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Liangjun Su, Ke Miao, and Sainan Jin

School of Economics, Singapore Management University
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Abstract

We consider the estimation and inference in approximate factor models with random missing
values. We show that with the low rank structure of the common component, we can estimate the
factors and factor loadings consistently with the missing values replaced by zeros. We establish
the asymptotic distributions of the resulting estimators and those based on the EM algorithm. We
also propose a cross-validation-based method to determine the number of factors in factor models
with or without missing values and justify its consistency. Simulations demonstrate that our cross
validation method is robust to fat tails in the error distribution and significantly outperforms some
existing popular methods in terms of correct percentage in determining the number of factors.
An application to the factor-augmented regression models shows that a proper treatment of the

missing values can improve the out-of-sample forecast of some macroeconomic variables.
JEL Classification: €23, C33, C38; C55

Key Words: Cross-validation; Expectation-Maximization (EM) algorithm; Factor models; Ma-

trix completion; Missing at random; Principal component analysis; Singular value decomposition

1 Introduction

Since the seminal work of Geweke (1977), Sargent and Sims (1977), Chamberlain and Rothschild
(1983), factor models have been widely used in economics and finance. Some important theoretical

contributions include Stock and Watson (1998), Forni et al. (2000), Bai and Ng (2002), Bai (2003),
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Hallin and Liska (2007), Onatski (2009, 2010, 2012), and Ahn and Horenstein (2013), among others.
Nevertheless, all these authors assume a balanced panel in their asymptotic analyses.

Empirical data typically contain a variety of irregularities, including occasionally missing obser-
vations, unbalanced panel, and mixed frequency (e.g., monthly and quarterly) data. One simple way
to handle missing data is to omit the cross-sectional units with missing values; see, e.g., Ludvigson
and Ng (2007). But this will result in efficiency loss that can be substantial in some applications.
To handle the missing data problem in factor models effectively, two methods have been proposed:
the expectation-maximization (EM) algorithm and the Kalman filter (KF). These two methods have
been widely used to handle missing data for principal component (PC) estimation with missing data
and state space estimation with missing data. The details on how missing data are handled differ a
lot in PC and state space applications. For the PC estimation with missing data, Stock and Watson
(2002) propose an iterative method based on the EM algorithm that has proved to be easy and effec-
tive. Schumacher and Breitung (2008) apply Stock and Watson’s methodology to nowcast German
gross domestic product (GDP).

The state space framework has been adapted to missing data by either allowing the measurement
equation to vary depending on what data are available at a given time point or keeping the dimension
of the measurement equation to be the same over time by including a proxy value for the missing
observation while adjusting the model parameters so that the Kalman filter places no weights on the
missing observation. See Giannone et al. (2008), Mariano and Murasawa (2010), Doz et al. (2011),
Jungbacker et al. (2011), Pinheiro et al. (2013), Banbura and Modugno (2014), and Marcellino and
Sivec (2016) for variations on this latter approach. In particular, Giannone et al. (2008) propose
a two-step procedure that is able to solve the “ragged edge” problem in an approximate factor
model when data are observed at different frequencies. They estimate the model by PC analysis
with truncated balanced panel in the first step and update the estimates of factors by the KF with
unbalanced panel data in the second step. Doz et al. (2011) show the consistency of the two-step
estimators but do not have any asymptotic distributional results. Jungbacker et al. (2011) propose
a new state space formulation of the factor model and apply the KF to estimate the underlying
parameters with computational efficiency when the observations are missing at random. In view
of the fact that it is not straightforward to apply Giannone et al.’s (2008) methodology to mixed
frequency datasets with series of different lengths or, in general, to any pattern of missing data,
Banbura and Modugno (2014) propose a modified EM algorithm to allow for an arbitrary pattern
of missing data where the KF is incorporated to estimate the factors in the maximization-step. A
drawback of their approach is that for large cross-sections, the dimension of the augmented state

vector becomes very large, which leads to computational inefficiency. Pinheiro et al. (2013) also



propose an EM algorithm to estimate a dynamic factor model for panel data sets with jagged edge
without significantly increasing the computation time relative to the balanced panel case. In addition,
Foroni and Marcellino (2013) survey methods for handling mixed-frequency data, including dynamic
factor models and alternative approaches; Stock and Watson (2016) summarize the advantage and
disadvantage of the state space estimation for factor models with missing observations; Athey et al.
(2018) develop new methods for estimating causal effects in panel data with missing values based on
matrix completion methods.

Despite the popularity of the EM algorithm and the KF method in empirical researches, the
asymptotic properties of the resulting estimators have been rarely studied. To the best of our
knowledge, there is no formal study of the asymptotic properties for the EM estimators of the factors
and factor loadings for the PC estimation with missing observations. For the KF estimators, Doz et
al. (2011) prove the consistency but not the asymptotic normality.

In this paper we consider the EM estimation of approximate factor models with missing observa-
tions. For simplicity, we focus on the case where the missing occurs at random and remark in the end
on the other forms of missing. As Stock and Watson (2016) remark, all the procedures in common
use adopt the assumption that the data are missing at random, that is, whether a datum is missing is
independent of the latent variables, and the missing-at-random assumption arguably is a reasonable
assumption for the main sources of missing data in dynamic factor models in most macroeconomic
applications to date. In the case of random missing, we draw support from the literature on matrix
completion in computer science. It is well known that the low rank matrix such as the common
component matrix in factor models can be recovered in the presence of missing observations when
the noise matrix exhibit certain sparsity feature; see Cai et al. (2010), Candés and Plan (2010) and
Candes and Li (2011). We show that similar phenomenon occurs when the noise matrix does not
have any sparsity feature but lower order spectral norm than the common component matrix. In
computation, we can simply replace the missing observations by zeros and conduct the usual PC
analysis for a scaled version of the data matrix where the scale is determined by the percentage of
observed values in the data. We show that the resulting estimators of factors, factor loadings, and
common components are consistent but not asymptotically normal in general. Following the EM
algorithm, we replace the missing observations by such initial estimators of the common components
and obtain updated PC estimators. This procedure can be iterated until convergence. We show that
the final estimators of the factors, factor loadings, and PCs are asymptotically more efficient than
the initial estimators. We also characterize the efficiency loss for such EM estimators relative to the
PC estimators without missing observations.

In some sense, the pure approximate factor model possesses the “self-fulfilling” property in that



one does not need to observe all values in the data matrix in order to estimate the factors, factor
loadings and common components and the missing values can be well recovered from the observed
data. Such a self-fulfilling property motivates us to propose a novel method to determine the number
of pervasive factors in approximate factor models no matter whether the original data contains
missing observations or not. Our key insight is that we can draw each observation at random with
probability p to construct the pseudo-data matrix with missing values. The original data are then
divided into two sets, with one set containing the training observations used for the PC estimation for
any prescribed number of factors (say, R) and the other set containing the held-out entries used for
the out-of-sample evaluation. Then we can construct a cross-validation (CV) objective function that
is indexed by R and choose R to minimize it. We show that this procedure consistently estimates
the number of true factors. The finite sample performance of this procedure can be improved via
iterations and some design for stability selection (e.g., Meinshausen and Biihlmann (2010)). Monte
carlo simulations indicate that our new estimator of the number of factors significantly outperforms
some existing popular estimators including those based on either information criterion (Bai and Ng
(2002)), or eigenvalue distribution function (Onatski (2010)), or eigenvalue/growth ratio (Ahn and
Horenstein (2013)). Moreover, our simulations also demonstrate that our new estimators are robust
to fat tails in the error terms.

The paper is organized as follows. Section 2 introduces the EM estimators of factor models with
random missing and their asymptotic properties. Section 3 proposes a novel method to determine
the number of factors in approximate factor models. In Section 4, we report the Monte Carlo
simulation results for our EM estimators of the factors, factor loadings and common components,
and compare our method for the determination of the number of factors with the methods of Bai
and Ng (2002), Onatski (2010), and Ahn and Horenstein (2013). In Section 5, we apply our method
to an empirical application and show that it helps the out-of-sample forecasts based on factor-
augmented regressions. Final remarks are contained in Section 6. The proofs of the results in
Sections 2 and 3 are respectively relegated to Appendix A (in the main paper) and Appendix B
(in the online supplement). The proofs of the technical lemmas in Appendix A along with some
additional simulation results can be found in the additional online supplement that is available at
http://www.mysmu.edu/faculty/ljsu/Publications/Factor Missing19.pdf.

NOTATION. For an m x n real matrix A, we denote its transpose as A’, its entrywise Lo, norm
as ||A||,, (= max;;|Ayl), its Frobenius norm as ||A|| (= [tr(AA")]'/?), its spectral norm as 1Al
(= \/M) and its Moore-Penrose generalized inverse as A", where = means “is defined as”
and p, () denotes the sth largest eigenvalue of a real symmetric matrix by counting eigenvalues of

multiplicity multiple times. Note that the two norms are equal when A is a vector. We will frequently



use the submultiplicative property of these norms and the fact that || A, < [|4] < HAHsprank(A)l/2 .
We also use pi., (B) and g, (B) to denote the largest and smallest eigenvalues of a symmetric
matrix B, respectively. We use B > 0 to denote that B is positive definite. Let Py = A (A’ A)Jr A’ and
My = I, — Pa, where I, denotes an m X m identity matrix. The operator Lt denotes convergence
in probability, 4, convergence in distribution, and plim probability limit. Let V and A denote
the max and min operators, respectively. E.g., NV T = max(N,T). Let [N] = {1,2,...,N} and
[T] = {1,2,....,T}. We use (N,T) — oo to denote that N and T pass to infinity jointly. We let

(5NT:\/N/\\/T.

2 Large Dimensional Factor Models with Random Missing

In this section, we consider the PCA estimation of large dimensional models with observations that
are missing at random by assuming the true number of factors is known. We will propose a novel

cross validation method to determine the number of factors in the next section.

2.1 EM Estimation

We consider the following factor model
Xit = )\;Ft + Eit, (2.1)

wherei=1,....,N,t=1,...,T, F; and \; are Rx 1 vectors of factors and factor loadings, respectively,
and g;; is the idiosyncratic error term. Following the lead of Stock and Watson (2002) and Bai et
al. (2015), we study the estimation of the factors and factor loadings when some of the observations,
X, are missing at random. Let X = (Xy,..., Xy) and € = (e1,...,en), where X; = (Xi1,..., Xir)’

and ¢; = (;1,...,&7) fori=1,.., N. We can write (2.1) in matrix form:
X=FA+¢ (2.2)

where F = (F1, ..., Fr) and A = (A1, ..., Ay)". We will use FO = (F?, ..., F2)" and A® = (A, ..., A})" to
denote the true values of F' and A, respectively. Let Q C [N] X [T] be the index set of the observations
that are observed. That is,

Q={(i,t) € [N] x [T] : Xt is observed} .

Let G denote a T' x N matrix with (¢,7)th element given by g = 1{(¢,t) € }. Under the random
missing mechanism, g;;’s are independently and identically distributed as Bernoulli(q) with ¢ € (0, 1]
and independent of X, FY, A" and e. So the population missing probability is given by 1—q € [0, 1).
Let || denote the cardinality of the set Q. It is easy to see that ¢ = |Q| /(NT) is a v/ NT-consistent

estimator of q.



2.1.1 The initial estimates

Let X = X oG and Xit = Xi+g;t, where o denotes the Hadamard product. Our key observation is

that the common component

CO = FOAO/

is a low rank matrix and ¢ is the noise component. In this case, it is possible to recover C? even
when a large proportion of elements in the data matrix X are missing at random.

Let E (%fﬂFo, AO) denote the T' x N matrix with a typical element given by E (éf(ﬂﬂo, A?) .
Under the standard condition that E (g;|FC, A?) = 0, we can readily verify that E (%f( |FO, AO> =
FOAY This motivates us to estimate F° and A° by minimizing the following least squares objective

function

L7 (F,A) = %u [(;X — FA’) (;X — FA’) ] (2.3)

under the identification restrictions: F'F/T = Ir and A’A is a diagonal matrix. By concentrating
out A and using the normalization that F'F/T = Ip, the above minimization problem is identical
to maximizing q%tr{F’XX’F}. The estimated factor matrix, denoted by FO is /T times the

eigenvectors corresponding to the R largest eigenvalues of the T' x T matrix WX' X'

e KXTEO) = PO DO, (2.4)
q

where D© is an R x R diagonal matrix consisting of the R largest eigenvalues of (N T(jQ)_l XX/,

arranged in descending order along its diagonal line. Then the estimator of A’ is given by

. 1 /a1 . 1 e -
o _ 1 (porpo) " porg _ L poy
A0 =2 (F P ) FOYX = FOX. (2.5)

Let ﬁ’t(o) denote the tth column of F(©) and 5\1(-0) the ith column of A(®Y. We can obtain an initial
2 (0)r 2 (

estimate of the (¢,7)th element, C%, of CY by C’f? ) = N F %) We will show that the initial estima-

= 1 (0 A . . - .
tors Ft(o), >\§ ) and C’i(? ) are consistent and follow mixture normal distributions under some standard
conditions.

2.1.2 The iterated estimates

Despite the consistency of the initial estimators, they are not asymptotically efficient. To improve

the efficiency, we consider iterative estimators. Let £ > 1 be an integer. Suppose that we have
L 0—1) < (f—1 A

obtained the estimates Ft(Z 1), )\Z(» ) and Ci(f U step ¢, we can replace the missing values (X;;)

in the matrix X with the estimated common components CA'Z-(f_l). Define the T x N matrix X with



its (¢,7)th element given by

' cV i e

where Q) = {(i,t) € [N] x [T] : (4,t) ¢ Q} . Then we can conduct the PC analysis based on X
under the identification restrictions that F'F/T = Ir and A’A is a diagonal matrix. The estimated
factor matrix, denoted by JaC ,is V/T time the eigenvectors corresponding to the R largest eigenvalues

of the T' x T matrix WX(E)X(@' :
L sz po _ popo
T )

where DO is a diagonal matrix consisting of the R largest eigenvalues of X © x @y arranged in

descending order along it diagonal line. Then the estimator of A’ is given by
Ay ( Ja] pw))*l PO 0 % £ 0

Let Ft(e) denote the tth column of F®" and 5\1@ the ith column of A®Y. We obtain the updated

estimate of C’g by C’ff ) = XEZ)'Ft(“’. We will study the asymptotic properties of Ft(g), 5\2@ and C’ff ),

£=1,2,..., below.

Remark 1 (Connection with Stock and Watson’s (2002) EM estimation) Stock and
Watson (2002, SW hereafter) propose an EM algorithm to conduct the PC analysis for panel data
with missing values. The least squares objective function they consider is given by

V() = i [[(X - PN) 0 6] [(xX — FA) o 6] ] = o ZZ Xit — NF)’ gar.
i=1 i=1

Minimization of V' (F,A) requires iterative methods. SW (2002) motivate the EM algorithm by
assuming that €;’s are independently and identically distributed (i.i.d.) according to N (0, 02). They
suggest various ways to obtain the initial estimates. For example, when the full dataset contains a
subset constituting a balanced panel, they suggest using estimates of the factors from the balanced

A(0-1)

subset as the starting value Ft(o). Given the estimates Cj, at stage ¢ — 1, our construction of the
expectation object Xi(f) is the same as SW’s (2002) and so is our /th stage estimator. But SW (2002)
do not provide any theoretical justification for their EM estimates. With our well-chosen initial

estimators, we are able to formally justify the use of EM estimator.

~ ~(0 ~
2.2 Asymptotic properties of the initial estimators Ft(o), /\g : and CZ-(tO)

Let M denote a generic finite positive constant that may vary across lines. We make the following

assumptions.



Assumption A.1 (i) max; F Hl*—’tOHAl/71 < M for some v, € (0,1) and T-1F¥F0 L, Ypo > 0 for
some R x R matrix Ypo as T' — oo.

(ii) max; £ H)\?H4M2 < M for some 7y, € (0,1) and N~1AYA° N Y0 > 0 for some R x R matrix
dip0 as N — oo.

(iii) max;; E[(\YF?)"] < M.

(iv) The eigenvalues of ¥ 0¥ o are distinct from each other.

(v) NTIAYAO — 53, = Op(N~Y2) and T-1FYFO — S = Op(T~1/2).

Assumption A.2 (i) £ (Eit‘)\?,FtO) =0, E(e};) <M, and lells, = Op(max(vVN,VT)).

(i) maxs Yr_y [y (s,1)] < M, where vy (s,t) = N"U N | E(eisen)| .
2
(iii) maxq, B ‘N‘UQ SN feneis — E (5it5is)]‘ < M.

Assumption A.1 parallels Assumptions A-B in Bai (2003) and Assumption A.2 is analogous to
Assumption C in Bai (2003). The major difference is that we require both the factors and fac-
tor loadings have finite moments higher than the usual fourth order. Bai and Ng (2002) and Bai
(2003) assume finite fourth moments for F but require that A? be uniformly bounded. Assump-
tion A.1(v) imposes the standard convergence rates for N 'AYA? and 7' F¥FO. Tt implies that
pr (3 FOAYAOFY) — 62 = Op (6yp) for 7 = 1,..., R, where 02 = i, (50X o) . Assumption A.2(i)
is also assumed in Su and Chen (2013), Lu and Su (2016), and Moon and Weidner (2017). In par-
ticular, Moon and Weidner (2017) demonstrate that this condition can be satisfied for various error
processes.

The following theorem establishes the mean squared convergence of ﬁ’t(o). Define

0 — (NflAOIAO) TleO/F(o)(b(o))fl7

where DO is asymptotically nonsingular by Lemma A.1.

A ~ 2
Theorem 2.1 Suppose Assumptions A.1 and A.2 hold. Then % HF(O) — FOH(O)H = Op (5]}%)
where Sy = VN AVT.

(0)

Theorem 2.1 reports the mean square (MS) convergence rate of F; . It implies that we can

estimate the space spanned by the columns of F0 consistently.

To proceed, we assume the following limiting objects exist and are finite:
1 N —q
I'gt(q) = limy_ooVar [ — Z Neirgit |, Tog1(q) = plimNHOO Z A\ )\O'FO
VNg =
. 1 . 1- 2
D154 (q) = limpVar (T ZFt05it9it> » Pogi (@) = thNﬂoqu ZFtOFtO/ (NEY)”
7 =1 t=1

8



Let
Tyt (q) =Tigt (q) + o9t (q) and @y (q) = P1gi (q) + Pag.i (q) -

Note that I'yg; and ®9,; and therefore I'y; and ®,; are generally random objects under our as-

sumptions that allow for random factors and random factor loadings. To study the asymptotic

(0)

distributions of Ft(o), 5\2 and C’Z(to ), we add the following assumptions.

2
<M,

4
Assumption A.3 (i) Either max; ; £ H\/% Ef\;l Xist| <MorE Hﬁ Zstl Zfil F2XG ot

where x; o = €icis — E (cicis) -
B Ar Tl SN N <

(iii) Let oijps = E (cigjs) . maxy N7V 03 < M, maxypcr N7V SO0 ol < M,
maxi<i<y TSy Yoy |oiissl < M, and (NT) VSN o S0 S0 ojesl < M.
Assumption A.4 (i) \F El 1 A0 i EitJit LA N (0,T14,),

(ii) \}?q 23:1 Ft0€itgz't — N (0, ®14,) -

The first part of Assumption A.3(i) strengthens Assumption A.2(iii) and is also assumed in Bai
and Ng (2002) and Bai (2003). The latter authors also assume that the second part of A.3(i) holds
simultaneously with the first part, which we do not need. In the special case where E(FPx; ) # 0
for enough (s,t) pairs (e.g., when E(FQ) = 0 but E(F0e;e;5) # 0 for all s > t), the second part of
A.3(i) is not satisfied.

Let Gy, = o({gjt,j < 4),A% F?), the minimal sigma-field generated from {gj;, j <i} and
(A% FD). Let Gt = o (UX_, G4y ) - Analogously, let G&, = o ({gis, s <1), A}, FO), G' = o (U$_,Girpr)
and G = o (gi U gt) .

The following theorem presents the asymptotic distributions of Ft(o), 5\20) and CA'Z(tO ) based on the

notation of stable convergence.

Theorem 2.2 Suppose Assumptions A.1-A.4 hold. Suppose that (TY/? + N1/2)5;\,2T =o(l). Let
10 = VNE® — AOEDY and 119 = VTP — (1©)=1)). Then as (N, T) —

(i) Ty = (DO) 1L PO RO SN X0¢y, + Op (NV2533) — N (0,D71QTy, () D7) &
stably,

(ii) ) = AL - G + Op (TV2537) — N (0,(Q) '@, () Q1) G-stably,

~1/2
(iii) ( =0 (@) + +20), (¢ )) (c“ 00) < N(0,1),
where & = eigin+ 7y FY (9it — q) Ei% () = \'S3dTg () SpeA? and 5§ )zt( ) = F{'S50®g, () Do FY
4(0)

signify the contributions of the factor and factor loading estimators to the asymptotic variance of C;,”,



respectively, and D denotes the diagonal matriz consisting of the eigenvalues of E}XQZZFOE;{? in de-

scending order with the corresponding eigenvector matriz denoted as Y such that Y'Y = Ip and

Q = D21y 2.

Theorem 2.2 parallels Theorems 1-3 in Bai (2003). Bai (2003) obtains the asymptotic nor-
mal distributions for his estimators of factors and factor loadings. In contrast, we show that the
sequence{ﬂg?\;, N > 1} converges G'-stably as (N,T) — oo to a mixture normal whose asymp-
totic variance is random but measurable with respect to certain limit sigma-field, and similarly, the
sequence {f[l(%), T> 1} converges G'-stably as (N,T) — oo to a mixture normal whose asymp-
totic variance is random but measurable with respect to certain limit sigma-field. We refer the
reader directly to the Hausler and Luschgy (2015) for stable convergence in general and the stable
martingale central limit theorem in particular. To understand the limiting distribution of ﬂg?\; in
Theorem 2.2(i), we notice that its influence function depends on §;; through two terms, €;:g;+ and
MFO (gt — q) . The first term also appears in the influence function for the factor estimators in the
absence of random missing at time ¢ (i.e., gi = 1 Vi) while the second term is introduced by the
random missing mechanism. Due to the presence of common factor F? for all cross-sectional units,
ﬁq Zf\il MNYFO (g;+ — q) does not have a limiting normal distribution. Instead, it converges to
N (0,T'94¢) G'-stably as N — oo, where N (0,2, ) can be regarded as a normal random vector with
random variance given by I'gg ;. In the special case where F? is nonrandom, the limiting distribution
reduces to the usual normal distribution. Similar remarks for ﬂz(.%) in Theorem 2.2(ii). Theorem
2.2(iii) only reports the limiting distribution for the normalized common component estimator. One
can also follow the analyses of parts (i)-(ii) in the theorem and report the stable limiting distribution
of 5NT(CA'Z(?) —C%) as (N,T) — oo.

By Corollary 6.3 in Hiusler and Luschgy (2015) and the Cramér-Wold device, we can show that

[(D7'QTy,@' D] 211 4 N (0,15) as (N, T) — oo, and

(@) 12,071 119 4 N (0,1g) as (N,T) — oo

With these results and the result in Theorem 2.2(iii), we could make inference on the factors, factor
loadings, and common component. But because these estimates are not the final estimates, we will

study the asymptotic properties of the iterated estimators of these objects later on.

2.3 Asymptotic properties of the iterated estimators of the factors and factor
loadings

NG

Let HO = (N*IAO’AO) T*IFO’F(Z)(ﬁ(Z))*l. To study the asymptotic properties of Ft(é),)\i and

C’Z(f ), we add the following assumption.

10



1 N 0
N Z¢:1 i €itYitJis

Assumption A.5 (i) max; H% ;Nl Cril| = Op ((N/In N)_1/2) and maxy
P ((N/In N)_l/Q) where (; ;; = = Neirgie and AAYED (g1 — q) .
(ii) max; % thl Co,it Op ((T/ InT)~ 1/2) , where (5 ;; = Ftositgit and Fto)\?'FtO (9it — q) -
(iii) max; Hﬁ Zi,s Cats|| = Op (5E2T In N) and max; Hﬁ > ZST:LS# FOFY )N (9is — @) (git — Q)H
= Op (07 InN) , where (3 54 = FO [eieis — E(citeis)) gitgis, FOFY Neugit(gis—q) and X Fgi5gis (91—

q).

Assumption A.5 imposes some uniform convergence conditions that are similar to those imposed
in Su et al. (2015) and Su and Wang (2017). Following these authors, one can verify Assumption
A.5 under some primitive conditions on {)\?, FP, sit} .

(0

The following theorem establishes the mean squared convergence of F}

A ~ 2
Theorem 2.3 Suppose Assumptions A.1-A.5 hold. Then % HF(@ — FOH(Z)H =0Op (51_\/2T) for each
L.

()

The following theorem reports the asymptotic distributions of Ft(e), 5\1 and C’ff ),

Theorem 2.4 Suppose Assumptions A.1-A.5 hold. Suppose that \F(T”l/45_2 InT + 7T~ 1437/4) =
o(1) and VT(N/45 2 In N + N=1430/4) = o(1). Let TI\Y = VN(E" — HOFD) and T =
VTR — HO-1)0) Then

(i) ﬁg\), = 1Qf ZZ L N eigin+ (1 — )Hgv_l) +op (1) uniformly int and H(g) = N(0,D7'Q
%194 (q) @' D7) a (5 N,T) —

(i) HZT =(Q")! Et | FP z-:ztglt—i—(l —q)1I (E Diop (1) uniformly in i and I LN N(0, (@)t
x®1gi(q) Q") as (¢, N, T)—

(iii) (L S1pi + 2 E1a)" 1/2(0“ C9) L N (0,1) as (¢, N,T) — oo

where I'ig ¢, ®1g,i, D and Q are as defined in the last subsection, and X1p;; = )\?/Exolf‘l%t (q) EX&)\?,
and X1pu = FtO’E;(%@lg,i (q) Z;%Fto signify the contribution of the factor and factor loading estima-

tors to the asymptotic variance of C’Z(f ) for large £, respectively.

