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Regional Prevalence of Health Worker Absenteeism in Tanzania 
 

ABSTRACT 

Absenteeism of health workers in developing countries is common and can severely undermine 

the reliability of health system. Therefore, it is important to understand where the prevalence 

of absenteeism is high. We develop a simple imputation method that combines a Service 

Delivery Indicators survey and a Service Provision Assessment survey to estimate the 

prevalence of absenteeism of health workers at the level of regions in Tanzania. The resulting 

estimates allow one to identify the regions in which the prevalence of absenteeism is 

significantly higher or lower than the national average and help policymakers determine the 

priority areas for intervention. 

 

Keywords: Sub-Saharan Africa, primary health facility, imputation, random-effects probit, 

service delivery indicator 

 

1 Introduction 

Despite the healthy economic growth witnessed in recent decades, many parts of sub-Saharan 

Africa continue to face various development challenges, among which is the lack of access to 

good and affordable healthcare services. This issue has indeed been well recognized and 

government spending has more than doubled and development assistance for health has more 

than quadrupled since the 1990s in Africa. While increased health spending may have raised 

the quantity and quality of health equipments, facilities and workers, it has not been matched 

with improvements in the delivery of healthcare services. One important issue is the 

absenteeism of health workers, which is prevalent in developing countries (Chaudhury et al., 

2006). 

  Absenteeism of health workers is a serious issue because it severely undermines the 

reliability of the health system and potentially negatively affects health behaviors and 

outcomes of the public. For example, Glodstein et al. (2013) find that nurse absence on a 

patient’s first visit significantly reduces the probability of getting a HIV test over her entire 

pregnancy in West Kenya.  

It is important to recognize that the causes of absenteeism are diverse (Belita et al., 

2013) and low income levels do not necessarily translate into a high level of absenteeism as 

shown in the case of Laos (Yamada et al., 2012). While the lack of adequate incentives and 

monitoring is often deemed an important cause of prevalent absenteeism among health workers, 

monitoring and incentive schemes may not work well in the long run if they can be manipulated 

from the inside, as demonstrated by Banerjee et al. (2008) in a field experiment in India.  

The preceding discussion indicates that there is unlikely to be a panacea for the 

absenteeism of health workers. Nevertheless, it is important to know which regions of the 
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country have high prevalence of absenteeism. This is because the efforts to curb absenteeism 

are most likely to be fruitful in geographic areas where the issue of absenteeism is most severe, 

even if different areas may require different kinds of efforts. 

In reality, however, policymakers typically have little, if any, information on 

absenteeism. Even if any data on absenteeism are available, such information is often 

aggregated to the country level, which is at best useful for comparisons across countries or over 

time. This study proposes a simple method to enable within-country comparison of the 

prevalence of absenteeism by combining the following two data sources: Service Delivery 

Indicator (SDI) survey and Service Provision Assessment (SPA) survey, both of which are 

becoming increasingly available in sub-Saharan Africa. 

 

2 Data 

The first data source is the first round of SDI survey in Tanzania conducted in 2010 (World 

Bank, 2012). The SDI surveys, which have been conducted in a number of sub-Saharan African 

countries, collect information for assessing the performance of health clinics (and schools) in 

Africa from the perspective of citizens accessing a service. The survey data typically include 

the characteristics of health workers, the availability of certain essential drugs, medical 

equipments, infrastructure of health facility, and information on absenteeism based on 

unannounced visits. The SDI data used in this study include 175 primary health facilities in 

Mainland Tanzania. However, some of the regions are not covered in the data such that it is 

not possible to directly disaggregate the survey estimates of the prevalence of absenteeism to 

the regional level. 

  Our second data source is the Tanzania Service Provision Assessment Survey 2006 

(National Bureau of Statistics and Macro International, 2007). The SPA surveys, which are 

conducted as a part of the Demographic and Health Survey, are nationally representative 

sample surveys of formal sector health facilities drawn from all regions by two-stage random 

sampling and cover about 10 percent of all health facilities in Mainland Tanzania.1 The SPA 

data contain an array of observations on health facility and health workers, some of the 

questions covered, such as the availability of certain drugs and infrastructure and demographic 

characteristics of health workers, appear to be comparable to those in the SDI surveys. As such, 

we can combine these two surveys and make comparisons of the outcome of interest—which 

is the prevalence of absenteeism in this paper—at a disaggregated level, because the standard 

sample size of a SPA survey is larger than that of a SDI survey. While SPA surveys cover 

various types of health facilities, we only use the information of health workers in primary 

health facilities to match the coverage of the SDI survey. 

