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On Factor Models with Random Missing: EM Estimation,

Inference, and Cross Validation ∗

Liangjun Su, Ke Miao, and Sainan Jin

School of Economics, Singapore Management University

January 15, 2019

Abstract

We consider the estimation and inference in approximate factor models with random missing

values. We show that with the low rank structure of the common component, we can estimate the

factors and factor loadings consistently with the missing values replaced by zeros. We establish

the asymptotic distributions of the resulting estimators and those based on the EM algorithm. We

also propose a cross-validation-based method to determine the number of factors in factor models

with or without missing values and justify its consistency. Simulations demonstrate that our cross

validation method is robust to fat tails in the error distribution and significantly outperforms some

existing popular methods in terms of correct percentage in determining the number of factors.

An application to the factor-augmented regression models shows that a proper treatment of the

missing values can improve the out-of-sample forecast of some macroeconomic variables.

JEL Classification: C23, C33, C38; C55

Key Words: Cross-validation; Expectation-Maximization (EM) algorithm; Factor models; Ma-

trix completion; Missing at random; Principal component analysis; Singular value decomposition

1 Introduction

Since the seminal work of Geweke (1977), Sargent and Sims (1977), Chamberlain and Rothschild

(1983), factor models have been widely used in economics and finance. Some important theoretical

contributions include Stock and Watson (1998), Forni et al. (2000), Bai and Ng (2002), Bai (2003),

∗Su acknowledges the funding support provided by the Lee Kong Chian Fund for Excellence. Address Correspondence

to: Liangjun Su, School of Economics, Singapore Management University, 90 Stamford Road, Singapore 178903; E-mail:

ljsu@smu.edu.sg, Phone: +65 6828 0386.
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Hallin and Líska (2007), Onatski (2009, 2010, 2012), and Ahn and Horenstein (2013), among others.

Nevertheless, all these authors assume a balanced panel in their asymptotic analyses.

Empirical data typically contain a variety of irregularities, including occasionally missing obser-

vations, unbalanced panel, and mixed frequency (e.g., monthly and quarterly) data. One simple way

to handle missing data is to omit the cross-sectional units with missing values; see, e.g., Ludvigson

and Ng (2007). But this will result in effi ciency loss that can be substantial in some applications.

To handle the missing data problem in factor models effectively, two methods have been proposed:

the expectation-maximization (EM) algorithm and the Kalman filter (KF). These two methods have

been widely used to handle missing data for principal component (PC) estimation with missing data

and state space estimation with missing data. The details on how missing data are handled differ a

lot in PC and state space applications. For the PC estimation with missing data, Stock and Watson

(2002) propose an iterative method based on the EM algorithm that has proved to be easy and effec-

tive. Schumacher and Breitung (2008) apply Stock and Watson’s methodology to nowcast German

gross domestic product (GDP).

The state space framework has been adapted to missing data by either allowing the measurement

equation to vary depending on what data are available at a given time point or keeping the dimension

of the measurement equation to be the same over time by including a proxy value for the missing

observation while adjusting the model parameters so that the Kalman filter places no weights on the

missing observation. See Giannone et al. (2008), Mariano and Murasawa (2010), Doz et al. (2011),

Jungbacker et al. (2011), Pinheiro et al. (2013), Bańbura and Modugno (2014), and Marcellino and

Sivec (2016) for variations on this latter approach. In particular, Giannone et al. (2008) propose

a two-step procedure that is able to solve the “ragged edge” problem in an approximate factor

model when data are observed at different frequencies. They estimate the model by PC analysis

with truncated balanced panel in the first step and update the estimates of factors by the KF with

unbalanced panel data in the second step. Doz et al. (2011) show the consistency of the two-step

estimators but do not have any asymptotic distributional results. Jungbacker et al. (2011) propose

a new state space formulation of the factor model and apply the KF to estimate the underlying

parameters with computational effi ciency when the observations are missing at random. In view

of the fact that it is not straightforward to apply Giannone et al.’s (2008) methodology to mixed

frequency datasets with series of different lengths or, in general, to any pattern of missing data,

Bańbura and Modugno (2014) propose a modified EM algorithm to allow for an arbitrary pattern

of missing data where the KF is incorporated to estimate the factors in the maximization-step. A

drawback of their approach is that for large cross-sections, the dimension of the augmented state

vector becomes very large, which leads to computational ineffi ciency. Pinheiro et al. (2013) also
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propose an EM algorithm to estimate a dynamic factor model for panel data sets with jagged edge

without significantly increasing the computation time relative to the balanced panel case. In addition,

Foroni and Marcellino (2013) survey methods for handling mixed-frequency data, including dynamic

factor models and alternative approaches; Stock and Watson (2016) summarize the advantage and

disadvantage of the state space estimation for factor models with missing observations; Athey et al.

(2018) develop new methods for estimating causal effects in panel data with missing values based on

matrix completion methods.

Despite the popularity of the EM algorithm and the KF method in empirical researches, the

asymptotic properties of the resulting estimators have been rarely studied. To the best of our

knowledge, there is no formal study of the asymptotic properties for the EM estimators of the factors

and factor loadings for the PC estimation with missing observations. For the KF estimators, Doz et

al. (2011) prove the consistency but not the asymptotic normality.

In this paper we consider the EM estimation of approximate factor models with missing observa-

tions. For simplicity, we focus on the case where the missing occurs at random and remark in the end

on the other forms of missing. As Stock and Watson (2016) remark, all the procedures in common

use adopt the assumption that the data are missing at random, that is, whether a datum is missing is

independent of the latent variables, and the missing-at-random assumption arguably is a reasonable

assumption for the main sources of missing data in dynamic factor models in most macroeconomic

applications to date. In the case of random missing, we draw support from the literature on matrix

completion in computer science. It is well known that the low rank matrix such as the common

component matrix in factor models can be recovered in the presence of missing observations when

the noise matrix exhibit certain sparsity feature; see Cai et al. (2010), Candès and Plan (2010) and

Candès and Li (2011). We show that similar phenomenon occurs when the noise matrix does not

have any sparsity feature but lower order spectral norm than the common component matrix. In

computation, we can simply replace the missing observations by zeros and conduct the usual PC

analysis for a scaled version of the data matrix where the scale is determined by the percentage of

observed values in the data. We show that the resulting estimators of factors, factor loadings, and

common components are consistent but not asymptotically normal in general. Following the EM

algorithm, we replace the missing observations by such initial estimators of the common components

and obtain updated PC estimators. This procedure can be iterated until convergence. We show that

the final estimators of the factors, factor loadings, and PCs are asymptotically more effi cient than

the initial estimators. We also characterize the effi ciency loss for such EM estimators relative to the

PC estimators without missing observations.

In some sense, the pure approximate factor model possesses the “self-fulfilling”property in that
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one does not need to observe all values in the data matrix in order to estimate the factors, factor

loadings and common components and the missing values can be well recovered from the observed

data. Such a self-fulfilling property motivates us to propose a novel method to determine the number

of pervasive factors in approximate factor models no matter whether the original data contains

missing observations or not. Our key insight is that we can draw each observation at random with

probability p to construct the pseudo-data matrix with missing values. The original data are then

divided into two sets, with one set containing the training observations used for the PC estimation for

any prescribed number of factors (say, R) and the other set containing the held-out entries used for

the out-of-sample evaluation. Then we can construct a cross-validation (CV) objective function that

is indexed by R and choose R to minimize it. We show that this procedure consistently estimates

the number of true factors. The finite sample performance of this procedure can be improved via

iterations and some design for stability selection (e.g., Meinshausen and Bühlmann (2010)). Monte

carlo simulations indicate that our new estimator of the number of factors significantly outperforms

some existing popular estimators including those based on either information criterion (Bai and Ng

(2002)), or eigenvalue distribution function (Onatski (2010)), or eigenvalue/growth ratio (Ahn and

Horenstein (2013)). Moreover, our simulations also demonstrate that our new estimators are robust

to fat tails in the error terms.

The paper is organized as follows. Section 2 introduces the EM estimators of factor models with

random missing and their asymptotic properties. Section 3 proposes a novel method to determine

the number of factors in approximate factor models. In Section 4, we report the Monte Carlo

simulation results for our EM estimators of the factors, factor loadings and common components,

and compare our method for the determination of the number of factors with the methods of Bai

and Ng (2002), Onatski (2010), and Ahn and Horenstein (2013). In Section 5, we apply our method

to an empirical application and show that it helps the out-of-sample forecasts based on factor-

augmented regressions. Final remarks are contained in Section 6. The proofs of the results in

Sections 2 and 3 are respectively relegated to Appendix A (in the main paper) and Appendix B

(in the online supplement). The proofs of the technical lemmas in Appendix A along with some

additional simulation results can be found in the additional online supplement that is available at

http://www.mysmu.edu/faculty/ljsu/Publications/Factor_Missing19.pdf.

NOTATION. For an m× n real matrix A, we denote its transpose as A′, its entrywise L∞ norm

as ‖A‖∞ (≡ maxi,t |Ait|), its Frobenius norm as ‖A‖ (≡ [tr(AA′)]1/2), its spectral norm as ‖A‖sp
(≡

√
µ1 (A′A)) and its Moore-Penrose generalized inverse as A+, where ≡ means “is defined as”

and µs (·) denotes the sth largest eigenvalue of a real symmetric matrix by counting eigenvalues of
multiplicity multiple times. Note that the two norms are equal when A is a vector. We will frequently
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use the submultiplicative property of these norms and the fact that ‖A‖sp ≤ ‖A‖ ≤ ‖A‖sprank(A)1/2 .

We also use µmax (B) and µmin (B) to denote the largest and smallest eigenvalues of a symmetric

matrix B, respectively. We use B > 0 to denote that B is positive definite. Let PA ≡ A (A′A)+A′ and

MA ≡ Im − PA, where Im denotes an m×m identity matrix. The operator P→ denotes convergence

in probability, d→ convergence in distribution, and plim probability limit. Let ∨ and ∧ denote
the max and min operators, respectively. E.g., N ∨ T = max (N,T ) . Let [N ] = {1, 2, ..., N} and
[T ] = {1, 2, ..., T} . We use (N,T ) → ∞ to denote that N and T pass to infinity jointly. We let

δNT =
√
N ∧

√
T .

2 Large Dimensional Factor Models with Random Missing

In this section, we consider the PCA estimation of large dimensional models with observations that

are missing at random by assuming the true number of factors is known. We will propose a novel

cross validation method to determine the number of factors in the next section.

2.1 EM Estimation

We consider the following factor model

Xit = λ′iFt + εit, (2.1)

where i = 1, ..., N, t = 1, . . . , T, Ft and λi are R×1 vectors of factors and factor loadings, respectively,

and εit is the idiosyncratic error term. Following the lead of Stock and Watson (2002) and Bai et

al. (2015), we study the estimation of the factors and factor loadings when some of the observations,

Xit, are missing at random. Let X = (X1, ..., XN ) and ε = (ε1, ..., εN ), where Xi ≡ (Xi1, . . . , XiT )′

and εi ≡ (εi1, . . . , εiT )′ for i = 1, ..., N. We can write (2.1) in matrix form:

X = FΛ′ + ε (2.2)

where F = (F1, ..., FT )′ and Λ = (λ1, ..., λN )′.We will use F 0 =
(
F 0

1 , ..., F
0
T

)′ and Λ0 = (λ0
1, ..., λ

0
N )′ to

denote the true values of F and Λ, respectively. Let Ω ⊂ [N ]× [T ] be the index set of the observations

that are observed. That is,

Ω = {(i, t) ∈ [N ]× [T ] : Xit is observed} .

Let G denote a T ×N matrix with (t, i)th element given by git = 1 {(i, t) ∈ Ω} . Under the random
missing mechanism, git’s are independently and identically distributed as Bernoulli(q) with q ∈ (0, 1]

and independent of X, F 0, Λ0 and ε. So the population missing probability is given by 1− q ∈ [0, 1).

Let |Ω| denote the cardinality of the set Ω. It is easy to see that q̃ ≡ |Ω| /(NT ) is a
√
NT -consistent

estimator of q.
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2.1.1 The initial estimates

Let X̃ = X ◦ G and X̃it = Xitgit, where ◦ denotes the Hadamard product. Our key observation is
that the common component

C0 ≡ F 0Λ0′

is a low rank matrix and ε is the noise component. In this case, it is possible to recover C0 even

when a large proportion of elements in the data matrix X are missing at random.

Let E
(

1
q X̃|F

0,Λ0
)
denote the T ×N matrix with a typical element given by E

(
1
q X̃it|F 0

t , λ
0
i

)
.

Under the standard condition that E
(
εit|F 0

t , λ
0
i

)
= 0, we can readily verify that E

(
1
q X̃|F

0,Λ0
)

=

F 0Λ0′. This motivates us to estimate F 0 and Λ0 by minimizing the following least squares objective

function

L0
NT (F,Λ) ≡ 1

NT
tr
[(

1

q̃
X̃ − FΛ′

)(
1

q̃
X̃ − FΛ′

)′]
(2.3)

under the identification restrictions: F ′F/T = IR and Λ′Λ is a diagonal matrix. By concentrating

out Λ and using the normalization that F ′F/T = IR, the above minimization problem is identical

to maximizing 1
q̃2
tr
{
F ′X̃X̃ ′F

}
. The estimated factor matrix, denoted by F̂ (0) is

√
T times the

eigenvectors corresponding to the R largest eigenvalues of the T × T matrix 1
NT q̃2

X̃X̃ ′ :

1

NT q̃2
X̃X̃ ′F̂ (0) = F̂ (0)D̂(0), (2.4)

where D̂(0) is an R × R diagonal matrix consisting of the R largest eigenvalues of
(
NT q̃2

)−1
X̃X̃ ′,

arranged in descending order along its diagonal line. Then the estimator of Λ′ is given by

Λ̂(0)′ =
1

q̃

(
F̂ (0)′F̂ (0)

)−1
F̂ (0)′X̃ =

1

T q̃
F̂ (0)′X̃. (2.5)

Let F̂ (0)
t denote the tth column of F̂ (0)′ and λ̂

(0)

i the ith column of Λ̂(0)′. We can obtain an initial

estimate of the (t, i)th element, C0
it, of C

0 by Ĉ(0)
it = λ̂

(0)′
i F̂

(0)
t . We will show that the initial estima-

tors F̂ (0)
t , λ̂

(0)

i and Ĉ(0)
it are consistent and follow mixture normal distributions under some standard

conditions.

2.1.2 The iterated estimates

Despite the consistency of the initial estimators, they are not asymptotically effi cient. To improve

the effi ciency, we consider iterative estimators. Let ` ≥ 1 be an integer. Suppose that we have

obtained the estimates F̂ (`−1)
t , λ̂

(`−1)

i and Ĉ(`−1)
it . In step `, we can replace the missing values (Xit)

in the matrix X with the estimated common components Ĉ(`−1)
it . Define the T ×N matrix X̂(`) with
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its (t, i)th element given by

X̂
(`)
it =

 Xit if (i, t) ∈ Ω

Ĉ
(`−1)
it if (i, t) ∈ Ω⊥

, ` ≥ 1,

where Ω⊥ = {(i, t) ∈ [N ]× [T ] : (i, t) /∈ Ω} . Then we can conduct the PC analysis based on X̂(`)

under the identification restrictions that F ′F/T = IR and Λ′Λ is a diagonal matrix. The estimated

factor matrix, denoted by F̂ (`), is
√
T time the eigenvectors corresponding to the R largest eigenvalues

of the T × T matrix 1
NT X̂

(`)X̂(`)′ :

1

NT
X̂(`)X̂(`)′F̂ (`) = F̂ (`)D̂(`),

where D̂(`) is a diagonal matrix consisting of the R largest eigenvalues of 1
NT X̂

(`)X̂(`)′ arranged in

descending order along it diagonal line. Then the estimator of Λ′ is given by

Λ̂(`)′ =
(
F̂ (`)′F̂ (`)

)−1
F̂ (`)′X̂(`) =

1

T
F̂ (`)′X̂(`).

Let F̂ (`)
t denote the tth column of F̂ (`)′ and λ̂

(`)

i the ith column of Λ̂(`)′. We obtain the updated

estimate of C0
it by Ĉ

(`)
it = λ̂

(`)′
i F̂

(`)
t . We will study the asymptotic properties of F̂ (`)

t , λ̂
(`)

i and Ĉ(`)
it ,

` = 1, 2, ..., below.

Remark 1 (Connection with Stock and Watson’s (2002) EM estimation) Stock and

Watson (2002, SW hereafter) propose an EM algorithm to conduct the PC analysis for panel data

with missing values. The least squares objective function they consider is given by

V (F,Λ) =
1

NT
tr
[[(

X − FΛ′
)
◦G
] [(

X − FΛ′
)
◦G
]′]

=
1

NT

N∑
i=1

N∑
i=1

(
Xit − λ′iFt

)2
git.

Minimization of V (F,Λ) requires iterative methods. SW (2002) motivate the EM algorithm by

assuming that εit’s are independently and identically distributed (i.i.d.) according to N
(
0, σ2

)
. They

suggest various ways to obtain the initial estimates. For example, when the full dataset contains a

subset constituting a balanced panel, they suggest using estimates of the factors from the balanced

subset as the starting value F̂ (0)
t . Given the estimates Ĉ(`−1)

it at stage `− 1, our construction of the

expectation object X̂(`)
it is the same as SW’s (2002) and so is our `th stage estimator. But SW (2002)

do not provide any theoretical justification for their EM estimates. With our well-chosen initial

estimators, we are able to formally justify the use of EM estimator.

2.2 Asymptotic properties of the initial estimators F̂ (0)
t , λ̂

(0)

i and Ĉ
(0)
it

Let M denote a generic finite positive constant that may vary across lines. We make the following

assumptions.
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Assumption A.1 (i) maxtE
∥∥F 0

t

∥∥4/γ1 ≤ M for some γ1 ∈ (0, 1) and T−1F 0′F 0 P−→ ΣF 0 > 0 for

some R×R matrix ΣF 0 as T →∞.
(ii) maxiE

∥∥λ0
i

∥∥4/γ2 ≤M for some γ2 ∈ (0, 1) and N−1Λ0′Λ0 P−→ ΣΛ0 > 0 for some R×R matrix
ΣΛ0 as N →∞.

(iii) maxi,tE[
(
λ0′
i F

0
t

)4
] ≤M.

(iv) The eigenvalues of ΣΛ0ΣF 0 are distinct from each other.

(v) N−1Λ0′Λ0 − ΣΛ0 = OP (N−1/2) and T−1F 0′F 0 − ΣF0 = OP (T−1/2).

Assumption A.2 (i) E
(
εit|λ0

i , F
0
t

)
= 0, E

(
ε4
it

)
≤M, and ‖ε‖sp = OP (max(

√
N,
√
T )).

(ii) maxs
∑T

t=1 |γN (s, t)| ≤M, where γN (s, t) = N−1
∑N

i=1 |E(εisεit)| .
(iii) maxt,sE

∣∣∣N−1/2
∑N

i=1 [εitεis − E (εitεis)]
∣∣∣2 ≤M.

Assumption A.1 parallels Assumptions A-B in Bai (2003) and Assumption A.2 is analogous to

Assumption C in Bai (2003). The major difference is that we require both the factors and fac-

tor loadings have finite moments higher than the usual fourth order. Bai and Ng (2002) and Bai

(2003) assume finite fourth moments for F 0
t but require that λ

0
i be uniformly bounded. Assump-

tion A.1(v) imposes the standard convergence rates for N−1Λ0′Λ0 and T−1F 0′F 0. It implies that

µr(
1
NT F

0Λ0′Λ0F 0′) − σ2
r = OP

(
δ−1
NT

)
for r = 1, ..., R, where σ2

r = µr (ΣΛ0ΣF 0) . Assumption A.2(i)

is also assumed in Su and Chen (2013), Lu and Su (2016), and Moon and Weidner (2017). In par-

ticular, Moon and Weidner (2017) demonstrate that this condition can be satisfied for various error

processes.

The following theorem establishes the mean squared convergence of F̂ (0)
t . Define

Ĥ(0) =
(
N−1Λ0′Λ0

)
T−1F 0′F̂ (0)(D̂(0))−1,

where D̂(0) is asymptotically nonsingular by Lemma A.1.

Theorem 2.1 Suppose Assumptions A.1 and A.2 hold. Then 1
T

∥∥∥F̂ (0) − F 0Ĥ(0)
∥∥∥2

= OP
(
δ−2
NT

)
where δNT =

√
N ∧

√
T .

Theorem 2.1 reports the mean square (MS) convergence rate of F̂ (0)
t . It implies that we can

estimate the space spanned by the columns of F 0 consistently.

To proceed, we assume the following limiting objects exist and are finite:

Γ1g,t (q) = limN→∞Var

(
1√
Nq

N∑
i=1

λ0
i εitgit

)
, Γ2g,t (q) = plimN→∞

1− q
q

N∑
i=1

λ0
iλ

0′
i

(
λ0′
i F

0
t

)2
,

Φ1g,i (q) = limT→∞Var

(
1√
Tq

T∑
t=1

F 0
t εitgit

)
, Φ2g,i (q) = plimN→∞

1− q
q

T∑
t=1

F 0
t F

0′
t

(
λ0′
i F

0
t

)2
.

8



Let

Γg,t (q) = Γ1g,t (q) + Γ2g,t (q) and Φg,i (q) = Φ1g,i (q) + Φ2g,i (q) .

Note that Γ2g,t and Φ2g,i and therefore Γg,t and Φg,i are generally random objects under our as-

sumptions that allow for random factors and random factor loadings. To study the asymptotic

distributions of F̂ (0)
t , λ̂

(0)

i and Ĉ(0)
it , we add the following assumptions.

Assumption A.3 (i) Either maxt,sE
∥∥∥ 1√

N

∑N
i=1 χi,st

∥∥∥4
≤M or E

∥∥∥ 1√
NT

∑T
s=1

∑N
i=1 F

0
s χi,st

∥∥∥2
≤M,

where χi,st = εitεis − E (εitεis) .

(ii) E
∥∥∥ 1√

NT

∑T
s=1

∑N
i=1 F

0
s λ

0′
i εis

∥∥∥2
≤M.

(iii) Let σij,ts = E (εitεjs) . maxtN
−1
∑N

i=1 σii,tt ≤ M, max1≤t≤T N
−1
∑N

i=1

∑N
j=1 |σij,tt| ≤ M,

max1≤i≤N T−1
∑T

t=1

∑T
s=1 |σii,ts| ≤M, and (NT )−1

∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 |σij,ts| ≤M.

Assumption A.4 (i) 1√
Nq

∑N
i=1 λ

0
i εitgit

d→ N (0,Γ1g,t) ,

(ii) 1√
Tq

∑T
t=1 F

0
t εitgit

d→ N (0,Φ1g,i) .

The first part of Assumption A.3(i) strengthens Assumption A.2(iii) and is also assumed in Bai

and Ng (2002) and Bai (2003). The latter authors also assume that the second part of A.3(i) holds

simultaneously with the first part, which we do not need. In the special case where E(F 0
s χi,st) 6= 0

for enough (s, t) pairs (e.g., when E(F 0
s ) = 0 but E(F 0

s εitεis) 6= 0 for all s > t), the second part of

A.3(i) is not satisfied.

Let GtNi = σ({gjt, j ≤ i),Λ0, F 0
t ), the minimal sigma-field generated from {gjt, j ≤ i} and

(Λ0, F 0
t ). Let Gt = σ

(
∪∞N=1GtNN

)
. Analogously, let GiT t = σ

(
{gis, s ≤ t), λ0

i , F
0
)
, Gi = σ

(
∪∞T=1GiTT

)
,

and Git = σ
(
Gi ∪ Gt

)
.

The following theorem presents the asymptotic distributions of F̂ (0)
t , λ̂

(0)

i and Ĉ(0)
it based on the

notation of stable convergence.

Theorem 2.2 Suppose Assumptions A.1-A.4 hold. Suppose that (T 1/2 + N1/2)δ−2
NT = o (1) . Let

Π̂
(0)
tN =

√
N(F̂

(0)
t − Ĥ(0)′F 0

t ) and Π̂
(0)
iT =

√
T (λ̂

(0)

i − (Ĥ(0))−1λ0
i ). Then as (N,T )→∞

(i) Π̂
(0)
tN = (D̂(0))−1 1

T F̂
(0)′F 0 1√

Nq

∑N
i=1 λ

0
i ξit + OP

(
N1/2δ−2

NT

)
→ N

(
0, D−1QΓg,t (q)Q′D−1

)
Gt-

stably,

(ii) Π̂
(0)
iT = Ĥ(0)′ 1√

Tq

∑T
t=1 F

0
t ξit +OP

(
T 1/2δ−2

NT

)
→ N

(
0, (Q′)−1Φg,i (q)Q−1

)
Gi-stably,

(iii)
(

1
NΣ

(0)
F,it (q) + 1

T Σ
(0)
Λ,it (q)

)−1/2 (
Ĉ

(0)
it − C0

it

)
d→ N (0, 1),

where ξit = εitgit+λ
0′
i F

0
t (git − q) , Σ

(0)
F,it (q) = λ0′

i Σ−1
Λ0

Γg,t (q) Σ−1
Λ0
λ0
i and Σ

(0)
Λ,it (q) = F 0′

t Σ−1
F 0

Φg,i (q) Σ−1
F 0
F 0
t

signify the contributions of the factor and factor loading estimators to the asymptotic variance of Ĉ(0)
it ,

9



respectively, and D denotes the diagonal matrix consisting of the eigenvalues of Σ
1/2
Λ0

ΣF 0Σ
1/2
Λ0

in de-

scending order with the corresponding eigenvector matrix denoted as Υ such that Υ
′
Υ = IR and

Q = D1/2Υ′Σ
−1/2
Λ0

.

Theorem 2.2 parallels Theorems 1-3 in Bai (2003). Bai (2003) obtains the asymptotic nor-

mal distributions for his estimators of factors and factor loadings. In contrast, we show that the

sequence
{

Π̂
(0)
tN , N ≥ 1

}
converges Gt-stably as (N,T ) → ∞ to a mixture normal whose asymp-

totic variance is random but measurable with respect to certain limit sigma-field, and similarly, the

sequence
{

Π̂
(0)
iT , T ≥ 1

}
converges Gi-stably as (N,T ) → ∞ to a mixture normal whose asymp-

totic variance is random but measurable with respect to certain limit sigma-field. We refer the

reader directly to the Häusler and Luschgy (2015) for stable convergence in general and the stable

martingale central limit theorem in particular. To understand the limiting distribution of Π̂
(0)
tN in

Theorem 2.2(i), we notice that its influence function depends on ξit through two terms, εitgit and

λ0′
i F

0
t (git − q) . The first term also appears in the influence function for the factor estimators in the

absence of random missing at time t (i.e., git = 1 ∀i) while the second term is introduced by the

random missing mechanism. Due to the presence of common factor F 0
t for all cross-sectional units,

1√
Nq

∑N
i=1 λ

0
iλ

0′
i F

0
t (git − q) does not have a limiting normal distribution. Instead, it converges to

N (0,Γ2g,t) Gt-stably as N →∞, where N (0,Γ2g,t) can be regarded as a normal random vector with

random variance given by Γ2g,t. In the special case where F 0
t is nonrandom, the limiting distribution

reduces to the usual normal distribution. Similar remarks for Π̂
(0)
iT in Theorem 2.2(ii). Theorem

2.2(iii) only reports the limiting distribution for the normalized common component estimator. One

can also follow the analyses of parts (i)-(ii) in the theorem and report the stable limiting distribution

of δNT (Ĉ
(0)
it − C0

it) as (N,T )→∞.
By Corollary 6.3 in Häusler and Luschgy (2015) and the Cramér-Wold device, we can show that[

(D−1QΓg,tQ
′D−1

]−1/2
Π̂

(0)
tN

d→ N (0, IR) as (N,T ) → ∞, and[
(Q′)−1Φg,iQ

−1
]−1/2

Π̂
(0)
iT

d→ N (0, IR) as (N,T ) → ∞.

With these results and the result in Theorem 2.2(iii), we could make inference on the factors, factor

loadings, and common component. But because these estimates are not the final estimates, we will

study the asymptotic properties of the iterated estimators of these objects later on.

2.3 Asymptotic properties of the iterated estimators of the factors and factor

loadings

Let Ĥ(`) =
(
N−1Λ0′Λ0

)
T−1F 0′F̂ (`)(D̂(`))−1. To study the asymptotic properties of F̂ (`)

t , λ̂
(`)

i and

Ĉ
(`)
it , we add the following assumption.

10



Assumption A.5 (i) maxt

∥∥∥ 1
N

∑N
i=1 ζ1,it

∥∥∥ = OP
(
(N/ lnN)−1/2

)
and maxt,s

∥∥∥ 1
N

∑N
i=1 λ

0
i εitgitgis

∥∥∥ =

OP
(
(N/ lnN)−1/2

)
, where ζ1,it = λ0

i εitgit and λ
0
iλ

0′
i F

0
t (git − q) .

(ii) maxi

∥∥∥ 1
T

∑T
t=1 ζ2,it

∥∥∥ = OP
(
(T/ lnT )−1/2

)
, where ζ2,it = F 0

t εitgit and F
0
t λ

0′
i F

0
t (git − q) .

(iii)maxt

∥∥∥ 1
NT

∑
i,s ζ3,its

∥∥∥ = OP
(
δ−2
NT lnN

)
andmaxt

∥∥∥ 1
NT

∑
i

∑T
s=1,s 6=t F

0
s F

0′
s λ

0
iλ

0′
i (gis − q)(git − q)

∥∥∥
= OP

(
δ−2
NT lnN

)
, where ζ3,its = F 0

s [εitεis − E(εitεis)] gitgis, F
0
s F

0′
s λ

0
i εitgit(gis−q) and λ0

iF
0′
s εisgis(git−

q).

Assumption A.5 imposes some uniform convergence conditions that are similar to those imposed

in Su et al. (2015) and Su and Wang (2017). Following these authors, one can verify Assumption

A.5 under some primitive conditions on
{
λ0
i , F

0
t , εit

}
.

The following theorem establishes the mean squared convergence of F̂ (`)
t .

Theorem 2.3 Suppose Assumptions A.1-A.5 hold. Then 1
T

∥∥∥F̂ (`) − F 0Ĥ(`)
∥∥∥2

= OP
(
δ−2
NT

)
for each

`.

The following theorem reports the asymptotic distributions of F̂ (`)
t , λ̂

(`)

i and Ĉ(`)
it .

Theorem 2.4 Suppose Assumptions A.1-A.5 hold. Suppose that
√
N(T γ1/4δ−2

NT lnT +T−1+3γ1/4) =

o(1) and
√
T (Nγ2/4δ−2

NT lnN + N−1+3γ2/4) = o(1). Let Π̂
(`)
tN =

√
N(F̂

(`)
t − Ĥ(`)′F 0

t ) and Π̂
(`)
iT =

√
T (λ̂

(`)

i − Ĥ(`)−1λ0
i ). Then

(i) Π̂
(`)
tN = D−1Q 1√

N

∑N
i=1 λ

0
i εitgit+ (1− q) Π̂

(`−1)
tN + oP (1) uniformly in t and Π̂

(`)
tN

d→ N(0, D−1Q

×Γ1g,t (q)Q′D−1) as (`,N, T )→∞,
(ii) Π̂

(`)
iT = (Q′)−1 1√

T

∑T
t=1 F

0
t εitgit+(1− q) Π̂

(`−1)
iT +oP (1) uniformly in i and Π̂iT

d→ N(0, (Q′)−1

×Φ1g,i (q)Q−1) as (`,N, T )→∞,
(iii) ( 1

NΣ1F,it + 1
T Σ1Λ,it)

−1/2(Ĉ
(`)
it − C0

it)
d→ N (0, 1) as (`,N, T )→∞,

where Γ1g,t,Φ1g,i, D and Q are as defined in the last subsection, and Σ1F,it = λ0′
i Σ−1

Λ0
Γ1g,t (q) Σ−1

Λ0
λ0
i ,

and Σ1Λ,it = F 0′
t Σ−1

F 0
Φ1g,i (q) Σ−1

F 0
F 0
t signify the contribution of the factor and factor loading estima-

tors to the asymptotic variance of Ĉ(`)
it for large `, respectively.

Remark 2 Noting that Γg,t (q) = Γ1g,t (q) + Γ2g,t (q) and Φg,i (q) = Φ1g,i (q) + Φ2g,i (q) , a com-

parison of Theorem 2.4 with Theorem 2.2 indicates that F̂ (`)
t , λ̂

(`)

i and Ĉ(`)
it are asymptotically more

effi cient than F̂ (0)
t , λ̂

(0)

i and Ĉ(0)
it , respectively. In theory, the distributional results in Theorem 2.4

require `→∞. In practice, ` can diverge to infinity at an arbitrarily slow rate. To see this point, we
take a close look at the iterative relationship between Π̂

(`)
tN and Π̂

(`−1)
tN . Let βF,t = 1

N

∑N
i=1 λ

0
i εitgit.

Note that the result in Theorem 2.4(i) implies

Π̂
(`)
tN = D−1Q

√
NβF,t

`−1∑
s=0

(1− q)s + (1− q)` Π̂
(0)
tN + oP (1),
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where the first term is the dominant term and the second term can be made arbitrarily small for

suffi ciently large `. In practice, we find it is not necessary to iterate too many times so that we can stop

the iteration when (1− q)` is small enough. For example, we can iterate `∗ times such that (1− q)`
∗
�

εNT for some small positive number εNT . Simulations suggest that `∗ = bln(εNT )/ ln(1 − q)c with
εNT = 0.001 works very well for all data generating processes under our investigation. Note that

`∗ = 3, 4, and 5 for q = 0.9, 0.8, and 0.7, respectively. This suggests a small number of iterations is

suffi cient.

Remark 3 (Comparison with the oracle estimators) We can also compare the asymptotic

variances of our EM estimators with those of the oracle estimators that are obtained in the absence of

missing values (viz., q = 1). For example, we consider the factor estimation and use F̂ oraclet to denote

the oracle estimator of F 0
t with the corresponding rotational matrix Ĥ

oracle. It is well known that the

asymptotic variance-covariance (Avar) of
√
N(F̂ oraclet − Ĥoracle′F 0

t ) is given by D−1QΓoraclet Q′D−1,

where

Γoraclet = lim
N→∞

Var

(
1√
N

N∑
i=1

λ0
i εit

)
.

In contrast, by the law of iterated expectations

Γ1g,t (q) = lim
N→∞

{
Var

[
E

(
1√
Nq

N∑
i=1

λ0
i εitgit|Λ0, ε

)]
+ E

[
Var

(
1√
Nq

N∑
i=1

λ0
i εitgit|Λ0, ε

)]}

= lim
N→∞

{
Var

(
1√
N

N∑
i=1

λ0
i εit

)
+

1− q
q

E

(
1

N

N∑
i=1

λ0
iλ

0′
i ε

2
it

)}
≥ Γoraclet .

The difference, Γ1g,t (q) − Γoraclet , given by limN→∞
1−q
q E

(
1
N

∑N
i=1 λ

0
iλ

0′
i ε

2
it

)
, reflects the cost of

missing (1− q) proportion of observations. The larger proportion of missing observations, the larger
value Γ1g,t (q) is. In the absence of cross-sectional correlation among

{
λ0
i εit
}
, it is easy to verify that

Γ1g,t (q) =
1

q
lim
N→∞

E

(
1

N

N∑
i=1

λ0
iλ

0′
i ε

2
it

)
=

1

q
Γoraclet .

So q reflects the relative asymptotic effi ciency of the EM estimator compared to the oracle estimator.

Analogous remarks hold for our EM estimators of the factor loadings.

With the results in Theorem 2.4, we can make inference on the factors, factor loadings, and

common component. Below we focus on the inference on the factors due to the widespread use of

estimated factors, say, in various factor-augmented regression or forecasting models.