Remark 2 Noting that I'y; (¢) = T'ig+ (¢) + Tag (¢) and @4 (q) = Pig,i (q) + Pagi (¢), & com-

parison of Theorem 2.4 with Theorem 2.2 indicates that Ft(g), 5\2@
efficient than Ft(o), 30

(3

and C’Z(f ) are asymptotically more
and 01(1? ), respectively. In theory, the distributional results in Theorem 2.4
require ¢ — oo. In practice, £ can diverge to infinity at an arbitrarily slow rate. To see this point, we
take a close look at the iterative relationship between flg\), and ﬂg\;l). Let Bp, = % Zf\i 1 Neirgit.

Note that the result in Theorem 2.4(i) implies
, -1
3 - ~(0
iy = D7'QVNBr, Y (1— )" + (1= )" LIy + op (D),
s=0
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where the first term is the dominant term and the second term can be made arbitrarily small for
sufficiently large £. In practice, we find it is not necessary to iterate too many times so that we can stop
the iteration when (1 — q)Z is small enough. For example, we can iterate £* times such that (1 — q)e* =
ent for some small positive number eyp. Simulations suggest that ¢* = |In(enxr)/In(1 — ¢q)] with
eyt = 0.001 works very well for all data generating processes under our investigation. Note that
¢ =3, 4, and 5 for ¢ = 0.9, 0.8, and 0.7, respectively. This suggests a small number of iterations is
sufficient.

Remark 3 (Comparison with the oracle estimators) We can also compare the asymptotic
variances of our EM estimators with those of the oracle estimators that are obtained in the absence of
missing values (viz., ¢ = 1). For example, we consider the factor estimation and use Ftomdc to denote
the oracle estimator of F with the corresponding rotational matrix Horacle Tt is well known that the
asymptotic variance-covariance (Avar) of /N (Feracle — fyoracle’ 0y jg given by D—1QIomcleq) p—1,

where

N—oo

N
1
F?racle — hm Var ( Z )\?6#) .
VN S

In contrast, by the law of iterated expectations

N—o0

N
: 1 l—gq
= lim {Var| —— E Nei | + 7E E A2
oo { ( VN i3 t) (

> F?racle )

I'gt(g) = lim {Var

The difference, I'ig; (g¢) — 9™, given by limy_co %E (% PR /\?/\?'8%> , reflects the cost of
missing (1 — ¢) proportion of observations. The larger proportion of missing observations, the larger

value I'14; (¢) is. In the absence of cross-sectional correlation among {)\?Eit} , it is easy to verify that

1
F1g,t (Q) = 6 lim F ( Z)\O)\O’ ) I“Ordde

N—oo

So g reflects the relative asymptotic efficiency of the EM estimator compared to the oracle estimator.
Analogous remarks hold for our EM estimators of the factor loadings.

With the results in Theorem 2.4, we can make inference on the factors, factor loadings, and
common component. Below we focus on the inference on the factors due to the widespread use of

estimated factors, say, in various factor-augmented regression or forecasting models.

12



2.4 Inference on the factors

Let 13’,5, 5\,~, and C’it denote Ft(g), 5\(-4)

; , and C’Z(f ) respectively, when £ — oo. To make inference on the

factors, we need to estimate the asymptotic variance Vp = D_lerg,t (q) @' D! consistently. By
Lemma A.1 in the appendix, we can consistently estimate D by the diagonal matrix D = D) that
contains the R largest eigenvalues of (N T)f1 X (00) X (00}, arranged in descending order. So the key
is to estimate QI'14+Q)’ consistently.

To estimate QT4+ (¢) Q', we consider two cases: (1) {A?eitgit} are cross-sectionally uncorrelated;

(2) {)\?sit git } are cross-sectionally correlated. In Case (1), we have a simplified expression for I'yg (q)
1 & -
. . 2
iy (g) = lim N R > Var (Neigit) = limy o0 N Y E [)\? AV (e9) } )
i=1 i=1

where &Y, = €;,9;. Noting that with H=HO9 g-12 @by Lemma A.2(ii) in the appendix, it is

easy to show that a consistent estimator of QI'14 (¢) Q' is given by

where éft = (XZ — Cit)git-

In Case (2), for simplicity we consider the case where the factor loadings are nonrandom and the
process {e;, t > 1} is covariance stationary. Let % = (£9,,€9,, ...,E?Vt)/. Let X9 = E(e%¢%) = {od;},
which is an N x N matrix. Then

1 1
gt (q) = limNHooN—qzVar (Ao’g.gt) = thHooNiquO,Zng-

= 0p(1). Then we can

Suppose that 39 is a consistent estimator of $¢ in the sense Hf}q — X9
sp
readily show that a consistent estimator of QI'14:Q’ is given by

. 1 .
P = —_AS9A.
1g,t N§?

Fortunately, a feasible consistent estimator of X9 is available as €Y, can be estimated by &7, and

there is no need to estimate the error terms corresponding to those missing observations. To see this,
define
T T
&9 —1§ 89,89 andé~—l§ (9,89, — o7 ’
ij =T itSjt =7 itSjt ij) -
t=1

t=1
We follow the lead of Fan, Liao and Mincheva (2013, FLM hereafter) and propose to estimate %9 by
9 — {6%’.7} , where

sij(67;) ifi#j



where ;5 (+) is the soft thresholding function: s;; (2) = sgn(2) (|2| — 745), , Tij = cowNT(éij)l/Q,

wyr = [max(N~172/2 71 In T)]Y/2, and ¢ is a positive constant.! We will show that Hflg - X9

sp

op (1) under some additional conditions.
When AY is random, the above procedure also works under the additional restriction that Var (stqt ]AO) =

Var(g%) = 9. To see this, we notice that by the variance decomposition formula, we have

I'gt(q) = limN_moquzE [Var (Ao'sth\AO)] + limN_,ooqu2Var (E (A0,€i|AO))
) 1 ) 1
= th%ON—qZE [A”Var (%|A°) A°] +0 = thHOON—(FE [AYS9A] .

ﬁE [AO’EQAO] can be estimated in the same procedure as outlined above.

To allow for possible cross-sectional dependence, we recommend using f‘g),t and will justify the
consistency of this estimator below. To proceed, we add the following assumption.
Assumption A.6 (i) The process {¢%, t > 1} is covariance-stationary with covariance matrix 39 =
E(%¢Y) = {agj}.

(ii) There exists 3 € [0,1) such that max; > ; |07, P <M.

(iii) Let wyy = [max(N~172/2 7-1nT)]1/2, T-1/240/4(N72/4 4 T/ (InT)/2 — 0 and

T*1+71/4w}V_T73N1/2 —0as (N, T) — .

v

Assumption A.6(i) is typically assumed in the literature when there is no missing value. Assump-

tion A.6(ii) strengthens the standard weak cross-sectional dependence condition max; Zj afj

O (1) . It is satisfied if €%’s satisfy certain m-dependence condition cross-sectionally or the correlation
between €7, and E?t vanishes sufficiently fast as the “distance” between ¢ and j increases, perhaps
after reordering of the data along the cross-sectional dimension. Assumption A.6(iii) imposes further

restrictions on the relative magnitude of N and T.

The following theorem reports the consistency of ﬁflf‘lg,tf)*l.

Theorem 2.5 Suppose that Assumptions A.1-A.6 hold. Then lA)_lflgﬂgﬁ_l 2 D_lQI‘lg,t () Q'D7 1,

r _ 12
where I'ygy = I‘lg,t.

Given the above result, we can make inference on the global factors. The procedure is standard

and omitted for brevity.

'In our simulations and applications, we let ¢ = 1. In most situations, when ¢y = 1, $9 s positive definite.

Otherwise, we choose ¢o to be the smallest value such that 39 is positive definite. For details, sce FLM’s Section 4.
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3 Determining the Number of Factors via Cross Validation

In this section, we propose a novel method to determine the number of factors via cross validation
(CV). Our method can be used no matter whether there are random missing values in the original
data matrix X or not. For notational simplicity, we first focus on the CV method when the original

dataset does not have missing value problem and then remark on the case with missing values.

3.1 The cross validation method

Let R denote the generic number of factors with the true value given by Ry. The key insight for
our CV method is that one can consistently estimate the common component for the factor models
with random missing. Given the T' x N matrix of observations X, we propose to randomly sample
elements in X with a fixed probability p € (0, 1) and leave the rest (1 — p)-proportion of observations
as held-out entries for the out-of-sample evaluation.

As before, let Q* C [N] x [T'] be the index set of the training entries and Q% the index set of the

held-out entries. Define the operator Po« : RTXN — RT*N Ly
0 X )y = Xitgir = Xt {(1, 1
(P X)y; = Xugis = Xl {(i,1) € )

where ¢, = 1{(4,t) € Q*}. Let G* denote a T x N matrix with (¢, ¢)th element given by g,. Now we
can regard Po«X as the T' x N data matrix with missing values replaced by zeros. Given Po« X, we
apply the proposed EM algorithm to recover the data via estimating the common component matrix
C for any given number of factors.

To proceed, we consider the full singular value decomposition (SVD) for %PQ*X :

1 o TAN
5PQ*X =USV' =Y b6,
r=1

where U = (i1, ..., i) and V = (@1, ..., D) are respectively the T x T matrix of left singular vectors
and N x N matrix of right singular vectors of ]%PQ*X ,and ¥ is the T x N diagonal matrix that
contains the singular values, 61, 79, ...,07AN, arranged in descending order along the main diagonal
line. Given any R < T'AN and the training entries in Pg« X, we can estimate the common component
C by the singular value thresholding procedure:
- 1 U R
Cr =Sy (pPQ*X, R) = UrSpVi = Y _ 00,5y, (3.1)
r=1
where Sy (+, R) is the rank-R truncated SVD of -, the subscript H stands for hard thresholding,
Ur = (1,...,0aR), Vg = (91,...,0r), and Xp =diag(é1,...,65). We can regard Cr as a matrix-

completion version of Po«X. Let C’Rﬁ denote the (¢,7)th element of C 'r. We propose to choose R to
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minimize the following CV criterion function

CV (R) = Z [Xit - éR,itr- (3.2)
(5,t)e}
Let R = arg ming< R< Rpax cv (R) where Rpax is a fixed integer that is no less than Ry and éO,it =0
for all (4,t). We will show the consistency of R under some regularity conditions.

Note that the CV function in (3.2) is based on the initial estimator Cg of the common component
matrix C°. As demonstrated in the last subsection, one can update the estimator of C° via the EM
algorithm and obtain a more efficient estimator of C. It is expected that using such a more efficient
estimator would yield better finite sample performance for the choice of the correct number of factors.
As before, let CA'I(%O’L = CN‘Rvit and ¢ > 1 be an integer. Suppose that we have obtained the estimates

A=)

nit - In step £, we can replace the zero elements in X* = Po: X with the estimated common

1)

components C’g;ax -2 Define the T' x N matrix X*O with its (¢,7)th element given by

A S @9
Rono i if (i,t) € Q%
where 0 = {(i,t) € [N] x [T]: (i,t) ¢ Q*}. Then we can conduct the singular value thresholding
procedure:
CY = s (X0, R) = DL S0T, (3.4)
where U g)'U 1(%[) = Ip, ng“’vlg’” = Ip, and ﬁ]%) is a diagonal matrix that contains the R largest
singular values of X*® arranged in descending order along its diagonal line. Following Remark

2, we recommend repeating the above procedure for ¢ = 1,...,¢0* = |In(ent)/log(p)| where, e.g.,

ent = 0.001. Let Cp = ég*) and R = arg ming<r<p,,.. CV (R), where

OV(R) = 3 [Xu—Cral . (35)

(i,t)eQ]

We will show the consistency of R under some regularity conditions.

3.2 The consistency of the CV method

Let @, and 0, denote the rth left and right singular vectors of %X *, respectively, associated with

its rth largest singular value. We add one assumption.

(£-1)

2We conjecture that one can replace c by C’I(f;tl) in which case X;(Z) becomes

Rmaxﬂ.t
g =) X FEHeo” o
! Oyl i () e

But the justification for this method is far more complicated than the proof of Theorem 3.2 below because of the

dependence of X;(Q on R and the inconsistency of C’g;tl) for R < Ro.
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Assumption A.7. (i) Forr = Ro+1, ..., Rmax, P(||T || |30]l oo < 1/(cor/(N +T)log(N +T))) —
1 for some fixed ¢y < oo as (N,T) — oo, |||, =op (1), and ||,]|,, = op (1);

(i) max(;pneas D aear | [Einis|Por X, Q7] = op(03r)-

Assumption A.7(i) is a high order condition that restricts the spikeness of singular vectors of X.
A similar condition is also imposed in Negahban and Wainwright (2012). Since ||, ||, = ||0r]|, = 1,

on average each entry of 1, is of the order (NT')~1/2

. We require the maximum entry is bounded
by the order ((N + T)log(N + T))~'/2. We can show that @, and @, are asymptotically equal to
the (r — Rp)th singular vector of ¢* = ¢ o G* + FOAY o [G* — E(G*)]/p, where each entry has zero
mean. As we do not have the explicit form of %, and ?,, it is difficult to show its spikeness. It is
well known that for an i.i.d. Gaussian random matrix, the elements of its right and left eigenvectors
are uniformly distributed on the unit spheres SV~1 and ST—!, respectively. Then Assumption A.7(i)
is satisfied in this case. It is expected that the singular vectors of a general random matrix behave
similarly. Assumption A.7 (ii) is a higher order condition that requires low degree of correlations
among {e;}, conditional on kept-in information. It is satisfied when e is i.i.d. and the factors and
factor loadings are nonrandom. When we have |F [g;1¢ 5| Pox X, Q*] | < M plt=sI*1i=l for some M < oo
and p < 1 perhaps after reordering the data along the cross-sectional direction, the condition is also
satisfied.

The next two theorems establish the selection consistency of our CV method based on cv (R)

and CV (R).

Theorem 3.1 Suppose Assumptions A.1-A.8 hold, and Assumptions A.4-A.5 hold with gy = 1.
Then P (R < R0> — 0 as (N,T) — oo. If Assumption A.7 also holds, then P (R > Ro) — 0 as
(N, T) — .

Theorem 3.2 Suppose Assumptions A.1-A.8 hold, and Assumptions A.4-A.5 hold with gz = 1.
Then P (R < R()) — 0 as (N,T) — oo. If Assumption A.7 also holds, then P <]:2 > RO) — 0 as
(N, T) — 0.

Theorems 3.1 and 3.2 indicate that the CV estimators R and R consistently estimate the true
number of factors Ry in large samples when Assumptions A.1-A.5 and A.7 hold. As we show in the

proof of Theorem 3.1, the consistency of R is established by demonstrating that

Ro
CV(R)—CV(Ry) = (1-p) > o02+0p(5yy) when R < Ry, and
r=R+1
— — 1—
plimy 1) ood%7 | OV (R) — CV (Ro)| > Fg’ (R — Ro) ¢y > 0 when R > R,
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where ¢, is the lower probability bound of §37(NT)~162 for r € {Ry + 1,..., Rmax}. Note that
&2 diverges to infinity in probability at the rate N7 for r € {1,..., Rg} and (NT)~'62 converges
to zero in probability at the rate 6]_\[2T when r € {Rp + 1, ..., Rmax }. Similar remarks hold true for
CV (R) - CV (Ry).

3.3 CV in the presence of random missing

From the proof of Theorem 3.1 we can see that the same result holds with some modifications when
the original data matrix X contains random missing values. To see the modifications, we continue to
use (2 C [N]X[T] to denote the index set of the observations that are observed. Let g;y = 1{(4,t) € Q}
and § = |Q| /(NT). As before, P (giy = 1) = q € (0,1] and g;; is independent of X, F°, A and e. In
this case, we consider the SVD for %PQ* PoX :

1 e
— Py PoX =USV,
pq

where U is now the 7' x T matrix of left singular vectors of %PQ*PQX , V is the N x N matrix of
right singular vector of %PQ*PQX , and Y Rr contains the singular values of %PQ*PQX arranged in
descending order along its diagonal line. Then we estimate the common component C' by the singular

value thresholding procedure:

~ 1 ~ o~ o~
Cr =Sy <quQ*PQX, R) = URERV]/%, (3.6)

where Ug, Vg, and Xp are defined as before. Let R € {0,1,2, ..., Rmax} minimize the following CV

function

V@R = Y [Xa—Cral . (3.7)
(1,t)€Qt NQ

where C’R,it denote the (¢,4)th element of Chr. Following the proof of Theorem 3.1, we can also show

that P(R = Ryg) — 1 as (N, T) — oo in this case.

As in the last subsection, we can consider iterative estimates of C. Let C’gzt = C’R?it. Suppose

(¢-1)

that we have obtained the estimates C i - In step £, we can replace the zero elements in Po: Po X

with the estimated common components C’gﬂ:: i+-> Define the T x N matrix X*0 with its (¢,7)th

3We conjecture that one can replace C’g:j}flt by C’g;tl) in which case )A(;;(é) becomes

X if (i,t) € Q" NQ
Xin=5 ¢l iGneno L1
0 it (i,1) € Q1
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element given by

X; if (i,t) € Q*NQ

() A (0—1) e e .

Xy =91 Cp )y i (i)enQ , =1 (3.8)
0 if (i,t) € Q%

Note that for observations with (i,t) € Q% we do not need to replace them by the iterated estimates

C’g;alx)’it in step £. Then we can conduct the singular value thresholding procedure:
A 1. o A N
¢ (R) = Sy (pX*“), R> — gy o (3.9)

where Ug)/ Ag) = Ip, V]g)lf/]g) = Ig, and f?g) is a diagonal matrix that contains the R largest
singular values of X*©® arranged in descending order along its diagonal line. Following Remark 2,

let Cr = C’g*) and R = arg ming<p<pr,... cV (R), where

o . 2
ViR = Y [Xit . CR,it} . (3.10)
(1,t)€Q NQ
Following the proof of Theorem 3.2, we can also show that P(R = Rg) — 1 as (N,T) — oo in this

case.

3.4 Averaging CV and stability selection

The CV method in Sections 3.1 and 3.3 is based on a single random draw for the training set of
observations. The resulting performance of the CV method can be affected by the quality of such a
draw. In practice, we can always average cv (R) or oV (R) over a large number (say, J) of draws.

Recognizing the notorious difficulty in the estimation of discrete structures, such as in variable
selection and cluster analysis, Meinshausen and Biithlmann (2010) introduce stability selection based
on subsampling in combination with some selection algorithms. The procedure serves as a general
method to reduce noise by repeating the model selection many times over random splits of the data.
Our CV procedure can benefit from the stability selection since it relies on random data splits. An
additional benefit of stability selection in our context is that it is more robust to the choices of p and
J. The algorithm is given below.

Algorithm 1 (The CV procedure)

1. For (j,k) € [J] x [K]
(a) Randomly choose a subset of training observations 2 C [N] x [T'] where each observation

in X can be chosen with probability p.
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(b) Apply the thresholding SVD in (3.1) or (3.6) to obtain Cg or that in (3.4) or (3.9) to
obtain C for R = 0,1,..., Rmax, respectively. Here Cp and C’g are T' x N matrices of

Zeros.

(c) For each R € {0,1,..., Rmax}, calculate the CV value via (3.2) or (3.7) and denote it as

ET/(j’k) (R) or that via (3.5) or (3.10) and denote it as 5‘\/07@ (R) .

(4.k) (4.k)

2. Let CVi (R) =337, OV (R) and OV (R) = 1 327, CV"" (R) for k=1, ..., K. Let

R, =arg min CV (R) and Ry = arg min  CVj (R) for k=1,..., K.

O0<R<Rmax

S Rmax

Let R and R denote the modes in {Ry, ..., Rx} and {Ry, ..., Rx}, respectively. R and R serve

as the estimator of the true number of factors without and with iterations.

We will evaluate the finite sample performance of R and R through simulations by setting K = 10
and J = 5.

4 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to evaluate the finite sample performance of our

proposed EM estimators and CV method.

4.1 Data generating processes

First, we introduce data generating processes (DGP) for the factors and factor loadings. We generate

the factors according to
Fy—pypip = pp(Fr-1 — ppeg) v, t=1,...,T

where v is an R X 1 vector of ones, p is a scalar, v; is independent and identically distributed
(ii.d.) from N(O, (1 — p%)IR), and p; € (0,1). To avoid the start-up effect, we throw away the first
1000 observations of {F;} and use the next T observations for the estimation below. For the factor
loadings, we let Ay, @ = 1,..., N and r = 1,..., R be ii.d. draws from ¢; - N(1,1), where ¢ is a
constant controlling the signal strength. In addition, F'; A and ¢ are mutually independent for all
DGPs.

Next, we introduce the generation of the idiosyncratic error terms g5 in DGPs 1-6:

DGP 1. We let e = [0.9 + 0.1(\;F})?/E(X;Fy)?] wit, where ug is ii.d. from ¢ (3), the student

t-distribution with 3 degrees of freedom. In this case, the error term &;; does not have a finite
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fourth moment, which violates Assumption A.2(i). There is conditional heteroskedasticity but

no serial or cross-sectional correlation among g;;’s.

DGP 2. The setting is the same as DGP 1 except that u; is i.i.d. from ¢(5). Now all the

assumptions are satisfied but the tail distribution is not sub-Gaussian.

DGP 3. We generate autoregressive ¢;; via an AR(1) process: €ix = pi.€it—1 + uir, where ug is
iid. N (0,1) and p;. € (0,1). In simulation, we delete the first 100 observations to avoid the
start-up effect.

DGP 4. We stack ¢;; into a T' x N matrix ¢ and generate ¢ = UA, where U is a T x N random
matrix and A is an N x N random matrix. The (¢,7)th entry u; of U is i.i.d. from N (0,1)
and the matrix A controls the cross-sectional dependence. In particular, we let A = VDV/,
where V' is a random orthonormal matrix, D =diag(dy, ..., dy) is a diagonal matrix, and V and
D are independent. To generate D, we draw N i.i.d. observations {d;}}¥, from the uniform

distribution UJ[0.5,1.5]. Then we set
D = diag(N"%dy, .., NY*djg.1n, djoanjt1s - dv),

where |-| returns the integer part of -. Now, there is strong cross-sectional correlation as we
allow the top 10% of the eigenvalues of D to be O(N'/8). So the weak dependence conditions
on the error terms in Bai and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013) are

not satisfied. We want to examine the performance of different methods in this case.

DGP 5. We generate €j; = pg.€i—1,4 + Uit, where uy is i.i.d. N (0,1). This DGP is similar to DGP

3 except that we now allow the error terms to be cross-sectionally dependent.

DGP 6. We generate ;s = it + p3.Uit—1 + P3li—1,t + pggui,l,t,l, where u is i.i.d. N (0,1) and
p3. € (—1,1). Note that we now allow for both cross-sectional and serial dependence in the

error terms.

In all our experiments, we let uy = 0.6, p; = 0.3 and choose cs such that signal to noise ratio
(SNR) equals 4 for each DGP. Specifically, we define SNR as var(\;Fy)/var(g).
4.2 Simulation results

In this subsection, we present our simulation results in two parts. In the first part, we examine the
accuracy of the CV method proposed in section 3, measured by the empirical frequency of correct

determination of the number of factors. In the second part, we estimate the model with the true
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number of factors and report the finite sample performance of the proposed estimator introduced in

section 2.

4.2.1 Determining the number of factors

In this part, we use the CV method to determine the number of factors for data with or without
random missing observations. For both cases, we let Ry = 3, and Rpax = 5. In addition, we
set p;. = 0.6, py. = 0.6 and p3. = 0.3 in DGPs 3, 5 and 6, respectively. For each DGP, we
consider N = 50,100 and T" = 50, 100, leading to four combinations of cross-sectional and time series
dimensions. To implement the averaging CV and stability selection method in Section 3.4, we set
K =10 and J = 5. For the case of complete data, we consider two leave-out probabilities: p = 0.7,
0.9. For the case of incomplete data, we consider two random missing probabilities: ¢ = 0.7, 0.9 and
use the leave-out probability p = 0.9. The number of replications is 1000 in all cases.

When the original data form a balanced panel, there are existing methods including the growth
ratio (GR) and eigenvalue ratio (ER) of Ahn and Horenstein (2013), the edge distribution (ED) of
Onatski (2010) and the PC and IC methods of Bai and Ng (2002), among others. We also report the

performance of these methods for the purpose of comparison.
TABLE 1 around here.

Table 1 presents the under/over-estimation frequency with complete data. We summarize some
important findings from Table 1. First, for DGP 1 with fat-tailed error terms, our CV method tends
to outperform all existing methods. Specifically, ED, PC and IC over-estimated more than 300 times
out of 1000 for all four combinations of N and T, and GR and ER tend to under-estimate the number
of factors. From the performance of these five existing methods, we can hardly observe any pattern
of convergence. In contrast, the CV method outperforms these methods by a big margin and shows
an obvious pattern of convergence. This indicates the CV method is somewhat robust to error terms
with fat tails. Second, for DGP 2 where error terms are well behaved with no serial or cross-sectional
dependence, all the methods under investigation show a pattern of convergence, and the CV method
with p = 0.9 obviously outperforms all the other methods. Third, for DGPs 3-6 where either serial
dependence or cross-sectional dependence, or both are present in the error terms, the performance
of various methods are similar to that for DGP 2. Among all the methods under study, ER, PC and
IC tend to be outperformed by the CV and ED methods. Fourth, in general, the results for the CV
method with p = 0.9 are better than that with p = 0.7. Therefore, we recommend the use of p = 0.9
in empirical applications.

When the original data has random missing observations, existing methods such as ED, GR, ER,
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PC and IC are not directly applicable. We modify the methods in two ways:

(M-1) We replace the missing observations by zeros and obtain the estimators of R based on ED,

GR, ER, PC and IC.

(M-2) Following our theoretical analysis in Sections 2-3, we can replace the missing observations by

the predicted values to work on the estimated data matrix X , Where

A X; if (i,t) €N
Xit =14 .
CRmax,it if (i,t) € QJ_

where éRmax,it is the EM estimator of C;; with Ry ax factors. For ED, GR and ER, we can find

the eigenvalues of X’'X /(NT) and then apply the procedures to these eigenvalues; for PC and
. 2

IC, we can replace 62(R) in the usual definitions by 62(R) = ﬁ 2 ()0 [Xit - CR7,L't:| .