 

                                                        
1 It also covers 36 percent of all health facilities in Zanzibar, but since SDI survey does not cover the health 
facilities in Zanzibar, we will not use the observations from Zanzibar. 
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3 Methodology 

We impute the indicator of absenteeism from the SDI data into the SPA data. Our method is 

built on the small-area estimation by Elbers et al. (2002, 2003), in which the individual welfare 

indicator of interest is repeatedly imputed at the household level and then aggregated up to 

small areas to obtain point estimates and standard errors. We use a similar method, but because 

we are only interested in the prevalence of absenteeism, we use a binary regression model with 

random effects instead of a linear regression. It should be also noted that, even when we do not 

need to disaggregate the estimates of the prevalence of absenteeism, combining the SDI data 

with the SPA data (or any data that are larger than the SDI data) potentially has an advantage 

from the perspective of efficiency, because the means estimated with imputed values can be 

more accurate (i.e., have lower standard errors) than the mean directly computed from the 

sample (Matloff (1981) and Fujii and van der Weide (2013)). 

Specifically, we consider the following random-effects probit model: 

 𝑦௖௜ = 𝟏(𝑥௖௜
் 𝛽 + 𝜂௖ + 𝜀௖௜ > 0), (1) 

where 𝑦௖௜  is the binary outcome variable of interest for individual 𝑖 in cluster 𝑐 and 𝑥௖௜  the 

vector of covariates, where an individual and a cluster respectively represent a health worker 

and a health facility in our application. The cluster- and individual-specific random effects 

terms, 𝜂௖  and 𝜀௖௜ , are assumed to be orthogonal to each other and normally distributed with the 

variances of 𝜎ఎ
ଶ  and unity (by normalization), respectively. We use maximum-likelihood 

estimation to obtain the point estimates of 𝛽 and ln 𝜎ఎ
ଶ  and their variance-covariance matrix.  

We then repeatedly impute the outcome variable into the SPA records using a simulation 

technique similar to Elbers et al. (2002, 2003), but we bootstrap the SPA sample in two stages 

in each round of the simulation to take into account the sampling design. Following the 

approach taken by Elbers et al. (2014), we replicate each observation in the bootstrapped SPA 

sample by the facility weight in each round of simulation to represent the whole mainland 

Tanzania. As a result, we have an imputation sample for each round of simulation. 

Now, let us consider a specific round 𝑡(∈ [1, ⋯ , 𝑇])  of the simulation, where 𝑇 is the total 

rounds of simulation. We draw the simulated parameter 𝛽෨(௧) and ln൫𝜎෤ఎ
(௧)

൯
ଶ
 from a joint normal 

distribution with the estimated mean and variance-covariance matrix. The simulated error 

terms 𝜂෤௖
(௧) [𝜀௖̃௜

(௧)
] are drawn from a normal distribution with the variance of 𝜎෤ఎ

(௧) [one] for each 

cluster [individual] in each round. With these draws, we obtain the imputed outcome 𝑦෤௖௜
(௧) for 

each individual in the imputation sample for round 𝑡 by replacing 𝑦௖௜, 𝛽, 𝜂௖, and 𝜀௖௜  with 𝑦෤௖௜
(௧), 

𝛽෨(௧), 𝜂෤௖
(௧), and 𝜀௖̃௜

(௧) in eq. (1). By taking an average of 𝑦෤௖௜
(௧) within region 𝑅, we obtain a region-

level mean outcome 𝑌෨ோ
(௧) for region 𝑅 in round 𝑡. The point estimate 𝑌෠ோ for region 𝑅 is given 

by the mean of 𝑌෨ோ
(௧) over 𝑡 and its standard error 𝑠. 𝑒. (𝑌෠ோ) by the standard deviation of 𝑌෨ோ

(௧) 

over 𝑡. The lower bound (p5) and upper bound (p95) of 90-percent confident interval as well as 

the estimate of the median (p50) are also produced from the corresponding percentiles of 𝑌෨ோ
(௧) 

with respect to 𝑡. 
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4 Results 

We run a random-effects probit regression of the indicator variable for the absence from health 

facility where the random effects are included at the level of health facilities. The regression 

results are reported in Table 1. It should be noted that our measure of absenteeism only takes 

into account whether the health worker was present at the health facility. Therefore, those 

health workers who are absent for a “legitimate” reason such as training will be still counted 

as being absent. On the other hand, those health workers who are at the health facility will be 

counted as being present whether or not they are seriously working.  

