.

The reported Monte Carlo results correspond to the following three error distributions: (a)
standard normal, (b) mixture normal, standardized to have mean zero and variance 1 and (c) log-
normal, also standardized to have mean zero and variance one. The standardized normal-mixture
variates are generated according to

ui = [(1 − ξi)Zi + ξiτZi]/(1 − p + p ∗ τ 2)0.5,

where ξ is a Bernoulli random variable with probability of success p and Zi is standard normal
independent of ξ . The parameter p in this case also represents the proportion of mixing the two
normal populations. In our experiments, we choose p = 0.05, meaning that 95% of the random
variates are from standard normal and the remaining 5% are from another normal population with
standard deviation τ . We choose τ = 10 to simulate the situation where there are gross errors in
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the data. The standardized log-normal random variates are generated according to

ui = [exp(Zi) − exp(0.5)]/[exp(2) − exp(1)]0.5.

This gives an error distribution that is both skewed and leptokurtic. The normal mixture gives
an error distribution that is still symmetric like normal but leptokurtic. Other non-normal
distributions, such as normal-gamma mixture and chi-squared, are also considered and the results
are available from the authors upon request. All the Monte Carlo experiments are based on 10,000
replications.

4.2. Performance of the tests for the linear regression model

The finite sample performance of seven LM-type test statistics are investigated and compared:
LMEI , SLMEI , BLMEI which is LMEI referring to the bootstrap P -values (Lin et al., 2007),
I ◦, I ∗, LMOPG and SLMOPG. The Monte Carlo experiments are carried out based on the
following data generating process:

Yi = β0 + X1iβ1 + X2iβ2 + ui.

The design of the experiment, or the way the regressors are generated also matters. We thus

consider two scenarios: (a) IID scheme: X1i

iid∼ √
6U (0, 1) and X2i

iid∼ N (0, 1)/
√

2; and (b)
Non-IID scheme: the ith pair of X values in the gth group are generated according to X1,ig =
(2zg + zig)/

√
7 and X2,ig = (vg + vig)/

√
7, where {zg, zig, vg, vig} are iid N (0, 1) across all i

and g (see Lee, 2004a). Both X1 and X2 are treated as fixed in the experiments. The parameters
β = {5, 1, 1}′ and σ = 1, resulting in a signal-to-noise ratio of 1. Five different sample sizes are
considered, that is, N = 50, 100, 200, 500 and 1000.

4.2.1. Null behaviour of the tests. Tables 1(a–c) reports the (null) empirical mean, standard
deviation and the tail probabilities (10%, 5% and 1%) for the seven test statistics. From the results
(reported and unreported), the general observations are as follows: (a) in terms of closeness to
N (0, 1), the standardized tests (SLMEI , I ∗ and SLMOPG) improve significantly over their non-
standardized counterparts (LMEI , I 0 and LMOPG); (b) the finite sample null distributions of
LMEI , I 0 and LMOPG can be altered greatly by the spatial layout, and they can also be affected
by the error distributions and the way the regressors are generated; and (c) in general, SLMEI

and in particular SLMOPG, perform comparably with BLMEI .
Some details are as follows: all tests including BLMEI perform better under (a) light spatial

dependence compared with heavy spatial dependence, (b) normal errors rather than non-normal
errors, (c) IID regressors rather than Non-IID regressors. The tests LMEI , I 0 and LMOPG have
a downward mean shift, which can be sizable even when N is quite large. Besides the mean
shift, LMEI also has a downward SD shift, which can be sizable as well when N is not large, but
goes to zero as N increases. In contrast, SLMEI , I ∗ and SLMOPG have mean close to zero and
SD close to 1 which explain why they have better size in all experiments. Recalling that LMEI

corrects neither mean nor SD, and that I 0 and LMOPG correct only for SD, it is clear now why
I 0 and LMOPG have size distortions, and why LMEI is more severely undersized than I 0. Thus,
the LM tests of spatial dependence need to be both mean- and variance-adjusted for good finite
sample performance.

The results in Table 1 show that one of the major factors affecting the null distribution of
LMEI , I 0 and LMOPG is the spatial layout, or rather the degree of spatial dependence. In
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Table 1a. Empirical means, SDs and tail probabilities: linear regression, normal errors.