TABLE 2 around here.

Table 2 presents the under/over-estimation frequency with incomplete data over 1000 Monte
Carlo replications for ¢ = 0.7. The case for ¢ = 0.9 is reported in Table A1l in the additional online
supplement. We consider the three CV methods discussed in Section 3.4, namely, % (R), oV (R)
with é}(fr:alx),it used in the ¢th iteration, and vV (R) with C’g;tl) used in the /th iteration. As before,
we stop the iterations when ¢ = ¢* and denote these three cases as CV(®), C’V]%Qx and CV}(%Z*),
respectively in Tables 2 and A1, where CV(©) signifies that no iteration is used in the procedure.

We summarize some important findings from Table 2. First, when the proportion of missing
observations is large (¢ = 0.7 in Table 2), all the three CV methods yield decreasing percentage of
under/over-estimation frequency as either NV or 7" increases, and CVS*) and C V}gi;)x have better finite
sample performance than CV (). Therefore, the iterations to complete some missing observations
can help improve the finite performance of the CV method. In general, CVI(%E*) and CV}{:‘}X have
similar performance with the latter being slightly better. Second, for the other methods, either
modification (M-1 or M-2) does not appear promising. The M-1 of ED shows some convergence
pattern but the finite sample performance is not as good as either CVg*) or CV}%QQ the M-2 of
ED always over-estimates the number of factors; the M-1 of GR and ER always under-estimates the
number of factors, the M-2 of GR and ER is also badly behaved; and both M-1 and M-2 of PC and
1C always over-estimate the number of factors. Third, when the proportion of missing observations
is small (¢ = 0.9 in Table A1l in the online supplement), the three CV methods all outperform both
M-1 and M-2 of existing methods for most cases. Among the other methods, only the M-1 of ED

shows a pattern of convergence in all cases.
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4.2.2 Estimation of A and F

In this subsection, we work on the scenario with random missing observations where ¢ = 0.7 and
0.9. We estimate the factors and factor loadings using the method introduced in Section 2 and make
inference on factors. For simplicity, we focus on the case where Ry = 1. We set p;. = 0.25, py, = 0.25

and ps. = 0.3 in DGPs 3, 5 and 6.
TABLE 3 around here.

Tables 3 shows the estimation results for ¢ = 0.7 with ¢ = 0, 5, 20 and oo, where £ = oo
corresponds to the final EM estimate. The corresponding results for ¢ = 0.9 are reported in Table
A2 in the additional online supplement. We also present the results of the oracle estimates for
comparison. The first measure of consistency is mean squared error (MSE) of Cj; and the second is
average correlation coefficients between {F;}L | and {F?}T_, which is defined as

R(F) = trace(FYEF(F'F)~1E' FO)
trace(FY F0")

We summarize some findings from Table 3. First, the MSE becomes smaller and R2(]3’ ) becomes
larger as ¢ increases from zero to 5. But further increases of ¢ does not help much in the reduction
of the MSE or the increase of R? in general. Second, the EM estimates in the presence of random
missing are less efficient than the oracle estimate. This is consistent with Remark 3 in Section 2.3.
In fact, despite the presence of serial dependence, or cross-sectional dependence, or both in DGPs
3-6, the MSE of the EM estimator is approximately equal to that of the oracle estimator multiplied
by 1/q in DGPs 2-6. DGP 1 is an exception because of the violation of the moment conditions on
the error terms.

To make inference on F, we follow the lead of Bai (2003) and consider the regression model:
FO=F® b+ error, where £ = 0 or £*. Let B denote the least squares estimator of 5. Then the 95%

confidence interval for L' F? is
ot e~ \1/2 o iy~ \1/2
LB EY ~196 (LBSRBL) T VN, LB ED +1.96 (DFSEBL) T VA,

To estimate the covariance matrix, we consider both the standard covariance matrix estimate based
on fglg{t and the robust one based on I ﬁ)’t introduced in Section 2.4, which are labeled as “standard”
and “robust” in Table 4 below. To obtain f‘§2g)7t, we need to specify two parameters cg and v, : cg = 1
and 9 = 0.5.

TABLE 4 around here.

Table 4 reports the results of inference on factors when ¢ = 0.7 and the corresponding results for

q = 0.9 are reported in Table A3 in the online supplement. We report both the coverage probability
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(CP) and average length (Length) of the 95% confidence intervals when F) is estimated by the EM
method with £ = 0 and £*. We find some interesting results. First, Table 4 suggests the average
length of the EM estimator with no iterations (i.e., £ = 0) is much larger than that with ¢ = ¢*.
This reflects the efficiency gain from iterations. Second, for DGPs 2-3 where there is no correlation
across ¢ for the error terms, both standard and robust covariance estimators provide asymptotically
valid inferences. The coverage probabilities are near the nominal coverage probabilities in this case.
Third, for DGPs 4 and 6 where there is cross-sectional dependence across i, the coverage probability
using standard covariance estimator tends to be smaller than that using robust covariance estimator.
This suggests that ignoring the cross-sectional dependence may lead to the underestimation of the
standard errors. In general, the confidence intervals constructed using robust covariance estimator
have coverage probability near the nominal one. Similar findings hold true for DGPs 1 and 5 that

do not satisfy all the assumptions in the paper and are used for robustness check.

5 Empirical Application: Forecasting Macroeconomic Variables

In this section, we show the usefulness of the proposed method by considering factor-augmented
regressions to forecast macroeconomic variables. The procedure starts from estimating a set of latent
factors using panel data. In practice, some variables have missing observations due to short collection
history or lagged publications. A simple and frequently used method to deal with this problem is
to delete those units/variables with missing observations to obtain a balanced panel and the PC
estimators of latent factors (PC-F). However we may lose some useful information by doing so. To
exploit information of predictors with missing observations, we can use the EM estimators to estimate
latent factors (EM-F). In our application, we use EM-F or PC-F to forecast macroeconomic variables,
respectively. Then we show that EM-F outperforms PC-F in terms of mean squared error.

In particular, we consider the forecasts of U.S. real gross domestic product (RGDP), gross do-
mestic product (GDP), industrial production (IP) and real disposal personal income (RDPI) at 1, 2

and 4 quarter horizons. These four time series are collected from the Federal Reserve Bank website.

5.1 Implementation

We use a panel dataset FRED-QD, which is an unbalanced panel at the quarterly frequency. FRED-
QD is a quarterly frequency companion of FRED-MD that is introduced by McCracken and Ng
(2016, MN hereafter). The dataset consists of 248 quarterly U.S. indicators from 1959Q1 to 2018Q2.
We use 125 time series that are used in Stock and Watson (2002) to estimate the latent factors.

We take 1960Q1 as the start of the sample. Then we lose two periods of observations due to
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data transformations as in MN and obtain an unbalanced panel with (T, N) = (236,125). There
are 37 variables containing 1594 missing observations in total. Following the lead of MN, we check
for outliers in each variable where an outlier is defined as an observation that deviates from the
observed sample median by more than 10 times interquantile range. The outliers are removed and
treated as missing observations. As a result, the total number of missing observations becomes 1602
(¢ = 0.946). All columns of the data matrix X are standardized to have zero mean and unit standard
deviation before estimating EM-F. To estimate PC-F, we drop 37 variables with missing observations
to obtain a balanced panel with (T, N) = (236, 88). We also standardize the balanced panel before
estimating PC-F. We estimate the first factor by PC and EM and use them to do the out-of-sample
forecasting.

Next, we consider the forecast based on the following factor-augmented autoregression (FA-AR)
models:

b = o) + 6PV E 4+ 6P (Dyye + Py h=1,2, 4, (5.1)

where y; is one of the four macro-variables (i.e., RGDP, GDP, IP, and RDPI), Fy is the estimated
factor, qS;ll) is the intercept term, L is the lag operator, and gbf) (L) and qﬁf’)(L) are finite-order
polynomials of the lag operators. For all four variables to be forecasted, we treat them as I(1) series
and define the dependent variable as average annualized quarterly growth rate. As an example, for
IP, we define

yi'p, = (400/h) In(IPyp,/IP;) and yy = 400 In(IP;/IP;_1).

All the models are estimated recursively by ordinary least squares (OLS). We use BIC to select the
number of autoregressive lags (from 0 to 6) and lags of the first factor (from 1 to 6) in EM-F and
PC-F, respectively.

5.2 Forecast results

We consider three out-of-sample periods, namely, 1987Q1-2016Q4, 1997Q1-2016Q4 and 2007Q1-
2016Q4. Table 5 reports the mean squared error (MSE) of forecasts using EM-F and its ratio to the
MSE associated with autoregression (AR) or FA-AR using PC-F, where the AR model is used with
F} absent in (5.1) and the number of lags are also determined by the BIC. Ratios smaller than one
are in favor of the method using EM-F. For all the four macroeconomic variables under investigation,
the forecasts using EM-F outperforms the forecasts only using autoregression. Therefore, we can
conclude that the estimated latent factors contain some predictive power. For Real GDP, IP and
RDPI, the forecast using EM-F provides smaller MSE for almost all horizons and periods compared
to that using PC-F. For GDP, we can see that the forecasts using EM-F and PC-F have comparable
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performance. In short, the EM estimation of the factors generally help the out-of-sample forecast of

some major macroeconomic variables.

TABLE 5 around here.

6 Conclusion

In this paper we study the asymptotic properties of the EM estimators of factors and factor loadings
in an approximate factor model with random missing. Based on the asymptotic results, we also
propose a novel cross-validation method to determine the number of factors in factor models with or
without random missing observations. Simulations demonstrate the good finite sample performance
of the proposed method and empirical applications suggest the usefulness of our method.

The paper can be extended in various directions. First, we only consider random missing and
it is possible to extend our method to allow for missing with certain patterns. Second, we focus
on a pure approximate factor model and one may consider the extension to the panel data models
with multi-factor error structure and random missing values (see, Bai et al. (2015) and Athey et al.

(2017)). We are exploring some of these topics in ongoing works.

APPENDIX

A  Proofs of the main results in Section 2

In this appendix, we prove the main results in Section 2 by calling upon some technical lemmas

whose proofs can be found in the online supplement. For notational simplicity, we will use F, A, C,

D, H, £y, % and Gy to denote 2O, R(O), ¢©), pO) g0) 0 O

,A;  and C’z(t[] ), respectively.

To prove Theorem 2.1, we need the following lemma.

Lemma A.1 Suppose that Assumptions A.1-A.2 hold. Then T 1F’ (Nchz)*l XX'F=D=D+

5;\,(%77/2), where v = v, V Yq, D is an R x R diagonal matriz consisting of the R largest eigenvalues

of (NT(j2)_1 XX’ and D is an R x R matriz consisting of the R eigenvalues of Y p0X o, arranged

in descending order along the diagonal line.

Proof of Theorem 2.1. From the principal component analysis, we have the identity (NT(jQ) IXXF =
FD. By Lemma A.1 and Assumption A.1, D is asymptotically nonsingular so that we can post-
multiply both sides by D! to obtain F' = (NT¢2) ' XX'FDL. Recall that H = (N"'AYA%) "' T-1FVEF D1,
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Noting that the (¢, 7)th element of X is given by X = ()\?’Fto + 5it) it = )\?’Ftoq+€itg¢t+)\?'Ft0 (9it — q),

we have

NTq

T N
Ft — f{,FtO = Z Z 5zsgzt Gisgit + [Ezsszt E (51'351'15)] GisGit
+F0/)\ EitGisYit + Ft )\ €isTisYit + FO/)\O)\OIFO (gis - Q) q
+FINNFY (gic — @) g + FONNFY (gis — q) (910 — @)} +O0p(NT)~1/?)

ai; + agt + .. + an+O0,((NT)~Y?), (A1)

D1 ZST:1 F, Ziil E (gis€it) gisgit and the first equality used the fact ¢ — ¢ =

2
< T T laul? +Op((NT)~1/?) by
the Cauchy-Schwarz (CS) inequality. For aj;, we have

1
Where, e.g., aiy = NT@

0,((NT)~Y/2). It follows that T~ S°T HFt - fI’FtO‘

T , o T, TN
T‘lz\lauH < D_lH T_lz T~QZF5NZE(5i55it)gisgit
t=1 =TT = i=1
T TN 2
< = _1H ’ ZZ ZE €is€it) YisGit
s=1 t=1 z:l
_ 21 -
< D7 TZZwN(s,wF:op(T ),

s=1t=1
where the second inequality follows from the CS inequality and the third inequality follows from the

fact that & T: Fy|| = Ltr(F'F) =tr(Ig) = R and that git| < 1, and the last equality holds by
T 2us=1 T

Assumption A.2. Similarly, for as:, we have

T ) y 9 T 1 T
T ool < [ D7 77 30 o D Pk
t=1 t=1 s=1

where (1, = % Z 1 leis€it — E (€is€it)] gisgit- Noting that
L
Cigot = 77 D lEiscit = B (isci) {@* + (935 — )+ (91 — g + (965 — 1) g — )}
=1
= Clg,stl + Clg,st? + Clg,st?) + Clg,st47

2 R 91 L. T
n—1 2
<7 |07 7 X G

s=1 t=1

N 4 .
where, e.g., (151 = & Doiy [Eiscit — B (€isit)] ¢, we have C%g,st <43, C%gﬁtl. By Assumption
A2

4 T T N 2
;X;Z;E Gost1) = Z?NZ;Z;E Ni/QZ[eiseit—E(eissit)]] = O(T/N),
s=11 s=1 t= i=1
1§TjZE Cig.s.2) QQZTJZTZE 1ZNj[sAs»—E(ea->]<- - >2
T et b 1g,st,2 -7 L L N v is€it is€it)| \Gis — 4
7 T T N
= TN? Z Z ZE leiscit — E (giseit)]” = O (T/N).



Similarly, we can show that+ 3"1_, >/ E(¢3, ;) = O (T/N) for I = 3,4. Then T2 3/, J|ax|* =
Op (N *1) by Markov inequality. For as;, we have

T 2

E Zg,st

R 2 1 T T

Nn—1 2

SgHD | 722 G
s=1 t=1

T
T3 faxl? < | D7 7
t=1

where (o, o = % Zf\il Ff’)\?eitgisgit. Using ¢is = ¢ + (gis — q), we have
2 ) T LN 2
Z Z Z 0
+ 7T2 - [N F )\ i EitTit gzs - Q)]

1t=1 =1

T T
ES WIS 3) S ES S SR
s=1 t=1

s=1 t=1
= 2A; + 24, say.

s

2
Noting that % Zle E H% Zfil AP €itgit

= w7 i Tict El H)‘OH eilE (97) = O(N7') un-
der Assumptions A.1(ii) and A.2(i), we have A; < 72321 HFSOH Zt 1 HN U N eigir L
Op (N71). Similarly, Ay = Op (T™!) by Markov inequality. It follows that T~ 1Zt:1 l|ase )
Op (N7'4+T71). Analogously, we can show that 7" ST llagt|* = Op (N"t+T71).

For as;, we have

T
Ty ol < %
t=1

~ 2
,1H T

1. -
TZFSC&Q,St
s=1

o 2 Zchg,st N7,

where (3, o = + SN FININYED (gis — q) and the last equality follows from the Markov inequality
2
and the fact that % Z?:l Z§=1 E(ng,st) = qJS/lquz Zz 1 Zt 1 Zs 1 E[(FS/)\?)\?/FP) ] =0 (N_l) .
Similarly, we can show that -1 37 [lag:||* = Op (N71) and 77! ST llaw|> = Op (N71).
. 2
In sum, we have shown that 771377 HF,: - H’FtOH =O0p(N'+7T71). 1

To prove Theorem 2.2, we need the following lemma.

Lemma A.2 Suppose that Assumptions A.1-A.8 hold. Then
(i) T-1f 0 _ Q+Op ( ( '7/2))7
(i) H = Q1+ Op( ),
(m) T Zt:l(Ft - HFt )eitgit = Op (51_\72T) )
(iv) % Ethl(Ft - HIFtO)(Ft - ﬁ/FtO)’git =O0p (5]7\/27“) )
(v) % Z?:l Ft(ﬁt - -ﬁI/FtO)'gz't =O0p (5N2T) )
(i) 4 iy (B~ H'FO)FYH (g0 — ) = Op (03F)
(U”) Zt 1Ft (gt —q) = Hll Zt | FPEY "H (g3 — q) +Op (5N2T)
(viii) HH' = (5FYF°)~1 + Op (5N‘é}) :

Proof of Theorem 2.2. (i) By the decomposition in (A.1) and Lemma A.1l, it suffices to
show that Ay = Day = op (N_l/Z) for | = 1,2,4,5,7 and VND (as; + ag;) <, N(0,QTy,Q’).
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For Alt, we make the following decomposition Au = ﬁq? ZZ 1 (ﬁ‘ — fI’F0> val E (gis€it) 9isgit
+4 e NT ZS 1 F? Zz 1 E (ciseit) 9isgit = Aren + = A, 2. By the CS inequality and Theorem 2.1,

2y 1/2

1
= Op (dyy) Op(T™2),

N
~ > E(eisit) gisgit
i=1

NFS

T 1/2 T
11 ~ 2 1
A sqz{T;\ - } 7o

2

< dAmax, Sy (s,0)2 = 0 (T71)
For Ay, we have E[Ais| < " EIPIST 1060 = 0(T1). Tt follows that Ajs =
Op (T‘l) and Ay = Op (5]}1:FT_1/2) . For Ay, we have

where we use the fact that ZS 1 H N Sy E (eiseit) GisGin

1 T ~ ~ N f{/ 1 T N I:‘I,
Ag = NTE Z (Fs - H/Fg) Z Xi,st9isgit + & NT Z F Z Xist9isgit = A2t1 + ?Azt,%
s=1 i=1 s=1 =1

where x; o = €is€it—F (€is€it) - As in the analysis of Ayy1, we can show that || g 1]| = Op (5]_\,1T) Op (N*1/2)

by the CS inequality and Theorem 2.1. For Ag; 2, we make the following decomposition

1
Ay =+ Z F) ;Xi,st [® + (9is — @) a + (9t — ©)a + (gis — @) (931 — 0)] Z At

By straightforward moment calculations, we can show that E||Ag || = O(NT)™') under As-
sumptions A.3(1) and A.1(i) for | = 1,2,3,4. Then Ags = Op((NT)"'/?). For As, we use
gis = q + (9is — q) and Fy = (Fs — H'F?) + H'F? to make the following decomposition

1 & 1
Az = FFY =N Neyigisgs
3t Tq~2 ; si's N ; ; €itGisJit
q T T
SO i U IR Y et~
s=1 s=1
H 7/

H
A3t1+A3t2+ —5 Ast 3.

ZFOFO,N ZA 5ztgzt(gzs - )
=1

By the CS inequality and Theorem 2.1,

1/2 1 T . N 2y 1/2
0 — 0~ 0~ o (g — _ -1 -1/2
| Ast 2]l < 7 { T'Fy } T ; Fy N ;)\igztgzt(gzs q) = Op(0n7)OP(N™/7),
where we use the fact that % Zstl E ) FSO']{, ZZ 1 2\ 2 €it9it(gis — q H = O ) . For As; 3, it is easy
to verify that E (A3 3) = O (T~1) and E || Az3]|> = O(NT)~' +T-2). Then A3 = Op(d 5T /?)

and Ag; = %F’FON%] SN Neygi+0p (657) » where we use the fact that ¢ = ¢+Op((NT)~1/2). For
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Ay, we apply git = ¢+ (git — q) and F, = (ﬁ's — ﬁI’FSO) + ﬁ'Fg to make the following decomposition

NT~2 Z <F H FO) Z )‘ €isJis (gzt ) Fto

Z (£ - a'F?) Z NeisgisFL +
i=1

A =
" NTq?
qH 1 § : 02 : or 0 0
g2 |NT Fy Ai €isgis | By + 2 NT§ :F E >‘ €isYis (Git — D) F
s=1 i=1

ﬁ/
7A4t,3FtO' + ?AMAFtO-

Ay 1 F) 4+ Ay oF) +
For A41 and Ay o, we can readily use the CS inequality and Theorem 2.1 to show that Ag 1 =
q) , the CS inequality, and

1/2) and Agso = Op (67 - For Auz 3 we apply git = g+ (gir —

Op (6N~
Assumption A.3(ii) to obtain F HA4t,3H < WEH Zs:l Ei:l Fg)\?/é‘iquz 2B ST Y, 030
O ((NT)™1). It follows that A3 = OP((NT)_l/z).

X (gis —@)|I> = O ((NT)™") + O (NT)7) =
Similarly, Ay 4 = Op((NT)"*/?). Then Ay = Op(8532).
For As;, we use Fy = (Fy — H'F9) + H'F? to obtain

qH
Ft ~
q

NT Z FOFOI Z )\0)\0/ gzs o q) Fto

=1

T
1
Asy = @ —ZF H'F?) FO’ Z)\UAO’ (gis — q

IfI/
i14515,111719 + pq~ AgioFY.

By the CS inequality and Theorem 2.1,
2y 1/2

T 1/2 T

1 ~ 2 1

Asia] =4 = ’ L 1
[ Ast,q | {TSE—l } T;_

2
where we use the fact that + ZT,l E|FY% fil AN (g — q)H =0 (N
&T;] S SN E HFOFOI)\O)\OIH = O((NT)™!) under Assumption A.1(iii). Then A5 5 = Op((NT)~/?)

=) . For Ag;, we apply the fact that § = ¢+ Op((NT)~ 1/2) to obtain

—1/2)

oL Z AN (g5 — = Op(6 5N

~F80

_1) . Similarly, E ‘|A5t72||2 =

and As; = Op (62

1 -
Aﬁt:fF,FO ZA Ft (9it — q) = *FIFO ZA Ft (9it —q) + Op((NT)™~ 1/2)'
For A7, we have A7 = [T%z D=1 (FS - ﬁlFS) Fsmjlv Zfil ai,st]Ft0+%[% ZST B FSI \ ZZ 1 @i st Fy
= Ap 1 FO+ 5 Ag o Y where o o = A A (9is — q) (git — q) - As in the analysis of As;, we can readily

— 0
= Ay F)+4
show that Az.1 = Op (0n7) and Azo = Op((NT)"1/2). Then Az 1 = Op(dy7)

In sum, we have
) (A2

N
. 1 - 1
VN(F, — HF) =D ' F'FO— N "\ [eigi + A\ FO (gt — q)] + Op(NY/2572
(E; ) 7 ﬁNq;l ¢ [eitgie + N'FY (9i — @)] + Op( )
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By Assumption A.4(i), ﬁq Zfil )\?ﬁitgit 4N (0,T14,¢) - Let w € R® be a nonrandom vector with
lw|| = 1. Let ¢, = Tlvqw’)\?)\?’FtO (9it — q) and GY; = o ({gjt,J < i), A", F?) , the sigma-field gener-
ated from {g;s, j <i} and (A°, FP). Let G* = 0 (U¥_,G4 ) - By the independence of g;; along the

i-dimension, we have E (¢;;|Fnti—1+) = 0 and

ZE @lt\QNZ 1) qz WA FD ( —4d Z)\O)\O' (EYN) )w L Ty .

=1

. .. FO e/ 4+¢
Lete = %—4. Then by Assumption A.1(ii), Zf\; E(|<P¢t|2+€/2 |g]tv’,»_1) < %% Zf\il H/\?H te B,

0, which is sufficient for the conditional Lindeberg condition in Hiusler and Luschgy (2015). Then
by the stable martingale central limit theorem (e.g., Theorem 6.1 in H&usler and Luschgy (2015)),

we have
N

Z)\O)\O'Ft git — q) Z‘Pit — N (0,T'y,;) G'-stably as N — oo,
i=1

where Ty, is G!, measurable. Noting that Cov(\/ﬁ ZZ 1)\ EitGits \F ZN )\OAOIFtO (git — q)) =
7 Loier e BEOYAY e AV F)E [9is (90 — @)] = L Sy B [MAYeq A F?] = 0 by the iid. of
git, the independence between {g;;} and {AO, FO, 6} , and Assumption A.2(i), we also have

N
W Z )\? [z—:itgit + )\?'Fto (git — q)] — N (0,14 +Tag) Gt-stably as N — oo.
721

Then by Lemmas A.1(i) and A.2(i) and Corollary 6.3 in Hausler and Luschgy (2015), we have

N
VNg > N g + AV F (91 — 9)] + Op (Nl/zcs]—v?T)
=1

— N (0,D7'Q (D1t + I'ag) @ DY) G'-stably as (N, T) — oo.

- - N
VN(F, — H'FY) = D*lfF'FO

This completes the proof of (i).

(ii) Noting that A’ = L F'X, X = (FOAY 4 ¢) o G, and %Z::F:l F,F] = I, we have

1

T
Ni— H ') = TqZF git + FYNY) giv — H1NY
, }
}'*I, ; T
= sz Veigit + = Z( )Eztgzt+ —ZFt (H Fp - Ft) H™' N gir

+—ZFtF' A\ (gi — q) + L2100

= Blz + BZZ + B3z + B4z + B5i7 say.
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By Lemma A.2(ii)-(v) and (vii), VT By; = H’ 1 Zt L Fleigitop (1) andVTBy; = Op (T1/25X]2T) =
op (1) for I = 2,3. By Lemma A.2(ii) and (vii), \FB41 = H' 1 Zt L FYEY N (9ie—q)+O0p (TY253%) .
Noting that § — g = Op((NT)~1/?), we have VT Bs; = Op( 1/2). Therefore we have shown that

\/T (5\2 — ﬁilA?> = Z Ft Eztgzt + Ft )\O(gzt - Q)] + OP(T1/25 2 ) (A3)

\fq

Recall that Gi, = o ({gis, s < 1), A}, F?) denotes the sigma-field generated from {{g;s,s <t)} and
(A F%) and G' = o (U%Ozlgrpr) . Following the analysis at the end of the proof of part (i), we can
show that

vT (5\1‘ - FI—U\?) — N (0,(Q") 1 (D19t + Pags) (Q)7") G'-stably as N — o,
where we use Lemma A.2(ii) and the fact Cov(\ﬁ%q 23;1 FPeitgit, ﬁq Zle FOEYX(gis — q)) = 0.
(iii) Let ¢it = €irgir + )\?'Fto (9it — q) . By the proofs of (i) and (ii),
Cy—Cy = N'(H) N F,—HF)+ F\—H'\)
= XN'(H)NF, - HF)+ FYHN — H X)) + Op(NT)™/?)