12



2.4 Inference on the factors

Let F̂t, λ̂i, and Ĉit denote F̂
(`)
t , λ̂

(`)

i , and Ĉ(`)
it respectively, when ` → ∞. To make inference on the

factors, we need to estimate the asymptotic variance VF ≡ D−1QΓ1g,t (q)Q′D−1 consistently. By

Lemma A.1 in the appendix, we can consistently estimate D by the diagonal matrix D̂ = D̂(∞), that

contains the R largest eigenvalues of (NT )−1 X̂(∞)X̂(∞)′, arranged in descending order. So the key

is to estimate QΓ1g,tQ
′ consistently.

To estimate QΓ1g,t (q)Q′, we consider two cases: (1)
{
λ0
i εitgit

}
are cross-sectionally uncorrelated;

(2)
{
λ0
i εitgit

}
are cross-sectionally correlated. In Case (1), we have a simplified expression for Γ1g,t (q)

Γ1g,t (q) = limN→∞
1

Nq2

N∑
i=1

Var
(
λ0
i εitgit

)
= limN→∞

1

Nq2

N∑
i=1

E
[
λ0
iλ

0′
i (εgit)

2
]
,

where εgit = εitgit. Noting that with H̃ ≡ Ĥ(0), H̃−1 p→ Q by Lemma A.2(ii) in the appendix, it is

easy to show that a consistent estimator of QΓ1g,t (q)Q′ is given by

Γ̂
(1)
1g,t =

1

Nq̃2

N∑
i=1

λ̂iλ̂
′
i(ε̂

g
it)

2,

where ε̂git = (Xit − Ĉit)git.
In Case (2), for simplicity we consider the case where the factor loadings are nonrandom and the

process {εit, t ≥ 1} is covariance stationary. Let εg·t =
(
εg1t, ε

g
2t, ..., ε

g
Nt

)′
. Let Σg ≡ E(εg·tε

g′
·t ) = {σgij},

which is an N ×N matrix. Then

Γ1g,t (q) = limN→∞
1

Nq2
Var

(
Λ0′εg·t

)
= limN→∞

1

Nq2
Λ0′ΣgΛ0.

Suppose that Σ̃g is a consistent estimator of Σg in the sense
∥∥∥Σ̂g − Σg

∥∥∥
sp

= op (1) . Then we can

readily show that a consistent estimator of QΓ1g,tQ
′ is given by

Γ̂
(2)
1g,t ≡

1

Nq̃2
Λ̂′Σ̂gΛ̂.

Fortunately, a feasible consistent estimator of Σg is available as εgit can be estimated by ε̂
g
it and

there is no need to estimate the error terms corresponding to those missing observations. To see this,

define

σ̂gij =
1

T

T∑
t=1

ε̂gitε̂
g
jt and θ̂ij =

1

T

T∑
t=1

(
ε̂gitε̂

g
jt − σ̂

g
ij

)2
.

We follow the lead of Fan, Liao and Mincheva (2013, FLM hereafter) and propose to estimate Σg by

Σ̂g =
{
σ̂g,Tij

}
, where

σ̂g,Tij =

 σ̂gij if i = j

sij(σ̂
g
ij) if i 6= j

,
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where sij (·) is the soft thresholding function: sij (z) ≡ sgn (z) (|z| − τ ij)+ , τ ij = c0ωNT (θ̂ij)
1/2,

ωNT = [max(N−1+γ2/2, T−1 lnT )]1/2, and c0 is a positive constant.1 We will show that
∥∥∥Σ̂g − Σg

∥∥∥
sp

=

oP (1) under some additional conditions.

When Λ0 is random, the above procedure also works under the additional restriction that Var
(
εg·t|Λ0

)
=

Var(εg·t) = Σg. To see this, we notice that by the variance decomposition formula, we have

Γ1g,t (q) = limN→∞
1

Nq2
E
[
Var

(
Λ0′εg·t|Λ0

)]
+ limN→∞

1

Nq2
Var

(
E
(
Λ0′εg·t|Λ0

))
= limN→∞

1

Nq2
E
[
Λ0′Var

(
εg·t|Λ0

)
Λ0
]

+ 0 = limN→∞
1

Nq2
E
[
Λ0′ΣgΛ0

]
.

1
Nq2

E
[
Λ0′ΣgΛ0

]
can be estimated in the same procedure as outlined above.

To allow for possible cross-sectional dependence, we recommend using Γ̂
(2)
1g,t and will justify the

consistency of this estimator below. To proceed, we add the following assumption.

Assumption A.6 (i) The process {εg·t, t ≥ 1} is covariance-stationary with covariance matrix Σg =

E(εg·tε
g′
·t ) =

{
σgij

}
.

(ii) There exists γ3 ∈ [0, 1) such that maxi
∑

j

∣∣∣σgij∣∣∣γ3 ≤M.

(iii) Let ωNT = [max(N−1+γ2/2, T−1 lnT )]1/2. T−1/2+γ1/4(Nγ2/4 + T γ1/4)(lnT )1/2 → 0 and

T−1+γ1/4ω
1−γ3
NT N1/2 → 0 as (N,T )→∞.

Assumption A.6(i) is typically assumed in the literature when there is no missing value. Assump-

tion A.6(ii) strengthens the standard weak cross-sectional dependence condition maxi
∑

j

∣∣∣σgij∣∣∣ =

O (1) . It is satisfied if εg·t’s satisfy certain m-dependence condition cross-sectionally or the correlation

between εgit and ε
g
jt vanishes suffi ciently fast as the “distance” between i and j increases, perhaps

after reordering of the data along the cross-sectional dimension. Assumption A.6(iii) imposes further

restrictions on the relative magnitude of N and T.

The following theorem reports the consistency of D̂−1Γ̂1g,tD̂
−1.

Theorem 2.5 Suppose that Assumptions A.1-A.6 hold. Then D̂−1Γ̂1g,tD̂
−1 p→ D−1QΓ1g,t (q)Q′D−1,

where Γ̂1g,t = Γ̂
(2)
1g,t.

Given the above result, we can make inference on the global factors. The procedure is standard

and omitted for brevity.

1 In our simulations and applications, we let c0 = 1. In most situations, when c0 = 1, Σ̃g is positive definite.

Otherwise, we choose c0 to be the smallest value such that Σ̃g is positive definite. For details, see FLM’s Section 4.
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3 Determining the Number of Factors via Cross Validation

In this section, we propose a novel method to determine the number of factors via cross validation

(CV). Our method can be used no matter whether there are random missing values in the original

data matrix X or not. For notational simplicity, we first focus on the CV method when the original

dataset does not have missing value problem and then remark on the case with missing values.

3.1 The cross validation method

Let R denote the generic number of factors with the true value given by R0. The key insight for

our CV method is that one can consistently estimate the common component for the factor models

with random missing. Given the T × N matrix of observations X, we propose to randomly sample

elements in X with a fixed probability p ∈ (0, 1) and leave the rest (1− p)-proportion of observations
as held-out entries for the out-of-sample evaluation.

As before, let Ω∗ ⊂ [N ]× [T ] be the index set of the training entries and Ω∗⊥ the index set of the

held-out entries. Define the operator PΩ∗ : RT×N → RT×N by

(PΩ∗X)ti = Xitg
∗
it = Xit1 {(i, t) ∈ Ω∗} ,

where g∗it = 1 {(i, t) ∈ Ω∗} . Let G∗ denote a T ×N matrix with (t, i)th element given by g∗it. Now we

can regard PΩ∗X as the T ×N data matrix with missing values replaced by zeros. Given PΩ∗X, we

apply the proposed EM algorithm to recover the data via estimating the common component matrix

C for any given number of factors.

To proceed, we consider the full singular value decomposition (SVD) for 1
pPΩ∗X :

1

p
PΩ∗X = Ũ Σ̃Ṽ ′ =

T∧N∑
r=1

ũrṽ
′
rσ̃r,

where Ũ = (ũ1, ..., ũT ) and Ṽ = (ṽ1, ..., ṽN ) are respectively the T × T matrix of left singular vectors
and N × N matrix of right singular vectors of 1

pPΩ∗X, and Σ̃ is the T × N diagonal matrix that

contains the singular values, σ̃1, σ̃2, ..., σ̃T∧N , arranged in descending order along the main diagonal

line. Given any R ≤ T ∧N and the training entries in PΩ∗X, we can estimate the common component

C by the singular value thresholding procedure:

C̃R = SH

(
1

p
PΩ∗X,R

)
= ŨRΣ̃RṼ

′
R =

R∑
r=1

ũrṽ
′
rσ̃r, (3.1)

where SH (·, R) is the rank-R truncated SVD of ·, the subscript H stands for hard thresholding,

ŨR = (ũ1, ..., ũR), ṼR = (ṽ1, ..., ṽR), and Σ̃R =diag(σ̃1, ..., σ̃R) . We can regard C̃R as a matrix-

completion version of PΩ∗X. Let C̃R,it denote the (t, i)th element of C̃R. We propose to choose R to
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minimize the following CV criterion function

C̃V (R) =
∑

(i,t)∈Ω∗⊥

[
Xit − C̃R,it

]2
. (3.2)

Let R̃ = arg min0≤R≤Rmax C̃V (R) where Rmax is a fixed integer that is no less than R0 and C̃0,it = 0

for all (i, t) . We will show the consistency of R̃ under some regularity conditions.

Note that the CV function in (3.2) is based on the initial estimator C̃R of the common component

matrix C0. As demonstrated in the last subsection, one can update the estimator of C0 via the EM

algorithm and obtain a more effi cient estimator of C. It is expected that using such a more effi cient

estimator would yield better finite sample performance for the choice of the correct number of factors.

As before, let Ĉ(0)
R,it = C̃R,it and ` ≥ 1 be an integer. Suppose that we have obtained the estimates

Ĉ
(`−1)
R,it . In step `, we can replace the zero elements in X∗ ≡ PΩ∗X with the estimated common

components Ĉ(`−1)
Rmax,it

.2 Define the T ×N matrix X̂∗(`) with its (t, i)th element given by

X̂
∗(`)
it =

 Xit if (i, t) ∈ Ω∗

Ĉ
(`−1)
Rmax,it

if (i, t) ∈ Ω∗⊥
, ` ≥ 1, (3.3)

where Ω∗⊥ = {(i, t) ∈ [N ]× [T ] : (i, t) /∈ Ω∗} . Then we can conduct the singular value thresholding
procedure:

Ĉ
(`)
R = SH

(
X̂∗(`), R

)
= Û

(`)
R Σ̂

(`)
R V̂

(`)′
R , (3.4)

where Û (`)′
R Û

(`)
R = IR, V̂

(`)′
R V̂

(`)
R = IR, and Σ̂

(`)
R is a diagonal matrix that contains the R largest

singular values of X̂∗(`) arranged in descending order along its diagonal line. Following Remark

2, we recommend repeating the above procedure for ` = 1, ..., `∗ ≡ bln(εNT )/ log(p)c where, e.g.,
εNT = 0.001. Let ĈR = Ĉ

(`∗)
R and R̂ = arg min0≤R≤Rmax ĈV (R) , where

ĈV (R) =
∑

(i,t)∈Ω∗⊥

[
Xit − ĈR,it

]2
. (3.5)

We will show the consistency of R̂ under some regularity conditions.

3.2 The consistency of the CV method

Let ũr and ṽr denote the rth left and right singular vectors of 1√
pX
∗, respectively, associated with

its rth largest singular value. We add one assumption.

2We conjecture that one can replace Ĉ(`−1)Rmax,it
by Ĉ(`−1)R,it in which case X̂∗(`)it becomes

X̂
∗(`)
R,it =

 Xit if (i, t) ∈ Ω∗

Ĉ
(`−1)
R,it if (i, t) ∈ Ω∗⊥

, ` ≥ 1.

But the justification for this method is far more complicated than the proof of Theorem 3.2 below because of the

dependence of X̂∗(`)R,it on R and the inconsistency of Ĉ(`−1)R,it for R < R0.
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Assumption A.7. (i) For r = R0+1, ..., Rmax, P (‖ũr‖∞ ‖ṽr‖∞ ≤ 1/(c0

√
(N + T ) log(N + T )))→

1 for some fixed c0 <∞ as (N,T )→∞, ‖ũr‖∞ = oP (1) , and ‖ṽr‖∞ = oP (1) ;

(ii) max(i,t)∈Ω∗⊥

∑
(j,s)∈Ω∗⊥

|E [εitεjs|PΩ∗X,Ω
∗]| = oP (δ2

NT ).

Assumption A.7(i) is a high order condition that restricts the spikeness of singular vectors of X.

A similar condition is also imposed in Negahban and Wainwright (2012). Since ‖ũr‖2 = ‖ṽr‖2 = 1,

on average each entry of ũrṽ′r is of the order (NT )−1/2. We require the maximum entry is bounded

by the order ((N + T ) log(N + T ))−1/2. We can show that ũr and ṽr are asymptotically equal to

the (r −R0)th singular vector of ς∗ ≡ ε ◦ G∗ + F 0Λ0′ ◦ [G∗ − E(G∗)]/p, where each entry has zero

mean. As we do not have the explicit form of ũr and ṽr, it is diffi cult to show its spikeness. It is

well known that for an i.i.d. Gaussian random matrix, the elements of its right and left eigenvectors

are uniformly distributed on the unit spheres SN−1 and ST−1, respectively. Then Assumption A.7(i)

is satisfied in this case. It is expected that the singular vectors of a general random matrix behave

similarly. Assumption A.7 (ii) is a higher order condition that requires low degree of correlations

among {εit}, conditional on kept-in information. It is satisfied when εit is i.i.d. and the factors and
factor loadings are nonrandom. When we have |E [εitεjs|PΩ∗X,Ω

∗] | ≤Mρ|t−s|+|j−i| for someM <∞
and ρ < 1 perhaps after reordering the data along the cross-sectional direction, the condition is also

satisfied.

The next two theorems establish the selection consistency of our CV method based on C̃V (R)

and ĈV (R) .

Theorem 3.1 Suppose Assumptions A.1-A.3 hold, and Assumptions A.4-A.5 hold with git ≡ 1.

Then P
(
R̃ < R0

)
→ 0 as (N,T ) → ∞. If Assumption A.7 also holds, then P

(
R̃ > R0

)
→ 0 as

(N,T )→∞.

Theorem 3.2 Suppose Assumptions A.1-A.3 hold, and Assumptions A.4-A.5 hold with git ≡ 1.

Then P
(
R̂ < R0

)
→ 0 as (N,T ) → ∞. If Assumption A.7 also holds, then P

(
R̂ > R0

)
→ 0 as

(N,T )→∞.

Theorems 3.1 and 3.2 indicate that the CV estimators R̃ and R̂ consistently estimate the true

number of factors R0 in large samples when Assumptions A.1-A.5 and A.7 hold. As we show in the

proof of Theorem 3.1, the consistency of R̃ is established by demonstrating that

C̃V (R)− C̃V (R0) = (1− p)
R0∑

r=R+1

σ2
r +OP

(
δ−1
NT

)
when R < R0, and

plim(N,T )→∞δ
2
NT

[
C̃V (R)− C̃V (R0)

]
≥ 1− p

256
(R−R0) cσ > 0 when R > R0,
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where cσ is the lower probability bound of δ2
NT (NT )−1σ̃2

r for r ∈ {R0 + 1, ..., Rmax}. Note that
σ̃2
r diverges to infinity in probability at the rate NT for r ∈ {1, ..., R0} and (NT )−1σ̃2

r converges

to zero in probability at the rate δ−2
NT when r ∈ {R0 + 1, ..., Rmax}. Similar remarks hold true for

ĈV (R)− ĈV (R0) .

3.3 CV in the presence of random missing

From the proof of Theorem 3.1 we can see that the same result holds with some modifications when

the original data matrix X contains random missing values. To see the modifications, we continue to

use Ω ⊂ [N ]×[T ] to denote the index set of the observations that are observed. Let git = 1 {(i, t) ∈ Ω}
and q̃ ≡ |Ω| /(NT ). As before, P (git = 1) = q ∈ (0, 1] and git is independent of X, F 0, Λ0 and ε. In

this case, we consider the SVD for 1
pq̃PΩ∗PΩX :

1

pq̃
PΩ∗PΩX = Ũ Σ̃Ṽ ′,

where Ũ is now the T × T matrix of left singular vectors of 1
pq̃PΩ∗PΩX, Ṽ is the N × N matrix of

right singular vector of 1
pq̃PΩ∗PΩX, and Σ̃R contains the singular values of 1

pq̃PΩ∗PΩX arranged in

descending order along its diagonal line. Then we estimate the common component C by the singular

value thresholding procedure:

C̃R = SH

(
1

pq̃
PΩ∗PΩX,R

)
= ŨRΣ̃RṼ

′
R, (3.6)

where ŨR, ṼR, and Σ̃R are defined as before. Let R̃ ∈ {0, 1, 2, ..., Rmax} minimize the following CV
function

C̃V (R) =
∑

(i,t)∈Ω∗⊥∩Ω

[
Xit − C̃R,it

]2
, (3.7)

where C̃R,it denote the (t, i)th element of C̃R. Following the proof of Theorem 3.1, we can also show

that P (R̃ = R0)→ 1 as (N,T )→∞ in this case.

As in the last subsection, we can consider iterative estimates of C. Let Ĉ(0)
R,it = C̃R,it. Suppose

that we have obtained the estimates Ĉ(`−1)
R,it . In step `, we can replace the zero elements in PΩ∗PΩX

with the estimated common components Ĉ(`−1)
Rmax,it

.3 Define the T × N matrix X̂∗(`) with its (t, i)th

3We conjecture that one can replace Ĉ(`−1)Rmax,it
by Ĉ(`−1)R,it in which case X̂∗(`)it becomes

X̂
∗(`)
R,it =


Xit if (i, t) ∈ Ω∗ ∩ Ω

Ĉ
(`−1)
R,it if (i, t) ∈ Ω∗ ∩ Ω⊥

0 if (i, t) ∈ Ω∗⊥

, ` ≥ 1.
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element given by

X̂
∗(`)
it =


Xit if (i, t) ∈ Ω∗ ∩ Ω

Ĉ
(`−1)
Rmax,it

if (i, t) ∈ Ω∗ ∩ Ω⊥

0 if (i, t) ∈ Ω∗⊥

, ` ≥ 1. (3.8)

Note that for observations with (i, t) ∈ Ω∗⊥ we do not need to replace them by the iterated estimates

Ĉ
(`−1)
Rmax,it

in step `. Then we can conduct the singular value thresholding procedure:

Ĉ(`) (R) = SH

(
1

p
X̂∗(`), R

)
= Û

(`)
R Σ̂

(`)
R V̂

(`)′
R , (3.9)

where Û (`)′
R Û

(`)
R = IR, V̂

(`)′
R V̂

(`)
R = IR, and Σ̂

(`)
R is a diagonal matrix that contains the R largest

singular values of X̂∗(`) arranged in descending order along its diagonal line. Following Remark 2,

let ĈR = Ĉ
(`∗)
R and R̂ = arg min0≤R≤Rmax ĈV (R) , where

ĈV (R) =
∑

(i,t)∈Ω∗⊥∩Ω

[
Xit − ĈR,it

]2
. (3.10)

Following the proof of Theorem 3.2, we can also show that P (R̂ = R0) → 1 as (N,T ) → ∞ in this

case.

3.4 Averaging CV and stability selection

The CV method in Sections 3.1 and 3.3 is based on a single random draw for the training set of

observations. The resulting performance of the CV method can be affected by the quality of such a

draw. In practice, we can always average C̃V (R) or ĈV (R) over a large number (say, J) of draws.

Recognizing the notorious diffi culty in the estimation of discrete structures, such as in variable

selection and cluster analysis, Meinshausen and Bühlmann (2010) introduce stability selection based

on subsampling in combination with some selection algorithms. The procedure serves as a general

method to reduce noise by repeating the model selection many times over random splits of the data.

Our CV procedure can benefit from the stability selection since it relies on random data splits. An

additional benefit of stability selection in our context is that it is more robust to the choices of p and

J. The algorithm is given below.

Algorithm 1 (The CV procedure)

1. For (j, k) ∈ [J ]× [K]

(a) Randomly choose a subset of training observations Ω ⊂ [N ]× [T ] where each observation

in X can be chosen with probability p.
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(b) Apply the thresholding SVD in (3.1) or (3.6) to obtain C̃R or that in (3.4) or (3.9) to

obtain ĈR for R = 0, 1, ..., Rmax, respectively. Here C̃0 and Ĉ0 are T × N matrices of

zeros.

(c) For each R ∈ {0, 1, ..., Rmax} , calculate the CV value via (3.2) or (3.7) and denote it as

C̃V
(j,k)

(R) or that via (3.5) or (3.10) and denote it as ĈV
(j,k)

(R) .

2. Let C̃V k (R) = 1
J

∑J
j=1 C̃V

(j,k)
(R) and ĈV k (R) = 1

J

∑J
j=1 ĈV

(j,k)
(R) for k = 1, ...,K. Let

R̃k = arg min
0≤R≤Rmax

C̃V k (R) and R̂k = arg min
0≤R≤Rmax

ĈV k (R) for k = 1, ...,K.

Let R̃ and R̂ denote the modes in {R̃1, ..., R̃K} and {R̂1, ..., R̂K}, respectively. R̃ and R̂ serve

as the estimator of the true number of factors without and with iterations.

We will evaluate the finite sample performance of R̃ and R̂ through simulations by setting K = 10

and J = 5.

4 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to evaluate the finite sample performance of our

proposed EM estimators and CV method.

4.1 Data generating processes

First, we introduce data generating processes (DGP) for the factors and factor loadings. We generate

the factors according to

Ft − µf ιR = ρf (Ft−1 − µf ιR) + vt, t = 1, ..., T

where ιR is an R × 1 vector of ones, µf is a scalar, vt is independent and identically distributed

(i.i.d.) from N(0, (1− ρ2
f )IR), and ρf ∈ (0, 1). To avoid the start-up effect, we throw away the first

1000 observations of {Ft} and use the next T observations for the estimation below. For the factor
loadings, we let λir, i = 1, ..., N and r = 1, ..., R be i.i.d. draws from cs · N(1, 1), where cs is a

constant controlling the signal strength. In addition, F , Λ and ε are mutually independent for all

DGPs.

Next, we introduce the generation of the idiosyncratic error terms εit in DGPs 1—6:

DGP 1. We let εit =
[
0.9 + 0.1(λ′iFt)

2/E(λ′iFt)
2
]
uit, where uit is i.i.d. from t (3) , the student

t-distribution with 3 degrees of freedom. In this case, the error term εit does not have a finite
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fourth moment, which violates Assumption A.2(i). There is conditional heteroskedasticity but

no serial or cross-sectional correlation among εit’s.

DGP 2. The setting is the same as DGP 1 except that uit is i.i.d. from t (5). Now all the

assumptions are satisfied but the tail distribution is not sub-Gaussian.

DGP 3. We generate autoregressive εit via an AR(1) process: εit = ρ1εεi,t−1 + uit, where uit is

i.i.d. N (0, 1) and ρ1ε ∈ (0, 1). In simulation, we delete the first 100 observations to avoid the

start-up effect.

DGP 4. We stack εit into a T × N matrix ε and generate ε = UA, where U is a T × N random

matrix and A is an N × N random matrix. The (t, i)th entry uit of U is i.i.d. from N (0, 1)

and the matrix A controls the cross-sectional dependence. In particular, we let A = V DV ′,

where V is a random orthonormal matrix, D =diag(d1, ..., dN ) is a diagonal matrix, and V and

D are independent. To generate D, we draw N i.i.d. observations {di}Ni=1 from the uniform

distribution U[0.5,1.5]. Then we set

D = diag(N1/8d1, ..., N
1/8db0.1Nc, db0.1Nc+1, ..., dN ),

where b·c returns the integer part of ·. Now, there is strong cross-sectional correlation as we
allow the top 10% of the eigenvalues of D to be O(N1/8). So the weak dependence conditions

on the error terms in Bai and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013) are

not satisfied. We want to examine the performance of different methods in this case.

DGP 5. We generate εit = ρ2εεi−1,t + uit, where uit is i.i.d. N (0, 1). This DGP is similar to DGP

3 except that we now allow the error terms to be cross-sectionally dependent.

DGP 6. We generate εit = uit + ρ3εui,t−1 + ρ3εui−1,t + ρ2
3εui−1,t−1, where uit is i.i.d. N (0, 1) and

ρ3ε ∈ (−1, 1). Note that we now allow for both cross-sectional and serial dependence in the

error terms.

In all our experiments, we let µf = 0.6, ρf = 0.3 and choose cs such that signal to noise ratio

(SNR) equals 4 for each DGP. Specifically, we define SNR as var(λ′iFt)/var(εit).

4.2 Simulation results

In this subsection, we present our simulation results in two parts. In the first part, we examine the

accuracy of the CV method proposed in section 3, measured by the empirical frequency of correct

determination of the number of factors. In the second part, we estimate the model with the true
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number of factors and report the finite sample performance of the proposed estimator introduced in

section 2.

4.2.1 Determining the number of factors

In this part, we use the CV method to determine the number of factors for data with or without

random missing observations. For both cases, we let R0 = 3, and Rmax = 5. In addition, we

set ρ1ε = 0.6, ρ2ε = 0.6 and ρ3ε = 0.3 in DGPs 3, 5 and 6, respectively. For each DGP, we

consider N = 50, 100 and T = 50, 100, leading to four combinations of cross-sectional and time series

dimensions. To implement the averaging CV and stability selection method in Section 3.4, we set

K = 10 and J = 5. For the case of complete data, we consider two leave-out probabilities: p = 0.7,

0.9. For the case of incomplete data, we consider two random missing probabilities: q = 0.7, 0.9 and

use the leave-out probability p = 0.9. The number of replications is 1000 in all cases.

When the original data form a balanced panel, there are existing methods including the growth

ratio (GR) and eigenvalue ratio (ER) of Ahn and Horenstein (2013), the edge distribution (ED) of

Onatski (2010) and the PC and IC methods of Bai and Ng (2002), among others. We also report the

performance of these methods for the purpose of comparison.

TABLE 1 around here.

Table 1 presents the under/over-estimation frequency with complete data. We summarize some

important findings from Table 1. First, for DGP 1 with fat-tailed error terms, our CV method tends

to outperform all existing methods. Specifically, ED, PC and IC over-estimated more than 300 times

out of 1000 for all four combinations of N and T, and GR and ER tend to under-estimate the number

of factors. From the performance of these five existing methods, we can hardly observe any pattern

of convergence. In contrast, the CV method outperforms these methods by a big margin and shows

an obvious pattern of convergence. This indicates the CV method is somewhat robust to error terms

with fat tails. Second, for DGP 2 where error terms are well behaved with no serial or cross-sectional

dependence, all the methods under investigation show a pattern of convergence, and the CV method

with p = 0.9 obviously outperforms all the other methods. Third, for DGPs 3—6 where either serial

dependence or cross-sectional dependence, or both are present in the error terms, the performance

of various methods are similar to that for DGP 2. Among all the methods under study, ER, PC and

IC tend to be outperformed by the CV and ED methods. Fourth, in general, the results for the CV

method with p = 0.9 are better than that with p = 0.7. Therefore, we recommend the use of p = 0.9

in empirical applications.

When the original data has random missing observations, existing methods such as ED, GR, ER,
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PC and IC are not directly applicable. We modify the methods in two ways:

(M-1) We replace the missing observations by zeros and obtain the estimators of R based on ED,

GR, ER, PC and IC.

(M-2) Following our theoretical analysis in Sections 2-3, we can replace the missing observations by

the predicted values to work on the estimated data matrix X̂, where

X̂it =

 Xit if (i, t) ∈ Ω

ĈRmax,it if (i, t) ∈ Ω⊥
, ` ≥ 1,

where ĈRmax,it is the EM estimator of Cit with Rmax factors. For ED, GR and ER, we can find

the eigenvalues of X̂ ′X̂/(NT ) and then apply the procedures to these eigenvalues; for PC and

IC, we can replace σ̂2(R) in the usual definitions by σ̂2(R) = 1
|Ω|
∑

(i,t)∈Ω

[
Xit − ĈR,it

]2
.

TABLE 2 around here.

Table 2 presents the under/over-estimation frequency with incomplete data over 1000 Monte

Carlo replications for q = 0.7. The case for q = 0.9 is reported in Table A1 in the additional online

supplement. We consider the three CV methods discussed in Section 3.4, namely, C̃V (R) , ĈV (R)

with Ĉ(`−1)
Rmax,it

used in the `th iteration, and ĈV (R) with Ĉ(`−1)
R,it used in the `th iteration. As before,

we stop the iterations when ` = `∗ and denote these three cases as CV (0), CV
(`∗)
Rmax

and CV
(`∗)
R ,

respectively in Tables 2 and A1, where CV (0) signifies that no iteration is used in the procedure.

We summarize some important findings from Table 2. First, when the proportion of missing

observations is large (q = 0.7 in Table 2), all the three CV methods yield decreasing percentage of

under/over-estimation frequency as either N or T increases, and CV (`∗)
R and CV (`∗)

Rmax
have better finite

sample performance than CV (0). Therefore, the iterations to complete some missing observations

can help improve the finite performance of the CV method. In general, CV (`∗)
R and CV (`∗)

Rmax
have

similar performance with the latter being slightly better. Second, for the other methods, either

modification (M-1 or M-2) does not appear promising. The M-1 of ED shows some convergence

pattern but the finite sample performance is not as good as either CV (`∗)
R or CV (`∗)

Rmax
; the M-2 of

ED always over-estimates the number of factors; the M-1 of GR and ER always under-estimates the

number of factors, the M-2 of GR and ER is also badly behaved; and both M-1 and M-2 of PC and

IC always over-estimate the number of factors. Third, when the proportion of missing observations

is small (q = 0.9 in Table A1 in the online supplement), the three CV methods all outperform both

M-1 and M-2 of existing methods for most cases. Among the other methods, only the M-1 of ED

shows a pattern of convergence in all cases.
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4.2.2 Estimation of Λ and F

In this subsection, we work on the scenario with random missing observations where q = 0.7 and

0.9. We estimate the factors and factor loadings using the method introduced in Section 2 and make

inference on factors. For simplicity, we focus on the case where R0 = 1.We set ρ1ε = 0.25, ρ2ε = 0.25

and ρ3ε = 0.3 in DGPs 3, 5 and 6.

TABLE 3 around here.

Tables 3 shows the estimation results for q = 0.7 with ` = 0, 5, 20 and ∞, where ` = ∞
corresponds to the final EM estimate. The corresponding results for q = 0.9 are reported in Table

A2 in the additional online supplement. We also present the results of the oracle estimates for

comparison. The first measure of consistency is mean squared error (MSE) of Cit and the second is

average correlation coeffi cients between {F̂t}Tt=1 and {F 0
t }Tt=1 which is defined as

R2(F̂ ) =
trace(F 0′F̂ (F̂ ′F̂ )−1F̂ ′F 0′)

trace(F 0′F 0′)
.

We summarize some findings from Table 3. First, the MSE becomes smaller and R2(F̂ ) becomes

larger as ` increases from zero to 5. But further increases of ` does not help much in the reduction

of the MSE or the increase of R2 in general. Second, the EM estimates in the presence of random

missing are less effi cient than the oracle estimate. This is consistent with Remark 3 in Section 2.3.

In fact, despite the presence of serial dependence, or cross-sectional dependence, or both in DGPs

3-6, the MSE of the EM estimator is approximately equal to that of the oracle estimator multiplied

by 1/q in DGPs 2-6. DGP 1 is an exception because of the violation of the moment conditions on

the error terms.

To make inference on F 0, we follow the lead of Bai (2003) and consider the regression model:

F 0 = F̂ (`)β+ error, where ` = 0 or `∗. Let β̂ denote the least squares estimator of β. Then the 95%

confidence interval for L′F 0
t is

[L′β̂
′
F̂

(`)
t − 1.96

(
L′β̂

′
Σ̂

(`)
Ft
β̂L
)1/2

/
√
N,L′β̂

′
F̂

(`)
t + 1.96

(
L′β̂

′
Σ̂

(`)
Ft
β̂L
)1/2

/
√
N ].

To estimate the covariance matrix, we consider both the standard covariance matrix estimate based

on Γ̂
(1)
1g,t and the robust one based on Γ̂

(2)
1g,t introduced in Section 2.4, which are labeled as “standard”

and “robust”in Table 4 below. To obtain Γ̂
(2)
1g,t, we need to specify two parameters c0 and γ2 : c0 = 1

and γ2 = 0.5.

TABLE 4 around here.

Table 4 reports the results of inference on factors when q = 0.7 and the corresponding results for

q = 0.9 are reported in Table A3 in the online supplement. We report both the coverage probability
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(CP) and average length (Length) of the 95% confidence intervals when F 0
t is estimated by the EM

method with ` = 0 and `∗. We find some interesting results. First, Table 4 suggests the average

length of the EM estimator with no iterations (i.e., ` = 0) is much larger than that with ` = `∗.

This reflects the effi ciency gain from iterations. Second, for DGPs 2—3 where there is no correlation

across i for the error terms, both standard and robust covariance estimators provide asymptotically

valid inferences. The coverage probabilities are near the nominal coverage probabilities in this case.

Third, for DGPs 4 and 6 where there is cross-sectional dependence across i, the coverage probability

using standard covariance estimator tends to be smaller than that using robust covariance estimator.

This suggests that ignoring the cross-sectional dependence may lead to the underestimation of the

standard errors. In general, the confidence intervals constructed using robust covariance estimator

have coverage probability near the nominal one. Similar findings hold true for DGPs 1 and 5 that

do not satisfy all the assumptions in the paper and are used for robustness check.

5 Empirical Application: Forecasting Macroeconomic Variables

In this section, we show the usefulness of the proposed method by considering factor-augmented

regressions to forecast macroeconomic variables. The procedure starts from estimating a set of latent

factors using panel data. In practice, some variables have missing observations due to short collection

history or lagged publications. A simple and frequently used method to deal with this problem is

to delete those units/variables with missing observations to obtain a balanced panel and the PC

estimators of latent factors (PC-F). However we may lose some useful information by doing so. To

exploit information of predictors with missing observations, we can use the EM estimators to estimate

latent factors (EM-F). In our application, we use EM-F or PC-F to forecast macroeconomic variables,

respectively. Then we show that EM-F outperforms PC-F in terms of mean squared error.

In particular, we consider the forecasts of U.S. real gross domestic product (RGDP), gross do-

mestic product (GDP), industrial production (IP) and real disposal personal income (RDPI) at 1, 2

and 4 quarter horizons. These four time series are collected from the Federal Reserve Bank website.

5.1 Implementation

We use a panel dataset FRED-QD, which is an unbalanced panel at the quarterly frequency. FRED-

QD is a quarterly frequency companion of FRED-MD that is introduced by McCracken and Ng

(2016, MN hereafter). The dataset consists of 248 quarterly U.S. indicators from 1959Q1 to 2018Q2.

We use 125 time series that are used in Stock and Watson (2002) to estimate the latent factors.

We take 1960Q1 as the start of the sample. Then we lose two periods of observations due to
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data transformations as in MN and obtain an unbalanced panel with (T,N) = (236, 125). There

are 37 variables containing 1594 missing observations in total. Following the lead of MN, we check

for outliers in each variable where an outlier is defined as an observation that deviates from the

observed sample median by more than 10 times interquantile range. The outliers are removed and

treated as missing observations. As a result, the total number of missing observations becomes 1602

(q̂ = 0.946). All columns of the data matrix X are standardized to have zero mean and unit standard

deviation before estimating EM-F. To estimate PC-F, we drop 37 variables with missing observations

to obtain a balanced panel with (T,N) = (236, 88). We also standardize the balanced panel before

estimating PC-F. We estimate the first factor by PC and EM and use them to do the out-of-sample

forecasting.

