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Non-separable Models with High-dimensional Data∗

Liangjun Su† Takuya Ura‡ Yichong Zhang§
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Abstract

This paper studies non-separable models with a continuous treatment when the di-

mension of the control variables is high and potentially larger than the effective sample

size. We propose a three-step estimation procedure to estimate the average, quantile,

and marginal treatment effects. In the first stage we estimate the conditional mean,

distribution, and density objects by penalized local least squares, penalized local maxi-

mum likelihood estimation, and penalized conditional density estimation, respectively,

where control variables are selected via a localized method of L1-penalization at each

value of the continuous treatment. In the second stage we estimate the average and

the marginal distribution of the potential outcome via the plug-in principle. In the
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third stage, we estimate the quantile and marginal treatment effects by inverting the

estimated distribution function and using the local linear regression, respectively. We

study the asymptotic properties of these estimators and propose a weighted-bootstrap

method for inference. Using simulated and real datasets, we demonstrate the proposed

estimators perform well in finite samples.

Keywords: Average treatment effect, High dimension, Least absolute shrinkage and

selection operator (Lasso), Nonparametric quantile regression, Nonseparable models,

Quantile treatment effect, Unconditional average structural derivative

JEL codes: C21, I19

1 Introduction

Non-separable models without additivity appear frequently in econometric analyses, because

economic theory motivates a nonlinear role of the unobserved individual heterogeneity (Al-

tonji and Matzkin, 2005) and its multi-dimensionality (Browning and Carro, 2007; Carneiro,

Hansen, and Heckman, 2003; Cunha, Heckman, and Schennach, 2010). A large fraction of

the previous literature on non-separable models has used control variables to achieve the

unconfoundedness condition (Rosenbaum and Rubin, 1983), that is, the conditional inde-

pendence between a regressor of interest (or a treatment) and the unobserved individual

heterogeneity given the control variables. Although including high-dimensional controls

make unconfoundedness more plausible, the estimation and inference become more chal-

lenging, as well. It remains unanswered how to select control variables among potentially

very many variables and conduct proper statistical inference for parameters of interest in

non-separable models with a continuous treatment.

This paper proposes estimation and inference for unconditional parameters, including

unconditional means of the potential outcomes, the unconditional cumulative distribution
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function, the unconditional quantile function, and the unconditional quantile partial deriva-

tive with the presence of both continuous treatment and high-dimensional covariates.1 The

proposed method estimates the parameters of interest in three stages. The first stage selects

controls by the method of least absolute shrinkage and selection operator (Lasso) and pre-

dicts reduced-form parameters such as the conditional expectation and distribution of the

outcome given the variables and treatment level and the conditional density of the treatment

given the control variables. We allow for different control variables to be selected at different

values of the continuous treatment. The second stage recovers the average and the marginal

distribution of the potential outcome by plugging the reduced-form parameters into doubly

robust moment conditions. The last stage recovers the quantile of the potential outcome

and its derivative with respect to the treatment by inverting the estimated distribution

function and using the local linear regression, respectively. The inference is implemented

via a multiplier bootstrap without recalculating the first stage variable selections, which

saves considerable computation time.

To motivate our parameters of interest, we relate our estimands (the population objects

that our procedure aims to recover) with the structural outcome function. Notably, we

extend Hoderlein and Mammen (2007) and Sasaki (2015) to demonstrate that the uncondi-

tional derivative of the quantile of the potential outcome with respect to the treatment is

equal to the weighted average of the marginal effects over individuals with same outcomes

and treatments.

This paper contributes to two important strands of the econometric literature. The first

is the literature on non-separable models with a continuous treatment, in which previous

1We focus on unconditional parameters, in which (potentially high-dimensional) covariates are employed
to achieve the unconfoundedness but the parameters of interest are unconditional on the covariates. Un-
conditional parameters are simple to display and the simplicity is crucial especially when the covariates are
high dimensional. As emphasized in Frölich and Melly (2013) and Powell (2010), unconditional parameters
have two additional attractive features. First, by definition, they capture all the individuals in the sample at
the same time instead of investigating the underlying structure separately for each subgroup defined by the
covariates X. The treatmen effect for the whole population is more policy-relevant. Second, an estimator
for unconditional parameters can have better finite/large sample properties.
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analyses have focused on a fixed and small number of control variables; see, e.g., Chesher

(2003), Chernozhukov, Imbens, and Newey (2007), Hoderlein and Mammen (2007), Imbens

and Newey (2009), Matzkin (1994) and Matzkin (2003). The second is a growing literature

on recovering the causal effect from the high-dimensional data; see, e.g., Belloni, Chen, Cher-

nozhukov, and Hansen (2012), Belloni, Chernozhukov, and Hansen (2014a), Chernozhukov,

Hansen, and Spindler (2015a), Chernozhukov, Hansen, and Spindler (2015b), Farrell (2015),

Athey and Imbens (2015), Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, and Newey

(2016), Belloni, Chernozhukov, and Hansen (2014b), Wager and Athey (2016), Belloni,

Chernozhukov, Fernández-Val, and Hansen (2017a), and Belloni, Chernozhukov, and Wei

(2017b). Our paper complements the previous works by studying both the variable selection

and post-selection inference of causal parameters in a non-separable model with a contin-

uous treatment. Recently, Cattaneo, Jansson, and Newey (2016), Cattaneo, Jansson, and

Ma (2017a), and Cattaneo, Jansson, and Newey (2017b) considered the semiparametric es-

timation of the causal effect in a setting with many included covariates and proposed novel

bias-correction methods to conduct valid inference. Comparing with them, we deal with the

fully nonparametric model with an ultra-high dimension of potential covariates, and rely on

the approximate sparsity to reduce dimensionality.

The treatment variable being continuous imposes difficulties in both variable selection

and post-selection inference. To address the former, we develop penalized local Maximum

Likelihood and Least Square estimations (hereafter, MLE and LS, respectively), which select

control variables for each value of the continuous treatment. By relying on kernel smooth-

ing method, we require a different penalty loading than the traditional Lasso method. Chu,

Zhu, and Wang (2011) and Ning and Liu (2017) developed general theories of estimation,

inference, and hypothesis testing of penalized (Pseudo) MLE. We complement their re-

sults by considering the local likelihood with an L1 penalty term. Belloni, Chernozhukov,

Chetverikov, and Wei (2016b) constructed uniformly valid confidence intervals for the Z-
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estimators of unconditional moment equalities. Our results are not covered by theirs, either,

as our parameters are defined based on conditional moment equalities. To prove the sta-

tistical properties of the penalized local MLE and LS, we establish a local version of the

compatibility condition (Bühlmann and van de Geer, 2011), which itself is new to the best

of our knowledge.