N T
1~ 1, 1~ 1 ~ o~ 1 _
= N'(H)'D 1(TF’F0)N—qZ>\?§it—I-FtOIHH’T—qZFtOgit—i-OP (63
=1 t=1
0/1010—11 NO 0/10/0—11T 0 —2
= A(AYAY) N—qZ)\igit—i—Ft (FFOF°) EZthit+op(5NT),
=1 t=1

where the second equality follows from the fact that ﬁ‘t - H Fto = Op (N -1/ 2) and 5\1 - H _1>\? =
Op (T_l/ 2) the third equality holds by the results in (i) and (ii), and fourth equality holds because
(.ﬁ[’)_lﬁ_l%F’FO = (HAYA%)~! by the definition of H and HH' = (FFYFO)~1 + Op (657) by
Lemma A.2(viii). Following the proof of Theorem 3 in Bai (2003), we can readily show that (3 14+
L %g) 12 (@-t —Cg) L N (0,1), where S = AYS 11Ty 5000 and Yoy = FYS 10, 501 F). B

To prove Theorems 2.3-2.4, we introduce some notations. Recall that HO = (N *1A0'A0)71

xT—LF0 () D=1 Define

N

~(0 Ayl o~ 1
¢%1 — DO 1TF( ) ;)\ gztglt—l—)\ 'FP (gzt—q)]
20 J7(C
bri = ZFt itYit +Ft )\ (gt *Q)],

t 1
o = po-1lpwrpol Z)\ ) for £ >
Ft = i€ for 1, and
() 01 N~ po, 0
Pri = TZF for £> 1,
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)

where ¢;,” is defined sequentially in (A.6) below, and qAb%)t and &Ef’)i denote the leading influence

functions of F(Z) — HO'FY and S\Z@ — (A®)=1)\Y respectively. Let fgf)t = Ft(e) — HO'ED — qAbg)t and

S\Z)z = )‘(Z) (H ¢ (K))_l)\? — q?)%?i where ¢ > (0. Then
~ A ~ N / . R
)\Eé)/Ft(f) = [(A®)1)0 4 ¢(AZ,)¢ M(Ae)] [H@)/ FO+ ¢§f)t n Tg)t] AV 4 m(f)7 (A4)

¢ ¢ £
where ngt) = nﬁ,f»t + né,zta

77% _ O/H(e)(b(é) I )\OI(H(é )~ ¢ - AV (O 17 (5) )+ FY O ( ) . and
¢ ¢
77(227& = ¢A1¢Ft+¢Az +¢Ft A)H‘ 5\),/ (sz (A.5)

Let giy =1 — g and
@)

1)
€ = EitYit + m(t 1)git; £>1. (A.6)

By (A.4) and (A.6), we have

L (=1 ~ (6—1),

Xz(f) - (AO/Ft + Ezt) Git + )\ (AOIFt + Ezt) git + (A Ft + 7]“5) git = )\OlFt +€(e). (A7)

This expression will be used repeatedly in the following derivation.

The following three lemmas are used in the proofs of Theorems 2.3 and 2.4. When Lemmas A.3-
A.5 hold for £ = 1, Theorems 2.3 and 2.4 also hold for £ = 1. With the results in Lemmas A.3-A.5
and Theorems 2.3 and 2.4 for ¢ = 1, we can show that they also hold for £ = 2. This procedure is

repeated until convergence which requires £ to be at most of order In V.

Lemma A.3 Suppose that Assumptions A.1-A.5 hold. Then for any £ > 1 we have
(i) max; H&;’:’;” — Op((N/In N)"Y/2) and max; 1’H = Op((T/InT)~1/2),

(i) max; "F%ZDH = Op(T"/4§ 2 InT + T~ 1+371/4) and max; HTAl H = Op(N"2/45,2 In N),

(111) max; ¢ Hn%@”” = (5_1+7/2 In N) and max; 4 ’772’“ H =Op ((5N2T In N)

(iv) max || & S m%f’angnﬂ = 0p (170 1 533 N, |5 S0, 08 05| = op(r—anss
+N72/4672. 10 N), and maxtHNZl AN G| = 0p (533 N,

(v) max; ‘ 'S 1&5%751) FYGit| = Op (635 In N + N=1492/2) and max; | £ 3], %t Vp0g. |l =

Op (5;V2T1nzv)

(vi) max; + Zl 1 ‘
+T~ 11nN)

(viz) NT Zt 1Zz 11+ HFOH ”z(f 1) =Op (517\/21’)

(viii) NT Zs | FY Zivl A)'n Eﬁ 1)]5 = OP (5N2TIDN)

(iz) maxy HNT Y ROy, 77§t )gitEisgisH = Op(T~/4 4+ (NT/In N)~1/2),
=Op (T7H/4 4+ 65 InN) .

(e~ 1)H = Op(T~ /24 N-1In N) andmaXzTZt 1‘

(e~ 1)H = Op(N—1+72/2

1) _
(x) max; H T 25:1 F? Zizl €it9it77,(~s )gis
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Lemma A.4 Suppose that Assumptions A.1-A.5 hold. Then for any £ > 1 we have
(i) T FO(NT) P XOXO' PO = DO = D+ Op (537 In N)
(ii)) TP EW'FO = Q + Op (0 InN) |
(iii) HO = Q= 4+ Op (6ypInN),
(i) LT 1(F“) H( VEO)FY = Op (532,

P = AOF)ED | = 0p (NV2/45L + 535 m N)

(v) max;

Lemma A.5 Suppose that Assumptions A.1-A.5 hold. Then
(i) by = D™ QB + (1 - q>a>§£;” £ (I 0T 4 71,
(it) ¢A,)i =(Q) Ba; +(1—q) ¢Az + Op (N72/46 2 In N + N~1+372/4) |

1 N 0
where /BF,t =N Zizl )\i EitTit, and BA,Z =T Zt:l Ft €itJit-

N NT
The proof of Theorem 2.4 below suggests that qbgs)t and ¢5\7)i are associated with the leading

influence functions of Ft(f) — HWO F? and 5\58) — ([:[ O)=1\Y respectively.

Proof of Theorem 2.3. The proof follows closely from that of Theorem 2.1 and we only outline the
main differences. From the identity F(©) = (NT)~! X(OX O FODO-1 where DO is asymptotically
nonsingular by Lemma A.4(i), we have by (A.7),

ZZS

Ft(g) —I:I(E)'Fto 1ZF Z{slt E(Z) FY)\0¢ Et) FY\¢ (Z)} = g ;t +a A(e) (A.8)

Then T Y7, HF(E) H(Z)’FOH <3y 1yl l(alt )2 by the CS inequality. For agt), using

( ) = = €itGit + 7755 Vg git and the CS inequality, we have

T N T

NOIIE _ 1 ~on 1 NS _
agt) H < 4T 1 Z T Z Fs(z) N Z €it9it€isGis|| + Z 5( N Z 77n gltngs l)gls

t=1 s=1 =1 s=1 =

| T | X 2 s | X 2
S 0—1) _ ~ —1)_
g 2O Do cugins Vgis|| || D FO G Dok Vgacigi
s=1 i=1 s=1 i=1

= 4(121171 + ALQ + Al,3 + A1,4)7

where we suppress the dependence of A;’s on £. Following the analyses of 17! Zf 1 ||a1t]|2 and
T3 llag||* in the proof of Theorem 2.1, we can readily show that A, = Op (657) - For Ay
and A173, we can apply the fact F'(©F(©) /T = IR, the CS inequality, and Lemma A.3(vii) to obtain

R LT (1 X , , 2 | I , 2

N —1)_ —1)_ -1

; T2 ZZ (N nz(t )gitnz(s )giS) <R {NT Z (m(t ))2} =O0p (6NT) and
t=1 i=1

A1 <
t=1 s=1 i=1
R LT (1 X ( 2 p NI | NI e
A =1 - l—1)\2 _9
A1,3 < ﬁ ;; (N ;&tgztnis gzs> < NT ; t}: ‘Eztgzt‘ T ; ;(771'5 ) =0Op (6NT
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Analogously, A1’4 fry OP ((S]_V?F) . It fOHOWS that 1211 - OP ((5;72:-[1) .

For a(Qt), we have

LT T T LN , P oprT ) 2
1 YDA = Y A0S A STQZZ< ZFO’A? §t>
=1 =1 1|7 =1 =1 s=1 =1
T T/ 2 op L. T (1 . 2
< ZZ NZF /\Eitgz‘t +WZZ NZF Amt git | -
s=1 t=1 i=1 s=1 t=1

By the analysis of 77! Z?:l ||as¢||? in the proof of Theorem 2.1, the first term is Op (6 5%)- For the sec-
ond term, by the CS inequality and Lemma A.3(vii) it is bounded above by ]%,—1% fi 1 Zthl HF o A?HQ
X L Sy ) = Op(9y)- Then T 1,
that 7! Zthl HD(Z)&%)HQ = Op(dy%)- In sum, we have shown that 7~ Zthl Hﬁ't(z) - I:I(é)'FtOH2
= Op(dy7)- M

2
&é? H = Op(d5)- Analogously, we can show

Proof of Theorem 2.4. (i) Let A( ) = pt )al(t) for | = 1,2, 3. By the decomposition in (A.8) and

Lemma A.4(i), we will bound Al( ) for | = 1,3 and find the leading influence function for A( ). For
A(li)v we use Fs(g) = (Fs(g) — I:I(Z)'Fso) + H(g)’Fg to make the decomposition

T
i _ 1 : 0 10 O _(0) gy 0500 = 4O A9,
AY = ==Y (K - HO'FD) Zg e;) + HC NTZF Zg i) = AL+ HO AL,

It is easy to show that Ag?l is of smaller order than flg)z We focus on the study of A%E By (A.6),

0 -1 _ 0—1) _ -1
we have Agt)2 = ﬁ Zz 1 FO ZZN 1(5115513.%7&915 + 77( )771(5 )gitgis + 5itgit772(5 )gis + "72(15 )
Zl 1 ” o;- By the analysis of Ay;2 and Ago in the proof of Theorem 2.2(i), max; Hflg?m

Op (T~1/4 452 InN) . By Lemma A.3(vi)-(vii) and the CS inequality,

Git€isYis) =

max
t

1 1/2 1/2
Al = {mstZw%”f} {NTZZHFOH g g}

i=1 s=1i=1

= Op (5];;(?1/%%/4 +(N/1n N)*1/2)> .

By Lemma A.3(ix)-(x), Alfyy +Aly, = Op (T711/4 4+ 532 I N) . Thus A, = Op (T71+7/4 + 5,2 In N)

and A = Op (T-"1/4 4 5.2 I N) .
For Aé?, we apply (A.6) and £ = (FS(Z) — HO'FO) + HO'FO to make the decomposition

T T N
A 1 1 ]
Ay = 57 > B Z “totisl?+ T 2 (RO - HOED Y Nl gis FY
s—1 i=1 =1
+HO| Z Fo Z NG R = (flé% + A} + B AY %)
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Following the analysis of A4 ; and Ay 2 in the proof of Theorem 2.2(i), we can show that Agﬁ =
Op (63%) . For Aé %, we have by the CS inequality, Theorem 2.3 and Lemma A.3(vii)-(vii)

9y 1/2
149 < L, |50 - roao)| { DO, O }
1/2
< or (i) {3 T 1§;§ms CARSTA)
S =1

and HA‘S’Q’H < Hﬁ Zle ZZ 1F0)\0’772(s )gis =Op (5 2T) It follows that max; HA H = max; HFtOH

xOp(dy7) = Op (T/*637)
It follows that
iy = VN - AOF) = VN ¢Ft+op<f (T 6 In T+ T )

= \/JV[D(E 1)] 1;}5(5 Drpo — 1 Z)‘ el gzt+Op(\F(T“/%;]QTlnTJrT71+371/4))
i=1

= D 'QVNBp, +(1— )qu +Op(f(T%/‘*(s;V?TlnTJrT*1+3%/4)),

where the remainder term Op(v/N(T7/45 % InT + T~1+371/4)) holds uniformly in ¢. This, in con-
junction with Lemma A.5(i), implies that

MY = D'QVNBp, + (1 — Iy + Op(VN(TA5 2 T + T30/
= D 'QVNBp, K_ZI (1—q)* + (1) TLY +op(1)
s=0
4 N (0,D7'QT 1, () @ DY) as (N, T,f) —
(ii) Let € be the T x N matrix with (t,7)th element given by 5%). Noting that A = %F(@’fc(f),

X0 = FOAY 120 and LT FOFY = T4, we have

()

5\(4) B 1{1(6)71)\? _ ZF(@{ (é) { PO -1 n (FtOI _ Ft(f)/ﬁ(z)q)] )‘?} _ ﬁ(@)flA?

T
1 A e A _ Z 1 A e A A e A~ _
_|_ f § (FtO/ o Ft( )/H(e) 1)5@(75) + T E Ft( )(H(Z)IFtO _ Ft( ))/H(Z) 1)\?
= B( )+ B“) + Béf).

Béf) — Op (N71/2+72/45]—V1f + 657 In N) and max;

max; H)\ H Op (5NT) Op (N'Y2/45 ) It follows that
My = VT (37— BON) = VTBY + Op(VT(N/452 N + NH9m/4))

= (@) WVTBa+ (1— ) VTHy, " +op(1),

By Lemma A.4(iv)-(v), we have max;
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where the remainder term Op(vVT(N72/453 % In N + N~1+372/4)) holds uniformly in i. This, in con-

junction with Lemma A.5(ii), implies that

9 = (@) 'VTBy,; + (1 -l Y + Op(VIN2/46:2 In N)

/-1
= (@) WVTBr Y (1= + (1= ) T + Op(VI(N2/15 3 In N 4 N~1H570/1))
s=0

4N (0,(Q) '®1yi (9) Q1) as (N, T,6) — oo

(iii) By the proof of (i) and (ii) and as in the proof of Theorem 2.2(iii), we have

Z(lf)/ Ft(@ VRS = 2\ (O Ft(ﬂ) — HO R0y 4 Ft(f)'( A

= \;N)\?’(ff(é)/)—l\/ﬁ(ﬁ’t@) _ fI(Z)/FtO) 4 \}TFtOIﬁ(z)\/T(S\EZ) B ﬁ(@)_l)\?)

(0)

P -ch = A O RO

+Op((N72/* 4 T/ (NT)~Y/?)
1 N 1Ay 1
= WA?'(H(Z)') Iy + No
_ A d
Then we have (%Elmt + %Em,it) 1/2(055) — Ciot) — N (0,1) as (N,T,¢) — oo, where X1 =
A?’EK&FW (q) ng)‘? and 214 it = FtOIZ;“%cI)lg,i (q) E;&Ft‘). u

FYHOTY + 0p(1).

To prove Theorem 2.5, we need the following lemma.

Lemma A.6 Suppose that Assumptions A.1-A.6 hold. Then

(i) max; & 7 |t — eu? = Op(N~1F72/2 £ T-1InT),

(i) max; 4 |&;¢ — £5t| = Op (T~ Y2471/ 4 N=V2%0/H(In T)1/2) = op (1),

(iii) Hzg - ngsp —op(1).
Proof of Theorem 2.5. To show ﬁ_lfg)’tf)_l L D1QT 1,4 (¢) Q' DY, it suffices to show that (i)
D=1 2 D1 and (i) f‘gzg)t 2 Qry,+Q'. (i) holds by Lemma A.4(i) and positive definiteness of D.

To show (ii), we recall that f‘g)t = qu~2 A'S9A and gt (q) = limy_ool'1g¢n (q) , where I'ig v (q) =

NtiAO’ Y9A%. Then by the triangle inequality, we have

< ‘
sp Nq
+HQ(I 1g,tN (q) Ilg,t (Q))Q/Hsp'

|62, - ori.@ A'$9A — QAYR9A0Q!

1 1 1
Ll ()

The last term on the right hand side (rhs) of the last expression is o (1) and the second term is

Op((NT)~/?) by noting that § — g = Op((NT)~/?). For the first term, we have

A'S9A — QAYSIN0Q! ot |@av (s —s)A

< |[1A - a°Q$A

o HQAO’EQ A — A°Q]

sp Sp
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2
It is standard to show 3 HA AOQH <L HA AV O~ 1” +x HAO -1- H = op(1) by using
the expression of \; — HO-1\Y in the proof of Theorem 2.4(ii) and Lemma A.4(iii). In addition,

HEQ . < |29, + ‘Eg -9 o O(1)4o0p (1) =0p (1) by Lemma A.6. It follows that
v [d-aerseal < s Nuz AL, e A - x0e],
< 0p g {[A- 20| a0 [t -] b-on .

Similarly, by Lemma A.6, we have ||QAY(29 — 29)Ally, < QI 572 A%, w7z [1Allspl[2 —
¥9||sp = op(1). By the same token, we have —||QA0’ZQ[A A°Q"|lsp = o0p(1). Tt follows that
LIASIA — QAYSINQ ||, = 0p (1). W
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Table 1: Under/Over-estimation frequency with complete data
Cross-validation  ED GR ER PC 1C
DGP N T p=0.7 p=0.9
1 50 50 460/14 62/43 0/393 530/37 864/10 0/685 0/445
50 100 121/47 7/54 0/360 381/49 791/11 0/497 0/377
100 50 166/27 7/42 0/336 350/39 769/15 0/518 0/364
100 100 10/48 0/30 0/374 212/49 643/13 0/452 0/363
2 50 50  440/4 51/2  0/113 416/3 816/0  0/246  0/99
50 100 104/0 1/1 0/75 194/1 676/0 0/106 0/53
100 50  166/1 6/1 0/79 218/2 694/0 0/118 0/52
100 100 12/0 0/0 0/60 39/0 409/0 0/54 0/32
3 50 50  308/0 12/2 0/72 566/0 910/0  0/995 0/840
50 100  40/0 0/0 0/3 198/0  779/0  0/473  0/46
100 50 88/0 0/5 0/17 424/0 884/0 0/1000 0/929
100 100 1/0 0/0 0/0 42/0 589/0 0/518 0/63
4 50 50  361/0 19/5  2/175 655/0  931/0 0/685 0/280
50 100  67/0 0/18 0/236 525/0 897/0 0/679 0/380
100 50  108/0 1/0 0/40  418/0  861/0  0/272  0/43
100 100 1/0 0/13 0/45 184/0 766/0 0/416 0/124
5 50 50  360/0 15/1 1/92  631/0 938/0 0/1000 0/836
50 100  57/0 0/3 0/20 451/0 895/0 0/1000 0/928
100 50 91/0 0/0 0/3 223/0  782/0 0/433 0/35
100 100 0/0 0/0 0/0 47/0 576/0  0/465 0/63
6 50 50  322/0 18/0 0/1 282/0  780/0 0/69 0/0
50 100  46/0 0/0 0/0 84/0 603/0 0/0 0/0
100 50 89/0 0/0 0/0 89/0 583/0 0/0 0/0
100 100 1/0 0/0 0/0 2/0 216/0 0/0 0/0

Stock, J.H., Watson, M.W., 2002. Macroeconomic forecasting using diffusion indexes. Journal of
Business & FEconomic Statistics 20, 147-162.

Stock, J., Watson, M., 2016. Dynamic factor models, factor-augmented vector autoregressions, and
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Su, L., Wang, X., 2017. On time-varying factor models: estimation and testing. Journal of Econo-
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Table 3: MSE and R%(F') with missing observations (¢=0.7)

MSE R(F)
oracle iterated estimate oracle iterated estimate
DGP N T /=0 /=5 (=20 /(=00 /=0 /(=5 (=20 {=c0

1 50 50 0.460 2.103 0.766 0.807 0.886 0.964 0.856 0.936 0.941 0.940
50 100 0.367 1.484 0.546 0.578 0.617 0.967 0.876 0.946 0.948 0.947
100 50 0.423 1.659 0.604 0.636 0.687 0978 0913 0.965 0.967 0.967
100 100 0.221 0.890 0.332 0.355 0.376 0982 0935 0973 0973 0.973

2 50 50 0.352 1.907 0.616 0.588 0.594 0971 0.863 0.947 0.953 0.953
50 100 0.259 1.280 0.406 0.405 0.406 0.972  0.885 0.957 0.958 0.958
100 50 0.258 1.333 0.408 0.405 0.405 0.98 0.925 0.978 0.979 0.979
100 100 0.172 0.785 0.258 0.260 0.260 0.986 0.943 0.979 0.980 0.980

3 50 50 0.403 1.703 0.562 0.555 0.555 0975 0.886 0.961 0.963 0.963
50 100 0.266 1.127 0.373 0.375 0.375 0976 0901 0.964 0.964 0.964
100 50 0.328 1.250 0432 0431 0431 0.987 0.938 0.981 0.981 0.981
100 100 0.198 0.743 0.263 0.264 0.264 0.988 0.950 0.983 0.983 0.983

4 50 50 0.350 1.749 0.562 0.551 0.551 0.970 0.873 0.951 0.954 0.954
50 100 0.261 1.160 0.395 0.397 0.397 0.970 0.894 0.956 0.956 0.956
100 50 0.262 1.220 0.399 0.400 0.399 0.985 0.934 0977 0977 0.977
100 100 0.173 0.739 0.257 0.258 0.258 0.985 0.946 0.978 0.978 0.978

5 50 50 0.386 1.704 0.554 0.542 0.542 0.970 0.878 0.955 0.957 0.957
50 100 0.316 1.183 0.420 0.422 0.422 0.970 0.894 0.958 0.958 0.959
100 50 0.260 1.193 0.370 0.370 0.369 0985 0935 0979 0979 0.979
100 100 0.190 0.731 0.256 0.257 0.257 0.985 0.947 0.980 0.980 0.980

6 50 50 0.322 1.627 0.492 0.483 0.483 0.976 0.886 0.961 0.963 0.963
50 100 0.239 1.106 0.347 0.348 0.348 0976 0.900 0.964 0.964 0.964
100 50 0.244 1.168 0.353 0.354 0.353 0.988 0.939 0.982 0.982 0.982
100 100 0.161 0.703 0.226 0.227 0.227 0.988 0.950 0.983 0.983 0.983
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Table 4: Coverage probability and average length of the 95% confidence intervals (¢=0.7)

Oracle

=0

{=0*

standard

robust

standard
DGP N T CP Length CP Length CP Length CP Length CP Length CP Length

robust

standard

robust

1 50 50 0.926
50 100 0.919
100 50 0.926
100 100 0.940

0.514 0.947
0.529 0.930
0.365 0.940
0.374 0.943

0.551
0.562
0.400
0.403

0.919
0.912
0.910
0.936

0.874 0.943 0.947
0.859 0.934 0.928
0.641 0.943 0.685
0.650 0.948 0.684

0.906
0.881
0.937
0.932

0.568 0.935
0.595 0.920
0.439 0.938
0.438 0.940

0.645
0.656
0.476
0.478

2 50 50 0.918
50 100 0.922
100 50 0.943
100 100 0.938

0.537 0.932
0.538 0.924
0.388 0.946
0.390 0.936

0.550
0.557
0.395
0.401

0.919
0.924
0.941
0.926

0.892 0.936 0.936
0.912 0.943 0.950
0.645 0.956 0.673
0.655 0.943 0.678

0.909
0.896
0.935
0.932

0.619 0.929
0.625 0.926
0.453 0.943
0.460 0.944

0.642
0.653
0.467
0.474

3 50 50 0.926
50 100 0.932
100 50 0.930
100 100 0.925

0.550 0.936
0.565 0.938
0.400 0.937
0.403 0.933

0.557
0.567
0.398
0.404

0.902
0.921
0.934
0.931

0.922 0.930 0.945
0.909 0.940 0.931
0.680 0.944 0.688
0.660 0.942 0.667

0.894
0.921
0.906
0.922

0.646 0.923
0.658 0.927
0.462 0.923
0.472 0.943

0.653
0.666
0.472
0.478

4 50 50 0.917
50 100 0.928
100 50 0.927
100 100 0.932

0.601 0.937
0.607 0.943
0.440 0.928
0.445 0.943

0.607
0.614
0.436
0.447

0.928
0.917
0.926
0.914

0.972 0.937 0.995
0.948 0.937 0.969
0.704 0.944 0.712
0.703 0.926 0.712

0.896
0.909
0.935
0.918

0.697 0.923
0.709 0.933
0.517 0.941
0.520 0.930

0.710
0.719
0.519
0.529

5 50 50 0.891
50 100 0.896
100 50 0.885
100 100 0.904

0.322 0.908
0.323 0.901
0.233 0.885
0.234 0.905

0.327
0.328
0.233
0.236

0.918
0.900
0.921
0.928

0.749 0.946 0.778
0.732 0.927 0.754
0.542 0.950 0.561
0.546 0.944 0.555

0.875
0.892
0.894
0.884

0.379 0.899
0.381 0.912
0.276 0.910
0.276 0.905

0.386
0.388
0.277
0.281

6 50 50 0.897
50 100 0.875
100 50 0.913
100 100 0.908

0.320 0.911
0.325 0.896
0.233 0.917
0.236 0.913

0.325
0.330
0.233
0.236

0.924
0.917
0.928
0.926

0.737 0.939 0.767
0.734 0.940 0.752
0.524 0.951 0.545
0.532 0.939 0.543

0.891
0.894
0.907
0.898

0.377 0.909
0.384 0.907
0.275 0.920
0.277 0.924

0.384
0.390
0.276
0.280

Table 5: Results of forecasts

Real GDP

GDP

1P

RDPI

period horizon

MSE ratio

AR

PC-F

MSE

ratio

AR PC-F

MSE

ratio

MSE ratio
AR PC-F AR

PC-F

1987 «~ 2016  h=1
h=2

1997 «~ 2016

2007 «~ 2016

F?‘D‘ﬁ“?‘?‘?‘
N RN =

4.571 0.923
2.986 0.853
2.683 0.948
4.734 0.870
3.246 0.813
3.020 0.924
5.049 0.746
4.247 0.749
4.445 0.901

0.985
0.968
0.927
1.009
0.957
0.955
0.982
0.922
0.950

6.665 0.921 1.004
5.349 0.874 1.003
5.727 0.940 0.996
6.745 0.892 1.000
5.531 0.851 0.998
5.924 0.916 0.997
8.170 0.794 0.984
7.167 0.801 1.004
8.145 0.923 1.011

11.488 0.911 0.929
13.091 0.896 0.922
13.489 0.969 0.994
12.131 0.853 0.896
15.583 0.875 0.918
16.964 0.948 0.983
16.818 0.805 0.862
23.777 0.851 0.886
26.810 0.904 0.936

11.896 0.958
4.505 0.888
2.565 0.841
14.982 0.957
5.085 0.856
2.832 0.809
20.446 0.941
6.565 0.785
4.047 0.777

0.988
0.985
0.989
0.987
0.995
0.983
0.982
0.985
0.973
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School of Economics, Singapore Management University

This online supplement contains the proofs of the theorems in Section 3.

