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Yuhong Xu and Zhenlin Yang†
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January 28, 2019

Abstract
We propose score type tests for testing the existence of temporal heterogeneity

in slope and spatial parameters in spatial panel data (SPD) models, allowing for the
presence of individual-specific and/or time-specific fixed effects (or in general intercept
heterogeneity). The SPD model with spatial lag effect is treated in detail by first
considering the model with individual-specific effects only, and then extending it to
the model with both individual and time specific effects. Two types of tests (näıve
and robust) are proposed, and their asymptotic properties are presented. These tests
are then fully extended to an SPD model with both spatial lag and spatial error
effects. Monte Carlo results show that the robust tests have much superior finite and
large sample properties than the naive tests. Thus, the proposed robust tests provide
reliable tools for identifying possible existence of temporal heterogeneity in regression
and spatial coefficients. Empirical illustrations of the proposed tests are given.

Key Words: Spatial panels; Fixed effects; Time-Varying Covariate Effects; Time-
Varying Spatial Effects; Change Points.

JEL Classification: C10, C13, C21, C23, C15

1. Introduction

Being able to control unobserved heterogeneity may be one of the most important

features of a panel data (PD) model. Heterogeneity may occur on intercept, slope and error

variance. In a spatial PD model (SDP), it may also occur on spatial parameters (Anselin,

1988). Heterogeneity in variance is often referred to as heteroskedasticity. Heterogeneity

may occur in spatial and/or temporal dimension. When unobserved heterogeneity occurs

on the intercept, it gives rise to individual-specific effects and/or time-specific effects,

which may appear in the model additively or interactively. Change point or structural

break may be considered as a special case of unobserved heterogeneity.
∗The authors are grateful to the participants of the XI World Conference of the Spatial Economet-

rics Association, Singapore, June 2017, and the seminar participants at the Tohoku University, Japan,
Dec. 2018, for their helpful comments. Zhenlin Yang gratefully acknowledges the financial support from
Singapore Management University under Grant C244/MSS16E003.

†Corresponding Author: 90 Stamford Road, Singapore 178903. Phone: +65-6828-0852; Fax: +65-6828-
0833. E-mail addresses: zlyang@smu.edu.sg.
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Temporal heterogeneity is a common feature in an SPD model. It is an important issue

but relatively unexplored in the spatial panel literature. Temporal heterogeneity may

occur as a result of a credit crunch or debt, an oil price shock, a tax policy change, a fad

or fashion in society, a discovery of a new medicine, and an enaction of new governmental

program (Bai, 2010). Many economic processes, for example, housing decisions, technology

adoption, unemployment, welfare participation, price decisions, crime rates, trade flows,

etc., exhibit time heterogeneity patterns. Values observed at one location depend on the

values of neighboring observations at nearby locations. Therefore, one may be interested

in the question that does this dependence stay the same over time.

There is a sizable literature on temporal heterogeneity, mostly in change points, in

regular panel data models, see, Bai (2010), Liao (2008), Feng et al. (2009), to name a

few. In spatial models, previous literature has focused more on the spatial heterogeneity,

see, e.g., Baltagi (2008). The literature on temporal heterogeneity in spatial panel data

models is rather thin. We are only aware of the following two works, Sengupta (2017) who

proposes tests for a structural break in a spatial panel model without fixed effects, and

Li (2018) who study fixed effects SPD models with structural changes. SPD models with

temporal heterogeneity also appear in finance literature, see, e.g., Blasques et al. (2016)

and Catania and Billé (2017), but under a different setting where the time dimension is

much larger than the spatial dimension.

In this paper, we extend the fixed effects SPD models of Lee and Yu (2010), see also

Baltagi and Yang (2013) and Yang et al. (2016), to allow for temporal heterogeneity in

regression as well as spatial coefficients. We focus on testing problems. A general method,

the adjusted quasi score (AQS) method, is introduced for constructing tests for temporal

homogeneity/heterogeneity on regression coefficients and spatial correlation coefficients, in

spatial panel data (SPD) models, allowing the existence of spatial-temporal heterogeneity

in the intercepts (or fixed effects). The SPD model with spatial lag effect is first treated

in detail by first considering the model with individual-specific effects only, and then

extended to the model with both individual and time specific effects. Two types of tests

(näıve and robust) are proposed, and their asymptotic properties are presented. These

tests are then fully extended to an SPD model with both spatial lag and spatial error

effects. Monte Carlo results show that the robust tests have much superior finite and

large sample properties than the naive tests. Thus, the proposed robust tests provide

reliable tools for identifying possible existence of temporal heterogeneity in regression and

spatial coefficients. Empirical illustrations of the proposed tests are given.

The rest of the paper is organized as follows. Section 2 presents AQS tests for the

panel SL model with one-way and two-way fixed effects, along with the general method

for constructing non-normality robust AQS tests. Section 3 generalizes these tests to a

SPD model with both spatial lag and spatial error dependence. Section 4 presents Monte

Carlo results. Section 5 presents some empirical applications to illustrate the proposed

methods. Section 6 discuss possible extensions and concludes the paper.
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2. Test for Temporal Heterogeneity in Panel SL Model

In this section, we consider specification tests for testing the existence of temporal

heterogeneity in slope and spatial parameters in a spatial panel data (SPD) model where

the spatial effects take the form of the so-called spatial lag (SL) dependence. We first

derive the tests for a panel SL model with one-way fixed effects (1FE) (i.e., individual-

specific fixed effects or unobserved spatial heterogeneity in the intercept), where a general

principle is given for the construction of AQS tests, and then extend these tests to a panel

SL model with two-way FEs (i.e., both individual and time specific effects or unobserved

spatiotemporal heterogeneity in intercepts). Asymptotic properties of the proposed tests

are presented. Some key quantities for calculating the test statistics, the Hessian matrix,

expected Hessian matrix, and the variance-covariance (VC) matrix of the AQS function,

are given in Appendix B, and Proofs are sketched in Appendix C.

2.1. Panel SL model with one-way FE

Consider the following panel SL model individual-specific FE:

Ynt = λtWnYnt + Xntβt + cn + Vnt, (2.1)

where Ynt is an n × 1 vector of observations on the dependent variable for t = 1, 2, . . . , T ;

Xnt is an n × k matrix containing the values of k exogenous regressors, Wn is an n × n

spatial weight matrix; Vnt is an n × 1 vector of independent and identically distributed

(iid) disturbances with mean zero and variance σ2; λt is the spatial lag parameters and

βt is the k × 1 vector of regression coefficients for the tth period; and cn denotes the

individual-specific fixed effects or the spatial heterogeneity in intercept.

We are primarily interested in testing for the temporal homogeneity of the regression

coefficients and the spatial coefficients, i.e., the tests of the null hypothesis:

H0 : λ1 = · · · = λT = λ and β1 = · · · = βT = β, (2.2)

allowing the existence of the unobserved cross-sectional heterogeneity in the intercept, i.e.,

the individual specific fixed effects cn. However, the methods developed in this paper can

be applied to other type of tests as well. An interesting case would be tests for detecting

change points as discussed latter. We develop score-type of tests as they require only the

estimation of the null model. However, the construction of the score-type of tests requires

the full quasi score (QS) function, based on the quasi Gaussian loglikelihood.

Denote β = (β′
1, . . . , β

′
T )′, λ = (λ1, . . . , λT )′, and θ = (β′, λ′, σ2)′. Define An(λt) =

In − λtWn, t = 1, . . . , T . The Gaussian loglikelihood function of the model is

�SL1(θ, cn) = −nT

2
ln(2πσ2) +

T∑
t=1

ln |An(λt)| − 1
2σ2

T∑
t=1

V ′
nt(λt, βt, cn)Vnt(λt, βt, cn), (2.3)

3



where Vnt(βt, λt, cn) = An(λt)Ynt − Xntβt − cn, T = 1, . . . , T .

Adjusted (quasi) score functions. As {λt} and {βt} are allowed to change with

t, the usual fixed-effects estimation method, such as first differencing or orthogonal trans-

formation, cannot be applied. We propose an adjusted score (AS) or adjusted quasi score

(AQS) method to estimate the model. This leads to a set of AS or AQS functions that are

unbiased and hence a set of score-type of tests, reffered to as the AQS tests in this paper,

for testing the homogeneity/heterogeneity of the spatial parameters and the regression co-

efficients. The method proceeds by first eliminating cn through direct maximization of

the loglikelihood function, given the other model parameters θ, and then adjusting the

resulted concentrated (quasi) score function to eliminate the asymptotic bias or inconsis-

tency. First, given θ, �SL1(θ, cn) is partially maximized at:

c̃n(β, λ) = 1
T

∑T
t=1[An(λt)Ynt − Xntβt], (2.4)

which gives the concentrated loglikelihood function of θ upon substitution:

�c
SL1(θ) = −nT

2
ln(2πσ2) +

T∑
t=1

ln |An(λt)| − 1
2σ2

T∑
t=1

Ṽ ′
nt(β, λ)′Ṽnt(β, λ), (2.5)

where Ṽnt(β, λ) = An(λt)Ynt −Xntβt − c̃n(β, λ). Differentiating �c
SL1(θ) gives the concen-

trated score (CS) or concentrated quasi score (CQS) function of θ:

Sc
SL1(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
σ2 X ′

ntṼnt(β, λ), t = 1, . . . , T,

1
σ2 (WnYnt)′Ṽnt(β, λ)− tr[Gn(λt)], t = 1, . . . , T,

− nT
2σ2 + 1

2σ4

∑T
t=1 Ṽ ′

nt(β, λ)Ṽnt(β, λ),

(2.6)

where Gn(λt) = WnA−1
n (λt), t = 1, . . . , T .

For the subsequent theoretical developments, we need to differentiate the general pa-

rameter vector θ = (β′, λ′, σ2)′ and its true value θ0 = (β′
0, λ

′
0, σ

2
0)

′. We view that the

Model (2.1) holds only under the true values of the parameters. Furthermore, the usual

expectation and variance operators correspond to θ0.

At the true θ0, c̃n(β0, λ0) = V n + cn and thus Ṽnt ≡ Ṽnt(β0, λ0) = Vnt − V n, where

V n = 1
T

∑T
t=1 Vnt, and WnYnt = Gn(λt0)(Xntβt0 + cn + Vnt). It is easy to show that,

E[Sc
SL1(θ0)] =

{
0′Tk, − 1

T tr[Gn(λt0)], t = 1, . . .T, − n
2σ2

0

}′
,

where 0m denotes an m × 1 vector of zeros.

Therefore, the direct approach does not yield consistent estimators unless T goes to

large. Even if T goes large with n, there will be an asymptotic bias of order O( 1
T 2 ) for

the estimators of {λt}, and an asymptotic bias of order O( 1
T ) for the estimator of σ2.

Therefore, the concentrated (quasi) score function given in (2.6) should be adjusted by

subtracting the above bias vector from it, leading to the adjusted score (AS) or adjusted

4



quasi score (AQS) function as

S�
SL1(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
σ2 X ′

ntṼnt(β, λ), t = 1, . . . , T,

1
σ2 (WnYnt)′Ṽnt(β, λ)− T−1

T tr[Gn(λt)], t = 1, . . . , T,

−n(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ′

nt(β, λ)Ṽnt(β, λ).

(2.7)

It is easy to show that E[S�
SL1(θ)] = 0, and that 1

nT S�
SL1(θ0)

p−→ 0 as n → ∞ alone, or both

n and T go infinity. Thus, this AQS function gives a set of unbiased estimating functions,

and paves the way for developing asymptotically valid score-type tests.1 Simplifying this

AQS function under the null hypothesis gives AQS function of the null model, leading to

the constrained estimates of the null model parameters. See the end of section for details.

Construction of the AQS tests. Denote the constrained (under H0) estimator of θ

as θ̃SL1. In case of testing for temporal homogeneity, for example, we have β̃SL1 = 1T⊗β̃SL1,

λ̃SL1 = 1T ⊗ λ̃SL1, and θ̃SL1 = (β̃′
SL1, λ̃

′
SL1, σ̃

2
SL1)

′, where β̃SL1 and λ̃SL1 are the estimators

of the common β and common λ under (2.2). Let JSL1(θ) = − ∂
∂θ′S

�
SL1(θ) be the negative

Hessian matrix of the AQS function with its expression given in Appendix B.1. The usual

score test, treating S�
SL1(θ) as a genuine score vector, takes the form:

TSL1 = S�
SL1(θ̃SL1)′J−1

SL1(θ̃SL1)S�
SL1(θ̃SL1). (2.8)

However, S�
SL1(θ) is not a genuine score function even if the errors are normal, as it comes

from the original score function after some adjustments. In this case, the well-known

information matrix equality (IME) or the generalized IME (Cameron and Trivedy, 2005);

Wooldridge, 2010)) does not hold. Hence, the TSL1 constructed in this ‘usual’ way may

not be a valid test statistic, even if the errors are normal.

To address these issues, denoting kq = dim(θ) = (k + 1)T + 1, we put our testing

problem in a general framework with null hypothesis being written as

H0 : Cθ0 = 0, (2.9)

where C is a kp × kq matrix generating kp linear contrasts in the parameter vector θ.

For the null hypothesis defined in (2.2), kp = (T−1)(k+1), C = blkdiag{CT,k, CT,1, 0kp},

CT,m =

⎛
⎜⎜⎜⎜⎜⎝

Im −Im 0m · · · 0m

Im 0m −Im · · · 0m

...
...

...
. . .

...

Im 0m 0m · · · Im

⎞
⎟⎟⎟⎟⎟⎠

,

for m = k and 1, where 0m denotes an m × m matrix of zeros to differentiate it from
1Solving the estimating equation, S�

SL1(θ) = 0, gives the AQS estimator of θ, which can also be referred
to as an M -estimator. This equation solving process can be simplified by first solving the last equation for
σ2, leading the the constrained estimator of σ2 given (β, λ), σ̂�2

SL1(β, λ) = 1
n(T−1)

PT
t=1

eV ′
nt(β, λ)eVnt(β, λ),

and then solving the resulted concentrated AQS equations for (β, λ).

5



the vector 0m. Obviously, this set-up is not restricted to the null hypothesis defined in

(2.2). This is particularly meaningful in the sense that when the null hypothesis defined in

(2.2) is rejected, one would proceed to perform further tests to detect the ‘true’ temporal

heterogeneity. An interesting case would be the test of the form, for 1 < b0, �0 < T ,

H0 : β1 = · · · = βb0 �= βb0+1 = · · · = βT and λ1 = · · · = λ�0 �= λ�0+1 = · · · = λT , (2.10)

in the spirit of change points detection (Bai, 2010, Li, 2018), where the change points b0

and �0 for βt and λt can be the same or different. In this case, we have kp = (T −2)(k+1)

and the linear contrast matrix C = blkdiag(Cb0,k, CT−b0,k, C�0,1, CT−�0,1, 0kp). In this

lines, it would also be of interest to test (2.10) vs (2.2), and the test can be carried out

repeatedly to detect the ‘true’ change points. In other interesting cases, kp and C for the

null hypothesis can all be easily written out.

The score-type test is based on the AQS function S�
SL1(θ̃SL1) evaluated at the null

estimate θ̃SL1 of θ, and the asymptotic variance-covariance (VC) matrix of S�
SL1(θ̃SL1).

Let ISL1(θ0) = E[JSL1(θ0)] and ΣSL1(θ0) = Var[S�
SL1(θ0)], with their analytical expressions

being given in Appendix B.1. Denote by N0 = n(T − 1) the effective sample size to

differentiate from the overall sample size N = nT . Under mild regularity conditions, such

as the
√

N0-consistency of θ̃SL1, we have by Taylor expansion:

1√
N0

S�
SL1(θ̃SL1) = 1√

N0
S�
SL1(θ0) + 1

N0
ISL1(θ0)

√
N0(θ̃SL1 − θ0) + op(1), and

[ 1
N0

ISL1(θ0)]−1 1√
N0

S�
SL1(θ̃SL1) = [ 1

N0
ISL1(θ0)]−1 1√

N0
S�
SL1(θ0) +

√
N0(θ̃SL1 − θ0) + op(1).