Group: G = N0.5 Queen contiguity

Test Mean SD 10% 5% 1% Mean SD 10% 5% 1%

N = 50

1 −0.5270 0.8408 0.0615 0.0144 0.0038 −0.2268 0.9312 0.0784 0.0363 0.0058

2 −0.0047 1.0367 0.0836 0.0507 0.0214 −0.0132 1.0336 0.1034 0.0545 0.0143

3 −0.5270 0.8408 0.0977 0.0485 0.0113 −0.2268 0.9312 0.0946 0.0493 0.0110

4 −0.6235 0.9948 0.1583 0.0583 0.0085 −0.2416 0.9919 0.0994 0.0493 0.0092

5 −0.0045 0.9948 0.0743 0.0445 0.0184 −0.0127 0.9919 0.0901 0.0441 0.0115

6 −0.7146 0.9806 0.1843 0.0972 0.0163 −0.2946 0.9950 0.1116 0.0518 0.0071

7 −0.1840 1.0669 0.1315 0.0641 0.0094 −0.0748 1.0320 0.1100 0.0531 0.0070

N = 100

1 −0.5027 0.8892 0.0859 0.0244 0.0048 −0.1811 0.9585 0.0906 0.0396 0.0070

2 −0.0035 1.0334 0.0884 0.0477 0.0193 0.0091 1.0154 0.1010 0.0515 0.0130

3 −0.5027 0.8892 0.1018 0.0519 0.0107 −0.1811 0.9585 0.0988 0.0498 0.0097

4 −0.5725 1.0126 0.1553 0.0677 0.0086 −0.1880 0.9950 0.1030 0.0476 0.0095

5 −0.0034 1.0126 0.0828 0.0453 0.0174 0.0089 0.9950 0.0936 0.0459 0.0109

6 −0.6701 1.0085 0.1825 0.1001 0.0221 −0.2271 0.9920 0.1080 0.0492 0.0077

7 −0.1576 1.0667 0.1280 0.0659 0.0119 −0.0361 1.0124 0.1044 0.0508 0.0084

N = 200

1 −0.4032 0.9200 0.0920 0.0323 0.0045 −0.1246 0.9781 0.0962 0.0446 0.0088

2 0.0168 1.0199 0.0924 0.0498 0.0177 −0.0057 1.0040 0.1031 0.0515 0.0100

3 −0.4032 0.9200 0.1074 0.0557 0.0110 −0.1246 0.9781 0.1029 0.0493 0.0111

4 −0.4425 1.0097 0.1362 0.0591 0.0076 −0.1266 0.9939 0.1017 0.0478 0.0095

5 0.0167 1.0097 0.0887 0.0475 0.0172 −0.0056 0.9939 0.0991 0.0490 0.0094

6 −0.5403 1.0171 0.1597 0.0878 0.0223 −0.1571 0.9962 0.1050 0.0496 0.0088

7 −0.1133 1.0485 0.1192 0.0638 0.0141 −0.0371 1.0052 0.1052 0.0491 0.0079

N = 500

1 −0.3315 0.9401 0.0865 0.0368 0.0059 −0.0844 0.9869 0.0961 0.0462 0.0078

2 0.0045 1.0010 0.0888 0.0434 0.0139 −0.0017 0.9975 0.0988 0.0480 0.0087

3 −0.3315 0.9401 0.0925 0.0501 0.0117 −0.0844 0.9869 0.0998 0.0482 0.0088

4 −0.3516 0.9970 0.1123 0.0516 0.0086 −0.0850 0.9935 0.0986 0.0480 0.0082

5 0.0045 0.9970 0.0876 0.0426 0.0137 −0.0017 0.9935 0.0971 0.0469 0.0084

6 −0.4395 1.0082 0.1380 0.0703 0.0187 −0.1064 0.9947 0.0999 0.0484 0.0088

7 −0.0976 1.0235 0.1029 0.0527 0.0120 −0.0236 0.9980 0.1010 0.0468 0.0085

N = 1000

1 −0.2929 0.9654 0.0956 0.0427 0.0076 −0.0591 0.9884 0.0946 0.0454 0.0101

2 −0.0060 1.0089 0.0965 0.0473 0.0145 −0.0011 0.9937 0.0954 0.0467 0.0108

3 −0.2929 0.9654 0.1035 0.0525 0.0109 −0.0591 0.9884 0.0969 0.0487 0.0119

4 −0.3055 1.0069 0.1118 0.0540 0.0103 −0.0593 0.9918 0.0959 0.0462 0.0103

5 −0.0059 1.0069 0.0958 0.0470 0.0145 −0.0011 0.9918 0.0950 0.0460 0.0106

6 −0.3829 1.0143 0.1256 0.0715 0.0166 −0.0743 0.9931 0.0978 0.0478 0.0108

7 −0.0923 1.0234 0.1112 0.0575 0.0121 −0.0162 0.9947 0.0969 0.0477 0.0111

Notes: Test: 1 = LMEI, 2 = SLMEI, 3 = bootstrap LMEI, 4 = I ◦, 5 = I ∗, 6 = LMOPG and 7 = SLMOPG. X-Value: Non-IID for group
interaction scheme, and IID for Queen contiguity. True parameter values: β = {5, 1, 1}′, and σ = 1.

Continued
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Table 1b. Empirical means, SDs and tail probabilities: linear regression, normal mixtures.

Group: G = N0.5 Queen contiguity

Test Mean SD 10% 5% 1% Mean SD 10% 5% 1%

N = 50

1 −0.5280 0.7350 0.0414 0.0112 0.0031 −0.2253 0.8103 0.0510 0.0230 0.0036

2 −0.0060 0.8916 0.0559 0.0324 0.0112 −0.0114 0.8927 0.0669 0.0328 0.0076

3 −0.5280 0.7350 0.0838 0.0407 0.0098 −0.2253 0.8103 0.0825 0.0410 0.0088

4 −0.6247 0.8696 0.1115 0.0395 0.0058 −0.2400 0.8631 0.0659 0.0315 0.0059

5 −0.0057 0.8696 0.0520 0.0288 0.0099 −0.0111 0.8631 0.0588 0.0283 0.0059

6 −0.6874 0.8907 0.1288 0.0543 0.0052 −0.3028 0.9863 0.0967 0.0392 0.0025

7 −0.0920 1.0212 0.1017 0.0415 0.0044 −0.0456 1.0136 0.0954 0.0363 0.0028

N = 100

1 −0.4969 0.7844 0.0552 0.0227 0.0057 −0.1875 0.8417 0.0588 0.0283 0.0062

2 0.0032 0.8946 0.0601 0.0341 0.0139 0.0023 0.8882 0.0667 0.0342 0.0094

3 −0.4969 0.7844 0.0873 0.0437 0.0114 −0.1875 0.8417 0.0875 0.0433 0.0100

4 −0.5658 0.8932 0.1000 0.0436 0.0105 −0.1946 0.8738 0.0669 0.0331 0.0074

5 0.0033 0.8932 0.0597 0.0346 0.0137 0.0023 0.8738 0.0635 0.0314 0.0087

6 −0.6550 0.9357 0.1408 0.0624 0.0094 −0.2491 0.9764 0.0870 0.0327 0.0039

7 −0.0598 1.0185 0.1028 0.0421 0.0059 −0.0091 0.9913 0.0815 0.0308 0.0033

N = 200

1 −0.4273 0.8505 0.0722 0.0259 0.0040 −0.0994 0.9181 0.0754 0.0412 0.0111

2 −0.0098 0.9295 0.0693 0.0335 0.0097 0.0201 0.9413 0.0811 0.0442 0.0139

3 −0.4273 0.8505 0.1001 0.0499 0.0108 −0.0994 0.9181 0.1008 0.0522 0.0139

4 −0.4690 0.9334 0.1092 0.0451 0.0074 −0.1010 0.9330 0.0799 0.0438 0.0127

5 −0.0098 0.9334 0.0703 0.0343 0.0097 0.0200 0.9330 0.0786 0.0425 0.0134

6 −0.5547 0.9754 0.1338 0.0609 0.0104 −0.1472 0.9982 0.0904 0.0368 0.0038

7 −0.0783 1.0256 0.1014 0.0434 0.0052 0.0012 1.0033 0.0871 0.0351 0.0043

N = 500

1 −0.3249 0.9106 0.0791 0.0340 0.0065 −0.0890 0.9471 0.0840 0.0459 0.0116

2 0.0115 0.9678 0.0826 0.0409 0.0117 −0.0063 0.9570 0.0856 0.0471 0.0118

3 −0.3249 0.9106 0.0995 0.0517 0.0113 −0.0890 0.9471 0.0987 0.0514 0.0103

4 −0.3446 0.9657 0.1024 0.0475 0.0085 −0.0896 0.9534 0.0863 0.0474 0.0123

5 0.0115 0.9657 0.0822 0.0407 0.0116 −0.0063 0.9534 0.0830 0.0466 0.0115

6 −0.4241 0.9924 0.1273 0.0594 0.0079 −0.1127 0.9897 0.0919 0.0373 0.0045

7 −0.0582 1.0187 0.1068 0.0471 0.0043 −0.0145 0.9917 0.0874 0.0371 0.0043

N = 1000

1 −0.2814 0.9555 0.0901 0.0404 0.0079 −0.0640 0.9819 0.0948 0.0494 0.0115

2 0.0061 0.9973 0.0921 0.0467 0.0133 −0.0060 0.9872 0.0957 0.0486 0.0122

3 −0.2814 0.9555 0.1042 0.0522 0.0120 −0.0640 0.9819 0.1031 0.0507 0.0107

4 −0.2935 0.9966 0.1069 0.0495 0.0105 −0.0642 0.9853 0.0958 0.0500 0.0116

5 0.0061 0.9966 0.0918 0.0465 0.0132 −0.0060 0.9853 0.0951 0.0483 0.0120

6 −0.3642 1.0036 0.1268 0.0597 0.0089 −0.0847 1.0027 0.1010 0.0387 0.0039

7 −0.0619 1.0189 0.1058 0.0499 0.0079 −0.0192 1.0035 0.0963 0.0393 0.0038

Notes: Test: 1 = LMEI, 2 = SLMEI, 3 = bootstrap LMEI, 4 = I ◦, 5 = I ∗, 6 = LMOPG and 7 = SLMOPG. X-Value: Non-IID for group
interaction scheme, and IID for Queen contiguity. True parameter values: β = {5, 1, 1}′, and σ = 1. For normal mixture, P = 0.1 and τ = 5.

Continued
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Table 1c. Empirical means, SDs and tail probabilities: linear regression, log-normal errors.