B Proofs of the Main Results in Section 3

To prove Theorem 3.1, we need to introduce some notations and lemmas. Note that the true number

of factors is assumed to be Ry but the working model is given by
X =F(R)A(R) +¢(R),

where we make the dependence of F' and A on the assumed number of factors (R) explicit and
e(R)=X—F(R)A(R)". Asin Bai and Ng (2017), we want to establish the connection between the
usual principal component (PC) estimators of the factors and factor loadings and the SVD estimators.

Let X* = P« X. Noting that C’R = SH(%PQ*X, R) = URSRV]%, ﬁR and VR are respectively
the eigenvector matrices of éX *X* and I%X * X* associated with their R largest eigenvalues, and
the diagonal elements of f]% are the R largest eigenvalues of I%X *X*. Let F and AR denote
the conventional principal component (PC) estimators of F'(R) and A (R) under the normalization
restrictions that T-'F (R) F (R) = I and A (R)' A (R) =diagonal matrix. It is well known that F'%
is given by /T times the normalized eigenvector matrix of ]%X *X* associated with its R largest

eigenvalues and A% = (FR’FR)_lﬁR’%X* = FR’%pX*. This indicates that
FE = VTUg. (B.1)

In addition, we consider the full SVD of 1X* : I1x* = USV/ = SNV 4, #]6,. Then 1 X*U =
VY'U'U = VY. This implies that
. 1 T . _
Viip = -X*"Ug = £X*’FR = VTAFR. (B.2)
p Tp
(B.1) says that Ug is a scaled version of ' and (B.2) says that each column of Vj is a scaled version
of the corresponding column of A%, It is easy to see that

UrXpVf = FEAY. (B.3)

That is, both the SVD and the PCA yield the same estimates of the common component once R

is given. Following the lead of Bai and Ng (2002), we consider a rotational version of FE . PR —



(NTp2)71 X*X¥FE Let Hip = (N"TAYAO)(T1FYFR). The properties of F2 can be established
along the lines of proofs in Bai and Ng (2002) and those in the proof of Theorem 2.1 in the presence
of random missing values.

Alternatively, we can consider the PC estimation under the normalization restrictions that N~!A (R)’
A (R) = Ig and F (R)' F (R) =diagonal matrix. Let F'¥ and Af denote the conventional PC estima-

tors of F'(R) and A (R) in this case. Then following the above arguments, we can show that
j_XR = \/N‘N/R, 0}%2}3 = \/NFR, and [?RSR‘N/}% = FR/_\R,. (B4)

Following the lead of Bai and Ng (2002), we consider a rotational version of Ag : At = (NTp?) X XEAR,
Let Hop = (T-1FYFO)(N1AYAR),

Finally, let Dp denote the R x R diagonal matrix that contains the R largest eigenvalues of
(NTp?)~1X*X* arranged in descending order along its diagonal line. Note that Dy = (NT)_1 i%

Recall that g = 1{(i,t) € Q% } and g}, = 1{(i,t) € Q*}. Let G* be the T' x N matrix with
(t,i)th element given by gj;,. Define G* analogously. Let e,p denote the rth column of the R x R
identity matrix Ig. Similarly, e,x and e, denote the rth column of Iy and Ir, respectively. Note
that @, = Uperr and 0, = Vgerr, r = 1, ..., R, denote the rth column of Ug and Vg, respectively. In
addition, Cr = Y | 4,95,

The proof of Theorem 3.1 needs the following three lemmas and two theorems, whose proofs are

given after we finish the proofs of Theorems 3.1 and 3.2.

Lemma B.1 Suppose that all the conditions but Assumption A.7 in Theorem 8.1 hold. Then
L e
(i) L HﬁURDR - FOHlRH = 0p (632,
o .2
(ii) & H\/NVRDR — AOHQRH = 0p (6;2) .

Lemma B.2 Let 5, = (NT)*l/Z(}T. Let 02 denote the rth largest eigenvalue of LpoXpo for r =
1, ..., Rg. Suppose that all the conditions but Assumption A.7 in Theorem 8.1 hold. Then

(i) 32 = 624+ Op (5]_\/1T) forr=1,..., Ry,

(it) 6%y 4r = Op (657) forr > 1,

(iii) (5?VT(T%O+T > ¢y +op (1) for some positive constant ¢, and any r > 1 with Ry + r < R.

Lemma B.3 Let 4, and v, be the rth left and right singular vector of %X*. Suppose that all the
conditions but Assumption A.7 in Theorem 3.1 hold. Then for r = Ry+1, ..., Ryax, we have @.F° =
Op(6yrr) and 9.A° = Op(5y).

To proceed, we define some notations. For a real matrix I, recall that ||[I'|| and ||['||, denote its

Frobenius norm and entrywise Lo, norm, respectively. We use ||T'||, to denote the nuclear norm of



I', which is defined as the summation of the singular values of I'. For a nonzero matrix I' € RT*V,

we define two measures to control its spikeness and rank. First, we define the spikeness ratio as

VNT T

ag(T) = ,
P 1T

which satisfies 1 < ap(I') < VNT. The lower bound can be reached when all the entries of I' are
the same, and the upper bound can be reached when there is only one nonzero entry in I'. Next, we

define a tractable measure of how close I' is to a low-rank matrix via the ratio

_ Tl
/BT’LL(F) = ”FH :

Note that 1 < 8,,(T) < dyr = VN AVT. Let d = (N + T)/2. Define the constraint set

1 NT
Crr(co) = {r e BYTT 40 (DB, (1) < -y [ d} , (B.5)

where ¢ is a universal constant. For a low rank matrix I' € Cy7(cg), the constraint requires it to be
not very spiky.
The following two theorems are needed to show that the probability of overselecting the number

of factors is approaching zero.

Theorem B.4 Let G be aT'x N random matrixz with all entries i.i.d. from the Bernoulli distribution

with parameter p € (0,1). There are universal constants cg,c1,c2, and c3 such that

(T
HF ° GH =l {1 - 030‘\/]%)} for all T € Cnr(co)

with probability greater than 1 — ¢1 exp(—ceNT logd/d).

Theorem B.5 Let G be aT'x N random matrixz with all entries i.i.d. from the Bernoulli distribution

with parameter p € (0,1). Then

FSélp IT o [G = E(G)]lly, = Op (clNT + cont + esnt /(N + T) loglog (N +T) + 1/ log(N + T)) ,
€CinT

where Cint = CinT (cinT, conT, cant) = {T € RVXT | T =UV', U € RT and V € RN are vectors
such that |U|| = [V =1, U, < eint, Ve < conts |U]l oo IV ool < eanr}

Proof of Theorem 3.1. Noting that X = C° + ¢, we make the following decomposition

OV (R) = (X~ Cr)oG? ’

NT ‘

G oG+ gy oo &+ pn {[(€0 - Cry 0 6] (067}

NT

7l
= CV;y (R) +CVae+2CV5 (R),



where CV o does not depend on R. Then we have
CV (R) — CV (Ro) = |CV1 (R) — OV, (Rg)] +2 [673 (R) — OV (Ro)| . (B.6)

It is sufficient to study the asymptotic properties of cv, (R) — cV, (Rp) and CVs (R) — CVs (Ro)

under the under-fitted and over-fitted cases, respectively.

We first study the under-fitted case where R < Ry. Noting that || A||*~||B||* =tr(A’A — B'B) =
tr{(A— B)' (A— B)} +2tr((A — B)' B), we have

OVy (R) - OV (B)) = = [[(Cr— %o @[~ < [[(Cr — ) o]
- srlien-enoa |+ 2o {[€n-cuoe] [n, - oo}
= CVi1(R)+2CVi5(R). (B.7)

. ~ ~ R O ~ - ~ o _1/2~
Noting that Cr, — Cr = >, 25,1 U007, Ur = Uryerry, Ur = VRyerR,, and &, = (NT) 125, we
have

2

Ro
S 1 _
CVii(R) = ~T <§ {LTTJ;,&T>0G*
r=R+1

2

Ro
1 g V- Ak
= NT ( g UROeTROe;ROVIQOJT)oG
r=R+1

2
. (B.8)

Ro
= N7 (Z (WURODRO)D;&erRoe;RoD;i;<VTVRODRO)'&T>oG*
r=R+1

Let 1 = \/N(}RDR — FoﬁlR and ¢op = \/NVRDR — AOﬁQR. Then \/NU'RODRO = FOFIU{O + S1R,



and \/NVR()[)RO = AOI:IQRO —+ SaR,- It is easy to apply Lemma B.1 to show that

2
1 . ) ] N
- NT ( <FOHlRo + §1R0> ARy (A’ Hap, + §2R0)/0r> oG
r=R+1

2

1 Yk
= N7T ( F HlRoA’I‘ROHQROAO/ ) G —+ OP (5NT)
r=R+1
| N T/ R ] 2
- WZZ < Z e;TFOHlROATRoHéRoAOIEiN6R0> G5 +Op (5 3r)
i=1 t=1 \r=R+1
1 N T Ro Ro _ ~
= FFD. D >t {HlRoArRoHéROAO'eiNeéNAOHzRoAEROHiROF OcireypF 0’} 50155
i=1 t=1 r=R+41I=R+1
-1
—FOp 5NT)

Ro N T
1 N
Z Z vec HlRO rRonRO {W Z Z[(Ao,eiNe,/iNAo) X (FOletTeéTFO/)]git} 0,0]

r=R+1I[=R+1 i=1 t=1
xvec(H1ryAiry Hyg,) + Op (6 5) (B.9)

where A, = D;{ler RE.. RD}}l, g, = 1{(i,t) € Q% }, and the last equality follows from the fact that

tr(A1AsAzAy) = [vec(A1))' (A2 @ A))vec(As) and the Fubini theorem. Now using g}, = (1 — p) +

(g7, — (1 — p)] and the fact that g}, are i.i.d. and independent of (A”, F”), we can readily show that
1

N T N T
—x 1- p
NT Z Z AO /NezNA(),) (FoetTezltTFO,)]gz’t =~ NT Z Z[(AO ,NezNAO/) (FOGtTeéTFOI)]
i=1 t=1 i=1 t=1

It follows that

Ry N T
— 1
CVi (R) = Z Z vec(H1py Arro Hyg, )/ {NT Z Z[(AO/%’N@NAO/) ® (FO/etTe:tTFo,)]}
r=R+1Il=R+1 i=1 t=1
Xvec(ﬁlRoAlRoﬁéRo)&rél + Op (5;\711«)
Ro 2 RO
- > ey +0p (6yr) =1 =p) > (NT)'62+O0p (55})
r=R+1 r=R+1
Ro
= (1-p) > o2+0p(0yy),
r=R+1

where the second equality is obtained by reversing the operations in (B.9) and (B.8), the third
equality holds by the fact that U 1’317 r = 1Igr and ‘7]’%‘73 = IR, and the fourth equality follows because
(NT) ' 62 = 02 + Op(d ) for r < Ry by Lemma B.2(i).



. _ 2 _2
Following the proof of Theorem 2.4, we can show that <= H(CO — CpR,) 0o G* ) < & HC’O — CR,

Op (65%). Then by the Chebyshev inequality,
. tr{KcR_oRO) 06"]'[(c0 - Cn,) o@*}}

< {rl@n-en) o) (e -on) e

= Op(1)Op (557) = Op (Sy7) -

1

ain)] -

2}1/2

It follows that CV; (R) — oV, (Ro) = (1 —p) f;ORH o2 +Op (51_\/11“) :

Next, CV3 (R) — CV3(Ry) = ﬁtr{[(é}zo — CR) o G (eo @*)/}. Noting that w7 [|e o G’*H2 <
o le|l* = Op (1), we can readily apply Lemma B.1 and follow the analysis of C'V 11 (R) to show
that

Ro
( Z [(FoﬁlRo + glRO) ATRO (AO—EIQRO + CZRO)/&T:| © G*> (8 © G*),}
r=R

- NT
+1
1 o L ) .
- Nr” [FO g Ay My A3;] 0 G” | (20 G*)' O (93h)
r=R+1
1 N T Ro .
- NT Z Z tr (e;TFoﬂlROATROHQROAO’eiN> Freitdi + Op (5&%)

I
5[]

-t

]
/N

N T
v ~ u 1 * ) —
HiryArroHp, NT E E AO,eiNe;TFogitgit) v+ Op (Oy7)
i=1 t=1

Ry N T

o ~ Y 1 N _
= (1 — p) E tr (HlROArRDHéRO ﬁ E E AOleiN(i;TFOEit) or + OP (5N1T)
r=R+1 i=1 t=1

- Op((NT)_l/Q) +Op (51_\75) =Op (WT) )

where the last line follows from the fact that ﬁ i]\;l Z,f:l AY¢; NeF Ogip = ﬁ Zfil thl )\? Fey =
Op((NT)72)

In sum, we have shown that when R < Ro, CV (R)—CV (Ry) = (1—p) f:ORJ,-l o2+ 0p (637) -
This implies that P(R < Rg) — 0 as (N, T) — oo.

Now, we study the overfitted case where R > Ry. We continue to use the decompositions
in (B.6) and (B.7). We first study CVi (R). When R > Ry, [);%1 # Op(1) and thus A,z # Op(1).
This implies that we cannot use similar arguments as used in the case where R < Ry. In addition,
Cr— C’RO is not independent of G*, which further complicates the analysis. To tackle the problem,

we call upon Assumption A.7. Let I'p = Cg — C’RO. By Assumption A.7(i), we have HFRH <
(o.]

6



Zv{iROH &,/(cor/(N +T)log(N + T)) with probability approaching 1 (w.p.a.1). In addition, by

the definitions of Frobenius and nuclear norms, = (EE:ROH 52)1/2 and HfRH = Zf:ROH Or.
*

By the Jensen inequality and the fact that R < Rpyax,
VAT [Ea] [P
00 *

)

max RO NT < i NT
- Co (N+T) log(N+T) ~ ¢\l dnT longT

where dy1 = %(N—i—T) and & = v/2¢o/(Rmax — Ro). Therefore, I'pe Cn1(C) w.p.a.1. Then we can
apply Theorem B.4 and the fact that Hf‘RH / Hf‘RH = op (1) to obtain that
(o]

1 ~ _ ~
ProG| = [T H pal.
Hm e 6 1M P
_ o _ 2
It follows that CV11 (R) = ﬁ HFROG* > 256 NT HFRH = 255 f:Ro-i-l 52 w.p.a.l, where

= Op (6&%[) for r = Ro + 1, ..., Rpax by Lemma B.2(ii). Then by Lemma B.2(iii) we have
plim(y 7)—0o037CV11 (R) > (R — Ro) S5le, > 0.

Next, we study CV 12 (R) . Noting that I'r = Cg — Cg, = ZTR:RO"Fl U, 0.6y, we have

T = e {Cuoa [Cu-cea]} = X Zalwiy[Cn - o)
r=Ro+1

R
Z C‘/IQT'

r=Ro+1
In addition,
e { (@8 (Cr, — O} = ot {(8,20) 0%} = ——tr (@, FOA”5, } = Op(5ih).
VNT VNT VNT

where the first equality holds by the orthogonality between #, and C’RO for r > Ry and the third
equality holds by Lemma B.3. It follows that

CVigr = N—Ttr{( ) [(ORO_Co)oG*]}
= et {(@) [(Cr, — C%) o (G* = B(G)] } + Op(65%)
= CV12T+OP(5N%F)
Note that
Vo] = \/(JTW;ZT‘ t{(Cr, — € [(@i) 0 (G* ~ E@G))]}]
< Op (0) iz [ = € @) o (6 =BG,
< Op (55%) FeClNT(CHSVI;%NT,%NT) [T o (G = E(GM))lly,
= op (O37)



Op (65y) and [tr (AB)| < ||All, | Bl|,  the second

sp’

Gy _
VNT

inequality follows because

<

pln - = % o, o] - on

and the last equality holds by Theorem B.5 with ¢iy7 = o(1), cant = o(1) and esnr = 1/1/(N + T)log(N + T).
Then we have CV 1y (R) =op (5&%) .
Now, we study CV3 (R) — CV3 (Ro) .

R ~
CV5(R)— CV3(Ry) = %m{[(cﬁ{o —CR) oa*} (aoG*)'} = %m{(m,ﬁ)' (oG}
r=Ro+1
R ~
= - Z ;TT~/ (EOG* v Z Ir Zutrvzrfzt g;kt)

r=Ro+1 r= R0+1
R
Y OV,

r=Rop+1

where @i, and @, denote the tth and ith entries of @, and @y, respectively. Noting that 62/(NT) =
Op(dy%), we have

ox 1 SO
Epy, [OVg] = NTNT | Z Uty Vi Usr Vjr Dy 1 (€it€5s)
(3, t)EQ* (J,s)e
< Op 5]_VT Z Z fer) gr~J2r) |EDNT(€it€j5)’
(z et (4,5)€Q*
= Op (6N2T NT Z a?r 127’ Z |EDNT(€it€jS)|
(4,£)eQ] (J,s)€]
_ 1 _
< OP((sN’ZT)ﬁ(i%lgg* > Bpyr(cingis)l = 0p(037),
) 1 /- *
(J’S)GQL

where Ep,, (-) = E (-|Po+X, "), the first inequality holds by the Cauchy-Schwarz inequality, the
second inequality holds by the fact that Z(i,t)eﬂ* @292 < ||a | |o-]]> = 1, and the last equality
holds by Assumption 7(ii). Hence, C'V3, = 0,(d %) for each 7 € (R, R] and CVs (R) — CV3 (Ro) =
0p(65)- Tt follows that

(R— Ro) (1 —p)
256

phm(N,T)—»ooé?\/T [5‘7 (R) — cv (RO)} > ¢e > 0 for any R > Ry.

This implies that P(R > Ry) — 0 as (N, T) — co. This completes the proof of the theorem. W

Proof of Theorem 3.2. The proof is essentially the same as that of Theorem 3.1 given the
results in Theorem 2.4. Here, we only outline the major differences. Let X* = X+, Noting that
C’R = SH(X*,R) = [AJRERV}%, ﬁR and VR are respectively the eigenvector matrices of X*X* and



X* X* associated with their R largest eigenvalues, and the diagonal elements of ZAI%% are the R largest
cigenvalues of X*X*. Let F® and A% denote the conventional principal component (PC) estimators
of F'(R) and A (R) based on X* under the normalization restrictions that T~'F (R)' F (R) = I and
A (R)’ A (R) =diagonal matrix. Let F'F and A% denote the conventional PC estimators of F' (R) and
A (R) based on X* under the normalization restrictions that N~*A (R)' A (R) = I and F (R)' F (R)

=diagonal matrix. Define
Hip = (NTIAYAYTAYFR) and Hop = (T FYFO)(N I FYAR).

Let Dg denote the R x R diagonal matrix that contains the R largest eigenvalues of (NT )_1X * X

arranged in descending order along its diagonal line. Note that Dy = (NT)™ 22

(f -1) C(lf
(3

Rmaxvlt

= Op (oy7) -
With this result, we can show that the results analogous to those in Lemmas B.1-B.2 hold:
A .2
(i) 4 ||VTUrDR ~ FOlig|| = Op (633,
(i) L HfVRDR A°H2RH = 0p (63%),
(ili) 62 = 02+ Op () for r =1, ..., Ry,
(iv) GRO_H_ =0Op (5NT) forr > 1,

Following the proof of Theorem 2.4, we can show that DORND i

v g > ¢y +op or some positive constant ¢, and any r > 1 wi o+7 < R.
SNTO Ry = 1) f iti tant d > 1 with R <R
where &, = (NT)"/25,.

Noting that X = C° 4 ¢, we make the following decomposition

OV (R) = WH(X_OR)O@2
= €= o 6|+ oo &P+ ot {[(€0— Cryo ] (0 67)')

= CVi(R)+CV,+2CV3(R).

Then we have C'V (R) — CV (Rg) = [CV1 (R) — CV1 (Ro)] 4+ 2[CVs (R) — CV3 (Rg)]. When R < Ry,
we can follow the proof of Theorem 3.1 and apply the above results in (i)-(iii) to show that
Ry
CVi(R) = CVi(Ro) = (1=p) D o7+ O0p (0yy) and OV (R) = CVs (Ro) = Op (637)
r=R+1

Then CV (R) — CV (Ro) = (1 — p) X051 02 + Op (63%) and P(R < Ro) — 0 as (N, T) — oc.

Similarly, when R > Ry, we can follow the proof of Theorem 3.1 and apply the above results in
(i)-(ii) and (iv)-(v) and analogous results to those in Theorems B.4-B.5 to show that

R

= = 1- . _ — — _
CV1(R)—CVy(Rg) > ( 256p ) > 674 0p (6y7) and CV3(R) — CVs (Ro) = op (537) -
r=Rop+1

Then plim(y 70,027 [CV (R)—CV (Ro)] > E=LA=P) ¢ < g and P(R > Ry) — 0 as (N, T) — oc.
(N,T) 256
This completes the proof of the theorem. W



Proof of Lemma B.1. (i) Following the proof of Theorem 1 in Bai and Ng (2002) and that of

Theorem 2.1, we can readily show that
Ly 2R o7 |12 —2
= |FR = FPitia| = 0r (633 (B.10)

Recall that Dy denotes the R x R diagonal matrix that contains the R largest eigenvalues of
(NTp?)~1X*X* arranged in descending order along its diagonal line. Then (NTp?) ' X*X*Ug
— UrDp. This, along with the definition that F® = (.7\7T102)_1 X*X*FE and the fact that FE =
VTU R, implies that
FR = VT (NTp?) ™' X*X*Ug = VTURDp.

Then by (B.10), we have % H\/TURDR — FH,p ‘2 =0Op ((5&2T) )

(ii) Following the proof of Theorem 1 in Bai and Ng (2002) and that of Theorem 2.1, we can
readily show that % HA/\&R — AOPVIQRHZ = Op (5]7\,2T) Noting that (NTpQ)_lX*’X*f/R — VgDp and
AR = \/NVR, we have

AR = (NTp?) ' X*X¥AR = VN (NTp?) ™ X*X*Vi = VNV Dp.

It follows that L H\FVRDR—AOHQRH —0p (53%). 1

Proof of Lemma B.2. (i) Note that 4> = (NT)'62 denotes the rth largest eigenvalue of
(NTp?*)~'X*X*. In view of that X* = X o G* = (FOAY + ) o G*, we have

(NTp?) 1 x*Xx* = Nil’pz [(FOAY + &) o G*] [(FOAY +¢) OG*]/
1 * * 1 * *
= N7 [FA) o GT[(FAY) 0 G+ (e 0 G0 G
1 * *
tvT [(FPAY) 0 G*] (e0 G*) + W(SOG ) [(FPAY) o G ]I

IVi+1Vy + 1V + IVy.

As in the proof of Lemma A.1 and using Lemma B.9 below, it is easy to show that [l o G*||, <
p ||5||sp + |leo [G* _plTxN]”sp = OP(\/N—F \/T) Then

HVally, < w7 2 Hé‘oG*H = Op (657) » and
1TVslly, = [[1Vallg, < 2F | FOAY || = F le o G*ls, = Op (637) -
For IVy, we use G* = plrxn + (G* — plry ) and make the following decomposition,
1 1 N N
My = mFPAYATFY + NT? [(FOAY) o (G* — plryn)] [(FOAY) o (G* — plryn)]
1 N 1 X
+N7,—va (FOAOI) [(FOAO/) o (G B p]-TxN)]/ NT [(FOAO,) (G o plTXN)] AOFOI

= IVip+1IVip+1Vi3+1Vi4.

10



Using Lemma B.9 and following the analysis of H (FOAO') o GH in the proof of Lemma A.1, it is easy
to show that ||(FOAY) o (G* — plTXN)HSp = Op(V'N +V/T), with which we can show that

[IVia| = Op (65%) and [IVis|| = [[IVi4] = Op (3x5r) -

Then by the Weyl’s and triangular inequalities, we have

1
T <NTFOA0’A0FO’> ‘ S| IVa + V3 + IVy + IVig + IVig + IVi4lly, = Op (557) -

In addition, p, (R FPAYA°F”)—02 = Op (§y) under Assumption A.1(v). It follows that 62 — 02| =
Op (9y7) -
(i) Let e* = Je 0 G*, C* = L (FPAY) 0 [G* — plyxn] and ¢* = C* + &*. Then
1 1 1
—X*=-XoG* == (FAY +¢) o G* = FOAY +¢*.
p p p

Let Pro = A°(AYA%)~1AY and Qpo = Iy — Pyo. Let F* = FO + ¢*A°(AYA%)~L. Then

1 1 1
X*X*/ — 7F*/A0/AOF* I */'
NTp? NT N Qaos

It follows that for any r > 1

Thotr = HRotr <NTp2X X /> < BRo+1 (NTF 'AYA°F > + oy (NTg QroS ')

1
- <NT< Qao” >
where we use the fact that rank(F*AYA°F*) < Ry. Using Lemma B.9, we can readily show that

Hg*Hsp = Op(\/ﬁ—i— ﬁ) Then

1 1 * k) 1 * _ -2
e (@) < s (7' ) < g I, = Or (035).

