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Abstract

This paper is concerned about the problem of estimating the drift parameters in the
fractional Vasicek model from a continuous record of observations. Based on the Gir-
sanov theorem for the fractional Brownian motion, the maximum likelihood (ML) method
is used. The asymptotic theory for the ML estimates (MLE) is established in the sta-
tionary case, the explosive case, and the null recurrent case for the entire range of the
Hurst parameter, providing a complete treatment of asymptotic analysis. It is shown that
changing the sign of the persistence parameter will change the asymptotic theory for the
MLE, including the rate of convergence and the limiting distribution. It is also found that
the asymptotic theory depends on the value of the Hurst parameter.

JEL classification: C15, C22, C32
Keywords: Maximum likelihood estimate; Fractional Vasicek model; Asymptotic distri-
bution; Stationary process; Explosive process; Null recurrent process

1 Introduction

Since Vasicek (1977) introduced a model to describe the evolution of short-term interest rates,

the so-called Vasicek model has enjoyed a wide range of applications. Jamshidian (1989) used

it to price bond options. Scott (1987) used it to model the evolution of instantaneous volatility

of stock price and to price European call options.

Many extensions have been made to generalize the specification of Vasicek. For exam-

ple, motivated by the phenomenon of long-range dependence found in data of hydrology,
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suto.tanaka@gakushuin.ac.jp. Weilin Xiao, School of Management, Zhejiang University, Hangzhou, 310058,
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Singapore Management University, 90 Stamford Rd, Singapore 178903. Email for Jun Yu: yujun@smu.edu.sg.
URL: http://www.mysmu.edu/faculty/yujun/.
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geophysics, climatology, telecommunication, economics and finance, the Brownian motion in

the Vasicek model has been replaced by a fractional Brownian motion (fBm), leading to the

following fractional Vasicek model (fVm)

dXt = κ (µ−Xt) dt+ σdBH
t , (1.1)

where σ is a positive constant, µ, κ ∈ R, BH
t is an fBm with H ∈ (0, 1) being the Hurst

parameter. An fBm BH
t is a zero mean Gaussian process, defined on a complete probability

space (Ω,F ,P), with the following covariance function

E(BH
t B

H
s ) =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
. (1.2)

The process BH
t is self-similar in the sense that ∀a ∈ R+, BH

at
d
= aHBH

t . It becomes the

standard Brownian motion Wt when H = 1/2 and can be represented as a stochastic in-

tegral with respect to the standard Brownian motion. It is negatively correlated when

0 < H < 1/2. When 1/2 < H < 1, it has long-range dependence in the sense that∑∞
n=1 E

(
BH

1 (BH
n+1 −BH

n )
)

=∞. In this case, the positive (negative) increments are likely to

be followed by positive (negative) increments. The parameter H, which is also called the self

similarity parameter, measures the intensity of the long range dependence.

Parameter κ is often referred to as the persistence parameter. When κ > 0, Xt is stationary

and ergodic. In this case, µ is the unconditional mean of Xt and κ is the mean-reversion

parameter. When κ < 0, Xt is explosive and hence non-ergodic. When κ = 0, Xt is null-

recurrent and the drift term κ (µ−Xt) dt disappears. So µ is superfluous in this case. The

ergodic fVm has been used to model the evolution of instantaneous volatility in Comte and

Renault (1998), the evolution of quadratic variation in Aı̈t-Sahalia and Mancini (2008), the

evolution of realized variance in Gatheral et al. (2018), the evolution of VIX in Xiao et al.

(2019).

An alternative to and perhaps slightly more general specification than Model (1.1) is

dXt = (α− κXt) dt+ σdBH
t , (1.3)

In Model (1.3), even when κ = 0, the drift term does not vanish and it is αdt. This alternative

specification for the drift term was used in Chan et al. (1992) and Yu and Phillips (2001).

When α in (1.3) is known (without loss of generality, it is assumed to be zero), (1.3) becomes

the fractional Ornstein-Uhlenbeck (fOU) process.

Assuming that a continuous record of observations is available for Xt with t ∈ [0, T ],

a number of studies have introduced methods to estimate κ and α (or µ) and developed

asymptotic distributions for the proposed estimators under the scheme of T → ∞. When

H > 1/2 and κ > 0, borrowing the idea of Hu and Nualart (2010) and Hu et al. (2017), Xiao

and Yu (2019a) considered two methods, the least squares (LS) estimates and the ergodic-type
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estimates of κ and µ. When H ≥ 1/2 and κ = 0 or κ < 0, Xiao and Yu (2019a) considered

the LS method. Xiao and Yu (2019b) extends the results of Xiao and Yu (2019a) from the

case where H ∈ (1/2, 1) to where H ∈ (0, 1/2). Lohvinenko and Ralchenko (2017) considered

the maximum likelihood (ML) estimates of κ and α when κ > 0 and H ∈ (1/2, 1).

Our paper also focuses on the ML estimators (MLE) of κ and α. We aim to develop the

asymptotic distributions for the MLE of κ and α under the following scenarios: (1) κ > 0 and

H ∈ (0, 1/2]; (2) κ = 0 and H ∈ (0, 1); (3) κ < 0 and H ∈ (0, 1). Therefore, together with

Lohvinenko and Ralchenko (2017), a complete coverage of asymptotic theory for all possible

cases is provided to the MLE of κ and α.

The rest of the paper is organized as follows. Section 2 introduces the MLE of κ and

α. Section 3 is devoted to the asymptotic theory for the stationary case (i.e., κ > 0) but

H ∈ (0, 1/2]. Section 4 studies the asymptotic properties of the MLE in the null recurrent

case (i.e., κ = 0) and for the entire range for the Hurst parameter H ∈ (0, 1). In Section 5,

we establish the asymptotic behaviors of the MLE for the non-ergodic case (i.e., κ < 0) and

for the entire range for the Hurst parameter H ∈ (0, 1). Section 6 contains some concluding

remarks and gives directions of further research. All the proofs are collected in the Appendix.

We use the following notations throughout the paper:
p→,

d→ and ∼ denote convergence in

probability, convergence in distribution, and asymptotic equivalence, respectively, as T →∞.

Throughout this paper, the constant C only depends on H, whose values can differ at different

places.

2 ML Estimation

Following Kleptsyna et al. (2000) and Lohvinenko and Ralchenko (2017), by applying the

Girsanov theorem for the fBm developed in Norros et al. (1999), one can get the expression

for the continuous-record log-likelihood function for Model (1.3) as follows:

`(κ, α) =

∫ T

0
QH(t)dMH

t +
1

2

∫ T

0
(QH(t))2 dωHt ,

where

QH (t) =
1

σ

d

dωHt

∫ t

0
kH (t, s) (α− κXs) ds , (2.1)

kH (t, s) =
1

kH
(s (t− s))

1
2
−H , kH = 2HΓ

(
3

2
−H

)
Γ

(
H +

1

2

)
, (2.2)

ωHt =
1

λH
t2−2H , (2.3)

λH =
2HΓ (3− 2H) Γ

(
H + 1

2

)
Γ
(

3
2 −H

) , (2.4)

MH
t =

∫ t

0
kH(t, s)dBH

s . (2.5)
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Taking the derivatives of the log-likelihood function with respect to κ and α and setting them

to zero, Lohvinenko and Ralchenko (2017) obtained the following expressions for the MLE of

α and κ:

α̃T =
ST
∫ T

0 P 2
H (t) dωHt −

∫ T
0 PH (t) dSt

∫ T
0 PH (t) dωHt

ωHT
∫ T

0 P 2
H (t) dωHt −

(∫ T
0 PH (t) dωHt

)2 σ , (2.6)

κ̃T =
ST
∫ T

0 PH (t) dωHt − ωHT
∫ T

0 PH (t) dSt

ωHT
∫ T

0 P 2
H (t) dωHt −

(∫ T
0 PH (t) dωHt

)2 , (2.7)

where

St =
1

σ

∫ t

0
kH (t, s) dXs , (2.8)

PH (t) =
1

σ

d

dωHt

∫ t

0
kH (t, s)Xsds , (2.9)

Combining (1.3), (2.2) with (2.9), we deduce that

PH (t) =
1

σ

α

κ
+

1

σ

(
X0 −

α

κ

)
VH (t) + P̃H (t) , (2.10)

where

VH (t) =
d

dωHt

∫ t

0
kH (t, s) e−κsds , (2.11)

P̃H (t) =
d

dωHt

∫ t

0
kH (t, s)Usds , (2.12)

Ut =

∫ t

0
e−κ(t−s)dBH

s . (2.13)