Group: G = N0.5 Queen contiguity

Test Mean SD 10% 5% 1% Mean SD 10% 5% 1%

N = 50

1 −0.5198 0.7849 0.0441 0.0137 0.0042 −0.2105 0.8586 0.0563 0.0241 0.0064

2 0.0041 0.9573 0.0674 0.0394 0.0178 0.0050 0.9483 0.0789 0.0430 0.0137

3 −0.5198 0.7849 0.0861 0.0446 0.0120 −0.2105 0.8586 0.0898 0.0438 0.0085

4 −0.6151 0.9287 0.1222 0.0424 0.0082 −0.2242 0.9145 0.0745 0.0328 0.0091

5 0.0040 0.9287 0.0610 0.0366 0.0162 0.0047 0.9145 0.0691 0.0359 0.0115

6 −0.7387 0.9345 0.1623 0.0842 0.0170 −0.3630 0.9778 0.1083 0.0461 0.0057

7 −0.1662 1.0361 0.1116 0.0532 0.0070 −0.1177 1.0033 0.0963 0.0392 0.0036

N = 100

1 −0.5076 0.8186 0.0631 0.0223 0.0050 −0.2058 0.8854 0.0653 0.0283 0.0056

2 −0.0093 0.9403 0.0643 0.0392 0.0164 −0.0171 0.9358 0.0752 0.0382 0.0095

3 −0.5076 0.8186 0.0908 0.0450 0.0112 −0.2058 0.8854 0.0926 0.0453 0.0094

4 −0.5780 0.9321 0.1151 0.0486 0.0101 −0.2137 0.9192 0.0751 0.0358 0.0074

5 −0.0090 0.9321 0.0630 0.0386 0.0158 −0.0168 0.9192 0.0695 0.0354 0.0082

6 −0.7197 0.9460 0.1667 0.0865 0.0169 −0.3548 0.9971 0.1176 0.0580 0.0099

7 −0.1581 1.0032 0.0996 0.0465 0.0059 −0.1436 1.0117 0.1027 0.0486 0.0054

N = 200

1 −0.3979 0.8718 0.0660 0.0242 0.0055 −0.1305 0.9350 0.0754 0.0337 0.0096

2 0.0225 0.9573 0.0718 0.0367 0.0138 −0.0117 0.9590 0.0783 0.0406 0.0136

3 −0.3979 0.8718 0.0947 0.0487 0.0116 −0.1305 0.9350 0.1007 0.0451 0.0108

4 −0.4367 0.9568 0.1024 0.0421 0.0084 −0.1326 0.9502 0.0796 0.0360 0.0105

5 0.0225 0.9568 0.0715 0.0371 0.0137 −0.0116 0.9502 0.0748 0.0387 0.0128

6 −0.5879 0.9876 0.1496 0.0811 0.0199 −0.2868 1.0210 0.1188 0.0579 0.0102

7 −0.1343 1.0185 0.1031 0.0507 0.0096 −0.1552 1.0237 0.1082 0.0515 0.0077

N = 500

1 −0.3326 0.9001 0.0710 0.0276 0.0061 −0.0895 0.9524 0.0803 0.0386 0.0078

2 0.0034 0.9569 0.0736 0.0369 0.0136 −0.0068 0.9624 0.0840 0.0408 0.0093

3 −0.3326 0.9001 0.0905 0.0426 0.0090 −0.0895 0.9524 0.0968 0.0480 0.0089

4 −0.3527 0.9545 0.0937 0.0380 0.0084 −0.0901 0.9588 0.0828 0.0399 0.0078

5 0.0034 0.9545 0.0730 0.0365 0.0135 −0.0068 0.9588 0.0825 0.0400 0.0089

6 −0.4923 0.9882 0.1385 0.0760 0.0132 −0.2348 1.0151 0.1129 0.0560 0.0118

7 −0.1320 1.0019 0.1010 0.0471 0.0086 −0.1448 1.0122 0.1050 0.0500 0.0094

N = 1000

1 −0.2946 0.9392 0.0877 0.0367 0.0069 −0.0712 0.9479 0.0827 0.0399 0.0077

2 −0.0077 0.9801 0.0830 0.0414 0.0131 −0.0132 0.9530 0.0835 0.0417 0.0086

3 −0.2946 0.9392 0.1022 0.0497 0.0114 −0.0712 0.9479 0.0950 0.0447 0.0073

4 −0.3073 0.9796 0.1020 0.0466 0.0084 −0.0714 0.9512 0.0839 0.0405 0.0080

5 −0.0077 0.9796 0.0827 0.0414 0.0131 −0.0132 0.9512 0.0830 0.0411 0.0086

6 −0.4311 1.0054 0.1336 0.0718 0.0162 −0.1974 1.0057 0.1076 0.0528 0.0129

7 −0.1305 1.0110 0.1057 0.0504 0.0087 −0.1348 1.0025 0.1023 0.0494 0.0105

Notes: Test: 1 = LMEI, 2 = SLMEI, 3 = bootstrap LMEI, 4 = I ◦, 5 = I ∗, 6 = LMOPG and 7 = SLMOPG. X-Value: Non-IID for group
interaction scheme, and IID for Queen contiguity. True parameter values: β = {5, 1, 1}′, and σ = 1.
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situations of a large group interaction, for example, G = Round(N0.2) (results not reported to
conserve space), the number of groups ranges from 2 to 4 for N ranging from 50 to 1000. Thus,
there are only a few groups, each containing many spatial units which are all neighbours of each
other. This ‘heavy’ spatial dependence distorts severely the null distributions of LMEI , I 0 and
LMOPG, and combined with Non-IID regressors these tests fail completely. In a sharp contrast,
SLMEI still performs reasonably under these extreme situations. In contrast, in situations of
small group interaction, for example, G = Round(N0.8) (results not reported to conserve space),
the number of groups ranges from 23 to 251 for N ranging from 50 to 1000. In this case, there
are many groups each having only 2 to 4 units, giving a spatial layout with very weak spatial
dependence. As a result, the null distributions of LMEI , I 0 and LMOPG are much closer to
N (0, 1) though still not as close as those of the null distributions of SLMEI , I ∗ and SLMOPG.
These observations are consistent with the discussion following Theorem 2.1. Another factor
affecting the null distribution of LMEI , I 0 and LMOPG is the way the regressors were generated
(or the design of the model). Under the group interaction spatial layout, the null distributions of
LMEI , I 0 and LMOPG are much closer to N (0, 1) when the regressors are generated under the
IID scheme than under the Non-IID scheme.

4.2.2. Power of the tests. Empirical frequencies of rejection of the seven tests are plotted in
Figures 1(a)–(c) against the values of λ (horizontal line). Simulated critical values for each test
are used, which means that the reported powers of the tests are size-adjusted. In each plot of
Figures 1(a)–(c), the power lines for LMEI , SLMEI , I 0 and I ∗(tests 1, 2, 4 and 5) overlap.
This means that once size-adjusted, these four tests have almost identical power. This is not
surprising as all four tests share the same term ũ′Wũ/ũ′ũ. The four tests differ mainly in their
locations and scales, and thus have different sizes or null behaviours in general when referred
to the standard normal distribution. If, however, the exact critical values are used, they become
essentially the same test. However, in empirical applications, asymptotic critical values are often
used. In this case, it is important to do the mean and variance corrections to the test statistics so
that the asymptotic critical values give a better approximation. An alternative way is to bootstrap.
The power of BLMEI is generally very close to that of the four tests, but the power of the two
OPG-based LM tests can be noticeably different from that of the four tests.

Figure 1 further reveals that the spatial layout and the sample size are the two important
factors affecting the power of these tests. With less neighbours (plots on the right) or with a
larger sample, the tests become more powerful. It is interesting to note that when the spatial
dependence is strong, it is harder to detect the spatial dependence when the spatial parameter is
negative than when it is positive (see the plots on the left). Another factor affecting the power of
the tests is the way that the regressors are generated. The results (not reported to conserve space)
show that the tests under IID regressors are more powerful than tests under Non-IID regressors,
although the signal-to-noise ratios are the same. The error distribution also affects the power of
the tests, but to a lesser degree.

4.3. Performance of the tests for the random effects panel model

The LM and SLM tests (LMRE and SLMRE) introduced in Section 3.1 are compared by Monte
Carlo simulation based on the following DGP (Data generating process):

Yt = β0 + X1t β1 + X2tβ2 + ut , with ut = μ + εt , t = 1, . . . , T ,
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Figure 1a. Size-adjusted empirical power of tests 1–7: normal error.

where the error components μ and εt can be drawn from any of the three distributions used
in the previous two subsections, or the combination of any two distributions. For example,
μ and εt can both be drawn from the normal mixture, or μ from the normal mixture but
εt from the normal or log-normal distribution. The beta parameters are set at the same
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Figure 1b. Size-adjusted empirical power of tests 1–7: normal mixture errors.

values as before, σμ = σv = 1. For sample sizes, T = 3, 10; and N = 20, 50, 100, 200, 500.
The same spatial layouts are used as described above. The two regressors follow either the

IID scheme where {X1,it } iid∼ √
12(U (0, 1) − 0.5), and {X2,it } iid∼ N (0, 1), or the Non-IID

scheme for group interaction layout: X1,itg = (2ztg + zitg)/
√

7 and X2,itg = (vtg + vitg)/
√

7,
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Figure 1c. Size-adjusted empirical power of tests 1–7: log-normal errors.

with {ztg, zitg, vtg, vitg} being iid N (0, 1) across all i, t and g. For this model, we are unable
to implement the bootstrap method due to the extra complication in the error structure.