It follows that &% ., = Op (6y7) for any r > 1.

(iii) To determine the lower probability bound for &%O +r, We notice that

Lo 1 1
H2Rg+r <NT§ S ,> S BRotr <NT§ Qpos” > t HRy+1 <NT§ Ppoc” >

1 1 * o
HRo+r <NT< Qpos” > < HRy+r <NTsz X*/> = U%G+r

Without loss of generality we assume that 7' < N and consider two cases: (1) 7" and N pass to
infinity at the same rate (viz., T'< N) , and (2) T'= 0 (V). In Case (1), we can follow the proof of
Lemma A.9 in Ahn and Horenstein (2013) to show that 5?VT,u2RO+,, (§7<*s™) is bounded from below

by a positive constant. In Case (2), we can consider the principal submatrix of ¢* and show that

11



837ty Rotr NTg*g*' ) is also bounded from below by a positive constant. It follows that 5?VT(VT%~20 .

is bounded in probability from below by a positive constant, say c,, as (N,T) — co. B

Proof of Lemma B.3. Let r > Ry + 1. Recall from the proof of Theorem 3.1 that F = FFo and
H = Hg,. Note that

al. FO
T

@ FOH -
T

iy (FOH — F)H‘l
VT

FOH — F
VT

< HH—l(( i, | = Op(SxT),

where the second inequality is by orthogonality between @, and F = FFo for r > Ry. Analogously,

we can show that 2 \/» = Op(5 7). In the following, we aim at improving the probability order to
show that A% = Op(§y7) and @, FO = Op(d )

By the definition of singular value decomposition (SVD), we can write %X* = Z,]::Af U0} 0k
Recall that ¢* = € o G* + FOAY o [G* — E(G™)]/p, Z%X* = FOAY + ¢* and 7, denotes the rth

eigenvector of Z%X *X* that is associated with its rth largest eigenvalue. If follows that

FOAOIAOFO/ FOA0/§*, g*AOFO/ §*§*/ ~ ~ 5.%
+ + + Upr = Ur 77+
NT NT NT NT NT

Premultiplying both sides of the above equation by F%/ VT, we have

FO/FO AO/AO F0/~ FO/FO Ao’g*“

—2
where we used the fact that F\;%O = Op(1), E—TQ“T = 32 = Op(0yy) for 7 > Ry, |la.|| = 1,
% HFO’ H = Op(0ny) */VN H = Op(dyy). Premultiplying both sides of the above
, 1
equation by (F > F ) , we have
A A0F0/—|—§*/ AY 1X*’ Gy AV

Op(6y7) =

Ur,

JN VNT T \FF_F

where the second equality follows from the decomposition %X * = FOAY 4 ¢* and the third one holds

by the fact that %X*'ﬁr = &,9,. It follows that AY%, = Op(éj_\,%p) as 5\’}% = 5]_\,T&T is bounded

away from zero by Lemma B.2(iii). A symmetric argument gives that @, F° = O p(5 7). B

Proof of Theorem B.4. The proof follows closely from that of Theorem 1 in Negahban and
Wainwright (2012). It suffices to show the probability of the event

cs3 [T
ENT—{HFGCNT o) | ’HFOGH HFH‘ |]FH+3H8|°°}

is bounded by c; exp(—cadlogd). Note that the claimed result holds for cI' too if it holds for I'. In

addition, since Cyr(cp) is invariant to the rescaling of ', without loss of generality, we can prove the

12



result by assuming that |||, = 3. For any I' € Cyr(co) with |||, = 2 and ||| < D, we have
T, < p(D), where p(D) = CO\/L by the definition of Cyr(cp). For each radius D > 0, consider

the set

1
B(D) = {T < Cxrla) | [T = 3. 171 < DI < (D)}

and the associated event
ENTD_{HFEB | ‘HFOGH ||F||' D+8d}

Lemma B.6 below shows that it suffices to obtain the upper bound for the probability of the event
En7 p for each fixed D > 0. In the second step, we show the probability of Ex7 p is bounded by

c1exp(—caD2NT) for some universal constants (ci, cz).

Now, define
Zn7(D) = sup ‘HFOGH—
reB(D)

where B(D) = {T' € Cnr(c) | [Tl < %, T < D, [T, < p(D)} . It suffices to show that there are
universal constants (ci, ¢z, c3) such that

3

P [ZNT(D) > ZD + gil] < c1exp(—caD*NT) for each fixed D > 0.

In order to prove the above result, we begin with a discretization argument. Let I't,... TN©) be a

§-covering of B(D) in Frobenius norm. By definition, for any I’ € B(D), there exists some k € [N(§)]
such that HI‘ — Fk” < 6. Let A =T —T*. Then by the repeated use of the triangle inequality,

H\}ﬁFoGH—HFH - |14 (I‘k—i—A)oG‘ — |+ a||

;
< [ doreec]- I+

.
< [Jreel -l |z

A symmetric argument gives the lower bound and establishes that this inequality holds for the

parcf s

AOGH—I—5.

absolute value of the difference:

el -m <[l 5 %

Because both I and I'* belong to B(D), we have that ||A||, < 2p(D) and ||Al|,, < 2/d. Consequently,

we have

a) - I+

AOGH—I—5.

ZNT( ) < (5+ max

sup
ke[N(o

AeD(D,9)

Hrk . GH - e[+

<l

13



where D(D,¢) = {F € Cnr(co) | T < d,
below with the choice of § = D/8, we have

D (D 24 D 3D 3
Invy(D)Y< =+ (24 2 )42 =220 3
~nT(D) < +<8+d\/ﬁ> TR

8
with probability larger than 1 — ¢; exp(—coD?NT) by choosing large enough c3. B

7] <6, |IT||l, <2p(D)}. Then by Lemmas B.7-B.8

The proof of Theorem B.4 relies on the following three lemmas whose proofs are given at the end

of this section.
Lemma B.6 Suppose that there are universal constants (ci,ca) such that
P(EnT.p) < c1exp(—caD*NT)

for each fixed D > 0. Then there is a universal constant ¢, such that

exp(—c4NT logd/d)
1 —exp(—c4bNT logd/d)’

P(EnT) <1

Lemma B.7 As long as d > 10, we have

max "FkoG” — HFkH 7_,_%
ke[N(D/8)] dy/p
with probability greater than 1 — 4exp(—cd? - D?) for some constant ¢ > 0.
Bl D i i pd>D?
Lemma B.8 supacp(p ) \/ﬁA o G|| < 5 with probability at least 1 — 2 exp(—55-)

To prove Theorem B.5, we need the following lemma.

Lemma B.9 Let Z = {Z;} be a T x N matriz such that Zy are independent across (i,t), E(Z;y) = 0,
and max; ¢ |Zit| < c. < oo with probability 1. Then there exists constants My and My such that for
anyt >0

—t2
P (1121, = Ma(cq V ) + 1) < (N AT) exp <Mlc2> ,
C

where ¢, = max; Zt 1E(Z%) and ¢, = max; Zl]ilE(th)
Proof. See Proposition 13 of Klopp (2015). =
Proof of Theorem B.5. On the set C;y7, we define the metric d(-,-) by the Frobenius norm, i.e.,

d(Fl,Fg) = ||F1 — PQH .ForI'y = U1V1/, Iy = UQVQI S ClNT; we have

N T

ITy —Tof* = ZZ UrVii — UnVai)? = > > (U = Uat)Vai + Uze(Vaii — Vai))?
=1 t=1 =1 t=1

N T
< 2 VY (Un—Us) +2Z Vi — V) ZUzt
i=1 t=1 =1

= 2|0y — Vs + V1 — V&%),

14



where the inequality holds by the fact (a + b)? < 2(a? + b?) and the last equality is due to the fact
|Uz2|| = Vil = 1. Let {U;} and {V,,} be the minimum e/2-nets of unit sphere in RT and R,
respectively. Then for all I' = UV, there exists a pair (I,m) such that

IT =TV ||P < 20U = Ul% + |V = Vi) < 2.

Hence, {U;} x {V;,} is an e-net of C;yr. The covering number N (Cin7,d, ) can be bounded by
N(BY |l ,e/2) x N(BE, |-l ,€/2), where BY denotes the unit ball in RY space. By Corollary
4.2.13 of Vershynin (2018), we have N (CinT,d,¢) < (6/e)N+T. Let enr = 1/log(N +T') and fix the

minimum ¢yp-net {I'y,...,I'x} where K < (6/en7)V 7. We have

su T'o|G - E(G < max su T'o|G - E(G)]|.
S PG BO), £ wax s Ce[G-B@,

ke{l,...K d(T,\T)<enT

< max [Ty o [G — E(G + max sup I -TYy
ke{l,...K} | [ Mlsp kel K} d(1 T <enr | |

< I'yo|G—-E(G
< max (oG- E(@)l, +evr.

< maX}{I\FkO[G—E(G)]Ilsp+ sup H(F—Fk)O[G—E(G)]Ilsp}

where the second inequality holds by the triangle inequality, the third inequality is due to the fact
that [|Ally, < [[A] and every element of G — E(G) is bounded by 1. For each k, we have I'y = UV}
for some unit vectors Uy and V. Let Z*) = 'y o [G — E(G)] and denote its (t,7)th entry as z®,

it
By the definition of C;y7 and the fact that G — E(G) has bounded i.i.d. entries, we can show

7|

max; ¢

IN

1Uklloo [Villoo < e3n,

T 1/2 N 1/2
max; (ZE[(ZZ‘W]) < |Villw < conr, and max (ZE[(th’“))2]> < |Uklloo < v

=1

By Lemma B.9, there are some universal constants M; and Ms such that

a(E2

Letting t = KM11/263NT\/(N + T)loglog(N + T) and noting that K = (6log(N +T))N*T we have

P< max HZ(k)
ke{1,...,.K}

t2
> MQ(ClNT V CQNT) + t) < (N A T)exp (—) .

2
sp 1C3NT

> Msy(cinT V cant) + L‘)
Sp

IN

(61og(N +T))N*T (N AT)exp (—~K*(N + T)loglog(N +T))
= exp (—(K? = 1)(N +T)loglog(N + T) +log(N AT) + (N + T log 6)
< exp(—(N+T)loglog(N +1T)),

as long as (K2 — 3)loglog(N + T) > log 6 and log(N +T) > (N A T)Y/(N+T) Hence we have shown
that

= Op(cint + cant + esnry/ (N + T) loglog(N + T)).

max HZ(k)
sp

ke{l,...,.K}
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To sum up, we have

sup ||To[G — E(@)]|| = Op(cint + cant + eant /(N + T) loglog(N + T) + 1/log(N + T)).

reCint
|
Proof of Lemma B.6. For all ' € Cyr(cp) with ||, = 2, we have
logd logd
L[? > ¢l > ¢ |IT
P > eo T, /<25 > o i 2227,
logd

which implies that |T'|| > u = ¢

Accordingly, recalling the definition (B.5), it suffices to

restrict our attention to the sets B(D) Wlth D > p. Forl=1,2,... and a = 7/6, define the sets

1 .
St=A1I"€ Cnrleo) | Tl = 7, [T € [0, oy, and D[l < p(a’p)}.

Now, if the event Ex7 holds for some matrix I', then T' € S; € B(a!y) for some I and

7
| 5o -] > gurn+ 25k

3l o 7 T Moo _ 3
> — 2 7 oo il
8 g% AT ht g 8d

1

where the equality holds by the fact that o = 7/6 and |||, = 5. Thus, Eyxp 4, occurs for some
[. 1t follows that Eyr C U2 Enp 41,. By the union bound and the fact that a2l > 2¢*] for some
c* > 0and all [l > 1, we have

P(En7)

[e.9] [e.e] o
Z PENT,) < Zexp(—czam,uQNT) <c Z exp(—2¢*cou? NTI)
=1 =1 =1

0 / 2
2 ! exp(—caNTp”)
= a ) lwaet N oy SRCEL
=1 2

IA

where the second inequality follows from the hypothesis on P(En7 p) and ¢y = 2¢*cs.

Since NTp? =

N I 1og d, the claim follows. W

Proof of Lemma B.7.We first consider a fixed I' and establish the exponential tail bound. Then

we bound the covering number N(D/8) and use the union bound to establish the result.

By the definition of Frobenius norm, we observe that for any T x N matrix A with typical element

A, we have

1/2 1/2

Al = Z(Ait)2 = Z(Aitzit)Q = sup ZuztAthzt

it it IUNI=1"%

where z;;’s are i.i.d. Rademacher variables. Then

1/2

1
HF o GH » > (Titgr)? = Hsﬂp > waYa | = Znr,
it Ull=1 \ 5
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where Y;; = %zitfitgit, and z;;’s are i.i.d. Rademacher variables that are independent of {g;;} . Note
that each Yj; is zero-mean, and bounded by ﬁ. By Corollary 4.8 in Ledoux (2001), we conclude
that

8/ pd2d? ) , 64
- > — | < Z - |E(Z < —.
P (12r ~ B(zvn)| = 5+ P ) < dexp(E0), and E(ZRe) — (EZvr) < o

It follows that ’E(ZNT) - W/E(Z?VT)‘ < ﬁ. With the above results and the fact that F(Z%;) =

IT||?, we can conclude that
1 24 pD*d?
P(||srFoc| — |H|| = 5 + =7 ) < 4exo(- .
(el -1l= & + ) < i3

The upper bound of covering number N(J) can be bounded similarly as in the proof of Lemma

4 in Negahban and Wainwright (2012). Then we have that

D?Vd

log N (8) < 36(p(D)/d)%d, where p(D) = covlosd’

Combining the tail bound with the union bound, we obtain

P < max
ke[N(D/8)]

lekoGH ]| >

2 72
+ﬂ> sexp(~L2E 4 36(p(D) /6)7d).

Choosing the constant cy sufficiently large, we have the desired result. B

Proof of Lemma B.8. Our goal is to bound the function

1
—Ao(G|,
/P

where we recall that D(D, ) = {I' € Cnr(co)| [Tl < 2, [T < 6,|IT|l, < 2p(D)}.

(i) Our approach is to show concentration of G around its expectation E [f(G)], and then upper

f(G)= sup
AeD(D,9)

bound the expectation. For any independent copy G of G, we have

f(G)=f(G) = sup

AeD(D,5)

1
—Ao GH — sup
VP AeD(D )

1 . -
—AoldG
vt

a0

i ol
N

where the last inequality is by the fact G'— G has entries bounded by 1 and ||A[|, < 2 Therefore, by

<

Hif

< sup
AeD(D,s)

AOGH

<

the bounded differences variant of the Azuma-Hoeffding inequality (Ledoux (2001, p.17)), we have

22

P{IF(G) = E[f(G)]] = t} < 2exp(— )-

17



Setting t = 2 we have P {|f(G) — E[f(G)]] > £} < Qexp(fpd;lgﬂ).

(ii) Next we bound the expectation. First applying Jensen’s inequality, we have

(EF@))* < E[fAG)=E| sup ZAMt

AeD(D,$)

_ sup Z{ A2 _ <Aiij‘t>}+nAn2

AeD(D,5)
< FE sup {AQ Jit _ g <A22tgn>} + 42,
A€D(D,6) 73 p p

where we have used the fact that >, , <A3t g;f) = ||A||? < 6. By a standard Rademacher sym-

metrization argument, we can show

1 it 2
E[f*(G)] <2E | sup E:(NTAZ?gZ) + 62,
) AED(D,5) NT bp ot

where ;s are i.i.d. Rademacher variables. Since ‘N TA? % o€it| < 42\[2T for all (i,t), the Ledoux-

Talagrand contraction inequality (e.g., Ledoux and Talagrand (1991, p.112)) implies that

32\/NT
sup Z(Aitgitfit) + 6%

2
E[fY(G)] < d2\[ AeD(D,8) 7

By the inequality that [tr(AB)| < || A[l, | B],,, we have )Zm (Aitgitﬁit)‘ < Al G o €], - Tt follows

that
sl < B

where we used the fact that ||All, < p(D). Noting that G o ¢ is a random matrix with bounded
i.i.d. zero-mean entries, we have E' [|G o §||;, < v/dlogd; see, e.g. Theorem 4.4.5 of Vershynin (2018).

Hence, we have

p(D)E |G ol + 6%,

1/2
BlA(@) < E[f%G)]s(%T 5) <Ip

by choosing a large enough ¢y and noting that d = (N +7)/2 > vV NT.

—_

Combining the results of part (i)-(ii), we have the result desired. B
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Additional Online Supplement for
“Inference for Approximate Factor Models: Random Missing and Cross
Validation”

Liangjun Su, Ke Miao, and Sainan Jin

School of Economics, Singapore Management University

This additional online supplement consists of two parts. Section C contains the proofs of the technical

lemmas in Appendix A. Section D provides some additional simulation results.

C Proof of the Technical Lemmas in Appendix A

Proof of Lemma A.l. From the principal component analysis (PCA), we have the identity

(NTG?) ' XX'F=FD. Pre-multiplying both sides by T~ F” and using the normalization T-'F'F =

Ip yield T1F’ (NTG*) ! XX'F = D. The lemma follows provided D =plimD, which we show below.
Noting that X = (FOAY 4 ¢) o G, we have

D = T'F(NT@) ' XX'F
— T'F (NT@) ' [(FOAY +¢) oG] [(FOAY + &) 0 G]' F

— TUF(NT@) [ (FOAY) o G] [(FAY) 0 G]' F+ T 'F' (NTG) ' (0 G) (s 0 G)'F
+TVE (NTG) " [(FOAY) 0 G (e 0 QY E + T (NTF@) ™ (e 0 Q) [(FOAY) 0 G]' F

Dnta+ Dnt2o+ DnTg + DNToa, say.

We first study Dnr,1. Noting that E(G) = ¢lrxny with 17xny being a T' x N matrix of ones, we

make the following decomposition

DNT,l _ T—IF/ (NTq~2)—1 [(FOAOI) o G] [(FOAOI) o G]/F
2 F1 0 AO/AO FOF
_ CFPFANNEE 2\ =1 [0 a0n A N
- L w7 T () [(FA%) o G] [(POA”) 0 G| F

T (NTE) T (A% 0 G (PO 4 T B (NT) ™ (FOAY) [(FOA”) o G F

= Dn711+ Dn7i2 + D713 + DnTa

where G = G—F (G) . By the i.i.d. property of g;;, we can readily show that §/q—1 = Op((NT)~1/2).
By Lemma A.3(ii) in Bai (2003), F;\I;O AOJIVAO F;F 2, D. This result can be strengthened to ||F;\I;O AO]/VAO F;F
—D|| = Op(§ ) under our assumptions. Then || Dyr.11 — D|| = Op(d ).




For Dyr,12, we have
Istall, = (VTE) s (1717 (7% o ] [(70A%) o ] F)
S tr <T71F~VF) (NT(}Q)_l )\max ([(FOAO/) o G:| |:(F0A0/> o GN’] />

= R(NT@) ™ ||(F°A") 0 G i

sp

where the last equality follows from the fact that tr(T—'F'F) =tr(Ig) = R. Let c) p = max; P\?/FH
and Z = [(FOAY) o G]/ear. Let Zi denote a typical element of Z : Zy = \YF? (g1 — q) /ear- By
construction, max;; |Z;| < 1. We want to apply Lemma B.9 by conditioning on F = o {F 0 AO},

the sigma-field generated by F° and A°. By straightforward moment calculations

T 0/ 170 2
MNF
a = (23|F) = max 27( 5 /) E (g1 — q)°
b t=1 c/\,F
_ Val-g) max IO R0 070 < AN HFO/FOHI/2
C\F C\,F
and
g = Z (git)E (git — q)°
= =1 OF
_ viil—9q9 q(1—gq) /FO/AO/AOFO CRT HAO,AOHI/2
C\F C\F ’
where c) v = max; HA?H and cpr = maxy HFtOH . It follows that
| (Poa) = 0p (max {exn [|FYF |2, crp [[AYA] 2 ex plog(N v T) }).

This result, in conjunction with the fact HFO/FOH =0p(T), HAO’AOH =0p(N),can =0p (N'71/4)) ,
crr = Op (T72/4)) ,and ¢y p = Op ((NT)1/4) under our moment conditions on /\? and F? in As-

sumption A.1, implies that

A

1
IDnTaell < VR|Dnrazlg, = (NT max {CA NT, N, & f [log(N Vv T)] })

IN

Op {NlT max {N%/2T, T%/2N, (NT)Y2 [log(N V T)]2}} = Op(6327)

where ¥ = v, V 75 Then | Dyzsl| = [|Dnraall < {IDvrull | Darasl}? = Op(635 ) by the

matrix version of Cauchy-Schwarz (CS) inequality. Therefore we have || Dyr1 — D|| = Op(0 N(Tl v/ 2))

Noting that D72 is positive semidefinite (p.s.d.), we have

IN

(NT@) " tr (T—lﬁ’ (c0G)(co G)’F) < tr (T—IF’F> (NT@) ™ Amax (€0 G) (€0 GY)

= R(NTP) ' eo G

sp?



where the first inequality follows from the fact that [|A|;, = Amax (4) <tr(A) for any p.s.d. symmetric
matrix A, the second inequality follows because tr(A’BA) <tr(A’A) Amax (B) for any symmetric p.s.d.
matrix B and conformable matrix A, the equality follows because tr(T~'F'F) =tr(Ig) = R. Note
that

leo Gl < |

co GHP +lleo E(G)l,, = ]

co Gl +alell,,-
sp

, we can readily
sp

By Assumption A.2(i), [le[|y, = Op(V/'N ++/T). As in the analysis of )(FOAO’) oG
apply Lemma B.1 by conditioning on € to obtain with high probability

|

It follows that | Dyrall < VR ||Dy1all,, < (NT)™' Op (N+T+ (NT)/? [log(NvT)]Q) — op (632
and ||Dyrpz|l < \/E”DNT,ZHSP = 0p(6;\[(1%*7)) and ||[Dyr3s|| = |Dnrall < {[|Dnrall HDNT,QH}I/Z _
OP(5]_V(T1_W 2)) by the CS inequality.

In sum, we have Hf) - DH = OP(‘SJ_\f(:/{_Wm)' [

806;

o Op <max{\/ﬁ, VT, nﬁxkit\ log(N\/T)}> <Op (\/N—F VT + (NT)1/4log(N\/T)> .

Proof of Lemma A.2. (i) From the method of PCA, we have
(NT@) ' XX'F = FD, (C.1)
Using X = (FOAO’ + 5) oG and G = E(G) + G = qlrxn + G, we make the following decomposition
XX/
= [(FAY +-£) o G] [(FOAY +¢) oG]’
= [(FOAY) oG] [(FPAY) oG] + (¢ 0 G) (e 0 G) + [(F'AY) 0 G] (6 0 Q) + (e 0 G)' [(FOAY) 0 G]'
= PFOAYA°FY 4 dyrp, (C.2)

where
dvr = [(FOA%) 0 G] [(FOA%)o é}' +q(FOAY) [(FOA%) o é}' +q [(FOA%) 0 G| A%
+(e0Q)(e0G) + [(FOA") 0 G] (e 0 G) + (e 0 Q) [(FOAY) 0 G]'.

Premultiplying both sides of (C.1) by (%AO’AO)U2 %FOI and plugging (C.2) yield

2 0/pA0N 1/2 0’ 770 0/ A0 0 f 0/A0N 1/2 0 F
@ (AYA FOFO\ (AYAON (FOEY ~ —  [AYA FYFY\ -
q2< N > ( T )( N 7| T ="y T (C.3)

_ L oN1/2 -
where dy1 = q% (AONAO> %FO’ dy7F. Following the analysis of Dy7’s in the proof of Lemma A.1,

we can readily show that ||dy7| = Op(éj_v(Tl_W/Q)). Letting

BNTzﬁ AVAO 1/2 FO' 0 AV A0 1/2 and Ry — AV AO 1/2 FY R
2\ N T N N T |’




we can write (C.3) as follows: [Byr + JNTRX,IT]RNT = RyrD. Hence, each column of Ry is non-
standardized eigenvector of the matrix Byr + JNTR;[lT. Let D ~nT be a diagonal matrix consisting of
the diagonal elements of R'NTRNT. Denote the standardized eigenvector Yy = RNTIV);[}/Q. Hence,
we have [Byr + CZNTR;,lT]T N7 = TnrD~ 1. That is, D contains the eigenvalues of Byr + CZNTR;,lT
with the corresponding normalized eigenvectors contained in T yp. It is trivial to show that with
high probability

1Bt +dnr Ry — B]| = 0p(837 "), (C.4)

1/2 1/2

where B denotes the probability of By, i.e., B =X /7Y poX ¢ .

Let T denote the probability limit of Y y7. Note that Y = Y1 by normalization. By (C.4) and
the eigenvector perturbation theory that requires distinctness of eigenvalues (see, e.g., Steward and
Sun (1990, Ch. V), and Allez and Bouchaud (2013)), ||Tn7 — Y| = Op(dnr (1- W/2)) by (C.4) and

Assumption A.1(iv). This, in conjunction with the definition of Ry, implies that

0 7 07 A0y —1/2 07 A0\ —1/2
P (Y ()

T N N

satisfies H%,F - ZX3/2TD1/2H = Op(cijv(%dyp)). The result follows by noticing that Q' = ZX§/2TD1/2.
(ii) By Lemma A.1, (i) and Assumption A.1(ii) , we have

H

(NTIAYAY) T (TR E) D = Spo(S ATV DT 4 0p(03 )
_ 1/2TD 12 L 0p (O (1- 7/2) Q'+ 0p e (1- 7/2))

(iii) The proof follows closely that of Lemma B.1 in Bai (2003) and Theorem 2.1 and thus omitted.
The major difference is that we now use the decomposition in (A.1) and the fact that g;; are i.i.d.
Bernoulli(q) and independent of F° A° and e.

(iv) The proof is analogous to that of Theorem 2.1 and thus omitted.

(v) The claim follows from (iv) provided that we can show that A Zf (Fy — HFE)FY gy =
Op ((5 7). The proof of the latter result follows closely that of Theorem 2.1 (or Lemma B.2 in Bai
(2003)) and thus omitted.