For the post-selection inference, we establish doubly robust moment conditions for the

continuous treatment effect model. Our parameters of interest is irregularly identified by

the definition in Khan and Tamer (2010), as they are identified by a thin-set. Therefore,

by averaging observations only with their treatment levels close to the one of interest, the

convergence rates of our estimators are nonparametric, which is in contrast with the
√
n-

rate obtained in Belloni et al. (2017a) and Farrell (2015). Albeit motivated by distinct

models, Belloni, Chen, and Chernozhukov (2016a) also estimated the irregular identified

parameters in the high-dimensional setting. However, the irregularity faced by Belloni et al.

(2016a) is not due to the continuity of the variable of interest. Consequently, Belloni et al.

(2016a) did not study the regularized estimator with localization as we do in this paper.

To obtain uniformly valid results over values of the continuous treatment, we derive linear

expansions of the rearrangement operator for a local process which is not tight, and establish

a new maximal inequality for the second order degenerate U-process, extending the existing

results in Chernozhukov, Fernández-Val, and Galichon (2010) and Nolan and Pollard (1987),

respectively.

We study the finite sample performance of our estimation procedure via Monte Carlo

simulations and an empirical application. The simulations suggest that the proposed es-

timators perform reasonably well in finite samples. In the empirical exercise, we estimate

the distributional effect of parental income on son’s income and intergenerational elasticity

using the 1979 National Longitudinal Survey of Youth (NLSY79). We control for a large

dimension of demographic variables. The quartiles of son’s potential income are in general
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upward slopping with respect to parental income. However, the intergenerational elasticities

are not statistically significant. We also found that speaking a foreign language at child-

hood, years of education, and being born outside U.S. are the leading confounding variables

selected by our procedure.

The rest of this paper is organized as follows. Section 2 presents the model and the

parameters of interest. Section 3 proposes an estimation method in the presence of high-

dimensional covariates. Section 4 demonstrates the validity of a bootstrap inference pro-

cedure. Section 5 presents Monte Carlo simulations. Section 6 illustrates the proposed

estimator using NLSY79. Section 7 concludes. Proofs of the main theorems and Lemma

3.1 are reported in the appendix. Proofs of the rest of the lemmas are collected in an online

supplement.

Throughout this paper, we adopt the convention that the capital letters, such as A, Y ,

X, denote random elements while their corresponding lower cases and calligraphic letters

denote realizations and supports, respectively. C denotes an arbitrary positive constant

that may not be the same in different contexts. For a sequence of random variables {Un}∞n=1

and a random variable U , Un  U indicates weak convergence in the sense of van der Vaart

and Wellner (1996). When Un and U are k-dimensional elements, the space of the sample

path is <k equipped with Euclidean norm. When Un and U are stochastic processes, the

space of sample path is L∞({v ∈ <k : |v| < B}) for some positive B equipped with sup

norm. The calligraphic letters Pn, P , and Un denote the empirical process, expectation, and

U-process, respectively. In particular, Pn assigns probability 1
n

to each observation and Un

assigns probability 1
n(n−1)

to each pair of observations. E also denotes expectation. We use

P and E exchangeably. For any positive (random) sequence (un, vn), if there exists a positive

constant C independent of n such that un ≤ Cvn, then we write un . vn. || · ||Q,q denotes

Lq norm under measure Q, where q = 1, 2,∞. If measure Q is omitted, the underlying

measure is assumed to be the counting measure. For any vector θ, ||θ||0 denotes the number
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of its nonzero coordinates. Supp(θ), the support of a p-dimensional vector θ, is defined as

{j : θj 6= 0}. For T ⊂ {1, 2, · · · , p}, let |T | be the cardinality of T , T c be the complement of

T , and θT be the vector in <p that has the same coordinates as θ on T and zero coordinates

on T c. Last, let a ∨ b = max(a, b).

2 Model and Parameters of Interest

Econometricians observe an outcome Y , a continuous treatment T , and a set of covariates

X, which may be high-dimensional. They are connected by a measurable function Γ(·), i.e.,

Y = Γ(T,X,A),

whereA is an unobservable random vector and may not be weakly separable from observables

(T,X), and Γ may not be monotone in either T or A.

Let Y (t) = Γ(t,X,A). We are interested in the average EY (t), the marginal distribution

P (Y (t) ≤ u) for some u ∈ <, and the quantile qτ (t), where we denote qτ (t) as the τ -th

quantile of Y (t) for some τ ∈ (0, 1). We are also interested in the causal effect of moving T

from t to t′, i.e., E(Y (t) − Y (t′)) and qτ (t) − qτ (t′). Last, we are interested in the average

marginal effect E[∂tΓ(t,X,A)] and quantile partial derivative ∂tqτ (t). Next, we specify

conditions under which the above parameters are identified.

Assumption 1 1. The sample {Yi, Ti, Xi}ni=1 is i.i.d.

2. The random variables A and T are conditionally independent given X.

Assumption 1.1 can be relaxed at the cost of lengthy arguments, which is not pursued

here. Assumption 1.2 is known as the unconfoundedness condition, which is commonly as-

sumed in the treatment effect literature. See Cattaneo (2010), Cattaneo and Farrell (2011),
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Hirano, Imbens, and Ridder (2003) and Firpo (2007) for the case of discrete treatment and

Graham, Imbens, and Ridder (2014), Graham, Imbens, and Ridder (2016), Galvao and

Wang (2015), and Hirano and Imbens (2004) for the case of continuous treatment. It is also

called the conditional independence assumption in Hoderlein and Mammen (2007), which

is weaker than the full joint independence between A and (T,X). Note that X can be

arbitrarily correlated with the unobservables A. This assumption is more plausible when

we control for sufficiently many and potentially high-dimensional covariates.

Theorem 2.1 Suppose Assumption 1 holds and Γ(·) is differentiable in its first argument.

Then the marginal distribution of Y (t) and the average marginal effect ∂tEY (t) are identified.