4.3.1. Null behaviour of the tests. The results presented in Tables 2a and 2b correspond to
cases where both μ and vt are normal, both are normal mixture, and both are log-normal.
Essentially, the same conclusions hold as in the case of the spatial linear regression model.
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Table 2a. Empirical means, SDs and tail probabilities: panel with random effects, T = 3.

Group: G = N 0.5 Queen contiguity

N Mean SD 10% 5% 1% Mean SD 10% 5% 1%

Normal errors

20 −0.4242 0.9192 0.0915 0.0308 0.0036 −0.0776 0.9854 0.0889 0.0434 0.0090

0.0040 1.0275 0.0960 0.0514 0.0184 0.0054 1.0635 0.1143 0.0602 0.0154

50 −0.2383 0.9491 0.0873 0.0334 0.0063 −0.0382 0.9904 0.0965 0.0490 0.0102

0.0044 1.0042 0.0905 0.0493 0.0135 −0.0090 1.0272 0.1083 0.0562 0.0131

100 −0.2456 0.9627 0.0919 0.0414 0.0071 −0.0211 0.9878 0.0943 0.0459 0.0105

−0.0049 1.0045 0.0943 0.0485 0.0131 0.0211 1.0152 0.1032 0.0537 0.0136

200 −0.2132 0.9866 0.0959 0.0433 0.0091 −0.0278 0.9938 0.0970 0.0474 0.0097

0.0045 1.0187 0.0971 0.0520 0.0143 −0.0042 1.0122 0.1037 0.0518 0.0108

500 −0.1808 0.9789 0.0910 0.0415 0.0073 −0.0139 1.0018 0.1025 0.0510 0.0105

0.0004 0.9993 0.0932 0.0463 0.0102 0.0001 1.0160 0.1063 0.0547 0.0118

Normal mixture error

20 −0.4533 0.8550 0.0715 0.0272 0.0046 −0.1006 0.9109 0.0698 0.0305 0.0061

−0.0193 0.9520 0.0726 0.0398 0.0125 −0.0075 0.9832 0.0927 0.0463 0.0100

50 −0.2483 0.9255 0.0780 0.0335 0.0070 −0.0473 0.9579 0.0848 0.0423 0.0080

−0.0020 0.9774 0.0823 0.0416 0.0131 −0.0131 0.9932 0.0959 0.0508 0.0104

100 −0.2501 0.9399 0.0815 0.0357 0.0075 −0.0361 0.9764 0.0931 0.0443 0.0086

−0.0076 0.9800 0.0826 0.0432 0.0117 0.0074 1.0035 0.1033 0.0511 0.0109

200 −0.2293 0.9515 0.0885 0.0385 0.0067 −0.0335 0.9867 0.0950 0.0474 0.0092

−0.0113 0.9822 0.0879 0.0440 0.0107 −0.0093 1.0048 0.1013 0.0508 0.0103

500 −0.1779 0.9830 0.0947 0.0461 0.0087 −0.0231 0.9973 0.1004 0.0484 0.0096

0.0035 1.0033 0.0947 0.0478 0.0110 −0.0090 1.0114 0.1050 0.0517 0.0103

Log-normal errors

20 −0.4311 0.8532 0.0691 0.0270 0.0041 −0.0997 0.8820 0.0583 0.0249 0.0062

0.0079 0.9501 0.0786 0.0418 0.0147 −0.0008 0.9510 0.0782 0.0373 0.0098

50 −0.2535 0.9076 0.0682 0.0311 0.0071 −0.0329 0.9338 0.0746 0.0366 0.0090

−0.0034 0.9572 0.0735 0.0380 0.0125 0.0063 0.9681 0.0846 0.0426 0.0120

100 −0.2377 0.9272 0.0761 0.0347 0.0080 −0.0443 0.9555 0.0826 0.0430 0.0090

0.0077 0.9663 0.0809 0.0435 0.0126 0.0011 0.9818 0.0898 0.0481 0.0114

200 −0.2014 0.9424 0.0798 0.0343 0.0070 −0.0293 0.9641 0.0864 0.0448 0.0094

0.0186 0.9724 0.0814 0.0409 0.0112 −0.0039 0.9819 0.0917 0.0491 0.0105

500 −0.1779 0.9741 0.0936 0.0426 0.0089 −0.0039 0.9776 0.0888 0.0449 0.0117

0.0042 0.9939 0.0944 0.0473 0.0134 0.0110 0.9914 0.0931 0.0478 0.0125

Notes: Under each N , the first row corresponds to LMRE and the second corresponds to SLMRE . X-Value: Non-IID for
group interaction scheme, and IID for Queen contiguity. True parameter values: β = {5, 1, 1}′, and σμ = σv = 1.
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Table 2b. Empirical means, SDs and tail probabilities: panel with random effects, T = 10.