As Cθ0 = 0 under H0, we have Cθ̃SL1 = 0. It follows that

C[ 1
N0

ISL1(θ0)]−1 1√
N0

S�
SL1(θ̃SL1) = C[ 1

N0
ISL1(θ0)]−1 1√

N0
S�
SL1(θ0) + op(1), (2.11)

leading to the asymptotic VC matrix of C[ 1
N ISL1(θ0)]−1 1√

N
S�
SL1(θ̃SL1) as

ΞSL1(θ0) = C[ 1
N0

ISL1(θ0)]−1[ 1
N0

ΣSL1(θ0)][ 1
N0

ISL1(θ0)]−1C′. (2.12)

This gives an asymptotically valid and nonnormality robust AQS test:

T r
SL1 = S̃�′

SL1Ĩ
−1
SL1C

′(CĨ−1
SL1Σ̃SL1Ĩ

−1
SL1C

′)−1
CĨ−1

SL1S̃
�
SL1, (2.13)

where S̃�
SL1 = S�

SL1(θ̃SL1), ĨSL1 = ISL1(θ̃SL1), and Σ̃SL1 = ΣSL1(θ̃SL1).

Although the AQS test given in (2.13) is developed based on the one-way FE panel

SL model, the general principles behind apply to all models considered in this paper. It

also applies to more complicated spatial models as well as many non-spatial models.

Asymptotic properties. In studying the asymptotic properties of the proposed

tests, we focus on the tests of temporal homogeneity to ease the exposition. Therefore,

some of the regularity conditions, i.e., Assumptions 2 and 4, correspond to the null model

under H0 in (2.2) only. However, these assumptions can be easily relaxed to cater a

non-homogeneous null model. Denote X◦
nt = Xnt − X̄n, where X̄n = 1

T

∑T
t=1 Xnt.

6



Assumption 1. The disturbances {vit} are iid across i and t with mean zero, variance

σ2
0 , and E |vit|4+ε0 < ∞ for some ε0 > 0.

Assumption 2. Under H0, the parameter space Λ of the common λ is compact, and

the true value λ0 is in the interior of Λ. The matrix An(λ) is invertible for all λ ∈ Λ.

Assumption 3. The elements of Xnt are non-stochastic, and are bounded uniformly

in n and t, such that limN→∞ 1
N

∑T
t=1 X◦′

ntX
◦
nt exists and nonsingular. The elements of cn

are uniformly bounded.

Assumption 4. Wn has zero diagonal elements, and is uniformly bounded in both row

and column sums in absolute value. A−1
n (λ) is also uniformly bounded in both row and

column sums in absolute value for λ in a neighborhood of λ0.

Theorem 2.1. Under Assumptions 1-4, if further, (i) θ̃SL1 is
√

N0-consistent for θ0

under H0, and (ii) ISL1(θ) and ΞSL1(θ) are positive definite for θ in a neighborhood of θ0

when N0 is large enough, then we have, under H0, T r
SL1

D−→ χ2
kp

, as n → ∞.

Note that in case of testing for temporal homogeneity, kp = (T − 1)(k + 1), and that

in case of testing for a ‘single change’ of points, kp = (T − 2)(k + 1).
Remark 2.1. It can easily be seen that TSL1 is not an asymptotic pivotal quantity due

to the violation of IME (see Appendix B1).

Remark 2.2. When T → ∞ as n → ∞, the degrees of freedom (d.f) of the chi-

square statistic increase with n. In this case, one may apply the arguments for ‘double

asymptotics’ (see, e.g., Rempala and Wesolowski, 2016) to show that (T r
SL1−kp)/

√
2kp

D−→
N (0, 1) as n/

√
T → ∞. This sample size requirement (n goes large faster than

√
T ) is

rather weak as it is typical in spatial panels that n is at least as large as T .

Estimation of the null models. As the proposed tests are based on the estimation

of the null model, a detailed discussion on this is necessary for the implementation of

the tests. Consider the null model under H0 given in (2.2). Let θ = (β′, λ, σ2)′. The

constrained estimate of cn given (β, λ) becomes c̃◦n(β, λ) = An(λ)Ȳn − X̄nβ where Ȳn and

X̄n are the averages of {Ynt} and {Xnt}, respectively. Along the same line leading to (2.7),

one can easily show that AQS function for the null model takes the form:

S◦
SL1(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
σ2

∑T
t−1 X◦′

ntṼ
◦
nt(β, λ),

1
σ2

∑T
t−1(WnY ◦

nt)
′Ṽ ◦

nt(β, λ)− (T − 1)tr[Gn(λ)],

−n(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

◦′
nt(β, λ)Ṽ ◦

nt(β, λ),

(2.14)

Ṽ ◦
nt(β, λ) = An(λ)Ynt − Xntβ − c̃◦n(β, λ) = An(λ)Y ◦

nt − X◦
ntβ, where Y ◦

nt = Ynt − Ȳn and

X◦
nt = Xnt − X̄n. Solving the estimating equations, S◦

SL1(θ) = 0, gives the null estimator

θ̃SL1 of θ. The process can be simplified by first solving the first set of equations and the

last equation of (2.14), giving the constrained estimators of β and σ2 (for a given λ) as

β̃SL1(λ) = (
∑T

t=1 X◦′
ntX

◦
nt)−1

∑T
t=1 X◦

ntAn(λ)Y ◦
nt,

σ̃2
SL1(λ) = 1

n(T−1)

∑T
t=1 Ṽ

◦′
nt(β̂SL1(λ), λ)Ṽ ◦

nt(β̂SL1(λ), λ).

7



Substituting β̃SL1(λ) and σ̃2
SL1(λ) into the middle equation of (2.14) and solving the resulted

concentrated estimating equation lead to the AQS estimator λ̃SL1 of the common λ, which

in turn gives the AQS estimator β̃SL1 = β̃SL1(λ̃SL1) of the common β, and the AQS estimator

σ̃2
SL1 = σ̃2

SL1(λ̃SL1) of σ2. Finally, the AQS estimator of θ is θ̃SL1 = (β̃′
SL1, λ̃SL1, σ̃

2
SL1)

′. The

proposed null estimator based on the AQS function provides an alternative to the direct

and transformation approaches of Lee and Yu (2010). It can be shown to be asymptotically

equivalent to the estimator based on an orthogonal transformation given in Lee and Yu

(2010). Thus, θ̃SL1 is
√

n(T − 1)-consistent for θ.

To estimate a non-homogeneous null model, e.g., the model specified by H0 given in

(2.10), the estimating functions for the null model can easily be obtained by simplifying

the general AQS function given in (2.7). Thus, the proposed AQS approach offers a more

general method to estimate the null model than the transformation approach of Lee and

Yu (2010) which works only for a homogeneous model.

Finally, from the expressions of ISL1(θ0) and ΣSL1(θ0) given in Appendix B1, we see

that they both contain cn, which is estimated by plugging the null estimates β̃SL1 and λ̃SL1

into c̃n(β, λ). Furthermore, in case of nonnormality, the VC matrix ΣSL1(θ0) contains two

additional parameters, the skewness γ and excess kurtosis κ of the idiosyncratic errors

Vn,it, and their estimates are obtained by applying Lemma 4.1 (a) of Yang et al. (2016).

2.2. Panel SL model with two-way FE

While the unit-specific fixed effects are important to the spatial panel data models,

the time-specific effects often cannot be neglected. In this section, we extend our tests to

panel SL model with two-way FEs. The model takes the following form:

Ynt = λtWnYnt + Xntβt + cn + αtln + Vnt, (2.15)

where {αt} are the unobserved time-specific effects or the unobserved temporal heterogene-

ity in the intercept, and ln is an n×1 vector of ones. As the spatial parameters and regres-

sion coefficients change only with time. One can apply transformation method to eliminate

the time-specific effects as is widely applied in the literature, see, e.g., Lee and Yu (2010),

Baltagi and Yang (2013a) and Liu and Yang (2016). Define Jn = In − 1
n lnl′n. Assume Wn

is row-normalized (i.e., row sums are one). Then, JnWn = JnWnJn. Let (Fn,n−1,
1√
n
ln)

be the orthonormal eigenvector matrix of Jn, where Fn,n−1 is the n × (n − 1) sub-matrix

corresponding to the eigenvalues of one. By Spectral Theorem, Jn = Fn,n−1F
′
n,n−1. It

follows that F ′
n,n−1Wn = F ′

n,n−1WnFn,n−1F
′
n,n−1 . Premultiplying F ′

n,n−1 on both sides of

(2.15), we have the following transformed model:

Y ∗
nt = λtW

∗
nY ∗

nt + X∗
ntβt + c∗n + V ∗

nt, t = 1, . . . , T, (2.16)

where Y ∗
nt = F ′

n,n−1Ynt, and similarly are X∗
nt, c∗n and V ∗

nt defined; W ∗
n = F ′

n,n−1WnFn,n−1.

After the transformation, the effective sample size is (n − 1)T . Model (2.16) takes an
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identical form as Model (2.1). Furthermore, V ∗
nt ∼ (0, σ2

0In−1), which is normal if V ∗
nt is,

and is independent of V ∗
ns, s �= t.2 Hence, the steps leading to the score-type tests and the

consistent estimation of the null model are similar to those for the SL one-way FE model.

Define A∗
n(λt) = In−1 −λtW

∗
n , t = 1, . . . , T . The quasi Gaussian loglikelihood function

of θ = (β′, λ′, σ2)′ and c∗n of Model (2.16) is

�SL2(θ, c∗n) = − (n−1)T
2 ln(2πσ2) +

∑T
t=1 ln |A∗

n(λt)|
− 1

2σ2

∑T
t=1 V ∗′

nt(λt, βt, c
∗
n)V ∗

nt(λt, βt, c
∗
n), (2.17)

where V ∗
nt(βt, λt, c

∗
n) = A∗

n(λt)Y ∗
nt − X∗

ntβt − c∗n. Given θ, �SL2(θ, c∗n) is maximized at:

c̃∗n(β, λ) = 1
T

∑T
t=1[A

∗
n(λt)Y ∗

nt − X∗
ntβt], (2.18)

which gives the concentrated loglikelihood function of θ upon substitution:

�c
SL2(θ) = − (n−1)T

2 ln(2πσ2) +
∑T

t=1 ln |A∗
n(λt)| − 1

2σ2

∑T
t=1 Ṽ ∗′

nt(β, λ)′Ṽ ∗
nt(β, λ), (2.19)

where Ṽ ∗
nt(β, λ) = A∗

n(λt)Y ∗
nt − X∗

ntβt − c̃∗n(β, λ). Now, define G∗
n(λt) = W ∗

nA∗−1
n (λt).

Differentiating �c
SL2(θ) gives the CS or CQS function of θ of Model (2.16):

Sc
SL2(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
σ2 X∗′

ntṼ
∗
nt(β, λ), t = 1, . . . , T,

1
σ2 (W ∗

nY ∗
nt)′Ṽ ∗

nt(β, λ)− tr[G∗
n(λt)], t = 1, . . . , T,

− (n−1)T
2σ2 + 1

2σ4

∑T
t=1 Ṽ ∗′

nt(β, λ)Ṽ ∗
nt(β, λ).

(2.20)

Takes the expectation of the above score, we have,

E[Sc
SL2(θ0)] =

{
0′Tk, − 1

T tr[G∗
n(λt0)], t = 1, . . .T, −n−1

2σ2
0

}′
,

which again shows that model estimation based on maximizing the quasi loglikelihood

would not lead to consistent estimates of the model parameters. The CQS function given

in (2.20) should be adjusted by subtracting the above bias vector from it, leading to the

AQS function of Model (2.16) as

S�
SL2(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
σ2 X∗′

ntṼ
∗
nt(β, λ), t = 1, . . . , T,

1
σ2 (W ∗

nY ∗
nt)

′Ṽ ∗
nt(β, λ)− T−1

T tr[G∗
n(λt)], t = 1, . . . , T,

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ∗′

nt(β, λ)Ṽ ∗
nt(β, λ).

(2.21)

It is easy to show that E[S�
SL2(θ)] = 0, and that 1

nT S�
SL2(θ0)

p−→ 0 as n → ∞ alone, or both

n and T go infinity. Thus, this AQS function gives a set of unbiased estimating functions,

and paves the way for developing asymptotic valid score-type tests.3 Again, simplifying

this AQS function under various null hypotheses gives AQS functions of the null models,

leading to the constrained estimates of the model parameters θ.
2The time-specific effects can also be eliminated by pre-multiplying Jn on both sides of (2.15). However,

the resulted disturbances JnVnt would not be linearly independent over the cross-section dimension.
3Solving the estimating equation, S�

SL2(θ) = 0, gives the full AQS estimator of θ, which can besimplified

by first solving the last equation for σ2, leading to σ̂2∗
SL2(β, λ) = 1

n(T−1)

PT
t=1

eV ′
nt(β, λ)eVnt(β, λ), and then

solving the resulted concentrated AQS equations for (β, λ).
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Now the test of H0 defined in (2.2) becomes a test of temporal homogeneity of the

regression and the spatial coefficients in the panel SL model, allowing the existence of

both unobserved cross-sectional and time-specific heterogeneity in the intercept, i.e., the

existence of both individual specific fixed effects and the time specific fixed effects. As the

transformed two-way FE (2FE) panl SL model takes an identical form as the one-way FE

(1FE) panel SL model, the tests developed for 1FE panel SL model extends directly to

give tests for the 2FE panel SL model. The AS test takes the form:

TSL2 = S�
SL2(θ̃SL2)′J−1

SL2(θ̃SL2)S�
SL2(θ̃SL2), (2.22)

where θ̃SL2 is a consistent estimate of θ0, and JSL2(θ) = − ∂
∂θ′S�

SL2(θ) with its expres-

sion given in Appendix B.2. Furthermore, let C be defined as in Sec. 2.2, ISL2(θ0) =

E[JSL2(θ0)], and ΣSL2(θ0) = Var[S�
SL2(θ0)], with their analytical expressions being given in

Appendix B.2. The AQS test robust against nonnormality takes the form:

T r
SL2 = S̃�′

SL2Ĩ
−1
SL2C

′(CĨ−1
SL2Σ̃SL2Ĩ

−1
SL2C

′)−1
CĨ−1

SL2S̃
�
SL2, (2.23)

where S̃�
SL2 = S�

SL2(θ̃SL2), ĨSL2 = ISL2(θ̃SL2), and Σ̃SL2 = ΣSL2(θ̃SL2).

Asymptotic properties of these tests can be studied along the same line of the tests

for 1FE panel SL model, with Assumption 3 being replaced by Assumption 3′ given below

to take into account the involvement of the projection Jn. For the 2FE panel SL model,

the effective sample size becomes N0 = (n − 1)(T − 1) due to the ‘estimation’ of both

individual- and time-specific FEs. Let ΞSL2(θ) be defined as ΞSL1(θ) in (2.12).

Assumption3′: The elements of Xnt are nonstochastic, and are bounded uniformly

in n and t, such that limN0→∞ 1
N0

∑T
t=1 X∗◦′

nt X∗◦
nt exists and is nonsingular.

Theorem 2.2. Under Assumptions 1-2, 3′, and 4, if further, (i) θ̃SL2 is
√

N0-consistent

for θ0 under H0, and (ii) ISL2(θ) and ΞSL2(θ) are positive definite for θ in a neighborhood

of θ0 when N0 is large enough, then we have, under H0, T r
SL2

D−→ χ2
kp

, as n → ∞.

Note that while the effective sample size for the 2FE-SL model is smaller than that of

the 1FE-SL model, the d.f. associated with the test statistics remain the same. As in the

Remarks 2.1 and 2.2, it can be shown that TSL2 is not an asymptotic pivotal quantity, and

(T r
SL2 − kp)/

√
2kp

D−→ N (0, 1), as n/
√

T → ∞.