Next, we consider the forecast based on the following factor-augmented autoregression (FA-AR)

models:

yht+h = φ
(1)
h + φ

(2)
h (L)F̂t + φ

(3)
h (L)yt + εht+h, h = 1, 2, 4, (5.1)

where yt is one of the four macro-variables (i.e., RGDP, GDP, IP, and RDPI), F̂t is the estimated

factor, φ(1)
h is the intercept term, L is the lag operator, and φ

(2)
h (L) and φ

(3)
h (L) are finite-order

polynomials of the lag operators. For all four variables to be forecasted, we treat them as I(1) series

and define the dependent variable as average annualized quarterly growth rate. As an example, for

IP, we define

yht+h = (400/h) ln(IPt+h/IPt) and yt = 400 ln(IPt/IPt−1).

All the models are estimated recursively by ordinary least squares (OLS). We use BIC to select the

number of autoregressive lags (from 0 to 6) and lags of the first factor (from 1 to 6) in EM-F and

PC-F, respectively.

5.2 Forecast results

We consider three out-of-sample periods, namely, 1987Q1-2016Q4, 1997Q1-2016Q4 and 2007Q1-

2016Q4. Table 5 reports the mean squared error (MSE) of forecasts using EM-F and its ratio to the

MSE associated with autoregression (AR) or FA-AR using PC-F, where the AR model is used with

F̂t absent in (5.1) and the number of lags are also determined by the BIC. Ratios smaller than one

are in favor of the method using EM-F. For all the four macroeconomic variables under investigation,

the forecasts using EM-F outperforms the forecasts only using autoregression. Therefore, we can

conclude that the estimated latent factors contain some predictive power. For Real GDP, IP and

RDPI, the forecast using EM-F provides smaller MSE for almost all horizons and periods compared

to that using PC-F. For GDP, we can see that the forecasts using EM-F and PC-F have comparable
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performance. In short, the EM estimation of the factors generally help the out-of-sample forecast of

some major macroeconomic variables.

TABLE 5 around here.

6 Conclusion

In this paper we study the asymptotic properties of the EM estimators of factors and factor loadings

in an approximate factor model with random missing. Based on the asymptotic results, we also

propose a novel cross-validation method to determine the number of factors in factor models with or

without random missing observations. Simulations demonstrate the good finite sample performance

of the proposed method and empirical applications suggest the usefulness of our method.

The paper can be extended in various directions. First, we only consider random missing and

it is possible to extend our method to allow for missing with certain patterns. Second, we focus

on a pure approximate factor model and one may consider the extension to the panel data models

with multi-factor error structure and random missing values (see, Bai et al. (2015) and Athey et al.

(2017)). We are exploring some of these topics in ongoing works.

APPENDIX

A Proofs of the main results in Section 2

In this appendix, we prove the main results in Section 2 by calling upon some technical lemmas

whose proofs can be found in the online supplement. For notational simplicity, we will use F̃ , Λ̃, C̃,

D̃, H̃, F̃t, λ̃i and C̃it to denote F̂ (0), Λ̂(0), Ĉ(0), D̂(0), Ĥ(0), F̂
(0)
t , λ̂

(0)

i and Ĉ(0)
it , respectively.

To prove Theorem 2.1, we need the following lemma.

Lemma A.1 Suppose that Assumptions A.1-A.2 hold. Then T−1F̃ ′
(
NT q̃2

)−1
X̃X̃ ′F̃ = D̃ = D +

δ
−(1−γ/2)
NT , where γ = γ1 ∨ γ2, D̃ is an R×R diagonal matrix consisting of the R largest eigenvalues

of
(
NT q̃2

)−1
X̃X̃ ′, and D is an R × R matrix consisting of the R eigenvalues of ΣΛ0ΣF 0 , arranged

in descending order along the diagonal line.

Proof of Theorem 2.1. From the principal component analysis, we have the identity
(
NT q̃2

)−1
X̃X̃ ′F̃ =

F̃ D̃. By Lemma A.1 and Assumption A.1, D̃ is asymptotically nonsingular so that we can post-

multiply both sides by D̃−1 to obtain F̃ =
(
NT q̃2

)−1
X̃X̃ ′F̃ D̃−1. Recall that H̃ =

(
N−1Λ0′Λ0

)−1
T−1F 0′F̃ D̃−1.
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Noting that the (t, i)th element of X̃ is given by X̃it =
(
λ0′
i F

0
t + εit

)
git = λ0′

i F
0
t q+εitgit+λ

0′
i F

0
t (git − q) ,

we have

F̃t − H̃ ′F 0
t =

1

NT q̃2
D̃−1

T∑
s=1

F̃s

N∑
i=1

{E (εisεit) gisgit + [εisεit − E (εisεit)] gisgit

+F 0′
s λ

0
i εitgisgit + F 0′

t λ
0
i εisgisgit + F 0′

s λ
0
iλ

0′
i F

0
t (gis − q) q

+F 0′
s λ

0
iλ

0′
i F

0
t (git − q) q + F 0′

s λ
0
iλ

0′
i F

0
t (gis − q) (git − q)}+Op((NT )−1/2)

≡ a1t + a2t + ...+ a7t+Op((NT )−1/2), (A.1)

where, e.g., a1t = 1
NT q̃2

D̃−1
∑T

s=1 F̃s
∑N

i=1E (εisεit) gisgit and the first equality used the fact q̃− q =

Op((NT )−1/2). It follows that T−1
∑T

t=1

∥∥∥F̃t − H̃ ′F 0
t

∥∥∥2
≤ 7

∑7
l=1 T

−1
∑T

t=1 ‖alt‖
2 +Op((NT )−1/2) by

the Cauchy-Schwarz (CS) inequality. For a1t, we have

T−1
T∑
t=1

‖a1t‖2 ≤
∥∥∥D̃−1

∥∥∥2
T−1

T∑
t=1

∥∥∥∥∥ 1

T q̃2

T∑
s=1

F̃s
1

N

N∑
i=1

E (εisεit) gisgit

∥∥∥∥∥
2

≤ 1

T q̃4

∥∥∥D̃−1
∥∥∥2 1

T

T∑
s=1

∥∥∥F̃s∥∥∥2 1

T

T∑
s=1

T∑
t=1

∣∣∣∣∣ 1

N

N∑
i=1

E (εisεit) gisgit

∣∣∣∣∣
2

≤ R

T q̃4

∥∥∥D̃−1
∥∥∥2 1

T

T∑
s=1

T∑
t=1

|γN (s, t)|2 = OP
(
T−1

)
,

where the second inequality follows from the CS inequality and the third inequality follows from the

fact that 1
T

∑T
s=1

∥∥∥F̃s∥∥∥2
= 1

T tr(F̃
′F̃ ) =tr(IR) = R and that |git| ≤ 1, and the last equality holds by

Assumption A.2. Similarly, for a2t, we have

T−1
T∑
t=1

‖a2t‖2 ≤
∥∥∥D̃−1

∥∥∥2
T−1

T∑
t=1

∥∥∥∥∥ 1

T q̃2

T∑
s=1

F̃sζ1g,st

∥∥∥∥∥
2

≤ R

T q̃4

∥∥∥D̃−1
∥∥∥2 1

T

T∑
s=1

T∑
t=1

ζ2
1g,st,

where ζ1g,st = 1
N

∑N
i=1 [εisεit − E (εisεit)] gisgit. Noting that

ζ1g,st =
1

N

N∑
i=1

[εisεit − E (εisεit)]
{
q2 + (gis − q)q + (git − q)q + (gis − q)(git − q)

}
≡ ζ1g,st1 + ζ1g,st2 + ζ1g,st3 + ζ1g,st4,

where, e.g., ζ1g,st1 = 1
N

∑N
i=1 [εisεit − E (εisεit)] q

2, we have ζ2
1g,st ≤ 4

∑4
l=1 ζ

2
1g,stl. By Assumption

A.2,

1

T

T∑
s=1

T∑
t=1

E
(
ζ2

1g,st,1

)
=

q4

TN

T∑
s=1

T∑
t=1

E

[
1

N1/2

N∑
i=1

[εisεit − E (εisεit)]

]2

= O (T/N) ,

1

T

T∑
s=1

T∑
t=1

E
(
ζ2

1g,st,2

)
=

q2

T

T∑
s=1

T∑
t=1

E

[
1

N

N∑
i=1

[εisεit − E (εisεit)] (gis − q)
]2

=
q2

TN2

T∑
s=1

T∑
t=1

N∑
i=1

E [εisεit − E (εisεit)]
2 = O (T/N) .
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Similarly, we can show that 1
T

∑T
s=1

∑T
t=1E(ζ2

1g,st,l) = O (T/N) for l = 3, 4. Then T−1
∑T

t=1 ‖a2t‖2 =

OP
(
N−1

)
by Markov inequality. For a3t, we have

T−1
T∑
t=1

‖a3t‖2 ≤
∥∥∥D̃−1

∥∥∥2
T−1

T∑
t=1

∥∥∥∥∥ 1

T q̃2

T∑
s=1

F̃sζ2g,st

∥∥∥∥∥
2

≤ R

q̃4

∥∥∥D̃−1
∥∥∥2 1

T 2

T∑
s=1

T∑
t=1

ζ2
2g,st,

where ζ2g,st = 1
N

∑N
i=1 F

0′
s λ

0
i εitgisgit. Using gis = q + (gis − q), we have

1

T 2

T∑
s=1

T∑
t=1

ζ2
2g,st ≤

2

T 2

T∑
s=1

T∑
t=1

[
1

N

N∑
i=1

F 0′
s λ

0
i εitgitq

]2

+
2

T 2

T∑
s=1

T∑
t=1

[
1

N

N∑
i=1

F 0′
s λ

0
i εitgit (gis − q)

]2

≡ 2A1 + 2A2, say.

Noting that 1
T

∑T
t=1E

∥∥∥ 1
N

∑N
i=1 λ

0
i εitgit

∥∥∥2
= 1

N2T

∑T
t=1

∑N
i=1E[

∥∥λ0
i

∥∥2
ε2
it]E

(
g2
it

)
= O

(
N−1

)
un-

der Assumptions A.1(ii) and A.2(i), we have A1 ≤ 1
T

∑T
s=1

∥∥F 0
s

∥∥2 1
T

∑T
t=1

∥∥∥ 1
N

∑N
i=1 λ

0
i εitgit

∥∥∥2
=

OP
(
N−1

)
. Similarly, A2 = OP

(
T−1

)
by Markov inequality. It follows that T−1

∑T
t=1 ‖a3t‖2 =

OP
(
N−1 + T−1

)
. Analogously, we can show that T−1

∑T
t=1 ‖a4t‖2 = OP

(
N−1 + T−1

)
.

For a5t, we have

T−1
T∑
t=1

‖a5t‖2 ≤
q2

q̃4

∥∥∥D̃−1
∥∥∥2
T−1

T∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

F̃sζ3g,st

∥∥∥∥∥
2

≤ Rq2

q̃4

∥∥∥D̃−1
∥∥∥2 1

T 2

T∑
t=1

T∑
s=1

ζ2
3g,st = OP

(
N−1

)
,

where ζ3g,st = 1
N

∑N
i=1 F

0′
s λ

0
iλ

0′
i F

0
t (gis − q) and the last equality follows from the Markov inequality

and the fact that 1
T 2
∑T

t=1

∑T
s=1E(ζ2

3g,st) = q(1−q)
N2T 2

∑N
i=1

∑T
t=1

∑T
s=1E[

(
F 0′
s λ

0
iλ

0′
i F

0
t

)2
] = O

(
N−1

)
.

Similarly, we can show that T−1
∑T

t=1 ‖a6t‖2 = OP
(
N−1

)
and T−1

∑T
t=1 ‖a7t‖2 = OP

(
N−1

)
.

In sum, we have shown that T−1
∑T

t=1

∥∥∥F̃t − H̃ ′F 0
t

∥∥∥2
= OP

(
N−1 + T−1

)
. �

To prove Theorem 2.2, we need the following lemma.

Lemma A.2 Suppose that Assumptions A.1-A.3 hold. Then
(i) T−1F̃ ′F 0 = Q+OP (δ

−(1−γ/2)
NT ),

(ii) H̃ = Q−1 +OP (δ
−(1−γ/2)
NT ),

(iii) 1
T

∑T
t=1(F̃t − H̃F 0

t )εitgit = OP
(
δ−2
NT

)
,

(iv) 1
T

∑T
t=1(F̃t − H̃ ′F 0

t )(F̃t − H̃ ′F 0
t )′git = OP

(
δ−2
NT

)
,

(v) 1
T

∑T
t=1 F̃t(F̃t − H̃ ′F 0

t )′git = OP
(
δ−2
NT

)
,

(vi) 1
T

∑T
t=1(F̃t − H̃ ′F 0

t )F 0′
t H̃(git − q) = OP

(
δ−2
NT

)
,

(vii) 1
T

∑T
t=1 F̃tF̃

′
t(git − q) = H̃ ′ 1T

∑T
t=1 F

0
t F

0′
t H̃(git − q) +OP

(
δ−2
NT

)
,

(viii) H̃H̃ ′ = ( 1
T F

0′F 0)−1 +OP
(
δ−2
NT

)
.

Proof of Theorem 2.2. (i) By the decomposition in (A.1) and Lemma A.1, it suffi ces to

show that Alt = D̃alt = oP
(
N−1/2

)
for l = 1, 2, 4, 5, 7 and

√
ND̃ (a3t + a6t)

d→ N (0, QΓg,tQ
′) .
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For A1t, we make the following decomposition A1t = 1
NT q̃2

∑T
s=1

(
F̃s − H̃ ′F 0

s

)∑N
i=1E (εisεit) gisgit

+ H̃′

q̃2
1
NT

∑T
s=1 F

0
s

∑N
i=1E (εisεit) gisgit ≡ A1t,1 + H̃′

q̃2
A1t,2. By the CS inequality and Theorem 2.1,

‖A1t,1‖ ≤
1

q̃2

{
1

T

T∑
s=1

∥∥∥F̃s − H̃ ′F 0
s

∥∥∥2
}1/2

 1

T

T∑
s=1

∥∥∥∥∥ 1

N

N∑
i=1

E (εisεit) gisgit

∥∥∥∥∥
2


1/2

= OP
(
δ−1
NT

)
OP (T−1/2),

where we use the fact that 1
T

∑T
s=1

∥∥∥ 1
N

∑N
i=1E (εisεit) gisgit

∥∥∥2
≤ 1

T maxt
∑T

s=1 |γN (s, t)|2 = O
(
T−1

)
.

For A1t,2, we have E ‖A1t,2‖ ≤
maxs E‖F 0s ‖

T

∑T
s=1 |γN (s, t)| = O

(
T−1

)
. It follows that A1t,2 =

OP
(
T−1

)
and A1t = OP

(
δ−1
NTT

−1/2
)
. For A2t, we have

A2t =
1

NT q̃2

T∑
s=1

(
F̃s − H̃ ′F 0

s

) N∑
i=1

χi,stgisgit +
H̃ ′

q̃2

1

NT

T∑
s=1

F 0
s

N∑
i=1

χi,stgisgit ≡ A2t,1 +
H̃ ′

q̃2
A2t,2,

where χi,st = εisεit−E (εisεit) .As in the analysis ofA1t,1, we can show that ‖A2t,1‖ = OP
(
δ−1
NT

)
OP
(
N−1/2

)
by the CS inequality and Theorem 2.1. For A2t,2, we make the following decomposition

A2t,2 =
1

NT

T∑
s=1

F 0
s

N∑
i=1

χi,st
[
q2 + (gis − q) q + (git − q)q + (gis − q) (git − q)

]
≡

4∑
l=1

A2t,2l.

By straightforward moment calculations, we can show that E ‖A2t,2l‖2 = O((NT )−1) under As-

sumptions A.3(i) and A.1(i) for l = 1, 2, 3, 4. Then A2t,2 = OP ((NT )−1/2). For A3t, we use

gis = q + (gis − q) and F̃s = (F̃s − H̃ ′F 0
s ) + H̃ ′F 0

s to make the following decomposition

A3t =
1

T q̃2

T∑
s=1

F̃sF
0′
s

1

N

N∑
i=1

λ0
i εitgisgit

=
q

T q̃2

T∑
s=1

F̃sF
0′
s

1

N

N∑
i=1

λ0
i εitgit +

1

T q̃2

T∑
s=1

(F̃s − H̃ ′F 0
s )F 0′

s

1

N

N∑
i=1

λ0
i εitgit(gis − q)

+
H̃ ′

q̃2

[
1

T

T∑
s=1

F 0
s F

0′
s

1

N

N∑
i=1

λ0
i εitgit(gis − q)

]
≡ A3t,1 +A3t,2 +

H̃ ′

q̃2
A3t,3.

By the CS inequality and Theorem 2.1,

‖A3t,2‖ ≤
1

q̃2

{
1

T

T∑
s=1

∥∥∥F̃s − H̃ ′F 0
s

∥∥∥2
}1/2

 1

T

T∑
s=1

∥∥∥∥∥F 0′
s

1

N

N∑
i=1

λ0
i εitgit(gis − q)

∥∥∥∥∥
2


1/2

= OP (δ−1
NT )OP (N−1/2),

where we use the fact that 1
T

∑T
s=1E

∥∥∥F 0′
s

1
N

∑N
i=1 λ

0
i εitgit(gis − q)

∥∥∥2
= O

(
N−1

)
. For A3t,3, it is easy

to verify that E (A3t,3) = O
(
T−1

)
and E ‖A3t,3‖2 = O((NT )−1 +T−2). Then A3t,3 = OP (δ−1

NTT
−1/2)

and A3t = 1
T F̃
′F 0 1

Nq

∑N
i=1 λ

0
i εitgit+OP

(
δ−2
NT

)
, where we use the fact that q̃ = q+OP ((NT )−1/2). For
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A4t, we apply git = q+ (git − q) and F̃s = (F̃s − H̃ ′F 0
s ) + H̃ ′F 0

s to make the following decomposition

A4t =
q

NT q̃2

T∑
s=1

(
F̃s − H̃ ′F 0

s

) N∑
i=1

λ0′
i εisgisF

0
t +

1

NT q̃2

T∑
s=1

(
F̃s − H̃ ′F 0

s

) N∑
i=1

λ0′
i εisgis (git − q)F 0

t

+
qH̃ ′

q̃2

[
1

NT

T∑
s=1

F 0
s

N∑
i=1

λ0′
i εisgis

]
F 0
t +

H̃ ′

q̃2

[
1

NT

T∑
s=1

F 0
s

N∑
i=1

λ0′
i εisgis (git − p)

]
F 0
t

≡ A4t,1F
0
t +A4t,2F

0
t +

qH̃ ′

q̃2
A4t,3F

0′
t +

H̃ ′

q̃2
A4t,4F

0
t .

For A4t,1 and A4t,2, we can readily use the CS inequality and Theorem 2.1 to show that A4t,1 =

OP
(
δ−1
NTN

−1/2
)
and A4t,2 = OP

(
δ−2
NT

)
. For A4t,3 we apply git = q+(git − q) , the CS inequality, and

Assumption A.3(ii) to obtain E ‖A4t,3‖2 ≤ 2
N2T 2

E||
∑T

s=1

∑N
i=1 F

0
s λ

0′
i εisq||2 + 2

N2T 2
E||
∑T

s=1

∑N
i=1 F

0
s λ

0′
i εis

× (gis − q) ||2 = O
(
(NT )−1

)
+ O

(
(NT )−1

)
= O

(
(NT )−1

)
. It follows that A4t,3 = OP ((NT )−1/2).

Similarly, A4t,4 = OP ((NT )−1/2). Then A4t = OP (δ−2
NT ).

For A5t, we use F̃s = (F̃s − H̃ ′F 0
s ) + H̃ ′F 0

s to obtain

A5t =
q

q̃2

[
1

T

T∑
s=1

(F̃s − H̃ ′F 0
s )F 0′

s

1

N

N∑
i=1

λ0
iλ

0′
i (gis − q)

]
F 0
t +

qH̃ ′

q̃2

[
1

NT

T∑
s=1

F 0
s F

0′
s

N∑
i=1

λ0
iλ

0′
i (gis − q)

]
F 0
t

≡ q

q̃2
A5t,1F

0
t +

pH̃ ′

q̃
A5t,2F

0′
t .

By the CS inequality and Theorem 2.1,

‖A5t,1‖ =

{
1

T

T∑
s=1

∥∥∥F̃s − H̃ ′F 0
s

∥∥∥2
}1/2

 1

T

T∑
s=1

∥∥∥∥∥F 0′
s

1

N

N∑
i=1

λ0
iλ

0′
i (gis − q)

∥∥∥∥∥
2


1/2

= OP (δ−1
NTN

−1/2),

where we use the fact that 1
T

∑T
s=1E

∥∥∥F 0′
s

1
N

∑N
i=1 λ

0
iλ

0′
i (gis − q)

∥∥∥2
= O

(
N−1

)
. Similarly, E ‖A5t,2‖2 =

q(1−q)
(NT )2

∑T
s=1

∑N
i=1E

∥∥F 0
s F

0′
s λ

0
iλ

0′
i

∥∥2
= O((NT )−1) under Assumption A.1(iii).ThenA5t,2 = OP ((NT )−1/2)

and A5t = OP
(
δ−2
NT

)
. For A6t, we apply the fact that q̃ = q +OP ((NT )−1/2) to obtain

A6t =
1

T
F̃ ′F 0 q√

Nq̃2

N∑
i=1

λ0
iλ

0′
i F

0
t (git − q) =

1

T
F̃ ′F 0 1√

Nq

N∑
i=1

λ0
iλ

0′
i F

0
t (git − q) +OP ((NT )−1/2).

ForA7t, we haveA7t = [ 1
T q̃2

∑T
s=1

(
F̃s − H̃ ′F 0

s

)
F 0′
s

1
N

∑N
i=1 αi,st]F

0
t + H̃′

q̃2
[ 1
T

∑T
s=1 FsF

0′
s

1
N

∑N
i=1 αi,st]F

0
t

≡ A7t,1F
0
t + H̃′

q̃2
A7t,2F

0′
t , where αi,st = λ0

iλ
0′
i (gis − q) (git − q) . As in the analysis of A5t, we can readily

show that A7t,1 = OP
(
δ−2
NT

)
and A7t,2 = OP ((NT )−1/2). Then A7t,1 = OP (δ−2

NT ).

In sum, we have

√
N(F̃t − H̃ ′F 0

t ) = D̃−1 1

T
F̃ ′F 0 1√

Nq

N∑
i=1

λ0
i

[
εitgit + λ0′

i F
0
t (git − q)

]
+OP (N1/2δ−2

NT ). (A.2)
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By Assumption A.4(i), 1√
Nq

∑N
i=1 λ

0
i εitgit

d→ N (0,Γ1g,t) . Let ω ∈ RR be a nonrandom vector with

‖ω‖ = 1. Let ϕit = 1√
Nq
ω′λ0

iλ
0′
i F

0
t (git − q) and GtNi = σ

(
{gjt, j ≤ i),Λ0, F 0

t

)
, the sigma-field gener-

ated from {gjt, j ≤ i} and (Λ0, F 0). Let Gt = σ
(
∪∞N=1GtNN

)
. By the independence of git along the

i-dimension, we have E (ϕit|FNt,i−1,t) = 0 and

N∑
i=1

E
(
ϕ2
it|GtN,i−1

)
=

1− q
Nq

N∑
i=1

(
ω′λ0

iλ
0′
i F

0
t

)2
= ω′

(
1− q
Nq

N∑
i=1

λ0
iλ

0′
i

(
F 0′
t λ

0
i

)2)
ω

p→ ω′Γ2g,tω.

Let ε = 4
λ2
−4. Then by Assumption A.1(ii),

∑N
i=1E(|ϕit|2+ε/2 |GtN,i−1) ≤ ‖F

0
t ‖2+ε/2
Nδ/2

1
N

∑N
i=1

∥∥λ0
i

∥∥4+ε p→
0, which is suffi cient for the conditional Lindeberg condition in Häusler and Luschgy (2015). Then

by the stable martingale central limit theorem (e.g., Theorem 6.1 in Häusler and Luschgy (2015)),

we have
1√
Nq

N∑
i=1

λ0
iλ

0′
i F

0
t (git − q) =

N∑
i=1

ϕit → N (0,Γ2g,t) Gt-stably as N →∞,

where Γ2g,t is Gt∞ measurable. Noting that Cov( 1√
Nq

∑N
i=1 λ

0
i εitgit,

1√
Nq

∑N
i=1 λ

0
iλ

0′
i F

0
t (git − q)) =

1
Nq2

∑N
i=1

∑N
j=1 E(λ0

iλ
0′
j εitλ

0′
j F

0
t )E [git (gjt − q)] = 1−q

Nq

∑N
i=1E

[
λ0
iλ

0′
i εitλ

0′
i F

0
t

]
= 0 by the i.i.d. of

git, the independence between {git} and
{

Λ0, F 0, ε
}
, and Assumption A.2(i), we also have

1√
Nq

N∑
i=1

λ0
i

[
εitgit + λ0′

i F
0
t (git − q)

]
→ N (0,Γ1g,t + Γ2g,t) Gt-stably as N →∞.

Then by Lemmas A.1(i) and A.2(i) and Corollary 6.3 in Häusler and Luschgy (2015), we have

√
N(F̃t − H̃ ′F 0

t ) = D̃−1 1

T
F̃ ′F 0 1√

Nq

N∑
i=1

λ0
i

[
εitgit + λ0′

i F
0
t (git − q)

]
+OP

(
N1/2δ−2

NT

)
→ N

(
0, D−1Q (Γ1g,t + Γ2g,t)Q

′D−1
)
Gt-stably as (N,T )→∞.

This completes the proof of (i).

(ii) Noting that Λ̃′ = 1
T q̃ F̃

′X̃, X̃ = (F 0Λ0′ + ε) ◦G, and 1
T

∑T
t=1 F̃tF̃

′
t = IR, we have

λ̃i − H̃−1λ0
i =

1

T q̃

T∑
t=1

F̃t
(
εit + F 0′

t λ
0
i

)
git − H̃−1λ0

i

=
1

T q̃

T∑
t=1

F̃t

{
εit +

[
F̃ ′tH̃

−1 +
(
F 0′
t − F̃ ′tH̃−1

)]
λ0
i

}
git − H̃−1λ0

i

=
H̃ ′

T q̃

T∑
t=1

F 0
t εitgit +

1

T q̃

T∑
t=1

(
F̃t − H̃ ′F 0

t

)
εitgit +

1

T q̃

T∑
t=1

F̃t

(
H̃ ′F 0

t − F̃t
)′
H̃−1λ0

i git

+
1

T q̃

T∑
t=1

F̃tF̃
′
tH̃
−1λ0

i (git − q) +
q − q̃
q̃

H̃−1λ0
i

≡ B1i +B2i +B3i +B4i +B5i, say.
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By Lemma A.2(ii)-(v) and (vii),
√
TB1i = H̃ ′ 1√

Tq

∑T
t=1 F

0
t εitgit+oP (1) and

√
TBli = OP

(
T 1/2δ−2

NT

)
=

oP (1) for l = 2, 3. By Lemma A.2(ii) and (vii),
√
TB4i = H̃ ′ 1√

Tq

∑T
t=1 F

0
t F

0′
t λ

0
i (git−q)+OP

(
T 1/2δ−2

NT

)
.

Noting that q̃ − q = OP ((NT )−1/2), we have
√
TB5i = OP (N−1/2). Therefore we have shown that

√
T
(
λ̃i − H̃−1λ0

i

)
= H̃ ′

1√
Tq

T∑
t=1

F 0
t

[
εitgit + F 0′

t λ
0
i (git − q)

]
+OP (T 1/2δ−2

NT ). (A.3)

Recall that GiT t = σ
(
{gis, s ≤ t), λ0

i , F
0
)
denotes the sigma-field generated from {{gis, s ≤ t)} and

(λ0
i , F

0) and Gi = σ
(
∪∞T=1GiTT

)
. Following the analysis at the end of the proof of part (i), we can

show that

√
T
(
λ̃i − H̃−1λ0

i

)
→ N

(
0, (Q′)−1 (Φ1g,t + Φ2g,t) (Q)−1

)
Gi-stably as N →∞,

where we use Lemma A.2(ii) and the fact Cov( 1√
Tq

∑T
t=1 F

0
t εitgit,

1√
Tq

∑T
t=1 F

0
t F

0′
t λ

0
i (git − q)) = 0.

(iii) Let ς it = εitgit + λ0′
i F

0
t (git − q) . By the proofs of (i) and (ii),

C̃it − C0
it = λ0′

i (H̃ ′)−1(F̃t − H̃ ′F 0
t ) + F̃ ′t(λ̃i − H̃−1λ0

i )

= λ0′
i (H̃ ′)−1(F̃t − H̃ ′F 0

t ) + F 0′
t H̃(λ̃i − H̃−1λ0

i ) +OP ((NT )−1/2)

= λ0′
i (H̃ ′)−1D̃−1(

1

T
F̃ ′F 0)

1

Nq

N∑
i=1

λ0
i ς it + F 0′

t H̃H̃
′ 1

Tq

T∑
t=1

F 0
t ς it +OP

(
δ−2
NT

)
= λ0′

i (
1

N
Λ0′Λ0)−1 1

Nq

N∑
i=1

λ0
i ς it + F 0′

t (
1

T
F 0′F 0)−1 1

Tq

T∑
t=1

F 0
t ς it +OP

(
δ−2
NT

)
,

where the second equality follows from the fact that F̃t − H̃ ′F 0
t = OP

(
N−1/2

)
and λ̃i − H̃−1λ0

i =

OP
(
T−1/2

)
, the third equality holds by the results in (i) and (ii), and fourth equality holds because

(H̃ ′)−1D̃−1 1
T F̃
′F 0 = ( 1

NΛ0′Λ0)−1 by the definition of H̃ and H̃H̃ ′ = ( 1
T F

0′F 0)−1 + OP
(
δ−2
NT

)
by

Lemma A.2(viii). Following the proof of Theorem 3 in Bai (2003), we can readily show that ( 1
NΣ1it+

1
T Σ2it)

−1/2
(
C̃it − C0

it

)
d→ N (0, 1) , where Σ1it = λ0′

i Σ−1
Λ0

Γg,tΣ
−1
Λ0
λ0
i and Σ2it = F 0′

t Σ−1
F 0

Φg,iΣ
−1
F 0
F 0
t . �

To prove Theorems 2.3-2.4, we introduce some notations. Recall that Ĥ(`) =
(
N−1Λ0′Λ0

)−1

×T−1F 0′F̂ (`)D̂(`)−1. Define

φ̂
(0)

F,t = D̂(0)−1 1

T
F̂ (0)′F 0 1

Nq

N∑
i=1

λ0
i

[
εitgit + λ0′

i F
0
t (git − q)

]
,

φ̂
(0)

Λ,i = Ĥ(0)′ 1

Tq

T∑
t=1

F 0
t

[
εitgit + F 0′

t λ
0
i (git − q)

]
,

φ̂
(`)

F,t = D̂(`)−1 1

T
F̂ (`)′F 0 1

N

N∑
i=1

λ0
i ε

(`)
it for ` ≥ 1, and

φ̂
(`)

Λ,i = Ĥ(`)′ 1

T

T∑
t=1

F 0
t ε

(`)
it for ` ≥ 1,
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where ε(`)
it is defined sequentially in (A.6) below, and φ̂

(`)

F,t and φ̂
(`)

Λ,i denote the leading influence

functions of F̂ (`)
t − Ĥ(`)′F 0

t and λ̂
(`)

i − (Ĥ(`))−1λ0
i , respectively. Let r̂

(`)
F,t = F̂

(`)
t − Ĥ(`)′F 0

t − φ̂
(`)

F,t and

r̂
(`)
Λ,i = λ̂

(`)

i − (Ĥ(`))−1λ0
i − φ̂

(`)

Λ,i where ` ≥ 0. Then

λ̂
(`)′
i F̂

(`)
t =

[
(Ĥ(`))−1λ0

i + φ̂
(`)

Λ,i + r̂
(`)
Λ,i

]′ [
Ĥ(`)′F 0

t + φ̂
(`)

F,t + r̂
(`)
F,t

]
= λ0′

i F
0
t + η

(`)
it , (A.4)

where η(`)
it = η

(`)
1,it + η

(`)
2,it,

η
(`)
1,it = F 0′

t Ĥ
(`)φ̂

(`)

Λ,i + λ0′
i (Ĥ(`)′)−1φ̂

(`)

F,t + λ0′
i (Ĥ(`)′)−1r̂

(`)
F,t + F 0′

t Ĥ
(`)′r̂

(`)
Λ,i, and

η
(`)
2,it = φ̂

(`)′
Λ,i φ̂

(`)

F,t + φ̂
(`)′
Λ,i r̂

(`)
F,t + φ̂

(`)′
F,t r̂

(`)
Λ,i + r̂

(`)′
Λ,i r̂

(`)
F,t. (A.5)

Let ḡit = 1− git and
ε

(`)
it = εitgit + η

(`−1)
it ḡit, ` ≥ 1. (A.6)

By (A.4) and (A.6), we have

X̂
(`)
it =

(
λ0′
i F

0
t + εit

)
git+ λ̂

(`−1)′
i F̂

(`−1)
t ḡit =

(
λ0′
i F

0
t + εit

)
git+

(
λ0′
i F

0
t + ηit

)
ḡit = λ0′

i F
0
t +ε

(`)
it . (A.7)

This expression will be used repeatedly in the following derivation.

The following three lemmas are used in the proofs of Theorems 2.3 and 2.4. When Lemmas A.3-

A.5 hold for ` = 1, Theorems 2.3 and 2.4 also hold for ` = 1. With the results in Lemmas A.3-A.5

and Theorems 2.3 and 2.4 for ` = 1, we can show that they also hold for ` = 2. This procedure is

repeated until convergence which requires ` to be at most of order lnN.

Lemma A.3 Suppose that Assumptions A.1-A.5 hold. Then for any ` ≥ 1 we have

(i) maxt

∥∥∥φ̂(`−1)

F,t

∥∥∥ = OP ((N/ lnN)−1/2) and maxi

∥∥∥φ̂(`−1)

Λ,i

∥∥∥ = OP ((T/ lnT )−1/2),

(ii) maxt

∥∥∥r̂(`−1)
F,t

∥∥∥ = OP (T γ1/4δ−2
NT lnT + T−1+3γ1/4) and maxi

∥∥∥r̂(`−1)
Λ,i

∥∥∥ = OP (Nγ2/4δ−2
NT lnN),

(iii) maxi,t

∥∥∥η(`−1)
1,it

∥∥∥ = OP (δ
−1+γ/2
NT lnN) and maxi,t

∥∥∥η(`−1)
2,it

∥∥∥ = OP
(
δ−2
NT lnN

)
,

(iv) maxt

∥∥∥ 1
N

∑N
i=1 φ̂

(`−1)

Λ,i εitgit

∥∥∥ = OP
(
T−1+γ1/4 + δ−2

NT lnN
)
,
∥∥∥ 1
N

∑N
i=1 φ̂

(`−1)

Λ,i λ0′
i ḡit

∥∥∥ = OP (T−1+γ1/4

+Nγ2/4δ−2
NT lnN), and maxt

∥∥∥ 1
N

∑N
i=1 r̂

(`−1)
Λ,i λ0′

i ḡit

∥∥∥ = OP
(
δ−2
NT lnN

)
,

(v) maxi

∥∥∥ 1
T

∑T
t=1 φ̂

(`−1)

F,t F 0′
t ḡit

∥∥∥ = OP
(
δ−2
NT lnN +N−1+γ2/2

)
and maxi

∥∥∥ 1
T

∑T
t=1 r̂

(`−1)
F,t F 0′

t ḡit

∥∥∥ =

OP
(
δ−2
NT lnN

)
,

(vi) maxt
1
N

∑N
i=1

∥∥∥η(`−1)
it

∥∥∥2
= OP (T−1+γ1/2+N−1 lnN) and maxi

1
T

∑T
t=1

∥∥∥η(`−1)
it

∥∥∥2
= OP (N−1+γ2/2

+T−1 lnN),

(vii) 1
NT

∑T
t=1

∑N
i=1(1 +

∥∥F 0
t

∥∥2
)(η

(`−1)
it )2 = OP

(
δ−2
NT

)
,

(viii) 1
NT

∑T
s=1 F

0
s

∑N
i=1 λ

0′
i η

(`−1)
is ḡis = OP

(
δ−2
NT lnN

)
,

(ix) maxt

∥∥∥ 1
NT

∑T
s=1 F

0
s

∑N
i=1 η

(`−1)
it ḡitεisgis

∥∥∥ = OP (T−1+γ1/4 + (NT/ lnN)−1/2),

(x) maxt

∥∥∥ 1
NT

∑T
s=1 F

0
s

∑N
i=1 εitgitη

(`−1)
is ḡis

∥∥∥ = OP
(
T−1+γ1/4 + δ−2

NT lnN
)
.
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Lemma A.4 Suppose that Assumptions A.1-A.5 hold. Then for any ` ≥ 1 we have

(i) T−1F̂ (`)′ (NT )−1 X̂(`)X̂(`)′F̂ (`) = D̂(`) = D +OP
(
δ−1
NT lnN

)
,

(ii) T−1F̂ (`)′F 0 = Q+OP
(
δ−1
NT lnN

)
,

(iii) Ĥ(`) = Q−1 +OP
(
δ−1
NT lnN

)
,

(iv) 1
T

∑T
t=1(F̂

(`)
t − Ĥ(`)′F 0

t )F 0′
t = OP

(
δ−2
NT

)
,

(v) maxi

∥∥∥ 1
T

∑T
t=1(F̂

(`)
t − Ĥ(`)′F 0

t )ε
(`)
it

∥∥∥ = OP
(
N−1/2+γ2/4δ−1

NT + δ−2
NT lnN

)
.