Group: G = N 0.5 Queen contiguity

N Mean SD 10% 5% 1% Mean SD 10% 5% 1%

Normal errors

20 −0.1770 0.9675 0.0926 0.0441 0.0062 0.0045 1.0036 0.1011 0.0516 0.0126

−0.0032 0.9902 0.0956 0.0477 0.0093 0.0097 1.0431 0.1136 0.0606 0.0155

50 −0.1474 0.9849 0.1017 0.0448 0.0074 −0.0062 0.9968 0.0982 0.0495 0.0111

−0.0127 0.9988 0.1000 0.0463 0.0087 0.0035 1.0210 0.1082 0.0555 0.0128

100 −0.1255 0.9903 0.0943 0.0461 0.0089 0.0020 1.0096 0.1013 0.0501 0.0119

−0.0058 1.0003 0.0956 0.0453 0.0108 0.0076 1.0276 0.1075 0.0554 0.0125

200 −0.0942 0.9967 0.1005 0.0491 0.0089 0.0016 0.9987 0.1006 0.0467 0.0089

0.0063 1.0041 0.1010 0.0509 0.0102 0.0050 1.0134 0.1053 0.0513 0.0096

500 −0.0685 0.9882 0.0983 0.0464 0.0085 0.0048 1.0048 0.0981 0.0492 0.0094

0.0131 0.9928 0.0955 0.0472 0.0099 0.0072 1.0176 0.1029 0.0523 0.0103

Normal mixture error

20 −0.1698 0.9571 0.0849 0.0410 0.0096 −0.0079 0.9645 0.0896 0.0432 0.0089

0.0087 0.9788 0.0852 0.0443 0.0123 0.0035 1.0023 0.1030 0.0518 0.0117

50 −0.1247 0.9790 0.0905 0.0442 0.0102 −0.0132 0.9922 0.0965 0.0481 0.0098

0.0119 0.9925 0.0927 0.0460 0.0128 −0.0019 1.0162 0.1051 0.0534 0.0111

100 −0.1203 0.9924 0.0960 0.0478 0.0102 0.0076 0.9932 0.0997 0.0496 0.0095

0.0001 1.0022 0.0972 0.0498 0.0113 0.0140 1.0110 0.1046 0.0544 0.0113

200 −0.1027 0.9919 0.0966 0.0454 0.0090 −0.0027 0.9973 0.0980 0.0509 0.0100

−0.0020 0.9992 0.0974 0.0482 0.0102 0.0008 1.0119 0.1034 0.0548 0.0111

500 −0.0652 0.9984 0.1017 0.0490 0.0104 0.0024 0.9974 0.0985 0.0505 0.0100

0.0165 1.0031 0.1001 0.0509 0.0097 0.0048 1.0100 0.1024 0.0531 0.0106

Log-normal errors

20 −0.1893 0.9216 0.0711 0.0334 0.0081 −0.0204 0.9433 0.0753 0.0380 0.0098

−0.0081 0.9417 0.0721 0.0395 0.0118 −0.0061 0.9801 0.0859 0.0455 0.0127

50 −0.1255 0.9560 0.0800 0.0382 0.0107 −0.0200 0.9553 0.0805 0.0393 0.0090

0.0128 0.9688 0.0789 0.0439 0.0135 −0.0068 0.9783 0.0869 0.0449 0.0107

100 −0.1267 0.9615 0.0876 0.0397 0.0098 0.0004 0.9760 0.0865 0.0452 0.0115

−0.0054 0.9709 0.0864 0.0429 0.0116 0.0076 0.9934 0.0937 0.0481 0.0128

200 −0.0987 0.9755 0.0919 0.0444 0.0101 0.0023 0.9845 0.0922 0.0467 0.0109

0.0027 0.9825 0.0907 0.0472 0.0108 0.0064 0.9989 0.0961 0.0495 0.0123

500 −0.0750 0.9778 0.0948 0.0446 0.0074 0.0048 0.9928 0.0954 0.0467 0.0113

0.0068 0.9823 0.0946 0.0466 0.0090 0.0074 1.0054 0.0991 0.0496 0.0125

Notes: Under each N , the first row corresponds to LMRE and the second corresponds to SLMRE . X-Value: Non-IID for
group interaction scheme, and IID for Queen contiguity. True parameter values: β = {5, 1, 1}′, and σμ = σv = 1.
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The SLM test outperforms its LM counterpart in all the experiments considered. Increasing the
value of T from 3 to 10 significantly improves both tests. Another interesting phenomenon
is that the null behaviour of LMRE also depends upon the relative magnitude of the variance
components σ 2

μ and σ 2
v . The larger the ratio σ 2

v /σ 2
μ, the worse is the performance of the LMRE

test. In contrast, the performance of SLMRE is very robust.

4.3.2. Power of the tests. Empirical frequencies of rejection, based on the simulated critical
values, of the two tests are plotted in Figure 2 against the values of λ (horizontal line). Now each
line we see from each plot of Figure 2 is in fact an overlap of two lines, one for LMRE and the
other for SLMRE. Similar to the case of the linear regression model, the two tests have almost
identical power once they are size-adjusted. The power of the tests depend heavily on the degree
of spatial dependence and on the sample size. It also depends on the error distributions and the
type of regressors, though to a lesser degree.

Some interesting details are as follows. The two plots in the first row of Figure 2 show that the
two tests possess very low power and that the power does not seem to increase as N increase from
20 to 50 (with T fixed at 3). This is because the underlying spatial layout generates very strong
spatial dependence. When N is increased from 20 to 50, the number of groups stays at G =
Round(N0.2) = 2. This means that under this spatial layout, the degree of spatial dependence at
N = 50 is bigger than that at N = 20. As a result, the power does not go up, and might even go
down slightly.

4.4. Performance of the tests for the fixed effects panel model

The LM and SLM tests (LMFE and SLMFE) introduced in Section 3.2 are compared by Monte
Carlo simulation based on the following DGP:

Yt = X1tβ1 + X2t β2 + X3tβ3 + ut , with ut = μ + εt , t = 1, . . . , T .

As this model (after the transformation) and the corresponding test LMFE are quite similar to
the model and the test LMEI given in Section 2, a bootstrap version of LMFE , denoted as
BLMFE , is also implemented to serve as a benchmark for the finite sample performance of
the proposed test SLMFE . The fixed effects are generated either according to μ = 1

T

∑T
t=1 X3t ,

or as a vector of iid N (0, 1) random numbers independent of the X-values. The regressors

are generated according to either the IID scheme: X1,it

iid∼ 2U (0, 1), X2,it

iid∼ N (0, 1)/
√

3

and X3,it

iid∼ [exp(N (0, 1) − exp(0.5))]/(3exp(2) − 3exp(1))0.5, or the Non-IID scheme for
group interaction layout: X1,itg = (2ztg + zitg)/

√
15, X2,itg = (2vtg + vitg)/

√
15 and X3,itg =

(2etg + eitg)/
√

15 with {ztg, zitg, vtg, vitg} being iid N (0, 1) and {etg, eitg} iid [exp(N (0, 1) −
exp(0.5))]/(3exp(2) − 3exp(1))0.5 across all i, t and g.

4.4.1. Null behaviour of the tests. The results reported in Tables 3a and 3b provide even
stronger evidence for the effectiveness of centring and re-scaling in improving the finite sample
performance of an LM test, compared with the case of the random effects model. General
observations made from the Monte Carlo results for the earlier two models still hold. Our SLM
test is generally comparable to the BLM test in terms of tail probabilities.
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Figure 2. Size-adjusted empirical power of LM and SLM tests for random effects panel model.

4.4.2. Power of the tests. Selected results on size-adjusted power of the tests under the
nominal size 5% are plotted in Figure 3. Again, LMFE and SLMFE have almost identical size-
adjusted power. The power of BLMFE (based on bootstrap size) can be lower than the other two
tests when the error distribution is skewed.
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Table 3a. Empirical means, SDs and tail probabilities: panel with fixed effects, T = 3.