In addition, if Assumption 6 in the Appendix holds and X is continuously distributed, then

∂tqτ (t) = Eµτ,t [∂tΓ(t,X,A)], where, for f(X,A) denoting the joint density of (X,A), µτ,t is

the probability measure on {(x, a) : Γ(t, x, a) = qτ (t)} and proportional to
f(X,A)

‖∇(x,a)Γ(t,·,·)‖ .

Several comments are in order. First, because the marginal distribution of Y (t) is identi-

fied, so be its average, quantile, average marginal effect, and quantile partial derivative. As

pointed out by Imbens and Newey (2009), a non-separable outcome with a general distur-

bance is equivalent to treatment effect models. Therefore, we can view Y (t) as the potential

outcome. Under unconfoundedness, the identification of the marginal distribution of the

potential outcome with a continuous treatment has already been established in Hirano and

Imbens (2004) and Galvao and Wang (2015). The first part of Theorem 2.1 just re-states

their results. Second, the second result indicates that the partial quantile derivative iden-

tifies the weighted average marginal effect for the subpopulation with the same potential

outcome, i.e., {Y (t) = qτ (t)}. The result is closely related to, but different from Sasaki

(2015). We consider the unconditional quantile of Y (t), whereas he considered the condi-

tional quantile of Y (t) given X. Note that qτ (t) is not the average of the conditional quantile

of Y (t) given X. Third, we require X to be continuous just for the simplicity of derivation.

If some elements of X are discrete, a similar result can be established in a conceptually
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straightforward manner by focusing on the continuous covariates within samples homoge-

nous in the discrete covariates, at the expense of additional notation. Finally, we do not

require X to be continuous when establishing the estimation and inference results below.

3 Estimation

Let ft(X) = fT |X(t|x) denote the conditional density of T evaluated at t given X = x and

δt(·) denote the Dirac function such that for any function g(·),

∫
g(s)δt(s)ds = g(t).

In addition, let Yu(t) = 1{Y (t) ≤ u} and Yu = 1{Y ≤ u} for some u ∈ <. Then E(Y (t))

and E(Yu(t)) can be identified by the method of generalized propensity score as proposed

in Hirano and Imbens (2004), i.e.,

E(Y (t)) = E
(
Y δt(T )

ft(X)

)
and E(Yu(t)) = E

(
Yuδt(T )

ft(X)

)
. (3.1)

There is a direct analogy between (3.1) for the continuous treatment and E(Yu(t)) =

E( Yu1{T=t}
P (T=t|X)

) when the treatment T is discrete: the indicator function shrinks to a Dirac

function and the propensity score is replaced by the conditional density. Following this

analogy, Hirano and Imbens (2004) called ft(X) the generalized propensity.

Belloni et al. (2017a) and Farrell (2015) considered the model with a discrete treatment

and high-dimensional control variables, and proposed to use the doubly robust moment for

inference. Following their lead, we propose the corresponding doubly robust moment when

the treatment status is continuous. Let νt(x) = E(Y |X = x, T = t) and φt,u(x) = E(Yu|X =

x, T = t), then

E(Y (t)) = E
[(

(Y − νt(X))δt(T )

ft(X)

)
+ νt(X)

]
(3.2)
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and

E(Yu(t)) = E
[(

(Yu − φt,u(X))δt(T )

ft(X)

)
+ φt,u(X)

]
. (3.3)

We propose the following three-stage procedure to estimate µ(t) ≡ EY (t), α(t, u) ≡ P (Y (t) ≤

u), qτ (t), and ∂tqτ (t):

1. Estimate νt(x), φt,u(x), and ft(x) by ν̂t(x), φ̂t,u(x) and f̂(t|x), respectively.

2. First, estimate µ(t) and α(t, u) by

µ̂(t) =
1

n

n∑
i=1

[(
(Y − ν̂t(Xi))

f̂t(Xi)h
K(

Ti − t
h

)

)
+ ν̂t(Xi)

]

and

α̂(t, u) =
1

n

n∑
i=1

[(
(Yu − φ̂t,u(Xi))

f̂t(Xi)h
K(

Ti − t
h

)

)
+ φ̂t,u(Xi)

]
, respectively,

where K(·) and h are a kernel function and a bandwidth. Then rearrange â(t, u) to

obtain âr(t, u), which is monotone in u.

3 Estimate qτ (t) by inverting âr(t, u) with respect to (w.r.t.) u, i.e., q̂τ (t) = inf{u :

âr(t, u) ≥ τ}; estimate ∂tµ(t) = E∂tΓ(t,X,A) by β̆1(t), which is the estimator of the

slope coefficient in the local linear regression of Ŷ (Ti) on Ti; estimate ∂tqτ (t) by β̂1
τ (t),

which is the estimator of the slope coefficient in the local linear regression of q̂τ (Ti)

on Ti.

3.1 The First Stage Estimation

In this section, we define the first stage estimators and derive their asymptotic properties.

Since νt(x), φt,u(x), and ft(x) are local parameters w.r.t. T = t, in addition to using

L1 penalty to select relevant covariates, we rely on a kernel function to implement the
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localization. In particular, we propose to estimate νt(x), φt,u(x), and ft(x) by a penalized

local LS, a penalized local MLE, and a penalized conditional density estimation method,

respectively. All three methods are new to the literature and of their own interests.

3.1.1 Penalized Local LS and MLE

Recall νt(x) = E(Y |X = x, T = t) and φt,u(x) = E(Yu|X = x, T = t) where Yu = 1{Y ≤ u}.

We approximate νt(x) and φt,u(x) by b(x)′γt and Λ(b(x)′θt,u), respectively, where Λ(·) is the

logistic CDF and b(X) is a p × 1 vector of basis functions with potentially large p. In the

case of high-dimensional covariates, b(X) is just X, while in the case of nonparametric sieve

estimation, b(X) is a series of bases of X. The approximation errors for νt(x) and φt,u(x)

are given by rνt (x) = νt(x)− b(x)′γt and rφt,u(x) = φt,u(x)− Λ(b(x)′θt,u), respectively.

Note that we only approximate νt(x) and φt,u(x) by a linear regression and a logistic

regression, respectively, with the approximation errors satisfying Assumption 2 below. How-

ever, we do not necessarily require νt(x) and Λ−1(φt,u(x)) to be linear in x. Assumption

2 below will put a sparsity structure on νt(x) and φt,u(x) so that the number of effective

covariates that can affect them is much smaller than p. If the effective covariates are all

discrete, then we can saturate the regressions so that there is no approximate error. If some

of the effective covariates are continuous, then we can include sieve bases in the linear re-

gression so that the approximation error can still satisfy Assumption 2. Last, the coefficients

γt and θt,u are both functional parameters that can vary with their indices. This provides

additional flexibility of our setup against misspecification.