Lemma A.5 Suppose that Assumptions A.1-A.5 hold. Then
(i) φ̂

(`)

F,t = D−1QβF,t + (1− q)φ̂(`−1)

F,t +OP
(
T γ1/4δ−2

NT lnT + T−1+γ1/4
)
,

(ii) φ̂
(`)

Λ,i = (Q′)−1βΛ,i + (1− q) φ̂(`−1)

Λ,i +OP
(
Nγ2/4δ−2

NT lnN +N−1+3γ2/4
)
,

where βF,t = 1
N

∑N
i=1 λ

0
i εitgit, and βΛ,i = 1

T

∑T
t=1 F

0
t εitgit.

The proof of Theorem 2.4 below suggests that φ̂
(`)

F,t and φ̂
(`)

Λ,i are associated with the leading

influence functions of F̂ (`)
t − Ĥ(`)′F 0

t and λ̂
(`)

i − (Ĥ(`))−1λ0
i , respectively.

Proof of Theorem 2.3. The proof follows closely from that of Theorem 2.1 and we only outline the

main differences. From the identity F̂ (`) = (NT )−1 X̂(`)X̂(`)′F̂ (`)D̂(`)−1 where D̂(`) is asymptotically

nonsingular by Lemma A.4(i), we have by (A.7),

F̂
(`)
t − Ĥ(`)′F 0

t =
1

NT
D̂(`)−1

T∑
s=1

F̂ (`)
s

N∑
i=1

{
ε

(`)
it ε

(`)
is + F 0′

s λ
0
i ε

(`)
it + F 0′

t λ
0
i ε

(`)
is

}
≡ â(`)

1t + â
(`)
2t + â

(`)
3t . (A.8)

Then T−1
∑T

t=1

∥∥∥F̂ (`)
t − Ĥ(`)′F 0

t

∥∥∥2
≤ 3

∑3
l=1 T

−1
∑T

t=1(â
(`)
lt )2 by the CS inequality. For â(`)

1t , using

ε
(`)
it = εitgit + η

(`−1)
it ḡit and the CS inequality, we have

T−1
T∑
t=1

∥∥∥D̂(`)â
(`)
1t

∥∥∥2
≤ 4T−1

T∑
t=1


∥∥∥∥∥ 1

T

T∑
s=1

F̂ (`)
s

1

N

N∑
i=1

εitgitεisgis

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

T

T∑
s=1

F̂ (`)
s

1

N

N∑
i=1

η
(`−1)
it ḡitη

(`−1)
is ḡis

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

T

T∑
s=1

F̂ (`)
s

1

N

N∑
i=1

εitgitη
(`−1)
is ḡis

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

T

T∑
s=1

F̂ (`)
s

1

N

N∑
i=1

η
(`−1)
it ḡitεisgis

∥∥∥∥∥
2


≡ 4(Â1,1 + Â1,2 + Â1,3 + Â1,4),

where we suppress the dependence of Â1’s on `. Following the analyses of T−1
∑T

t=1 ‖a1t‖2 and
T−1

∑T
t=1 ‖a2t‖2 in the proof of Theorem 2.1, we can readily show that Â1,1 = OP

(
δ−2
NT

)
. For Â1,2

and Â1,3, we can apply the fact F̂ (`)′F̂ (`)/T = IR, the CS inequality, and Lemma A.3(vii) to obtain
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Analogously, Â1,4 = OP
(
δ−2
NT

)
. It follows that Â1 = OP

(
δ−2
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)
.

For â(`)
2t , we have
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.

By the analysis of T−1
∑T

t=1 ‖a3t‖2 in the proof of Theorem 2.1, the first term is OP (δ−2
NT ). For the sec-

ond term, by the CS inequality and Lemma A.3(vii) it is bounded above by 2R
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NT ). Analogously, we can show
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NT ). In sum, we have shown that T−1
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Proof of Theorem 2.4. (i) Let Â(`)
lt = D̂(`)â

(`)
lt for l = 1, 2, 3. By the decomposition in (A.8) and

Lemma A.4(i), we will bound Â(`)
lt for l = 1, 3 and find the leading influence function for Â(`)

2t . For

Â
(`)
1t , we use F̂

(`)
s = (F̂

(`)
s − Ĥ(`)′F 0

s ) + Ĥ(`)′F 0
s to make the decomposition
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It is easy to show that Â(`)
1t,1 is of smaller order than Â

(`)
1t,2. We focus on the study of Â
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1t,2. By (A.6),

we have Â(`)
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∥∥∥Â(`)
1t,22

∥∥∥ ≤
{

max
t

1

N

N∑
i=1

(η
(`−1)
it )2

}1/2{
1

NT

T∑
s=1

N∑
i=1

∥∥F 0
s

∥∥2
(η

(`−1)
is )2ḡis
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By Lemma A.3(ix)-(x), Â(`)
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3t , we apply (A.6) and F̂
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Following the analysis of A4t,1 and A4t,2 in the proof of Theorem 2.2(i), we can show that Â(`)
3,1 =

OP
(
δ−2
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)
. For Â(`)

3,2, we have by the CS inequality, Theorem 2.3 and Lemma A.3(vii)-(vii)
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∥∥∥Â(`)
3t

∥∥∥ = maxt
∥∥F 0

t

∥∥
×OP (δ−2

NT ) = OP
(
T γ1/4δ−2

NT

)
.

It follows that
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where the remainder term OP (
√
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NT lnN +N−1+3γ2/4)) holds uniformly in i. This, in con-
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(iii) By the proof of (i) and (ii) and as in the proof of Theorem 2.2(iii), we have
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To prove Theorem 2.5, we need the following lemma.

Lemma A.6 Suppose that Assumptions A.1-A.6 hold. Then
(i) maxi

1
T
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t=1 |ε̂it − εit|
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Proof of Theorem 2.5. To show D̂−1Γ̂
(2)
1g,tD̂

−1 p→ D−1QΓ1g,t (q)Q′D−1, it suffi ces to show that (i)
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′. (i) holds by Lemma A.4(i) and positive definiteness of D.

To show (ii), we recall that Γ̂
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The last term on the right hand side (rhs) of the last expression is o (1) and the second term is
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It is standard to show 1
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Similarly, by Lemma A.6, we have 1
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Table 1: Under/Over-estimation frequency with complete data
Cross-validation ED GR ER PC IC

DGP N T p=0.7 p=0.9
1 50 50 460/14 62/43 0/393 530/37 864/10 0/685 0/445

50 100 121/47 7/54 0/360 381/49 791/11 0/497 0/377
100 50 166/27 7/42 0/336 350/39 769/15 0/518 0/364
100 100 10/48 0/30 0/374 212/49 643/13 0/452 0/363

2 50 50 440/4 51/2 0/113 416/3 816/0 0/246 0/99
50 100 104/0 1/1 0/75 194/1 676/0 0/106 0/53
100 50 166/1 6/1 0/79 218/2 694/0 0/118 0/52
100 100 12/0 0/0 0/60 39/0 409/0 0/54 0/32

3 50 50 308/0 12/2 0/72 566/0 910/0 0/995 0/840
50 100 40/0 0/0 0/3 198/0 779/0 0/473 0/46
100 50 88/0 0/5 0/17 424/0 884/0 0/1000 0/929
100 100 1/0 0/0 0/0 42/0 589/0 0/518 0/63

4 50 50 361/0 19/5 2/175 655/0 931/0 0/685 0/280
50 100 67/0 0/18 0/236 525/0 897/0 0/679 0/380
100 50 108/0 1/0 0/40 418/0 861/0 0/272 0/43
100 100 1/0 0/13 0/45 184/0 766/0 0/416 0/124

5 50 50 360/0 15/1 1/92 631/0 938/0 0/1000 0/836
50 100 57/0 0/3 0/20 451/0 895/0 0/1000 0/928
100 50 91/0 0/0 0/3 223/0 782/0 0/433 0/35
100 100 0/0 0/0 0/0 47/0 576/0 0/465 0/63

6 50 50 322/0 18/0 0/1 282/0 780/0 0/69 0/0
50 100 46/0 0/0 0/0 84/0 603/0 0/0 0/0
100 50 89/0 0/0 0/0 89/0 583/0 0/0 0/0
100 100 1/0 0/0 0/0 2/0 216/0 0/0 0/0

Stock, J.H., Watson, M.W., 2002. Macroeconomic forecasting using diffusion indexes. Journal of
Business & Economic Statistics 20, 147-162.

Stock, J., Watson, M., 2016. Dynamic factor models, factor-augmented vector autoregressions, and
structural vector autoregressions in macroeconomics. Handbook of Macroeconomics 415—525.

Su, L.,Chen, Q., 2013. Testing homogeneity in panel data models with interactive fixed effects.
Econometric Theory 29, 1079-1135.

Su, L., Wang, X., 2017. On time-varying factor models: estimation and testing. Journal of Econo-
metrics 198, 84-101.

Su, L., Jin, S., Zhang, Y., 2015. Specification test for panel data models with interactive fixed
effects. Journal of Econometrics 186, 222-244.
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Table 3: MSE and R2(F̂ ) with missing observations (q=0.7)

MSE R2(F̂ )

oracle iterated estimate oracle iterated estimate

DGP N T `=0 `=5 `=20 `=∞ `=0 `=5 `=20 `=∞
1 50 50 0.460 2.103 0.766 0.807 0.886 0.964 0.856 0.936 0.941 0.940

50 100 0.367 1.484 0.546 0.578 0.617 0.967 0.876 0.946 0.948 0.947

100 50 0.423 1.659 0.604 0.636 0.687 0.978 0.913 0.965 0.967 0.967

100 100 0.221 0.890 0.332 0.355 0.376 0.982 0.935 0.973 0.973 0.973

2 50 50 0.352 1.907 0.616 0.588 0.594 0.971 0.863 0.947 0.953 0.953

50 100 0.259 1.280 0.406 0.405 0.406 0.972 0.885 0.957 0.958 0.958

100 50 0.258 1.333 0.408 0.405 0.405 0.986 0.925 0.978 0.979 0.979

100 100 0.172 0.785 0.258 0.260 0.260 0.986 0.943 0.979 0.980 0.980

3 50 50 0.403 1.703 0.562 0.555 0.555 0.975 0.886 0.961 0.963 0.963

50 100 0.266 1.127 0.373 0.375 0.375 0.976 0.901 0.964 0.964 0.964

100 50 0.328 1.250 0.432 0.431 0.431 0.987 0.938 0.981 0.981 0.981

100 100 0.198 0.743 0.263 0.264 0.264 0.988 0.950 0.983 0.983 0.983

4 50 50 0.350 1.749 0.562 0.551 0.551 0.970 0.873 0.951 0.954 0.954

50 100 0.261 1.160 0.395 0.397 0.397 0.970 0.894 0.956 0.956 0.956

100 50 0.262 1.220 0.399 0.400 0.399 0.985 0.934 0.977 0.977 0.977

100 100 0.173 0.739 0.257 0.258 0.258 0.985 0.946 0.978 0.978 0.978

5 50 50 0.386 1.704 0.554 0.542 0.542 0.970 0.878 0.955 0.957 0.957

50 100 0.316 1.183 0.420 0.422 0.422 0.970 0.894 0.958 0.958 0.959

100 50 0.260 1.193 0.370 0.370 0.369 0.985 0.935 0.979 0.979 0.979

100 100 0.190 0.731 0.256 0.257 0.257 0.985 0.947 0.980 0.980 0.980

6 50 50 0.322 1.627 0.492 0.483 0.483 0.976 0.886 0.961 0.963 0.963

50 100 0.239 1.106 0.347 0.348 0.348 0.976 0.900 0.964 0.964 0.964

100 50 0.244 1.168 0.353 0.354 0.353 0.988 0.939 0.982 0.982 0.982

100 100 0.161 0.703 0.226 0.227 0.227 0.988 0.950 0.983 0.983 0.983
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Table 4: Coverage probability and average length of the 95% confidence intervals (q=0.7)
Oracle `=0 `=`∗

standard robust standard robust standard robust
DGP N T CP Length CP Length CP Length CP Length CP Length CP Length
1 50 50 0.926 0.514 0.947 0.551 0.919 0.874 0.943 0.947 0.906 0.568 0.935 0.645

50 100 0.919 0.529 0.930 0.562 0.912 0.859 0.934 0.928 0.881 0.595 0.920 0.656
100 50 0.926 0.365 0.940 0.400 0.910 0.641 0.943 0.685 0.937 0.439 0.938 0.476
100 100 0.940 0.374 0.943 0.403 0.936 0.650 0.948 0.684 0.932 0.438 0.940 0.478

2 50 50 0.918 0.537 0.932 0.550 0.919 0.892 0.936 0.936 0.909 0.619 0.929 0.642
50 100 0.922 0.538 0.924 0.557 0.924 0.912 0.943 0.950 0.896 0.625 0.926 0.653
100 50 0.943 0.388 0.946 0.395 0.941 0.645 0.956 0.673 0.935 0.453 0.943 0.467
100 100 0.938 0.390 0.936 0.401 0.926 0.655 0.943 0.678 0.932 0.460 0.944 0.474

3 50 50 0.926 0.550 0.936 0.557 0.902 0.922 0.930 0.945 0.894 0.646 0.923 0.653
50 100 0.932 0.565 0.938 0.567 0.921 0.909 0.940 0.931 0.921 0.658 0.927 0.666
100 50 0.930 0.400 0.937 0.398 0.934 0.680 0.944 0.688 0.906 0.462 0.923 0.472
100 100 0.925 0.403 0.933 0.404 0.931 0.660 0.942 0.667 0.922 0.472 0.943 0.478

4 50 50 0.917 0.601 0.937 0.607 0.928 0.972 0.937 0.995 0.896 0.697 0.923 0.710
50 100 0.928 0.607 0.943 0.614 0.917 0.948 0.937 0.969 0.909 0.709 0.933 0.719
100 50 0.927 0.440 0.928 0.436 0.926 0.704 0.944 0.712 0.935 0.517 0.941 0.519
100 100 0.932 0.445 0.943 0.447 0.914 0.703 0.926 0.712 0.918 0.520 0.930 0.529

5 50 50 0.891 0.322 0.908 0.327 0.918 0.749 0.946 0.778 0.875 0.379 0.899 0.386
50 100 0.896 0.323 0.901 0.328 0.900 0.732 0.927 0.754 0.892 0.381 0.912 0.388
100 50 0.885 0.233 0.885 0.233 0.921 0.542 0.950 0.561 0.894 0.276 0.910 0.277
100 100 0.904 0.234 0.905 0.236 0.928 0.546 0.944 0.555 0.884 0.276 0.905 0.281

6 50 50 0.897 0.320 0.911 0.325 0.924 0.737 0.939 0.767 0.891 0.377 0.909 0.384
50 100 0.875 0.325 0.896 0.330 0.917 0.734 0.940 0.752 0.894 0.384 0.907 0.390
100 50 0.913 0.233 0.917 0.233 0.928 0.524 0.951 0.545 0.907 0.275 0.920 0.276
100 100 0.908 0.236 0.913 0.236 0.926 0.532 0.939 0.543 0.898 0.277 0.924 0.280

Table 5: Results of forecasts
Real GDP GDP IP RDPI

MSE ratio MSE ratio MSE ratio MSE ratio
period horizon AR PC-F AR PC-F AR PC-F AR PC-F

1987 v 2016 h=1 4.571 0.923 0.985 6.665 0.921 1.004 11.488 0.911 0.929 11.896 0.958 0.988
h=2 2.986 0.853 0.968 5.349 0.874 1.003 13.091 0.896 0.922 4.505 0.888 0.985
h=4 2.683 0.948 0.927 5.727 0.940 0.996 13.489 0.969 0.994 2.565 0.841 0.989

1997 v 2016 h=1 4.734 0.870 1.009 6.745 0.892 1.000 12.131 0.853 0.896 14.982 0.957 0.987
h=2 3.246 0.813 0.957 5.531 0.851 0.998 15.583 0.875 0.918 5.085 0.856 0.995
h=4 3.020 0.924 0.955 5.924 0.916 0.997 16.964 0.948 0.983 2.832 0.809 0.983

2007 v 2016 h=1 5.049 0.746 0.982 8.170 0.794 0.984 16.818 0.805 0.862 20.446 0.941 0.982
h=2 4.247 0.749 0.922 7.167 0.801 1.004 23.777 0.851 0.886 6.565 0.785 0.985
h=4 4.445 0.901 0.950 8.145 0.923 1.011 26.810 0.904 0.936 4.047 0.777 0.973
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This online supplement contains the proofs of the theorems in Section 3.

B Proofs of the Main Results in Section 3

To prove Theorem 3.1, we need to introduce some notations and lemmas. Note that the true number

of factors is assumed to be R0 but the working model is given by

X = F (R) Λ (R)′ + ε (R) ,

where we make the dependence of F and Λ on the assumed number of factors (R) explicit and

ε (R) ≡ X−F (R) Λ (R)′. As in Bai and Ng (2017), we want to establish the connection between the

usual principal component (PC) estimators of the factors and factor loadings and the SVD estimators.

Let X∗ = PΩ∗X. Noting that C̃R = SH(1
pPΩ∗X,R) = ŨRΣ̃RṼ

′
R, ŨR and ṼR are respectively

the eigenvector matrices of 1
p2
X∗X∗′ and 1

p2
X∗′X∗ associated with their R largest eigenvalues, and

the diagonal elements of Σ̃2
R are the R largest eigenvalues of 1

p2
X∗X∗′. Let F̃R and Λ̃R denote

the conventional principal component (PC) estimators of F (R) and Λ (R) under the normalization

restrictions that T−1F (R)′ F (R) = IR and Λ (R)′ Λ (R) =diagonal matrix. It is well known that F̃R

is given by
√
T times the normalized eigenvector matrix of 1

p2
X∗X∗′ associated with its R largest

eigenvalues and Λ̃R′ = (F̃R′F̃R)−1F̃R′ 1pX
∗ = F̃R′ 1

TpX
∗. This indicates that

F̃R =
√
TŨR. (B.1)

In addition, we consider the full SVD of 1
pX
∗ : 1

pX
∗ = Ũ Σ̃Ṽ ′ =

∑T∧N
r=1 ũrṽ

′
rσ̃r. Then

1
pX
∗′Ũ =

Ṽ Σ̃′Ũ ′Ũ = Ṽ Σ̂′. This implies that

ṼRΣ̃R =
1

p
X∗′ŨR =

√
T

Tp
X∗′F̃R =

√
T Λ̃R. (B.2)

(B.1) says that ŨR is a scaled version of F̃R and (B.2) says that each column of ṼR is a scaled version

of the corresponding column of Λ̃R. It is easy to see that

ŨRΣ̃RṼ
′
R = F̃RΛ̃R′. (B.3)

That is, both the SVD and the PCA yield the same estimates of the common component once R

is given. Following the lead of Bai and Ng (2002), we consider a rotational version of F̃R : F̆R =

1



(
NTp2

)−1
X∗X∗′F̃R. Let H̆1R = (N−1Λ0′Λ0)(T−1F 0′F̃R). The properties of F̆R can be established

along the lines of proofs in Bai and Ng (2002) and those in the proof of Theorem 2.1 in the presence

of random missing values.

Alternatively, we can consider the PC estimation under the normalization restrictions thatN−1Λ (R)′

Λ (R) = IR and F (R)′ F (R) =diagonal matrix. Let F̄R and Λ̄R denote the conventional PC estima-

tors of F (R) and Λ (R) in this case. Then following the above arguments, we can show that

Λ̄R =
√
NṼR, ŨRΣ̃R =

√
NF̄R, and ŨRΣ̃RṼ

′
R = F̄RΛ̄R′. (B.4)

Following the lead of Bai and Ng (2002), we consider a rotational version of Λ̄R : Λ̆R =
(
NTp2

)−1
X∗′X∗Λ̄R.

Let H̆2R = (T−1F 0′F 0)(N−1Λ0′Λ̄R).

Finally, let D̃R denote the R × R diagonal matrix that contains the R largest eigenvalues of

(NTp2)−1X∗X∗′ arranged in descending order along its diagonal line. Note that D̃R = (NT )−1 Σ̃2
R.

Recall that ḡ∗it = 1 {(i, t) ∈ Ω∗⊥} and g∗it = 1 {(i, t) ∈ Ω∗} . Let Ḡ∗ be the T × N matrix with

(t, i)th element given by ḡ∗it. Define G
∗ analogously. Let erR denote the rth column of the R × R

identity matrix IR. Similarly, erN and erT denote the rth column of IN and IT , respectively. Note

that ũr ≡ ŨRerR and ṽr ≡ ṼRerR, r = 1, ..., R, denote the rth column of ŨR and ṼR, respectively. In

addition, C̃R =
∑R

r=1 ũrṽ
′
rσ̃r.

The proof of Theorem 3.1 needs the following three lemmas and two theorems, whose proofs are

given after we finish the proofs of Theorems 3.1 and 3.2.

Lemma B.1 Suppose that all the conditions but Assumption A.7 in Theorem 3.1 hold. Then

(i) 1
T

∥∥∥√TŨRD̃R − F 0H̆1R

∥∥∥2
= OP

(
δ−2
NT

)
,

(ii) 1
N

∥∥∥√NṼRD̃R − Λ0H̆2R

∥∥∥2
= OP

(
δ−2
NT

)
.

Lemma B.2 Let σ̆r = (NT )−1/2σ̃r. Let σ2
r denote the rth largest eigenvalue of ΣF 0ΣΛ0 for r =

1, ..., R0. Suppose that all the conditions but Assumption A.7 in Theorem 3.1 hold. Then

(i) σ̆2
r = σ2

r +OP
(
δ−1
NT

)
for r = 1, ..., R0,

(ii) σ̆2
R0+r = OP

(
δ−2
NT

)
for r ≥ 1,

(iii) δ2
NT σ̆

2
R0+r ≥ cσ + oP (1) for some positive constant cσ and any r ≥ 1 with R0 + r ≤ R.

Lemma B.3 Let ũr and ṽr be the rth left and right singular vector of 1
pX
∗. Suppose that all the

conditions but Assumption A.7 in Theorem 3.1 hold. Then for r = R0 + 1, ..., Rmax, we have ũ′rF
0 =

OP (δ−1
NT ) and ṽ′rΛ

0 = OP (δ−1
NT ).

To proceed, we define some notations. For a real matrix Γ, recall that ‖Γ‖ and ‖Γ‖∞ denote its

Frobenius norm and entrywise L∞ norm, respectively. We use ‖Γ‖∗ to denote the nuclear norm of

2



Γ, which is defined as the summation of the singular values of Γ. For a nonzero matrix Γ ∈ RT×N ,
we define two measures to control its spikeness and rank. First, we define the spikeness ratio as

αsp(Γ) ≡
√
NT ‖Γ‖∞
‖Γ‖ ,

which satisfies 1 ≤ αsp(Γ) ≤
√
NT . The lower bound can be reached when all the entries of Γ are

the same, and the upper bound can be reached when there is only one nonzero entry in Γ. Next, we

define a tractable measure of how close Γ is to a low-rank matrix via the ratio

βra(Γ) ≡ ‖Γ‖∗‖Γ‖ .

Note that 1 ≤ βra(Γ) ≤ δNT ≡
√
N ∧

√
T . Let d = (N + T )/2. Define the constraint set

CNT (c0) ≡
{

Γ ∈ RN×T ,Γ 6= 0 | αsp(Γ)βra(Γ) ≤ 1

c0

√
NT

d log d

}
, (B.5)

where c0 is a universal constant. For a low rank matrix Γ ∈ CNT (c0), the constraint requires it to be

not very spiky.

The following two theorems are needed to show that the probability of overselecting the number

of factors is approaching zero.

Theorem B.4 Let G be a T×N random matrix with all entries i.i.d. from the Bernoulli distribution

with parameter p ∈ (0, 1) . There are universal constants c0, c1, c2, and c3 such that∥∥∥∥ 1
√
p

Γ ◦G
∥∥∥∥ ≥ 1

8
‖Γ‖

{
1− c3αsp(Γ)√

NT

}
for all Γ ∈ CNT (c0)

with probability greater than 1− c1 exp(−c2NT log d/d).

Theorem B.5 Let G be a T×N random matrix with all entries i.i.d. from the Bernoulli distribution

with parameter p ∈ (0, 1) . Then

sup
Γ∈C1NT

‖Γ ◦ [G− E(G)]‖sp = OP

(
c1NT + c2NT + c3NT

√
(N + T ) log log (N + T ) + 1/ log(N + T )

)
,

where C1NT ≡ C1NT (c1NT , c2NT , c3NT ) ≡ {Γ ∈ RN×T , | Γ = UV ′, U ∈ RT and V ∈ RN are vectors

such that ‖U‖ = ‖V ‖ = 1, ‖U‖∞ ≤ c1NT , ‖V ‖∞ ≤ c2NT , ‖U‖∞ ‖‖V ‖∞‖ ≤ c3NT }.

Proof of Theorem 3.1. Noting that X = C0 + ε, we make the following decomposition

C̃V (R) =
1

NT

∥∥∥(X − C̃R) ◦ Ḡ∗
∥∥∥2

=
1

NT

∥∥∥(C0 − C̃R) ◦ Ḡ∗
∥∥∥2

+
1

NT

∥∥ε ◦ Ḡ∗∥∥2
+

2

NT
tr
{[

(C0 − C̃R) ◦ Ḡ∗
] (
ε ◦ Ḡ∗

)′}
≡ C̃V 1 (R) + C̃V 2 + 2C̃V 3 (R) ,

3



where C̃V 2 does not depend on R. Then we have

C̃V (R)− C̃V (R0) =
[
C̃V 1 (R)− C̃V 1 (R0)

]
+ 2

[
C̃V 3 (R)− C̃V 3 (R0)

]
. (B.6)

It is suffi cient to study the asymptotic properties of C̃V 1 (R)− C̃V 1 (R0) and C̃V 3 (R)− C̃V 3 (R0)

under the under-fitted and over-fitted cases, respectively.

We first study the under-fitted case where R < R0.Noting that ‖A‖2−‖B‖2 =tr(A′A−B′B) =

tr{(A−B)′ (A−B)}+ 2tr
(
(A−B)′B

)
, we have

C̃V 1 (R)− C̃V 1 (R0) =
1

NT

∥∥∥(C̃R − C0) ◦ Ḡ∗
∥∥∥2
− 1

NT

∥∥∥(C̃R0 − C0) ◦ Ḡ∗
∥∥∥2

=
1

NT

∥∥∥(C̃R − C̃R0) ◦ Ḡ∗
∥∥∥2

+
2

NT
tr
{[

(C̃R − C̃R0) ◦ Ḡ∗
]′ [

(C̃R0 − C0) ◦ Ḡ∗
]}

≡ C̃V 11 (R) + 2CV12 (R) . (B.7)

Noting that C̃R0 − C̃R =
∑R0

r=R+1 ũrṽ
′
rσ̃r, ũr = ŨR0erR0 , ṽr = ṼR0erR0 , and σ̆r = (NT )−1/2σ̃r, we

have

C̃V 11 (R) =
1

NT

∥∥∥∥∥
(

R0∑
r=R+1

ũrṽ
′
rσ̃r

)
◦ Ḡ∗

∥∥∥∥∥
2

=
1

NT

∥∥∥∥∥
(

R0∑
r=R+1

ŨR0erR0e
′
rR0 Ṽ

′
R0 σ̃r

)
◦ Ḡ∗

∥∥∥∥∥
2

=
1

NT

∥∥∥∥∥
(

R0∑
r=R+1

(√
NŨR0D̃R0

)
D̃−1
R0
erR0e

′
rR0D̃

−1
R0

(
√
T ṼR0D̃R0)

′σ̆r

)
◦ Ḡ∗

∥∥∥∥∥
2

. (B.8)

Let ς1R =
√
NŨRD̃R − F 0H̆1R and ς2R =

√
NṼRD̃R − Λ0H̆2R. Then

√
NŨR0D̃R0 = F 0H̆1R0 + ς1R0

4



and
√
NṼR0D̃R0 = Λ0H̆2R0 + ς2R0 . It is easy to apply Lemma B.1 to show that

C̃V 11 (R)

=
1

NT

∥∥∥∥∥
(

R0∑
r=R+1

(
F 0H̆1R0 + ς1R0

)
ÃrR0(Λ

0H̆2R0 + ς2R0)
′σ̆r

)
◦ Ḡ∗

∥∥∥∥∥
2

=
1

NT

∥∥∥∥∥
(

R0∑
r=R+1

F 0H̆1R0ÃrR0H̆
′
2R0Λ

0′σ̆r

)
◦ Ḡ∗

∥∥∥∥∥
2

+OP
(
δ−1
NT

)
=

1

NT

N∑
i=1

T∑
t=1

(
R0∑

r=R+1

e′iTF
0H̆1R0ÃrR0H̆

′
2R0Λ

0′eiN σ̆R0

)2

ḡ∗it +OP
(
δ−1
NT

)
=

1

NT

N∑
i=1

T∑
t=1

R0∑
r=R+1

R0∑
l=R+1

tr
{
H̆1R0ÃrR0H̆

′
2R0Λ

0′eiNe
′
iNΛ0H̆2R0Ã

′
lR0H̆

′
1R0F

0etT e
′
tTF

0′
}
σ̆rσ̆lḡ

∗
it

+OP
(
δ−1
NT

)
=

R0∑
r=R+1

R0∑
l=R+1

[vec(H̆1R0ÃrR0H̆
′
2R0)]

′

{
1

NT

N∑
i=1

T∑
t=1

[(Λ0′eiNe
′
iNΛ0)⊗ (F 0′etT e

′
tTF

0′)]ḡ∗it

}
σ̆rσ̆l

×vec(H̆1R0ÃlR0H̆
′
2R0) +OP

(
δ−1
NT

)
(B.9)

where ÃrR = D̃−1
R erRe

′
rRD̃

−1
R , ḡ∗it = 1 {(i, t) ∈ Ω∗⊥} , and the last equality follows from the fact that

tr(A1A2A3A4) = [vec(A1)]′(A2 ⊗ A′4)vec(A′3) and the Fubini theorem. Now using ḡ∗it = (1 − p) +

[ḡ∗it − (1− p)] and the fact that ḡ∗it are i.i.d. and independent of
(
Λ0′, F 0′) , we can readily show that

1

NT

N∑
i=1

T∑
t=1

[(Λ0e′iNe
′
iNΛ0′)⊗ (F 0etT e

′
tTF

0′)]ḡ∗it =
1− p
NT

N∑
i=1

T∑
t=1

[(Λ0e′iNe
′
iNΛ0′)⊗ (F 0etT e

′
tTF

0′)]

+OP ((NT )−1/2).

It follows that

C̃V 11 (R) = (1− p)
R0∑

r=R+1

R0∑
l=R+1

[vec(H̆1R0ÃrR0H̆
′
2R0)]

′

{
1

NT

N∑
i=1

T∑
t=1

[(Λ0′eiNe
′
iNΛ0′)⊗ (F 0′etT e

′
tTF

0′)]

}
×vec(H̆1R0ÃlR0H̆

′
2R0)σ̆rσ̆l +OP

(
δ−1
NT

)
=

1− p
NT

∥∥∥∥∥
R0∑

r=R+1

ũrṽ
′
rσ̃r

∥∥∥∥∥
2

+OP
(
δ−1
NT

)
= (1− p)

R0∑
r=R+1

(NT )−1 σ̃2
r +OP

(
δ−1
NT

)
= (1− p)

R0∑
r=R+1

σ2
r +OP

(
δ−1
NT

)
,

where the second equality is obtained by reversing the operations in (B.9) and (B.8), the third

equality holds by the fact that Ũ ′RŨR = IR and Ṽ ′RṼR = IR, and the fourth equality follows because

(NT )−1 σ̃2
r = σ2

r +OP (δ−1
NT ) for r ≤ R0 by Lemma B.2(i).
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Following the proof of Theorem 2.4, we can show that 1
NT

∥∥∥(C0 − C̃R0) ◦ Ḡ∗
∥∥∥2
≤ 1

NT

∥∥∥C0 − C̃R0
∥∥∥2

=

OP
(
δ−2
NT

)
. Then by the Chebyshev inequality,∣∣∣C̃V 12 (R)

∣∣∣ =
1

NT

∣∣∣∣tr{[(C̃R − C̃R0) ◦ Ḡ∗]′ [(C0 − C̃R0
)
◦ Ḡ∗

]}∣∣∣∣
≤

{
1

NT

∥∥∥(C̃R − C̃R0) ◦ Ḡ∗∥∥∥2
}1/2{ 1

NT

∥∥∥(C0 − C̃R0
)
◦ Ḡ∗

∥∥∥2
}1/2

= OP (1)OP
(
δ−1
NT

)
= OP

(
δ−1
NT

)
.

It follows that C̃V 1 (R)− C̃V 1 (R0) = (1− p)
∑R0

r=R+1 σ
2
r +OP

(
δ−1
NT

)
.

Next, C̃V 3 (R) − C̃V 3 (R0) = 1
NT tr{[(C̃R0 − C̃R) ◦ Ḡ∗]

(
ε ◦ Ḡ∗

)′}. Noting that 1
NT

∥∥ε ◦ Ḡ∗∥∥2 ≤
1
NT ‖ε‖

2 = OP (1) , we can readily apply Lemma B.1 and follow the analysis of C̃V 11 (R) to show

that

C̃V 3 (R)− C̃V 3 (R0)

=
1

NT
tr

{(
R0∑

r=R+1

[(
F 0H̆1R0 + ς1R0

)
ÃrR0(Λ

0H̆2R0 + ς2R0)
′σ̆r
]
◦ Ḡ∗

)(
ε ◦ Ḡ∗

)′}

=
1

NT
tr

{(
R0∑

r=R+1

[
F 0H̆1R0ÃrR0H̆

′
2R0Λ

0′σ̆r
]
◦ Ḡ∗

)(
ε ◦ Ḡ∗

)′}
+OP

(
δ−1
NT

)
=

1

NT

N∑
i=1

T∑
t=1

R0∑
r=R+1

tr
(
e′iTF

0H̆1R0ÃrR0H̆
′
2R0Λ

0′eiN
)
σ̆rεitḡ

∗
it +OP

(
δ−1
NT

)
=

R0∑
r=R+1

tr

(
H̆1R0ÃrR0H̆

′
2R0

1

NT

N∑
i=1

T∑
t=1

Λ0′eiNe
′
iTF

0εitḡ
∗
it

)
σ̆r +OP

(
δ−1
NT

)
= (1− p)

R0∑
r=R+1

tr

(
H̆1R0ÃrR0H̆

′
2R0

1

NT

N∑
i=1

T∑
t=1

Λ0′eiNe
′
iTF

0εit

)
σ̆r +OP

(
δ−1
NT

)
= OP ((NT )−1/2) +OP

(
δ−1
NT

)
= OP

(
δ−1
NT

)
,

where the last line follows from the fact that 1
NT

∑N
i=1

∑T
t=1 Λ0′eiNe

′
iTF

0εit = 1
NT

∑N
i=1

∑T
t=1 λ

0
iF

0′
t εit =

OP ((NT )−1/2).