Using the idea of Kleptsyna and Le Breton (2002), Lohvinenko and Ralchenko (2017)

obtained the following results

QH (t) =
α

σ
− κPH (t) , (2.14)

St =

∫ t

0
QH (s) dωHs +MH

t =
α

σ
ωHt − κ

∫ t

0
PH (s) dωHs +MH

t , (2.15)

dSt =
α

σ
dωHt − κPH (t) dωHt + dMH

t . (2.16)

The process MH
t , the so-called fundamental martingale, is a Gaussian martingale with the

variance function being ωHt . Moreover, the natural filtration of the martingale MH coincides

with the natural filtration of the fBm. Based on (2.15) and (2.16), the MLE of α and κ can

be represented as

α̃T = α+
MH
T

∫ T
0 P 2

H (t) dωHt −
∫ T

0 PH (t) dMH
t

∫ T
0 PH (t) dωHt

ωHT
∫ T

0 P 2
H (t) dωHt −

(∫ T
0 PH (t) dωHt

)2 σ , (2.17)

κ̃T = κ+
MH
T

∫ T
0 PH (t) dωHt − ωHT

∫ T
0 PH (t) dMH

t

ωHT
∫ T

0 P 2
H (t) dωHt −

(∫ T
0 PH (t) dωHt

)2 , (2.18)
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When a continuous record of observations of Xt is available, Lohvinenko and Ralchenko

(2017) studied the consistency and the asymptotic normality of the MLE defined by (2.6)

and (2.7) when H > 1/2 and κ > 0. The goal of the present paper is to establish asymptotic

theory for the MLE of α and κ for all the other cases, including H < 1/2 and κ > 0, H ∈ (0, 1)

and κ = 0, H ∈ (0, 1) and κ < 0.

3 Asymptotic Theory When κ > 0

In this section, inspired by Lohvinenko and Ralchenko (2017), we extend the asymptotic

properties of α̃T and κ̃T from the case of H ∈ (1/2, 1) to the case of H ∈ (0, 1/2]. For the

sake of comparison, we first introduce the main result of Lohvinenko and Ralchenko (2017).

When H > 1/2, Lohvinenko and Ralchenko (2017) obtained the asymptotic normality for the

MLE of α and κ, i.e.,

T 1−H (α̃T − α)
d→ N

(
0, λHσ

2
)
, (3.1)

√
T (κ̃T − κ)

d→ N (0, 2κ) . (3.2)

The objective of this section is to obtain the consistency and the asymptotic normality of

α̃T and κ̃T when H ∈ (0, 1/2]. Since the asymptotic laws of α̃T are different when H ∈ (0, 1/2)

from those when H = 1/2, we need to treat them separately.

3.1 Asymptotic theory when H ∈ (0, 1/2)

Before presenting asymptotic properties of α̃T and κ̃T for H ∈ (0, 1/2), we first state a useful

technical lemma.

Lemma 3.1 For κ > 0 and H ∈ (0, 1) in Model (1.3), and for any ε > 0, as T → ∞, we

have

VH (T ) = O
(
TH−

3
2

)
, (3.3)∫ T

0
VH (t) dωHt = O

(
T

1
2
−H
)
, (3.4)∫ T

0
P̃H (t) dMH

t = Op

(√
T
)
, (3.5)∫ T

0
P̃ 2
H (t) dωHt = Op (T ) , (3.6)∫ T

0
V 2
H (t) dωHt = O (1) , (3.7)∫ T

0
P̃H (t) dωHt = Op

(
T 1−H+ε

)
, (3.8)∫ T

0
VH (t) P̃H (t) dωHt = Op

(√
T
)
. (3.9)
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We can now describe the asymptotic laws of α̃T and κ̃T as T →∞.

Theorem 3.1 For κ > 0 and H ∈ (0, 1/2) in Model (1.3), as T →∞, we have

√
T (α̃T − α)

d→ N
(

0,
2α2

κ

)
, (3.10)

√
T (κ̃T − κ)

d→ N (0, 2κ) . (3.11)

Remark 3.1 Comparing the asymptotic theory with that obtained in Lohvinenko and Ralchenko

(2017), the asymptotic normality continues to hold for both estimators. Moreover, compar-

ing (3.11) with (3.2), we can see that the asymptotic theory for κ̃T is the same regardless of

H ∈ (0, 1/2) or H ∈ (1/2, 1). Comparing (3.10) with (3.1), we can see that the asymptotic

variance of α̃T depends on H. The asymptotic variance is λHσ
2 with the consistency order

T 1−H if H ∈ (1/2, 1) whereas it does not depend on H with the consistency order
√
T as T

becomes large if H ∈ (0, 1/2).

Remark 3.2 The asymptotic theory for the MLE of κ in the fOU when H ∈ (0, 1/2) has been

developed in the literature; see, for example, Theorem 2 in Brouste and Kleptsyna (2010). It is

the same as in (3.11). So having to estimate an additional parameter α, there is no efficiency

loss in estimating κ asymptotically.

Remark 3.3 Following the idea of Hu et al. (2017), Xiao and Yu (2019b) obtained the

asymptotic distribution of the LS estimate and the ergodic-type estimate of κ for H ∈ (0, 1/2).

The LS estimator of κ is given by

κ̂LS =
(XT −X0)

∫ T
0 Xtdt− T

∫ T
0 XtdXt

T
∫ T

0 X2
t dt−

(∫ T
0 Xtdt

)2 , (3.12)

where the stochastic integral
∫ T

0 XtdXt is interpreted as a divergence integral. The ergodic-type

estimate of κ is given by

κ̂HN =

T
∫ T

0 X2
t dt−

(∫ T
0 Xtdt

)2

T 2σ2HΓ (2H)


− 1

2H

. (3.13)

Moreover, Xiao and Yu (2019b) showed that

√
T (κ̂LS − κ)

d→ N
(
0, κδ2

LS

)
as T →∞, (3.14)

where δ2
LS = (4H − 1) + 2Γ(2−4H)Γ(4H)

Γ(2H)Γ(1−2H) and that

√
T (κ̂HN − κ)

d→ N
(
0, κδ2

HN

)
as T →∞, (3.15)

6



where δ2
HN = 1

4H2

[
(4H − 1) + 2Γ(2−4H)Γ(4H)

Γ(2H)Γ(1−2H)

]
. Setting κ = 1, Figure 1 compares the efficiency

of ML, LS and ergodic-type estimates of κ by plotting δ2
LS, δ2

HN against 2 when H takes a

value between (0, 0.5). It can be seen that the LS estimate is the most efficient, followed by the

MLE and then by the ergodic-type estimate. The efficiency gap is larger for a smaller value

of H and disappears when H = 1/2.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2

δ
LS

2

δ
HN

2

Figure 1. Plots of δ2
LS and δ2

HN against 2 as functions of H

3.2 Asymptotic theory when H = 1/2

When H = 1/2, B
1/2
t = Wt which is a standard Brownian motion and the fVm becomes

the standard Vasicek model. In this case, it can be shown that fundamental martingale MH
t

becomes a standard Brownian motion and the MLE reduces to the LS estimate. The model

has been extensively studied in the literature; see, for example, Kubilius et al. (2018) and

Xiao and Yu (2019a). Since our model is slightly different from that in Xiao and Yu (2019a)

(i.e., µ versus α), before we report our asymptotic theory, we review asymptotic theory of the

LS estimate of κ and µ in the Vasicek model given in Xiao and Yu (2019a).

Lemma 3.2 For κ > 0 and H = 1/2 in Model (1.1), as T →∞, we have

√
T (κ̂T − κ)

d→ N (0, 2κ) , (3.16)
√
T (µ̂T − µ)

d→ N
(

0,
σ2

κ2

)
, (3.17)
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where

κ̂T =
(XT −X0)

∫ T
0 Xtdt− T

∫ T
0 XtdXt

T
∫ T

0 X2
t dt−

(∫ T
0 Xtdt

)2 , (3.18)

µ̂T =
(XT −X0)

∫ T
0 X2

t dt−
∫ T

0 XtdXt

∫ T
0 Xtdt

(XT −X0)
∫ T

0 Xtdt− T
∫ T

0 XtdXt

, (3.19)

and
∫ T

0 XtdXt is interpreted as an Itô integral.

While it was not shown, κ̂T and µ̂T are independent asymptotically. Using the results of

Lemma 3.2 and the independence, we can obtain the asymptotic laws of α̃T and κ̃T defined

by (2.6) and (2.7).