Group: G = N0.5 Queen contiguity

N Mean SD 10% 5% 1% Mean SD 10% 5% 1%

Normal errors

20 −0.5108 0.8690 0.0831 0.0254 0.0026 −0.0393 0.9691 0.0830 0.0394 0.0105

−0.0124 1.0487 0.0988 0.0549 0.0193 −0.0061 1.0405 0.1060 0.0577 0.0150

−0.5108 0.8690 0.1031 0.0531 0.0113 −0.0393 0.9691 0.0929 0.0470 0.0101

100 −0.2865 0.9491 0.0916 0.0392 0.0063 0.0098 0.9947 0.0976 0.0465 0.0102

−0.0013 1.0110 0.0977 0.0504 0.0142 0.0051 1.0089 0.1016 0.0498 0.0111

−0.2865 0.9491 0.1035 0.0521 0.0126 0.0098 0.9947 0.0982 0.0503 0.0119

200 −0.2776 0.9483 0.0896 0.0378 0.0058 −0.0102 1.0048 0.1024 0.0530 0.0117

0.0020 0.9970 0.0917 0.0455 0.0119 −0.0101 1.0122 0.1054 0.0547 0.0121

−0.2776 0.9483 0.0983 0.0495 0.0112 −0.0102 1.0048 0.1061 0.0556 0.0119

500 −0.2439 0.9751 0.0980 0.0440 0.0078 0.0160 0.9914 0.0970 0.0477 0.0084

0.0027 1.0076 0.0973 0.0473 0.0122 0.0134 0.9943 0.0980 0.0481 0.0086

−0.2439 0.9751 0.1024 0.0507 0.0118 0.0160 0.9914 0.0992 0.0485 0.0092

Normal mixture errors

20 −0.5117 0.8234 0.0645 0.0224 0.0041 −0.0215 0.9317 0.0745 0.0358 0.0068

−0.0129 0.9825 0.0804 0.0467 0.0171 0.0128 0.9936 0.0938 0.0492 0.0120

−0.5117 0.8234 0.0866 0.0434 0.0109 −0.0215 0.9317 0.0923 0.0447 0.0095

100 −0.2592 0.9455 0.0869 0.0358 0.0078 −0.0032 0.9657 0.0891 0.0422 0.0070

0.0278 1.0049 0.0908 0.0484 0.0152 −0.0080 0.9789 0.0929 0.0447 0.0075

−0.2592 0.9455 0.1030 0.0514 0.0130 −0.0032 0.9657 0.0957 0.0462 0.0092

200 −0.2816 0.9314 0.0842 0.0359 0.0050 0.0100 0.9920 0.0964 0.0498 0.0099

−0.0022 0.9782 0.0853 0.0435 0.0108 0.0103 0.9991 0.0990 0.0518 0.0105

−0.2816 0.9314 0.0939 0.0473 0.0098 0.0100 0.9920 0.1004 0.0527 0.0119

500 −0.2533 0.9644 0.0938 0.0415 0.0087 −0.0020 0.9972 0.0990 0.0482 0.0101

−0.0070 0.9960 0.0920 0.0459 0.0129 −0.0047 1.0001 0.0992 0.0489 0.0101

−0.2533 0.9644 0.0971 0.0497 0.0118 −0.0020 0.9972 0.1016 0.0505 0.0105

Log-normal errors

20 −0.4935 0.8121 0.0583 0.0217 0.0046 −0.0300 0.8875 0.0617 0.0273 0.0063

0.0095 0.9678 0.0782 0.0448 0.0178 0.0033 0.9449 0.0784 0.0360 0.0097

−0.4935 0.8121 0.0822 0.0422 0.0095 −0.0300 0.8875 0.0728 0.0341 0.0050

100 −0.2813 0.9135 0.0761 0.0341 0.0077 −0.0053 0.9501 0.0789 0.0405 0.0105

0.0045 0.9686 0.0816 0.0434 0.0135 −0.0101 0.9626 0.0820 0.0429 0.0113

−0.2813 0.9135 0.0923 0.0495 0.0115 −0.0053 0.9501 0.0917 0.0459 0.0103

200 −0.2842 0.9061 0.0705 0.0317 0.0049 −0.0129 0.9654 0.0883 0.0431 0.0083

−0.0049 0.9498 0.0744 0.0369 0.0105 −0.0128 0.9722 0.0899 0.0448 0.0087

−0.2842 0.9061 0.0832 0.0420 0.0087 −0.0129 0.9654 0.0955 0.0470 0.0088

500 −0.2550 0.9530 0.0902 0.0399 0.0077 −0.0043 0.9905 0.0964 0.0481 0.0088

−0.0088 0.9830 0.0884 0.0439 0.0112 −0.0070 0.9933 0.0975 0.0484 0.0089

−0.2550 0.9530 0.0962 0.0497 0.0109 −0.0043 0.9905 0.1008 0.0500 0.0089

Notes: Under each N , first row: LMFE , second row: SLMFE and third row: bootstrap LMFE . X-Value: Non-IID for group interaction,
IID for Queen contiguity; β = {1, 1, 1}′, σv = 1.

Continued
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Table 3b. Empirical means, SDs and tail probabilities: panel with fixed effects, T = 10.

Group: G = N0.5 Queen contiguity

N Mean SD 10% 5% 1% Mean SD 10% 5% 1%

Normal errors

20 −0.2167 0.9780 0.0972 0.0508 0.0064 0.0193 1.0151 0.1036 0.0538 0.0126

0.0048 1.0133 0.1034 0.0540 0.0116 0.0197 1.0322 0.1084 0.0594 0.0146

−0.2167 0.9780 0.1048 0.0574 0.0114 0.0193 1.0151 0.1104 0.0580 0.0134

50 −0.1363 1.0044 0.1044 0.0472 0.0090 −0.0243 0.9919 0.1006 0.0462 0.0084

0.0189 1.0230 0.1058 0.0532 0.0122 −0.0279 0.9983 0.1026 0.0472 0.0084

−0.1363 1.0044 0.1110 0.0532 0.0116 −0.0243 0.9919 0.1038 0.0510 0.0106

100 −0.1658 0.9835 0.0994 0.0450 0.0070 −0.0349 0.9819 0.0896 0.0460 0.0088

−0.0057 0.9982 0.1000 0.0514 0.0088 −0.0329 0.9852 0.0908 0.0464 0.0088

−0.1658 0.9835 0.1014 0.0498 0.0100 −0.0349 0.9819 0.0934 0.0466 0.0114

200 −0.1345 0.9909 0.1026 0.0470 0.0074 −0.0054 1.0029 0.1026 0.0470 0.0086

−0.0016 1.0014 0.0980 0.0494 0.0094 −0.0068 1.0046 0.1032 0.0472 0.0088

−0.1345 0.9909 0.1036 0.0512 0.0088 −0.0054 1.0029 0.1042 0.0486 0.0104

Normal mixture errors

20 −0.2345 0.9639 0.0944 0.0440 0.0096 0.0282 0.9654 0.0850 0.0434 0.0090

−0.0136 0.9953 0.0930 0.0514 0.0134 0.0288 0.9810 0.0896 0.0468 0.0100

−0.2345 0.9639 0.0970 0.0520 0.0140 0.0282 0.9654 0.0904 0.0510 0.0120

50 −0.1518 0.9726 0.0904 0.0422 0.0112 0.0080 0.9845 0.0944 0.0478 0.0088

0.0031 0.9898 0.0948 0.0458 0.0108 0.0047 0.9907 0.0968 0.0494 0.0088

−0.1518 0.9726 0.0980 0.0474 0.0150 0.0080 0.9845 0.1028 0.0508 0.0134

100 −0.1409 0.9941 0.0986 0.0510 0.0090 −0.0362 0.9922 0.0992 0.0460 0.0086

0.0196 1.0077 0.1054 0.0536 0.0120 −0.0342 0.9955 0.0996 0.0466 0.0088

−0.1409 0.9941 0.1062 0.0562 0.0122 −0.0362 0.9922 0.1028 0.0464 0.0108

200 −0.1529 0.9825 0.0966 0.0498 0.0096 −0.0067 0.9767 0.0896 0.0422 0.0072

−0.0202 0.9929 0.0958 0.0472 0.0100 −0.0081 0.9783 0.0900 0.0424 0.0072

−0.1529 0.9825 0.1000 0.0532 0.0112 −0.0067 0.9767 0.0940 0.0452 0.0102

Log-normal errors

20 −0.2386 0.9202 0.0780 0.0348 0.0088 −0.0008 0.9355 0.0702 0.0348 0.0096

−0.0181 0.9481 0.0764 0.0432 0.0128 −0.0007 0.9500 0.0752 0.0362 0.0100

−0.2386 0.9202 0.0818 0.0424 0.0108 −0.0008 0.9355 0.0808 0.0398 0.0104

50 −0.1520 0.9623 0.0806 0.0396 0.0108 0.0065 0.9628 0.0840 0.0438 0.0118

0.0030 0.9777 0.0772 0.0424 0.0138 0.0031 0.9687 0.0854 0.0442 0.0118

−0.1520 0.9623 0.0870 0.0452 0.0134 0.0065 0.9628 0.0912 0.0464 0.0128

100 −0.1487 0.9747 0.0868 0.0428 0.0122 −0.0028 0.9622 0.0816 0.0426 0.0094

0.0117 0.9853 0.0868 0.0450 0.0156 −0.0006 0.9653 0.0834 0.0434 0.0096

−0.1487 0.9747 0.0936 0.0486 0.0140 −0.0028 0.9622 0.0858 0.0424 0.0102

200 −0.1288 0.9845 0.0938 0.0470 0.0090 −0.0021 0.9953 0.0922 0.0522 0.0154

0.0042 0.9944 0.0984 0.0502 0.0126 −0.0035 0.9969 0.0924 0.0528 0.0154

−0.1288 0.9845 0.1004 0.0524 0.0112 −0.0021 0.9953 0.0982 0.0534 0.0158

Notes: Under each N , first row: LMFE , second row: SLMFE and third row: bootstrap LMFE . X-Value: Non-IID for group interaction,
IID for queen contiguity; β = {1, 1, 1}′, σv = 1.
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Figure 3. Size-adjusted empirical power of LM, SLM and bootstrap LM tests for fixed effects panel model.

5. CONCLUSION AND DISCUSSION

This paper recommends standardized LM tests of SED for the linear as well as the panel
regression model. We showed that when standardizing the LM tests for spatial effects, it is
important to adjust for both the mean and variance of the LM statistics. The mean adjustment is,
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however, often neglected in the literature. One important reason for the mean adjustment of the
LM tests for spatial effects is that the degree of spatial dependence may grow with the sample
size. This slows down the convergence speed of the MLEs (Lee, 2004a), making the concentrated
score function (the key element of the LM test) more biased.