(vi) By (v), the claim follows provided that %Zle(ﬁt — H'E)EFY = 0p (6 %) . We can prove
the latter result by using analogous arguments as used in the proof of Theorem 2.1 and Lemma B.2
in Bai (2003).

(vii) Using F} = (F; — H'F?) + H'F?, we make the following decomposition

T T T
1 ~ _ ~/1 0 =07 £ 1 ~ A ~ = 0N
T;F (i —q) = HT;FtFt H(git_Q)+T;(Ft—HFt)(Ft—HFt)(git_q)

T
1 ~ ~ - -1 . -
o 2 (B~ HEEH (g —q) + H' 7 ; FY(F, ~ H'F)) (g1 = 0)

= dlt + d2t + d3t + d4t.



By Theorem 2.1 and Lemma A.2(iv), do; = Op (63%) . By Lemma A.2(vi)-(vii), d3; = Op (0%) and
day OP<5 ) ThenTZt 1FtFt(gzt_Q) Hllzt 1Ft0Ft H(git_Q)+0P(5i2)

(viii) As in (vii), we can also show that X Zt VB F =HL Zt VFPFYH + Op (5 7). This, in
conjunction with the fact that ST, FyF] = Iy, implies that

T
o1 . B
H’f Y FFYH =1+ Op (037) -
t=1
Premultiplying and postmultiplying both sides by (H’)~! and H ! in order yields LRV = (HH')~1
Op (65%) - It follows that HH' = (£FYF°)~! + Op (637) . @

A Cautionary Note. We can prove Lemmas A.3-A.5 for £ = 1 based on the results in Theorems
2.1-2.2. When these lemmas hold for £ = 1, Theorems 2.3-2.4 also hold for £ = 1. With the results
in Lemmas A.3-A.5 and Theorems 2.3-2.4 for £ = 1, we can prove them to hold for ¢ = 2. This
procedure is repeated until convergence. Since the verification of Lemma A.3 for ¢ = 1 is different
from the general case with £ > 2, we first prove it for £ = 1 in detail and then prove it for ¢ > 2 after

we prove Lemmas A.4-A.5.

Proof of Lemma A.3 (¢ = 1). (i) Noting that gAbEmt D11 [(0) FONLq Zf\;l A [eigie + N F (g1 — q)]

T
maxy HgéFtH < Op (1) maxy HN fvl )\ [Eztglt + )\ Ft git — q) ‘ = Op ((N/lnN)_l/Q) by Lemmas
A.1-A.2 and Assumption A.5(i). Similarly, max; ¢A,z‘ <Op(

=Op ((T'/In T)*1/2) by Lemmas A.1-A.2 and Assumption A.5(ii).

(ii) By the decomposition in (A.1),

D) max; || S0, F? [eigie + AFP (9it — q)] H

. F +(0) 4 (0)
7’;9% Ft( ) ~HO'FY — Gy = a1t + az + ag + ase + age + (ast + agt — Ppy)-

Following the proof of Theorem 2.2(i) and using Assumption A.5 and the fact that max HFtOH =
Op (T71/4), it is easy to show that

max|lay| = Op (T—1/25];1T+T—1+%/4) , max [lax | = Op (5350 N),
max lagll = Op (T71/45&2T> for [ = 4,5,
max llazt]| = Op (T71/45]7V2T InT + T_1+371/4) ,
and max; Hagt—I—ast ngtH = Op (6N2TII1N) It follows that max; HrFtH T71/45 2 InT +

T-1+31/4) For 7’1(\02, we have
A~ N & - 0 ¢ U
<A03 — O gy - ¢§9 = Ba; + B3 + Bs; + (B1i + By — ¢(A,1)’

where Bsy;’s are defined in the proof of Theorem 2.2(ii). Following the proof of Theorem 2.2(ii) and
using the fact that max; ||A?|| = Op (N72/%)| max; & SN &2 =0p(1),and §—q= Op((NT)™1/?)

i=1%1

5



we have by Theorem 2.1 and Lemma A.2

max || Byl = Op (657 I N) , max || Bz = Op <NV2/45]_\/2T In N) , max || Bs;|| = Op ((NT)A/ZN%M) ;
(2 (2 (3

and max;

By + Bii — | = Op (633 I N) . It follows that max; |7} | = Op (N72/1632 n V).
(iii) By (i) and the fact that max, |[FY|| = Op (T'71/4) and max; H)\?H =0Op (N72/4) , we have

max HT]l it

- maxHFO’H<°¢ b+ AV O i + AV EHO) ) 4 FY O )

Y2

< ||A O)Hm?XHFtOH {m?xH&sM A(e)}JFH HmaXWH {maXqu(O)Hera %)tH}
= Op(T/*((T/InT)"'/? + N72/46]*\,2T In N)) 4+ Op(T/*(T/In T) /2 +T71/46]7V?T T 4 T/t

= Op(6y7 " InN).

Similarly, we have

~(0)7~ ( 0y ( (0)
= I%%X“¢A,¢¢Ft+¢1\z Ft+¢Ft AﬂL I(Xz Ft”

o 1@
max 7y i

IN

Op ((N/ In N)~/2(1/ 1nT)—1/2) + Op(T/InT) 1/ (Tvl/45J—V2T 1nT+T—1+371/4))
+0p ((N/ I N) "N 252 N ) + Op (T 4633 T + 7140/ )
= OP(517\72T In N).

(iv) Note that

N
0)/ N Z Eztgzt
L NoT
-~ NT Z Z Fso [5isgis + /\?/Fso (9is — Q)] EitGit
i=1 s=1
L NoT LN
= N7 2 2 FVB(issi)gisgin + 55 D Y FY [eisci — Bliaci)] gisgin
=1 s=1 i=1 s=1
q L NoT
NT Z Z FOFIN (9is — ) €ingie + w55 D Y FOFIA (938 — @) i (g3 — @)
i=1 s=1 i=1 s=1

= Op (T 4 2 N + 532 N + 035N ) = Op (T4 4 632 I N) .

~ (0
Then max; H% Z’f\il ¢5xz'€z‘tgz'tH =0Op (T*H““/4 + 5;72T In N) .

Observe that‘ HOL SN 30205, T iy Yoay MY [eisgis + FON (gis — @)] Gie |

— H F1(0) fr 0y




Using git = (1 — q) — (git — q) , we have

N T
1
Ni Z Z AOFO/ 518918 + FO,)\()(gZS - Q)] git
s=1

N T 1— q N T
= Z 2N eugis + T D ) NEIEI N gis =0
i=1 s=1 i=1 s=1
T 1 N T
Z Z )\OF €isGis(git — q) — NT Z Z )\?FSO/FSO,)\?(gzs = a)(git — q)-
i=1 s=1 i=1s=1

It is easy to show that the first two terms are Op((sxf%p) by Chebyshev inequality. The third term is
Op(dx71n N) by Assumption A.3(iii). For the fourth term, we have

N T
1
max ||~ Z Z NFYFYN (gis — ) (git — q)
i=1 s=1
1 N T 1 N 2 2
= max |- Z Z /\?FB’FS’)\?(%S —q)(git —q)|| + NT Z H)‘?H max HFtOH
i=1 s=1,s#t i=1

= Op(0y2InN) +Op(T~1HM/2),
Then Hﬁ((])% =1 QZ)AZ)\Olgzt =Op (T_H'Vl/2 + 51:72T In N) )

Noting that ffxoz = )\( ) (fl(o))_l)\,? — éSE\O,i = By; + Bs; + Bs; + (B1; + By — &553)1), we have

Z A l)\O’gzt < mtax

max

N

1 ~(0

N E [B% + Bs; + Bs; + (B1i + B — ¢E\,)i)] A Git
i—1

where By;’s are defined in the proof of Theorem 2.2(ii). Using gi+ = (1 — q) + (git — q) ,

) g(o>H | N
max ZBZL}\ gzt = qN m?X ]VT;;F 518915)\ git
1— N T
< Op (1){ T;ZZFOQS.%S)\ +maX ZF 525918 gzt_Q)
=1 s=1 =1 s=1
= Op((NT) Y2+ (NT)?m N)
In addition,
1 N T ,
_ 7(0) [ £r(0) 70 £(0) r7(0)/1\—1y0 . 07~
max ZBSzA Jit = mtax NTG Z;;Fs (H Fg —Fy ) (H ) Ai GisA; Git
1 . A A !
< Op(1) max TZFS(O) (H(O)'Fs0 — FS(O)> gis|| = Op (5]7\,2TlnN) ,
s=1

and max; H% SN Bsidgi || < % lg — 4 H[ﬁ(O)/rlH Ly H)\?H2 = Op((NT)~'/?). Lastly, noting

~ (0
that the difference lies between Bj; + By; and qﬁg\)l is controlled by |§ — ¢|, we can readily show that

}



= Op((NT)~Y/?). In sum, we have max; H]:I(O)’% Z 1 T/(X 2)\0'92,5

max H N 2i= 1(311 + By — ¢A Z))\Olglt
= Op (637 InN).
(v) Noting that &%01 = ﬁ(o)*l%ﬁ( )’FO 1 val A [eztgzt + N (gi — q)] , we have

Z ¢F t OIta

T N

1 _

max < Op(1) max ||~ tE 1 E 1 /\? [Ejtgjt + A?/Fto (gt — q)] FY%:
j=

T N
1
Op (1) mlaX ]VTtgl El>\ Ft €5t9jtGit
— J:

IN

T N
1 _
+0p (1) mzax NT ; Zl A?th)\?,FtO (th —q) Git
—1j=

= Op (655 InN) + Op(N~1H2/2),

e 1
)FOIta T ZtT:l[alt +agt + aa +

ase + are + (ast + agr — (bF’t)]FtO’ git- Following the proof of Theorem 2.2(i) and using Assumption
A.5 and the fact that max; H)\?H = Op (N72/*), it is easy to show that max; ||+ S aFYgul| =
Op (T7Y25 3 + T71) ymax; | & 7., ae FYGir|| < maxy [lag|| Op (1) = Op (5;V2T In N, max; || £ 37,
aFYgi|| = Op ((5N2T1nN) for | = 4,5, maXZHTZt LanFYgi|| = Op (5 lnT+T ) and
max; || 3 [as: + agr — ¢F¢]Ft0'§z’t|| = Op (657 InN) . It follows that max; ||7 3, 17°Ft VY Gl
=Op (5;,2TlnN) .

Analogously, by the decomposmon in (A.1) we have 7 Zt L7

, where the second term is

: o 112
(vi) Note that 3 it ‘ 77@15)“ SN 2y ’ 771 atl| TN DI Hng z)t
bounded above by Op(dyy(In N)?) by (iii). For the first term, we have

N N
1 2 1 . N ) X ) )
aXNZ‘ng?i)t < mtaxﬁzHFtO’H(O)¢S\(),)z'+)\?I(H(O),)_1¢§g1+)\?/(H(O)/)_1f’(0) FO’H(O) /(\72
=1 i=1
N
7 (0 0 2 1 A() 2 A(O) 2
< A mp 5 2ons] + D
5 (0)—1 2 (0)]12 +0) 1 & 0112
-1—4H[H ] H {mgx H + max H }NX;H)\ZH
= Op(T™""M/2 4 N"'InN),
It follows that%zg; ‘ Nt H = Op(T~ /24 N~ In N). Similarly, we can show that maxtTZt 1”77215 I&

= Op(N~72/2  T-1In N).
(vii) Let ky = 1 + HFPH2. It suffices to show that ﬁZle Zi\il ﬁt(nl(oli) Op (5 %) for
I=1,2. By (iil), xp Sry SN re(n)? < maxig |5 4lP4 S0, bt = Op(dy4(n N)2). In addition,
0 7(0) 5. (0) f _1,(0) f 1400
M S Sy me(ni 00 < i Yy I e[ EY OG0 2 Y (O TGyl 2] Y (O 1702+



HFtO/ﬁ /(OH }_4{J11+J12+J13+J14} For J11, we have

A0)2

Ji1 < =0p (T71),

T
N 21 1
O 3w F 5
t=1 =

N 2 .\ N .
as we can readily show that 3; SN Hqﬁf)z = Op (T71) . For Ji 2, noting that (H ()=t DO-1L RO/ p0 =

(HAYA%) "L and £AYA? — B0 = O (N71/2) | we have

1 T N 1 1 N 2
Jia = e D> | N(GAYAY) T qZA (£)e9i + AV FY (9t — q)]
t=1 i=1 7j=1
1w |1 & i
< Or() 5 ; Kt || ; A [eivgie + N'F} (g — )] | = Op (037) -

Similarly, we can show that J;; = Op (5]_\,2T) for I = 3,4. Then ﬁ ZtT 1 va 1 fﬁt(ngoz)t)Q =0p (5;,%)
0)_ 0) _

(viii) Note that y7 DDHED PR FSAO'nES)g,S > i N7 DDHED PR FO/\O/ng z)sgzs = i1 Ju. For

Ja,2, we can use the uniform bound in (iii) and show that Jo; = Op (5N2T In N) . For Ja 1, we make

the following decomposition

1 R
hi = yp L 2L FN (FUAOG0) + N (HO) o, + A (HO) L) + FEOR)) gy

T\*
I\
"
I

Il

(]
o
g

Let \) and FY denote the Ith element of M and FO, respectively. Let J214 (I,7) denote the (,r)th
element of Jp 14 for a = 1,2. Noting that gis = (1 — q) + (¢ — gis) , we have

(0
o1 ()| = NTZFWFP’H °>Z¢A1gztx

NTZF"FtO/H O)Z¢ — 9N

=1
= J2,1a (lv r, 1) + J2,1a <l7 T, 2) .

NT ZFtrFtO/H(O) Zd)Az (git — @AY
=1

For Ja14 (I,7,1), we have

J2,1a (l, r, ]-) S (6]7\[27"’)7

Z Az>‘

=1

1 o (0)
N Z Ny
i=1

T
LS |Ee)?
t=1

0
where we use the fact that H % i1 (bg)l

= Hg(m H H% ity T%z Y1 FY [eagie + FYA)(gin — 0] A




= Op((SR,QT) by Chebyshev inequality. For Ja 14 (I,7,2), we have

it |

Amn{}viw i {1

= Op (55%) Op(T7/?),

J2,1a (Z7T7 2) -

(0)

as we can show that %val H)\QHQ HgAbSXO)Z
O(T71). Then Ja11 = Op(dy%). Similarly,

1 LN
N*ZZ ir )\0, ¢ lgzt
=1 i=1

S22 (L,r)|| = |

N 1 A
< ; A0 A0 (f7(0)r)=1 Z¢Ft 0 NT;;)" A (T
= Jo2(l,r, 1)+ Joa2(l,r,2).
Noting that
T T
Z Agﬂ)tFtl = D(O)il%F(O)IFO ! Z ]\1q Z )\? [Eitgit + )\?IFtO (9it —

o~
Il

R

-

=

||J2 12 (l T, 1)” = OP ((5 ) For JQ 12 (l T, 2) we have

ZF,S()Z¢FS Z)‘?)\?r Gis —
L 1/2
)| {T;H : } {

= Op (05%) Op(N71/2).

J2,12 (l, T, 2) =

(0)

IN

D?Ag

ZF&%

T
N
1 _
= Op(1) NT Z Z A [eingic + N'F (9 — )] Fiy = Op (637) »

Gis —

2}1/2

2 2
- N
= OP(6N2T) and % Ei:l E H% Ethl FtOthf(git — Q)H =

¢ (git —q)

Q)] Fg

2}1/2

So Jao = Op ((5 ) Similarly, we can show that Jy; = Op (5]_\,2T) for ! = 3,4. Then ﬁ Zf{:l Zf\il FONYn. Gis

=O0p (6N2T) .

10



2
(ix) By (vi) and the fact that the fact that = Zfil E H% ST Fleisgis| =0O(TY)

= max

T
1
Z nzt gzt (T Z: Fsogisgis>

L7 N
0)-
NT E F? E m(t)gz‘t&sgis
s=1 i=1

max
t

2y 1/2

IN

1/2 | X T
{max — Z Nit } N Z Z s €isYis
i=1 =1

T
— Op (T*1/2+%/4+(N/1nN)*1/2)O( T-1/2)

= Op (T—H%/‘1 +(NT/ 1nN)—1/2) .

(x) Note that NT Zs 1FO Zz 1 EZtgltnzs Jis = Zl 1 NT Zs 1 FY Zz 1 6115911:771( 29918 = Zz 1 J3,0¢-We

can readily bound J3o; by Op(5N2T In N) by using the uniform bound for 77&38 (iii). For J3 14, we

have

T N
_ 1 0 or £7(0) 7. (0) 01/ £r(0)—17.(0) or 0)/ () or () pu
J31t = NTsleS;%g“ |:Fs a8 )¢A,i+)‘i (HO)y SARIDY: (HON1:0 4 g0 fr 0y O gis
= J31p (1) + J314(2) + J3.14 (3) + J3.1¢ (4) .

Using Gis = (1 — ¢) + (¢ — gis) , the fact that F”H 0)¢> A 18 a scalar and max; 5 LSV &2 =0p(1),

and (iv), we have

max J31¢ (1)

- max NT ;F Zeltg”F H 0)¢Az Gis
1—¢ - = 0)/
S m?rX T Z FOFO/H Z gltgzt + mtaX Z gltgzt(z) H(O)l Z FOFU/ gw N q)
s=1 =1 s=1
/ 1 N 1 T 2y 1/2
< Z ¢A aCitGit|| + max H {max — Z szt} N Z T z:l FSFSI (gis — q)
= Ss=

= op(T—1+%/4 +N'InN)+ Op((T/In T)—W)op (1) Op(T~Y?) = Op(T~ /4 £ 632 In N).

For J31;(2), we have by (i) and the fact that max, = Op(N/InN)~1/?),

N Z@ 1 )‘z €itGitGis

N
A 1
m?ngJt (2) = max ZFOQS(O)/ lN;)\?Eitgitgis
1 Y 1 <&
< ‘ [H(O) H max H max Z)\?sitgitgis T Z HFSOH
i:l s=1

= Op((N/InN)"Y%)Op(N/InN)~1/?) = Op (534 1In N) .

11



Similarly, we can show that J3 14 (1) = Op(éjva In N) for | = 3,4. Then max;, Hﬁ ZST:1 F? Zf\il sitgitngg)gis
=Op (T7"/4 4+ 67 InN). R

Proof of Lemma A.4 ({ = 1 and £ > 1). (i) From the PCA, we have the identity (N7T") "' X0 X ()
= FODO), Pre-multiplying both sides by T-1EWO" and using the normalization TR RO = [p
yield TVFO (NT)™t XX'FO = DO, Let £® be the T x N matrix with (¢,7)th element given by
5%71) = €igit + nz(-ffl)git. Noting that X(©) = FOAY 4 ng), we have

D(f) _ o) (NT) (FOAO/ + 6( ))(FOAO/ + 6(E))/ﬁv(f)

_ ’(N )" {FOAO’AOFO’ 1 OO pOp0 (O +5(5)A0F0’} Jald)
DY
2

_ D(f) )4+ DO 4 DO,

The result follows if we show that (1) D\ = D + Op(d3LIn N) and (2) D = Op(63k In N) for

[ = 2,3, 4. Following the proof of Lemma A.1(i) in Su and Wang (2017), Dgé) = F(ZJ)\;FO AOJIVAO FOI;(Z) =

D+ Op (51_\,1T) . Noting that ¢ = ¢ 0 G + 7= o G where G = 17xn — G and n~V has (t,4)th
(¢-1)

element given by n,, 7,

I

= (NT) 'tr <T_1F(K)’(5 oG+ VoG)eoG+n Vo C_?)’F(K))

IN

2 (NT) *tr (T—1F<f>' (c0G)(eo G)'F@))

Y2 (NT) o (T*1F<’f)'(n<f*1> 0 G)(n“V o GY ﬁ(@) ,

Following the analysis of Dy72 in the proof of Lemma A.1, we can show that the first term is
Op (35 [log(N Vv T)]?). For the second term, it suffices to use Lemma A.3(vii) to obtain the following
rough probability bound

2(NT) ™ tr (T7LEO 0y O < o HF“)H2 (NT)™ Hn“‘””2 = Or(Oy7).
0] ot

ﬁ H}1/2 = Op(JyyIn N)). In sum, we have DO =D+ Op(0yyIn N).
(ii) The proof is analogous to that of Lemma A.2(i) with obvious modifications.
(iii
(i

It follows that HD2H < R/? Hf)g = Op(632-(In N)?). By the CS inequality,
sp

{

ii) The proof is analogous to that of Lemma A.2(ii) with obvious modifications.
v) The proof follows from that of Lemma B.3 in Bai (2()03)
(v) Note that + Y1 (B0~ AO' F))el) = L 577 (B0~ HO Fengu++ S, (B - HO F)n g

Following the proof of Lemma A.7(v) in Su and Wang (2017), we can show that the first term
is Op (5]_\/2T In N) uniformly in ¢. By Theorem 2.3 and Lemma A.3(vi), the Frobenius norm of
the second term is bounded above by above by{l||F — FOO|2}Y/2{max; 4 T Zt 1(n (Z)) /2 =
S b Op(N~H2492/4 L (T/1n N)~1/2). Tt follows that & S0 (F{9)— A FO)Y) — Op(N-1/2472/45 L
+oyrInN). B

12




Proof of Lemma A.5 ({ =1 and ¢ > 1). (i) Note that + PR /\? lt =Brtt w LsV /\Onlf 1)gzt

i=1""

where

2
N Z /\077“ 9it = Z Z /\0771 Jit git = ZKl,zt-
1= —

By Lemma A.3(iii), max; || K1 2| < max;; 172 it H ~ 1_1 ||)\0H Op(65y>InN). For Kj 14, we
make the following decomposition

Ar(f— —1.(£— Ar(f—1)1 A(L— _
Ky = *Z/\O [FtOIHz 2 ¢ Ai +>\0/( 20N d’ +>\0/(H(Z 20 17"1(w,t 1)+Ft0IH(£ 1)/7”1(\,1' Y Jit

= Kl,lt( )+ K116 (2) + K116 (3) + K1t (4) -

For K7 1+ (1), we apply Lemma A.3(iv) to obtain max; || K7 1 (1)|| = Op (T'71/45]_V%F In N) .For K1 1: (2),

we have uniformly in ¢

(e=1) _

Ki11:(2) = Z AN (| ¢ Jit

N
1 (-1 —1 4 (6—1 1 (-1 —1 4 (6—1
— (1—C_I) NAOIAO(H(K 1)/) 1¢§7,t )+ <NZ(9it_q) )\?)\(Z)/) (H(f 1)/) 1¢§’,t )
=1

= (1-q) [[ﬁ“”]l}ﬂ“)'ﬂ O +Op(N" I N),

where the second equality follows from the use of gi = (1 — ¢) — (git — q) , the third equality holds
by (i), the fact that max; H% LAY (g — q)H = Op (N71/2InN), and the definition of H1),
In addition, we have by (ii) and (iv)

0 0 —14(6-1)~
mtaXHKl,lt(?))H = max NZ/\)\, Tre it

IA

maXHTFt HO <N > AP ) Op(TT/4672, InT + T~ 1+3/4)

and

maxc|| Ky i (4)] = max

= Op(T"/452 In N).

It follows that uniformly in ¢, + N AW = = Bpy + (1 —q) [[[)(6—1)]—1%}%(6—1)/}70 qﬁgft Y

i=1 i it
Op(T"/45 32 In T + T~1+371/%) and

(-1

R 1
= (DO O o — Z)\Z e = D'QBp, + (1 - Q)opy  + Op(TV/A5 2 InT + T 1H572/4),

13



(ii) NOte that 7 Zt 1 FO zt = BritT Zt 1 Ftongt )gzt where 7 T Zt 1 Ftonzt Zl 1T Zt 1
Ftonl( it git = lel Ky;;. By Lemma A.3(iii), = Op (5N2T InN).
Using the decomposition g;; = (1 — q) + (git — ¢) and Lemma A.2, we can readily show that

T

1 A ~(0-1 A ~ (-1 - - - —
Koi1 = fZFtO [FtO’H(Z_l)GbE\,» )+ /\?/(H(e—l)/)—%%,t )+ )\?/(H(e—l)/)qut D FtO/H(K—l)/f/(\{i 1)] Git
t=1

]

= Koin (1) + Koi1(2) + K21 (3) + Kai1 (4) .
For Ky; 1 (1), we have that uniformly in 4,

1-—

-1 1
KQiy]_ (1) — q ZFt FtOIH(f 1)¢( +

T
TZFt FtO/He 2 ¢Az (git*Q)

— (1-q) TFO’FOH( D40 4 0p((NT) 2 N)

= (- [HEITGE Y £ 0p(NT) 2 N),

where the second equality follows from the fact that

IN

T
1 A g1y~ (0—1)
T Z FPFYH Yoy (91— q)

Op (max

T
1
H) max T ;FtOFtO, (9it —q)

= Op((N/InN)"Y?HOp((T/InT)/?)

and the last equality follows because LFYF0 = [H=DHED=1 4 Op(6,2). By Lemma A.3(v)
and (ii)

1 -1
)\0/( (f 1)1\—1 Z¢( ) t0/§2t

t 1

mzaXHK%,l(Q)H = max

T
1 o - (0
< Op <maXH)\?H> max TZQﬁ%tl) FYgu|| = N»/40p (5 InN+ N~ H'Y?/Z),
(2 (2 —1
d ¢
max || K1 (3)] = max Z EQNY () 5 g
= or (maxwr!) Z oy VG| = N720p (535 N)
and
1 r N ¢
max || K1 (4)] = max TZFtOFtU/H(eil)/fl(\,zfl)git

IN

Op (max

) 3 SR = 0rt i

14



(-1)

It follows that uniformly in 7, % Zt | Fe zt = Bp;i+(1— Q) [HED)- gi) +Op (N72/45N2T InN)

and

S

; sy L

=
Proof of Lemma A.3 (¢ > 2). The proof relies on the fact that Lemmas A.3-A.5 and Theorems
2.3-2.4 hold for ¢ — 1.
(i) By Lemma A.5(i)-(ii),

~(l—-1 _ N7 B -
max D )H = mtaXHD 1QBrs+ (1— @)y + Op(TH/ 452 T + T 1+371/4)H
- A (0—2) B -
< D@ mpx |Bal| + (1 = gy max ||, | + ORI 5 E T 4+ T
= Op((N/InN)"Y2) 4+ Op((N/In N)"Y2) 4 0p((N vV T)"Y?) = Op((N/In N)~V/?),
and
1 —
max )QbAz )H = m’laXH(Q/) 118A7i (1 *Q)Qb( )+OP(N'Y2/45 2 th H
H(Q,)_IH max HBAzH +(1—4q) max HgbAﬂ. H + OP(N72/45]*V2T In N)
= Op((T/WmT) V3 + 0p(T/InT) V3 + op(NVT) V3 = 0p((T/InT)~Y?).
(11) By the decomposition in (A.8), r%t n _ Ft(f—l) AR ¢Ft _ ( N :(35 b

(&2t — ¢ th ) Following the proof of Theorem 2.4(i) and using Assumption A.5 and the fact that
max; HFtOH = Op(T"’l/‘l), it is easy to show that

max dgi_l)H = Op(Tfl/ch;]lT + /) max

N —
] =orrigy,

and max; ‘aéﬁ 2 —qBEf;”H Op(dy>InN). Tt follows that max; HrFt H = Op(T"/463 % InT +

T-1311/4), For f/(f;l), we have

L (- ~ N7 N7 ~
D = AT )y = G0 = BETY BTV (B - o),

»?

where B(@’s are defined in the proof of Theorem 2. 4(ii) Following the proof of Theorem 2.4(ii) and
using the fact that max; ||A|| = Op(N72/%), max; & LS T €2 =0p(1),and §—q = Op((NT)~Y/?)

we have by Lemma A.4

ma [ B = 05 V2455 5550, B4 = Op(v ),

and max; || B (¢

-1 _ Q%E\z H =Op 5N2f In N). It follows that max;

o >H = Op(N2/4572. I N).
(iii) The proof is similar to the ¢ = 1 case by replacing the superscript 0 by ¢ — 1 throughout the

proof.
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(iv) By Assumption A.5 and Lemma A.3(x) below

-1 1 1
()" 5 ok Ve = 323 g ]

i=1 i=1 s=1

N T
1
= NT Z Z (is€it) YisGit + ~om NT Z Z F 5235115 — E(Ezsgzt)] GisGit

i=1 s=1 i=1 s=1
N T

1 0-1)_
NT Z z Fsongs )giseitgit

i=1 s=1
= Op(T™ "/ 4 0p (633 I N) + Op(T~ /4 1 52 I N).