Theorem 3.2 For κ > 0 and H = 1/2 in Model (1.3), as T →∞, we have

√
T (α̃T − α)

d→ N
(

0, σ2 +
2α2

κ

)
, (3.20)

√
T (κ̃T − κ)

d→ N (0, 2κ) . (3.21)

Remark 3.4 When α 6= 0, we can summarize the three sets of asymptotic theory for the

MLE of α as follows:

If H ∈ (0, 1/2),
√
T (α̃T − α)

d→ N
(

0,
2α2

κ

)
,

If H =1/2,
√
T (α̃T − α)

d→ N
(

0, σ2 +
2α2

κ

)
,

If H ∈ (1/2, 1), T 1−H (α̃T − α)
d→ N

(
0, λHσ

2
)
,

where the last asymptotic theory was obtained in Theorem 3.4 of Lohvinenko and Ralchenko

(2017). While the three sets of asymptotic theory for κ̃T are identical, the three sets of asymp-

totic theory for α̃T are different. When H changes from a value in (0, 1/2) to 1/2, while the

rate of convergence stays the same (i.e.,
√
T ), the asymptotic variance changes from 2α2

κ to

σ2 + 2α2

κ . When H changes from a value in (0, 1/2] to (1/2, 1), both the rate of convergence

and the asymptotic variance change.

Remark 3.5 When α is known and assumed to be zero and H = 1/2, the asymptotic theory

for the MLE of κ was obtained in Brown and Hewitt (1975) and in Feigin (1976). The two

sets of asymptotic theory are the same, suggesting that there is no efficiency loss in estimating

κ when α is estimated or not.
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4 Asymptotic Theory When κ = 0

In this section, we consider the asymptotic laws of α̃T and κ̃T for the entire range for the

Hurst parameter, i.e., H ∈ (0, 1). Note that when κ = 0, we have

Xt = X0 + αt+ σBH
t . (4.1)

For the model dUt = −κUtdt+ dBH
t , it is well known that the MLE of κ can be expressed

as

κ̂T − κ =
−
∫ T

0 P̂H (t) dMH
t∫ T

0 P̂ 2
H (t) dωHt

, (4.2)

where P̂H (t) = d
dωHt

∫ t
0 kH (t, s)BH

s ds.

Before considering asymptotic properties of α̃T and κ̃T , we first introduce a lemma, which

will be used to derive the asymptotic theory.

Lemma 4.1 For κ = 0 and H ∈ (0, 1) in Model (1.1), as T →∞, we have∫ T

0
P̂H (t) dMH

t = Op (T ) , (4.3)∫ T

0
P̂ 2
H (t) dωHt = Op

(
T 2
)
, (4.4)∫ T

0
tdωHt =

1

λH

2− 2H

3− 2H
T 3−2H , (4.5)∫ T

0
t2dωHt =

1

λH

1−H
2−H

T 4−2H , (4.6)∫ T

0
P̂H (t) dωHt = Op

(
T 2−H) , (4.7)∫ T

0
tP̂H (t) dωHt = Op

(
T 3−H) , (4.8)

VH (T ) =
λH
kH

B

(
3

2
−H, 3

2
−H

)
, (4.9)

d

dωHt

∫ t

0
kH (t, s) sds = aHt , (4.10)

where B(·, ·) is the Beta function, λH is defined by (2.4) and aH = 3−2H
4(1−H) .

We can now describe the asymptotic behavior of α̃T and κ̃T as T →∞.

Theorem 4.1 For κ = 0, α 6= 0 and H ∈ (0, 1) in Model (1.1), as T →∞, we have

T 1−H (α̃T − α)
d→ N

(
0, σ2ρH

)
, (4.11)

T 2−H (κ̃T − κ)
d→ N

(
0,
σ2

α2
φH

)
, (4.12)

where ρH = λH (3− 2H)2, φH =
32H(1−H)(2−H)Γ(3−2H)Γ(H+ 1

2
)

Γ( 3
2
−H)

and λH is defined by (2.4).
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Remark 4.1 In the case of H = 1/2 and α 6= 0, we can see that Xt = X0 + αt + σWt. A

straightforward algebraic calculation shows ωHt = t, PH (t) = 1
σXt, M

H
T = Wt, P̂H(t) = Wt

and that

1

T 3

∫ T

0
X2
t dt =

α2

3
+ op(1) , (4.13)

1

T 2

∫ T

0
Xtdt =

α

2
+ op(1) , (4.14)

1

T
√
T

∫ T

0
XtdWt = α

∫ T

0
tdWt + op(1) . (4.15)

Then, by the scaling properties of the Brownian motion, (2.17), (4.13), (4.14) and (4.15), we

deduce that

√
T (α̃T − α) =

√
T

WT

∫ T
0 X2

t dt−
∫ T

0 XtdWt

∫ T
0 Xtdt

T
∫ T

0 X2
t dt−

(∫ T
0 Xtdt

)2 σ


=
√
T

 1√
T

1√
T
WT

1
T 3

∫ T
0 X2

t dt− 1
T
√
T

∫ T
0 XtdWt

1
T 2

∫ T
0 Xtdt

1
T 3

∫ T
0 X2

t dt−
(

1
T 2

∫ T
0 Xtdt

)2 σ


=

α2

3
WT√
T
− α2

2
1

T
√
T

∫ T
0 tdWt + op(1)

α2

3 −
(
α
2

)2
+ op(1)

σ

= 12σ

(
WT

3
√
T
− 1

2T
√
T

∫ T

0
tdWt

)
+ op(1)

d→ N
(
0, 4σ2

)
,

which is identical to (4.11) with H = 1/2. Moreover, using (2.18), (4.13), (4.14) and (4.15),

we can write

T
√
T (κ̃T − κ) = T

√
T


(
WT

∫ T
0 Xtdt− T

∫ T
0 XtdWt

)
σ

T
∫ T

0 X2
t dt−

(∫ T
0 Xtdt

)2


=

[
WT√
T

1
T 2

∫ T
0 Xtdt− 1

T
√
T

∫ T
0 XtdWt

]
σ

1
T 3

∫ T
0 X2

t dt−
(

1
T 2

∫ T
0 Xtdt

)2

d→ N
(

0,
12σ2

α2

)
,

which is identical to (4.12) with H = 1/2 being assumed.

Remark 4.2 In the case of H = 1/2 and α = 0, with α and κ being estimated, by the scaling

10



properties of the Brownian motion, we have

√
T (α̃T − α)

d→
W1

(∫ 1
0 Wtdt

)2
−
∫ 1

0 Wtdt
∫ 1

0 WtdWt∫ 1
0 W

2
t dt−

(∫ 1
0 Wtdt

)2 σ ,

T (κ̃T − κ)
d→

W1

∫ 1
0 Wtdt−

∫ 1
0 WtdWt∫ 1

0 W
2
t dt−

(∫ 1
0 Wtdt

)2 .

Thus, the limiting distributions of α̃T and κ̃T are not normal. In particular, the asymptotic

distribution of κ̃T is a Dickey-Fuller-Phillips type distribution with the rate of convergence

being T . Hence, when κ = 0 is unknown, the value of α plays an important role in the study

of asymptotic laws for the MLE.

5 Asymptotic Theory When κ < 0

When κ < 0, the model given by (1.3) is non-ergodic or explosive. Since the proofs of

the asymptotic theory of α̃T and κ̃T when H = 1/2 are different from those when H ∈
(0, 1/2)∪ (1/2, 1), we first consider the case of H = 1/2. For the sake of notational simplicity,

we introduce the process ξt = σ
∫ t

0 e
κsdWs for t ≥ 0. Obviously, ξ∞ ∼ N

(
0,−σ2

2κ

)
. Moreover,

using (2.13) and the definition of ξt, we can easily obtain

σeκT
∫ T

0
Utdt = eκT

∫ T

0
e−κtξtdt

p→ −ξ∞
κ
, (5.1)

σe2κT

∫ T

0
e−κtUtdt

p→ −ξ∞
2κ

. (5.2)

5.1 Asymptotic theory when H = 1/2

Now, we can state the key results of the asymptotic theory for α̃T and κ̃T when H = 1/2.

Theorem 5.1 For κ < 0, H = 1/2 in Model (1.1), as T →∞, we have

√
T (α̃T − α)

d→ N
(
0, σ2

)
, (5.3)

e−κT

2κ
(κ̃T − κ)

d→ η∞
X0 − α

κ + ξ∞
, (5.4)

where ξ∞ and η∞ are two independent N (0,−σ2/(2κ)) random variables.

Remark 5.1 In (5.4), if we set X0 = α
κ , the limiting distribution of e−κT

2κ (κ̃T − κ) becomes

a standard Cauchy variate. This limiting distribution is the same as that in the Vasicek

model driven by a standard Brownian motion (see, e.g., Feigin, 1976). The asymptotic theory

in (5.4) is similar to that in the explosive discrete-time and continuous-time models when

discretely-sampled data are available (see e.g., White, 1958; Anderson, 1959; Phillips and

Magdalinos, 2007; Wang and Yu, 2015, 2016).