There are other LM tests for other spatial models that are derived under normal assumptions
such as Baltagi et al. (2003), and the LM test for spatial lag effect in the linear SAR models
(Anselin, 1988, 2001) and panel linear SAR models (Debarsy and Ertur, 2010), which can
be studied in a similar manner. This paper recommends the standardized version of these
LM tests because it offers improvements in their finite sample performance, in addition to
preserving the simplicity of the original LM tests so that they can be easily adopted by applied
researchers.

Two related and important issues, bootstrap and heteroscedasticity, deserve some further
discussions as both are of potential interest for future research.6 The two bootstrap tests and the
corresponding Monte Carlo results presented in this paper are rather encouraging. The questions
are whether similar results can be obtained for more complicated models, and whether a formal
justification for the validity of the bootstrap methods can be given in a more general framework.
A detailed study of these issues is beyond the scope of this paper. We plan to pursue them in future
research. Another important issue in testing SED is the possible existence of heteroscedasticity.
Our tests are developed under the assumption that the idiosyncratic errors are homoscedastic. By
extending the idea of Born and Breitung (2011), we have successfully obtained SLMOPG, which
greatly improves upon their LMOPG in case of homoscedasticity. However, the finite sample
mean correction in SLMOPG is still subject to the homoscedasticity assumption. Nevertheless,
the derivation of SLMOPG sheds much light on a possible solution to the general issue of
standardizing spatial LM tests so that they are robust against unknown heteroscedasticity in both
large and finite samples.
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APPENDIX: PROOFS OF RESULTS

To prove the theorems, we need the following lemmas.

LEMMA A.1. (Lee, 2004a) Let v be an N × 1 random vector of iid elements with mean zero, variance σ 2

and finite excess kurtosis κ . Let A be an N × N matrix with its elements denoted by {aij }. Then E (v′Av) =
σ 2tr (A) and Var (v′Av) = σ 4κ

∑N

i=1 a2
ii + σ 4tr (AA′ + A2).

LEMMA A.2. Lemma A.9, Lee, 2004b: Suppose that A represents a sequence of N × N matrices that
are uniformly bounded in both row and column sums. Elements of the N × k matrix X are uniformly
bounded; and limn→∞ 1

N
X′X exists and is non-singular. Let M = IN − X(X′X)−1X′. Then (a) tr (MA) =

tr (A) + O(1); (b) tr (A′MA) = tr (A′A) + O(1); (c) tr [(MA)2] = tr (A2) + O(1) and (d) tr [(A′MA)2] =
tr [(MA′A)2] = tr [A′A)2] + O(1). Furthermore, if the elements of A are such that aij = O(h−1

N ) for all

i andj , then (e) tr 2(MA) = tr 2(A) + O( N

hN
) and (f )

∑N

i=1[(MA)ii]2 = ∑N

i=1(aii)2 + O(h−1
N ), where

(MA)ii are the diagonal elements ofMA, and aii are the diagonal elements ofA.

LEMMA A.3. Let u = G1μ + G2v, where u and v are two independent random vectors not necessarily
of the same length containing, respectively, iid elements of means zero, variances σ 2

μ and σ 2
v , skewness αμ

and αv , and excess kurtosis κμ and κv , and G1 and G2 are two conformable non-stochastic matrices. Let
A be a conformable square matrix. Then, (a) E (u′Au) = σ 2

v tr (
A) and (b) Var (u′Au) = σ 4
μκμa′

1a1 +
σ 4

v κva
′
2a2 + σ 4

v tr [
(A′ + A)
A], where 
 = σ−2
v E (uu′) = σ 2

μ

σ 2
v
G1G

′
1 + G2G

′
2, a1 = diagv(G′

1AG1) and

a2 = diagv(G′
2AG2).

Proof: The result (a) is trivial. For (b), we have,

u′Au = μ′G′
1AG1μ + v′G′

2AG2v + μ′G′
1(A + A′)G2v.

It is easy to see that the three terms are uncorrelated. Thus,

Var (u′Au) = Var (μ′G′
1AG1μ) + Var (v′G′

2AG2v) + Var [μ′G′
1(A′ + A)G2v].

From Lemma A.1, we obtain Var (μ′G′
1AG1μ) = σ 4

μκμa′
1a1 + σ 4

μtr [AG1G
′
1(A′ + A)G1G

′
1], and

Var (v′G′
2AG2v) = σ 4

v κva
′
2a2 + σ 4

v tr [AG2G
′
2(A′ + A)G2G

′
2]. It is easy to show that Var (μ′G′

1(A′ +
A)G2v) = σ 2

μσ 2
v tr [(A′ + A)G2G

′
2(A′ + A)G1G

′
1]. Putting these three expressions together leads to (b). �

Proof of Theorem 2.1: First, we note that

ũ′Wũ − S1ũ
′ũ = ũ′(W − S1IN )ũ = u′M(W − S1IN )Mu = u′Au.

Under H0 and Assumption 2.1, Lemma A.1 is applicable to u′Au, which gives Eu′Au = σ 2
ε tr A = 0 and

Var(u′Au) = σ 4
ε κε

∑n

i=1 a2
ii + σ 4

ε [tr (AA′) + tr (A2)]. Letting W ∗ = W − S1IN , we have A = MW ∗M . By
Lemma A.2(a) and Assumption 2.2, tr(WM) = O(1) which gives S1 = O(N−1). Hence, the elements of
W ∗ are of uniform order O(h−1

N ). Under Assumption 2.3, M is uniformly bounded in both row and column
sums (Lee, 2004a, Appendix A). It follows that the elements of A are of uniform order O(1/hN ), and
that the row and column sums of the matrix A are uniformly bounded. Thus, the generalized central limit
theorem for linear-quadratic forms of Lee (2004a, Appendix A) is applicable, which shows that u′Au is
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asymptotically normal, or equivalently,7

u′Au

σ 2
ε (κεS2 + S3)

1
2

= ũ′Wũ − S1ũ
′ũ

σ 2
ε (κεS2 + S3)

1
2

d−→ N (0, 1).

Now, it is easy to show that under H0 σ̃ 2
ε ≡ ũ′ũ/N

p→ σ 2
ε and κ̃ε ≡ 1

nσ̃ 4
ε

∑n

i=1 ũ4
i − 3

p→ κε (see Yang, 2010,
for the proof of a similar result). The result (a) thus follows from Slutsky’s theorem by replacing σε by σ̃ε

and κε by κ̃ε .
To prove the asymptotic equivalence of LMEI and SLMEI , we note that

SLMEI =
(

S0

κ̃εS2 + S3

) 1
2

LMEI − NS1

(κ̃εS2 + S3)
1
2

. (A.1)

Thus, it is sufficient to show that the factor in front of LMEI is Op(1) and the second term is op(1). As
the elements {w∗

ij } of W ∗ are uniformly O(h−1
N ), Lemma A.2(e) and Assumption 2.2 (wii = 0) lead to

S2 = ∑n

i=1 a2
ii = ∑N

i=1(w∗
ii)

2 + O(h−1
N ) = O(h−1

N ). Lemma A.2(b) and (c) lead to S3 = S0 + O(1). Since
the elements of W are uniformly O(h−1

N ) and the row sums of W are uniformly bounded, it follows that
the elements of WW ′ and W 2 are uniformly O(h−1

N ). Hence, S0 is O(N/hN ), and so is S3. Furthermore,

κ̃ε = Op(1). These lead to (S0/(κ̃εS2 + S3))
1
2 = Op(1) and NS1/(κ̃εS2 + S3)

1
2 = Op((hN/N )

1
2 ) = op(1),

showing that LMB ∼ LM∗
B . Similarly, one can show that Var(I ) ∼ S0, and hence LMB ∼ I ∗. Finally, it is

evident that I o ∼ I ∗. �

Proof of Theorem 2.2: To show (a), we have, ũ′(W − S1IN )ũ = u′Au = u′(Al + A′
u)u + u′Adu = u′ζ +

u′Adu. It can be shown that u′ζ = ∑n

i=1 uiζi and u′Adu = ∑n

i= aiiu
2
i are uncorrelated, and uiζi and

uj ζj , i �= j , are uncorrelated, where {aii} are the diagonal elements of A. These lead to a natural estimator
of Var (u′Au):

n∑
i=1

ũ2
i ζ̃

2
i +

n∑
i=1

a2
ii ũ

4
i .