N N T

~(6=1)
Then max; H ~ Zz 1 CbA i EitGit ‘

Note that H Ly qﬁfz 1))\0’gn

=O0p (T4 /A 4 52 InN).

(£-1)\0
‘NT Zz—lzs 1Fs0 €is )>\ ,gzt

. Using gis = (1 — ¢q)—

HHE 1)/

(9t — q) , we have

N T
= _ 1 —1)_ 1 -
TSR = 3y [< ”ws]

=1 s=1 i=1 s=1
1 q N T (-
- 1)
- 7T ZZFS[))\?IEisng ZFO)‘O/ 23 gzs
i=1 s=1 i=1 s=1
1 N T
S a0~ i 33 F g
i=1 s=1 i=1 s=1

It is easy to show that the first term is Op ((sz) by Chebyshev inequality. The second term is
Op(dy%) by Lemma A.3(viii) below. The third term is Op(6y7%In N) by Assumption A.5(iii). By
Lemma A.3(iii),

N
1 /—1 B
NiT Z Z FOAO/”ES )gzs(glt - (] NT Z Z FO)\OITII KX gzs(glt ) + OP((SNQT ln N)
=1 s=1 i=1 s=1

uniformly in ¢. Now we make the following decomposition

N T

jvlT § § F!O)\O/771 s gzs(gzt _ q) — N E E FOAOI FO/H(K l)¢(€ 1) + A?l(ﬁ(f—l)l)—légﬁgl)
i—1 s=1 i=1 s=1
XY 1+ F AV g (g0 - q)

= Iy + 1o+ 113 + Iy

16



For 113 and 11y, we apply Lemma A.3(ii) to obtain the rough bound

1
mtaXH[I?)tH < mgix ZIZIFO)\U/)\O/ E 1)) 1a (E )gzs(gzt )
< Op(1) max fgfs )H = T71/46 >InT+T" 14371/4) and
/-1
m?X”IIthH — mgxx NT ZleO)\OI [FOIH(E 1)/ T[(Xz ):| gzs(gzt _ q)
< Op(1 maXH )H = N72/45 > In N).

By Lemma A.5(i), we have

T N
(e-1)| _
max [[Iie]| = max | T z; ZFO)‘OIFO/H Hops ] 9is(git — q)
1 T N
0 07 1707 77 (€—1) r H1\—1 b (0 —
< m?X T ;ZFS tr [)\ F H (Q) BA’igzs(gzt Q)] ‘
T N L (6=2)
x| = 3 3" ot WY1 )by s — q)} +O0p(N72/5)7 In N)
s=1 =1
< Op (1) max Z /BA z>‘2 gzs(gzt - Q) + OP maX Z ¢ gzs git — Q)
+OP(N%/45N2T In N)

= Op(6y3InN) +Op(T /2 £ 52 In N) + Op(N?/45,% In N)
= Op(T~"/2 L N2/ 2 InN)

Similarly, using Lemma A.5(ii), we can show that

= Op(T "/ 2452 In N).

max | Lot || = max

N T
Z Z FO\Y [)\0’ H(Z 1)’) qb(il)] Gis(git — Q)
—1 s=1

Noting that 7 A(Z D= )\(f Y (H(E 1) 1)\0 (ble)

< max | fVl[B( D BT G|
By Lemma A.4(iv)-(v), we have

- Bél )—i—Bg_l), we have max; H% Zf\f ) rf\ Z ))\O/ta

where Bl(i Y5 are defined in the proof of Theorem 2.4(ii).

N N T

1 A(0—1) \0r - 1 A (0—1)y—1 A=) 0 (—1)\ (=1) \ 07

max NZ 1322' A Giel| = WENT (HY) 21;10{( VE? — F)et " gy
1= 1= =

IN
Q
~

=
=
]
i

=0Op (5;\72TIDN),
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and

= max

T
Z DA R0 Fy_l))’(ﬁ(ﬁ_l)’)— AV g
=1

N
Z Olgzt

[ 1 H(f I)IFO Fs(f—l))/

IN

= Op(Ox7).

éE

In sum, we have max; H[:I(efl)'% val A%l 1)/\0/gzt =0Op ((5]_\,2T InN).

(v) By the definition of &g; ) and s(é Y we have

max Z¢ FtOIta
T -
< O max| LSS e,
i NT =1 =1
;| TN T N
< OP(].)HI?X WZZ)‘ Fej1959i| + Op (1 m?X ZZ F 77;15 gjtgzt
t=1 j=1 =1 j=1

We can show that the first term is Op(éj_va In N) by applying Assumption A.5(iii). For the second

term, we have by Lemma A.3(viii) and (iii)

7

T N
max Z Z t 77]t g]tg’bt
=1 j=1

IN

T
007, (£=2) ~ 0op
Z}ZA E P50 + max NT;Zl/\ O P ge(9 — q)
=1 J

T N
_ 1 0-2)_
= 0r (o3) x| 52 5SS N Paton 0
t=1 j=1

T N
= max Z Z)\OFt 771 jt gjt(gzt - Q) +Op (5]:72’1“ In N) :
=1 j=1

0

Noting that ngf)t FO’H(K)QS + X (@O~ 1¢ + A (E O E;)t + FYH O r/(\), we have

T N T N
1 1 (4-2) 5 (0=2)
=T ZZ )\OFtO/mgt Git(gie —q) = N7 Z Z FtO/ FtO/H (e— 2)(;5A )\0/( =2y ) 1¢F’t
t=1 j=1 t=1 j=1

+>\0/( - 2)/) ( )+Ft0/H(£ 2)/ (f 2)]g]t(gn—q)

11+ 111 +III31' + I11y;.
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For the first term, we have

T

62/A 1
2 ZFt F )

max |[[IL;| = max ZA%AJ T

IN

max

J 2)H H 1 ; FYFgji(9it — q)

= Op((T/WT)™*)Op((T/InT) ™2 4+ T7H01/2) = Op (632 In N) .

Similarly, we can show that max; HIILM | = Op (0% InN) and max; | 1114 = Op (57 In N + N~—1172/2)
for [ = 2,3. Then max; Zt 1¢Ft t "Git|| = OP (5NT1nN +N— 1+72/2) ]

Noting that r(z D= t(e Y ey YFP — ¢Ft = (e 1)+agt Y by (A.8), we have
. I . I T
(0—1) 07~ (-1 (e—1)
7 ngft )Ft()/gzt < - Z agt )FO/th Z FO’gn
t=1 t=1 =1
Note that
, T N
~(6=1) 107 - S(l— 1 _
max| agt )FtO/th < Op (1)m?X fZﬁZ ¢ I)Z §t ) ( )FtO/ git
t=1 t=1 s=1 j=1
, IT
= opme| LSS5 B Vg | 0 (53 )
! t=1 s=1 j—1
1Ll & 1 &
—1)_ -1 _
< Op(Mmax > | = > F g " SRV 4 0p (532 I N)
7=1 t=1 s=1
11 i
{— _
< Op() Y Fo&V1 4+ 0p (033 InN) .
j=1 s=1
Using the decomposition 5%_1) = gjtgjt—l—n%_mgjt and Assumption A.5, we can show that ﬁ Zthl Ezzl
0— — ~(0— _ —
Zj»vzl 5575 D ( )FOFtO’gZ Op (5N2T InN). Then max; %Zle agt 1)Fto’git = Op (5N2T lnN).
Similarly,
© 1 I [ 1z
~(£) 120 0 0/~
max tz_;%t Fgi| < Op (1)m?X T ; NT ; Z)\ /Ft ' git
. I ;| TN
= Op (1)mZaX TZ N—ZZ s €is )\9' FOFtOIta + Op (5]_\[2TlnN)
t=1 s—1 j—1
T
1 _ _
= 0r() N*TZZFJ%E?A?' +0p (533 ) = Op (533 ).
s=1 i=1

It follows that max;

Zt 1 Ft gn =0p (6N2T In N) .
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2
(vi) Note that + Zl 1 ‘ H 2 Z H M it H +4 ZZ 1 ‘ gﬂ,f) , where the second term

is bounded above by Op(§yp(In N)?) by (iii). For the first term, we have

maX*ZH SO

max % Z | P0G (AT M) D a0 |

t ) s ) i
=1

A

D et ”Hz}limaxw

2

IN

2 1
e e 3

) o

= Op(T™"M/2 f N"'InN).

(e=1) H p(T~147/24 N~ 1n N). Similarly, we can show that max; T Zt 1

It follows that + EZ 1 ‘
(mt H = Op(N~1472/2  7-1In N).
(vii) Recall that x; = 1 + HFtOH . By the CS inequality and (iii), Zt 12 /{t(nff 1)) <
L 2y Y+ 0p G (Y. Usig = PP OGNV ) Yo A () s
FYH Z)' =y, 7]1 Zt (1), we have

Lo (e )y 1 -1,
WZZ"% 771,21& 2 4 WZ Rt [77 1,it ] _42.[]2[

Mp

t=1i=1 =1 t=1 i=1
NOtiDgthatiZf\]1H&>( H = Op (T), we can readily show ITo; < ||[H~ 1)H LT E LN,
(29 H — Op (T™1). By Lemma A.5(i)
1i/§ &(ffl)HZ < Qim HD_lQB . )&)(672>H2+O (T71/2574 (lnT)2—|—T_2+371/2)
T~ B hedl =T t Fi q) Pry P NT

1 & ) 1 E 2
< Op(l)T;ntHBRtH +op(1)Tt§;Rt )(bm H +0p (632)
= Or (7).

. Similarly, we have

i L zm ZI!AO’H W),

A 2
we have Ly < (0 S Y S

| IX
I3 = — K
NT :

2
AO/(H(Z 1)) 17“%;1)‘ SOP( max

t=1 1=1
and
L oS |0 ety ae=1) |2 RS 0 2
/ —1)rA(l— - —
Toa = g7 20 3 [FVHCVAV ] < 0p (ma [0 7 3w I = 0p (65)



It follows that wp 37 SN k(s )2 = Op (63%) -

(viii) Note that = S ZZ 1 FO)\O’nZS Gis = S0, 7 Y ZZ 1 FO)\O'nl(w Gis = >0 I3
We only show Il3; = Op (6 NT) as the other term is of smaller order. Note that

1 —1
I, - ZZFt NEY DY LAV (AE) 1050
t 1 =1

_I_)\?/(ﬁ(e—n/)— ( )+F°’H(f 1)/ S\Z,Z 1)]%

11371 (1) + 11371 ( ) + 11371 (3) + 113’1 (4) .

Let /\ and F0 denote the Ith element of )\0 and F©

s

respectively. Let 1131, (-) denote the (I,7)th
element of Bs (-). Noting that gis = (1 — ¢) + (¢ — gis) , we have

HUs 1ir (1)H

N
(£-1)
ZthFO/HZ Y Z Ai gzt)‘?l

1=

N T N
(e-1), . A (6-1)
< Z FoFYHD Z DA ~NT STELFYHTDN gy (gie — @) A
-1 t—1 i=1
= Il3ur (1, 1) + 1131, (1, 2) .
For 1131 (1,1), we have
1 N ~(£-1) 1 N ~(£—2)
I3 (1,1) < N Z dpi Ayl =0p(1) N ZH(Z_I)'[BA@ (1—q)dp, 1N
i—1 =1
| X
< 1) {N Z Bridg+(1—q) Z ¢> } P(ONT)-
i—1

For I15 ;- (1,2), we have

N T
1 6 1) ~ 1
II37117“ (17 2) = N Z ( ) (Z v [T Z FtOFteﬂ(git — Q)]
=1 t=1

2y 1/2

{3

= Op (Oy1) OP(T*/Z)

11 &
H} L5 L S R -0
=1 t=1

1=

-1
as we can show that Zfil H)\? )H

Op (53) and & S8, B[ £ 7, FOF (gi — 0)| =
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O (T~'). Then II3; (1) = Op (5 7.) . Similarly,

113,11 (
(1),
= H (z)r)‘?/( ) (b slgls
s= 1z 1
1—q 1 (1) A (= 1)
< Z A AL (H D)~ Z¢ g ZZ AN (H D) e U FG (93— 0)
s=1 i=1
= II3,1rl ( ) ) + IIB,lrl (27 2) :
For II3 11 (2, 1) we have I131,(2,1) <Op(1) H% ZS 1 ¢§f81) F,ll =0Op ((5 ) as we can show that
H — 1 (;SFS FSZ = Op (5;,2T) by following the analysis of HN Zi:l ¢A,7; . For 1131, (2,2),
we have

Z Z¢Fs 7 1 -1l Z)‘(z))‘?r 9is — 4
~(6-1)]|2 1
N 72

So II31(2) = Op (5 ) Analogously, we can show that II3; (I) = Op (5 ) for | = 3,4. Then
Il31 =Op (657) -

. : 1 N 1T 10 2 1

(ix) By (vi) and the fact that & > ;" E (T Yoeeq F 6isgi3) =0 (T,

1 N
NZ 9it ( ZF €isTis

I131,0(2,2) =

2y 1/2

IN

)| {; >’ 130 -

= Op (65y) Op(N~V/2).

1 T N
/—1)_
NT dFY sV gieisgis
s=1 =1

\/

max
t

AN
—N
B
&
| —
(]
SR
;
2 —
M=
—
N~
WE
T
o
S
w
N———
N

- Op ((T—1/2+%/4 (N/InN)~ 1/2 Op (T—1/2)

= Op ((T*”%/4 +(NT/In N)*1/2> .

(x) Note that NT ZS 1FO ZZ 1€ztgztm(s Gis < El 1 NT Zs 1F0 ZZ 1 €1tgzt771(28 Jis = Zl 1 g
One can bound I149; by Op (5NT In N) by using the uniform bound for ng Z-Sl) in (iii). For Iy, we

have
~(0=1)

-1
Iy = ZF angzt PV AT ()1
s=1 =1

+)\?/<g(z—1)/)—1f,§ft—1) +Ft0’ﬁ(f—1) 1(511)]918
= Ily¢ (1) + Ty (2) + Tlane (3) + Tas (4).
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2
For 1141, (1), by (i), (iv) and the fact 3 Zfil E H% S FOFY (gis — q)H = O (T1), we have

N

~ (-1
mtaXILl’lt(l) < max qZIFOFO'HZ 1) Z ( )&tgit
S= :
A (=11
+max ZgztgthbAz é 1)/ ZFOFO/ gls—g)
s=1
S (1)
< Op(l)m?x N - 1¢A7¢ EitGit
1=
1) . N . T ) 1/2
—l—max H {maxZElt} NZ ?ZFSOFSOI(%S—Q)
i=1 s=1

= Op(T™1M/2 £ 5.2 InN) + Op((T/InT) ) Op(T/?) = Op(T7F71/2 4 532 In N).

For I1514(2), we have
1 G n (1) 1 Y
T Z Fop, [H) N Z A eitgitGis

-1
QZF%( ) H(e 1 Z)‘ Eitgit

m?x II471,5 (2) =

1 A=) a1y L
T Z g, [HY] IN Z Neitgit (gis — q)
s=1 =1

N
~ (- 1 _
< Op(l)msaX PFs ngx NX;A?Sitgitgis
1=
1/2 . T . N 2y 1/2
£—1)r
1op(t { RO } 5L g (g — )

s=1 i=1
= Op((N/In N)_1/2)Op((N/ In N)~Y2) 4 Op((N/In N)"V2)0p(5%) = Op(63% In N).

Analogously, we can show that max; [|I141: (1)|| = Op(dx7In N) for | = 3,4. Then max, |13 1] =
Op (T714/2 + 52 InN). B

Proof of Lemma A.6. (i) max; % Zthl |&it — ait|2 = Op (mfllnT). Noting that &; — ey =

X;Ft(o) — )\?'Ft(o) = (5\1(-0) — H O\ E, + MY {[H) 7 F, — F2}, we have
1| - . 1 2
max Z |2t — et = max )3 i — HOYFy + \{(H) L F, - Fto}‘
< om0t 13 - ]
t=1

= Op(T™'InT) 4 Op(N"2/2)Op(N~Y) = Op(N~1H72/2 L 7= InT),
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(ii) Note that

max &y — | < max ‘(Xi - ﬁ*IA?)’E’ + max (A?'{(ff')*lﬁt - Fto}‘
7, i, 1,
< g 5= ] s g — |
K3 1

= Op(T2(InT)*)Op(T"/*) + Op(N2/HOp((N/InT)"/?)
— Op ((T*1/2+71/4+N*1/2+72/4)(1nT)1/2) —op (1),

where we use the fact that max; HFtH < max; HFt — H"Ft(o)“ 4+ max; Hﬁ’Ft(O)H = Op(T“Y1/4).
(iii) This follows from (i) and (ii) and Theorem 5 in Fan, Liao, and Mincheva (2013). B

D Some Additional Simulation Results

In this appendix we report some additional simulation results that are associated with the case
g = 0.9, i.e., only 10% observations are missing at random. Tables A1-A3 correspond to Tables 2—4
in the main text.

The results in Table Al are comparable with those in Table 2. When the proportion of missing
observations is smaller (¢ = 0.9 here), the three CV methods perform slightly better than the case
with a larger proportion of missing observations. In addition, they continue to outperform both M-1
and M-2 of existing methods for most cases. Among the other methods, only the M-1 of ED shows
a pattern of convergence in all cases.

The results in Table A2 are comparable with those in Table 3. As expected, the MSE decreases
and the R? increases as N or T increases; the MSEs in the case of ¢ = 0.9 are smaller than those for
g = 0.7; the R? are slightly larger in the case of ¢ = 0.9 than in the case of ¢ = 0.7. Similarly, the

results in Table A3 are analogous to those in Table 4.
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Table A2: MSE and R2(F') with missing observations (¢=0.9)

MSE R(F)
oracle iterated estimate oracle iterated estimate
DGP N T /=0 /=5 (=20 (=00 /=0 {=5 (=20 /(=00

1 50 50 0.460 0.794 0.524 0.564 0.604 0.964 0941 0.958 0.958 0.957
50 100 0.367 0.590 0.396 0.414 0.425 0.967 0946 0.962 0.962 0.962
100 50 0.423 0.658 0.446 0.472 0.499 0.978 0967 0.976 0.976 0.976
100 100 0.221 0374 0.248 0.258 0.264 0.982 0971 0.980 0.980 0.980

2 50 50 0352 0.654 0.403 0.407 0.408 0.971 0949 0.967 0.967 0.967
50 100 0.259 0.467 0.292 0.295 0.295 0.972 0953 0.969 0.969 0.969
100 50 0.258 0473 0.291 0.293 0.293 0.986 0976 0.984 0.984 0.984
100 100 0.172 0.307 0.192 0.193 0.193 0.986 0977 0.985 0.985 0.985

3 50 50 0403 0.658 0.436 0.438 0.438 0.975 0957 0.972 0.972 0.972
50 100 0.266 0.453 0.291 0.293 0.293 0.976 0959 0.973 0.973 0.973
100 50 0.328 0.522 0.352 0.353 0.353 0.987 0978 0.986 0.986 0.986
100 100 0.198 0.323 0.214 0.215 0.215 0.988 0979 0.987 0.987 0.987

4 50 50 0.350 0.621 0.394 0.397 0.396 0.970 0951 0.966 0.966 0.966
50 100 0.261 0.455 0.292 0.294 0.294 0.970 0.953 0.967 0.967 0.967
100 50 0.262 0.463 0.294 0.295 0.295 0.985 0975 0.983 0.983 0.983
100 100 0.173 0.304 0.194 0.195 0.195 0.985 0976 0.984 0.984 0.984

5 50 50 0.386 0.645 0.420 0.423 0.423 0.970 0951 0.966 0.967 0.967
50 100 0.316 0.501 0.339 0.341 0.341 0.970 0.952 0.967 0.967 0.967
100 50 0.260 0.454 0.286 0.287 0.287 0.985 0.976 0.984 0.984 0.984
100 100 0.190 0.314 0.206 0.207 0.207 0.985 0.977 0.984 0.984 0.984

6 50 50 0.322 0.580 0.358 0.360 0.360 0.976 0958 0.972 0.973 0.973
50 100 0.239 0428 0.265 0.266 0.266 0.976 0958 0.973 0.973 0.973
100 50 0.244 0438 0.270 0.271 0.271 0.988 0979 0.986 0.987 0.987
100 100 0.161 0.285 0.177 0.177 0.177 0.988 0979 0.987 0.987 0.987
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Table A3: Coverage probability and average length of the 95% confidence intervals (¢g=0.9)
Oracle £=0 {=0*

standard robust standard robust standard robust

DGP N T CP Length CP Length CP Length CP Length CP Length CP Length
1 50 50 0.926 0.514 0.947 0.551 0.943 0.626 0.943 0.673 0.908 0.516 0.945 0.578
50 100 0.919 0.529 0.930 0.562 0.936 0.629 0.942 0.680 0.920 0.537 0.930 0.588

100 50 0.926 0.365 0.940 0.400 0.936 0.459 0.947 0.488 0.940 0.394 0.942 0.421
100 100 0.940 0.374 0.943 0.403 0.946 0.478 0.944 0.490 0.952 0.391 0.945 0.424

2 50 50 0.918 0.537 0.932 0.550 0.927 0.652 0.940 0.671 0.913 0.557 0.942 0.577
50 100 0.922 0.538 0.924 0.557 0.920 0.660 0.942 0.682 0.921 0.564 0.939 0.585

100 50 0.943 0.388 0.946 0.395 0.943 0.468 0.952 0.481 0.943 0.409 0.950 0.416
100 100 0.938 0.390 0.936 0.401 0.932 0.479 0.951 0.490 0.930 0.411 0.936 0.422

3 50 50 0.926 0.550 0.936 0.557 0.920 0.671 0.937 0.678 0.914 0.582 0.935 0.585
50 100 0.932 0.565 0.938 0.567 0.942 0.677 0.947 0.684 0.948 0.589 0.950 0.596

100 50 0.930 0.400 0.937 0.398 0.942 0.490 0.946 0.488 0.928 0.416 0.932 0.419
100 100 0.925 0.403 0.933 0.404 0.939 0.487 0.943 0.489 0.943 0.422 0.947 0.425

4 50 50 0.917 0.601 0.937 0.607 0.907 0.718 0.926 0.726 0.906 0.630 0.929 0.638
50 100 0.928 0.607 0.943 0.614 0.931 0.716 0.939 0.725 0.919 0.636 0.926 0.645

100 50 0.927 0.440 0.928 0.436 0.935 0.524 0.938 0.522 0.933 0.461 0.946 0.460
100 100 0.932 0.445 0.943 0.447 0.930 0.527 0.938 0.531 0.934 0.464 0.942 0.471

5 50 50 0.891 0.322 0.908 0.327 0.920 0.475 0.932 0.481 0.869 0.340 0.887 0.344
50 100 0.896 0.323 0.901 0.328 0.916 0.475 0.926 0.480 0.910 0.340 0.923 0.346

100 50 0.885 0.233 0.885 0.233 0.923 0.342 0.926 0.346 0.905 0.246 0.897 0.245
100 100 0.904 0.234 0.905 0.236 0.922 0.348 0.933 0.350 0.893 0.247 0.903 0.249

6 50 50 0.897 0.320 0.911 0.325 0.923 0.473 0.929 0.478 0.882 0.339 0.898 0.342
50 100 0.875 0.325 0.896 0.330 0.927 0.475 0.930 0.477 0.894 0.343 0.908 0.347

100 50 0.913 0.233 0.917 0.233 0.925 0.335 0.931 0.339 0.907 0.245 0.916 0.245
100 100 0.908 0.236 0.913 0.236 0.929 0.343 0.932 0.346 0.918 0.247 0.923 0.249
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