Estimation of the null model. Let θ = (β′, λ, σ2)′. Under H0, the constrained

estimate of c∗n given (β, λ) becomes c̃∗◦n (β, λ) = A∗
n(λ)Ȳ ∗

n − X̄∗
nβ where Ȳ ∗

n and X̄∗
n are the

averages of {Y ∗
nt} and {X∗

nt}, respectively. Along the same line leading to (2.21), one can

easily show that the AS or AQS function for the null model takes the form:

S◦
SL2(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
σ2

∑T
t−1 X∗◦′

nt Ṽ ∗◦
nt (β, λ),

1
σ2

∑T
t−1(W

∗
nY ∗◦

nt )′Ṽ ∗◦
nt (β, λ)− (T − 1)tr[G∗

n(λ)],

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

∗◦′
nt (β, λ)Ṽ ∗◦

nt (β, λ),

(2.24)
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where Ṽ ∗◦
nt (β, λ) = A∗

n(λ)Y ∗
nt − X∗

ntβ − c̃∗◦n (β, λ) = An(λ)Y ∗◦
nt − X∗◦

ntβ, Y ∗◦
nt = Y ∗

nt − Ȳ ∗
n and

X∗◦
nt = X∗

nt − X̄∗
n. Solving the estimating equations, S◦

SL2(θ) = 0, gives the null estimator

θ̃SL2 of θ. Denote the AQS estimator of θ as θ̃SL2 = (β̃′
SL2, λ̃SL2, σ̃

2
SL2)′. The proposed

null estimator based on the AQS function provides an alternative to the transformation

approaches of Lee and Yu (2010). It can be shown to be asymptotically equivalent to the

estimator based on an orthogonal transformation given in Lee and Yu (2010). Thus, θ̃SL2

is
√

(n − 1)(T − 1)-consistent for θ. As pointed out in the discussions at the end of Sec.

2.1, the AQS approach is more general as it allows the estimation of a non-homogeneous

null model by simplifying the general estimation functions (2.21) accordingly. Finally, the

estimation of cn and γ and κ caontained in ISL2(θ0), and ΣSL2(θ0 proceed similarly.

3. Test for Temporal Heterogeneity in Panel SLE Model

The tests introduced in the earlier section can be easily extended to a more general

SPD model where the the disturbances are also subject to spatial interactions, giving an

SPD model with both spatial lag and error (SLE) dependence. Again, we first present

results for the one-way FE model, and then the results for the two-way FE model.

3.1. Panel SLE model with one-way FE

The SLE model with one-way fixed effects has the form:

Ynt = λtWnYnt + Xntβt + cn + Unt, Unt = ρtMnUnt + Vnt, (3.1)

where Mn is another spatial weight matrix capturing the spatial interactions among the

disturbances, which can be the same as Wn, and {ρt} are the spatial error parameters,

possibly different in different time periods. Again, we are primarily interested in the test

for temporal homogeneity, which now corresponds to a test of the following null hypothesis:

H0 : β1 = · · · = βT = β, λ1 = · · · = λT = λ, and ρ1 = · · · = ρT = ρ. (3.2)

If this test is rejected, one would be interested in testing the hypothesis of the form in

(2.10) extended to include the ρ-component, or some other form of temporal heterogeneity.

Following the same set of notation as in the earlier section, and further denoting

ρ = (ρ1, . . . , ρT )′, θ = (β′, λ′, ρ′, σ2)′, and Bn(ρt) = In − ρtMn, t = 1, . . . , T , we have the

(quasi) Gaussian loglikelihood for (θ, cn):

�SLE1(θ, cn) = − nT
2 ln(2πσ2) +

∑T
t=1 ln |An(λt)| +

∑T
t=1 ln |Bn(ρt)|

− 1
2σ2

∑T
t=1 V ′

nt(βt, λt, ρt, cn)Vnt(βt, λt, ρt, cn), (3.3)

where Vnt(βt, λt, ρt, cn) = Bn(ρt)[An(λt)Ynt − Xntβt − cn], t = 1, . . . , T .

Similarly to the developments in the previous section, we first eliminate cn through

a direct maximization of the loglikelihood function, given the other model parameters θ,
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and then adjust the resulted CS or CQS function to eliminate the asymptotic bias or

inconsistency. Given θ, �SLE1(θ, cn) is maximized at

c̃n(β, λ, ρ) =
[∑T

t=1 B′
n(ρt)Bn(ρt)

]−1 ∑T
t=1

[
B′

n(ρt)Bn(ρt)
(
An(λt)Ynt − Xntβt

)]
, (3.4)

leading to the concentrated (quasi) Gaussian loglikelihood function of θ upon substitution:

�c
SLE1(θ) = − nT

2 ln(2πσ2) +
∑T

t=1 ln |An(λt)|+
∑T

t=1 ln |Bn(ρt)|
− 1

2σ2

∑T
t=1 Ṽ ′

nt(β, λ, ρ)Ṽnt(β, λ, ρ), (3.5)

where Ṽnt(β, λ, ρ) = Vnt(βt, λt, ρt, c̃n(β, λ, ρ)) = Bn(ρt)[An(λt)Ynt − Xntβt − c̃n(β, λ, ρ)].

To facilitate the subsequent derivations, denote U◦
nt(βt, λt) = An(λt)Ynt − Xntβt,

Dn(ρt) = B′
n(ρt)Bn(ρt) and Dn(ρ) =

∑T
t=1 Dn(ρt). Then,

Ṽnt(β, λ, ρ) = Bn(ρt)U◦
nt(βt, λt) − Bn(ρt)c̃n(β, λ, ρ),

c̃n(β, λ, ρ) = D
−1
n (ρ)

∑T
t=1 Dn(ρt)U◦

nt(βt, λt), and the key term in (3.5):

∑T
t=1 Ṽ ′

nt(β, λ, ρ)Ṽnt(β, λ, ρ) =
∑T

t=1 U◦′
nt(βt, λt)Dn(ρt)U◦

nt(βt, λt)

− ( ∑T
t=1 Dn(ρt)U◦

nt(βt, λt)
)′

D
−1
n (ρ)

(∑T
t=1 Dn(ρt)U◦

nt(βt, λt)
)
.

Differentiating �c
SLE1(θ) gives the CS or CQS function of θ:

Sc
SLE1(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
σ2 X ′

ntB
′
n(ρt)Ṽnt(β, λ, ρ), t = 1, . . . , T,

1
σ2 (WnYnt)′B′

n(ρt)Ṽnt(β, λ, ρ)− tr[Gn(λt)], t = 1, . . . , T,

1
σ2 Ṽ ′

nt(β, λ, ρ)Hn(ρt)Ṽnt(β, λ, ρ)− tr[Hn(ρt)], t = 1, . . . , T,

− nT
2σ2 + 1

2σ4

∑T
t=1 Ṽ ′

nt(β, λ, ρ)Ṽnt(β, λ, ρ),

(3.6)

where Hn(ρt) = MnB−1
n (ρt), t = 1, . . . , T .

At the true θ0, we have, c̃n(β0, λ0, ρ0) = cn + D−1
n

∑T
s=1 B′

nsVns and hence Ṽnt ≡
Ṽnt(β0, λ0, ρ0) = Vnt − BntD

−1
n

∑T
s=1 B′

nsVns, and WnYnt = Gnt(Xntβ0 + cn + B−1
nt Vnt),

where Bnt = Bn(ρt0), Gnt = Gn(λt0), and Dn = Dn(ρ0). It is easy to show that,

E[Sc
SLE1(θ0)] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0Tk,

−tr[D−1
n (ρ0)B′

n(ρt0)Bn(ρt0)Gn(λt0)], t = 1, . . .T,

−tr[Bn(ρt0)D−1
n (ρ0)B′

n(ρt0)Hn(ρt0)], t = 1, . . .T,

− n
2σ2

0
.

Therefore, the AS or AQS function of θ for Model (3.1) takes the form:

S∗
SLE1(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
σ2 X ′

ntB
′
n(ρt)Ṽnt(β, λ, ρ), t = 1, . . . , T,

1
σ2 (WnYnt)′B′

n(ρt)Ṽnt(β, λ, ρ)− tr[Rnt(ρ)Gn(λt)], t = 1, . . . , T,

1
σ2 Ṽ ′

nt(β, λ, ρ)Hn(ρt)Ṽnt(β, λ, ρ)− tr[Snt(ρ)Hn(ρt)], t = 1, . . . , T,

−n(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ′

nt(β, λ, ρ)Ṽnt(β, λ, ρ),

(3.7)
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where Rnt(ρ) = In − D
−1
n (ρ)B′

n(ρt)Bn(ρt) and Snt(ρ) = In − Bn(ρt)D−1
n (ρ)B′

n(ρt).

It is easy to show that E[S�
SLE1(θ)] = 0, and that 1

nT S�
SLE1(θ0)

p−→ 0 as n → ∞ alone,

or both n and T go infinity. Thus, this AQS function gives a set of unbiased estimating

functions, and paves the way for developing asymptotic valid score-type tests.4

Construction of AQS tests. Denote the constrained estimator (under H0) of θ

by θ̃SLE1. In case of testing for temporal homogeneity, i.e., test of H0 given in (3.2), the

constrained estimators of β, λ and ρ are, respectively, β̃SLE1 = 1T ⊗ β̃SLE1, λ̃SLE1 = 1T ⊗
λ̃SLE1, and ρ̃SLE1 = 1T⊗ρ̃SLE1, where β̃SLE1, λ̃SLE1 and ρ̃SLE1 are the estimators of the common

β, λ and ρ, leading to the constrained estimator of θ as θ̃SLE1 = (β̃′
SLE1, λ̃

′
SLE1, ρ̃

′
SLE1, σ̃

2
SLE1)

′.
Let JSLE1(θ) = − ∂

∂θ′S�
SLE1(θ) with its expression given in Appendix B.3. The usual or näıve

score-type test, treating S�
SLE1(θ) as a genuine score function, takes the form:

TSLE1 = S�
SLE1(θ̃SLE1)′J−1

SLE1(θ̃SLE1)S�
SLE1(θ̃SLE1). (3.8)

Again, S�
SLE1(θ) is not a genuine score function and the IME or generolized IME does not

hold (see the relevant expressions given in Appendix B2). Hence, the test constructed in

the usual way may not be a valid test statistic, even if the errors are normal.

As in the previous section, to address both issues, we again put our testing problem in

a general framework with null hypothesis being written as H0: Cθ0 = 0, with some modi-

fications on C to include the ρ parameters. Now, C is a kp×kq matrix generating kp linear

contrasts on the parameter vector θ of dimension kq = (k + 2)T + 1. For the null hypoth-

esis defined in (3.2), we have kp = (T − 1)(k + 2) and C = blkdiag{CT,k, CT,1, CT,1, 0kp},
where Cm is defined in the previous section. Tests for change of points can also be carried

out based on the following hypothesis:

H0 : β1 = · · · = βb0 �= βb0+1 · · · = βT , λ1 = · · · = λ�0 �= λ�0+1 · · · = λT ,

ρ1 = · · · = ρr0 �= ρr0+1 · · · = ρT , (3.9)

for the set of specified values 1 < b0, �0, r0 < T . Again, with a different C matrix, our test

can repeatedly be carried out to identify a relatively more parsimonious model instead of

the full model with the regression and spatial coefficients changing at every time point.

Similarly, the score-type test is based on the AQS function S�
SLE1(θ̃SLE1) evaluated at

the null estimate θ̃SLE1 of θ, and the asymptotic VC matrix of S�
SLE1(θ̃SLE1). Let ISLE1(θ0) =

E[JSLE1(θ0)] and ΣSLE1(θ0) = Var[S�
SLE1(θ0)] with their expressions being given in Appendix

B.3. Now, the effective sample size is back to N0 = n(T − 1) as for the 1FE panel SL

model. Under mild regularity conditions, such as the
√

N0-consistency of θ̃SLE1, we have

an asymptotically valid and nonnormality robust AQS test:

T r
SLE1 = S̃�′

SLE1Ĩ
−1
SLE1C

′(CĨ−1
SLE1Σ̃SLE1Ĩ

−1
SLE1C

′)−1
CĨ−1

SLE1S̃
�
SLE1, (3.10)

4Solving the estimating equation, S�
SLE1(θ) = 0, gives the AQS or M estimator of θ, which is obtained

by first solving the last equation for σ2 given (β, λ), to give σ̂�2
SLE1(β, λ) = 1

n(T−1)

PT
t=1

eV ′
nt(β, λ)eVnt(β, λ),

and then solving the resulted concentrated AQS equations for (β, λ).
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where S̃�
SLE1 = S�

SLE1(θ̃SLE1), ĨSLE1 = ISLE1(θ̃SLE1), and Σ̃SLE1 = ΣSLE1(θ̃SLE1).

Asymptotic properties of the proposed tests are established based on Assumptions 1-4

in Sec. 2, and the following additional conditions on Mn and Bn(ρ).

Assumption 5. Under H0, the parameter space P of the common ρ is compact. The

true value ρ0 is in the interior of P. The matrix Bn(ρ) is invertible for all ρ ∈ P. Mn

has zero diagonal elements, and are uniformly bounded in both row and column sums in

absolute value. B−1
n (ρ) is uniformly bounded in both row and column sums in absolute

value for ρ in a neighborhood of ρ0.

Furthermore, the existence and consistency of the constrained estimator β̃SLE1 de-

pends on the existence and nonsingularity of limn→∞ 1
nT

∑T
t=1 X◦′

ntB
′
nBnX◦

nt, which fol-

lows from Assumption 2 and the positive definiteness of B′
nBn. Denoting ΞSLE1(θ) =

CI−1
SLE1(θ)ΣSLE1(θ)I−1

SLE1(θ)C′, we have the following theorem.

Theorem 3.1. Under Assumptions 1-5, if further, (i) θ̃SEL1 is
√

N-consistent for θ0

under H0, and (ii) ISLE1(θ) and ΞSLE1(θ) are positive definite for θ in a neighborhood of

θ0 when N0 is large enough, then we have, under H0, T r
SLE1

D−→ χ2
kp

, as n → ∞.

Note that the d.f. associated with the test statistics is kp = (T − 1)(k + 2) for testing

for temporal homogeneity, and kp = (T − 2)(k + 2) for testing for a ‘single change’.

Similarly, it can be shown that TSLE1 is not an asymptotic pivotal quantity, and that

(T r
SLE1 − kp)/

√
2kp

D−→ N (0, 1), as n/
√

T → ∞.

Estimation of the null model. Let θ = (β′, λ, ρ, σ2)′. Under H0, the constrained

estimate of cn given (β, λ) becomes c̃◦n(β, λ) = An(λ)Ȳn − X̄nβ, and the error vector

becomes Ṽ ◦
nt(β, λ, ρ) = Bn(ρ)[An(λ)Y ◦

nt − X◦
ntβ], where Y ◦

nt = Ynt − Ȳn, X◦
nt = Xnt − X̄n,

and Ȳn = 1
T

∑T
t=1 Ynt and X̄n = 1

T

∑T
t=1 Xnt. Along the same line leading to (3.7), one

can easily show that AQS function for the null model takes the form:

S◦
SLE1(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
σ2

∑T
t=1 X◦

ntB
′
n(ρ)Ṽ ◦

nt(β, λ, ρ),
1
σ2

∑T
t=1(WnY ◦

nt)
′B′

n(ρ)Ṽ ◦
nt(β, λ, ρ)− (T − 1)tr[Gn(λ)],

1
σ2

∑T
t=1 Ṽ ◦′

nt(β, λ, ρ)Hn(ρ)Ṽ ◦
nt(β, λ, ρ)− (T − 1)tr[Hn(ρ)],

−n(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ◦′

nt(β, λ)Ṽ ◦
nt(β, λ).

(3.11)

Solving the estimating equations, S◦
SLE1(θ) = 0, gives the null estimator θ̃SLE1 of θ. The

process can be simplified by first solving the first set of equations and the last equation of

(3.11), giving the constrained estimators of β and σ2 (for given λ and ρ) as

β̃SLE1(λ, ρ) = (
∑T

t=1 X◦′
ntDn(ρ)X◦

nt)−1
∑T

t=1 X◦
ntDn(ρ)An(λ)Y ◦

nt,

σ̃2
SLE1(λ, ρ) = 1

n(T−1)

∑T
t=1 Ṽ ◦′

nt(β̂SLE1(λ, ρ), λ, ρ)Ṽ ◦
nt(β̂SLE1(λ, ρ), λ, ρ).

Substituting β̃SLE1(λ, ρ) and σ̃2
SLE1(λ, ρ) into the middle two equations of (3.11) and solving

the resulted concentrated estimating equations lead to the AQS estimators (λ̃SLE1, ρ̃SLE1)
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of the common (λ, ρ), which in turn give the AQS estimator β̃SLE1 = β̃SLE1(λ̃SLE1, ρ̃SLE1)

of the common β, and the AQS estimator σ̃2
SLE1 = σ̃2

SLE1(λ̃SLE1, ρ̃SLE1) of σ2. Finally, the

AQS estimator of θ is θ̃SLE1 = (β̃′
SLE1, λ̃SLE1, σ̃

2
SLE1)′. It can be shown to be asymptotically

equivalent to the estimator based on an orthogonal transformation given in Lee and Yu

(2010), and thus is
√

n(T − 1)-consistent. To estimate the ‘other’ type of null models,

simplify the general AQS function (3.7) and then solve the resulted estimation equations.