We estimate νt(x) and φt,u(x) by ν̂t(x) = b(x)′γ̂t and φ̂t,u(x) = Λ(b(x)′θ̂t,u), respectively,

where

γ̂t = arg min
γ

1

n

n∑
i=1

(Yi − b(Xi)
′γ)2K(

Ti − t
h

) +
λ

n
||Ξ̂tγ||1, (3.4)
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θ̂t,u = arg min
θ

1

n

n∑
i=1

M(1{Yi ≤ u}, Xi; θ)K(
Ti − t
h

) +
λ

n
||Ψ̂t,uθ||1, (3.5)

‖·‖1 denotes the L1 norm, λ = `n(log(p ∨ n)nh)1/2 for some slowly diverging sequence

`n, and M(y, x; g) = −[y log(Λ(b(x)′g)) + (1 − y) log(1 − Λ(b(x)′g))]. In (3.4) and (3.5),

Ξ̂t = diag(l̃t,1, · · · , l̃t,p) and Ψ̂t,u = diag(lt,u,1, · · · , lt,u,p) are generic penalty loading matrices

to be specified below.

The ideal loading matrices are Ξ̂t,0 = diag(l̃t,0,1, · · · , l̃t,0,p) and Ψ̂t,u,0 = diag(lt,u,0,1, · · · , lt,u,0,p)

in which

l̃t,0,j =

∣∣∣∣∣∣∣∣(Y − νt(X))bj(X)K(
T − t
h

)h−1/2

∣∣∣∣∣∣∣∣
Pn,2

and

lt,u,0,j =

∣∣∣∣∣∣∣∣(Yu − φt,u(X))bj(X)K(
T − t
h

)h−1/2

∣∣∣∣∣∣∣∣
Pn,2

,

respectively. Since νt(·) and φt,u(·) are not known, we propose the following iterative algo-

rithm to obtain the feasible versions of the loading matrices.

Algorithm 3.1 1. Let Ξ̂0
t = diag(l̃0t,1, · · · , l̃0t,p) and Ψ̂0

t,u = diag(l0t,u,1, · · · , l0t,u,p), where

l̃0t,j = ||Y bj(X)K(T−t
h

)h−1/2||Pn,2 and l0t,u,j = ||Yubj(X)K(T−t
h

)h−1/2||Pn,2. Using Ξ̂0
t

and Ψ̂0
t,u, we can compute γ̂0

t and θ̂0
t,u by (3.4) and (3.5). Let ν̂0

t (x) = b(x)′γ̂0
t and

φ̂0
t,u(x) = Λ(b(x)′θ̂0

t,u) for x = X1, ..., Xn.

2. For k = 1, · · · , K for some fixed positive integer K, we compute Ξ̂k
t = diag(l̃kt,1, · · · , l̃kt,p)

and Ψ̂k
t,u = diag(lkt,u,1, · · · , lkt,u,p), where

l̃kt,j =

∣∣∣∣∣∣∣∣(Y − ν̂k−1
t (X))bj(X)K(

T − t
h

)h−1/2

∣∣∣∣∣∣∣∣
Pn,2

and

lkt,u,j =

∣∣∣∣∣∣∣∣(Yu − φ̂k−1
t,u (X))bj(X)K(

T − t
h

)h−1/2

∣∣∣∣∣∣∣∣
Pn,2

.
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Using Ξ̂k
t and Ψ̂k

t,u, we can compute γ̂kt and θ̂kt,u by (3.4) and (3.5). Let ν̂kt (x) = b(x)′γ̂kt

and φ̂kt,u(x) = Λ(b(x)′θ̂kt,u) for x = X1, ..., Xn. The final penalty loading matrices Ξ̂K
t

and Ψ̂K
t,u will be used for Ξ̂t and Ψ̂t,u in (3.4) and (3.5).

Let S̃µt and S̃t,u contain the supports of γ̂t and θ̂t,u, respectively, such that |S̃µt | .

supt∈T ||γ̂t||0, and |S̃t,u| . sup(t,u)∈T U ||θ̂t,u||0. For each (t, u) ∈ T U ≡ T ×U where T and U

are compact subsets of the supports of T and Y , respectively, the post-Lasso estimator of

γt and θt,u based on the set of covariates S̃µt and S̃t,u are defined as

γ̃t ∈ arg min
γ

n∑
i=1

(Yi − b(Xi)
′γ)2K(

Ti − t
h

), s.t. Supp(γ) ∈ S̃µt ,

and

θ̃t,u ∈ arg min
θ

n∑
i=1

M(1{Yi ≤ u}, Xi; θ)K(
Ti − t
h

), s.t. Supp(θ) ∈ S̃t,u.

The post-Lasso estimators of νt(x) and φt,u(X) are given by ν̃t(X) = b(X)′γ̃t and φ̃t,u(X) =

Λ(b(X)′θ̃t,u), respectively.

3.1.2 Penalized Conditional Density Estimation

As in Fan, Yao, and Tong (1996), we can show that E( 1
h
K(T−t

h
)|X) = ft(X) +O(h2) when

K (·) is a second order kernel. We approximate ft(x) by b(x)′βt for some βt and denote the

approximation error as rft (x) = ft(x) − b(x)′βt. Note again that we only approximate the

density ft(X) by a linear regression with the approximation error satisfying Assumption 2

below, but do not necessarily require ft(X) to be linear in X. The remark in the previous

subsection also applies here.

We estimate βt and ft(X) by

β̂t = arg min
β
||1
h
K(

T − t
h

)−b(X)′β||2Pn,2+
λ

nh
||Ψ̂tβ||1 and f̂t(X) = b(X)′β̂t, respectively.

(3.6)
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Here λ = `n(log(p∨n)nh)1/2 and Ψ̂t = diag(lt,1, · · · , lt,p) is a generic penalty loading matrix

specified below.

The ideal penalty loading matrix is Ψ̂t,0 = diag(lt,0,1, · · · , lt,0,p) where

lt,0,j = h1/2

∣∣∣∣∣∣∣∣(h−1K(
T − t
h

)− ft(X))bj(X)

∣∣∣∣∣∣∣∣
Pn,2

.