As with Elbers et al. (2002, 2003), our estimates are used for imputation and not for 

causal inferences. Thus, we are not intrinsically interested in the regression results. 

Nevertheless, a few points are worth mentioning about them.  First, somewhat surprisingly, the 

prevalence of absenteeism tends to be higher in facilities that have electricity, toilet, and 

sphygmomanometer. This may be a reflection of better training opportunities in better 

equipped facilities. Second, the table also shows that older male workers tend to be more likely 

to be absent, which is in line with the findings of existing literature. Third, the table also shows 

that there is a significant spatial heterogeneity in the prevalence of absenteeism, which 

motivates our study.  

Finally, Table 1 also shows that the variance 𝜎ఎ
ଶ  of 𝜂  is small. In fact, the null 

hypothesis that the intracluster correlation is equal to zero cannot be rejected by a likelihood-

ratio test. Therefore, we will subsequently discuss the consequence of using a standard probit 

model, which corresponds to the case where 𝜎ఎ
ଶ is dropped from eq. (1) such that the error 

terms are independent across individuals. Nevertheless, because the cluster-specific random 

effects do not cancel out as quickly as the individual-specific random effects through 

aggregation, we allow 𝜎ఎ
ଶ to be strictly positive in our main analysis to produce conservative 

standard errors. 

Based on the regression estimates reported in Table 1, we randomly draw the relevant 

parameters and error terms for 2,000 rounds of simulation and aggregate up to the level of 21 

regions in Mainland Tanzania as reported in Table 2. This table shows that the following 

regions have relatively low prevalence of absenteeism: Dodoma, Mtwadra, Ruvuma, Iringa, 

Mbeya, Singida, Tabora, and Rukwa. In particular, the Iringa, Mbeya, Singida, and Tabora 

regions have significantly lower prevalence of absenteeism than the national average at a 5 

percent significance level using the imputed estimates (see also Table 3). On the other hand, 

the following regions have a relatively high absence rate: Kigoma, Shinyanga, Kagera, 

Mwanza, and Mara. In fact, all of these regions have a significantly higher absence rate than 

the national average at a 5 percent level. 
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Table 1: Random-effects probit regression of the indicator for the absence of health workers. 

Variable Mean Coef  (s.e.) 
Health facility has electricity 0.705 0.237 ** (0.118) 
Health facility has toilet 0.927 0.321  (0.217) 
Health facility has a sphygmomanometer 0.896 0.754 *** (0.196) 
Age of the health worker 42.22 -0.012 ** (0.006) 
Female health worker 0.734 -0.089  (0.113) 
Coastal Zone 0.322 0.283 * (0.146) 
Northern Zone 0.173 0.306 * (0.171) 
Lake Zone 0.257 0.738 *** (0.148) 
Constant  -1.594 *** (0.397) 

Source: Tanzania SDI Survey. 
Note: Number of observations is 773. Number of clusters is 173. The point estimate 
and standard error of 𝜎ఎ  are 0.116 and 0.166, respectively. *, **, and *** denote a 
statistical significance at 10, 5, and 1 percent levels, respectively. P-value for the 
likelihood ratio test of zero intracluster correlation (H0 : 𝜎ఎ

ଶ/(1 + 𝜎ఎ
ଶ) = 0) is 0.357. 

Southern Highland and Central Zones are the base category for geographic zones.  
 

 

Table 2: Estimates of the prevalence of absenteeism of health workers. 