11



5.2 Asymptotic theory when H ∈ (0, 1/2) ∪ (1/2, 1)

We now turn to the case when H ∈ (0, 1/2)∪ (1/2, 1) assuming κ < 0. The limiting theory is

the most difficult to derive in our paper. Let A = λH
√
π(−κ)H−1Γ(3/2−H)
kH(2−2H)t1−2H . Applying (2.10) and

(2.11), we can obtain

VH (t) =
d

dωHt

∫ t

0
kH (t, s) e−κsds

=
d
dt

∫ t
0 kH (t, s) e−κsds

dωHt
dt

= A

[
(1−H) t−He−

κt
2 I1−H

(
−κt

2

)
− κ

2
t1−He−

κt
2 I1−H

(
−κt

2

)

+t1−He−
κt
2

1

2

(
−κ

2

)(
I2−H

(
−κt

2

)
+ I−H

(
−κt

2

))]

=
λH
√
π (−κ)H−1 Γ

(
3
2 −H

)
kH (2− 2H)

[
(1−H) t−1+He−

κt
2 I1−H

(
−κt

2

)

−κ
2
tHe−

κt
2 I1−H

(
−κt

2

)
− κ

4
tHe−

κt
2 I2−H

(
−κt

2

)
− κ

4
tHe−

κt
2 I−H

(
−κt

2

)]

=
λH
√
π (−κ)H−1 Γ

(
3
2 −H

)
kH (2− 2H)

[
(1−H) t−1+H e−κt√

−πκt
(
1 +O

(
t−1
))

−κ
2
tH

e−κt√
−πκt

(
1 +O

(
t−1
))
− κ

4
tH

e−κt√
−πκt

(
1 +O

(
t−1
))

−κ
4
tH

e−κt√
−πκt

(
1 +O

(
t−1
)) ]

=
λH (−κ)H−1 Γ

(
3
2 − 1

)
kH (2− 2H)

e−κt

[
(1−H) (−κ)−

1
2 t−

3
2

+H
(
1 +O

(
t−1
))

+
1

2
(−κ)

1
2 tH−

1
2
(
1 +O

(
t−1
))

+
1

4
tH−

1
2 (−κ)

1
2
(
1 +O

(
t−1
))

+
1

4
(−κ)

1
2 tH−

1
2
(
1 +O

(
t−1
)) ]

= O
(
tH−

1
2 e−κt

)
. (5.5)

where Iν(z) is the modified Bessel function of the first kind defined by

Iν(z) =
∞∑
k=0

(z/2)ν+2k

k!Γ(ν + k + 1)
,

and we used the asymptotic expansion that, as z →∞,

Iν(z) =
ez√
2πz

(
1 +O

(
z−1
))

.
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Consequently, we can state the following lemma.

Lemma 5.1 For κ < 0 and H ∈ (0, 1) in Model (1.1), we have∫ T

0
P̃ 2
H (t) dωHt = Op

(
e−2κT

)
, (5.6)∫ T

0
P̃H (t) dMH

t = Op
(
e−κT

)
, (5.7)∫ T

0
VH (t) dωHt = O

(
T

1
2
−He−κT

)
, (5.8)∫ T

0
P̃H (t) dωHt = Op

(
e−κTT

1
2
−H
)
, (5.9)∫ T

0
V 2
H (t) dωHt = O

(
e−2κT

)
, (5.10)∫ T

0
VH (t) P̃H (t) dωHt = Op

(
e−2κT

)
, (5.11)∫ T

0
VH (t) dMH

t = Op
(
e−κT

)
. (5.12)

Now, we can state the asymptotic theory for α̃T and κ̃T for κ < 0 and H ∈ (0, 1/2) ∪
(1/2, 1).

Theorem 5.2 When κ < 0, H ∈ (0, 1/2) ∪ (1/2, 1), and X0 = α
κ in Model (1.1), as T →∞,

we have

T 1−H (α̃T − α)
d→ N

(
0, σ2

)
, (5.13)

e−κT

2κ
(κ̃T − κ)

d→
X
√

sin (πH)

Y
, (5.14)

where X and Y are two independent N (0, 1) random variables.

Remark 5.2 For the entire range of H ∈ (0, 1), the asymptotic distribution of α̃T is normal

with the rate of convergence of T 1−H and variance σ2. This asymptotic distribution is the

same as that of the LS estimate (see Theorem 3.5 in Xiao and Yu (2019a) and Section 3 in

Xiao and Yu (2019b)).

Remark 5.3 According to (5.14), the asymptotic law of e
−κT

2κ (κ̃T − κ) is the standard Cauchy

times
√

sin (πH). For H ∈ (0, 1/2)∪ (1/2, 1),
√

sin (πH) ∈ (0, 1), suggesting that as H draws

further away from 1/2, κ is estimated with higher accuracy.

Remark 5.4 When X0 6= α
κ , using Lemma 5.1, we can obtain

e−κT

2κ
(κ̃T − κ) =

−2κeκT
∫ T

0

[
1
σ

(
X0 − α

κ

)
VH (t) + P̃H (t)

]
dMH

t + op(1)

4κ2e2κT
∫ T

0

[
1
σ

(
X0 − α

κ

)
VH (t) + P̃H (t)

]2
dωHt + op(1)

.
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In this case, to obtain the asymptotic distribution of e−κT (κ̃T − κ) /(2κ), one needs to calcu-

late the Laplace transform of
∫ T

0

[
1
σ

(
X0 − α

κ

)
VH (t) + P̃H (t)

]2
dωHt . This is complicated and

we leave it in our future work.

6 Concluding Remarks and Future Directions

The fVm has found more and more applications in practice. In this paper, we consider the

MLE of parameters in the drift term when a continuous record of observations is available.

The ML estimation is made possible due to the presence of the fundamental martingale and

the generalized Girsanov theorem. The asymptotic theory is based on the assumption that

T →∞.

It is shown that the MLE of α is asymptotically normal regardless of the sign of κ.

However, the asymptotic law of the MLE of κ critically depends on the sign of κ. More

precisely, when κ > 0 and H ∈ (0, 1), we have shown that the asymptotic distribution of

the MLE of κ is normal with the rate of convergence being
√
T . The asymptotic variance

is 2κ, which is independent of H. When κ = 0 and α 6= 0, the asymptotic distribution of

the MLE of κ is normal with the rate of convergence being T 2−H . The asymptotic variance

depends on H. When κ = 0 and α = 0, the asymptotic distribution of the MLE of κ is

a Dickey-Fuller-Phillips distribution with the rate of convergence being T . When κ < 0, it

is shown that the limiting distribution is a Cauchy-type with the rate of convergence being

e−κT . If one further assumes that X0 = α/κ, the limiting distribution becomes a standard

Cauchy variate multiplied by
√

sin(πH).

This study also suggests several important directions for future research. First, it is worth

investigating to generalize the results in this paper to nonlinear stochastic differential equa-

tions driven by the fBm. The ergodic theorem, fractional calculus and Malliavin calculus will

be employed for obtaining the asymptotic properties of both the MLE and the LS estimators.

Second, in this paper, H and σ are assumed to be known. In practice, both H and σ

are almost always unknown. Although many approaches have been proposed to estimate the

Hurst coefficient and the volatility parameter from discrete time observations, how to estimate

H and σ in fVm with a continuous record of observations is an open question. It is interesting

to realize that we can use the generalized quadratic variation to estimate both the Hurst

parameter and the volatility parameter in fVm. For T > 0 and any ε 6= ξ,

H = lim
ε↓0,ξ↓0

1

2
log

(
ε

ξ

)
log

(∫ T
0 (Xt+ξ −Xt)

2 dt∫ T
0 (Xt+ε −Xt)

2 dt

)
, σ2 =

limε↓0
∫ T

0 (Xt+ε −Xt)
2 dt

ε2HT
.

It would be interesting to study the asymptotic properties of these estimators mentioned

above, which will be reported in later work.