Since ft (·) is not known, we propose to apply the following iterative algorithm to obtain

Ψ̂t.

1. Let Ψ̂0
t = diag(l0t,1, · · · , l0t,p) where l0t,j = ||h−1/2K(T−t

h
)bj(X)||Pn,2. Using Ψ̂0

t , we can

compute β̂0
t and f̂ 0

t (X) by the penalized conditional density estimation.

2. For k = 1, · · · , K, we compute Ψ̂k
t = diag(lkt,1, · · · , lkt,p) where

lkt,j = h1/2

∣∣∣∣∣∣∣∣(h−1K(
T − t
h

)− f̂k−1
t (X))bj(X)

∣∣∣∣∣∣∣∣
Pn,2

.

Using Ψ̂k
t , we can compute β̂kt and f̂kt (X) by the penalized conditional density estima-

tion. The final penalty loading matrix Ψ̂K
t will be used for Ψ̂t in (3.6).

Let S̃t contain the support of β̂t such that |S̃t| . supt∈T ||β̂t||0. For each t ∈ T , the

post-Lasso estimator of βt based on the set of covariates S̃t is defined as

β̃t ∈ arg min ||1
h
K(

T − t
h

)− b(X)′β||2Pn,2, s.t. Supp(β) ∈ S̃t.

The post-Lasso estimator of ft(X) is f̃t(X) = b(X)′β̃t.

3.1.3 Asymptotic Properties of the First Stage Estimators

To study the asymptotic properties of the first stage estimators, we need some assumptions.

Assumption 2 Uniformly over (t, u) ∈ T U ,
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1. ||maxj≤p |bj(X)|||P,∞ ≤ ζn and C ≤ Ebj(X)2 ≤ 1/C j = 1, · · · , p.

2. max(||γt||0, ||βt||0, ||θt,u||0) ≤ s for some s which possibly depends on the sample size

n.

3. ||rft (X)||Pn,2 = Op((s log(p ∨ n)/(nh))1/2) and

||rνt,u(X)K(
T − t
h

)1/2||Pn,2 + ||rφt,u(X)K(
T − t
h

)1/2||Pn,2 = Op((s log(p ∨ n)/n)1/2).

4. ||rft (X)||P,∞ = O((log(p ∨ n)s2ζ2
n/(nh))1/2) and

||rνt,u(X)||P,∞ + ||rφt,u(X)||P,∞ = O((log(p ∨ n)s2ζ2
n/(nh))1/2).

5. ζ2
ns

2`2
n log(p ∨ n)/(nh)→ 0.

Assumption 2.1 is the same as Assumption 6.1(a) in Belloni et al. (2017a). Assumption

2.2 requires that νt(x), φt,u(x), and ft(x) are approximately sparse, i.e., they can be well-

approximated by using at most s elements of b(x). This approximate sparsity condition

is common in the literature on high-dimensional data (see, e.g., Belloni et al. (2017a)).

Assumption 2.3 and 2.4 specify how well the approximations are in terms of LPn,2 and

LP,∞ norms. The exact rates are not the same as those in Belloni et al. (2017a) since

the approximations in this paper are local in T = t. In the case of nonparametric sieve

estimation, Assumptions 2.2 and 2.4 can be verified under some smoothness conditions (see,

e.g., Chen (2007)). Assumption 2.5 imposes conditions on the rates at which s, ζn, and p

grow with sample size n. In particular, we notice that, when all covariates are bounded, i.e.,

ζn is bounded, p can be exponential in n. A similar condition is also imposed in Assumption

6.1(a) in Belloni et al. (2017a).

Assumption 3
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1. K(·) is a symmetric probability density function (PDF) with
∫
uK(u)du = 0 and∫

u2K(u)du < ∞. There exists a positive constant CK such that supu u
lK (u) ≤ CK

for l = 0, 1.

2. There exists some positive constant C < 1 such that C ≤ ft(x) ≤ 1/C uniformly over

(t, x) ∈ T X , where T X is the support of fT (X) for T ∈ T .

3. νt(x) and φt,u(x) are three times differentiable w.r.t. t, with all three derivatives being

bounded uniformly over (t, x, u) ∈ T XU .

4. For the same C as above, C ≤ E(Yu(t)|X = x) ≤ 1 − C uniformly over (t, x, u) ∈

T XU ≡ T X × U .

Assumption 3.1 holds for commonly used second-order kernels such as the standard

normal PDF. Since fT (X) was referred to as the generalized propensity by Hirano and

Imbens (2004), Assumption 3.2 is analogous to the overlapping support condition commonly

assumed in the treatment effect literature; see, e.g., Hirano et al. (2003) and Firpo (2007).

Since the conditional density also has the sparsity structure as assumed in Assumption 2,

at most s members of X’s affect the conditional density, which makes Assumption 3.2 more

plausible. In addition, Assumption 3.2 is only a sufficient condition. In theory, we can allow

for the lower bound to decay to zero slowly as the sample size increases. This will affect

the convergence rates of our first stage estimators but not the ones in the second and third

stages. Assumption 3.3 imposes some smoothness conditions that are widely assumed in

nonparametric kernel literature. Assumption 3.4 holds if XU is a compact subset of the

joint support of X and Y (t).

Assumption 4 There exists a sequence `n → ∞ such that, with probability approaching

one,

0 < κ′ ≤ inf
δ 6=0,||δ||0≤s`n

||b(X)′δ||Pn,2
||δ||2

≤ sup
δ 6=0,||δ||0≤s`n

||b(X)′δ||Pn,2
||δ||2

≤ κ
′′
<∞.
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Assumption 4 is the restricted eigenvalue condition commonly assumed in the high-

dimensional data literature. We refer interested readers to Bickel, Ritov, and Tsybakov

(2009) for more detail and Bühlmann and van de Geer (2011) for a textbook treatment.

Since there is a kernel in the Lasso objective functions in (3.4) and (3.5), the asymptotic

properties of γ̂t and θ̂t,u cannot be established by directly applying the results in Belloni

et al. (2017a). The key missing piece is the following local version of the compatibility

condition. Let St,u be an arbitrary subset of {1, · · · , p} such that sup(t,u)∈T U |St,u| ≤ s and

∆c,t,u = {δ : ||δSct,u ||1 ≤ c||δSt,u ||1} for some c <∞ independent of (t, u).