To estimate cn, γ and κ, refer to the discussions at the end of Section 2.1.

3.2. Panel SLE model with two-way FE

The panel SLE model with two-way fixed effects has the form:

Ynt = λtWnYnt + Xntβt + cn + αtln + Unt, Unt = ρtMnUnt + Vnt, (3.12)

which extends Model (2.15) by adding the spatial error dependence term. Applying the

same orthonormal transformation as that for Model (2.15), i.e., premultiplying F ′
n,n−1 on

both sides of (3.12), we have the following transformed model:

Y ∗
nt = λtW

∗
nY ∗

nt + X∗
ntβt + c∗n + U∗

nt, U∗
nt = ρtM

∗
nU∗

nt + V ∗
nt, (3.13)

where Y ∗
nt, X∗

nt, c∗n, W ∗
n and V ∗

nt are defined as in Model (2.16), and M∗
n = F ′

n,n−1MnFn,n−1.

After the transformation, the effective sample size becomes (n − 1)(T − 1) as for the 2FE

panel SL model. As Model (3.13) takes an identical form as Model (3.1) and the elements

of V ∗
nt are iid normal if the original errors are normal, the steps leading to the score-type

test and the steps leading to consistent estimation of the null model are similar.

Define A∗
n(ρt) = In−1 − λtW

∗
n and B∗

n(ρt) = In−1 − ρtM
∗
n, t = 1, . . . , T . Similar to

the previous section, we eliminate c∗n through a direct maximization of the loglikelihood

function to give the concentrated loglikelihood function of θ:

�c
SLE2(θ) = − nT

2 ln(2πσ2) +
∑T

t=1 ln |A∗
n(λt)|+

∑T
t=1 ln |B∗

n(ρt)|
− 1

2σ2

∑T
t=1 Ṽ ∗′

nt(β, λ, ρ)Ṽ ∗
nt(β, λ, ρ) (3.14)

where Ṽ ∗
nt(β, λ, ρ) = B∗

n(ρt)U◦∗
nt (βt, λt)−B∗

n(ρt)D∗−1
n (ρ)

∑T
s=1 D∗

n(ρs)U◦∗
ns(βs, λs), D∗

n(ρ) =∑T
t=1 D∗

n(ρt), D∗
n(ρt) = B∗′

n (ρt)B∗
n(ρt), and U◦∗

nt (βt, λt) = A∗
n(λt)Y ∗

nt − X∗
ntβt. As in the

previous subsection, we can obtain the AS or AQS function of θ for Model (3.12) as

S�
SLE2(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
σ2 X∗′

ntB
∗′
n (ρt)Ṽ ∗

nt(β, λ, ρ), t = 1, . . . , T,

1
σ2 (W ∗

nY ∗
nt)′B∗′

n (ρt)Ṽ ∗
nt(β, λ, ρ)− tr[R∗

nt(ρ)G∗
n(λt)], t = 1, . . . , T,

1
σ2 Ṽ ∗′

nt(β, λ, ρ)H∗
n(ρt)Ṽ ∗

nt(β, λ, ρ)− tr[S∗
nt(ρ)H∗

n(ρt)], t = 1, . . . , T,

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ∗′

nt(β, λ, ρ)Ṽ ∗
nt(β, λ, ρ),

(3.15)

where R∗
nt(ρ) = In−1 − D

∗−1
n (ρ)D∗

nt(ρt), and S∗
nt(ρ) = In−1 − B∗

nt(ρt)D∗−1
n (ρ)B∗′

nt(ρt).

Denote the null estimator of θ by θ̃SLE2. Let JSLE2(θ) = − ∂
∂θ′S�

SLE2(θ), ISLE2(θ0) =
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E[JSLE2(θ0)] and ΣSLE2(θ0) = Var[S�
SLE2(θ0)] with their expressions given in Appendix B.4.

The usual score-type test and the robust version have the forms:

TSLE2 = S�
SLE2(θ̃SLE2)′J−1

SLE2(θ̃SLE2)S�
SLE2(θ̃SLE2), and (3.16)

T r
SLE2 = S̃�′

SLE2Ĩ
−1
SLE2C

′(CĨ−1
SLE2Σ̃SLE2Ĩ

−1
SLE2C

′)−1
CĨ−1

SLE2S̃
�
SLE2, (3.17)

respectively, where S̃�
SLE2 = S�

SLE2(θ̃SLE2), ĨSLE2 = ISLE2(θ̃SLE2), Σ̃SLE2 = ΣSLE2(θ̃SLE2), and

the linear contrast matrix C has the same form as that for the 1FE panel SLE model. Let

ΞSLE2(θ) be defined similarly as ΞSLE1(θ) for the 1FE panel SLE model.

Theorem 3.2. Under Assumptions 1-2, 3′, and 4-5, if (i) θ̃SLE2 is
√

N -consistent for

θ0 under H0, and (ii) ISLE2(θ) and ΞSLE2(θ) are positive definite for θ in a neighborhood

of θ0 when N0 is large enough, then we have, under H0, T r
SLE2

D−→ χ2
kp

, as n → ∞.

The d.f. kp associated with these tests remain the same as that in Theorem 3.1.

Similarly, it can be shown that TSLE2 is not an asymptotic pivotal quantity, and that

(T r
SLE2 − kp)/

√
2kp

D−→ N (0, 1), as n/
√

T → ∞.

Estimation of the null model. Let θ = (β′, λ, ρ, σ2)′. Under H0, the constrained

estimate of cn given (β, λ) becomes c̃◦∗n (β, λ) = A∗
n(λ)Ȳ ∗

n − X̄∗
nβ where Ȳ ∗

n and X̄∗
n are the

averages of {Y ∗
nt} and {X∗

nt}, respectively. Along the same line leading to (3.15), one can

easily show that AQS function for the null model of (3.13) takes the form:

S◦∗
SLE2(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
σ2

∑T
t=1 X◦∗′

nt B∗′
n (ρ)Ṽ ◦∗

nt (β, λ, ρ),
1
σ2

∑T
t=1(W

∗
nY ◦∗

nt )′B∗′
n (ρ)Ṽ ◦∗

nt (β, λ, ρ)− (T − 1)tr[G∗
n(λ)],

1
σ2

∑T
t=1 Ṽ ◦∗′

nt (β, λ, ρ)H∗
n(ρ)Ṽ ◦∗

nt (β, λ, ρ)− (T − 1)tr[H∗
n(λ)],

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ◦∗′

nt (β, λ, ρ)Ṽ ◦∗
nt (β, λ, ρ),

(3.18)

Ṽ ◦∗
nt (β, λ, ρ) = B∗

n(ρ)[A∗
n(λ)Y ∗

nt − X∗
ntβ − c̃◦∗n (β, λ)] = B∗

n(ρ)[A∗
n(λ)Y ◦∗

nt − X◦∗
ntβ], where

Y ◦∗
nt = Y ∗

nt − Ȳ ∗
n and X◦∗

nt = X∗
nt − X̄∗

n. Solving the estimating equations, S◦∗
SLE2(θ) = 0,

gives the null estimator θ̃SLE2 of θ, which is obtained by first solving the first and last sets

of equations of (3.18) to give the constrained estimators of β and σ2, given λ and ρ, as

β̃SLE2(λ, ρ) = (
∑T

t=1 X◦∗′
nt B∗′

n (ρ)B∗
n(ρ)X◦∗

nt )
−1

∑T
t=1 X◦∗

nt B
∗′
n (ρ)B∗

n(ρ)A∗
n(λ)Y ◦∗

nt ,

σ̃2
SLE2(λ, ρ) = 1

n(T−1)

∑T
t=1 Ṽ ◦∗′

nt (β̂SLE2(λ, ρ), λ, ρ)Ṽ ◦∗
nt (β̂SLE2(λ, ρ), λ, ρ),

and then substituting β̃SLE2(λ, ρ) and σ̃2
SLE2(λ, ρ) into the middle equations of (3.18) and

solving the resulted concentrated estimating equation to give the null AQS estimators λ̃SLE2

of the common λ and ρ̃SLE2 of the common ρ, which in turn gives the AQS estimator β̃SLE2 =

β̃SLE2(λ̃SLE2, ρ̃SLE2) of the common β, and the AQS estimator σ̃2
SLE2 = σ̃2

SLE2(λ̃SLE2, ρ̃SLE2) of

σ2. Finally, the AQS estimator of θ is θ̃SLE2 = (β̃′
SLE2, λ̃SLE2, ρ̃SLE2, σ̃

2
SLE2)′. The proposed null

estimator based on the AQS function provides an alternative to the direct and transforma-

tion approaches of Lee and Yu (2010). It can be shown to be asymptotically equivalent to
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the estimator based on an orthogonal transformation given in Lee and Yu (2010). Thus,

θ̃SLE2 is
√

(n − 1)(T − 1)-consistent for θ. As in the 1FE panel SLE model, to estimate

the null model under a different hypothesis, we simplify the general AQS function (3.15)

and solve the resulted estimating functions. Estimation of cn, γ and κ proceeds similarly.

4. Monte Carlo Study

Extensive Monte Carlo experiments are conducted to investigate the finite sample

performance of the proposed tests, based on the following four data generation processes

(DGPs), corresponding to the SDP models with, respectively, 1FE-SL, 2FE-SL, 1FE-SLE

and 2FE-SLE:

DGP1 : Ynt = λt0WnYnt + X1ntβ1t0 + X2ntβ2t0 + cn0 + Vnt, t = 1, 2, . . . , T,

DGP2 : Ynt = λt0WnYnt + X1ntβ1t0 + X2ntβ2t0 + cn0 + αt0�n + Vnt, t = 1, 2, . . . , T.

DGP3 : Ynt = λt0WnYnt + X1ntβ1t0 + X2ntβ2t0 + cn0 + Unt,

Unt = ρt0MnUnt + Vnt, t = 1, 2, . . . , T.

DGP4 : Ynt = λt0WnYnt + X1ntβ1t0 + X2ntβ2t0 + cn0 + αt0�n + Unt,

Unt = ρt0MnUnt + Vnt, t = 1, 2, . . . , T.

For all the Monte Carlo experiments, βt0 = (β1t0, β2t0)′ is set to (1, 1)′ for all t =

1, . . . , T , σ2
0 = 1 and λ0 = {0.5, 0,−0.5}, ρ0 = {0.5, 0,−0.5}, n = {50, 100, 200, 500}, and

T = {3, 6}. Each set of Monte Carlo results is based on 10,000 Monte Carlo samples for

the two SL models, and 5,000 for the two SLE models.

The weight matrices are generated based on three different methods: (i) Rook

Contiguity, (ii) Queen Contiguity, and (iii) Group Interaction, with details given

in Yang (2015). In spatial layouts (i)-(ii), the degree of spatial interactions (number of

neighbors each unit has) is fixed, while in (iii) it may grow with the sample size. This is

attained by allowing for the number of groups, k, for each sample to be directly related to

n. We have considered k = n0.5, where k is the number of groups for each n and hence the

degree of spatial dependence indicated by the average group size is m = n/k. The actual

sizes of the groups are generated from a discrete uniform distribution from .5m to 1.5m.

The two exogenous regressors are generated according to REG1: Xknt
iid∼ N (0, In)

for k = 1, 2 and t = 1, . . . , T ; and REG2: the ith value of the kth regressor in the gth group

is such that Xkt,ig
iid∼ (2zg + zig)/

√
10, where (zg, zi,g)

iid∼ N (0, 1) when group interaction

scheme is followed; {Xkt,ig} are thus independent across k and t, but not across i.

The errors, vit = σ0eit, are generated according to err1: {en,i} are iid standard

normal; err2: {en,i} are iid normal mixture with 10% of values from N (0, 4) and the

remaining from N (0, 1), standardized to have mean 0 and variance 1; and err3: {en,i}
iid log-normal (i.e., log eit

iid∼ N (0, 1)) standardized to have mean 0 and variance 1.

Partial Monte Carlo results are reported in Tables 1 & 2 for the panel SL models, and
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Tables 3 & 4 for the panel SLE models. The results in Tables 1 & 2 show the following.

(i) The proposed robust test performs very well in general with empirical coverage

probabilities all very close to their nominal levels, except that in cases of heavy spatial

dependence (Group Interaction) and not-so-large n, it can be slightly undersized.

As sample size increases, the empirical sizes quickly converge to their nominal levels.

(ii) In contrast, the näıve test can perform quite badly, with empirical sizes being as

high as 35% for tests of 10% nominal level, when the erorrs are fairly non-normal

(e.g., log-normal). It is interesting to note that the size distortions for the näıve

tests also drop as sample size increase.

(iii) A larger T seems lead to a worsened performance for the näıve tests under Queen

Contiguity but not under Group Interaction.

(iv) The finite sample performance of the tests for 1FE panel SL model do not seem to

differ much from those for 2FE panel SL model.

From the results for the panel SLE model, reported (in Tables 3 & 4) and unreported

(available from the authors upon request), similar patterns are observed for the finite

sample performance of the proposed tests. In summary, the proposed robust tests are

reliable and easy to apply, and hence are recommended for the applied researchers.

5. Empirical Applications

The specification tests of temporal homogeneity in spatial panel data models given in

this paper are demonstrated in a empirical settings using two well known data sets: Public

Capital Productivity (Munnell, 1990) and Cigarette Demand (Baltagi and Levin, 1986).

Public Capital Productivity. The data set gives indicators related to public capital

productivity for 48 US states observed over 17 years (1970-1986). In Munnel (1990), the

empirical model specifies a Cobb-Douglas production function of the form:

lg(gsp) = β0 + β1 lg(pcap) + β2 lg(pc) + β3 lg(emp) + β4unemp + ε,

with possibly one-way or two-way fixed effects, where ‘gsp’ is the gross social product

of a given state, ‘pcap’, ‘pc’ and ‘emp’ are the inputs of public capital, private capital,

and labor respectively. In order to capture business cycle effects, an additional variable

‘unemp’ is also added which indicates the state unemployment rate. The model now is

extended by adding the spatial effects. The spatial weight matrix (Wn) is specified using

a contiguity form where (i, j)th element is indicated as 1 if state i and j share a common

border, otherwise 0. The final Wn is row normalized.

Table below summarize the values of the test statistics and their p-values, for the usual

or näıve score-type test and the nonnormality robust AQS test for temporal homogeneity

based on both the full dataset and a subset of data corresponding to years 1970-75, fitted

using the four models: 1FE-SL, 2FE-SL, 1FE-SLE and 2FE-SLE.
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Tests for Temporal Homogeneity: Public Capital Productivity

TSL1 T r
SL1 TSL2 T r

SL2 T r
SLE1 T r

SLE1 TSLE2 T r
SLE2

T = 17 1621.23 320.67 3189.55 328.02 1970.79 289.20 1555.99 326.51

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

T = 6 263.88 83.40 30.32 24.11 93.52 44.87 16.36 26.82

p-value 0.00 0.00 0.21 0.51 0.00 0.04 0.98 0.63

Note that when T = 6, df = 25 for SL model and 30 for SLE model, with 10%, 5%, and

1% critical values being 34.38, 37.65, and 44.31 for SL model, and 40.2560, 43.77, and

50.89 for SLE model. When T = 17, df = 80 for SL model and 96 for SLE model, with

10%, 5%, and 1% critical values being 96.58, 101.88, and 112.33 for SL model, and 114.13,

119.87, and 131.14 for SLE model.

Overall, the results based on the full data show strong evidence against temporal

homogeneity. For the results based on first six periods data, the tests are significant for

the models with 1FE, but not for the models with 2FE. The latter is perhaps due to

control of time-specific effects. Comparing the results based on full data of T = 17 periods

with the results based on first six periods data, there seems to be a strong indication for

the existence of change point(s) in the model, and hence it would be interesting to carry

out further tests in ‘dig’ out the change point(s). The relatively much bigger values of the

usual or näıve tests show that are rather unreliable, in line with the Monte Carlo results.