Third, this paper assumes that a continuous record of an increasing time span is available

for the development of asymptotic theory. In practice, data is typically observed at discrete
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time points with (0, h, 2h, ..., Nh(:= T )) where h is the sampling interval and T is the time

span. When high frequency data over a long span of time period is available, one may consider

using a double asymptotic scheme by assuming h → 0 and T → ∞. The discretized model

corresponding to (1.3) is given by

yth = µ+ exp(−κh)
(
y(t−1)h − µ

)
+ ut, (1− L)dut = εt, t = 1, ..., N,

where L is the lag operator, d = H − 1/2. As shown in Wang and Yu (2016), under the

double asymptotic scheme, exp(−κh) = exp {−κ/kN} = 1 − κ/kN + O(k−2
N ) → 1 where

kN := 1/h → ∞ as h → 0 and kN/N = 1/T → 0 as T → ∞. This implies an autoregressive

(AR) model with the AR root being moderately deviated from unity and with a fractionally

integrated error term with d ∈ (−1/2, 0). This model is closely related to a model considered

in Magdalinos (2012) where it is assumed that d ∈ (0, 1/2). Developing double asymptotic

theory based on discretely sampled data will allow one to extend the results of Magdalinos

(2012) to the case where d ∈ (−1/2, 1/2). The development of the MLE and the asymptotic

theory is beyond the scope of this paper and will be reported in later work.

7 Appendix

7.1 Proof of Theorem 3.1

We first consider (3.3). Using (2.11), (2.2) and the properties of the modified Bessel function

of the first kind, for T tending to infinity, we get

VH (T ) =
d

dωHT

∫ T

0
kH (T, s) e−κsds

=
d

dωHT

[√
πκH−1Γ

(
3
2 −H

)
kH

T 1−He−
κT
2 I1−H

(
κT

2

)]

=
κH−

3
2 Γ (2− 2H)

Γ
(

1
2 −H

) TH−
3
2 +O

(
TH−

5
2

)
, (7.1)

which is (3.3).

Then, as T →∞, using Lemma 4.2 of Lohvinenko and Ralchenko (2017), we can obtain∫ T

0
VH (t) dωHt =

∫ T

0
kH (T, s) e−κsds = O

(
T

1
2
−H
)
,

which yields (3.4).

By the proof of Theorem 3 in Tanaka (2013), we can easily obtain (3.5) and (3.6). The

result of (3.7) follows directly from
∫ 1

0 V
2
H (t) dωHt <∞ and

∫ T
1 V 2

H (t) dωHt <∞ (see the proof

of Lemma 4.7 in Lohvinenko and Ralchenko, 2017). Applying Lemma 4.5 in Lohvinenko and

Ralchenko (2017), we can easily obtain (3.8).
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Now, we are left with (3.9). Using the Cauchy-Schwarz inequality, (3.6) and (3.7), we

obtain ∫ T

0
VH (t) P̃H (t) dωHt ≤

√∫ T

0
V 2
H (t) dωHt

∫ T

0
P̃ 2
H (t) dωHt

=
√
O(1)Op(T ) ,

which implies (3.9).

7.2 Proof of Theorem 3.1

To simply notations, let X̃0 := X0 − α
κ . Using (2.10), we have∫ T

0
P 2
H (t) dωHt =

∫ T

0

[
α

σκ
+

1

σ
X̃0VH (t) + P̃H (t)

]2

dωHt

=
α2

σ2κ2
ωHT +

1

σ2
X̃2

0

∫ T

0
V 2
H (t) dωHt +

∫ T

0
P̃ 2
H (t) dωHt

+
2α

σ2κ
X̃0

∫ T

0
VH (t) dωHt +

2α

σκ

∫ T

0
P̃ 2
H (t) dωHt

+
2

σ
X̃0

∫ T

0
VH (t) P̃H (t) dωHt . (7.2)

Using (2.10) again, we obtain(∫ T

0
PH (t) dωHt

)2

=

[∫ T

0

(
α

σκ
+

1

σ
X̃0VH (t) + P̃H (t)

)
dωHt

]2

=
α2

α2κ2

(
ωHT
)2

+
1

σ2
X̃2

0

(∫ T

0
VH (t) dωHt

)2

+

(∫ T

0
P̃H (t) dωHt

)2

+
2α

σκ
ωHT

∫ T

0
P̃H (t) dωHt +

2α

σ2κ
ωHT X̃0

∫ T

0
VH (t) dωHt

+
2

σ
X̃0

∫ T

0
VH (t) dωHt

∫ T

0
P̃H (t) dωHt . (7.3)
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Using (7.2), (7.3) and Lemma 3.1, we deduce that

ωHT

∫ T

0
P 2
H (t) dωHt −

(∫ T

0
PH (t) dωHt

)2

=
ωHT
σ2

X̃2
0

∫ T

0
V 2
H (t) dωHt + ωHT

∫ T

0
P̃ 2
H (t) dωHt + ωHT

2α

σ2κ
X̃0

∫ T

0
VH (t) dωHt

+ωHT
2α

σκ

∫ T

0
P̃ 2
H (t) dωHt + ωHT

2

σ
X̃0

∫ T

0
VH (t) P̃H (t) dωHt

− 1

σ2
X̃2

0

(∫ T

0
VH (t) dωHt

)2

−
(∫ T

0
P̃H (t) dωHt

)2

− 2α

σ2κ
ωHT X̃0

∫ T

0
VH (t) dωHt

−2α

σκ
ωHT

∫ T

0
P̃H (t) dωHt −

2

σ
X̃0

∫ T

0
VH (t) dωHt

∫ T

0
P̃H (t) dωHt

= ωHT

∫ T

0
P̃ 2
H (t) dωHt + op(T

3−2H) . (7.4)

Moreover, using (2.10), we get∫ T

0
PH(t)dMH

t

∫ T

0
PH(t)dωHt

=

[
α

σκ
MH
T +

1

σ
X̃0

∫ T

0
VH (t) dMH

t +

∫ T

0
P̃H (t) dMH

t

]
×[

α

σκ
WH
T +

1

σ
X̃0

∫ T

0
VH (t) dωHt +

∫ T

0
P̃H (t) dωHt

]
=

α2

σ2κ2
MH
T ω

H
T +

α

σκ
MH
T

1

σ
X̃0

∫ T

0
VH (t) dωHt +

α

σκ
MH
T

∫ T

0
P̃H (t) dωHt

+
1

σ
X̃0

∫ T

0
VH (t) dMH

t

α

σκ
ωHT +

1

σ2
X̃2

0

∫ T

0
VH (t) dMH

t

∫ T

0
VH (t) dωHt

+
1

σ
X̃0

∫ T

0
VH (t) dMH

t

∫ T

0
P̃H (t) dωHt +

α

σκ
ωHT

∫ T

0
P̃H (t) dMH

t

+
1

σ
X̃0

∫ T

0
P̃H (t) dMH

t

∫ T

0
VH (t) dωHt +

∫ T

0
P̃H (t) dMH

t

∫ T

0
P̃H (t) dωHt . (7.5)
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By combining (7.2), (7.5) and Lemma 3.1, we have

MH
T

∫ T

0
P 2
H (t) dωHt −

∫ T

0
PH(t)dMH

t

∫ T

0
PH(t)dωHt

=
α2

σ2κ2
MH
T ω

H
T +

MH
T

σ2
X̃2

0

∫ T

0
V 2
H (t) dωHt +MH

T

∫ T

0
P̃ 2
H (t) dωHt

+MH
T

2α

σ2κ
X̃0

∫ T

0
VH (t) dωHt +MH

T

2α

σκ

∫ T

0
P̃H (t) dωHt

+MH
T

2

σ
X̃0

∫ T

0
VH (t) P̃H (t) dωHt −

α2

σ2κ2
MH
T ω

H
T

− α

σκ
MH
T

1

σ
X̃0

∫ T

0
VH (t) dωHt −

α

σκ
MH
T

∫ T

0
P̃H (t) dωHt

− 1

σ
X̃0

∫ T

0
VH (t) dMH

t

α

σκ
ωHT −

1

σ2
X̃2

0

∫ T

0
VH (t) dMH

t

∫ T

0
VH (t) dωHt

− 1

σ
X̃0

∫ T

0
VH (t) dMH

t

∫ T

0
P̃H (t) dωHt −

α

σκ
ωHT

∫ T

0
P̃H (t) dMH

t

− 1

σ
X̃0

∫ T

0
P̃H (t) dMH

t

∫ T

0
VH (t) dωHt −

∫ T

0
P̃H (t) dMH

t

∫ T

0
P̃H (t) dωHt

= − α

σκ
ωHT

∫ T

0
P̃H (t) dMH

t + op

(
T

5
2
−2H

)
. (7.6)

Combining (2.17), (7.6), (7.4), (4.4), (4.5) in Lohvinenko and Ralchenko (2017) with Slut-

sky’s theorem, we obtain

√
T (α̃T − α) =

√
T
[
MH
T

∫ T
0 P 2

H (t) dωHt −
∫ T

0 PH (t) dMH
t

∫ T
0 PH (t) dωHt

]
ωHT
∫ T

0 P 2
H (t) dωHt −

(∫ T
0 PH (t) dωHt

)2 σ

=
− α
σκω

H
T

1√
T

∫ T
0 P̃H (t) dMH

t + op
(
T 2−2H

)
ωHT

1
T

∫ T
0 P̃ 2

H (t) dωHt + op(T 2−2H)
σ

d→ N
(

0,
2α2

κ

)
.