Lemma 3.1 If Assumptions 1–4 hold, then there exists κ = κ′C1/2/4 > 0 such that, for n

sufficiently large, w.p.a.1,

inf
(t,u)∈T U

inf
δ∈∆c,t,u

||b(X)′δK(T−t
h

)1/2||Pn,2
||δSt,u ||2

√
h

≥ κ.

Note St,u in Lemma 3.1 is either the support of θt,u or the support of γt. For the latter

case, the index u is not needed. We refer to Lemma 3.1 as the local compatibility condition

because (1) there is a kernel function implementing the localization; and (2) by the Cauchy

inequality, Lemma 3.1 implies

inf
(t,u)∈T U

inf
δ∈∆c,t,u

s1/2||b(X)′δK(T−t
h

)1/2||Pn,2
||δSt,u ||1

√
h

≥ κ.

Based on Lemma 3.1, we can establish the following asymptotic probability bounds for the

first stage estimators.
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Theorem 3.1 Suppose Assumptions 1–2, 3.1–3.3, and 4 hold. Then

sup
t∈T
||(ν̂t(X)− νt(X))K(

T − t
h

)1/2||Pn,2 = Op(`n(log(p ∨ n)s)1/2n−1/2),

sup
t∈T
||ν̂t(X)− νt(X)||P,∞ = Op(`n(log(p ∨ n)s2ζ2

n/(nh))1/2),

sup
t∈T
||(ν̃t(X)− νt(X))K(

T − t
h

)1/2||Pn,2 = Op(`n(log(p ∨ n)s)1/2n−1/2),

sup
t∈T
||ν̃t(X)− νt(X)||P,∞ = Op(`n(log(p ∨ n)s2ζ2

n/(nh))1/2),

and supt∈T ||γ̂t||0 = Op(s). If in addition, Assumption 3.4 holds, then

sup
(t,u)∈T U

||(φ̂t,u(X)− φt,u(X))K(
T − t
h

)1/2||Pn,2 = Op(`n(log(p ∨ n)s)1/2n−1/2),

sup
(t,u)∈T U

||φ̂t,u(X)− φt,u(X)||P,∞ = Op(`n(log(p ∨ n)s2ζ2
n/(nh))1/2),

sup
(t,u)∈T U

||(φ̃t,u(X)− φt,u(X))K(
T − t
h

)1/2||Pn,2 = Op(`n(log(p ∨ n)s)1/2n−1/2),

sup
(t,u)∈T U

||φ̃t,u(X)− φt,u(X)||P,∞ = Op(`n(log(p ∨ n)s2ζ2
n/(nh))1/2),

and sup(t,u)∈T U ||θ̂t,u||0 = Op(s).

Several comments are in order. First, due to the nonlinearity of the logistic link function,

Assumption 3.4 is needed for deriving the asymptotic properties of the penalized local MLE

estimators φ̂t,u(x) and φ̃t,u(x). Second, the LPn,2 bounds in Theorem 3.1 are faster than

(nh)−1/4 by Assumption 5 below. This implies the estimators are sufficiently accurate so

that in the second stage, their second and higher order impacts are asymptotically negligible.

Last, the numbers of nonzero coordinates of γ̂t and θ̂t,u determine the complexity of our first

stage estimators, which are uniformly controlled with a high probability.

For the penalized conditional density estimation, the kernel function will not affect the
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bases. Therefore, the usual compatibility condition that

inf
(t,u)∈T U

inf
δ∈∆c,t,u

s1/2||b(X)′δ||Pn,2
||δSt,u ||1

≥ κ

suffices and we obtain the following results.

Theorem 3.2 Suppose Assumptions 1–2, 3.1–3.3, and 4 hold. Then

sup
t∈T
||f̂t(X)− ft(X)||Pn,2 = Op(`n(log(p ∨ n)s/(nh))1/2),

sup
t∈T
||f̂t(X)− ft(X)||P,∞ = Op(`n(log(p ∨ n)s2ζ2

n/(nh))1/2),

sup
t∈T
||f̃t(X)− ft(X)||Pn,2 = Op(`n(log(p ∨ n)s/(nh))1/2),

sup
t∈T
||f̃t(X)− ft(X)||P,∞ = Op(`n(log(p ∨ n)s2ζ2

n/(nh))1/2),

and supt∈T ||β̂t||0 = Op(s).

The penalized conditional density estimation is similar to the common linear Lasso

method. The key difference is that the dependent variable here, namely, 1
h
K(T−t

h
), is

Op(h
−1). This affects the rates of our first stage density estimators.

3.2 The Second Stage Estimation

Let W = {Y, T,X} and Wu = {Yu, T,X}. For three generic functions ν̆(·), φ̆(·) and f̆(·) of

X, denote

Π′t(W, ν̆, f̆) =
(Y − ν̆(X))

f̆(X)h
K(

T − t
h

) + ν̆(X)

and

Πt,u(Wu, φ̆, f̆) =
(Yu − φ̆(X))

f̆(X)h
K(

T − t
h

) + φ̆(X).
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Then the estimators µ̂(t) and α̂(t, u) can be written as

µ̂(t) = PnΠ′t(W, νt, f t) and α̂(t, u) = PnΠt,u(Wu, φt,u, f t),

where νt(·), φt,u(·), and f t(·) are either the Lasso estimators (i.e., ν̂t(·), φ̂t,u(·), and f̂t(·)) or

the post-Lasso estimators (i.e., ν̃t(·), φ̃t,u(·), and f̃t(·)) as defined in Section 3.1.

Assumption 5 Let h = Chn
−H for some positive constant Ch.

1. H ∈ (1/5, 1/3) and `4
ns

2 log(p ∨ n)2/(nh)→ 0.

2. H ∈ (1/4, 1/3) and `4
ns

2 log(p ∨ n)2/(nh2)→ 0.

Assumption 5.1 imposes conditions on the bandwidth sequence. As usual, we apply the

undersmoothing bandwidth to ensure that the bias term from the first stage kernel estima-

tion does not affect the asymptotic distribution of the last stage estimators. The second

condition in Assumption 5.1 is comparable to the corresponding condition in Assumption

6.1 in Belloni et al. (2017a) up to some log(n) term when nh is replaced with n. Since

our objective function is local in T = t, the effective sample size for us is nh instead of n.

Assumption 5.2 is needed to derive a tighter bound of the remainder term.