In sum, we have shown that when R < R0, C̃V (R)− C̃V (R0) = (1− p)
∑R0

r=R+1 σ
2
r +OP

(
δ−1
NT

)
.

This implies that P (R̃ < R0)→ 0 as (N,T )→∞.

Now, we study the overfitted case where R > R0. We continue to use the decompositions

in (B.6) and (B.7). We first study C̃V 11 (R) . When R > R0, D̃
−1
R 6= OP (1) and thus ÃrR 6= OP (1).

This implies that we cannot use similar arguments as used in the case where R < R0. In addition,

C̃R − C̃R0 is not independent of Ḡ∗, which further complicates the analysis. To tackle the problem,
we call upon Assumption A.7. Let Γ̃R ≡ C̃R − C̃R0 . By Assumption A.7(i), we have

∥∥∥Γ̃R

∥∥∥
∞
≤

6



∑R
r=R0+1 σ̃r/(c0

√
(N + T ) log(N + T )) with probability approaching 1 (w.p.a.1). In addition, by

the definitions of Frobenius and nuclear norms,
∥∥∥Γ̃R

∥∥∥ = (
∑R

r=R0+1 σ̃
2
r)

1/2 and
∥∥∥Γ̃R

∥∥∥
∗

=
∑R

r=R0+1 σ̃r.

By the Jensen inequality and the fact that R ≤ Rmax,

√
NT

∥∥∥Γ̃R

∥∥∥
∞

∥∥∥Γ̃R

∥∥∥
∗∥∥∥Γ̃R

∥∥∥2 ≤ Rmax −R0

c0

√
NT

(N + T ) log(N + T )
≤ 1

c̃0

√
NT

dNT log dNT
,

where dNT = 1
2(N + T ) and c̃0 =

√
2c0/(Rmax−R0). Therefore, Γ̃R ∈ CNT (c̃0) w.p.a.1. Then we can

apply Theorem B.4 and the fact that
∥∥∥Γ̃R

∥∥∥
∞
/
∥∥∥Γ̃R

∥∥∥ = oP (1) to obtain that∥∥∥∥ 1√
1− p Γ̃R ◦ Ḡ∗

∥∥∥∥ ≥ 1

16

∥∥∥Γ̃R

∥∥∥ w.p.a.1.
It follows that C̃V 11 (R) = 1

NT

∥∥∥Γ̃R ◦ Ḡ∗
∥∥∥2
≥ 1−p

256
1
NT

∥∥∥Γ̃R

∥∥∥2
= 1−p

256

∑R
r=R0+1 σ̆

2
r w.p.a.1, where

σ̆2
r = OP

(
δ−2
NT

)
for r = R0 + 1, ..., Rmax by Lemma B.2(ii). Then by Lemma B.2(iii) we have

plim(N,T )→∞δ
2
NT C̃V 11 (R) ≥ (R−R0) 1−p

256 cσ > 0.

Next, we study C̃V 12 (R) . Noting that Γ̃R = C̃R − C̃R0 =
∑R

r=R0+1 ũrṽ
′
rσ̃r, we have

C̃V 12 (R) =
1

NT
tr
{

(Γ̃R ◦ Ḡ∗)
[
(C̃R0 − C0) ◦ Ḡ∗

]′}
=

R∑
r=R0+1

σ̃r
NT

tr
{

(ũrṽ
′
r)
′
[
(C̃R0 − C0) ◦ Ḡ∗

]}

≡
R∑

r=R0+1

CV12r.

In addition,

1√
NT

tr
{

(ũrṽ
′
r)
′(C̃R0 − C0)

}
=
−1√
NT

tr
{

(ũrṽ
′
r)
′C0
}

=
−1√
NT

tr
{
ũ′rF

0Λ0′ṽr
}

= OP (δ−4
NT ),

where the first equality holds by the orthogonality between ũr and C̃R0 for r > R0 and the third

equality holds by Lemma B.3. It follows that

CV12r =
σ̃r
NT

tr
{

(ũrṽ
′
r)
′
[
(C̃R0 − C0) ◦ Ḡ∗

]}
= − σ̃r

NT
tr
{

(ũrṽ
′
r)
′
[
(C̃R0 − C0) ◦ (G∗ − E(G∗))

]}
+OP (δ−4

NT )

≡ CV 12r +OP (δ−4
NT ).

Note that ∣∣CV 12r

∣∣ =
σ̃r√
NT

1√
NT

∣∣∣tr{(C̃R0 − C0)
[
(ũrṽ

′
r) ◦ (G∗ − E(G∗))

]}∣∣∣
≤ OP

(
δ−1
NT

) 1√
NT

∥∥∥C̃R0 − C0
∥∥∥
∗

∥∥(ũrṽ
′
r) ◦ (G∗ − E(G∗))

∥∥
sp

≤ OP
(
δ−2
NT

)
sup

Γ∈C1NT (c1NT ,c2NT ,c3NT )
‖Γ ◦ (G∗ − E(G∗))‖sp

= oP
(
δ−2
NT

)
,
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where first inequality follows the fact that σ̃r√
NT

= OP
(
δ−1
NT

)
and |tr (AB)| ≤ ‖A‖∗ ‖B‖sp , the second

inequality follows because

1√
NT

∥∥∥C̃R0 − C0
∥∥∥
∗
≤
√

2R0√
NT

∥∥∥C̃R0 − C0
∥∥∥ = OP

(
δ−1
NT

)
and the last equality holds by Theorem B.5 with c1NT = o(1), c2NT = o(1) and c3NT = 1/

√
(N + T ) log(N + T ).

Then we have C̃V 12 (R) = oP
(
δ−2
NT

)
.

Now, we study C̃V 3 (R)− C̃V 3 (R0) .

C̃V 3 (R)− C̃V 3 (R0) =
1

NT
tr
{[(

C̃R0 − C̃R
)
◦ Ḡ∗

] (
ε ◦ Ḡ∗

)′}
= −

R∑
r=R0+1

σ̃r
NT

tr
{

(ũrṽ
′
r)
′ (ε ◦ Ḡ∗)}

= −
R∑

r=R0+1

σ̃r
NT

ũ′r
(
ε ◦ Ḡ∗

)
ṽr = −

R∑
r=R0+1

σ̃r
NT

∑
i,t

ũtrṽirεit(1− g∗it)

≡ −
R∑

r=R0+1

CV3r.

where ũtr and ṽir denote the tth and ith entries of ũr and ṽr, respectively. Noting that σ̃2
r/(NT ) =

OP (δ−2
NT ), we have

EDNT
[
CV 2

3r

]
=

σ̃2
r

NT

1

NT

∑
(i,t)∈Ω∗⊥

∑
(j,s)∈Ω∗⊥

ũtrṽirũsrṽjrEDNT (εitεjs)

≤ OP (δ−2
NT )

1

2NT

∑
(i,t)∈Ω∗⊥

∑
(j,s)∈Ω∗⊥

(ũ2
trṽ

2
ir + ũ2

srṽ
2
jr) |EDNT (εitεjs)|

= OP (δ−2
NT )

1

NT

∑
(i,t)∈Ω∗⊥

ũ2
trṽ

2
ir

∑
(j,s)∈Ω∗⊥

|EDNT (εitεjs)|

≤ OP (δ−2
NT )

1

NT
max

(i,t)∈Ω∗⊥

∑
(j,s)∈Ω∗⊥

|EDNT (εitεjs)| = op(δ
−4
NT ),

where EDNT (·) = E (·|PΩ∗X,Ω
∗) , the first inequality holds by the Cauchy-Schwarz inequality, the

second inequality holds by the fact that
∑

(i,t)∈Ω∗⊥
ũ2
trṽ

2
ir ≤ ‖ũr‖

2 ‖ṽr‖2 = 1, and the last equality

holds by Assumption 7(ii). Hence, CV3r = op(δ
−2
NT ) for each r ∈ (R0, R] and C̃V 3 (R)− C̃V 3 (R0) =

op(δ
−2
NT ). It follows that

plim(N,T )→∞δ
2
NT

[
C̃V (R)− C̃V (R0)

]
≥ (R−R0) (1− p)

256
cσ > 0 for any R > R0.

This implies that P (R̃ > R0)→ 0 as (N,T )→∞. This completes the proof of the theorem. �

Proof of Theorem 3.2. The proof is essentially the same as that of Theorem 3.1 given the

results in Theorem 2.4. Here, we only outline the major differences. Let X̂∗ = X̂∗(`
∗). Noting that

ĈR = SH(X̂∗, R) = ÛRΣ̂RV̂
′
R, ÛR and V̂R are respectively the eigenvector matrices of X̂

∗X̂∗′ and

8



X̂∗′X̂∗ associated with their R largest eigenvalues, and the diagonal elements of Σ̂2
R are the R largest

eigenvalues of X̂∗X̂∗′. Let F̂R and Λ̂R denote the conventional principal component (PC) estimators

of F (R) and Λ (R) based on X̂∗ under the normalization restrictions that T−1F (R)′ F (R) = IR and

Λ (R)′ Λ (R) =diagonal matrix. Let F̈R and Λ̈R denote the conventional PC estimators of F (R) and

Λ (R) based on X̂∗ under the normalization restrictions that N−1Λ (R)′ Λ (R) = IR and F (R)′ F (R)

=diagonal matrix. Define

Ḧ1R = (N−1Λ0′Λ0)(T−1Λ0′F̂R) and Ḧ2R = (T−1F 0′F 0)(N−1F 0′Λ̈R).

Let D̂R denote the R×R diagonal matrix that contains the R largest eigenvalues of (NT )−1X̂∗X̂∗′

arranged in descending order along its diagonal line. Note that D̂R = (NT )−1 Σ̂2
R.

Following the proof of Theorem 2.4, we can show that 1
NT

∑N
i=1

∑T
t=1

∥∥∥Ĉ(`∗−1)
Rmax,it

− C0
it

∥∥∥2
= OP

(
δ−2
NT

)
.

With this result, we can show that the results analogous to those in Lemmas B.1-B.2 hold:

(i) 1
T

∥∥∥√TÛRD̂R − F 0Ḧ1R

∥∥∥2
= OP

(
δ−2
NT

)
,

(ii) 1
N

∥∥∥√NV̂RD̂R − Λ0Ḧ2R

∥∥∥2
= OP

(
δ−2
NT

)
,

(iii) σ̈2
r = σ2

r +OP
(
δ−1
NT

)
for r = 1, ..., R0,

(iv) σ̈2
R0+r = OP

(
δ−2
NT

)
for r ≥ 1,

(v) δ2
NT σ̈

2
R0+r ≥ cσ + oP (1) for some positive constant cσ and any r ≥ 1 with R0 + r ≤ R.

where σ̈r = (NT )−1/2σ̂r.

Noting that X = C0 + ε, we make the following decomposition

ĈV (R) =
1

NT

∥∥∥(X − ĈR) ◦ Ḡ∗
∥∥∥2

=
1

NT

∥∥∥(C0 − ĈR) ◦ Ḡ∗
∥∥∥2

+
1

NT

∥∥ε ◦ Ḡ∗∥∥2
+

2

NT
tr
{[

(C0 − ĈR) ◦ Ḡ∗
] (
ε ◦ Ḡ∗

)′}
≡ ĈV 1 (R) + ĈV 2 + 2ĈV 3 (R) .

Then we have ĈV (R)− ĈV (R0) = [ĈV 1 (R)− ĈV 1 (R0)] + 2[ĈV 3 (R)− ĈV 3 (R0)]. When R < R0,

we can follow the proof of Theorem 3.1 and apply the above results in (i)-(iii) to show that

ĈV 1 (R)− ĈV 1 (R0) = (1− p)
R0∑

r=R+1

σ2
r +OP

(
δ−1
NT

)
and ĈV 3 (R)− ĈV 3 (R0) = OP

(
δ−1
NT

)
.

Then ĈV (R)− ĈV (R0) = (1− p)
∑R0

r=R+1 σ
2
r +OP

(
δ−1
NT

)
and P (R̂ < R0)→ 0 as (N,T )→∞.

Similarly, when R > R0, we can follow the proof of Theorem 3.1 and apply the above results in

(i)-(ii) and (iv)-(v) and analogous results to those in Theorems B.4-B.5 to show that

ĈV 1 (R)− ĈV 1 (R0) ≥ (1− p)
256

R∑
r=R0+1

σ̈2
r +OP

(
δ−3
NT

)
and ĈV 3 (R)− ĈV 3 (R0) = oP

(
δ−2
NT

)
.

Then plim(N,T )→∞δ
2
NT [ĈV (R)−ĈV (R0)] ≥ (R−R0)(1−p)

256 cσ > 0 and P (R̂ > R0)→ 0 as (N,T )→∞.
This completes the proof of the theorem. �
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Proof of Lemma B.1. (i) Following the proof of Theorem 1 in Bai and Ng (2002) and that of

Theorem 2.1, we can readily show that

1

T

∥∥∥F̆R − F 0H̆1R

∥∥∥2
= OP

(
δ−2
NT

)
. (B.10)

Recall that D̃R denotes the R × R diagonal matrix that contains the R largest eigenvalues of

(NTp2)−1X∗X∗′ arranged in descending order along its diagonal line. Then (NTp2)−1X∗X∗′ŨR

= ŨRD̃R. This, along with the definition that F̆R =
(
NTp2

)−1
X∗X∗′F̃R and the fact that F̃R =

√
TŨR, implies that

F̆R =
√
T
(
NTp2

)−1
X∗X∗′ŨR =

√
TŨRD̃R.

Then by (B.10), we have 1
T

∥∥∥√TŨRD̃R − F 0H̆1R

∥∥∥2
= OP

(
δ−2
NT

)
.

(ii) Following the proof of Theorem 1 in Bai and Ng (2002) and that of Theorem 2.1, we can

readily show that 1
N

∥∥∥Λ̆R − Λ0H̆2R

∥∥∥2
= OP

(
δ−2
NT

)
. Noting that (NTp2)−1X∗′X∗ṼR = ṼRD̃R and

Λ̄R =
√
NṼR, we have

Λ̆R =
(
NTp2

)−1
X∗X∗′Λ̄R =

√
N
(
NTp2

)−1
X∗X∗′ṼR =

√
NṼRD̃R.

It follows that 1
N

∥∥∥√NṼRD̃R − Λ0H̆2R

∥∥∥2
= OP

(
δ−2
NT

)
. �

Proof of Lemma B.2. (i) Note that σ̆2
r = (NT )−1σ̃2

r denotes the rth largest eigenvalue of

(NTp2)−1X∗X∗′. In view of that X∗ = X ◦G∗ =
(
F 0Λ0′ + ε

)
◦G∗, we have

(NTp2)−1X∗X∗′ =
1

NTp2

[(
F 0Λ0′ + ε

)
◦G∗

] [(
F 0Λ0′ + ε

)
◦G∗

]′
=

1

NTp2

[(
F 0Λ0′) ◦G∗] [(F 0Λ0′) ◦G∗]′ + 1

NT
(ε ◦G∗)(ε ◦G∗)′

+
1

NT

[(
F 0Λ0′) ◦G∗] (ε ◦G∗)′ + 1

NT
(ε ◦G∗)

[(
F 0Λ0′) ◦G∗]′

≡ IV1 + IV2 + IV3 + IV4.

As in the proof of Lemma A.1 and using Lemma B.9 below, it is easy to show that ‖ε ◦G∗‖sp ≤
p ‖ε‖sp + ‖ε ◦ [G∗ − p1T×N ]‖sp = OP (

√
N +

√
T ). Then

‖IV2‖sp ≤ 1

NTp2
‖ε ◦G∗‖2sp = OP

(
δ−2
NT

)
, and

‖IV3‖sp = ‖IV4‖sp ≤
1

p2
√
NT

∥∥F 0Λ0′∥∥ 1√
NT
‖ε ◦G∗‖sp = OP

(
δ−1
NT

)
.

For IV1, we use G∗ = p1T×N + (G∗ − p1T×N ) and make the following decomposition,

IV1 =
1

NT
F 0Λ0′Λ0F 0′ +

1

NTp2

[(
F 0Λ0′) ◦ (G∗ − p1T×N )

] [(
F 0Λ0′) ◦ (G∗ − p1T×N )

]′
+

1

NTp

(
F 0Λ0′) [(F 0Λ0′) ◦ (G∗ − p1T×N )

]′
+

1

NTp

[(
F 0Λ0′) ◦ (G∗ − p1T×N )

]
Λ0F 0′

≡ IV1,1 + IV1,2 + IV1,3 + IV1,4.
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Using Lemma B.9 and following the analysis of
∥∥(F 0Λ0′) ◦G∥∥ in the proof of Lemma A.1, it is easy

to show that
∥∥(F 0Λ0′) ◦ (G∗ − p1T×N )

∥∥
sp = OP (

√
N +

√
T ), with which we can show that

‖IV1,2‖ = OP
(
δ−2
NT

)
and ‖IV1,3‖ = ‖IV1,4‖ = OP

(
δ−1
NT

)
.

Then by the Weyl’s and triangular inequalities, we have∣∣∣∣σ̆2
r − µr

(
1

NT
F 0Λ0′Λ0F 0′

)∣∣∣∣ ≤ ‖IV2 + IV3 + IV4 + IV1,2 + IV1,3 + IV1,4‖sp = OP
(
δ−1
NT

)
.

In addition, µr
(

1
NT F

0Λ0′Λ0F 0′)−σ2
r = OP

(
δ−1
NT

)
under Assumption A.1(v). It follows that

∣∣σ̆2
r − σ2

r

∣∣ =

OP
(
δ−1
NT

)
.

(ii) Let ε∗ = 1
pε ◦G

∗, C∗ = 1
p(F 0Λ0′) ◦ [G∗ − p1T×N ] and ς∗ = C∗ + ε∗. Then

1

p
X∗ =

1

p
X ◦G∗ =

1

p

(
F 0Λ0′ + ε

)
◦G∗ = F 0Λ0′ + ς∗.

Let PΛ0 = Λ0(Λ0′Λ0)−1Λ0′ and QΛ0 = IN − PΛ0 . Let F
∗ = F 0 + ς∗Λ0(Λ0′Λ0)−1. Then

1

NTp2
X∗X∗′ =

1

NT
F ∗′Λ0′Λ0F ∗ +

1

NT
ς∗QΛ0ς

∗′.

It follows that for any r ≥ 1

σ̆2
R0+r = µR0+r

(
1

NTp2
X∗X∗′

)
≤ µR0+1

(
1

NT
F ∗′Λ0′Λ0F ∗

)
+ µr

(
1

NT
ς∗QΛ0ς

∗′
)

= µr

(
1

NT
ς∗QΛ0ς

∗′
)
,

where we use the fact that rank(F ∗′Λ0′Λ0F ∗) ≤ R0. Using Lemma B.9, we can readily show that

‖ς∗‖sp = OP (
√
N +

√
T ). Then

µr

(
1

NT
ς∗QΛ0ς

∗′
)
≤ µr

(
1

NT
ς∗ς∗′

)
≤ 1

NT
‖ς∗‖2sp = OP

(
δ−2
NT

)
.

It follows that σ̆2
R0+r = OP

(
δ−2
NT

)
for any r ≥ 1.

(iii) To determine the lower probability bound for σ̆2
R0+r, we notice that

µ2R0+r

(
1

NT
ς∗ς∗′

)
≤ µR0+r

(
1

NT
ς∗QΛ0ς

∗′
)

+ µR0+1

(
1

NT
ς∗PΛ0ς

∗′
)

= µR0+r

(
1

NT
ς∗QΛ0ς

∗′
)
≤ µR0+r

(
1

NTp2
X∗X∗′

)
= σ̆2

R0+r.

Without loss of generality we assume that T ≤ N and consider two cases: (1) T and N pass to

infinity at the same rate (viz., T � N) , and (2) T = o (N) . In Case (1), we can follow the proof of

Lemma A.9 in Ahn and Horenstein (2013) to show that δ2
NTµ2R0+r

(
1
NT ς

∗ς∗′
)
is bounded from below

by a positive constant. In Case (2), we can consider the principal submatrix of ς∗ and show that
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δ2
NTµ2R0+r

(
1
NT ς

∗ς∗′
)
is also bounded from below by a positive constant. It follows that δ2

NT σ̆
2
R0+r

is bounded in probability from below by a positive constant, say cσ, as (N,T )→∞. �

Proof of Lemma B.3. Let r ≥ R0 + 1. Recall from the proof of Theorem 3.1 that F̃ = F̃R0 and

H̃ = H̃R0 . Note that∥∥∥∥ ũ′rF 0

√
T

∥∥∥∥ =

∥∥∥∥∥ ũ′rF 0H̃√
T

H̃−1

∥∥∥∥∥ =

∥∥∥∥∥ ũ′r(F 0H̃ − F̃ )√
T

H̃−1

∥∥∥∥∥ ≤ ∥∥∥H̃−1
∥∥∥ ‖ũr‖

∥∥∥∥∥F 0H̃ − F̃√
T

∥∥∥∥∥ = OP (δ−1
NT ),

where the second inequality is by orthogonality between ũr and F̃ = F̃R0 for r > R0. Analogously,

we can show that ṽ′rΛ
0

√
N

= OP (δ−1
NT ). In the following, we aim at improving the probability order to

show that ṽ′rΛ
0 = OP (δ−1

NT ) and ũ′rF
0 = OP (δ−1

NT )

By the definition of singular value decomposition (SVD), we can write 1
pX
∗ =

∑N∧T
k=1 ũkṽ

′
kσ̃k.

Recall that ς∗ ≡ ε ◦ G∗ + F 0Λ0′ ◦ [G∗ − E(G∗)]/p, 1
pX
∗ = F 0Λ0′ + ς∗, and ũr denotes the rth

eigenvector of 1
p2
X∗X∗′ that is associated with its rth largest eigenvalue. If follows that(

F 0Λ0′Λ0F 0′

NT
+
F 0Λ0′ς∗′

NT
+
ς∗Λ0F 0′

NT
+
ς∗ς∗′

NT

)
ũr = ũr

σ̃2
r

NT
.

Premultiplying both sides of the above equation by F 0′/
√
T , we have

F 0′F 0

T

Λ0′Λ0

N

F 0′ũr√
T

+
F 0′F 0

T

Λ0′ς∗′ũr

N
√
T

= OP (δ−2
NT ),

where we used the fact that F 0′eΛ0√
NT

= OP (1), σ̃2r
NT = σ̆2

r = OP (δ−2
NT ) for r > R0, ‖ũr‖ = 1,

1√
T

∥∥F 0′ũr
∥∥ = OP (δ−1

NT ) and
∥∥∥ς∗/√NT∥∥∥

sp
= OP (δ−1

NT ). Premultiplying both sides of the above

equation by
(
F 0′F 0

T

)−1
, we have

OP (δ−2
NT ) =

Λ0′
√
N

Λ0F 0′ + ς∗′√
NT

ũr =
Λ0′
√
N

1
pX
∗′ũr√
NT

=
σ̃r√
NT

Λ0′ṽr,

where the second equality follows from the decomposition 1
pX
∗ = F 0Λ0′+ ς∗ and the third one holds

by the fact that 1
pX
∗′ũr = σ̃rṽr. It follows that Λ0′ṽr = OP (δ−1

NT ) as δ−NT σ̃r√
NT

= δ−NT σ̆r is bounded

away from zero by Lemma B.2(iii). A symmetric argument gives that ũ′rF
0 = OP (δ−1

NT ). �

Proof of Theorem B.4. The proof follows closely from that of Theorem 1 in Negahban and

Wainwright (2012). It suffi ces to show the probability of the event

ENT ≡
{
∃ Γ ∈ CNT (c0) |

∣∣∣∣∥∥∥∥ 1
√
p

Γ ◦G
∥∥∥∥− ‖Γ‖∣∣∣∣ > 7

8
‖Γ‖+

c3 ‖Γ‖∞
8

}
is bounded by c1 exp(−c2d log d). Note that the claimed result holds for cΓ too if it holds for Γ. In

addition, since CNT (c0) is invariant to the rescaling of Γ, without loss of generality, we can prove the
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result by assuming that ‖Γ‖∞ = 1
d . For any Γ ∈ CNT (c0) with ‖Γ‖∞ = 1

d and ‖Γ‖ ≤ D, we have

‖Γ‖∗ ≤ ρ(D), where ρ(D) ≡ D2
√
d

c0
√

log d
by the definition of CNT (c0). For each radius D > 0, consider

the set

B(D) ≡
{

Γ ∈ CNT (c0) | ‖Γ‖∞ =
1

d
, ‖Γ‖ ≤ D, ‖Γ‖∗ ≤ ρ(D)

}
,

and the associated event

ENT,D ≡
{
∃ Γ ∈ B(D) |

∣∣∣∣∥∥∥∥ 1
√
p

Γ ◦G
∥∥∥∥− ‖Γ‖∣∣∣∣ ≥ 3

4
D +

c3

8d

}
.

Lemma B.6 below shows that it suffi ces to obtain the upper bound for the probability of the event

ENT,D for each fixed D > 0. In the second step, we show the probability of ENT,D is bounded by

c1 exp(−c2D
2NT ) for some universal constants (c1, c2).

Now, define

ZNT (D) ≡ sup
Γ∈B̄(D)

∣∣∣∣∥∥∥∥ 1
√
p

Γ ◦G
∥∥∥∥− ‖Γ‖∣∣∣∣ ,

where B(D) ≡
{

Γ ∈ CNT (c0) | ‖Γ‖∞ ≤ 1
d , ‖Γ‖ ≤ D, ‖Γ‖∗ ≤ ρ(D)

}
. It suffi ces to show that there are

universal constants (c1, c2, c3) such that

P

[
ZNT (D) ≥ 3

4
D +

c3

8d

]
≤ c1 exp(−c2D

2NT ) for each fixed D > 0.

In order to prove the above result, we begin with a discretization argument. Let Γ1, . . . ,ΓN(δ) be a

δ-covering of B(D) in Frobenius norm. By definition, for any Γ ∈ B(D), there exists some k ∈ [N(δ)]

such that
∥∥Γ− Γk

∥∥ ≤ δ. Let ∆ ≡ Γ− Γk. Then by the repeated use of the triangle inequality,∥∥∥∥ 1
√
p

Γ ◦G
∥∥∥∥− ‖Γ‖ =

∥∥∥∥ 1
√
p

(Γk + ∆) ◦G
∥∥∥∥− ∥∥∥Γk + ∆

∥∥∥
≤

∥∥∥∥ 1
√
p

Γk ◦G
∥∥∥∥− ∥∥∥Γk

∥∥∥+

∥∥∥∥ 1
√
p

∆ ◦G
∥∥∥∥+ ‖∆‖

≤
∣∣∣∣∥∥∥∥ 1
√
p

Γk ◦G
∥∥∥∥− ∥∥∥Γk

∥∥∥∣∣∣∣+

∥∥∥∥ 1
√
p

∆ ◦G
∥∥∥∥+ δ.

A symmetric argument gives the lower bound and establishes that this inequality holds for the

absolute value of the difference:∣∣∣∣∥∥∥∥ 1
√
p

Γ ◦G
∥∥∥∥− ‖Γ‖∣∣∣∣ ≤ ∣∣∣∣∥∥∥∥ 1

√
p

Γk ◦G
∥∥∥∥− ∥∥∥Γk

∥∥∥∣∣∣∣+

∥∥∥∥ 1
√
p

∆ ◦G
∥∥∥∥+ δ.

Because both Γ and Γk belong to B(D), we have that ‖∆‖∗ ≤ 2ρ(D) and ‖∆‖∞ ≤ 2/d. Consequently,

we have

ZNT (D) ≤ δ + max
k∈[N(δ)]

∣∣∣∣∥∥∥∥ 1
√
p

Γk ◦G
∥∥∥∥− ∥∥∥Γk

∥∥∥∣∣∣∣+ sup
∆∈D(D,δ)

∣∣∣∣∥∥∥∥ 1
√
p

∆ ◦G
∥∥∥∥∣∣∣∣ ,
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where D(D, δ) ≡
{

Γ ∈ CNT (c0) | ‖Γ‖∞ ≤ 2
d , ‖Γ‖ ≤ δ, ‖Γ‖∗ ≤ 2ρ(D)

}
. Then by Lemmas B.7-B.8

below with the choice of δ = D/8, we have

ZNT (D) ≤ D

8
+

(
D

8
+

24

d
√
p

)
+
D

2
=

3D

4
+
c3

8d
,

with probability larger than 1− c1 exp(−c2D
2NT ) by choosing large enough c3. �

The proof of Theorem B.4 relies on the following three lemmas whose proofs are given at the end

of this section.

Lemma B.6 Suppose that there are universal constants (c1, c2) such that

P (ENT,D) ≤ c1 exp(−c2D
2NT )

for each fixed D > 0. Then there is a universal constant c′2 such that

P (ENT ) ≤ c1
exp(−c′2NT log d/d)

1− exp(−c′2NT log d/d)
.

Lemma B.7 As long as d ≥ 10, we have

max
k∈[N(D/8)]

∣∣∣∣∥∥∥∥ 1
√
p

Γk ◦G
∥∥∥∥− ∥∥∥Γk

∥∥∥∣∣∣∣ ≤ D

8
+

24

d
√
p

with probability greater than 1− 4 exp(−cd2 ·D2) for some constant c > 0.

Lemma B.8 sup∆∈D(D,δ)

∥∥∥ 1√
p∆ ◦G

∥∥∥ ≤ D
2 with probability at least 1− 2 exp(−pd2D2

512 ).

To prove Theorem B.5, we need the following lemma.

Lemma B.9 Let Z = {Zit} be a T×N matrix such that Zit are independent across (i, t), E(Zit) = 0,

and maxi,t |Zit| ≤ cc < ∞ with probability 1. Then there exists constants M1 and M2 such that for

any t ≥ 0

P
(
‖Z‖sp ≥M2(ca ∨ cb) + t

)
≤ (N ∧ T ) exp

(
−t2
M1c2

c

)
,

where ca = maxi

√∑T
t=1E

(
Z2
it

)
and cb = maxt

√∑N
i=1E

(
Z2
it

)
.

Proof. See Proposition 13 of Klopp (2015).

Proof of Theorem B.5. On the set C1NT , we define the metric d(·, ·) by the Frobenius norm, i.e.,
d(Γ1,Γ2) ≡ ‖Γ1 − Γ2‖ . For Γ1 = U1V

′
1 , Γ2 = U2V

′
2 ∈ C1NT , we have

‖Γ1 − Γ2‖2 =

N∑
i=1

T∑
t=1

(U1tV1i − U2tV2i)
2 =

N∑
i=1

T∑
t=1

[(U1t − U2t)V1i + U2t(V1i − V2i)]
2

≤ 2
N∑
i=1

V 2
1i

T∑
t=1

(U1t − U2t)
2 + 2

N∑
i=1

(V1i − V2i)
2

T∑
t=1

U2t
2

= 2(‖U1 − U2‖2 + ‖V1 − V2‖2),
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where the inequality holds by the fact (a + b)2 ≤ 2(a2 + b2) and the last equality is due to the fact

‖U2‖ = ‖V1‖ = 1. Let {Ul} and {Vm} be the minimum ε/2-nets of unit sphere in RT and RN ,
respectively. Then for all Γ = UV ′, there exists a pair (l,m) such that∥∥Γ− UlV ′m

∥∥2 ≤ 2(‖U − Ul‖2 + ‖V − Vm‖2) ≤ ε2.

Hence, {Ul} × {Vm} is an ε-net of C1NT . The covering number N (C1NT , d, ε) can be bounded by

N (BN
2 , ‖·‖ , ε/2) × N (BT

2 , ‖·‖ , ε/2), where BN
2 denotes the unit ball in RN space. By Corollary

4.2.13 of Vershynin (2018), we have N (C1NT , d, ε) ≤ (6/ε)N+T . Let εNT = 1/ log(N + T ) and fix the

minimum εNT -net {Γ1, ...,ΓK} where K ≤ (6/εNT )N+T . We have

sup
Γ∈C1NT

‖Γ ◦ [G− E(G)]‖sp ≤ max
k∈{1,...,K}

sup
d(Γ,Γk)≤εNT

‖Γ ◦ [G− E(G)]‖sp

≤ max
k∈{1,...,K}

{
‖Γk ◦ [G− E(G)]‖sp + sup

d(Γ,Γk)≤εNT
‖(Γ− Γk) ◦ [G− E(G)]‖sp

}
≤ max

k∈{1,...,K}
‖Γk ◦ [G− E(G)]‖sp + max

k∈{1,...,K}
sup

d(Γ,Γk)≤εNT
‖Γ− Γk‖

≤ max
k∈{1,...,K}

‖Γk ◦ [G− E(G)]‖sp + εNT ,

where the second inequality holds by the triangle inequality, the third inequality is due to the fact

that ‖A‖sp ≤ ‖A‖ and every element of G− E(G) is bounded by 1. For each k, we have Γk = UkV
′
k

for some unit vectors Uk and Vk. Let Z(k) ≡ Γk ◦ [G − E(G)] and denote its (t, i)th entry as Z(k)
it .

By the definition of C1NT and the fact that G− E(G) has bounded i.i.d. entries, we can show

maxi,t
∣∣∣Z(k)

it

∣∣∣ ≤ ‖Uk‖∞ ‖Vk‖∞ ≤ c3NT ,

maxi

(
T∑
t=1

E[(Z
(k)
it )2]

)1/2

≤ ‖Vk‖∞ ≤ c2NT , and maxt

(
N∑
i=1

E[(Z
(k)
it )2]

)1/2

≤ ‖Uk‖∞ ≤ c1NT .

By Lemma B.9, there are some universal constants M1 and M2 such that

P

(∥∥∥Z(k)
∥∥∥
sp
≥M2(c1NT ∨ c2NT ) + t

)
≤ (N ∧ T )exp

(
− t2

M1c2
3NT

)
.

Letting t = KM
1/2
1 c3NT

√
(N + T ) log log(N + T ) and noting that K = (6 log(N + T ))N+T , we have

P

(
max

k∈{1,...,K}

∥∥∥Z(k)
∥∥∥
sp
≥M2(c1NT ∨ c2NT ) + t

)
≤ (6 log(N + T ))N+T (N ∧ T )exp

(
−K2(N + T ) log log(N + T )

)
= exp

(
−(K2 − 1)(N + T ) log log(N + T ) + log(N ∧ T ) + (N + T ) log 6

)
≤ exp (−(N + T ) log log(N + T )) ,

as long as (K2 − 3) log log(N + T ) ≥ log 6 and log(N + T ) > (N ∧ T )1/(N+T ). Hence we have shown

that

max
k∈{1,...,K}

∥∥∥Z(k)
∥∥∥
sp

= OP (c1NT + c2NT + c3NT

√
(N + T ) log log(N + T )).
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To sum up, we have

sup
Γ∈C1NT

‖Γ ◦ [G− E(G)]‖ = OP (c1NT + c2NT + c3NT

√
(N + T ) log log(N + T ) + 1/ log(N + T )).