Cigarette Demand. Second application of the proposed tests uses another well

known data set, the Cigarettes Demand for the United States. It contains a panel of 46

states over 30 time periods (1963-1992) and is listed as CIGAR.TXT on the Wiley web site

associated with Baltagi (2008) with the response variable Y = Cigarette sales in packs per

capita; and the covariates X1 = Price per pack of cigarettes; X2 = Population (Pop); X3

= Population above the age of 16; X4 = Per capita disposable income; X5 = Minimum

price in adjoining states per pack of cigarettes. Earlier studies include Hamilton (1972),

McGuiness and Cowling (1975), Baltagi and Levin (1986, 1992), Baltagi et al. (2000),

and Yang et al. (2006), all under homogeneity assumption and in log-log form except in

Yang et al. (2006) who estimated the Box-Cox functional form. The spatial weight matrix

(Wn) is specified using a contiguity form where (i, j)th element is indicated as 1 if state i

and j share a common border, otherwise 0. The final Wn is row normalized.

Tests for temporal homogeneity/heterogeneity is of particular interest in cigarette de-

mand, due to government’s policy interventions (in 1965, 1967, 1971) in attempting reduc-

ing the consumptions of cigarettes, and the reports from medial journals as well as Surgeon

General warning (in 1983) about the health hazards of smoking (see Baltagi and Levin,

1986). The table below summarize the values of the test statistics and their p-values, for

tests of homogeneity based on, respectively, the first 17 periods of data and the first 6

periods of data, and using the log-log form.

19



Tests for Temporal Homogeneity: Cigarette Demand

TSL1 T r
SL1 TSL2 T r

SL2 TSLE1 T r
SLE1 TSLE2 T r

SLE2

T = 17 2828.62 327.73 4265.07 323.37 913.31 323.20 3723.99 342.54

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

T = 6 79.25 45.66 59.40 38.00 328.38 50.06 72.51 45.34

p-value 0.00 0.03 0.001 0.15 0.00 0.048 0.00 0.11

Note that when T = 6, df = 30 for SL model and 35 for SLE model, with 10%, 5%, and

1% critical values being 40.26, 43.77, and 50.89 for SL model and 46.06, 49.80, and 57.34

for SLE model. When T = 17, df = 96 for SL model and 112 for SLE model, with 10%,

5%, and 1% critical values being 114.13, 119.87, 131.14 for SL model, and 131.56, 137.70,

149.73 for SLE model.

Again, the larger data set provide strong evidence against temporal homogeneity as

the p-values for all the tests are very small. The results corresponding to the small data

are mixed: the tests are significant based on the 1FE models but not based on the 2FE

models, indicating that once the time-specific effects are controlled, the regression and

spatial coefficients remain stable in the first six years. These suggest the existence of

structure breaks, and further tests can be carried out to identify a ‘parsimonious model’

if one is not willing to go for the largest model with full temporal heterogeneity on the

regression and spatial coefficients. Again, the relatively much bigger values of the usual or

näıve tests show that they are rather unreliable, as the Monte Carlo results indicate that

they over reject the null hypothesis.

6. Conclusion and Discussion

We introduce adjusted quasi score tests for temporal homogeneity/heterogeneity in

regression and spatial coefficients in spatial panel data models allowing the existence of

spatial and temporal heterogeneity in the intercepts of the model. The proposed tests are

robust against nonnormality, they are simple and reliable as shown by the Monte Carlo

results, and can be repeatedly applied to identity a ‘parsimonious model’ instead of the

model with full temporal heterogeneity. That is, once the null hypothesis of homogeneity

is rejected (as in the two empirical applications), one may proceed with further tests of

hypotheses with known change points suggested by the data (as in Cigarette Demand

application). Thus, the proposed tests provide useful tools for the applied researchers.

The tests can be extended by (i) adding higher-order spatial terms and spatial Durbin

terms in the model, (ii) treating individual- and time-specific effects as random effects, or

correlated random effects, (iii) allowing spatial-temporal heterogeneity in error variance

(i.e., heteroskedasticity), (iv) allowing interactive fixed effects, and (v) by allowing dy-

namic effects in the model. These extensions are interesting but clearly beyond the scope

of the current paper, which will be in our future research agenda.
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Appendix A: Some Basic Lemmas

This section presents some basic lemmas that greatly facilitate the derivations and

proofs of theoretical results given in the subsequent appendices.

Lemma A.1 (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two

sequences of n×n matrices that are uniformly bounded in both row and column sums. Let

Cn be a sequence of conformable matrices whose elements are uniformly bounded. Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,

(ii) the elements of An are uniformly bounded and tr(An) = O(n), and

(iii) the elements of AnCn and CnAn are uniformly bounded.

Lemma A.2 (Yang, 2015b, Lemma A.1, extended). For t = 1, 2, let Ant be n × n

matrices and cnt be an n× 1 vectors. Let εn be an n × 1 vector of iid elements with mean

zero, variance σ2, and finite 3rd and 4th cumulants μ3 and μ4. Let ant be the vector of

diagonal elements of Ant. Define Qnt = c′ntεn + ε′nAntεn, t = 1, 2. Then, for t, s = 1, 2,

Cov(Qnt, Qns) ≡ f(Ant, cnt; Ans, cns)

=σ4tr[(A′
nt + Ant)Ans)] + μ3a

′
ntcns + μ3c

′
ntans + μ4a

′
ntans + σ2c′ntcns. (A.1)

Various useful special cases of (A.1) are as follows:

(i) Cov(c′n1εn, Qn2) = f(0, cn1; An2, cn2) = μ3c
′
n1an2 + σ2c′n1cn2,

where cn1 can be an n × k matrix with k ≥ 1;

(ii) Var(Qn1) = f(An1, cn1; An1, cn1) = σ4tr[(A′
n1 + An1)An1)] + 2μ3a

′
n1cn1

+μ4a
′
n1an1 + σ2c′n1cn1;

(iii) Var(ε′nAn1εn) = f(An1, 0; An1, 0) = σ4tr[(A′
n1 + An1)An1)] + μ4a

′
n1an1.

Lemma A.3 (CLT for Linear-Quadratic Forms, Kelejian and Prucha, 2001). Let

An, an, cn and εn be as in Lemma A.2. Assume (i) An is bounded uniformly in row and

column sums, (ii) n−1
∑n

i=1 |c2+η1
n,i | < ∞, η1 > 0, and (iii) E|ε4+η2

n,i | < ∞, η2 > 0. Then,

ε′nAnεn + c′nεn − σ2tr(An)

{σ4tr(A′
nAn + A2

n) + μ4a′nan + σ2c′ncn + 2μ3a′ncn}
1
2

D−→ N (0, 1).

Appendix B: Hessian, Expected Hessian and VC Matrices

Notation. For t, s = 1, . . . , T , blkdiag{At} forms a block-diagonal matrix by placing

At diagonally, {At} forms a matrix by stacking At horizontally, and {Bts} forms a matrix

by the component matrices Bts. The negative Hessian matrix J�(θ0), its expectation

I�(θ0), and the VC matrix Σ�(θ0) of the AQS function, �=SL1, SL2, SLE1, SLE2, are all

partitioned according to the slope parameters β, the spatial lag parameters λ, spatial error

parameters ρ (if existing in the model), and the error variance σ2, with the sub-matrices

denoted by, e.g., Jββ, Jβλ, Iββ, Iβλ, Σββ, Σβλ. Furthermore, diag(·) forms a diagonal

matrix and diagv(·) a column vector, based on the diagonal elements of a square matrix.
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B.1. Panel SL model with one-way FE. Letting ηnt = Gnt(Xntβt + cn) and

gnt = diagv(Gnt), the negative Hessian matrix, JSL1(θ0), has the components:

Jββ = blkdiag
{

1
σ2
0
X ′

ntXnt

} − {
1

Tσ2
0
X ′

ntXns

}
,

Jλβ = blkdiag
{

1
σ2
0
(WnYnt)′Xnt

} − {
1

Tσ2
0
(WnYnt)′Xns

}
,

Jλλ = blkdiag
{

1
σ2
0
(WnYnt)′(WnYnt) + T−1

T tr(G2
nt)

} − {
1

Tσ2
0
(WnYnt)′(WnYns)

}
,

Jσ2β =
{

1
σ4
0
Ṽ ′

ntXnt

}
, Jσ2λ =

{
1
σ4
0
(WnYnt)′Ṽnt

}
, Jσ2σ2 = −n(T−1)

2σ4
0

+ 1
σ6
0

∑T
t=1 Ṽ ′

ntṼnt.

The expected negative Hessian matrix, ISL1(θ0), has the components:

Iββ = Jββ, Iλβ = blkdiag
{

1
σ2
0
η′

ntXnt

} − {
1

Tσ2
0
η′

ntXns

}
,

Iλλ = blkdiag
{

1
σ2
0
η′

ntηnt + T−1
T tr(Gs

ntGnt)
} − {

1
Tσ2

0
η′

ntηns

}
,

Iσ2β = 0′tk, Iσ2λ =
{

T−1
Tσ2

0
tr(Gnt)

}
, Iσ2σ2 = n(T−1)

2σ4
0

.

The VC matrix ΣSL1(θ0) = ISL1(θ0) + ΩSL1(θ0), where ΩSL1(θ0) has components:

Ωββ = 0tk×tk, Ωλβ = bikdiag
{

T−1
Tσ0

γg′ntXnt

} − {
T−1
T 2σ0

γg′ntXns

}
,

Ωλλ = blkdiag
{ 2(T−1)

Tσ0
γη′

ntgnt + (T−1
T )2κg′ntgnt − 1

T tr(GntGnt)
}

−{
T−1
T 2σ0

γ(η′
ntgns + g′ntηns) − 1

T 2 tr(GntGns)
}
,

Ωσ2β =
{
0′tk

}
, Ωσ2λ =

{ (T−1)2

2T 2σ2
0

κtr(Gnt)
}
, Ωσ2σ2 = n(T−1)2

4Tσ4
0

κ.

where γ and κ are, respectively, the measures of skewness and excess kurtosis of vi,t.

Alternatively, we can find the VC matrix Σn,T (θ0) by first expressing the AQS

function (2.7) at θ0 in terms of VN = (V ′
n1, . . . , V

′
nT )′, where N = nT , and then applying

Lemma A.2. Let zt be a T × 1 of element 1 in the tth position and 0 elsewhere, and

define ZNt = zt ⊗ In, Z̄N = 1
T (lT ⊗ In), and Z◦

Nt = ZNt − Z̄N . Thus, Vnt = Z ′
NtVN and

Ṽnt = Vnt − V n = Z◦′
NtVN . The AQS function (2.7) at θ0 takes the form:

S�
SL1(θ0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Π′
1tVN , t = 1, . . . , T,

Π′
2tVN + V

′
NΦtVN − T−1

T tr(Gnt), t = 1, . . . , T,

V′
NΨVN − n(T−1)

2σ2 ,

(B.1)

where Π1t = 1
σ2
0
Z◦

NtXnt, Π2t = 1
σ2
0
Z◦

Ntηnt, Φt = 1
σ2
0
ZNtG

′
ntZ

◦′
Nt, and Ψ = 1

2σ4

∑T
t=1 Z◦

NtZ
◦′
Nt.

Applying Lemma A.2 with ε, cnt and Ant replaced by VN , Π1t and Π2t, Φt, and Ψ, we

obtain the VC matrix of the AQS function:

ΣSL1(θ0) =

⎛
⎜⎜⎜⎝

{
f(0, Π1t; 0, Π1s)

}
,

{
f(0, Π1t; Φs, Π2s)

}
,

{
f(0, Π1t; Ψ, 0)

}
∼,

{
f(Φt, Π2t; Φs, Π2s)

}
,

{
f(Φt, Π2t; Ψ, 0)

}
∼, ∼, f(Ψ, 0; Ψ, 0)

⎞
⎟⎟⎟⎠ .

This expression can be reduced to that given above, but it greatly simplifies the calculation.
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B.2. Panel SL model with two-way FE. Letting η∗
nt = G∗

nt(X
∗
ntβt + c∗n) and

g∗nt = diagv(G∗
nt), as the AQS function takes a similar form as that for 1FE panel SL

model, the negative Hessian, JSL2(θ0), also takes a similar form:

Jββ = blkdiag
{

1
σ2
0
X∗′

ntX
∗
nt

} − {
1

Tσ2
0
X∗′

ntX
∗
ns

}
,

Jλβ = blkdiag
{

1
σ2
0
(W ∗

nY ∗
nt)

′X∗
nt

} − {
1

Tσ2
0
(W ∗

nY ∗
nt)

′X∗
ns

}
,

Jλλ = blkdiag
{

1
σ2
0
(W ∗

nY ∗
nt)

′(W ∗
nY ∗

nt) + T−1
T tr(G∗2

nt)
} − {

1
Tσ2

0
(W ∗

nY ∗
nt)

′(W ∗
nY ∗

ns)
}
,

Jσ2β =
{

1
σ4
0
Ṽ ∗′

ntX
∗
nt

}
, Jσ2λ =

{
1
σ4
0
(W ∗

nY ∗
nt)

′Ṽ ∗
nt

}
, Jσ2σ2 = − (n−1)(T−1)

2σ4
0

+ 1
σ6
0

∑T
t=1 Ṽ ∗′

nt Ṽ
∗
nt.

As the derivation of the expected negative Hessian matrix involves only the first two

moments of the transformed errors which are the same as the first two moments of the

original error, the expected negative Hessian matrix, ISL2(θ0), also takes a similar form as

that of 1FE panel SL model and contains the following components:

Iββ = Jββ, Iλβ = blkdiag
{

1
σ2
0
η∗′

ntX
∗
nt

} − {
1

Tσ2
0
η∗′

ntX
∗
ns

}
,

Iλλ = blkdiag
{

1
σ2
0
η∗′

ntη
∗
nt + T−1

T tr(G∗s
ntG

∗
nt)

} − {
1

Tσ2
0
η∗′

ntη
∗
ns

}
,

Iσ2β = 0′tk, Iσ2λ =
{

T−1
Tσ2

0
tr(G∗

nt)
}
, Iσ2σ2 = (n−1)(T−1)

2σ4
0

.

The derivation of the VC matrix of the AQS function, however, is different from that

of one-way panel SL model due to the involvement of 3rd and 4th moments of the errors.

The elements of the transformed errors V ∗
nt may not be totally independent unless the

original errors are normal and their 3rd and 4th moments may not be constant. Thus, one

needs to work with the original error vector Vnt through V ∗
nt = F ′

n,n−1Vnt. The VC matrix

ΣSL2(θ0) = ISL2(θ0) + ΩSL2(θ0), where ΩSL2(θ0) has components:5

Ωββ = 0tk×tk, Ωλβ = bikdiag
{

T−1
Tσ0

γg∗′ntFn,n−1X
∗
nt

} − {
T−1
T 2σ0

γg∗′ntFn,n−1X
∗
ns

}
,

Ωλλ = blkdiag
{ 2(T−1)

Tσ0
γη∗′

ntF
′
n,n−1g

∗
nt + (T−1

T )2κg∗′ntg
∗
nt − 1

T tr(G∗
ntG

∗
nt)

}
−{

T−1
T 2σ0

γ(η∗′
ntF

′
n,n−1g

∗
ns + g∗′ntFn,n−1η

∗
ns) − 1

T 2 tr(G∗
ntG

∗
ns)

}
,

Ωσ2β =
{
0′tk

}
, Ωσ2λ =

{ (T−1)2

2T 2σ2
0

κdiag(Jn)diag(Fn,n−1G
∗
ntF

′
n,n−1)

}
, Ωσ2σ2 = n(T−1)2

4Tσ4
0

κ.