Theorem 3.3 Suppose Assumptions 1–4 and 5.1 hold. Then

µ̂(t)− µ(t) = (Pn − P)Π′t(W, νt, ft) +R′n(t)

and

α̂(t, u)− α(t, u) = (Pn − P)Πt,u(Wu, φt,u, ft) +Rn(t, u),

where supt∈T R
′
n(t) = op((nh)−1/2) and sup(t,u)∈T U Rn(t, u) = op((nh)−1/2). If Assumption

5.1 is replaced by Assumption 5.2, then supt∈T R
′
n(t) = op(n

−1/2) and sup(t,u)∈T U Rn(t, u) =

op(n
−1/2).
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Theorem 3.3 presents the Bahadur representations of the nonparametric estimator µ̂(t)

and α̂(t, u) with a uniform control on the remainder terms. For most purposes (e.g., to obtain

the asymptotic distributions of these intermediate estimators or to obtain the results below),

Assumption 5.1 is sufficient. Occasionally, one needs to impose Assumption 5.2 to have a

better control on the remainder terms, say, when one conducts an L2-type specification test.

See the remark after Theorem 3.4 below.

3.3 The Third Stage Estimation

Recall that qτ (t) denotes the τ -th quantile of Y (t) which is the inverse of α(t, u) w.r.t. u.

We propose to estimate qτ (t) by q̂τ (t) where q̂τ (t) = inf{u : α̂r(t, u) ≥ τ}, where α̂r(t, u) is

the rearrangement of α̂(t, u).

We rearrange α̂(t, u) to make it monotonically increasing in u ∈ U . Following Cher-

nozhukov et al. (2010), we define Q = Q ◦ ψ← where ψ is any increasing bijective mapping:

U 7→ [0, 1]. Then the rearrangement Q
r

of Q is defined as

Q
r
(u) = F←(u) = inf{y : F (y) ≥ u},

where F (y) =
∫ 1

0
1{Q(u) ≤ y}du. Then the rearrangement Qr for Q is Qr = Q

r ◦ ψ(u).

The rearrangement and inverse are two functionals operating on the process

{α̂(t, u) : (t, u) ∈ T U}

and are shown to be Hadamard differentiable by Chernozhukov et al. (2010) and van der

Vaart and Wellner (1996), respectively. However, by Theorem 3.3,

sup
(t,u)∈T U

(nh)1/2(α̂(t, u)− α(t, u)) = Op(log1/2(n)),
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which is not asymptotically tight. Therefore, the standard functional delta method used

in Chernozhukov et al. (2010) and van der Vaart and Wellner (1996) is not directly appli-

cable. The next theorem overcomes this difficulty and establishes the linear expansion of

the quantile estimator. Denote T I, {qτ (t) : τ ∈ I}ε, {qτ (t) : τ ∈ I}ε, and Ut as T × I, the

ε-enlarged set of {qτ (t) : τ ∈ I}, the closure of {qτ (t) : τ ∈ I}ε, and the projection of T U

on T = t, respectively.

Theorem 3.4 Suppose that Assumptions 1–4 and 5.1 hold. If {qτ (t) : τ ∈ I}ε ⊂ Ut for any

t ∈ T , then

q̂τ (t)− qτ (t) = −(Pn − P)Πt,u(Wqτ (t), φt,qτ (t), ft)/fY (t)(qτ (t)) +Rq
n(t, τ),

where fY (t) is the density of Y (t) and sup(t,τ)∈T I R
q
n(t, τ) = op((nh)−1/2). If Assumption 5.1

is replaced by Assumption 5.2, then sup(t,τ)∈T I R
q
n(t, τ) = op(n

−1/2).

Under Assumption 5.2, the remainder term Rq
n(t, τ) is op(n

−1/2) uniformly in (t, τ) ∈

T I. This result is needed if one wants to establish an L2-type specification test of qτ (t).

For example, one may be interested in testing the null hypotheses of the quantile partial

derivative being homogeneous across treatment. In this case, the null hypothesis can be

written as

H0 : qτ (t) = β0(τ) + β1(τ)t for all (t, τ) ∈ T I,

and the alternative hypothesis is the negation of H0. One way to conduct a consistent test

for the above hypothesis is to employ the residuals of the linear regression of q̂τ (Ti) on Ti

to construct the test statistic Υn(τ), i.e.,

Υn(τ) =
1

n

n∑
i=1

(q̂τ (Ti)− β̂0 − β̂1Ti)
21{Ti ∈ T },

where (β̂0, β̂1) are the linear coefficient estimators. This type of specification test has been
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previously studied by Su and Chen (2013), Lewbel, Lu, and Su (2015), Su, Jin, and Zhang

(2015), Hoderlein, Su, White, and Yang (2016), and Su and Hoshino (2016) in various

contexts. One can follow them and apply the results in Theorem 3.4 to study the asymptotic

distribution of Υn(τ) for each τ. In addition, one can also consider either an integrated or a

sup-version of Υn(τ) and then study its asymptotic properties. For brevity we do not study

such a specification test in this paper.

Given the estimator µ̂(t) and q̂τ (t), we can run local linear regressions of µ̂(Ti) and

q̂τ (Ti) on (1, Ti − t) and obtain estimators β̆1(t) and β̂1
τ (t) of ∂µ(t) and ∂tqτ (t), respectively,

as estimators of the linear coefficients in the local linear regression.2 Specifically, we define

(β̆0(t), β̆1(t)) = arg max
β0,β1

(µ̂(Ti)− β0 − β1(Ti − t))2K(
Ti − t
h

)

and

(β̂0
τ (t), β̂

1
τ (t)) = arg max

β0,β1

(q̂τ (Ti)− β0 − β1(Ti − t))2K(
Ti − t
h

).

The following theorem shows the asymptotic properties of β̆1(t) and β̂1
τ (t). The asymptotic

property of β̆(1)(t) can be established in the same manner.

Theorem 3.5 Suppose Assumptions 1–4 and 5.1 hold. If {qτ (t) : τ ∈ I}ε ⊂ Ut for any

t ∈ T , then

β̆1(t)− ∂tµ(t) =
1

n

n∑
j=1

(κ2ft(Xj)h
2)−1

[
Yj − νt(Xj)

]
K(

Tj − t
h

) + R̆1
n(t)

and

β̂1
τ (t)−∂tqτ (t) =

1

n

n∑
j=1

(κ2fY (t)(qτ (t))ft(Xj)h
2)−1

[
Yqτ (t),j−φt,qτ (t)(Xj)

]
K(

Tj − t
h

)+R1
n(t, τ),

2Alternatively, one can consider the local quadratic or cubic regression.