�

Proof of Lemma B.6. For all Γ ∈ CNT (c0) with ‖Γ‖∞ = 1
d , we have

‖Γ‖2 ≥ c0 ‖Γ‖∗

√
log d

d
≥ c0 ‖Γ‖

√
log d

d
,

which implies that ‖Γ‖ ≥ µ ≡ c0

√
log d
d . Accordingly, recalling the definition (B.5), it suffi ces to

restrict our attention to the sets B(D) with D ≥ µ. For l = 1, 2, . . . and α = 7/6, define the sets

Sl ≡ {Γ ∈ CNT (c0) | ‖Γ‖∞ =
1

d
, ‖Γ‖ ∈ [αl−1µ, αlµ], and ‖Γ‖∗ ≤ ρ(αlµ)}.

Now, if the event ENT holds for some matrix Γ, then Γ ∈ Sl ⊂ B(αlµ) for some l and∣∣∣∣∥∥∥∥ 1
√
p

Γ ◦G
∥∥∥∥− ‖Γ‖∣∣∣∣ > 7

8
‖Γ‖+

c3 ‖Γ‖∞
8

≥ 7

8
αl−1µ+

c3 ‖Γ‖∞
8

=
3

4
αlµ+

c3

8d
,

where the equality holds by the fact that α = 7/6 and ‖Γ‖∞ = 1
d . Thus, ENT,αlµ occurs for some

l. It follows that ENT ⊂ ∪∞l=1ENT,αlµ. By the union bound and the fact that α
2l ≥ 2c∗l for some

c∗ > 0 and all l ≥ 1, we have

P (ENT ) ≤
∞∑
l=1

P (ENT,αlµ) ≤ c1

∞∑
l=1

exp(−c2α
2lµ2NT ) ≤ c1

∞∑
l=1

exp(−2c∗c2µ
2NTl)

= c1

∞∑
l=1

[
exp(−2c∗c2µ

2NT )
]l

= c1
exp(−c′2NTµ2)

1− exp(−c′2NTµ2)
,

where the second inequality follows from the hypothesis on P (ENT,D) and c′2 = 2c∗c2.

Since NTµ2 = NT
d log d, the claim follows. �

Proof of Lemma B.7.We first consider a fixed Γ and establish the exponential tail bound. Then

we bound the covering number N(D/8) and use the union bound to establish the result.

By the definition of Frobenius norm, we observe that for any T×N matrix A with typical element

Ait, we have

‖A‖ =

∑
i,t

(Ait)
2

1/2

=

∑
i,t

(Aitzit)
2

1/2

= sup
‖U‖=1

∑
i,t

uitAitzit

where zit’s are i.i.d. Rademacher variables. Then

∥∥∥∥ 1
√
p

Γ ◦G
∥∥∥∥ =

1

p

∑
i,t

(Γitgit)
2

1/2

= sup
‖U‖=1

∑
i,t

uitYit

 ≡ ZNT ,
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where Yit ≡ 1√
pzitΓitgit, and zit’s are i.i.d. Rademacher variables that are independent of {git} . Note

that each Yit is zero-mean, and bounded by 1√
pd . By Corollary 4.8 in Ledoux (2001), we conclude

that

P

(
|ZNT − E(ZNT )| ≥ δ +

8
√
π

d
√
p

)
≤ 4 exp(−pδ

2d2

8
), and E(Z2

NT )− [E(ZNT )]2 ≤ 64

pd2
.

It follows that
∣∣∣E(ZNT )−

√
E(Z2

NT )
∣∣∣ ≤ 8√

pd . With the above results and the fact that E(Z2
NT ) =

‖Γ‖2, we can conclude that

P

(∣∣∣∣∥∥∥∥1

p
Γk ◦G

∥∥∥∥− ∥∥∥Γk
∥∥∥∣∣∣∣ ≥ D

8
+

24
√
pd

)
≤ 4 exp(−pD

2d2

512
).

The upper bound of covering number N(δ) can be bounded similarly as in the proof of Lemma

4 in Negahban and Wainwright (2012). Then we have that

logN(δ) ≤ 36(ρ(D)/δ)2d, where ρ(D) ≡ D2
√
d

c0
√

log d
.

Combining the tail bound with the union bound, we obtain

P

(
max

k∈[N(D/8)]

∣∣∣∣∥∥∥∥1

p
Γk ◦G

∥∥∥∥− ∥∥∥Γk
∥∥∥∣∣∣∣ > D

8
+

24
√
pd

)
≤ 4 exp(−pD

2d2

512
+ 36(ρ(D)/δ)2d).

Choosing the constant c0 suffi ciently large, we have the desired result. �

Proof of Lemma B.8. Our goal is to bound the function

f(G) ≡ sup
∆∈D(D,δ)

∥∥∥∥ 1
√
p

∆ ◦G
∥∥∥∥ ,

where we recall that D(D, δ) ≡
{

Γ ∈ CNT (c0)| ‖Γ‖∞ ≤ 2
d , ‖Γ‖ ≤ δ, ‖Γ‖∗ ≤ 2ρ(D)

}
.

(i) Our approach is to show concentration of G around its expectation E [f(G)] , and then upper

bound the expectation. For any independent copy G̃ of G, we have

f(G)− f(G̃) = sup
∆∈D(D,δ)

∥∥∥∥ 1
√
p

∆ ◦G
∥∥∥∥− sup

∆̃∈D(D,δ)

∥∥∥∥ 1
√
p

∆̃ ◦ G̃
∥∥∥∥

≤ sup
∆∈D(D,δ)

[∥∥∥∥ 1
√
p

∆ ◦G
∥∥∥∥− ∥∥∥∥ 1

√
p

∆ ◦ G̃
∥∥∥∥]

≤ sup
∆∈D(D,δ)

∥∥∥∥ 1
√
p

∆ ◦
(
G− G̃

)∥∥∥∥
≤ 2
√
pd

∥∥∥G− G̃∥∥∥ ,
where the last inequality is by the fact G−G̃ has entries bounded by 1 and ‖∆‖∞ ≤ 2

d . Therefore, by

the bounded differences variant of the Azuma-Hoeffding inequality (Ledoux (2001, p.17)), we have

P {|f(G)− E[f(G)]| ≥ t} ≤ 2 exp(−pd
2t2

8
).
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Setting t = D
8 , we have P

{
|f(G)− E[f(G)]| ≥ D

8

}
≤ 2 exp(−pd2D2

512 ).

(ii) Next we bound the expectation. First applying Jensen’s inequality, we have

(E[f(G)])2 ≤ E[f2(G)] = E

 sup
∆∈D(D,δ)

∑
i,t

∆2
it

git
p


= E

 sup
∆∈D(D,δ)

∑
i,t

[
∆2
it

git
p
− E

(
∆2
it

git
p

)]
+ ‖∆‖2


≤ E

 sup
∆∈D(D,δ)

∑
i,t

[
∆2
it

git
p
− E

(
∆2
it

git
p

)]+ δ2,

where we have used the fact that
∑

i,tE
(

∆2
it
git
p

)
= ‖∆‖2 ≤ δ2. By a standard Rademacher sym-

metrization argument, we can show

E[f2(G)] ≤ 2E

 sup
∆∈D(D,δ)

1

NT

∑
i,t

(
NT∆2

it

git
p
ξit

)+ δ2,

where ξits are i.i.d. Rademacher variables. Since
∣∣∣NT∆2

it
git
p ξit

∣∣∣ ≤ 4NT
d2

for all (i, t), the Ledoux-

Talagrand contraction inequality (e.g., Ledoux and Talagrand (1991, p.112)) implies that

E[f2(G)] ≤ 32
√
NT

d2√p E

 sup
∆∈D(D,δ)

∑
i,t

(∆itgitξit)

+ δ2.

By the inequality that |tr(AB)| ≤ ‖A‖∗ ‖B‖sp, we have
∣∣∣∑i,t (∆itgitξit)

∣∣∣ ≤ ‖∆‖1 ‖G ◦ ξ‖sp . It follows
that

E[f2(G)] ≤ 32
√
NT

d2√p ρ(D)E ‖G ◦ ξ‖sp + δ2,

where we used the fact that ‖∆‖∗ ≤ ρ(D). Noting that G ◦ ξ is a random matrix with bounded

i.i.d. zero-mean entries, we have E ‖G ◦ ξ‖sp ≤
√
d log d; see, e.g. Theorem 4.4.5 of Vershynin (2018).

Hence, we have

E[f(G)] ≤
√
E[f2(G)] ≤

(
32
√
NT

c0d
√
p
D2 + δ2

)1/2

≤ 7

16
D,

by choosing a large enough c0 and noting that d = (N + T )/2 ≥
√
NT .

Combining the results of part (i)-(ii), we have the result desired. �
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Additional Online Supplement for
“Inference for Approximate Factor Models: Random Missing and Cross

Validation”
Liangjun Su, Ke Miao, and Sainan Jin

School of Economics, Singapore Management University

This additional online supplement consists of two parts. Section C contains the proofs of the technical

lemmas in Appendix A. Section D provides some additional simulation results.

C Proof of the Technical Lemmas in Appendix A

Proof of Lemma A.1. From the principal component analysis (PCA), we have the identity(
NT q̃2

)−1
X̃X̃ ′F̃ = F̃ D̃. Pre-multiplying both sides by T−1F̃ ′ and using the normalization T−1F̃ ′F̃ =

IR yield T−1F̃ ′
(
NT q̃2

)−1
X̃X̃ ′F̃ = D̃. The lemma follows providedD =plimD̃, which we show below.

Noting that X̃ = (F 0Λ0′ + ε) ◦G, we have

D̃ = T−1F̃ ′
(
NT q̃2

)−1
X̃X̃ ′F̃

= T−1F̃ ′
(
NT q̃2

)−1 [
(F 0Λ0′ + ε) ◦G

] [
(F 0Λ0′ + ε) ◦G

]′
F̃

= T−1F̃ ′
(
NT q̃2

)−1 [
(F 0Λ0′) ◦G

] [
(F 0Λ0′) ◦G

]′
F̃ + T−1F̃ ′

(
NT q̃2

)−1
(ε ◦G) (ε ◦G)′F̃

+T−1F̃ ′
(
NT q̃2

)−1 [
(F 0Λ0′) ◦G

]
(ε ◦G)′F̃ + T−1F̃ ′

(
NT q̃2

)−1
(ε ◦G)′

[
(F 0Λ0′) ◦G

]′
F̃

≡ DNT,1 +DNT,2 +DNT,3 +DNT,4, say.

We first study DNT,1. Noting that E(G) = q1T×N with 1T×N being a T × N matrix of ones, we

make the following decomposition

DNT,1 = T−1F̃ ′
(
NT q̃2

)−1 [
(F 0Λ0′) ◦G

] [
(F 0Λ0′) ◦G

]′
F̃

=
q2

q̃2

F̃ ′F 0

N

Λ0′Λ0

N

F 0F̃

T
+ T−1F̃ ′

(
NT q̃2

)−1
[
(F 0Λ0′) ◦ G̃

] [
(F 0Λ0′) ◦ G̃

]′
F̃

+
q

q̃2
T−1F̃ ′

(
NT q̃2

)−1
[
(F 0Λ0′) ◦ G̃

]
(F 0Λ0′)F̃ +

q

q̃2
T−1F̃ ′

(
NT q̃2

)−1
(F 0Λ0′)

[
(F 0Λ0′) ◦ G̃

]′
F̃

≡ DNT,11 +DNT,12 +DNT,13 +DNT,14

where G̃ = G−E (G) . By the i.i.d. property of git, we can readily show that q̃/q−1 = OP ((NT )−1/2).

By Lemma A.3(ii) in Bai (2003), F̃
′F 0

N
Λ0′Λ0

N
F 0F̃
T

p→ D. This result can be strengthened to || F̃ ′F 0N
Λ0′Λ0

N
F 0F̃
T

−D|| = OP (δ−1
NT ) under our assumptions. Then ‖DNT,11 −D‖ = OP (δ−1

NT ).

1



For DNT,12, we have

‖DNT,12‖sp =
(
NT q̃2

)−1
λmax

(
T−1F̃ ′

[
(F 0Λ0′) ◦ G̃

] [
(F 0Λ0′) ◦ G̃

]′
F̃

)
≤ tr

(
T−1F̃ ′F̃

) (
NT q̃2

)−1
λmax

([
(F 0Λ0′) ◦ G̃

] [
(F 0Λ0′) ◦ G̃

]′)
= R

(
NT q̃2

)−1
∥∥∥(F 0Λ0′) ◦ G̃

∥∥∥2

sp

where the last equality follows from the fact that tr(T−1F̃ ′F̃ ) =tr(IR) = R. Let cλ,F = maxi,t
∣∣λ0′
i F

0
t

∣∣
and Z = [(F 0Λ0′) ◦ G̃]/cλ,F . Let Zit denote a typical element of Z : Zit = λ0′

i F
0
t (git − q) /cλ,F . By

construction, maxi,t |Zit| ≤ 1. We want to apply Lemma B.9 by conditioning on F = σ
{
F 0,Λ0

}
,

the sigma-field generated by F 0 and Λ0. By straightforward moment calculations

c1 ≡ max
i

√√√√ T∑
t=1

E
(
Z2
it|F

)
= max

i

√√√√ T∑
t=1

(
λ0′
i F

0
t

)2
c2
λ,F

E (git − q)2

=

√
q (1− q)
cλ,F

max
i

√
λ0′
i F

0′F 0λ0
i ≤

cλ,N
∥∥F 0′F 0

∥∥1/2

cλ,F
,

and

c2 ≡ max
t

√√√√ N∑
i=1

E
(
Z2
it|F

)
= max

t

√√√√ N∑
i=1

(
λ0′
i F

0
t

)2
c2
λ,F

E (git − q)2

=

√
q (1− q)
cλ,F

max
t

√
F 0′
t Λ0′Λ0F 0

t ≤
cF,T

∥∥Λ0′Λ0
∥∥1/2

cλ,F
,

where cλ,N = maxi
∥∥λ0

i

∥∥ and cF,T = maxt
∥∥F 0

t

∥∥ . It follows that∥∥∥(F 0Λ0′) ◦ G̃
∥∥∥
sp

= OP

(
max

{
cλ,N

∥∥F 0′F 0
∥∥1/2

, cF,T
∥∥Λ0′Λ0

∥∥1/2
, cλ,F log(N ∨ T )

})
.

This result, in conjunction with the fact
∥∥F 0′F 0

∥∥ = OP (T ) ,
∥∥Λ0′Λ0

∥∥ = OP (N) , cλ,N = OP
(
Nγ1/4)

)
,

cF,T = OP
(
T γ2/4)

)
, and cλ,F = OP

(
(NT )1/4

)
under our moment conditions on λ0

i and F
0
t in As-

sumption A.1, implies that

‖DNT,12‖ ≤
√
R ‖DNT,12‖sp = OP

(
1

NT
max

{
c2
λ,NT, c

2
F,TN, c

2
λ,F [log(N ∨ T )]2

})
≤ OP

{
1

NT
max

{
Nγ1/2T, T γ2/2N, (NT )1/2 [log(N ∨ T )]2

}}
= OP (δ

−(2−γ)
NT )

where γ = γ1 ∨ γ2. Then ‖DNT,13‖ = ‖DNT,14‖ ≤ {‖DNT,11‖ ‖DNT,12‖}1/2 = OP (δ
−(1−γ/2)
NT ) by the

matrix version of Cauchy-Schwarz (CS) inequality. Therefore we have ‖DNT,1 −D‖ = OP (δ
−(1−γ/2)
NT ).

Noting that DNT,2 is positive semidefinite (p.s.d.), we have

‖DNT,2‖sp ≤
(
NT q̃2

)−1
tr
(
T−1F̃ ′ (ε ◦G) (ε ◦G)′F̃

)
≤ tr

(
T−1F̃ ′F̃

) (
NT q̃2

)−1
λmax

(
(ε ◦G) (ε ◦G)′

)
= R

(
NT q̃2

)−1 ‖ε ◦G‖2sp ,
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where the first inequality follows from the fact that ‖A‖sp = λmax (A) ≤tr(A) for any p.s.d. symmetric

matrix A, the second inequality follows because tr(A′BA) ≤tr(A′A)λmax (B) for any symmetric p.s.d.

matrix B and conformable matrix A, the equality follows because tr(T−1F̃ ′F̃ ) =tr(IR) = R. Note

that

‖ε ◦G‖sp ≤
∥∥∥ε ◦ G̃∥∥∥

sp
+ ‖ε ◦ E (G)‖sp =

∥∥∥ε ◦ G̃∥∥∥
sp

+ q ‖ε‖sp .

By Assumption A.2(i), ‖ε‖sp = OP (
√
N+
√
T ). As in the analysis of

∥∥∥(F 0Λ0′) ◦ G̃
∥∥∥
sp
, we can readily

apply Lemma B.1 by conditioning on ε to obtain with high probability∥∥∥ε ◦ G̃∥∥∥
sp

= OP

(
max

{√
N,
√
T ,max

i,t
|εit| log(N ∨ T )

})
≤ OP

(√
N +

√
T + (NT )1/4 log(N ∨ T )

)
.

It follows that ‖DNT,2‖ ≤
√
R ‖DNT,2‖sp ≤ (NT )−1OP

(
N + T + (NT )1/2 [log(N ∨ T )]2

)
= oP (δ

−(2−γ)
NT )

and ‖DNT,2‖ ≤
√
R ‖DNT,2‖sp = oP (δ

−(2−γ)
NT ) and ‖DNT,3‖ = ‖DNT,4‖ ≤ {‖DNT,1‖ ‖DNT,2‖}1/2 =

oP (δ
−(1−γ/2)
NT ) by the CS inequality.

In sum, we have
∥∥∥D̃ −D∥∥∥ = OP (δ

−(1−γ/2)
NT ). �

Proof of Lemma A.2. (i) From the method of PCA, we have(
NT q̃2

)−1
X̃X̃ ′F̃ = F̃ D̃. (C.1)

Using X̃ =
(
F 0Λ0′ + ε

)
◦G and G = E(G) + G̃ = q1T×N + G̃, we make the following decomposition

X̃X̃ ′

=
[(
F 0Λ0′ + ε

)
◦G
] [(

F 0Λ0′ + ε
)
◦G
]′

=
[
(F 0Λ0′) ◦G

] [
(F 0Λ0′) ◦G

]′
+ (ε ◦G) (ε ◦G)′ +

[
(F 0Λ0′) ◦G

]
(ε ◦G)′ + (ε ◦G)′

[
(F 0Λ0′) ◦G

]′
= q2F 0Λ0′Λ0F 0′ + dNT , (C.2)

where

dNT =
[
(F 0Λ0′) ◦ G̃

] [
(F 0Λ0′) ◦ G̃

]′
+ q(F 0Λ0′)

[
(F 0Λ0′) ◦ G̃

]′
+ q

[
(F 0Λ0′) ◦ G̃

]
Λ0F 0′

+ (ε ◦G) (ε ◦G)′ +
[
(F 0Λ0′) ◦G

]
(ε ◦G)′ + (ε ◦G)′

[
(F 0Λ0′) ◦G

]′
.

Premultiplying both sides of (C.1) by
(

1
NΛ0′Λ0

)1/2 1
T F

0′ and plugging (C.2) yield

q2

q̃2

(
Λ0′Λ0

N

)1/2
(
F 0′F 0

T

)(
Λ0′Λ0

N

)(
F 0′F̃

T

)
+ d̄NT =

(
Λ0′Λ0

N

)1/2
(
F 0′F̃

T

)
D̃, (C.3)

where d̄NT = 1
q̃2

(
Λ0′Λ0

N

)1/2
1
T F

0′dNT F̃ . Following the analysis of DNT’s in the proof of Lemma A.1,

we can readily show that
∥∥d̄NT∥∥ = OP (δ

−(1−γ/2)
NT ). Letting

BNT =
q2

q̃2

(
Λ0′Λ0

N

)1/2
(
F 0′F 0

T

)(
Λ0′Λ0

N

)1/2

and RNT =

(
Λ0′Λ0

N

)1/2
(
F 0′F̃

T

)
,
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we can write (C.3) as follows: [BNT + d̄NTR
−1
NT ]RNT = RNT D̃. Hence, each column of RNT is non-

standardized eigenvector of the matrix BNT + d̄NTR
−1
NT . Let D̆NT be a diagonal matrix consisting of

the diagonal elements of R
′
NTRNT . Denote the standardized eigenvector ΥNT = RNT D̆

−1/2
NT . Hence,

we have [BNT + d̄NTR
−1
NT ]ΥNT = ΥNT D̃

−1. That is, D̃ contains the eigenvalues of BNT + d̄NTR
−1
NT

with the corresponding normalized eigenvectors contained in ΥNT . It is trivial to show that with

high probability ∥∥BNT + d̄NTR
−1
NT −B

∥∥ = OP (δ
−(1−γ/2)
NT ), (C.4)

where B denotes the probability of BNT , i.e., B = Σ
1/2
Λ0

ΣF 0Σ
1/2
Λ0
.

Let Υ denote the probability limit of ΥNT . Note that Υ′ = Υ−1 by normalization. By (C.4) and

the eigenvector perturbation theory that requires distinctness of eigenvalues (see, e.g., Steward and

Sun (1990, Ch. V), and Allez and Bouchaud (2013)), ‖ΥNT −Υ‖ = OP (δ
−(1−γ/2)
NT ) by (C.4) and

Assumption A.1(iv). This, in conjunction with the definition of RNT , implies that

F 0′F̃

T
=

(
Λ0′Λ0

N

)−1/2

RNT =

(
Λ0′Λ0

N

)−1/2

ΥNT D̆
1/2
NT

satisfies
∥∥∥F 0′ F̃T − Σ

−1/2
Λ0

ΥD1/2
∥∥∥ = OP (δ

−(1−γ/2)
NT ). The result follows by noticing thatQ′ = Σ

−1/2
Λ0

ΥD1/2.

(ii) By Lemma A.1, (i) and Assumption A.1(ii) , we have

H̃ =
(
N−1Λ0′Λ0

)−1
(
T−1F 0′F̃

)
D̃−1 = ΣΛ0(Σ

−1/2
Λ0

ΥD1/2)D−1 +OP (δ
−(1−γ/2)
NT )

= Σ
1/2
Λ0

ΥD−1/2 +OP (δ
−(1−γ/2)
NT ) = Q−1 +OP (δ

−(1−γ/2)
NT ).

(iii) The proof follows closely that of Lemma B.1 in Bai (2003) and Theorem 2.1 and thus omitted.

The major difference is that we now use the decomposition in (A.1) and the fact that git are i.i.d.

Bernoulli(q) and independent of F 0, Λ0 and ε.

(iv) The proof is analogous to that of Theorem 2.1 and thus omitted.

(v) The claim follows from (iv) provided that we can show that 1
T

∑T
t=1(F̃t − H̃ ′F 0

t )F 0′
t git =

OP
(
δ−2
NT

)
. The proof of the latter result follows closely that of Theorem 2.1 (or Lemma B.2 in Bai

(2003)) and thus omitted.

(vi) By (v), the claim follows provided that 1
T

∑T
t=1(F̃t − H̃ ′F 0

t )F 0′
t = OP

(
δ−2
NT

)
. We can prove

the latter result by using analogous arguments as used in the proof of Theorem 2.1 and Lemma B.2

in Bai (2003).

(vii) Using F̃t = (F̃t − H̃ ′F 0
t ) + H̃ ′F 0

t , we make the following decomposition

1

T

T∑
t=1

F̃tF̃
′
t(git − q) = H̃ ′

1

T

T∑
t=1

F 0
t F

0′
t H̃(git − q) +

1

T

T∑
t=1

(F̃t − H̃ ′F 0
t )(F̃t − H̃ ′F 0

t )′(git − q)

+
1

T

T∑
t=1

(F̃t − H̃ ′F 0
t )F 0′

t H̃
′(git − q) + H̃ ′

1

T

T∑
t=1

F 0
t (F̃t − H̃ ′F 0

t )′(git − q)

≡ d1t + d2t + d3t + d4t.
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By Theorem 2.1 and Lemma A.2(iv), d2t = OP
(
δ−2
NT

)
. By Lemma A.2(vi)-(vii), d3t = OP

(
δ−2
NT

)
and

d4t = OP
(
δ−2
NT

)
. Then 1

T

∑T
t=1 F̃tF̃

′
t(git − q) = H̃ ′ 1T

∑T
t=1 F

0
t F

0′
t H̃(git − q) +OP

(
δ−2
NT

)
.

(viii) As in (vii), we can also show that 1
T

∑T
t=1 F̃tF̃

′
t = H̃ ′ 1T

∑T
t=1 F

0
t F

0′
t H̃ +OP

(
δ−2
NT

)
. This, in

conjunction with the fact that 1
T

∑T
t=1 F̃tF̃

′
t = IR, implies that

H̃ ′
1

T

T∑
t=1

F 0
t F

0′
t H̃ = IR +OP

(
δ−2
NT

)
.

Premultiplying and postmultiplying both sides by (H̃ ′)−1 and H̃−1 in order yields 1
T F

0′F 0 = (H̃H̃ ′)−1+

OP
(
δ−2
NT

)
. It follows that H̃H̃ ′ = ( 1

T F
0′F 0)−1 +OP

(
δ−2
NT

)
. �

A Cautionary Note. We can prove Lemmas A.3-A.5 for ` = 1 based on the results in Theorems

2.1-2.2. When these lemmas hold for ` = 1, Theorems 2.3-2.4 also hold for ` = 1. With the results

in Lemmas A.3-A.5 and Theorems 2.3-2.4 for ` = 1, we can prove them to hold for ` = 2. This

procedure is repeated until convergence. Since the verification of Lemma A.3 for ` = 1 is different

from the general case with ` ≥ 2, we first prove it for ` = 1 in detail and then prove it for ` ≥ 2 after

we prove Lemmas A.4-A.5.

Proof of Lemma A.3 (` = 1). (i) Noting that φ̂
(0)

F,t = D̂(0)−1 1
T F̂

(0)′F 0 1
Nq

∑N
i=1 λ

0
i

[
εitgit + λ0′

i F
0
t (git − q)

]
,

maxt

∥∥∥φ̂(0)

F,t

∥∥∥ ≤ OP (1) maxt

∥∥∥ 1
N

∑N
i=1 λ

0
i

[
εitgit + λ0′

i F
0
t (git − q)

]∥∥∥ = OP
(
(N/ lnN)−1/2

)
by Lemmas

A.1-A.2 and Assumption A.5(i). Similarly,maxi

∥∥∥φ̂(0)

Λ,i

∥∥∥ ≤ OP (1) maxi

∥∥∥ 1
T

∑T
t=1 F

0
t

[
εitgit + λ0′

i F
0
t (git − q)

]∥∥∥
= OP

(
(T/ lnT )−1/2

)
by Lemmas A.1-A.2 and Assumption A.5(ii).

(ii) By the decomposition in (A.1),

r̂
(0)
F,t = F̂

(0)
t − Ĥ(0)′F 0

t − φ̂
(0)

F,t = a1t + a2t + a4t + a5t + a7t + (a3t + a6t − φ̂
(0)

F,t).

Following the proof of Theorem 2.2(i) and using Assumption A.5 and the fact that maxt
∥∥F 0

t

∥∥ =

OP
(
T γ1/4

)
, it is easy to show that

max
t
‖a1t‖ = OP

(
T−1/2δ−1

NT + T−1+γ1/4
)
, max

t
‖a2t‖ = OP

(
δ−2
NT lnN

)
,

max
t
‖alt‖ = OP

(
T γ1/4δ−2

NT

)
for l = 4, 5,

max
t
‖a7t‖ = OP

(
T γ1/4δ−2

NT lnT + T−1+3γ1/4
)
,

and maxt

∥∥∥a3t + a6t − φ̂
(0)

F,t

∥∥∥ = OP
(
δ−2
NT lnN

)
. It follows that maxt

∥∥∥r̂(0)
F,t

∥∥∥ = OP (T γ1/4δ−2
NT lnT +

T−1+3γ1/4). For r̂(0)
Λ,i, we have

r̂
(0)
Λ,i = λ̂

(0)

i − (Ĥ(0))−1λ0
i − φ̂

(0)

Λ,i = B2i +B3i +B5i + (B1i +B4i − φ̂
(0)

Λ,i),

where B2i’s are defined in the proof of Theorem 2.2(ii). Following the proof of Theorem 2.2(ii) and

using the fact that maxi
∥∥λ0

i

∥∥ = OP
(
Nγ2/4

)
, maxi

1
N

∑N
i=1 ε

2
it = OP (1) , and q̃ − q = OP ((NT )−1/2)
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we have by Theorem 2.1 and Lemma A.2

max
i
‖B2i‖ = OP

(
δ−2
NT lnN

)
, max

i
‖B3i‖ = OP

(
Nγ2/4δ−2

NT lnN
)
, max

i
‖B5i‖ = OP

(
(NT )−1/2Nγ2/4

)
,

and maxi

∥∥∥B1i +B4i − φ̂
(0)

Λ,i

∥∥∥ = OP
(
δ−2
NT lnN

)
. It follows that maxi

∥∥∥r̂(0)
Λ,i

∥∥∥ = OP
(
Nγ2/4δ−2

NT lnN
)
.

(iii) By (i) and the fact that maxt
∥∥F 0

t

∥∥ = OP
(
T γ1/4

)
and maxi

∥∥λ0
i

∥∥ = OP
(
Nγ2/4

)
, we have

max
i,t

∥∥∥η(0)
1,it

∥∥∥
= max

i,t

∥∥∥F 0′
t Ĥ

(0)φ̂
(0)

Λ,i + λ0′
i (Ĥ(0)′)−1φ̂

(0)

F,t + λ0′
i (Ĥ(0)′)−1r̂

(0)
F,t + F 0′

t Ĥ
(0)′r̂

(0)
Λ,i

∥∥∥
≤

∥∥∥Ĥ(0)
∥∥∥max

t

∥∥F 0
t

∥∥{max
i

∥∥∥φ̂(0)

Λ,i

∥∥∥+ r̂
(`)
Λ,i

}
+
∥∥∥(Ĥ(0)′)−1

∥∥∥max
i

∥∥λ0
i

∥∥{max
t

∥∥∥φ̂(0)

F,t

∥∥∥+ max
t

∥∥∥r̂(`)
F,t

∥∥∥}
= OP (T γ1/4((T/ lnT )−1/2 +Nγ2/4δ−2

NT lnN)) +OP (T γ1/4((T/ lnT )−1/2 + T γ1/4δ−2
NT lnT + T−1+3γ1/4)

= OP (δ
−1+γ/2
NT lnN).

Similarly, we have

max
i,t

∥∥∥η(0)
2,it

∥∥∥ = max
i,t

∥∥∥φ̂(0)′
Λ,i φ̂

(0)

F,t + φ̂
(0)′
Λ,i r̂

(0)
F,t + φ̂

(0)′
F,t r̂

(0)
Λ,i + r̂

(0)′
Λ,i r̂

(0)
F,t

∥∥∥
≤ OP

(
(N/ lnN)−1/2(T/ lnT )−1/2

)
+OP (T/ lnT )−1/2

(
T γ1/4δ−2

NT lnT + T−1+3γ1/4
)

)

+OP

(
(N/ lnN)−1/2Nγ2/4δ−2

NT lnN
)

+OP

((
T γ1/4δ−2

NT lnT + T−1+3γ1/4
))

= OP (δ−2
NT lnN).

(iv) Note that

[Ĥ(0)′]−1 1

N

N∑
i=1

φ̂
(0)

Λ,iεitgit

=
1

NT

N∑
i=1

T∑
s=1

F 0
s

[
εisgis + λ0′

i F
0
s (gis − q)

]
εitgit

=
1

NT

N∑
i=1

T∑
s=1

F 0
sE(εisεit)gisgit +

1

NT

N∑
i=1

T∑
s=1

F 0
s [εisεit − E(εisεit)] gisgit

+
q

NT

N∑
i=1

T∑
s=1

F 0
s F

0′
s λ

0
i (gis − q) εitgit +

1

NT

N∑
i=1

T∑
s=1

F 0
s F

0′
s λ

0
i (gis − q) εit (git − q)

= OP

(
T−1+γ1/4 + δ−2

NT lnN + δ−2
NT lnN + δ−2

NT lnN
)

= OP

(
T−1+γ1/4 + δ−2

NT lnN
)
.

Then maxt

∥∥∥ 1
N

∑N
i=1 φ̂

(0)

Λ,iεitgit

∥∥∥ = OP
(
T−1+γ1/4 + δ−2

NT lnN
)
.

Observe that
∥∥∥Ĥ(0) 1

N

∑N
i=1 φ̂

(0)

Λ,iλ
0′
i ḡit

∥∥∥ =
∥∥∥Ĥ(0)Ĥ(0)′

∥∥∥∥∥∥ 1
NTq

∑N
i=1

∑T
s=1 λ

0
iF

0′
s

[
εisgis + F 0′

s λ
0
i (gis − q)

]
ḡit

∥∥∥ .
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Using ḡit = (1− q)− (git − q) , we have

1

NT

N∑
i=1

T∑
s=1

λ0
iF

0′
s

[
εisgis + F 0′

s λ
0
i (gis − q)

]
ḡit

=
1− q
NT

N∑
i=1

T∑
s=1

λ0
iF

0′
s εisgis +

1− q
NT

N∑
i=1

T∑
s=1

λ0
iF

0′
s F

0′
s λ

0
i (gis − q)

− 1

NT

N∑
i=1

T∑
s=1

λ0
iF

0′
s εisgis(git − q)−

1

NT

N∑
i=1

T∑
s=1

λ0
iF

0′
s F

0′
s λ

0
i (gis − q)(git − q).

It is easy to show that the first two terms are OP (δ−2
NT ) by Chebyshev inequality. The third term is

OP (δ−2
NT lnN) by Assumption A.3(iii). For the fourth term, we have

max
t

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
s=1

λ0
iF

0′
s F

0′
s λ

0
i (gis − q)(git − q)

∥∥∥∥∥
= max

t

∥∥∥∥∥∥ 1

NT

N∑
i=1

T∑
s=1,s 6=t

λ0
iF

0′
s F

0′
s λ

0
i (gis − q)(git − q)

∥∥∥∥∥∥+
1

NT

N∑
i=1

∥∥λ0
i

∥∥2
max
t

∥∥F 0
t

∥∥2

= OP (δ−2
NT lnN) +OP (T−1+γ1/2).

Then
∥∥∥Ĥ(0) 1

N

∑N
i=1 φ̂

(0)

Λ,iλ
0′
i ḡit

∥∥∥ = OP
(
T−1+γ1/2 + δ−2

NT lnN
)
.

Noting that r̂(0)
Λ,i = λ̂

(0)

i − (Ĥ(0))−1λ0
i − φ̂

(0)

Λ,i = B2i +B3i +B5i + (B1i +B4i − φ̂
(0)

Λ,i), we have

max
t

∥∥∥∥∥ 1

N

N∑
i=1

r̂
(0)
Λ,iλ

0′
i ḡit

∥∥∥∥∥ ≤ max
t

∥∥∥∥∥ 1

N

N∑
i=1

[
B2i +B3i +B5i + (B1i +B4i − φ̂

(0)

Λ,i)
]
λ0′
i ḡit

∥∥∥∥∥ ,
where B2i’s are defined in the proof of Theorem 2.2(ii). Using ḡit = (1− q) + (git − q) ,

max
t

∥∥∥∥∥ 1

N

N∑
i=1

B2iλ
0′
i ḡit

∥∥∥∥∥ =

∥∥∥Ĥ(0)
∥∥∥

q̃
max
t

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
s=1

F 0
s εisgisλ

0′
i ḡit

∥∥∥∥∥
≤ OP (1)

{∥∥∥∥∥1− q
NT

N∑
i=1

T∑
s=1

F 0
s εisgisλ

0′
i

∥∥∥∥∥+ max
t

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
s=1

F 0
s εisgisλ

0′
i (git − q)

∥∥∥∥∥
}

= OP ((NT )−1/2 + (NT )−1/2 lnN).