Now, we consider (3.11). Using (2.10) and (7.3), we have

MH
T

∫ T

0
PH (t) dωHt − ωHT

∫ T

0
PH (t) dMH

t

= MH
T

α

σκ
ωHT +MH

T

1

σ
X̃0

∫ T

0
VH (t) dωHt +MH

T

∫ T

0
P̃H (t) dωHt

−
[
ωHT

α

σκ
MH
T + ωHT

1

σ
X̃0

∫ T

0
VH (t) dMH

t + ωHT

∫ T

0
P̃ 2
H (t) dMH

t

]
= −ωHT

∫ T

0
P̃H (t) dMH

t + op

(
T

5
2
−2H

)
. (7.7)

Finally, combining (2.18), (7.7), (7.4), (4.4), (4.5) in Lohvinenko and Ralchenko (2017)
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with Slutsky’s theorem, we have

√
T (κ̃T − κ) =

−ωHT
1√
T

∫ T
0 P̃H (t) dMH

t + op(T
2−2H)

ωHT
1
T

∫ T
0 P̃ 2

H (t) dωHt + op(T 2−2H)

d→ N (0, 2κ) .

7.3 Proof of Lemma 3.2

For H = 1/2, using arguments similar to the proof Theorem 3.1 in Xiao and Yu (2019a), we

can easily obtain

1

T

∫ T

0
X2
t dt

p→ α2

κ2
+
σ2

2κ
, (7.8)

1

T

∫ T

0
Xtdt

p→ α

κ
, (7.9)

1

T

∫ T

0
XtdWt =

α

κ
√
T
WT +

σ√
T

∫ T

0
e−κt

∫ t

0
eκsdWsdWt + op(1) . (7.10)

Now, we consider the second term on the right-hand side of (7.10). For convenience, let

FT = σ√
T

∫ T
0

∫ t
0 e
−κ(t−s)dWsdWt. By direct computations,

lim
T→∞

E
[
F 2
T

]
= lim

T→∞

σ2

T

∫ T

0

∫ t

0
e−2κ(t−s)dsdt =

σ2

2κ
. (7.11)

Moreover, using some basic facts on the Malliavin calculus for Gaussian processes (for

details, see Nualart, 2006), we obtain

DsFT =
σ√
T

∫ s

0
e−κ(s−u)dWu +

σ√
T

∫ T

s
e−κ(t−s)dWt .

Consequently, we have

||DFT ||2H =
σ2

T

∫ T

0

[(∫ s

0
e−κ(s−u)dWu

)2

+

(∫ T

s
e−κ(t−s)dWt

)2

+2

∫ s

0
e−κ(s−u)dWu

∫ T

s
e−κ(t−s)dWt

]
ds

= J1 + J2 + J3 , (7.12)

where

J1 =
σ2

T

∫ T

0

(∫ s

0
e−κ(s−u)dWu

)2

ds ,

J2 =
σ2

T

∫ T

0

(∫ T

s
e−κ(t−s)dWt

)2

ds ,

J3 =
2σ2

T

∫ T

0

(∫ s

0
e−k(s−u)dWu

∫ T

s
e−κ(t−s)dWt

)
ds .
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A standard calculation yields

E [J1] =
σ2

T

∫ T

0

∫ s

0
e−2κ(s−u)duds

=
σ2

T

∫ T

0

∫ s

0
e2κudue−2κsds

=
σ2

T

∫ T

0

1

2κ
(e2κs − 1)e−2κsds

→ σ2

2κ
, as T →∞. (7.13)

Moreover, a standard calculation implies

E [J1]2 = E
σ4

T 2

[∫ T

0

(∫ T

s
e−κ(s−u)dWu

)2

ds

]2

=
σ4

T 2

∫
{s<t≤T}

E

[(∫ s

0
e−κ(s−u)dWu

)2(∫ t

0
e−κ(t−v)dWv

)2
]
dsdt

=
σ4

T 2

∫ T

s

∫ t

0

1

2κ

(
1− e−2κs

)
ds e−2κtdt

=
σ8

2κT 2

∫ T

s
te−2κtdt− σ8

4κ2T 2

∫ T

s
(e−4κt − e−2κt)dt

→ 0 , as T →∞. (7.14)

By combining (7.13) with (7.14), we can obtain that J1 converges in L2 to σ2

2κ as T →∞.

For J2, we can easily obtain

J2 =
σ2

T

∫ T

0

(∫ T

s
e−κ(t−s)dWt

)2

ds =
σ2

T

∫ T

0

(∫ u

0
e−θ(u−v)dWv

)2

du .

Hence J2 also converges to σ2

2κ in L2 as T →∞.

Finally, we consider J3. A standard calculation yields

E [J3] = 0 . (7.15)

Then, a simple calculation shows that

E [J3]2 =
4σ4

T 2

∫
{s<u≤T}

E
[ ∫ s

0
e−κ(s−v)dWv

∫ u

0
e−κ(u−w)dWw

·
∫ T

s
e−κ(t−s)dWt

∫ T

u
e−κ(t−u)dWt

]
dsdu

=
4σ4

T 2

[∫
{s<u≤T}

∫ s

0
e−κ(s+u−2v)dv

∫ T

u
e−κ(2t−s−u)dt

]
dsdu

=
4σ4

4κ2T 2
(e2κs − 1)(e−2κu − e−2κT )dsdu

→ 0 , as T →∞. (7.16)
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From (7.10)-(7.16), we obtain

||DFT ||2H
L2

−→ σ2

κ
, (7.17)

where
L2

−→ denotes convergence in mean square.

Using (7.11), (7.17) and Theorem 4 in Nualart and Ortiz-Latorre (2008), we have

FT =
σ√
T

∫ T

0

∫ t

0
e−κ(t−s)dWsdWt

d→ N
(

0,
σ2

2κ

)
. (7.18)

On the other hand, from (2.17), we have

√
T (α̃T − α) =

1√
T
WT

1
T

∫ T
0 X2

t dt− 1√
T

∫ T
0 XtdWt

1
T

∫ T
0 Xtdt

1
T

∫ T
0 X2

t dt−
(

1
T

∫ T
0 Xtdt

)2 σ . (7.19)

Finally, combining (7.8), (7.9), (7.10), (7.18), (7.19) with Slutsky’s theorem, we obtain

(3.20). The proof of (3.21) is analogous to the proof of (3.4) in Xiao and Yu (2019a) and

omitted.

7.4 Proof of Lemma 4.1

From the proof of Theorem 2 in Tanaka (2013), we can easily obtain (4.3) and (4.4). A simple

calculation shows that∫ T

0
tdωHt =

∫ T

0
t

1

λH
(2− 2H) t1−2Hdt =

1

λH

2− 2H

3− 2H
T 3−2H .

Similarly, a standard calculation yields∫ T

0
t2dωHt =

∫ T

0
t2

1

λH
(2− 2H) t1−2Hdt =

1

λH

1−H
2−H

T 4−2H .

Combining (4.4) with the Cauchy-Schwarz inequality, we have

∫ T

0
P̂H (t) dωHt ≤

√
ωHT

∫ T

0
P̂ 2
H (t) dωHt = Op

(
T 2−H) .

Using (4.4), (4.6) and the Cauchy-Schwarz inequality, we obtain

∫ T

0
tP̂H (t) dωHt ≤

√∫ T

0
t2dωHt

∫ T

0
P̂ 2
H (t) dωHt = Op

(
T 3−H) .
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Now, we consider (4.9). Form the definition of VH (T ), we conclude that

VH (T ) =
d

dωHT

∫ T

0
kH (T, s) e−κsds =

d

dωHT

∫ T

0
kH (T, s) ds

=
d

dωHT

[
1

kH

∫ T

0
(s (T − s))

1
2
−H ds

]
=

d

dωHT

[
1

kH

∫ 1

0
T 1−2H (u (1− u))

1
2
−H Tdu

]
=

d

dT

[
1

kH
T 2−2HB

(
3

2
−H, 3

2
−H

)]/
dωHT
dT

=
λH
kH

B

(
3

2
−H, 3

2
−H

)
.