Similarly, ΣSL2(θ0) can be obtained by first expressing S�
SL2(θ0) in VN , through V ∗

nt =

F ′
n,n−1Z

′
NtVN and Ṽ ∗

nt = V ∗
nt − V

∗
n = F ′

n,n−1Z
◦′
NtVN :

S�
SL2(θ0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Π′
1tVN , t = 1, . . . , T,

Π′
2tVN + V′

NΦtVN − T−1
T tr(Gnt), t = 1, . . . , T,

V
′
NΨVN − (n−1)(T−1)

2σ2 ,

(B.2)

where Π1t = 1
σ2
0
Z◦

NtFn,n−1X
∗
nt, Π2t = 1

σ2
0
Z◦

NtFn,n−1η
∗
nt, Φt = 1

σ2
0
ZNtFn,n−1G

∗′
ntF

′
n,n−1Z

◦′
Nt,

and Ψ = 1
2σ4

∑T
t=1 Z◦

NtFn,n−1F
′
n,n−1Z

◦′
Nt. Then, applying Lemma A.2 with ε, cnt and Ant

replaced by VN , Π1t and Π2t, Φt, and Ψ to give ΣSL2(θ0) in an identical form as ΣSL1(θ0).
5In the derivations, we have used: (i) (In−1 − λtF

′
n,n−1WnFn,n−1)

−1 = F ′
n,n−1(In − λtWn)−1Fn,n−1

(Lee and Yu (2010, Lemma A.2), and (ii) for a row normalized Wn, F ′
n,n−1WnJn = F ′

n,n−1Wn and
G∗

n(λt) = F ′
n,n−1Gn(λt)Fn,n−1 and g∗

nt = diag(Fn,n−1G
∗
n(λt)F

′
n,n−1).
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B.3. Panel SLE model with one-way FE. Let Ḋnt = − d
dρt0

Dnt = M ′
nBnt+B′

ntMn.
We have the components of the negative Hessian matrix JSEL1(θ0):

Jββ = blkdiag
{

1
σ2
0
X′

ntDntXnt

} − {
1

σ2
0
X′

ntDntD
−1
n DnsXns

}
;

Jβλ = blkdiag
{

1
σ2
0
X′

ntDntWnYnt

} − {
1

σ2
0
X′

ntDntD
−1
n DnsWnYns

}
;

Jβρ = blkdiag
{

1
σ2
0
X′

ntḊntB
−1
nt Ṽnt

} − {
1

σ2
0
X′

ntDntD
−1
n ḊnsB

−1
ns Ṽns

}
;

Jλλ = blkdiag
{

1
σ2
0
(WnYnt)′Dnt(WnYnt) + tr(RntG

2
nt)

}
− {

1
σ2
0
(WnYnt)′DntD

−1
n Dns(WnYns)

}
;

Jλρ = blkdiag
{

1
σ2
0
(WnYnt)′ḊntB

−1
nt Ṽnt + tr[D−1

n ḊntGnt]
}

− {
1
σ2
0
(WnYnt)′DntD

−1
n ḊnsB

−1
ns Ṽns + tr[D−1

n DntGntD
−1
n Ḋns]

}
;

Jρλ = blkdiag
{

1
σ2
0
(WnYnt)′ḊntB

−1
nt Ṽnt

} − {
1

σ2
0
(WnYns)′DnsD

−1
n ḊntB

−1
nt Ṽnt

}
;

Jρρ = blkdiag
{

1
σ2 Ṽ ′

ntH
′
ntHntṼnt + tr(H2

nt + D
−1
n M ′

nMn)
}

− {
1
σ2 Ṽ ′

ntH
s
ntBntD

−1
n B′

nsH
s
nsṼns + tr(D−1

n B′
ntMnD

−1
n Ḋns)

}
;

Jσ2β =
{

1
σ4
0
X′

ntB
′
ntṼnt

}
; Jσ2λ =

{
1

σ4
0
(WnYnt)′B′

ntṼnt

}
;

Jσ2ρ =
{

1
σ4
0
Ṽ ′

ntHntṼnt

}
; Jσ2σ2 = −n(T−1)

2σ4 + 1
σ6

∑T
t=1 Ṽ ′

ntṼnt.

and the components of the expected negative Hessian matrix ISEL1(θ0):

Iββ = Jββ , Iλβ = blkdiag
{

1
σ2
0
η′

tDntXnt

} − {
1

σ2
0
η′

tDntD
−1
n DnsXns

}
, Iρβ = 0Tk

Iλλ = blkdiag
{

1
σ2
0
η′

ntDntηnt + tr[Snt(ρ)Ġs
ntĠnt]

} − {
1

σ2
0
η′

ntDntD
−1
n Dnsηns

}
,

Iλρ = blkdiag
{
tr[Ġ′

ntSnt(ρ)Hs
nt]

}
; Iσ2σ2 = −n(T−1)

2σ4
0

+ 1
σ4
0

∑T
t=1 trSnt(ρ)

Iρλ = blkdiag
{
tr[Ġ′

ntSnt(ρ)Hs
ntSnt(ρ)]} − {

tr[G′
nsDnsD

−1
n ḊntD

−1
n ]

}
Iρρ = blkdiag

{
tr[Hs

ntSnt(ρ)Hnt − BntD
−1
n ḊntB

−1
nt Hnt]

}
+

{
tr[BntD

−1
n ḊnsD

−1
n B′

ntHnt]
}

Iσ2β = 0′tk, Iσ2λ =
{

1
σ2
0
tr[Rnt(ρ)Gnt]

}
, Iσ2ρ = 1

σ2
0
tr(Snt(ρ)Hnt).

To derive ΣSLE1(θ0), we have, Ṽnt ≡ Ṽnt(β0, λ0, ρ0) = Vnt − BntD
−1
n

∑T
s=1 B′

nsVns =

Z◦′
NtVN , where Z◦′

Nt = [Z ′
Nt −BntD

−1
n (l′T ⊗ In)BN ] and BN = blkdiag(Bn1, . . . , BnT ), and

WnYnt = Gnt(Xntβ0 + cn + B−1
nt Vnt) = ηnt + GntB

−1
nt Z ′

NtVN . These lead to,

S∗
SLE1(θ0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Π′
1tVN , t = 1, . . . , T,

Π′
2tVN + V

′
NΦ1tVN − tr(RntGnt), t = 1, . . . , T,

V′
NΦ2tVN − tr(SntHnt), t = 1, . . . , T,

V′
NΨVN − n(T−1)

2σ2 ,

(B.3)

where Π1t = 1
σ2
0
Z◦

NtBntXnt, Π2t = 1
σ2
0
Z◦

NtBntηnt, Φ1t = 1
σ2
0
ZNtB

−1′
nt G′

ntB
′
ntZ

◦′
Nt, Φ2t =

1
σ2
0
Z◦

NtHntZ
◦′
Nt, and Ψ = 1

2σ4

∑T
t=1 Z◦

NtZ
◦′
Nt. Applying Lemma A.2 gives:

ΣSLE1(θ0) =

⎛
⎜⎜⎜⎜⎜⎝

{
f(0, Π1t; 0, Π1s)

}
,
{
f(0, Π1t; Φ1s, Π2s)

}
,

{
f(0, Π1t; Φ2s, 0)

}
,

{
f(0, Π1t; Ψ, 0)

}
∼,

{
f(Φ1t, Π2t; Φ1s, Π2s)

}
,
{
f(Φ1t, Π2t; Φ2s, 0)

}
,
{
f(Φ1t, Π2t; Ψ, 0)

}
∼, ∼,

{
f(Φ2t, 0; Φ2s, 0)

}
,

{
f(Φ2t, 0; Ψ, 0)

}
∼, ∼, ∼,

{
f(Ψ, 0; Ψ, 0)

}

⎞
⎟⎟⎟⎟⎟⎠

.
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B.4. Panel SLE model with two-way FE. Let Ḋnt = − d
dρt0

D∗
nt = M∗′

n B∗
nt +

B∗′
ntM

∗
n. We have the components of the negative Hessian matrix JSEL2(θ0):

Jββ = blkdiag
{

1
σ2
0
X∗′

ntD
∗
ntX

∗
nt

} − {
1

σ2
0
X∗′ntD

∗
ntD

∗−1
n D∗

nsX
∗
ns

}
;

Jβλ = blkdiag
{

1
σ2
0
X∗′

ntD
∗
ntW

∗
nY ∗

nt

} − {
1

σ2
0
X∗′

ntD
∗
ntD

∗−1
n D∗

nsW
∗
nY ∗

ns

}
;

Jβρ = blkdiag
{

1
σ2
0
X∗′

ntḊntB
∗−1
nt Ṽ ∗

nt

} − {
1

σ2
0
X∗′

ntD
∗
ntD

∗−1
n ḊnsB

∗−1
ns Ṽ ∗

ns

}
;

Jλλ = blkdiag
{

1
σ2
0
(W ∗

nY ∗
nt)

′D∗
nt(W

∗
nY ∗

nt) + tr(R∗
ntG

∗2
nt)

}
− {

1
σ2
0
(W ∗

nY ∗
nt)′D∗

ntD
∗−1
n Dns(W ∗

nY ∗
ns)

}
;

Jλρ = blkdiag
{

1
σ2
0
(W ∗

nY ∗
nt)′ḊntB

∗−1
nt Ṽ ∗

nt + tr[D∗−1
n ḊntG

∗
nt]

}
− {

1
σ2
0
(W ∗

nY ∗
nt)′D∗

ntD
∗−1
n ḊnsB

∗−1
ns Ṽ ∗

ns + tr[D∗−1
n D∗

ntG
∗
ntD

∗−1
n Ḋns]

}
;

Jρλ = blkdiag
{

1
σ2
0
(W ∗

nY ∗
nt)

′ḊntB
∗−1
nt Ṽ ∗

nt

} − {
1

σ2
0
(W ∗

nY ∗
ns)

′D∗
nsD

∗−1
n ḊntB

∗−1
nt Ṽ ∗

nt

}
;

Jρρ = blkdiag
{

1
σ2 Ṽ ∗′

ntH
∗′
ntH

∗
ntṼ

∗
nt + tr(H∗2

nt + D
∗−1
n M∗′

n M∗
n)

}
;

− {
1

σ2 Ṽ ∗′
ntH

∗s
ntB

∗
ntD

∗−1
n B∗′

nsH
∗s
nsṼ

∗
ns + tr(D∗−1

n B∗′
ntM

∗
nD

∗−1
n Ḋns)

}
Jσ2β =

{
1

σ4
0
X∗′

ntB
∗′
ntṼ

∗
nt

}
; Jσ2λ =

{
1

σ4
0
(W ∗

nY ∗
nt)

′B∗′
ntṼ

∗
nt

}
;

Jσ2ρ =
{

1
σ4
0
Ṽ ∗′

ntH
∗
ntṼ

∗
nt

}
; Jσ2σ2 = − (n−1)(T−1)

2σ4 + 1
σ6

∑T
t=1 Ṽ ∗′

nt Ṽ
∗
nt.

and the expected negative Hessian matrix, ISEL2(θ0), with components:

Iββ = Jββ , Iλβ = blkdiag
{

1
σ2
0
η∗′

t D∗
ntX

∗
nt

} − {
1

σ2
0
η∗′

t D∗
ntD

∗−1
n D∗

nsX
∗
ns

}
; Iρβ = 0Tk;

Iλλ = blkdiag
{

1
σ2
0
η∗′

ntD
∗
ntη

∗
nt + tr[S∗

nt(ρ)Ġ∗s
ntĠ

∗
nt]

} − {
1

σ2
0
η∗′

ntD
∗
ntD

∗−1
n D∗

nsη
∗
ns

}
;

Iλρ = blkdiag
{
tr[Ġ∗′ntS

∗
nt(ρ)H∗s

nt ]
}
; Iσ2σ2 = − (n−1)(T−1)

2σ4
0

+ 1
σ4
0

∑T
t=1 trS∗

nt(ρ);

Iρλ = blkdiag
{
tr[Ġ∗′

ntS
∗
nt(ρ)H∗s

ntS
∗
nt(ρ)]

} − {
tr[G∗′

nsD
∗
nsD

∗−1
n ḊntD

∗−1
n ]

}
;

Iρρ = blkdiag
{
tr[H∗s

ntS
∗
nt(ρ)H∗

nt − B∗
ntD

∗−1
n ḊntB

∗−1
nt H∗

nt]
}

+
{
tr[B∗

ntD
∗−1
n ḊnsD

∗−1
n B∗′

ntH
∗
nt]

}
;

Iσ2β = 0′tk; Iσ2λ =
{

1
σ2
0
tr[R∗

nt(ρ)G∗
nt]

}
; Iσ2ρ =

{
1

σ2
0
tr(S∗

nt(ρ)H∗
nt)

}
.

To derive ΣSLE2(θ0), Ṽ ∗
nt ≡ Ṽ ∗

nt(β0, λ0, ρ0) = V ∗
nt−B∗

ntD
∗−1
n

∑T
s=1 B∗′

nsV
∗
ns = F ′

n,n−1Z
◦′
NtVN ,

and W ∗
nY ∗

nt = G∗
nt(X∗

ntβ0 + c∗n + B−∗1
nt V ∗

nt) = η∗
nt + G∗

ntB
∗−1
nt F ′

n,n−1Z
′
NtVN , leading to,

S∗
SLE2(θ0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Π′
1tVN , t = 1, . . . , T,

Π′
2tVN + V′

NΦ1tVN − tr(R∗
ntG

∗
nt), t = 1, . . . , T,

V
′
NΦ2tVN − tr(S∗

ntH
∗
nt), t = 1, . . . , T,

V
′
NΨVN − (n−1)(T−1)

2σ2 ,

(B.4)

where Π1t = 1
σ2
0
Z◦∗

NtB
∗
ntX

∗
nt, Π2t = 1

σ2
0
Z◦∗

NtB
∗
ntη

∗
nt, Φ1t = 1

σ2
0
Z∗

NtB
∗−1′
nt G∗′

ntB
∗′
ntZ

◦∗′
Nt , Φ2t =

1
σ2
0
Z◦∗

NtH
∗
ntZ

◦∗′
Nt , and Ψ = 1

2σ4

∑T
t=1 Z◦∗

NtZ
◦∗′
Nt , with Z∗

Nt = ZNtFn,n−1 and Z◦∗
Nt = Z◦

NtFn,n−1.

Applying Lemma A.2 with ε, cnt and Ant replaced by VN , Π1t and Π2t, and Φ1t, Φ2t and

Ψ, we obtain the VC matrix ΣSLE2(θ0) taking identical form as ΣSLE1(θ0) given above.
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Appendix C: Proof of the Theorems

Proof of Theorem 2.1. From (B.1), we see that the AQS function at the true

parameters contains both linear and quadratic forms in the vector of original errors VN ,

S�
SL1(θ0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Π′
1tVN , t = 1, . . . , T,

Π′
2tVN + V

′
NΦtVN − T−1

T tr(Gnt), t = 1, . . . , T,

V
′
NΨVN − n(T−1)

2σ2 ,

where Π1t = 1
σ2
0
Z◦

NtXnt, Π2t = 1
σ2
0
Z◦

Ntηnt, Φt = 1
σ2
0
ZNtG

′
ntZ

◦′
Nt, Ψ = 1

2σ4

∑T
t=1 Z◦

NtZ
◦′
Nt,

ZNt = zt ⊗ In, Z◦
Nt = ZNt − Z̄N , Z̄N = 1

T (lT ⊗ In), and zt is a T × 1 vector with tth

element being 1 and other elements being zero.

First, as the elements of Xnt are non-stochastic and uniformly bounded (by Assumption

3), it is easy to see that the elements of Π1t are uniformly bounded. By Assumption A.4

and Lemma A.1(i), Gnt is uniformly bounded in both row and column sums. Thus,

the elements of ηnt = Gnt(Xntβt0 + cn) are uniformly bounded by Assumption A3 and

Lemma A.1(iii). It follows that the elements of Π2t are uniformly bounded. Now, from the

definition of ZNt and Z◦
Nt, it is easy to see that Φtand Ψ are uniformly bounded in both

row and column sums. Thus, under Assumptions 1-4 the central limit theorem (CLT) of

linear-quadratic (LQ) form of Kelejian and Prucha (2001) or its simplified version (under

iid errors) given in Lemma A.3 can be applied to the elements of S�
SL1(θ0). Therefore, an

application of Cramér-Wold device under a finite T leads to, as N0 → ∞, 1√
N0

S�
SL1(θ0)

D−→
N

(
0, limN0→∞ 1

N0
ΣSL1(θ0)

)
. It follows that by (2.11) and (2.12),

C[ 1
N0

ISL1(θ0)]−1 1√
N0

S�
SL1(θ̃SL1)

D−→ N
(
0, limN0→∞ ΞSL1(θ0)

)
.

It left to show that 1
N0

[ISL1(θ̃SL1) − ISL1(θ0)]
p−→ 0 and 1

N0
[ΣSL1(θ̃SL1) − ΣSL1(θ0)]

p−→ 0.