In addition,

max
t

∥∥∥∥∥ 1

N

N∑
i=1

B3iλ
0′
i ḡit

∥∥∥∥∥ = max
t

1

NT q̃

∥∥∥∥∥
N∑
i=1

T∑
s=1

F̂ (0)
s

(
Ĥ(0)′F 0

s − F̂ (0)
s

)′
(Ĥ(0)′)−1λ0

i gisλ
0′
i ḡit

∥∥∥∥∥
≤ OP (1) max

i

∥∥∥∥∥ 1

T

T∑
s=1

F̂ (0)
s

(
Ĥ(0)′F 0

s − F̂ (0)
s

)′
gis

∥∥∥∥∥ = OP
(
δ−2
NT lnN

)
,

and maxt

∥∥∥ 1
N

∑N
i=1B5iλ

0′
i ḡit

∥∥∥ ≤ 1
q̃ |q − q̃|

∥∥∥[Ĥ(0)′]−1
∥∥∥ 1
N

∑N
i=1

∥∥λ0
i

∥∥2
= OP ((NT )−1/2). Lastly, noting

that the difference lies between B1i +B4i and φ̂
(0)

Λ,i is controlled by |q̃ − q| , we can readily show that
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maxt

∥∥∥ 1
N

∑N
i=1(B1i +B4i − φ̂

(0)

Λ,i)λ
0′
i ḡit

∥∥∥ = OP ((NT )−1/2). In sum, we havemaxt

∥∥∥Ĥ(0)′ 1
N

∑N
i=1 r̂

(0)
Λ,iλ

0′
i ḡit

∥∥∥
= OP

(
δ−2
NT lnN

)
.

(v) Noting that φ̂
(0)

F,t = D̂(0)−1 1
T F̂

(0)′F 0 1
Nq

∑N
i=1 λ

0
i

[
εitgit + λ0′

i F
0
t (git − q)

]
, we have

max
i

∥∥∥∥∥ 1

T

T∑
t=1

φ̂
(0)

F,tF
0′
t ḡit

∥∥∥∥∥ ≤ OP (1) max
i

∥∥∥∥∥∥ 1

NT

T∑
t=1

N∑
j=1

λ0
j

[
εjtgjt + λ0′

j F
0
t (gjt − q)

]
F 0′
t ḡit

∥∥∥∥∥∥
≤ OP (1) max

i

∥∥∥∥∥∥ 1

NT

T∑
t=1

N∑
j=1

λ0
jF

0′
t εjtgjtḡit

∥∥∥∥∥∥
+OP (1) max

i

∥∥∥∥∥∥ 1

NT

T∑
t=1

N∑
j=1

λ0
jF

0′
t λ

0′
j F

0
t (gjt − q) ḡit

∥∥∥∥∥∥
= OP

(
δ−2
NT lnN

)
+OP (N−1+γ2/2).

Analogously, by the decomposition in (A.1) we have 1
T

∑T
t=1 r̂

(`−1)
F,t F 0′

t ḡit = 1
T

∑T
t=1[a1t +a2t + a4t +

a5t + a7t + (a3t + a6t − φ̂
(0)

F,t)]F
0′
t ḡit. Following the proof of Theorem 2.2(i) and using Assumption

A.5 and the fact that maxi
∥∥λ0

i

∥∥ = OP
(
Nγ2/4

)
, it is easy to show that maxi || 1T

∑T
t=1 a1tF

0′
t ḡit|| =

OP
(
T−1/2δ−1

NT + T−1
)
,maxi || 1T

∑T
t=1 a2tF

0′
t ḡit|| ≤ maxt ‖a2t‖OP (1) = OP

(
δ−2
NT lnN

)
,maxi || 1T

∑T
t=1

altF
0′
t ḡit|| = OP

(
δ−2
NT lnN

)
for l = 4, 5, maxi || 1T

∑T
t=1 a7tF

0′
t ḡit|| = OP

(
δ−2
NT lnT + T−1

)
, and

maxi || 1T
∑T

t=1[a3t + a6t − φ̂
(0)

F,t]F
0′
t ḡit|| = OP

(
δ−2
NT lnN

)
. It follows that maxi || 1T

∑T
t=1 r̂

(`−1)
F,t F 0′

t ḡit||
= OP

(
δ−2
NT lnN

)
.

(vi) Note that 1
N

∑N
i=1

∥∥∥η(0)
it

∥∥∥2
≤ 2

N

∑N
i=1

∥∥∥η(0)
1,it

∥∥∥2
+ 2

N

∑N
i=1

∥∥∥η(0)
2,it

∥∥∥2
, where the second term is

bounded above by OP (δ−4
NT (lnN)2) by (iii). For the first term, we have

max
t

1

N

N∑
i=1

∥∥∥η(0)
1,it

∥∥∥2
≤ max

t

1

N

N∑
i=1

∥∥∥F 0′
t Ĥ

(0)φ̂
(0)

Λ,i + λ0′
i (Ĥ(0)′)−1φ̂

(0)

F,t + λ0′
i (Ĥ(0)′)−1r̂

(0)
F,t + F 0′

t Ĥ
(0)′r̂

(0)
Λ,i

∥∥∥2

≤ 4
∥∥∥Ĥ(0)

∥∥∥max
t

∥∥F 0
t

∥∥2 1

N

N∑
i=1

(
∥∥∥φ̂(0)

Λ,i

∥∥∥2

+
∥∥∥r̂(0)

Λ,i

∥∥∥2
)

+4
∥∥∥[Ĥ(0)′]−1

∥∥∥{max
t

∥∥∥φ̂(0)

F,t

∥∥∥2

+ max
t

∥∥∥r̂(0)
F,t

∥∥∥2
}

1

N

N∑
i=1

∥∥λ0
i

∥∥2

= OP (T−1+γ1/2 +N−1 lnN).

It follows that 1
N

∑N
i=1

∥∥∥η(0)
it

∥∥∥2
= OP (T−1+γ1/2+N−1 lnN). Similarly, we can show thatmaxt

1
T

∑T
t=1 ||η

(0)
it ||2

= OP (N−1+γ2/2 + T−1 lnN).

(vii) Let κt = 1 +
∥∥F 0

t

∥∥2
. It suffi ces to show that 1

NT

∑T
t=1

∑N
i=1 κt(η

(0)
l,it)

2 = OP
(
δ−2
NT

)
for

l = 1, 2. By (iii), 1
NT

∑T
t=1

∑N
i=1 κt(η

(0)
2,it)

2 ≤ maxi,t ||η(0)
2,it||2 1

T

∑T
t=1 κt = OP (δ−4

NT (lnN)2). In addition,
1
NT

∑T
t=1

∑N
i=1 κt(η

(0)
1,it)

2 ≤ 4
NT

∑T
t=1

∑N
i=1 κt{||F 0′

t Ĥ
(0)φ̂

(0)

Λ,i||2 +||λ0′
i (Ĥ(0)′)−1φ̂

(0)

F,t||2+||λ0′
i (Ĥ(0)′)−1r̂

(0)
F,t||2+
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||F 0′
t Ĥ

(0)′r̂
(0)
Λ,i||2} ≡ 4 {J1,1 + J1,2 + J1,3 + J1,4} . For J1,1, we have

J1,1 ≤
∥∥∥Ĥ(0)

∥∥∥2 1

T

T∑
t=1

κt
∥∥F 0

t

∥∥2 1

N

N∑
i=1

∥∥∥φ̂(0)

Λ,i

∥∥∥2

= OP
(
T−1

)
,

as we can readily show that 1
N

∑N
i=1

∥∥∥φ̂(0)

Λ,i

∥∥∥2

= OP
(
T−1

)
. For J1,2, noting that (Ĥ(0)′)−1D̂(0)−1 1

T F̂
(0)′F 0 =

( 1
NΛ0′Λ0)−1 and 1

NΛ0′Λ0 − ΣΛ0 = O
(
N−1/2

)
, we have

J1,2 =
1

NT

T∑
t=1

N∑
i=1

κt

∥∥∥∥∥∥λ0′
i (

1

N
Λ0′Λ0)−1 1

Nq

N∑
j=1

λ0
j

[
εjtgij + λ0′

j F
0
t (gjt − q)

]∥∥∥∥∥∥
2

≤ OP (1)
1

T

T∑
t=1

κt

∥∥∥∥∥ 1

N

N∑
i=1

λ0
i

[
εitgit + λ0′

i F
0
t (git − q)

]∥∥∥∥∥
2

= OP
(
δ−2
NT

)
.

Similarly, we can show that J1,l = OP
(
δ−2
NT

)
for l = 3, 4. Then 1

NT

∑T
t=1

∑N
i=1 κt(η

(0)
1,it)

2 = OP
(
δ−2
NT

)
.

(viii) Note that 1
NT

∑T
s=1

∑N
i=1 F

0
s λ

0′
i η

(0)
is ḡis =

∑2
l=1

1
NT

∑T
s=1

∑N
i=1 F

0
s λ

0′
i η

(0)
l,isḡis ≡

∑2
l=1 J2,l. For

J2,2, we can use the uniform bound in (iii) and show that J2,l = OP
(
δ−2
NT lnN

)
. For J2,1, we make

the following decomposition

J2,1 =
1

NT

T∑
t=1

N∑
i=1

F 0
t λ

0′
i

(
F 0′
t Ĥ

(0)φ̂
(0)

Λ,i + λ0′
i (Ĥ(0)′)−1φ̂

(0)

F,t + λ0′
i (Ĥ(0)′)−1r̂

(0)
F,t + F 0′

t Ĥ
(0)′r̂

(0)
Λ,i

)
ḡit

≡
4∑

a=1

J2,1a.

Let λ0
il and F

0
sl denote the lth element of λ

0
i and F

0
s , respectively. Let J2,1a (l, r) denote the (l, r)th

element of J2,1a for a = 1, 2. Noting that ḡis = (1− q) + (q − gis) , we have

‖J2,11 (l, r)‖ =

∥∥∥∥∥ 1

NT

T∑
t=1

F 0
trF

0′
t Ĥ

(0)
N∑
i=1

φ̂
(0)

Λ,iḡitλ
0
il

∥∥∥∥∥
≤

∥∥∥∥∥ 1

NT

T∑
t=1

F 0
trF

0′
t Ĥ

(0)
N∑
i=1

φ̂
(0)

Λ,i (1− q)λ0
il

∥∥∥∥∥+

∥∥∥∥∥ 1

NT

T∑
t=1

F 0
trF

0′
t Ĥ

(0)
N∑
i=1

φ̂
(0)

Λ,i(git − q)λ0
il

∥∥∥∥∥
≡ J2,1a (l, r, 1) + J2,1a (l, r, 2) .

For J2,1a (l, r, 1) , we have

J2,1a (l, r, 1) ≤ (1− q)
∥∥∥Ĥ(0)

∥∥∥ 1

T

T∑
t=1

∥∥F 0
t

∥∥2

∥∥∥∥∥ 1

N

N∑
i=1

φ̂
(0)

Λ,iλ
0
il

∥∥∥∥∥ = OP (1)

∥∥∥∥∥ 1

N

N∑
i=1

φ̂
(0)

Λ,iλ
0
il

∥∥∥∥∥ = OP (δ−2
NT ),

where we use the fact that
∥∥∥ 1
N

∑N
i=1 φ̂

(0)

Λ,iλ
0
il

∥∥∥ ≤ ∥∥∥Ĥ(0)
∥∥∥∥∥∥ 1

N

∑N
i=1

1
Tq

∑T
t=1 F

0
t

[
εitgit + F 0′

t λ
0
i (git − q)

]
λ0
il

∥∥∥
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= OP (δ−2
NT ) by Chebyshev inequality. For J2,1a (l, r, 2) , we have

J2,1a (l, r, 2) =

∥∥∥∥∥ 1

N

N∑
i=1

λ0
ilφ̂

(0)′
Λ,i Ĥ

(0)′

[
1

T

T∑
t=1

F 0
t F

0
tr(git − q)

]∥∥∥∥∥
≤

∥∥∥Ĥ(0)
∥∥∥{ 1

N

N∑
i=1

∥∥λ0
i

∥∥2
∥∥∥φ̂(0)

Λ,i

∥∥∥2
}1/2

 1

N

N∑
i=1

∥∥∥∥∥ 1

T

T∑
t=1

F 0
t F

0
tr(git − q)

∥∥∥∥∥
2


1/2

= OP
(
δ−1
NT

)
OP (T−1/2),

as we can show that 1
N

∑N
i=1

∥∥λ0
i

∥∥2
∥∥∥φ̂(0)

Λ,i

∥∥∥2

= OP (δ−2
NT ) and 1

N

∑N
i=1E

∥∥∥ 1
T

∑T
t=1 F

0
t F

0
tr(git − q)

∥∥∥2
=

O(T−1). Then J2,11 = OP (δ−2
NT ). Similarly,

‖J2,12 (l, r)‖ =

∥∥∥∥∥ 1

NT

T∑
t=1

N∑
i=1

λ0
irλ

0′
i (Ĥ(0)′)−1φ̂

(0)

F,tF
0
tlḡit

∥∥∥∥∥
≤

∥∥∥∥∥1− q
N

N∑
i=1

λ0
irλ

0′
i (Ĥ(0)′)−1 1

T

T∑
t=1

φ̂
(0)

F,tF
0
tl

∥∥∥∥∥+

∥∥∥∥∥ 1

NT

T∑
t=1

N∑
i=1

λ0
irλ

0′
i (Ĥ(0)′)−1φ̂

(0)

F,tF
0
tl (git − q)

∥∥∥∥∥
≡ J2,12 (l, r, 1) + J2,12 (l, r, 2) .

Noting that

1

T

T∑
t=1

φ̂
(0)

F,tF
0
tl = D̂(0)−1 1

T
F̂ (0)′F 0 1

T

T∑
t=1

1

Nq

N∑
i=1

λ0
i

[
εitgit + λ0′

i F
0
t (git − q)

]
F 0
tl

= OP (1)
1

NT

T∑
t=1

N∑
i=1

λ0
i

[
εitgit + λ0′

i F
0
t (git − q)

]
F 0
tl = OP

(
δ−2
NT

)
,

‖J2,12 (l, r, 1)‖ = OP
(
δ−2
NT

)
. For J2,12 (l, r, 2) , we have

J2,12 (l, r, 2) =

∥∥∥∥∥ 1

T

T∑
s=1

F 0
slφ̂

(0)′
F,s (Ĥ(0))−1 1

N

N∑
i=1

λ0
iλ

0
ir (gis − q)

∥∥∥∥∥
≤

∥∥∥(Ĥ(0))−1
∥∥∥{ 1

T

T∑
s=1

∥∥F 0
s

∥∥2
∥∥∥φ̂(0)

F,s

∥∥∥2
}1/2

 1

T

T∑
s=1

∥∥∥∥∥ 1

N

N∑
i=1

λ0
iλ

0
ir (gis − q)

∥∥∥∥∥
2


1/2

= OP
(
δ−1
NT

)
OP (N−1/2).

So J2,2 = OP
(
δ−2
NT

)
. Similarly, we can show that J2,l = OP

(
δ−2
NT

)
for l = 3, 4. Then 1

NT

∑T
s=1

∑N
i=1 F

0
s λ

0′
i ηisḡis

= OP
(
δ−2
NT

)
.
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(ix) By (vi) and the fact that the fact that 1
N

∑N
i=1E

∥∥∥ 1
T

∑T
s=1 F

0
s εisgis

∥∥∥2
= O(T−1)

max
t

∥∥∥∥∥ 1

NT

T∑
s=1

F 0
s

N∑
i=1

η
(0)
it ḡitεisgis

∥∥∥∥∥ = max
t

∥∥∥∥∥ 1

N

N∑
i=1

η
(0)
it ḡit

(
1

T

T∑
s=1

F 0
s εisgis

)∥∥∥∥∥
≤

{
max
t

1

N

N∑
i=1

(η
(0)
it )2

}1/2
 1

N

N∑
i=1

∥∥∥∥∥ 1

T

T∑
s=1

F 0
s εisgis

∥∥∥∥∥
2


1/2

= OP

(
T−1/2+γ1/4 + (N/ lnN)−1/2

)
OP (T−1/2)

= OP

(
T−1+γ1/4 + (NT/ lnN)−1/2

)
.

(x) Note that 1
NT

∑T
s=1 F

0
s

∑N
i=1 εitgitη

(0)
is ḡis =

∑2
l=1

1
NT

∑T
s=1 F

0
s

∑N
i=1 εitgitη

(0)
l,isḡis ≡

∑2
l=1 J3,lt.We

can readily bound J3,2t by OP (δ−2
NT lnN) by using the uniform bound for η(0)

2,is in (iii). For J3,1t, we

have

J3,1t =
1

NT

T∑
s=1

F 0
s

N∑
i=1

εitgit

[
F 0′
s Ĥ

(0)φ̂
(0)

Λ,i + λ0′
i (Ĥ(0)′)−1φ̂

(0)

F,s + λ0′
i (Ĥ(0)′)−1r̂

(0)
F,s + F 0′

t Ĥ
(0)′r̂

(0)
Λ,i

]
ḡis

≡ J3,1t (1) + J3,1t (2) + J3,1t (3) + J3,1t (4) .

Using ḡis = (1− q) + (q − gis) , the fact that F 0′
s Ĥ

(0)φ̂
(0)

Λ,i is a scalar and maxt
1
N

∑N
i=1 ε

2
it = OP (1),

and (iv), we have

max
t
J3,1t (1)

= max
t

∥∥∥∥∥ 1

NT

T∑
s=1

F 0
s

N∑
i=1

εitgitF
0′
s Ĥ

(0)φ̂
(0)

Λ,iḡis

∥∥∥∥∥
≤ max

t

∥∥∥∥∥1− q
T

T∑
s=1

F 0
s F

0′
s Ĥ

(0) 1

N

N∑
i=1

φ̂
(0)

Λ,iεitgit

∥∥∥∥∥+ max
t

∥∥∥∥∥ 1

N

N∑
i=1

εitgitφ̂
(0)′
Λ,i Ĥ

(0)′ 1

T

T∑
s=1

F 0
s F

0′
s (gis − q)

∥∥∥∥∥
≤ OP (1)

∥∥∥∥∥ 1

N

N∑
i=1

φ̂
(0)

Λ,iεitgit

∥∥∥∥∥+ max
i

∥∥∥φ̂(0)

Λ,i

∥∥∥{max
t

1

N

N∑
i=1

ε2
it

}1/2
 1

N

N∑
i=1

∥∥∥∥∥ 1

T

T∑
s=1

F 0
s F

0′
s (gis − q)

∥∥∥∥∥
2


1/2

= OP (T−1+γ1/4 +N−1 lnN) +OP ((T/ lnT )−1/2)OP (1)OP (T−1/2) = OP (T−1+γ1/4 + δ−2
NT lnN).

For J3,1t (2) , we have by (i) and the fact that maxs

∥∥∥ 1
N

∑N
i=1 λ

0
i εitgitḡis

∥∥∥ = OP (N/ lnN)−1/2),

max
t
J3,1t (2) = max

t

∥∥∥∥∥ 1

T

T∑
s=1

F 0
s φ̂

(0)′
F,s [Ĥ(0)]−1 1

N

N∑
i=1

λ0
i εitgitḡis

∥∥∥∥∥
≤

∥∥∥[Ĥ(0)]−1
∥∥∥max

t

∥∥∥φ̂(0)

F,t

∥∥∥max
s

∥∥∥∥∥ 1

N

N∑
i=1

λ0
i εitgitḡis

∥∥∥∥∥ 1

T

T∑
s=1

∥∥F 0
s

∥∥
= OP ((N/ lnN)−1/2)OP (N/ lnN)−1/2) = OP

(
δ−2
NT lnN

)
.
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Similarly, we can show that J3,1t (l) = OP (δ−2
NT lnN) for l = 3, 4. Thenmaxt

∥∥∥ 1
NT

∑T
s=1 F

0
s

∑N
i=1 εitgitη

(0)
is ḡis

∥∥∥
= OP

(
T−1+γ1/4 + δ−2

NT lnN
)
. �

Proof of Lemma A.4 (` = 1 and ` > 1). (i) From the PCA, we have the identity (NT )−1 X̂(`)X̂(`)′F̂ (`)

= F̂ (`)D̂(`). Pre-multiplying both sides by T−1F̂ (`)′ and using the normalization T−1F̂ (`)′F̂ (`) = IR

yield T−1F̂ (`)′ (NT )−1 X̂X̂ ′F̂ (`) = D̂(`). Let ε(`) be the T ×N matrix with (t, i)th element given by

ε
(`−1)
it = εitgit + η

(`−1)
it ḡit. Noting that X̂(`) = F 0Λ0′ + ε

(`)
it , we have

D̂(`) = T−1F̂ (`)′ (NT )−1 (F 0Λ0′ + ε(`))(F 0Λ0′ + ε(`))′F̂ (`)

= T−1F̂ (`)′ (NT )−1
{
F 0Λ0′Λ0F 0′ + ε(`)ε(`)′ + F 0Λ0′ε(`)′ + ε(`)Λ0F 0′

}
F̂ (`)

≡ D̂
(`)
1 + D̂

(`)
2 + D̂

(`)
3 + D̂

(`)
4 .

The result follows if we show that (1) D̂(`)
1 = D + OP (δ−1

NT lnN) and (2) D̂(`)
l = OP (δ−1

NT lnN) for

l = 2, 3, 4. Following the proof of Lemma A.1(i) in Su and Wang (2017), D̂(`)
1 = F̂ (`)′F 0

N
Λ0′Λ0

N
F 0F̂ (`)

T =

D + OP
(
δ−1
NT

)
. Noting that ε(`) = ε ◦ G + η(`−1) ◦ Ḡ where Ḡ = 1T×N − G and η(`−1) has (t, i)th

element given by η(`−1)
it ,∥∥∥D̂(`)

2

∥∥∥
sp

= (NT )−1 tr
(
T−1F̂ (`)′(ε ◦G+ η(`−1) ◦ Ḡ)(ε ◦G+ η(`−1) ◦ Ḡ)′F̂ (`)

)
≤ 2 (NT )−1 tr

(
T−1F̂ (`)′ (ε ◦G) (ε ◦G)′F̂ (`)

)
+2 (NT )−1 tr

(
T−1F̂ (`)′(η(`−1) ◦ Ḡ)(η(`−1) ◦ Ḡ)′F̂ (`)

)
.

Following the analysis of DNT,2 in the proof of Lemma A.1, we can show that the first term is

OP (δ−2
NT [log(N ∨ T )]2). For the second term, it suffi ces to use Lemma A.3(vii) to obtain the following

rough probability bound

2 (NT )−1 tr
(
T−1F̂ (`)′η(`−1)η(`−1)′F̂ (`)

)
≤ 2T−1

∥∥∥F̂ (`)
∥∥∥2

(NT )−1
∥∥∥η(`−1)

∥∥∥2
= OP (δ−2

NT ).

It follows that
∥∥∥D̂2

∥∥∥ ≤ R1/2
∥∥∥D̂2

∥∥∥
sp

= OP (δ−2
NT (lnN)2). By the CS inequality,

∥∥∥D̂(`)
3

∥∥∥ =
∥∥∥D̂(`)

4

∥∥∥ ≤{∥∥∥D̂(`)
1

∥∥∥∥∥∥D̂(`)
2

∥∥∥}1/2
= OP (δ−1

NT lnN)). In sum, we have D̂(`) = D +OP (δ−1
NT lnN).

(ii) The proof is analogous to that of Lemma A.2(i) with obvious modifications.

(iii) The proof is analogous to that of Lemma A.2(ii) with obvious modifications.

(iv) The proof follows from that of Lemma B.3 in Bai (2003).

(v) Note that 1
T

∑T
t=1(F̂

(`)
t −Ĥ(`)′F 0

t )ε
(`)
it = 1

T

∑T
t=1(F̂

(`)
t −Ĥ(`)′F 0

t )εitgit+
1
T

∑T
t=1(F̂

(`)
t −Ĥ(`)′F 0

t )η
(`)
it ḡit.

Following the proof of Lemma A.7(v) in Su and Wang (2017), we can show that the first term

is OP
(
δ−2
NT lnN

)
uniformly in t. By Theorem 2.3 and Lemma A.3(vi), the Frobenius norm of

the second term is bounded above by above by{ 1
T ||F̂

(`) − F 0Ĥ(`)||2}1/2{maxi
1
T

∑T
t=1(η

(`)
it )2}1/2 =

δ−1
NTOP (N−1/2+γ2/4 +(T/ lnN)−1/2). It follows that 1

T

∑T
t=1(F̂

(`)
t −Ĥ(`)′F 0

t )ε
(`)
it = OP (N−1/2+γ2/4δ−1

NT

+δ−2
NT lnN). �
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Proof of Lemma A.5 (` = 1 and ` > 1). (i) Note that 1
N

∑N
i=1 λ

0
i ε

(`)
it = βF,t + 1

N

∑N
i=1 λ

0
i η

(`−1)
it ḡit

where
1

N

N∑
i=1

λ0
i η

(`−1)
it ḡit =

2∑
l=1

1

N

N∑
i=1

λ0
i η

(`−1)
l,it ḡit ≡

2∑
l=1

K1,lt.

By Lemma A.3(iii), maxt ‖K1,2t‖ ≤ maxi,t

∥∥∥η(`−1)
2,it

∥∥∥ 1
N

∑N
i=1

∥∥λ0
i

∥∥ = OP (δ−2
NT lnN). For K1,1t, we

make the following decomposition

K1,1t =
1

N

N∑
i=1

λ0
i

[
F 0′
t Ĥ

(`−1)φ̂
(`−1)

Λ,i + λ0′
i (Ĥ(`−1)′)−1φ̂

(`−1)

F,t + λ0′
i (Ĥ(`−1)′)−1r̂

(`−1)
F,t + F 0′

t Ĥ
(`−1)′r̂

(`−1)
Λ,i

]
ḡit

≡ K1,1t (1) +K1,1t (2) +K1,1t (3) +K1,1t (4) .

ForK1,1t (1) , we apply Lemma A.3(iv) to obtainmaxt ‖K1,1t (1)‖ = OP
(
T γ1/4δ−2

NT lnN
)
. ForK1,1t (2) ,

we have uniformly in t

K1,1t (2) =
1

N

N∑
i=1

λ0
iλ

0′
i (Ĥ(`−1)′)−1φ̂

(`−1)

F,t ḡit

= (1− q) 1

N
Λ0′Λ0(Ĥ(`−1)′)−1φ̂

(`−1)

F,t +

(
1

N

N∑
i=1

(git − q)λ0
iλ

0′
i

)
(Ĥ(`−1)′)−1φ̂

(`−1)

F,t

= (1− q)
[
[D̂(`−1)]−1 1

T
F̂ (`−1)′F 0

]−1

φ̂
(`−1)

F,t +OP (N−1 lnN),

where the second equality follows from the use of ḡit = (1 − q) − (git − q) , the third equality holds
by (i), the fact that maxt

∥∥∥ 1
N

∑N
i=1 λ

0
iλ

0′
i (git − q)

∥∥∥ = OP
(
N−1/2 lnN

)
, and the definition of Ĥ(`−1).

In addition, we have by (ii) and (iv)

max
t
‖K1,1t (3)‖ = max

t

∥∥∥∥∥ 1

N

N∑
i=1

λ0
iλ

0′
i (Ĥ(`−1)′)−1r̂

(`−1)
F,t ḡit

∥∥∥∥∥
≤ max

t

∥∥∥r̂(`−1)
F,t

∥∥∥OP ( 1

N

N∑
i=1

∥∥λ0
iλ

0′
i

∥∥) = OP (T γ1/4δ−2
NT lnT + T−1+3γ1/4)

and

max
t
‖K1,1t (4)‖ = max

t

∥∥∥∥∥F 0′
t Ĥ

(`−1)′ 1

N

N∑
i=1

r̂
(`−1)
Λ,i λ0′

i ḡit

∥∥∥∥∥
≤ max

t

∥∥F 0′
t

∥∥max
t

∥∥∥∥∥Ĥ(`−1)′ 1

N

N∑
i=1

r̂
(`−1)
Λ,i λ0′

i ḡit

∥∥∥∥∥ = OP (T γ1/4δ−2
NT lnN).

It follows that uniformly in t, 1
N

∑N
i=1 λ

0
i ε

(`)
it = βF,t + (1 − q)

[
[D̂(`−1)]−1 1

T F̂
(`−1)′F 0

]−1
φ̂

(`−1)

F,t +

OP (T γ1/4δ−2
NT lnT + T−1+3γ1/4) and

φ̂
(`)

F,t = [D̂(`)]−1 1

T
F̂ (`)′F 0 1

N

N∑
i=1

λ0
i ε

(`)
it = D−1QβF,t + (1− q)φ̂(`−1)

F,t +OP (T γ1/4δ−2
NT lnT + T−1+3γ2/4).
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(ii) Note that 1
T

∑T
t=1 F

0
t ε

(`)
it = βΛ,i+

1
T

∑T
t=1 F

0
t η

(`−1)
it ḡit where 1

T

∑T
t=1 F

0
t η

(`−1)
it ḡit =

∑2
l=1

1
T

∑T
t=1

F 0
t η

(`−1)
l,it ḡit ≡

∑2
l=1K2i,l. By Lemma A.3(iii), we can show that that maxi ‖K2i,2‖ = OP

(
δ−2
NT lnN

)
.

Using the decomposition ḡit = (1− q) + (git − q) and Lemma A.2, we can readily show that

K2i,1 =
1

T

T∑
t=1

F 0
t

[
F 0′
t Ĥ

(`−1)φ̂
(`−1)

Λ,i + λ0′
i (Ĥ(`−1)′)−1φ̂

(`−1)

F,t + λ0′
i (Ĥ(`−1)′)−1r̂

(`−1)
F,t + F 0′

t Ĥ
(`−1)′r̂

(`−1)
Λ,i

]
ḡit

≡ K2i,1 (1) +K2i,1 (2) +K2i,1 (3) +K2i,1 (4) .

For K2i,1 (1) , we have that uniformly in i,

K2i,1 (1) =
1− q
T

T∑
t=1

F 0
t F

0′
t Ĥ

(`−1)φ̂
(`−1)

Λ,i +
1

T

T∑
t=1

F 0
t F

0′
t Ĥ

(`−1)φ̂
(`−1)

Λ,i (git − q)

= (1− q) 1

T
F 0′F 0Ĥ(`−1)φ̂

(`−1)

Λ,i +OP ((NT )−1/2 lnN)

= (1− q) [Ĥ(`−1)′]−1φ̂
(`−1)

Λ,i +OP ((NT )−1/2 lnN),

where the second equality follows from the fact that∥∥∥∥∥ 1

T

T∑
t=1

F 0
t F

0′
t Ĥ

(`−1)φ̂
(`−1)

Λ,i (git − q)
∥∥∥∥∥ ≤ OP

(
max
i

∥∥∥φ̂(`−1)

Λ,i

∥∥∥)max
i

∥∥∥∥∥ 1

T

T∑
t=1

F 0
t F

0′
t (git − q)

∥∥∥∥∥
= OP ((N/ lnN)−1/2)OP ((T/ lnT )−1/2)

and the last equality follows because 1
T F

0′F 0 = [Ĥ(`−1)Ĥ(`−1)′]−1 + OP (δ−2
NT ). By Lemma A.3(v)

and (ii)

max
i
‖K2i,1 (2)‖ = max

i

∥∥∥∥∥λ0′
i (Ĥ(`−1)′)−1 1

T

T∑
t=1

φ̂
(`−1)

F,t F 0′
t ḡit

∥∥∥∥∥
≤ OP

(
max
i

∥∥λ0
i

∥∥)max
i

∥∥∥∥∥ 1

T

T∑
t=1

φ̂
(`−1)

F,t F 0′
t ḡit

∥∥∥∥∥ = Nγ2/4OP

(
δ−2
NT lnN +N−1+γ2/2

)
,

max
i
‖K2i,1 (3)‖ = max

i

∥∥∥∥∥ 1

T

T∑
t=1

F 0
t λ

0′
i (Ĥ(`−1)′)−1r̂

(`−1)
F,t ḡit

∥∥∥∥∥
≤ OP

(
max
i

∥∥λ0
i

∥∥)∥∥∥∥∥ 1

T

T∑
t=1

r̂
(`−1)
F,t F 0′

t ḡit

∥∥∥∥∥ = Nγ2/4OP
(
δ−2
NT lnN

)
,

and

max
i
‖K2i,1 (4)‖ = max

i

∥∥∥∥∥ 1

T

T∑
t=1

F 0
t F

0′
t Ĥ

(`−1)′r̂
(`−1)
Λ,i ḡit

∥∥∥∥∥
≤ OP

(
max
i

∥∥∥r̂(`−1)
Λ,i

∥∥∥) 1

T

T∑
t=1

∥∥F 0
t

∥∥2
= OP (Nγ2/4δ−2

NT lnN).
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It follows that uniformly in i, 1
T

∑T
t=1 F

0
t ε

(`)
it = βΛ,i + (1− q)[Ĥ(`−1)′]−1φ̂

(`−1)

Λ,i +OP
(
Nγ2/4δ−2

NT lnN
)

and

φ̂
(`)

Λ,i = Ĥ(`−1)′ 1

T

T∑
t=1

F 0
t ε

(`)
it = (Q′)−1βΛ,i + (1− q)φ̂(`−1)

Λ,i +OP (Nγ2/4δ−2
NT lnN +N−1+3γ2/4). �

Proof of Lemma A.3 (` ≥ 2). The proof relies on the fact that Lemmas A.3-A.5 and Theorems

2.3-2.4 hold for `− 1.

(i) By Lemma A.5(i)-(ii),

max
t

∥∥∥φ̂(`−1)

F,t

∥∥∥ = max
t

∥∥∥D−1QβF,t + (1− q)φ̂(`−2)

F,t +OP (T γ1/4δ−2
NT lnT + T−1+3γ1/4)

∥∥∥
≤

∥∥D−1Q
∥∥max

t

∥∥βF,t∥∥+ (1− q) max
t

∥∥∥φ̂(`−2)

F,t

∥∥∥+OP (T γ1/4δ−2
NT lnT + T−1+3γ1/4)

= OP ((N/ lnN)−1/2) +OP ((N/ lnN)−1/2) + oP ((N ∨ T )−1/2) = OP ((N/ lnN)−1/2),

and

max
i

∥∥∥φ̂(`−1)

Λ,i

∥∥∥ = max
i

∥∥∥(Q′)−1βΛ,i + (1− q)φ̂(`−2)

Λ,i +OP (Nγ2/4δ−2
NT lnN)

∥∥∥
≤

∥∥(Q′)−1
∥∥max

i

∥∥βΛ,i

∥∥+ (1− q) max
i

∥∥∥φ̂(`−2)

Λ,i

∥∥∥+OP (Nγ2/4δ−2
NT lnN)

= OP ((T/ lnT )−1/2) +OP ((T/ lnT )−1/2) + oP ((N ∨ T )−1/2) = OP ((T/ lnT )−1/2).