Region   Mean   (s.e.)   𝑝ହ   𝑝ହ଴   𝑝ଽହ  
Dodoma  17.24 (4.77) 11.54 16.43 25.61 
Arusha  24.73 (4.94) 17.71 24.16 33.76 
Kilimanjaro  25.77 (5.02) 18.48 25.33 34.88 
Tanga  20.84 (4.99) 14.03 20.19 29.96 
Morogoro  26.18 (4.29) 20.38 25.79 33.67 
Pwani  23.61 (4.55) 17.57 23.04 31.70 
Dar Es Salaam  23.16 (4.46) 17.34 22.52 31.08 
Lindi  21.97 (5.00) 15.05 21.35 30.89 
Mtwara  17.77 (4.85) 11.99 16.95 26.55 
Ruvuma  18.62 (4.64) 12.71 17.96 26.46 
Iringa  16.51 (4.64) 10.86 15.73 24.41 
Mbeya  16.83 (4.53) 11.45 16.06 24.53 
Singida  14.76 (4.87)   9.10 14.03 23.20 
Tabora  15.33 (4.70)   9.88 14.46 23.61 
Rukwa  18.88 (4.66) 12.91 18.24 27.56 
Kigoma  40.11 (4.27) 33.14 40.12 47.05 
Shinyanga  32.60 (4.04) 26.37 32.35 39.46 
Kagera  36.78 (3.89) 30.44 36.79 43.14 
Mwanza  33.21 (4.02) 27.04 32.95 40.06 
Mara  37.66 (4.00) 31.24 37.52 44.26 
Manyara  27.10 (5.23) 19.15 26.73 36.43 
Source: Tanzania SDI Survey and TSPA Survey, 2006.  
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Table 3: Estimates of the prevalence of absenteeism of health workers by zones. 

Estimation (1) Survey only  (2) Imputation 

Zone Mean (s.e.)  Mean (s.e.) 

Coastal Zone 26.95 (2.88)  23.20 (4.23) 

Southern Highland Zone 16.84 (3.74)  17.54 (4.39) 

Northern Zone 23.56 (4.52)  24.75 (4.77) 

Lake Zone 36.96 (3.39)  35.31 (3.62) 

Central Zone 19.31 (5.16)  15.86 (4.59) 

Mainland Tanzania 26.68 (1.77)  24.74 (3.27) 

Source: Tanzania SDI Survey and TSPA Survey, 2006. 
 

While the estimates reported in Table 2 are useful for identifying the regions in which 

the prevalence of absenteeism is high, there may be some concerns about the reliability of such 

estimates.  In particular, our method rests on the assumption that the model parameters 

estimated with the SDI survey is applicable to the SPA survey. This assumption may be 

questionable, because there is a gap of four years between the two surveys. 

Even though it is not possible for us to prove or disprove this assumption, it is possible 

to establish the plausibility of our results by comparing at an aggregated level the estimates 

directly estimated from the SDI survey and the ones based on the imputation described in 

Section 3. In Table 3, we report the point estimates and standard errors for the former [latter] 

estimates in column (1) [column (2)] at the level of five zones. As the comparison between the 

two columns indicates, the differences in the point estimates can be attributed to statistical 

errors. Therefore, the impuation-based estimates in Table 2 are consistent with the aggregate 

estimates derived only from the SDI survey. 

 

5 Discussion 

In this paper, we developed an imputation method and applied to the estimation of the 

prevalence of absenteeism for health workers in Tanzania by combining SDI and SPA surveys. 

We chose to present the results based on the cluster errors to be conservative. However, it 

should be reiterated that we could not reject the null hypothesis of zero intracluster correlation. 

Therefore, it is not unreasonable to drop the cluster-specific random-effects term. When we do 

so, the standard errors for regional estimates generally become smaller by around 1-2 

percentage points, which makes the accuracy of the regional estimates comparable to  the 

survey-only estimates at the zone level.2 The point estimates in this case remain similar to those 

reported in Table 2. 

While our conservative standard errors for regional-level estimates in Table 2 are somewhat 

large, we are able to identify regions that are well above and below the national average. 

                                                        
2 Detailed results are available upon request. 



 

7 
 

 

Therefore, our results provide useful estimates of the prevalence of absenteeism of health 

workers in Tanzania, which policymakers can use to prioritize the geographic areas for policy 

intervention.  

Since our method does not rely on any Tanzania-specific context, it is readily applicable to 

the absenteeism of health workers in other countries with SDI and SPA data. Further, since our 

method is sufficiently general, it can also be readily used for other binary outcome indicators 

of interest. 
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