Under the
√

N0-consistency of θ̃SL1 and with the analytical expressions of ISL1(θ0) and

ΣSL1(θ0) given in Appendix B1, the proofs of these results are repeated applications of

the mean value theorem (MVT) to each component of 1
N0

[ISL1(θ̃SL1) − ISL1(θ0)] and each

component of 1
N0

[ΣSL1(θ̃SL1) − ΣSL1(θ0)], with the key results to note:

1
N0

(c̃nG̃ntc̃n − cnGntcn)
p−→ 0; γ̃ − γ

p−→ 0; κ̃ − κ
p−→ 0. (C.1)

See the end of Section 2.1 for details �

Proof of Theorem 2.2. From the derivations in Section 2.2 and further results in

Appendix B2, we see that all the quantities in the 2FE panel SL model relate to the corre-

sponding quantities in the 1FE panel SL model through the orthonormal transformation

matrix Fn,n−1. Thus, the proof of Theorem 2.2 is carried out in a similar manner as that

for 1FE panel SL model. For the results similar to those in (C.1), see the end of Section

2.2 for details. �
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Proof of Theorem 3.1. Again the AQS function at the true parameters can be

expressed in terms of linear and quadratic forms in VN as shown in (B.3),

S∗
SLE1(θ0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Π′
1tVN , t = 1, . . . , T,

Π′
2tVN + V

′
NΦ1tVN − tr(RntGnt), t = 1, . . . , T,

V
′
NΦ2tVN − tr(SntHnt), t = 1, . . . , T,

V
′
NΨVN − n(T−1)

2σ2 ,

where Π1t = 1
σ2
0
Z◦

NtBntXnt, Π2t = 1
σ2
0
Z◦

NtBntηnt, Φ1t = 1
σ2
0
ZNtB

−1′
nt G′

ntB
′
ntZ

◦′
Nt, Φ2t =

1
σ2
0
Z◦

NtHntZ
◦′
Nt, Ψ = 1

2σ4

∑T
t=1 Z◦

NtZ
◦′
Nt, Z◦′

Nt = [Z ′
Nt − BntD

−1
n (l′T ⊗ In)BN ] and BN =

blkdiag(Bn1, . . . , BnT ). Under Assumptions 1-5, it is easy to verify that each component

of S∗
SLE1(θ0) or a linear combination of the components of S∗

SLE1(θ0) satisfies the conditions

of Lemma A.3, leading to the asymptotic normality result:

C[ 1
N0

ISLE1(θ0)]−1 1√
N0

S�
SLE1(θ̃SLE1)

D−→ N
(
0, limN0→∞ ΞSLE1(θ0)

)
.

The proofs of 1
N0

[ISLE1(θ̃SLE1)−ISLE1(θ0)]
p−→ 0 and 1

N0
[ΣSLE1(θ̃SLE1)−ΣSLE1(θ0)]

p−→ 0 are

again carried out by repeated applications of MVT under the
√

N0-consistency of θ̃SLE1.

For details on the estimation of cn, the skewness γ and excess kurtosis κ for the 1FE panel

SLE model, and the consistency of these estimates, see the end of Section 3.1. �

Proof of Theorem 3.2. The proof is similar to that for the 1FE panel SLE model,

as the quantities in the 2FE panel SLE model relate to those in the 1FE panel SLE model

through the orthonormal transformation matrix Fn,n−1. �
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Table 1a. Empirical Sizes of Tests for Temporal Homogeneity in Panel SL Model
One-Way Fixed Effects, Queen Contiguity

T = 3 T = 6
λ n TSL1 T r

SL1 TSL1 T r
SL1

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .208 .135 .052 .096 .045 .007 .216 .138 .050 .095 .044 .008
100 .150 .086 .024 .098 .046 .009 .161 .097 .028 .103 .050 .009
200 .128 .068 .015 .103 .049 .008 .129 .069 .018 .099 .051 .010
500 .107 .054 .010 .097 .046 .007 .110 .054 .011 .098 .049 .009

0 50 .204 .135 .053 .102 .048 .008 .214 .137 .050 .095 .046 .009
100 .147 .086 .025 .099 .048 .008 .160 .096 .027 .105 .051 .009
200 .127 .069 .015 .104 .049 .009 .127 .068 .018 .100 .049 .010
500 .111 .056 .011 .100 .048 .008 .109 .056 .012 .099 .050 .010

-.5 50 .204 .133 .055 .102 .048 .008 .212 .136 .051 .097 .046 .009
100 .147 .086 .025 .099 .049 .008 .160 .097 .027 .103 .050 .009
200 .129 .068 .015 .103 .048 .009 .127 .070 .017 .100 .050 .010
500 .108 .055 .012 .101 .048 .009 .110 .056 .012 .100 .049 .010

Normal Mixture Error
.5 50 .201 .129 .053 .096 .047 .006 .229 .154 .061 .121 .070 .023

100 .149 .088 .027 .100 .048 .009 .163 .096 .029 .099 .050 .010
200 .130 .073 .019 .105 .052 .011 .133 .073 .018 .103 .054 .010
500 .112 .058 .012 .102 .051 .009 .118 .061 .012 .102 .051 .010

0 50 .197 .126 .052 .099 .047 .007 .229 .150 .061 .103 .053 .011
100 .149 .087 .028 .102 .049 .010 .161 .094 .029 .099 .048 .010
200 .129 .073 .019 .105 .052 .010 .132 .073 .018 .104 .054 .011
500 .111 .059 .012 .103 .051 .010 .120 .061 .012 .102 .053 .009

-.5 50 .193 .129 .052 .097 .048 .008 .231 .151 .062 .103 .053 .012
100 .150 .088 .028 .101 .050 .010 .162 .094 .030 .101 .050 .010
200 .130 .073 .019 .104 .052 .011 .132 .073 .018 .103 .053 .011
500 .113 .059 .013 .102 .051 .010 .118 .062 .013 .101 .052 .010

Log-normal Error
.5 50 .180 .119 .045 .089 .043 .008 .211 .145 .060 .100 .054 .017

100 .149 .087 .027 .097 .047 .009 .164 .102 .032 .101 .057 .012
200 .133 .071 .018 .097 .045 .009 .147 .087 .030 .101 .055 .014
500 .127 .071 .018 .100 .051 .011 .142 .078 .030 .101 .050 .011

0 50 .180 .118 .046 .093 .044 .008 .193 .130 .056 .099 .054 .015
100 .132 .078 .023 .094 .047 .009 .146 .086 .024 .100 .052 .010
200 .109 .057 .013 .089 .042 .008 .114 .064 .017 .094 .051 .012
500 .099 .052 .012 .010 .050 .010 .110 .058 .013 .102 .053 .011

-.5 50 .194 .128 .049 .097 .045 .008 .225 .154 .072 .106 .058 .016
100 .142 .083 .024 .096 .047 .010 .191 .118 .042 .104 .057 .013
200 .120 .067 .017 .095 .046 .009 .166 .102 .032 .102 .054 .012
500 .118 .065 .016 .098 .050 .011 .151 .102 .032 .102 .050 .010
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Table 1b. Empirical Sizes of Tests for Temporal Homogeneity in Panel SL Model
One-Way Fixed Effects, Group Interaction

T = 3 T = 6
λ n TSL1 T r

SL1 TSL1 T r
SL1

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .222 .144 .057 .086 .034 .004 .219 .136 .048 .085 .039 .007
100 .150 .089 .025 .088 .039 .006 .165 .094 .028 .089 .042 .007
200 .124 .067 .018 .092 .042 .008 .128 .070 .016 .094 .045 .008
500 .110 .059 .014 .097 .049 .011 .113 .057 .012 .095 .048 .009

0 50 .232 .157 .065 .087 .036 .005 .232 .151 .056 .084 .040 .007
100 .155 .091 .027 .089 .040 .006 .173 .099 .030 .091 .044 .008
200 .124 .068 .020 .090 .042 .008 .131 .071 .016 .095 .044 .008
500 .110 .060 .015 .098 .049 .010 .114 .058 .013 .096 .048 .009

-.5 50 .238 .163 .071 .086 .038 .004 .239 .159 .063 .085 .038 .007
100 .157 .092 .029 .088 .040 .005 .178 .102 .033 .089 .043 .008
200 .126 .069 .020 .091 .043 .008 .133 .072 .016 .096 .043 .008
500 .111 .061 .014 .098 .049 .010 .115 .059 .012 .096 .048 .009

Normal Mixture Error
.5 50 .230 .151 .056 .087 .033 .004 .215 .143 .051 .088 .046 .009

100 .154 .088 .025 .087 .041 .006 .165 .094 .025 .087 .041 .009
200 .131 .070 .017 .095 .043 .008 .133 .071 .018 .093 .043 .009
500 .114 .061 .013 .100 .048 .009 .116 .059 .011 .096 .048 .008

0 50 .241 .163 .068 .088 .036 .005 .231 .155 .061 .088 .046 .008
100 .157 .092 .029 .089 .041 .006 .170 .098 .029 .089 .041 .008
200 .133 .070 .018 .095 .044 .008 .133 .072 .019 .094 .042 .009
500 .114 .059 .014 .099 .048 .010 .133 .072 .019 .094 .042 .009

-.5 50 .259 .181 .081 .093 .043 .007 .270 .186 .083 .096 .050 .010
100 .168 .103 .033 .096 .046 .007 .193 .118 .040 .093 .046 .010
200 .136 .075 .020 .097 .045 .009 .142 .079 .023 .094 .045 .010
500 .116 .060 .015 .098 .048 .009 .117 .059 .012 .097 .048 .008

Log-normal Error
.5 50 .218 .143 .054 .081 .035 .005 .206 .137 .050 .079 .040 .009

100 .151 .088 .026 .084 .037 .005 .176 .107 .034 .091 .048 .012
200 .130 .069 .018 .091 .043 .006 .142 .081 .022 .095 .051 .012
500 .108 .057 .012 .094 .045 .008 .126 .066 .016 .101 .049 .010

0 50 .227 .151 .064 .084 .036 .006 .243 .166 .075 .087 .045 .010
100 .152 .091 .029 .088 .040 .006 .185 .122 .046 .097 .049 .013
200 .137 .077 .019 .096 .047 .008 .136 .078 .025 .097 .052 .011
500 .107 .059 .014 .098 .048 .009 .115 .057 .014 .098 .048 .010

-.5 50 .263 .188 .086 .093 .043 .008 .350 .259 .139 .106 .057 .015
100 .179 .114 .042 .101 .049 .010 .260 .186 .090 .105 .054 .014
200 .161 .096 .029 .107 .056 .010 .185 .114 .043 .103 .052 .013
500 .123 .067 .018 .100 .051 .010 .131 .072 .021 .101 .051 .010
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Table 2a. Empirical Sizes of Tests for Temporal Homogeneity in Panel SL Model
Two-Way Fixed Effects, Queen Contiguity

T = 3 T = 6
λ n TSL2 T r

SL2 TSL2 T r
SL2

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .192 .123 .047 .093 .045 .007 .228 .148 .059 .100 .050 .010
100 .140 .080 .023 .096 .048 .009 .157 .094 .029 .102 .050 .011
200 .120 .064 .015 .098 .049 .009 .128 .068 .017 .101 .052 .009
500 .103 .051 .013 .098 .048 .011 .105 .056 .012 .095 .049 .010

0 50 .194 .123 .048 .094 .046 .008 .224 .147 .059 .101 .049 .010
100 .138 .082 .023 .095 .050 .009 .126 .069 .017 .099 .051 .009
200 .115 .064 .016 .096 .049 .009 .157 .095 .027 .101 .049 .010
500 .101 .052 .012 .098 .048 .009 .126 .069 .017 .099 .051 .009

-.5 50 .192 .123 .047 .093 .045 .009 .225 .148 .058 .100 .049 .009
100 .138 .081 .023 .096 .049 .008 .157 .092 .027 .101 .048 .010
200 .116 .063 .015 .096 .049 .009 .125 .069 .016 .102 .050 .009
500 .105 .055 .011 .096 .048 .009 .108 .056 .013 .097 .051 .011

Normal Mixture Error
.5 50 .198 .131 .052 .100 .048 .008 .232 .155 .063 .106 .054 .013

100 .140 .080 .025 .096 .047 .010 .165 .100 .030 .107 .055 .012
200 .124 .067 .016 .101 .051 .009 .132 .071 .019 .104 .051 .013
500 .110 .055 .013 .100 .050 .010 .106 .056 .012 .097 .051 .010

0 50 .199 .132 .052 .102 .048 .009 .234 .154 .064 .110 .055 .013
100 .139 .080 .024 .097 .047 .009 .166 .100 .031 .109 .054 .011
200 .124 .067 .017 .102 .051 .010 .129 .072 .019 .102 .051 .013
500 .110 .055 .012 .102 .050 .010 .106 .055 .013 .096 .049 .010

-.5 50 .199 .130 .053 .101 .049 .009 .234 .157 .066 .112 .057 .013
100 .143 .084 .025 .101 .048 .009 .164 .097 .031 .107 .053 .012
200 .123 .069 .016 .103 .051 .010 .133 .073 .020 .105 .053 .012
500 .109 .056 .012 .101 .050 .009 .107 .056 .014 .096 .048 .012

Log-normal Error
.5 50 .196 .131 .055 .100 .050 .009 .242 .171 .079 .107 .067 .018

100 .139 .081 .027 .095 .050 .011 .171 .112 .041 .105 .055 .015
200 .128 .070 .018 .106 .053 .010 .141 .081 .026 .104 .052 .013
500 .109 .060 .014 .101 .052 .011 .123 .068 .019 .101 .051 .010

0 50 .196 .133 .059 .106 .055 .010 .239 .167 .081 .110 .055 .021
100 .137 .078 .024 .095 .048 .010 .166 .110 .039 .107 .054 .018
200 .126 .070 .018 .104 .052 .010 .133 .079 .025 .105 .049 .015
500 .107 .056 .013 .100 .051 .010 .116 .061 .016 .102 .051 .013

-.5 50 .205 .141 .066 .112 .062 .011 .249 .177 .083 .108 .055 .026
100 .154 .089 .028 .106 .052 .012 .172 .110 .042 .099 .048 .019
200 .129 .074 .019 .107 .056 .012 .145 .088 .030 .098 .049 .020
500 .110 .058 .014 .103 .052 .010 .122 .068 .018 .100 .049 .014
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Table 2b. Empirical Sizes of Tests for Temporal Homogeneity in Panel SL Model
Two-Way Fixed Effects, Group Interaction

T = 3 T = 6
λ n TSL2 T r

SL2 TSL2 T r
SL2

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .226 .148 .059 .086 .038 .005 .223 .142 .052 .087 .040 .007
100 .155 .090 .025 .090 .036 .006 .166 .095 .029 .089 .043 .007
200 .124 .070 .018 .091 .044 .006 .131 .073 .016 .093 .045 .008
500 .112 .060 .015 .097 .050 .010 .114 .057 .013 .096 .047 .010

0 50 .240 .159 .068 .088 .039 .005 .237 .154 .059 .086 .040 .007
100 .159 .094 .025 .090 .037 .006 .174 .102 .031 .088 .042 .007
200 .127 .072 .018 .091 .044 .007 .133 .074 .016 .094 .046 .008
500 .112 .060 .014 .097 .050 .010 .116 .059 .013 .097 .046 .010

-.5 50 .244 .167 .075 .088 .039 .005 .249 .164 .065 .086 .040 .007
100 .163 .096 .028 .089 .038 .006 .179 .104 .033 .085 .043 .007
200 .127 .073 .019 .092 .045 .007 .134 .076 .017 .094 .045 .008
500 .113 .059 .014 .098 .049 .010 .117 .059 .013 .097 .046 .010

Normal Mixture Error
.5 50 .232 .150 .058 .080 .034 .005 .222 .144 .055 .082 .041 .008

100 .159 .090 .024 .088 .039 .006 .164 .095 .027 .083 .041 .008
200 .130 .072 .018 .095 .045 .007 .133 .071 .017 .089 .043 .010
500 .114 .059 .014 .097 .048 .009 .118 .060 .012 .098 .047 .009

0 50 .245 .167 .069 .085 .038 .006 .247 .165 .071 .083 .039 .007
100 .164 .098 .027 .089 .040 .006 .175 .103 .032 .080 .038 .007
200 .131 .072 .018 .094 .043 .008 .132 .072 .019 .089 .041 .009
500 .115 .059 .014 .096 .048 .009 .119 .060 .012 .096 .047 .009

-.5 50 .269 .185 .085 .097 .047 .009 .298 .209 .100 .101 .052 .012
100 .177 .110 .035 .099 .046 .007 .205 .127 .045 .094 .046 .008
200 .138 .077 .020 .096 .045 .008 .145 .082 .023 .095 .045 .010
500 .115 .059 .014 .096 .047 .009 .122 .063 .013 .099 .049 .009

Log-normal Error
.5 50 .217 .143 .057 .078 .036 .005 .215 .142 .055 .076 .036 .008

100 .152 .088 .025 .079 .034 .005 .176 .111 .036 .082 .041 .009
200 .132 .073 .018 .089 .044 .006 .141 .080 .023 .088 .046 .010
500 .113 .057 .013 .094 .047 .008 .119 .062 .014 .096 .048 .009

0 50 .240 .165 .073 .085 .040 .006 .246 .174 .079 .085 .038 .008
100 .164 .099 .034 .086 .041 .006 .191 .129 .051 .091 .040 .008
200 .135 .076 .020 .092 .043 .007 .143 .083 .027 .095 .044 .009
500 .111 .057 .014 .092 .045 .008 .113 .060 .013 .097 .045 .010

-.5 50 .287 .207 .104 .112 .060 .013 .347 .269 .151 .119 .068 .022
100 .201 .131 .054 .109 .057 .012 .270 .195 .099 .119 .065 .019
200 .156 .095 .028 .105 .054 .010 .191 .122 .049 .105 .056 .014
500 .120 .067 .017 .098 .050 .009 .141 .081 .021 .103 .052 .010
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Table 3a. Empirical Sizes of Tests for Temporal Homogeneity in Panel SLE Model
One-Way Fixed Effects, Queen Contiguity, λ = 0.5.