The result (a) thus follows from 1
N

(
∑N

i=1 ũ2
i ζ̃

2
i +∑n

i=1 a2
ii ũ

4
i ) − 1

N
σ 4

ε (κεS2 + S3)
p→ 0, and the result (b)

follows from 1√
N

ũ′(W − S1IN )ũ − 1√
N

ũ′Wũ
p−→0, and 1

N
(
∑N

i=1 ũ2
i ζ̃

2
i +∑n

i=1 a2
ii ũ

4
i ) − 1

N

∑N

i=1 ũ2
i ξ̃

2
i

p−→0,
which are all trivial. �

Proof of Theorem 3.1: We have ũ = Y − Xβ̃ = Y − X(X′
̃−1X)−1X′
̃−1Y ≡ M(ρ̃)Y . The numerator
of LMRE becomes ũ′A(ρ̃)ũ = Y ′M ′(ρ̃)A(ρ̃)M(ρ̃)Y = u′M ′(ρ̃)A(ρ̃)M(ρ̃)u ≡ u′C0(ρ̃)u. By the mean
value theorem,

u′C0(ρ̃)u = u′C0(ρ)u + u′Ċ0(ρ̄)u (ρ̃ − ρ),

where ρ̄ lies between ρ̃ and ρ, Ċ0(ρ) = ∂C0(ρ)
∂ρ

= 2M ′(ρ)[ρ(J̄T ⊗ W ) − (J̄T ⊗ IN )P (ρ)A(ρ)]M(ρ),

and P (ρ) = X(X′
−1
0 X)−1X′. From the results of Lee (2004a, Appendix), it is easy to see the elements

of C0(ρ) are of uniform order O(1/hN ) uniformly in ρ, and so are the elements of Ċ0(ρ̄). As ρ̃ is
consistent, it follows that E[u′C0(ρ̃)u] ∼ E [u′C0(ρ)u] = σ 2

v tr [
0C0(ρ)]. This leads to a centred quantity
ũ′A(ρ̃)ũ − σ 2

v tr [
0C0(ρ)], or its feasible version:

ũ′A(ρ̃)ũ − 1

NT − k
tr [
̃0C0(ρ̃)] ũ′
̃−1

0 ũ = ũ′
(
Ã − s̃0
̃

−1
0

)
ũ,

which gives the numerator of SLMSE .

7 Lee (2004a) generalized the results of Kelejian and Prucha (2001) to cover the case where hN is unbounded. Lee’s
results require the matrix A to be symmetric. If it is not, it can be replaced by 1

2 (A + A′).
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As ũ′(Ã − s̃0
̃
−1
0 )ũ = u′M(ρ̃)′(Ã − s̃0
̃

−1
0 )M(ρ̃)u = u′C(ρ̃)u, applying the mean value theorem again

leads to u′C(ρ̃)u ∼ u′C(ρ)u. It follows that Var [u′C(ρ̃)u] ∼ Var [u′C(ρ)u]. Now, u′C(ρ)u can be
decomposed into the following three terms,

μ′(ι′T ⊗ IN )C(ρ)(ιT ⊗ IN )μ + v′C(ρ)v + μ′(ι′T ⊗ IN )C(ρ)v,

which are either independent or asymptotically independent. Thus, the asymptotic normality of the first two
terms on the right-hand side of the above equation follow from the generalized central limit theorem for
linear-quadratic forms of Lee (2004a, Appendix A). The asymptotic normality of the last term follows from
the fact that the two random vectors involved are independent. The mean and variance of u′C(ρ)u can be
easily obtained from Lemma A.3. In fact, E(u′C(ρ)u) = 0, and

Var (u′C(ρ)u) = σ 4
v {φ2κμa′

1a1 + κva
′
2a2 + tr [
0(C(ρ)′ + C(ρ))
0C(ρ)]}.

Thus the result in (a) follows and SLMRE

d−→ N (0, 1).

To prove the result in (b), let X(ρ) = 

− 1

2
0 X and M∗(ρ) = INT − X(ρ)[X′(ρ)X(ρ)]−1X′(ρ).

Assumption 3.3 and the structure of 

− 1

2
0 guarantee that the elements of X(ρ) are bounded uniformly in

both N and ρ. Thus, Lemma A.2 is applicable on M∗(ρ) for each ρ. We have C0(ρ) = M ′(ρ)A(ρ)M(ρ) =



− 1
2

0 M∗(ρ)A(ρ)M∗(ρ)

− 1

2
0 . Thus,

tr [
0C0(ρ)] = tr [M∗(ρ)A(ρ)M∗(ρ)
0]

= tr [A(ρ)M∗(ρ)
0] + O(1) (by Lemma A.2)

= tr [M∗(ρ)
0A(ρ)] + O(1)

= tr [
0A(ρ)] + O(1) (by Lemma A.2)

= O(1).

Thus, a0 (ρ) = 1
NT −k

tr (
0C0(ρ)] = O( 1
N

). Similarly, by successively applying Lemma A.2, one shows that

tr [
0(C0(ρ)′ + C0(ρ))
0C0(ρ)] = tr [M∗(ρ)(A(ρ)′ + A(ρ))M∗(ρ)
0M
∗(ρ)A(ρ)M∗(ρ)
0]

= tr [(A(ρ)′ + A(ρ))
0A(ρ)
0] + O(1)

= (T − 1 + ρ2)S0 + O(1).

It follows that tr [
0(C(ρ)′ + C(ρ))
0C(ρ)] = (T − 1 + ρ2)S0 + O(1) as C(ρ) = C0(ρ) −
a0(ρ)
−1

0 M(ρ)0. Under Assumption 3.2, the elements of W 2 and WW ′ are of uniform order O(1/hN ). It
follows that S0, the quantity in LMRE , is O(N/hN ). Hence,

tr [
0C(ρ)
0C(ρ)] ∼ (T − 1 + ρ2)S0 = O(N/hN ).

Finally, Lemma A.2(f) leads to a′
1a1 = O(1/hN ) and a′

2a2 = O(1/hN ). The result in (b) thus follows and
the two LM tests given in (3.6) and (3.8) are asymptotically equivalent. �

Proof of Theorem 3.2: The proof of this theorem parallels that of Theorem 2.1. �

Proof of Corollary 3.1: Note that (ε∗
1 , ε

∗
2 , . . . , ε

∗
T −1) = (ε1, ε2, . . . , εT )FT ,T −1. With ε∗′

i· denoting the ith
row of the N × (T − 1) matrix (ε∗

1 , ε
∗
2 , . . . , ε

∗
T −1) and ε′

i· the ith row of the N × T matrix (ε1, ε2, . . . , εT ),
we have

Var (1′
T −1ε

∗
i·) = Var (1′

T −1F
′
T ,T −1εi·) = 1′

T −1F
′
T ,T −1Var (εi·)FT ,T −11T −1 = (T − 1)σ 2

ε .
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Denoting c = FT ,T −11T −1, and applying Lemma A.1, we have

Var [(1′
T −1ε

∗
i·)

2] = Var [(c′εi·)2] = Var [ε′
i·(cc

′)εi·] = σ 4
v κv

T∑
t=1

c4
t + 2(T − 1)2σ 4

v .

It follows that E[(1′
T −1ε

∗
i·)

4] = E [(c′εi·)4] = σ 4
v κv

∑T

t=1 c4
t + 3(T − 1)2σ 4

v . As c′εi· are iid, Kolmogorov’s
law of large numbers ensures that

1

N

N∑
i=1

(1′
T −1ε

∗
i·)

4→σ 4
v κv

T∑
t=1

c4
t + 3(T − 1)2σ 4

v .

The result follows by moving the terms other than κv to the left and then replacing ε∗
i· by ε̃∗

i·, and σ 2
v by

1
N(T −1) ε̃

∗′ε̃∗. �
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