Finally, we deal with (4.10). A standard calculation yields

d

dωHt

∫ t

0
kH (t, s) sds =

d

dωHt

[
1

kH

∫ t

0
(s (t− s))

1
2
−H sds

]
=

d

dωHt

[
1

kH

∫ t

0
s

3
2
−H (t− s)

1
2
−H ds

]
=

d

dωHt

[
1

kH

∫ 1

0
(vt)

3
2
−H (t− vt)

1
2
−H tdv

]
=

d

dωHt

[
1

kH
t3−2H

∫ 1

0
v

3
2
−H (1− v)

1
2
−H dv

]
=

d

dωHt

[
1

kH
t3−2HB

(
5

2
−H, 3

2
−H

)]
= aHt ,

where aH = (3− 2H)/ (4− 4H) and the proof of this lemma is completed.

7.5 Proof of Theorem 4.1

Using (2.9), (4.1) and (4.10), we have

PH (t) =
1

σ

d

dωHt

∫ t

0
kH (t, s)Xsds

=
1

σ

d

dωHt

∫ t

0
kH (t, s)

[
X0 + αs+ σBH

s

]
ds

=
X0

σ
+
α

σ

d

dωHt

∫ t

0
kH (t, s) sds+ P̂H (t)

=
X0

σ
+
α

σ
aHt+ P̂H (t) , (7.20)
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where P̂H (t) = d
dωHt

∫ t
0 kH (t, s)BH

s ds. Using (4.4)–(4.8) and (7.20), we have

∫ T

0
P 2
H (t) dωHt =

∫ T

0

[
X0

σ
+
α

σ
aHt+ P̂H (t)

]2

dωHt

=
X2

0

σ2
ωHT +

α2

σ2
a2
H

∫ T

0
t2dωHt +

∫ T

0
P̂ 2
H (t) dωHt

+2
X0

σ2
αaH

∫ T

0
tdωHt +

2X0

σ

∫ T

0
P̂H (t) dωHt

+
2α

σ
aH

∫ T

0
tP̂H (t) dωHt

=
α2

σ2
a2
H

∫ T

0
t2dωHt + op(T

4−2H) . (7.21)

Similarly, combining (4.5) with (4.7) leads to∫ T

0
PH (t) dωHt =

∫ T

0

[
X0

σ
+
α

σ
aHt+ P̂H (t)

]
dωHt

=
X0

σ
ωHT +

α

σ
aH

∫ T

0
tdωHt +

∫ T

0
P̂H (t) dωHt

=
α

σ
aH

∫ T

0
tdωHt + op(T

3−2H) . (7.22)

Moreover, using (4.3) and (7.20), we have∫ T

0
PH (t) dMH

t =

∫ T

0

[
X0

σ
+
α

σ
aHt+ P̂H (t)

]
dMH

t

=
X0

σ
MH
T +

α

σ
aH

∫ T

0
tdMH

t +

∫ T

0
P̂H (t) dMH

t

=
X0

σ
MH
T +

α

σ
aH

∫ T

0
tdMH

t +Op (T ) . (7.23)

According to (7.21) and (7.22), we get

ωHT

∫ T

0
P 2
H (t) dωHt −

(∫ T

0
PH (t) dωHt

)2

=
1

λH
T 2−2H α

2

σ2
a2
H

∫ T

0
t2dωHt −

α2

σ2
a2
H

1

λ2
H

(2− 2H)2

(3− 2H)2T
6−4H + op(T

6−4H)

=
T 6−4H

λ2
H

α2

σ2
a2
H

(
1−H
2−H

− (2− 2H)2

(3− 2H)2

)
+ op(T

6−4H)

=
T 6−4H

σ2λ2
H

α2a2
H

1−H
(2−H) (3− 2H)2 + op

(
T 6−4H

)
. (7.24)

23



Similarly, applying (7.21) and (7.23), we have

MH
T

∫ T

0
P 2
H (t) dωHt −

∫ T

0
PH (t) dωHt

∫ T

0
PH (t) dMH

t

= MH
T

α2

σ2
a2
H

∫ T

0
t2dωHt −

α

σ
aH

∫ T

0
tdωHt

α

σ
aH

∫ T

0
tdMH

t + op(T
5−3H)

=
α2

σ2
a2
H

[
MH
T

T 4−2H

λH

1−H
2−H

− T 3−2H

λH

2− 2H

3− 2H

∫ T

0
tdMH

t

]
+ op(T

5−3H)

=
α2a2

HT
5−3H

λHσ2

[
1−H
2−H

MH
T

T 1−H −
2− 2H

3− 2H

1

T 2−H

∫ T

0
tdMH

t

]
+ op(T

5−3H) . (7.25)

Consequently, combining (2.17), (7.24), (7.25) with Slutsky’s theorem, we have

T 1−H (α̃T − α) =

1
T 5−3H

[
MH
T

∫ T
0 P 2

H (t) dωHt −
∫ T

0 PH (t) dMH
t

∫ T
0 PH (t) dωHt

]
1

T 6−4H

[
ωHT
∫ T

0 P 2
H (t) dωHt −

(∫ T
0 PH (t) dωHt

)2
] σ

d→ N
(
0, σ2ρH

)
.

By (7.22), (7.23), (2.3) and the fact MH
T = Op(T

1−H), we obtain

MH
T

∫ T

0
PH (t) dωHt − ωHT

∫ T

0
PH (t) dMH

t

= MH
T

α

σ
aH

∫ T

0
tdωHt − ωHT

α

σ
aH

∫ T

0
tdMH

t + op
(
T 4−3H

)
=

α

σ
aH

[
MH
T

1

λH

2− 2H

3− 2H
T 3−2H − 1

λH
T 2−2H

∫ T

0
tdMH

t

]
+ op

(
T 4−3H

)
=

α

σλH
aHT

4−3H

[
MH
T

T 1−H
2− 2H

3− 2H
− 1

T 2−H

∫ T

0
tdMH

t

]
+ op

(
T 4−3H

)
. (7.26)

Using (2.18), (7.24), (7.26) and Slutsky’s theorem, we can see that

T 2−H (κ̃T − κ) =

1
T 4−3H

[
MH
T

∫ T
0 PH (t) dωHt − ωHT

∫ T
0 PH (t) dMH

t

]
1

T 6−4H

[
ωHT
∫ T

0 P 2
H (t) dωHt −

(∫ T
0 PH (t) dωHt

)2
]

d→ N
(

0,
σ2

α2
φH

)
.
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7.6 Proof of Theorem 5.1

Using (2.13), (5.1) and (5.2), we can obtain∫ T

0
X2
t dt =

∫ T

0

[α
κ

+ e−κtX̃0 + σUt

]2
dt

=
α2

κ2
T + X̃2

0

∫ T

0
e−2κtdt+ σ2

∫ T

0
U2
t dt+

2α

κ
X̃0

∫ T

0
e−κtdt

+
2ασ

κ

∫ T

0
Utdt+ 2X̃0σ

∫ T

0
e−κtUtdt

= X̃2
0

∫ T

0
e−2κtdt+

∫ T

0
e−2κtξ2

t dt+ 2X̃0

∫ T

0
e−2κtξtdt+ op

(
e−2κT

)
=

∫ T

0
e−2κt

(
X̃0 + ξt

)2
dt+ op(e

−2κT ) . (7.27)

Similarly, using (2.13), (5.1) and (5.2) again, we can easily have∫ T

0
Xtdt =

∫ T

0

[α
κ

+ e−κtX̃0 + σUt

]
dt

=
α

κ
T + X̃0

1

κ

(
1− e−κT

)
+ σ

∫ T

0
UTdt

= Op
(
e−κT

)
. (7.28)

A straightforward calculation shows∫ T

0
XtdWt =

∫ T

0

[α
κ

+ e−κtX̃0 + σUt

]
dWt

=
α

κ
WT + X̃0

∫ T

0
e−κtdWt + σ

∫ T

0
UtdWt

= Op
(
e−κT

)
. (7.29)

From the definition of ξt, we can rewrite Xt as Xt = α
κ+e−κtX̃0+e−κtξt. As a consequence,

using (7.27), we can see that

e2κT

∫ T

0
X2
t dt =

∫ T
0 e−2κt

(
X̃0 + ξt

)2
dt

e−2κT
+ op (1) , (7.30)

σeκT
∫ T

0
XtdWt = X̃0σ

∫ T

0
eκ(T−t)dWt + σ

∫ T

0
eκ(T−t)ξtdWt + op (1) . (7.31)

Now, applying (2.17), (7.28), (7.29), (7.30) and Slustky’s theorem, we deduce

√
T (α̃T − α) =

WT√
T
e2κT

∫ T
0 X2

t dt− e2κT√
T

∫ T
0 XtdWt

∫ T
0 Xtdt

e2κT

(∫ T
0 X2

t dt− 1
T

(∫ T
0 Xtdt

)2
) σ

=

WT√
T
e2κT

∫ T
0 X2

t dt+ op (1)

e2κT
∫ T

0 X2
t dt+ op (1)

σ =
σWT√
T

+ op(1) ,
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which implies (5.3).