T = 3 T = 6
ρ n TSLE1 T r

SLE1 TSLE1 T r
SLE1

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .199 .142 .075 .082 .039 .005 .161 .099 .036 .090 .042 .011
100 .123 .068 .025 .094 .043 .009 .097 .050 .012 .092 .043 .006
200 .084 .044 .009 .099 .046 .007 .079 .038 .008 .102 .049 .011
500 .070 .034 .006 .104 .049 .009 .064 .030 .005 .102 .054 .009

0 50 .223 .164 .093 .090 .042 .006 .171 .104 .041 .093 .047 .010
100 .132 .076 .029 .095 .046 .012 .105 .058 .014 .097 .047 .007
200 .087 .046 .011 .103 .050 .010 .082 .039 .008 .104 .050 .011
500 .069 .036 .006 .102 .050 .011 .063 .028 .005 .103 .054 .010

-.5 50 .232 .174 .098 .093 .042 .006 .181 .120 .048 .096 .047 .010
100 .134 .083 .033 .097 .045 .011 .118 .064 .014 .098 .048 .008
200 .097 .047 .013 .105 .050 .012 .079 .039 .008 .102 .052 .011
500 .070 .035 .006 .102 .052 .009 .061 .028 .005 .102 .049 .011

Normal Mixture Error
.5 50 .196 .139 .072 .081 .037 .004 .168 .106 .044 .092 .047 .008

100 .121 .070 .025 .087 .040 .008 .107 .057 .017 .096 .053 .012
200 .084 .043 .011 .092 .046 .006 .082 .044 .010 .101 .052 .013
500 .071 .035 .008 .099 .052 .012 .070 .036 .009 .097 .046 .014

0 50 .212 .151 .080 .087 .042 .005 .167 .110 .044 .089 .045 .010
100 .131 .076 .028 .089 .041 .009 .105 .054 .015 .097 .046 .011
200 .085 .046 .011 .095 .046 .008 .078 .039 .009 .100 .047 .012
500 .071 .036 .007 .097 .050 .010 .064 .032 .006 .104 .054 .012

-.5 50 .226 .164 .090 .093 .040 .006 .197 .131 .057 .104 .056 .013
100 .140 .083 .030 .094 .043 .009 .126 .073 .023 .104 .055 .013
200 .094 .050 .013 .102 .051 .010 .086 .048 .013 .103 .055 .014
500 .073 .038 .009 .101 .051 .012 .074 .034 .005 .102 .055 .011

Log-normal Error
.5 50 .150 .102 .046 .083 .038 .006 .169 .108 .044 .092 .048 .010

100 .115 .075 .035 .091 .044 .010 .106 .058 .015 .098 .051 .010
200 .109 .067 .027 .095 .046 .009 .073 .036 .008 .090 .046 .010
500 .089 .050 .016 .100 .049 .011 .064 .032 .006 .104 .052 .012

0 50 .217 .160 .090 .082 .041 .009 .179 .118 .045 .092 .048 .011
100 .126 .077 .031 .087 .042 .009 .108 .062 .017 .100 .055 .008
200 .101 .055 .015 .103 .048 .010 .074 .035 .007 .095 .044 .008
500 .071 .035 .008 .096 .048 .010 .059 .031 .006 .099 .050 .011

-.5 50 .192 .138 .069 .090 .045 .006 .202 .136 .054 .098 .050 .011
100 .137 .087 .038 .092 .048 .010 .128 .074 .019 .108 .057 .010
200 .094 .045 .014 .101 .048 .011 .081 .041 .008 .099 .049 .009
500 .078 .040 .010 .102 .051 .010 .064 .030 .005 .105 .050 .012
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Table 3b. Empirical Sizes of Tests for Temporal Homogeneity in Panel SLE Model
One-Way Fixed Effects, Queen Contiguity, λ = −0.5.

T = 3 T = 6
ρ n TSLE1 T r

SLE1 TSLE1 T r
SLE1

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .190 .131 .058 .088 .037 .007 .167 .102 .036 .088 .042 .010
100 .116 .068 .022 .093 .044 .009 .098 .050 .013 .091 .044 .007
200 .079 .042 .009 .094 .046 .007 .078 .040 .010 .100 .050 .012
500 .071 .033 .007 .101 .050 .009 .060 .029 .005 .102 .053 .009

0 50 .209 .149 .073 .091 .040 .006 .169 .104 .040 .094 .043 .010
100 .125 .073 .027 .099 .050 .011 .102 .056 .013 .093 .047 .006
200 .084 .043 .010 .098 .048 .010 .079 .040 .008 .104 .051 .010
500 .072 .033 .007 .103 .050 .011 .059 .029 .005 .096 .054 .010

-.5 50 .225 .162 .085 .095 .040 .006 .172 .111 .044 .094 .043 .010
100 .131 .081 .031 .101 .050 .011 .109 .059 .013 .099 .047 .008
200 .089 .044 .013 .105 .049 .011 .082 .039 .009 .104 .052 .010
500 .069 .032 .007 .100 .049 .010 .057 .030 .005 .096 .049 .012

Normal Mixture Error
.5 50 .187 .129 .061 .079 .034 .004 .176 .111 .043 .092 .047 .008

100 .111 .068 .022 .086 .042 .008 .105 .054 .016 .097 .051 .013
200 .083 .044 .009 .091 .047 .006 .085 .046 .010 .102 .056 .012
500 .072 .033 .008 .102 .049 .011 .074 .036 .008 .099 .053 .010

0 50 .200 .140 .071 .086 .039 .006 .166 .105 .041 .090 .047 .010
100 .126 .074 .027 .092 .042 .009 .103 .056 .016 .095 .049 .011
200 .079 .045 .009 .095 .047 .008 .076 .041 .010 .098 .050 .012
500 .071 .035 .008 .100 .049 .010 .064 .031 .007 .101 .050 .012

-.5 50 .218 .156 .080 .088 .041 .007 .191 .124 .052 .100 .054 .013
100 .136 .079 .031 .096 .045 .008 .119 .068 .021 .105 .055 .013
200 .087 .048 .013 .098 .048 .009 .088 .048 .014 .106 .057 .014
500 .073 .037 .009 .103 .053 .011 .075 .034 .007 .104 .053 .011

Log-normal Error
.5 50 .175 .125 .063 .084 .036 .009 .174 .110 .043 .092 .046 .010

100 .138 .087 .038 .089 .042 .010 .099 .055 .016 .098 .050 .011
200 .096 .048 .014 .096 .045 .008 .075 .037 .008 .098 .046 .011
500 .075 .038 .009 .101 .052 .011 .066 .028 .006 .100 .053 .013

0 50 .207 .145 .081 .086 .042 .011 .173 .111 .044 .093 .046 .010
100 .122 .078 .029 .090 .044 .009 .105 .056 .013 .096 .048 .009
200 .091 .047 .010 .095 .047 .008 .076 .037 .007 .099 .046 .009
500 .071 .035 .008 .099 .049 .011 .057 .027 .006 .101 .047 .011

-.5 50 .201 .138 .072 .093 .043 .008 .191 .125 .051 .097 .049 .012
100 .141 .092 .039 .096 .048 .010 .118 .067 .017 .104 .053 .010
200 .089 .045 .012 .104 .050 .009 .084 .041 .008 .104 .051 .010
500 .072 .034 .007 .104 .049 .010 .062 .029 .006 .103 .046 .012
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Table 4a. Empirical Sizes of Tests for Temporal Homogeneity in Panel SLE Model
Two-Way Fixed Effects, Queen Contiguity, λ = 0.5.

T = 3 T = 6
ρ n TSLE2 T r

SLE2 TSLE2 T r
SLE2

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .235 .181 .105 .083 .038 .006 .310 .226 .115 .087 .044 .008
100 .212 .151 .086 .093 .045 .008 .190 .111 .036 .090 .041 .007
200 .182 .121 .054 .098 .044 .006 .139 .079 .021 .101 .049 .011
500 .134 .073 .022 .100 .048 .010 .121 .064 .014 .102 .055 .009

0 50 .272 .208 .117 .088 .043 .007 .314 .224 .111 .094 .045 .010
100 .217 .143 .070 .094 .046 .011 .197 .116 .036 .093 .043 .008
200 .161 .097 .032 .100 .051 .008 .142 .083 .022 .103 .050 .011
500 .125 .065 .017 .105 .049 .011 .119 .064 .014 .102 .053 .010

-.5 50 .302 .233 .136 .094 .042 .005 .321 .239 .114 .092 .045 .009
100 .209 .142 .062 .095 .046 .011 .205 .128 .042 .096 .047 .009
200 .153 .090 .029 .102 .050 .009 .151 .081 .023 .098 .052 .010
500 .119 .064 .015 .102 .054 .009 .115 .061 .014 .103 .051 .010

Normal Mixture Error
.5 50 .221 .159 .090 .083 .037 .004 .315 .242 .127 .090 .044 .008

100 .212 .154 .085 .085 .044 .008 .201 .128 .050 .097 .053 .010
200 .183 .122 .059 .092 .046 .008 .150 .090 .029 .101 .052 .009
500 .137 .082 .028 .100 .053 .012 .139 .079 .022 .100 .053 .010

0 50 .269 .201 .114 .089 .043 .005 .315 .235 .124 .092 .052 .012
100 .212 .149 .075 .089 .045 .009 .189 .118 .043 .096 .047 .010
200 .158 .098 .033 .096 .048 .008 .143 .078 .025 .099 .050 .013
500 .121 .070 .016 .099 .050 .010 .120 .063 .016 .102 .053 .012

-.5 50 .285 .225 .137 .093 .046 .008 .380 .286 .164 .103 .056 .011
100 .229 .161 .083 .100 .047 .010 .229 .152 .061 .108 .060 .012
200 .166 .102 .036 .101 .053 .009 .176 .106 .034 .104 .058 .012
500 .132 .070 .018 .106 .054 .012 .136 .075 .020 .097 .050 .010

Log-normal Error
.5 50 .239 .181 .105 .085 .039 .006 .314 .232 .123 .091 .043 .008

100 .222 .154 .086 .090 .043 .007 .196 .117 .041 .095 .047 .009
200 .185 .126 .056 .096 .047 .008 .138 .079 .020 .097 .047 .009
500 .138 .074 .024 .102 .049 .011 .123 .064 .016 .105 .052 .010

0 50 .246 .188 .108 .085 .042 .010 .319 .235 .115 .095 .047 .011
100 .204 .141 .074 .090 .045 .007 .194 .115 .040 .095 .051 .008
200 .180 .114 .047 .095 .047 .009 .142 .076 .021 .095 .048 .009
500 .129 .075 .022 .097 .048 .010 .115 .060 .014 .100 .050 .011

-.5 50 .300 .235 .146 .093 .044 .008 .344 .246 .126 .097 .050 .011
100 .214 .145 .064 .094 .045 .010 .208 .133 .050 .101 .055 .010
200 .156 .092 .028 .099 .046 .008 .154 .086 .023 .101 .049 .011
500 .123 .066 .015 .104 .051 .010 .121 .061 .014 .102 .050 .010
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Table 4b. Empirical Sizes of Tests for Temporal Homogeneity in Panel SLE Model
Two-Way Fixed Effects, Queen Contiguity, λ = −0.5.

T = 3 T = 6
ρ n TSLE2 T r

SLE2 TSLE2 T r
SLE2

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .235 .173 .105 .086 .039 .007 .313 .225 .117 .089 .044 .009
100 .216 .158 .086 .093 .046 .009 .189 .113 .037 .088 .044 .006
200 .180 .117 .054 .093 .047 .007 .143 .079 .023 .100 .049 .012
500 .134 .076 .021 .103 .048 .010 .118 .062 .014 .100 .053 .010

0 50 .271 .206 .116 .089 .040 .007 .315 .226 .109 .093 .044 .009
100 .220 .149 .072 .098 .048 .011 .197 .115 .038 .092 .047 .008
200 .160 .096 .032 .100 .051 .009 .146 .085 .024 .104 .052 .011
500 .127 .062 .017 .103 .049 .011 .111 .059 .015 .094 .050 .010

-.5 50 .301 .233 .130 .095 .038 .007 .325 .232 .112 .092 .044 .009
100 .214 .146 .065 .101 .048 .011 .206 .127 .039 .096 .046 .008
200 .158 .092 .029 .103 .050 .011 .152 .087 .022 .102 .053 .010
500 .117 .065 .014 .100 .050 .010 .111 .057 .013 .096 .048 .011

Normal Mixture Error
.5 50 .220 .161 .088 .080 .035 .005 .316 .243 .129 .093 .047 .009

100 .213 .153 .085 .088 .043 .009 .204 .129 .048 .103 .051 .012
200 .182 .121 .059 .096 .047 .006 .153 .089 .032 .106 .058 .013
500 .139 .083 .030 .104 .049 .010 .137 .080 .022 .101 .051 .010

0 50 .256 .194 .113 .084 .043 .006 .321 .242 .124 .093 .049 .011
100 .214 .151 .079 .091 .046 .008 .189 .121 .042 .098 .046 .011
200 .155 .100 .033 .097 .048 .009 .146 .079 .028 .095 .051 .013
500 .124 .068 .018 .099 .049 .011 .118 .064 .017 .102 .053 .012

-.5 50 .279 .219 .138 .089 .043 .007 .378 .288 .162 .111 .059 .016
100 .232 .157 .082 .097 .049 .010 .234 .151 .058 .110 .057 .013
200 .166 .103 .035 .102 .050 .010 .170 .104 .035 .106 .052 .014
500 .128 .072 .019 .103 .054 .011 .134 .078 .018 .098 .047 .010

Log-normal Error
.5 50 .230 .178 .105 .086 .039 .008 .317 .232 .125 .089 .043 .009

100 .218 .156 .087 .093 .045 .008 .197 .116 .042 .093 .049 .009
200 .184 .122 .055 .093 .044 .008 .143 .080 .022 .100 .047 .010
500 .139 .077 .024 .101 .052 .010 .119 .063 .015 .102 .053 .011

0 50 .242 .184 .107 .087 .043 .011 .315 .230 .113 .095 .046 .010
100 .202 .142 .074 .091 .043 .010 .196 .115 .039 .093 .047 .008
200 .176 .114 .046 .098 .046 .010 .141 .082 .023 .099 .049 .010
500 .128 .074 .024 .098 .050 .011 .110 .055 .013 .102 .050 .010

-.5 50 .298 .230 .138 .095 .042 .008 .332 .245 .127 .097 .050 .010
100 .220 .146 .067 .100 .045 .011 .212 .129 .048 .100 .052 .010
200 .156 .092 .029 .100 .046 .009 .154 .089 .022 .105 .051 .011
500 .123 .065 .015 .104 .051 .009 .115 .060 .015 .100 .048 .011
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