(ii) By the decomposition in (A.8), r̂(`−1)
F,t = F̂

(`−1)
t − Ĥ(`−1)′F `−1

t − φ̂(`−1)

F,t = â
(`−1)
1t + â

(`−1)
3t +

(â
(`−1)
2t − φ̂(`−1)

F,t ). Following the proof of Theorem 2.4(i) and using Assumption A.5 and the fact that

maxt
∥∥F 0

t

∥∥ = OP (T γ1/4), it is easy to show that

max
t

∥∥∥â(`−1)
1t

∥∥∥ = OP (T−1/2δ−1
NT + T−1+γ1/4), max

t

∥∥∥â(`−1)
3t

∥∥∥ = OP (T γ1/4δ−2
NT ),

and maxt

∥∥∥â(`−1)
2t − φ̂(`−1)

F,t

∥∥∥ = OP (δ−2
NT lnN). It follows that maxt

∥∥∥r̂(`−1)
F,t

∥∥∥ = OP (T γ1/4δ−2
NT lnT +

T−1+3γ1/4). For r̂(`−1)
Λ,i , we have

r̂
(`−1)
Λ,i = λ̂

(`−1)

i − (Ĥ(`−1))−1λ0
i − φ̂

(`−1)

Λ,i = B̂
(`−1)
2i + B̂

(`−1)
3i + (B̂

(`−1)
1i − φ̂(`−1)

Λ,i ),

where B̂(`)
li ’s are defined in the proof of Theorem 2.4(ii). Following the proof of Theorem 2.4(ii) and

using the fact that maxi
∥∥λ0

i

∥∥ = OP (Nγ2/4), maxi
1
T

∑T
t=1 ε

2
it = OP (1) , and q̃ − q = OP ((NT )−1/2)

we have by Lemma A.4

max
i

∥∥∥B̂(`−1)
2i

∥∥∥ = OP (N−1/2+γ2/4δ−1
NT + δ−2

NT lnN), max
i

∥∥∥B̂(`−1)
3i

∥∥∥ = OP (Nγ2/4δ−2
NT ),

and maxi

∥∥∥B̂(`−1)
1i − φ̂(`−1)

Λ,i

∥∥∥ = OP (δ−2
NT lnN). It follows that maxi

∥∥∥r̂(`−1)
Λ,i

∥∥∥ = OP (Nγ2/4δ−2
NT lnN).

(iii) The proof is similar to the ` = 1 case by replacing the superscript 0 by `− 1 throughout the

proof.
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(iv) By Assumption A.5 and Lemma A.3(x) below

(
Ĥ(`−1)′

)−1 1

N

N∑
i=1

φ̂
(`−1)

Λ,i εitgit =
1

NT

N∑
i=1

T∑
s=1

F 0
s

[
εisgis + η

(`−1)
is ḡis

]
εitgit

=
1

NT

N∑
i=1

T∑
s=1

F 0
sE (εisεit) gisgit +

1

NT

N∑
i=1

T∑
s=1

F 0
s [εisεit − E(εisεit)] gisgit

+
1

NT

N∑
i=1

T∑
s=1

F 0
s η

(`−1)
is ḡisεitgit

= OP (T−1+γ1/4) +OP
(
δ−2
NT lnN

)
+OP (T−1+γ1/4 + δ−2

NT lnN).

Then maxi

∥∥∥ 1
N

∑N
i=1 φ̂

(`−1)

Λ,i εitgit

∥∥∥ = OP
(
T−1+γ1/4 + δ−2

NT lnN
)
.

Note that
∥∥∥ 1
N

∑N
i=1 φ̂

(`−1)

Λ,i λ0′
i ḡit

∥∥∥ ≤ ∥∥∥Ĥ(`−1)′
∥∥∥∥∥∥ 1

NT

∑N
i=1

∑T
s=1 F

0
s ε

(`−1)
is λ0′

i ḡit

∥∥∥ .Using ḡit = (1− q)−
(git − q) , we have

1

NT

N∑
i=1

T∑
s=1

F 0
s ε

(`−1)
is λ0′

i ḡit =
1

NT

N∑
i=1

T∑
s=1

F 0
s λ

0′
i

[
εisgis + η

(`−1)
is ḡis

]
ḡit

=
1− q
NT

N∑
i=1

T∑
s=1

F 0
s λ

0′
i εisgis +

1− q
NT

N∑
i=1

T∑
s=1

F 0
s λ

0′
i η

(`−1)
is ḡis

− 1

NT

N∑
i=1

T∑
s=1

F 0
s λ

0′
i εisgis(git − q)−

1

NT

N∑
i=1

T∑
s=1

F 0
s λ

0′
i η

(`−1)
is ḡis(git − q).

It is easy to show that the first term is OP
(
δ−2
NT

)
by Chebyshev inequality. The second term is

OP (δ−2
NT ) by Lemma A.3(viii) below. The third term is OP (δ−2

NT lnN) by Assumption A.5(iii). By

Lemma A.3(iii),

1

NT

N∑
i=1

T∑
s=1

F 0
s λ

0′
i η

(`−1)
is ḡis(git − q) =

1

NT

N∑
i=1

T∑
s=1

F 0
s λ

0′
i η

(`−1)
1,is ḡis(git − q) +OP (δ−2

NT lnN)

uniformly in t. Now we make the following decomposition

1

NT

N∑
i=1

T∑
s=1

F 0
s λ

0′
i η

(`−1)
1,is ḡis(git − q) =

1

NT

N∑
i=1

T∑
s=1

F 0
s λ

0′
i [F 0′

s Ĥ
(`−1)φ̂

(`−1)

Λ,i + λ0′
i (Ĥ(`−1)′)−1φ̂

(`−1)

F,s

+λ0′
i (Ĥ(`−1)′)−1r̂

(`−1)
F,s + F 0′

s Ĥ
(`−1)′r̂

(`−1)
Λ,i ]ḡis(git − q)

≡ II1t + II2t + II3t + II4t.
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For II3t and II4t, we apply Lemma A.3(ii) to obtain the rough bound

max
t
‖II3t‖ ≤ max

t

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
s=1

F 0
s λ

0′
i λ

0′
i (Ĥ(`−1)′)−1r̂

(`−1)
F,s ḡis(git − q)

∥∥∥∥∥
≤ OP (1) max

s

∥∥∥r̂(`−1)
F,s

∥∥∥ = OP (T γ1/4δ−2
NT lnT + T−1+3γ1/4) and

max
t
‖II4t‖ = max

t

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
s=1

F 0
s λ

0′
i

[
F 0′
s Ĥ

(`−1)′r̂
(`−1)
Λ,i

]
ḡis(git − q)

∥∥∥∥∥
≤ OP (1) max

i

∥∥∥r̂(`−1)
Λ,i

∥∥∥ = OP (Nγ2/4δ−2
NT lnN).

By Lemma A.5(i), we have

max
t
‖II1t‖ = max

t

∥∥∥∥∥ 1

NT

T∑
s=1

[
N∑
i=1

F 0
s λ

0′
i F

0′
s Ĥ

(`−1)φ̂
(`−1)

Λ,i

]
ḡis(git − q)

∥∥∥∥∥
≤ max

t

∥∥∥∥∥ 1

NT

T∑
s=1

N∑
i=1

F 0
s tr
[
λ0′
i F

0′
s Ĥ

(`−1)(Q′)−1βΛ,iḡis(git − q)
]∥∥∥∥∥

+ max
t

∥∥∥∥∥ 1

NT

T∑
s=1

N∑
i=1

F 0
s tr
[
λ0′
i F

0′
s Ĥ

(`−1)(1− q)φ̂(`−2)

Λ,i ḡis(git − q)
]∥∥∥∥∥+OP (Nγ2/4δ−2

NT lnN)

≤ OP (1) max
s,t

∥∥∥∥∥ 1

N

N∑
i=1

βΛ,iλ
0′
i ḡis(git − q)

∥∥∥∥∥+OP (1) max
t

∥∥∥∥∥ 1

N

N∑
i=1

φ̂
(`−2)

Λ,i λ0′
i ḡis(git − q)

∥∥∥∥∥
+OP (Nγ2/4δ−2

NT lnN)

= OP (δ−2
NT lnN) +OP (T−1+γ1/2 + δ−2

NT lnN) +OP (Nγ2/4δ−2
NT lnN)

= OP (T−1+γ1/2 +Nγ2/4δ−2
NT lnN)

Similarly, using Lemma A.5(ii), we can show that

max
t
‖II2t‖ = max

t

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
s=1

F 0
s λ

0′
i

[
λ0′
i (Ĥ(`−1)′)−1φ̂

(`−1)

F,s

]
ḡis(git − q)

∥∥∥∥∥ = OP (T−1+γ1/2+δ−2
NT lnN).

Noting that r̂(`−1)
Λ,i = λ̂

(`−1)

i −(Ĥ(`−1))−1λ0
i−φ̂

(`−1)

Λ,i = B̂
(`−1)
2i +B̂

(`−1)
3i , we havemaxt

∥∥∥ 1
N

∑N
i=1 r̂

(`−1)
Λ,i λ0′

i ḡit

∥∥∥
≤ maxt

∥∥∥ 1
N

∑N
i=1[B̂

(`−1)
2i + B̂

(`−1)
3i ]λ0′

i ḡit

∥∥∥ , where B̂(`−1)
li ’s are defined in the proof of Theorem 2.4(ii).

By Lemma A.4(iv)-(v), we have

max
t

∥∥∥∥∥ 1

N

N∑
i=1

B̂
(`−1)
2i λ0′

i ḡit

∥∥∥∥∥ = max
t

1

NT

∥∥∥∥∥(Ĥ(`−1))−1
N∑
i=1

T∑
s=1

(Ĥ(`−1)′F 0
s − F̂ (`−1)

s )ε
(`−1)
is λ0′

i ḡit

∥∥∥∥∥
≤ OP (1) max

s

∥∥∥∥∥ 1

T

T∑
s=1

(Ĥ(`−1)′F 0
s − F̂ (`−1)

s )ε
(`−1)
is

∥∥∥∥∥ = OP
(
δ−2
NT lnN

)
,
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and

max
t

∥∥∥∥∥ 1

N

N∑
i=1

B̂
(`−1)
3i λ0′

i ḡit

∥∥∥∥∥ = max
t

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
s=1

F̂ (`−1)
s (Ĥ(`−1)′F 0

s − F̂ (`−1)
s )′(Ĥ(`−1)′)−1λ0′

i ḡit

∥∥∥∥∥
≤ OP (1)

∥∥∥∥∥ 1

N

T∑
s=1

F̂ (`−1)
s (Ĥ(`−1)′F 0

s − F̂ (`−1)
s )′

∥∥∥∥∥ = OP (δ−2
NT ).

In sum, we have maxt

∥∥∥Ĥ(`−1)′ 1
N

∑N
i=1 r̂

(`−1)
Λ,i λ0′

i ḡit

∥∥∥ = OP
(
δ−2
NT lnN

)
.

(v) By the definition of φ̂
(`−1)

F,t and ε(`−1)
jt , we have

max
i

∥∥∥∥∥ 1

T

T∑
t=1

φ̂
(`−1)

F,t F 0′
t ḡit

∥∥∥∥∥
≤ OP (1) max

i

∥∥∥∥∥∥ 1

NT

T∑
t=1

N∑
j=1

λ0
jε

(`−1)
jt F 0′

t ḡit

∥∥∥∥∥∥
≤ OP (1) max

i

∥∥∥∥∥∥ 1

NT

T∑
t=1

N∑
j=1

λ0
jF

0′
t εjtgjtḡit

∥∥∥∥∥∥+OP (1) max
i

∥∥∥∥∥∥ 1

NT

T∑
t=1

N∑
j=1

λ0
jF

0′
t η

(`−2)
jt ḡjtḡit

∥∥∥∥∥∥ .
We can show that the first term is OP (δ−2

NT lnN) by applying Assumption A.5(iii). For the second

term, we have by Lemma A.3(viii) and (iii)

max
i

∥∥∥∥∥∥ 1

NT

T∑
t=1

N∑
j=1

λ0
jF

0′
t η

(`−2)
jt ḡjtḡit

∥∥∥∥∥∥
≤

∥∥∥∥∥∥q − 1

NT

T∑
t=1

N∑
j=1

λ0
jF

0′
t η

(`−2)
jt ḡjt

∥∥∥∥∥∥+ max
i

∥∥∥∥∥∥ 1

NT

T∑
t=1

N∑
j=1

λ0
jF

0′
t η

(`−2)
jt ḡjt(git − q)

∥∥∥∥∥∥
= OP

(
δ−2
NT

)
+ max

i

∥∥∥∥∥∥ 1

NT

T∑
t=1

N∑
j=1

λ0
jF

0′
t η

(`−2)
jt ḡjt(git − q)

∥∥∥∥∥∥
= max

i

∥∥∥∥∥∥ 1

NT

T∑
t=1

N∑
j=1

λ0
jF

0′
t η

(`−2)
1,jt ḡjt(git − q)

∥∥∥∥∥∥+OP
(
δ−2
NT lnN

)
.

Noting that η(`)
1,it = F 0′

t Ĥ
(`)φ̂

(`)

Λ,i + λ0′
i (Ĥ(`)′)−1φ̂

(`)

F,t + λ0′
i (Ĥ(`)′)−1r̂

(`)
F,t + F 0′

t Ĥ
(`)′r̂

(`)
Λ,i, we have

1

NT

T∑
t=1

N∑
j=1

λ0
jF

0′
t η

(`−2)
1,jt ḡjt(git − q) =

1

NT

T∑
t=1

N∑
j=1

λ0
jF

0′
t [F 0′

t Ĥ
(`−2)φ̂

(`−2)

Λ,j + λ0′
j (Ĥ(`−2)′)−1φ̂

(`−2)

F,t

+λ0′
j (Ĥ(`−2)′)−1r̂

(`−2)
F,t + F 0′

t Ĥ
(`−2)′r̂

(`−2)
Λ,j ]ḡjt(git − q)

≡ III1i + III2i + III3i + III4i.
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For the first term, we have

max
i
‖III1i‖ = max

i

∥∥∥∥∥∥ 1

N

N∑
j=1

λ0
j φ̂

(`−2)′
Λ,j Ĥ(`−2)′ 1

T

T∑
t=1

F 0
t F

0′
t ḡjt(git − q)

∥∥∥∥∥∥
≤ max

j

∥∥∥φ̂(`−2)

Λ,j

∥∥∥max
j

∥∥∥∥∥ 1

T

T∑
t=1

F 0
t F

0′
t ḡjt(git − q)

∥∥∥∥∥
= OP ((T/ lnT )−1/2)OP ((T/ lnT )−1/2 + T−1+γ1/2) = OP

(
δ−2
NT lnN

)
.

Similarly, we can show thatmaxi ‖III4i‖ = OP
(
δ−2
NT lnN

)
andmaxi ‖III4i‖ = OP

(
δ−2
NT lnN +N−1+γ2/2

)
for l = 2, 3. Then maxi

∥∥∥ 1
T

∑T
t=1 φ̂

(`−1)

F,t F 0′
t ḡit

∥∥∥ = OP
(
δ−2
NT lnN +N−1+γ2/2

)
.

Noting that r̂(`−1)
F,t = F̂

(`−1)
t − Ĥ(`−1)′F 0

t − φ̂
(`−1)

F,t = â
(`−1)
1t + â

(`−1)
3t by (A.8), we have∥∥∥∥∥ 1

T

T∑
t=1

r̂
(`−1)
F,t F 0′

t ḡit

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

T

T∑
t=1

â
(`−1)
1t F 0′

t ḡit

∥∥∥∥∥+

∥∥∥∥∥ 1

T

T∑
t=1

â
(`−1)
3t F 0′

t ḡit

∥∥∥∥∥ .
Note that

max
i

∥∥∥∥∥ 1

T

T∑
t=1

â
(`−1)
1t F 0′

t ḡit

∥∥∥∥∥ ≤ OP (1) max
i

∥∥∥∥∥∥ 1

T

T∑
t=1

1

NT

T∑
s=1

F̂ (`−1)
s

N∑
j=1

ε
(`−1)
jt ε

(`−1)
js F 0′

t ḡit

∥∥∥∥∥∥
= OP (1) max

i

∥∥∥∥∥∥ 1

NT 2

T∑
t=1

T∑
s=1

N∑
j=1

F 0
s ε

(`−1)
jt ε

(`−1)
js F 0′

t ḡit

∥∥∥∥∥∥+OP
(
δ−2
NT lnN

)
≤ OP (1) max

i

1

N

N∑
j=1

∥∥∥∥∥ 1

T

T∑
t=1

F 0
t ε

(`−1)
jt ḡit

∥∥∥∥∥
∥∥∥∥∥ 1

T

T∑
s=1

F 0
s ε

(`−1)
js

∥∥∥∥∥+OP
(
δ−2
NT lnN

)
≤ OP (1)

1

N

N∑
j=1

∥∥∥∥∥ 1

T

T∑
s=1

F 0
s ε

(`−1)
js

∥∥∥∥∥
2

+OP
(
δ−2
NT lnN

)
.

Using the decomposition ε(`−1)
jt = εjtgjt+η

(`−2)
jt ḡjt and Assumption A.5, we can show that 1

NT 2
∑T

t=1

∑T
s=1∑N

j=1 ε
(`−1)
jt ε

(`−1)
js F 0

s F
0′
t ḡit = OP

(
δ−2
NT lnN

)
. Then maxi

∥∥∥ 1
T

∑T
t=1 â

(`−1)
1t F 0′

t ḡit

∥∥∥ = OP
(
δ−2
NT lnN

)
.

Similarly,

max
i

∥∥∥∥∥ 1

T

T∑
t=1

â
(`)
3t F

0′
t ḡit

∥∥∥∥∥ ≤ OP (1) max
i

∥∥∥∥∥∥ 1

T

T∑
t=1

 1

NT

T∑
s=1

F̂ (`)
s

N∑
j=1

λ0′
j F

0
t ε

(`)
js

F 0′
t ḡit

∥∥∥∥∥∥
= OP (1) max

i

∥∥∥∥∥∥ 1

T

T∑
t=1

 1

NT

T∑
s=1

N∑
j=1

F 0
s ε

(`)
js λ

0′
j

F 0
t F

0′
t ḡit

∥∥∥∥∥∥+OP
(
δ−2
NT lnN

)
= OP (1)

∥∥∥∥∥ 1

NT

T∑
s=1

N∑
i=1

F 0
j ε

(`)
is λ

0′
j

∥∥∥∥∥+OP
(
δ−2
NT lnN

)
= OP

(
δ−2
NT lnN

)
.

It follows that maxi

∥∥∥ 1
T

∑T
t=1 r̂

(`−1)
F,t F 0′

t ḡit

∥∥∥ = OP
(
δ−2
NT lnN

)
.
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(vi) Note that 1
N

∑N
i=1

∥∥∥η(`−1)
it

∥∥∥2
≤ 2

N

∑N
i=1

∥∥∥η(`−1)
1,it

∥∥∥2
+ 2
N

∑N
i=1

∥∥∥η(`−1)
2,it

∥∥∥2
, where the second term

is bounded above by OP (δ−4
NT (lnN)2) by (iii). For the first term, we have

max
t

1

N

N∑
i=1

∥∥∥η(`−1)
1,it

∥∥∥2

≤ max
t

1

N

N∑
i=1

∥∥∥F 0′
t Ĥ

(`−1)φ̂
(`−1)

Λ,i + λ0′
i (Ĥ(`−1)′)−1φ̂

(`−1)

F,t + λ0′
i (Ĥ(`−1)′)−1r̂

(`−1)
F,t + F 0′

t Ĥ
(`−1)′r̂

(`−1)
Λ,i

∥∥∥2

≤ 4
∥∥∥Ĥ(`−1)

∥∥∥max
t

∥∥F 0
t

∥∥2 1

N

N∑
i=1

(
∥∥∥φ̂(`−1)

Λ,i

∥∥∥2

+
∥∥∥r̂(`−1)

Λ,i

∥∥∥2
)

+4
∥∥∥(Ĥ(`−1)′)−1

∥∥∥{max
t

∥∥∥φ̂(`−1)

F,t

∥∥∥2

+ max
t

∥∥∥r̂(`−1)
F,t

∥∥∥2
}

1

N

N∑
i=1

max
i

∥∥λ0
i

∥∥2

= OP (T−1+γ1/2 +N−1 lnN).

It follows that 1
N

∑N
i=1

∥∥∥η(`−1)
it

∥∥∥2
= OP (T−1+γ1/2+N−1 lnN). Similarly, we can show thatmaxt

1
T

∑T
t=1∥∥∥η(`−1)

it

∥∥∥2
= OP (N−1+γ2/2 + T−1 lnN).

(vii) Recall that κt = 1 +
∥∥F 0

t

∥∥2
. By the CS inequality and (iii), 1

NT

∑T
t=1

∑N
i=1 κt(η

(`−1)
it )2 ≤

2
NT

∑T
t=1

∑N
i=1 κt(η

(`−1)
1,it )2+OP (δ−4

NT (lnN)2).Using η(`)
1,it = F 0′

t Ĥ
(`)φ̂

(`)

Λ,i+λ
0′
i (Ĥ(`)′)−1φ̂

(`)

F,t+λ
0′
i (Ĥ(`)′)−1r̂

(`)
F,t+

F 0′
t Ĥ

(`)′r̂
(`)
Λ,i =

∑4
l=1 η

(`)
1,it (l), we have

1

NT

T∑
t=1

N∑
i=1

κt(η
(`−1)
1,it )2 ≤ 4

4∑
l=1

1

NT

T∑
t=1

N∑
i=1

κt

[
η

(`−1)
1,it (l)

]2
≡ 4

4∑
l=1

II2,l.

Noting that 1
N

∑N
i=1

∥∥∥φ̂(`−1)

Λ,i

∥∥∥2

= OP
(
T−1

)
, we can readily show II2,1 ≤

∥∥∥Ĥ(`−1)
∥∥∥2

1
T

∑T
t=1

∥∥F 0
t

∥∥4 1
N

∑N
i=1∥∥∥φ̂(`−1)

Λ,i

∥∥∥2

= OP
(
T−1

)
. By Lemma A.5(i)

1

T

T∑
t=1

κt

∥∥∥φ̂(`−1)

F,t

∥∥∥2

≤ 2

T

T∑
t=1

κt

∥∥∥D−1QβF,t + (1− q) φ̂(`−2)

F,t

∥∥∥2

+OP

(
T γ1/2δ−4

NT (lnT )2 + T−2+3γ1/2
)

≤ OP (1)
1

T

T∑
t=1

κt
∥∥βF,t∥∥2

+OP (1)
1

T

T∑
t=1

κt

∥∥∥φ̂(`−2)

F,t

∥∥∥2

+OP
(
δ−2
NT

)
= OP

(
δ−2
NT

)
,

we have II2,2 ≤
∥∥∥(Ĥ(`−1)′)−1

∥∥∥2
1
N

∑N
i=1

∥∥λ0′
i

∥∥2 1
T

∑T
t=1 κt

∥∥∥φ̂(`−1)

F,t

∥∥∥2

= OP
(
δ−2
NT

)
. Similarly, we have

II2,3 =
1

NT

T∑
t=1

N∑
i=1

κt

∣∣∣λ0′
i (Ĥ(`−1)′)−1r̂

(`−1)
F,t

∣∣∣2 ≤ OP (1) max
t

∥∥∥r̂(`−1)
F,t

∥∥∥2 1

T

T∑
t=1

κt
1

N

N∑
i=1

∥∥λ0′
i

∥∥2
= OP

(
δ−2
NT

)
,

and

II2,4 =
1

NT

T∑
t=1

N∑
i=1

κt

∣∣∣F 0′
t Ĥ

(`−1)′r̂
(`−1)
Λ,i

∣∣∣2 ≤ OP (1) max
i

∥∥∥r̂(`−1)
Λ,i

∥∥∥2 1

T

T∑
t=1

κt
∥∥F 0

t

∥∥2
= OP

(
δ−2
NT

)
.
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It follows that 1
NT

∑T
t=1

∑N
i=1 κt(η

(`−1)
it )2 = OP

(
δ−2
NT

)
.

(viii) Note that 1
NT

∑T
s=1

∑N
i=1 F

0
s λ

0′
i η

(`−1)
is ḡis =

∑2
l=1

1
NT

∑T
s=1

∑N
i=1 F

0
s λ

0′
i η

(`−1)
l,is ḡis ≡

∑2
l=1 II3,l.

We only show II3,1 = OP
(
δ−2
NT

)
as the other term is of smaller order. Note that

II3,1 =
1

NT

T∑
t=1

N∑
i=1

F 0
t λ

0′
i [F 0′

t Ĥ
(`−1)φ̂

(`−1)

Λ,i + λ0′
i (Ĥ(`−1)′)−1φ̂

(`−1)

F,t

+λ0′
i (Ĥ(`−1)′)−1r̂

(`−1)
F,t + F 0′

t Ĥ
(`−1)′r̂

(`−1)
Λ,i ]ḡit

≡ II3,1 (1) + II3,1 (2) + II3,1 (3) + II3,1 (4) .

Let λ0
il and F

0
sl denote the lth element of λ

0
i and F

0
s , respectively. Let II3,1lr (·) denote the (l, r)th

element of B3,1 (·) . Noting that ḡis = (1− q) + (q − gis) , we have

‖II3,1lr (1)‖

=

∥∥∥∥∥ 1

NT

T∑
t=1

F 0
trF

0′
t Ĥ

(`−1)
N∑
i=1

φ̂
(`−1)

Λ,i ḡitλ
0
il

∥∥∥∥∥
≤

∥∥∥∥∥1− q
NT

T∑
t=1

F 0
trF

0′
t Ĥ

(`−1)
N∑
i=1

φ̂
(`−1)

Λ,i λ0
il

∥∥∥∥∥+

∥∥∥∥∥ 1

NT

T∑
t=1

F 0
trF

0′
t Ĥ

(`−1)
N∑
i=1

φ̂
(`−1)

Λ,i (git − q)λ0
il

∥∥∥∥∥
≡ II3,1lr (1, 1) + II3,1lr (1, 2) .

For II3,1lr (1, 1) , we have

II3,1lr (1, 1) ≤ OP (1)

∥∥∥∥∥ 1

N

N∑
i=1

φ̂
(`−1)

Λ,i λ0
il

∥∥∥∥∥ = OP (1)

∥∥∥∥∥ 1

N

N∑
i=1

Ĥ(`−1)′[βΛ,i + (1− q) φ̂(`−2)

Λ,i ]λ0
il

∥∥∥∥∥
≤ OP (1)

{
1

N

N∑
i=1

βΛ,iλ
0
il + (1− q) 1

N

N∑
i=1

φ̂
(`−2)

Λ,i λ0
il

}
= OP (δ−2

NT ).

For II3,1lr (1, 2) , we have

II3,1lr (1, 2) =

∥∥∥∥∥ 1

N

N∑
i=1

λ0
ilφ̂

(`−1)′
Λ,i Ĥ(`−1)′

[
1

T

T∑
t=1

F 0
t F

0
tr(git − q)

]∥∥∥∥∥
≤

∥∥∥Ĥ(`−1)
∥∥∥{ 1

N

N∑
i=1

∥∥λ0
i

∥∥2
∥∥∥φ̂(`−1)

Λ,i

∥∥∥2
}1/2

 1

N

N∑
i=1

∥∥∥∥∥ 1

T

T∑
t=1

F 0
t F

0
tr(git − q)

∥∥∥∥∥
2


1/2

= OP
(
δ−1
NT

)
OP (T−1/2)

as we can show that 1
N

∑N
i=1

∥∥λ0
i

∥∥2
∥∥∥φ̂(`−1)

Λ,i

∥∥∥2

= OP
(
δ−2
NT

)
and 1

N

∑N
i=1E

∥∥∥ 1
T

∑T
s=1 F

0
s F

0
sr(gis − q)

∥∥∥2
=

21



O
(
T−1

)
. Then II3,1 (1) = OP

(
δ−2
NT

)
. Similarly,

‖II3,1rl (2)‖

=

∥∥∥∥∥ 1

NT

T∑
s=1

N∑
i=1

λ0
irλ

0′
i (Ĥ(`−1)′)−1φ̂

(`−1)

F,s F 0
slḡis

∥∥∥∥∥
≤

∥∥∥∥∥1− q
N

N∑
i=1

λ0
irλ

0′
i (Ĥ(`−1)′)−1 1

T

T∑
s=1

φ̂
(`−1)

F,s F 0
sl

∥∥∥∥∥+

∥∥∥∥∥ 1

NT

T∑
s=1

N∑
i=1

λ0
irλ

0′
i (Ĥ(`−1)′)−1φ̂

(`−1)

F,s F 0
sl (gis − q)

∥∥∥∥∥
≡ II3,1rl (2, 1) + II3,1rl (2, 2) .

For II3,1rl (2, 1) , we have II3,1rl (2, 1) ≤ OP (1)
∥∥∥ 1
T

∑T
s=1 φ̂

(`−1)

F,s F 0
sl

∥∥∥ = OP
(
δ−2
NT

)
as we can show that∥∥∥ 1

T

∑T
s=1 φ̂

(`−1)

F,s F 0
sl

∥∥∥ = OP
(
δ−2
NT

)
by following the analysis of

∥∥∥ 1
N

∑N
i=1 φ̂

(`−1)
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i (Ĥ(`−1)′)−1φ̂

(`−1)

F,t

+λ0′
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Analogously, we can show that maxt ‖II4,1t (l)‖ = OP (δ−2
NT lnN) for l = 3, 4. Then maxt ‖II3,1t‖ =

OP
(
T−1+γ1/2 + δ−2

NT lnN
)
. �

Proof of Lemma A.6. (i) maxi
1
T

∑T
t=1 |ε̂it − εit|

2 = OP
(
m−1 lnT

)
. Noting that ε̂it − εit =

λ̂
′
iF̂

(0)
t − λ0′

i F
(0)
t = (λ̂

(0)

i − Ĥ−1λ0
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(ii) Note that
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∥∥∥+ maxt
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(iii) This follows from (i) and (ii) and Theorem 5 in Fan, Liao, and Mincheva (2013). �

D Some Additional Simulation Results

In this appendix we report some additional simulation results that are associated with the case

q = 0.9, i.e., only 10% observations are missing at random. Tables A1—A3 correspond to Tables 2—4

in the main text.

The results in Table A1 are comparable with those in Table 2. When the proportion of missing

observations is smaller (q = 0.9 here), the three CV methods perform slightly better than the case

with a larger proportion of missing observations. In addition, they continue to outperform both M-1

and M-2 of existing methods for most cases. Among the other methods, only the M-1 of ED shows

a pattern of convergence in all cases.

The results in Table A2 are comparable with those in Table 3. As expected, the MSE decreases

and the R2 increases as N or T increases; the MSEs in the case of q = 0.9 are smaller than those for

q = 0.7; the R2 are slightly larger in the case of q = 0.9 than in the case of q = 0.7. Similarly, the

results in Table A3 are analogous to those in Table 4.
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Table A2: MSE and R2(F̂ ) with missing observations (q=0.9)

MSE R2(F̂ )

oracle iterated estimate oracle iterated estimate

DGP N T `=0 `=5 `=20 `=∞ `=0 `=5 `=20 `=∞
1 50 50 0.460 0.794 0.524 0.564 0.604 0.964 0.941 0.958 0.958 0.957

50 100 0.367 0.590 0.396 0.414 0.425 0.967 0.946 0.962 0.962 0.962

100 50 0.423 0.658 0.446 0.472 0.499 0.978 0.967 0.976 0.976 0.976

100 100 0.221 0.374 0.248 0.258 0.264 0.982 0.971 0.980 0.980 0.980

2 50 50 0.352 0.654 0.403 0.407 0.408 0.971 0.949 0.967 0.967 0.967

50 100 0.259 0.467 0.292 0.295 0.295 0.972 0.953 0.969 0.969 0.969

100 50 0.258 0.473 0.291 0.293 0.293 0.986 0.976 0.984 0.984 0.984

100 100 0.172 0.307 0.192 0.193 0.193 0.986 0.977 0.985 0.985 0.985

3 50 50 0.403 0.658 0.436 0.438 0.438 0.975 0.957 0.972 0.972 0.972

50 100 0.266 0.453 0.291 0.293 0.293 0.976 0.959 0.973 0.973 0.973

100 50 0.328 0.522 0.352 0.353 0.353 0.987 0.978 0.986 0.986 0.986

100 100 0.198 0.323 0.214 0.215 0.215 0.988 0.979 0.987 0.987 0.987

4 50 50 0.350 0.621 0.394 0.397 0.396 0.970 0.951 0.966 0.966 0.966

50 100 0.261 0.455 0.292 0.294 0.294 0.970 0.953 0.967 0.967 0.967

100 50 0.262 0.463 0.294 0.295 0.295 0.985 0.975 0.983 0.983 0.983

100 100 0.173 0.304 0.194 0.195 0.195 0.985 0.976 0.984 0.984 0.984

5 50 50 0.386 0.645 0.420 0.423 0.423 0.970 0.951 0.966 0.967 0.967

50 100 0.316 0.501 0.339 0.341 0.341 0.970 0.952 0.967 0.967 0.967

100 50 0.260 0.454 0.286 0.287 0.287 0.985 0.976 0.984 0.984 0.984

100 100 0.190 0.314 0.206 0.207 0.207 0.985 0.977 0.984 0.984 0.984

6 50 50 0.322 0.580 0.358 0.360 0.360 0.976 0.958 0.972 0.973 0.973

50 100 0.239 0.428 0.265 0.266 0.266 0.976 0.958 0.973 0.973 0.973

100 50 0.244 0.438 0.270 0.271 0.271 0.988 0.979 0.986 0.987 0.987

100 100 0.161 0.285 0.177 0.177 0.177 0.988 0.979 0.987 0.987 0.987
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Table A3: Coverage probability and average length of the 95% confidence intervals (q=0.9)

Oracle `=0 `=`∗

standard robust standard robust standard robust

DGP N T CP Length CP Length CP Length CP Length CP Length CP Length

1 50 50 0.926 0.514 0.947 0.551 0.943 0.626 0.943 0.673 0.908 0.516 0.945 0.578

50 100 0.919 0.529 0.930 0.562 0.936 0.629 0.942 0.680 0.920 0.537 0.930 0.588

100 50 0.926 0.365 0.940 0.400 0.936 0.459 0.947 0.488 0.940 0.394 0.942 0.421

100 100 0.940 0.374 0.943 0.403 0.946 0.478 0.944 0.490 0.952 0.391 0.945 0.424

2 50 50 0.918 0.537 0.932 0.550 0.927 0.652 0.940 0.671 0.913 0.557 0.942 0.577

50 100 0.922 0.538 0.924 0.557 0.920 0.660 0.942 0.682 0.921 0.564 0.939 0.585

100 50 0.943 0.388 0.946 0.395 0.943 0.468 0.952 0.481 0.943 0.409 0.950 0.416

100 100 0.938 0.390 0.936 0.401 0.932 0.479 0.951 0.490 0.930 0.411 0.936 0.422

3 50 50 0.926 0.550 0.936 0.557 0.920 0.671 0.937 0.678 0.914 0.582 0.935 0.585

50 100 0.932 0.565 0.938 0.567 0.942 0.677 0.947 0.684 0.948 0.589 0.950 0.596

100 50 0.930 0.400 0.937 0.398 0.942 0.490 0.946 0.488 0.928 0.416 0.932 0.419

100 100 0.925 0.403 0.933 0.404 0.939 0.487 0.943 0.489 0.943 0.422 0.947 0.425

4 50 50 0.917 0.601 0.937 0.607 0.907 0.718 0.926 0.726 0.906 0.630 0.929 0.638

50 100 0.928 0.607 0.943 0.614 0.931 0.716 0.939 0.725 0.919 0.636 0.926 0.645

100 50 0.927 0.440 0.928 0.436 0.935 0.524 0.938 0.522 0.933 0.461 0.946 0.460

100 100 0.932 0.445 0.943 0.447 0.930 0.527 0.938 0.531 0.934 0.464 0.942 0.471

5 50 50 0.891 0.322 0.908 0.327 0.920 0.475 0.932 0.481 0.869 0.340 0.887 0.344

50 100 0.896 0.323 0.901 0.328 0.916 0.475 0.926 0.480 0.910 0.340 0.923 0.346

100 50 0.885 0.233 0.885 0.233 0.923 0.342 0.926 0.346 0.905 0.246 0.897 0.245

100 100 0.904 0.234 0.905 0.236 0.922 0.348 0.933 0.350 0.893 0.247 0.903 0.249

6 50 50 0.897 0.320 0.911 0.325 0.923 0.473 0.929 0.478 0.882 0.339 0.898 0.342

50 100 0.875 0.325 0.896 0.330 0.927 0.475 0.930 0.477 0.894 0.343 0.908 0.347

100 50 0.913 0.233 0.917 0.233 0.925 0.335 0.931 0.339 0.907 0.245 0.916 0.245

100 100 0.908 0.236 0.913 0.236 0.929 0.343 0.932 0.346 0.918 0.247 0.923 0.249
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