Finally, using (2.18), (7.28), (7.30), (7.31) and Slustky’s theorem, we have

e−κT (κ̃T − κ) = e−κT

 WT
T

∫ T
0 Xtdt−

∫ T
0 XtdWt∫ T

0 X2
t dt− 1

T

(∫ T
0 Xtdt

)2σ


=
−σeκT

∫ T
0 XtdWt + op (1)

e2κT
∫ T

0 X2
t dt+ op (1)

d→
−
(
X0 − α

κ + ξ∞
)
η∞

− 1
2κ

(
X0 − α

κ + ξ∞
)2 ,

which yields (5.4) and the proof is done.

7.7 Proof of Lemma 5.1

Let us observe that (5.6) can be obtained easily from Theorem 2 in Tanaka (2015) and the

details are omitted here. For (5.7), using the Cauchy-Schwarz inequality, we have

E

[(∫ T

0
P̃H (t) dMH

t

)2
]

=

∫ T

0
P̃ 2
H (t) dωHt = O(e−2κT ) ,

which implies (5.7) directly.

Let 1F1(·, ·, ·) be the confluent hypergeometric function of the first kind. From (5.5), and

the well known result of the confluent hypergeometric function (see for example, Eq. 3.383

(1) in Gradshteyn and Ryzhik, 2007), we have∫ T
0 VH (t) dωHt

T
1
2
−He−κT

= C

∫ T

0

(
t

T
(T − t)

) 1
2
−H

eκ(T−t)dt

= CT

∫ 1

0
(u(1− u))

1
2
−HeκT (1−u)du

= CT

∫ 1

0
(v(1− v))

1
2
−HeκTvdv

= CT 1F1

(
3

2
−H, 3− 2H,κT

)
= O(1) ,

which yields (5.8).

We now deal with (5.9). Let ζt = σ
∫ t

0 e
κsdBH

s . Then, as T →∞, we have

ζT
p→ ζ∞ ∼ N

(
0,
HΓ (2H)

(−κ)2H
σ2

)
. (7.32)

Using (2.2), (2.13), (7.32) and the property of the confluent hypergeometric function (see
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for example, Eq. 3.383 (1) in Gradshteyn and Ryzhik, 2007), we have∫ T

0
P̃H (t) dωHt =

∫ T

0
kH (T, t)Utdt

=
1

kH

∫ T

0
(t (T − t))

1
2
−H e−κt

σ
ζtdt

= CT 2−2H

∫ 1

0
(u (1− u))

1
2
−H e−κTuζTudu

= Op(1)T 2−2H

∫ 1

0
(u (1− u))

1
2
−H e−κTudu

= Op(1)T 2−2H
1F1

(
3

2
−H, 3− 2H,−κT

)
= Op(1)T 2−2HOp(T

H− 3
2 e−κT )

= Op(T
1
2
−He−κT ) ,

which implies (5.9).

We now turn to the term (5.10). Using (5.5), we can easily obtain∫ T

0
V 2
H (t) dωHt = C

∫ T

0
t2H−1e−2κtt1−2Hdt = O(e−2κT ) ,

which yields (5.10).

Using the Cauchy-Schwarz inequality, (5.6) and (5.10), we obtain(∫ T

0
VH (t) P̃H (t) dωHt

)2

≤
∫ T

0
V 2
H (t) dωHt

∫ T

0
P̃ 2
H (t) dωHt = Op

(
e−4κT

)
,

which implies (5.11).

Similarly, using (5.10), we have

E

[(∫ T

0
VH (t) dMH

t

)2
]

=

∫ T

0
V 2
H (t) dωHt = Op

(
e−2κT

)
,

which yields (5.12) and we complete the proof.
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7.8 Proof of Theorem 5.2

Using (2.10), (5.6), (5.8)-(5.10) and (5.11), we can obtain∫ T

0
P 2
H (t) dωHt =

∫ T

0

[
α

σκ
+

1

σ
X̃0VH (t) + P̃H (t)

]2

dωHt

=
α2

σ2κ2
ωHT +

1

σ2
X̃2

0

∫ T

0
V 2
H (t) dωHt +

∫ T

0
P̃ 2
H (t) dωHt

+
2α

σ2κ
X̃0

∫ T

0
VH (t) dωHt +

2α

σκ

∫ T

0
P̃H (t) dωHt

+
2

σ
X̃0

∫ T

0
VH (t) P̃H (t) dωHt

=
1

σ2
X̃2

0

∫ T

0
V 2
H (t) dωHt +

∫ T

0
P̃ 2
H (t) dωHt

+
2

σ
X̃0

∫ T

0
VH (t) P̃H (t) dωHT + op

(
e−2κT

)
=

∫ T

0

(
1

σ
X̃0VH (t) + P̃H (t)

)2

dωHt + op(e
−2κT ) . (7.33)

According to (2.10), (5.6), (5.8) and (5.9), we obtain

1

ωHT

(∫ T

0
PH (t) dωHt

)2

=
1

ωHT

[∫ T

0

(
α

σκ
+

1

σ
X̃0VH (t) + P̃H (t)

)
dωHt

]2

=
1

ωHT

[
α

σκ
ωHT +

1

σ
X̃0

∫ T

0
VH (t) dωHt +

∫ T

0
P̃H (t) dωHt

]2

=
1

ωHT

[
α2

σ2κ2

(
ωHT
)2

+
1

σ2
X̃2

0

(∫ T

0
VH (t) dωHt

)2

+

(∫ T

0
P̃H (t) dωHt

)2

+
2α

σ2κ
ωHT

∫ T

0
VH (t) dωHt

+
2α

σκ
ωHT

∫ T

0
P̃H (t) dωHt +

2

σ
X̃0

∫ T

0
VH (t) dωHt

∫ T

0
P̃H (t) dωHt

]
= op

(
e−2κT

)
. (7.34)

From (2.10), (5.7) and (5.12), we can see that∫ T

0
PH (t) dMH

t =

∫ T

0

[
α

σκ
+

1

σ
X̃0VH (t) + P̃H (t)

]
dMH

t

=
α

σκ
MH
T +

1

σ
X̃0

∫ T

0
VH (t) dMH

t +

∫ T

0
P̃H (t) dMH

t

=
X̃0

σ

∫ T

0
VH (t) dMH

t +

∫ T

0
P̃H (t) dMH

t + op(e
−κT ). (7.35)
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From (2.10) and the definition of ωHt , we can obtain∫ T

0
PH (t) dωHt =

∫ T

0

[
α

σκ
+

1

σ
X̃0VH (t) + P̃H (t)

]
dωHt

=
α

σκ
ωHT +

1

σ
X̃0

∫ T

0
VH (t) dωHt +

∫ T

0
P̃H (t) dωHt

=
X̃0

σ

∫ T

0
VH (t) dωHt +

∫ T

0
P̃H (t) dωHt +O(T 2−2H) . (7.36)

Now, combining (2.17), (7.33), (7.34), Lemma 5.1 with Slutsky’s theorem, we have

T 1−H (α̃T − α) =
T 1−H MH

T

ωHT

∫ T
0 P 2

H (t) dωHt − T 1−H

ωHT

∫ T
0 PH (t) dMH

t

∫ T
0 PH (t) dωHt∫ T

0 P 2
H (t) dωHt − 1

ωHT

(∫ T
0 PH (t) dωHt

)2 σ

d→ N
(
0, σ2

)
.

Now, let X and Y be two independent N (0, 1) random variables. Then using (2.18),

(7.33)-(7.36), (2.10), Lemma 5.1, Slutsky’s theorem and Eq. (33) in Tanaka (2015), we can

see that

e−κT

2κ
(κ̃T − κ) =

e−κT

2κ

[
MH
T

ωHT

∫ T
0 PH (t) dωHt −

∫ T
0 PH (t) dMH

t

]
∫ T

0 P 2
H (t) dωHt − 1

ωHT

(∫ T
0 PH (t) dωHt

)2

=
−2κeκT

∫ T
0 PH (t) dMH

t + op(1)

4κ2e2κT
∫ T

0 P 2
H (t) dωHt + op(1)

=
−2κeκT

∫ T
0

[
X̃0
σ VH (t) + P̃H (t)

]
dMH

t + op(1)

4κ2e2κT
∫ T

0

[
X̃0
σ VH (t) + P̃H (t)

]2
dωHt + op(1)

d→
X
√

sin (πH)

Y
,

with X̃0 = 0.
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