23



where supt∈T |R̆1
n(t)|+sup(t,τ)∈T I |R1

n(t, τ)| = op((nh
3)−1/2) and K(v) =

∫
wK(v−w)K(w)dw.

Theorem 3.5 presents the Bahadur representations for β̆1 and β̂1
τ (t). Since they are

estimators for the first order derivatives ∂tµ(t) and ∂tqτ (t), respectively, we can show that

they converge to the true values at the usual (nh3)
1/2

-rate.

4 Inference

In this section, we study the inference for µ(t), qτ (t), and ∂tqτ (t).We follow the lead of Belloni

et al. (2017a) and consider the weighted bootstrap inference. Let {ηi}ni=1 be a sequence of

i.i.d. random variables generated from the distribution of η such that it has sub-exponential

tails and unit mean and variance.3 For example, η can be a standard exponential random

variable or a normal random variable with unit mean and standard deviation. We conduct

the bootstrap inference based on the following procedure.

1. Obtain ν̂t(x), φ̂t,u(x), f̂t(x), ν̃t(x), φ̃t,u(x) and f̃t(x) from the first stage.

2. For the b-th bootstrap sample:

• Generate {ηi}ni=1 from the distribution of η.

• Compute µ̂b(t) ≡ 1
n

∑n
i=1 ηiΠ

′
t(Wi, νt, f t) and α̂b(t, u) ≡ 1

n

∑n
i=1 ηiΠt,u(Wui, φt,u, f t),

where (φt,u(·), f t(·)) are either (φ̂t,u(·), f̂t(·)) or (φ̃t,u(·), f̃t(·)).

• Rearrange α̂b(t, u) and obtain α̂br(t, u).

• Invert âbr(t, u) w.r.t. u and obtain q̂bτ (t) = inf{u : âbr(t, u) ≥ τ}.

• Compute β̆b1(t) and β̂b1τ (t) as the slope coefficients of local linear regressions of

ηiµ̂
b(Ti) on (ηi, ηi(Ti − t)) and ηiq̂

b
τ (Ti) on (ηi, ηi(Ti − t)), respectively.

3A random variable η has sub-exponential tails if P (|η| > x) ≤ K exp(−Cx) for every x and some
constants K and C.
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3. We repeat the above step for b = 1, · · · , B and obtain a bootstrap sample of

{µ̂b(t), q̂bτ (t), β̆b1(t), β̂b1τ (t)}Bb=1.

4. Obtain Q̂µ(α), Q̂0(α), Q̂µ1(α), and Q̂1(α) as the α-th quantile of the sequences {µ̂b(t)−

µ̂(t)}Bb=1, {q̂bτ (t)− q̂τ (t)}Bb=1, {β̆b1(t)− β̆1(t)}Bb=1, and {β̂b1τ (t)− β̂1
τ (t)}Bb=1, respectively.

The following theorem summarizes the main results in this section.

Theorem 4.1 Suppose that Assumptions 1–4 and 5.1 hold. Then

P (Q̂µ(α/2) ≤ µ(t) ≤ Q̂µ(1− α/2))→ 1− α,

P (Q̂0(α/2) ≤ qτ (t) ≤ Q̂0(1− α/2))→ 1− α,

P (Q̂µ1(α/2) ≤ ∂tµ(t) ≤ Q̂µ1(1− α/2))→ 1− α,

and

P (Q̂1(α/2) ≤ ∂tqτ (t) ≤ Q̂1(1− α/2))→ 1− α.

Theorem 4.1 says that the 100(1 − α)% bootstrap confidence intervals for µ(t), qτ (t),

∂tµ(t), and ∂tqτ (t) have the correct asymptotic coverage probability 1 − α. With more

complicated notations and arguments, we can show that the convergences hold uniformly

in (t, τ) .

5 Monte Carlo Simulations

This section presents the results of Monte Carlo simulations, which demonstrate the finite

sample performance of the estimation and inference procedure. We modify the simulation
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designs of Belloni et al. (2017a) to the case with a continuous treatment. In particular, Y

is generated via

Y = Λ

(
U − 2

( p∑
j=1

j−2Xj − π2/12

)
+ (T/2)2

)

while T solves the following equation:

V = (T/2 + 0.1(

p∑
j=1

j−2Xj)(0.5− cos(πT/2)/2− T/2)),

where U and V are two independent standard logistic random variables, Λ(·) is the logistic

CDF, p = 200, X is a p-dimensional normal random variables with mean 0 and covariance

[0.2|j−k|]jk. T ranges from 0 to 2. The parameters of interest are qτ (t) and ∂tqτ (t), where

τ = 0.25, 0.5, 0.75 and t ∈ (0.2, 1.8).

We have two tuning parameters: h and `n. First, we build our rule-of-thumb h based on

hrt(τ), which is the rule-of-thumb bandwidth for the local τ -th quantile regression suggested

by Yu and Jones (1998). In particular, hrt(τ) = C(τ) × 1.08 × sd(T ) × n−1/5, where C(τ)

is a constant dependent on τ , and C(0.5) = 1.095 and C(0.25) = C(0.75) = 1.13. We

refer interested readers to (Yu and Jones, 1998, Table 1) for more detail on C(τ). In order

to achieve under-smoothing, we define h = n−1/10 × hrt, where our choice of the factor

n−1/10 follows Cai and Xiao (2012, p.418). For `n, we use `n = 0.75
√

log(log(n)) for the

penalized conditional density estimation and `n = 0.5
√

log(log(n)) for the penalized local

MLE. Based on our simulation experiences, the choice of `n does have an impact on the first

stage variable selections, but does not significantly affect the finite sample performances of

the second and third stage estimators.

We repeat the bootstrap inference 500 times. The sample size we use is n = 1, 000.
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Although the sample size is quite large compared to p, in this DGP, the bandwidth is as

small as 0.083, which leads to an effective sample size of nh ≈ 83� 200. In fact, we obtained

warning signs of potential multi-collinearity and were unable to estimate the model when

implementing the traditional estimation procedures without variable selection (i.e., without

penalization).
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Figure 1: Finite sample performances of q̂τ (t)
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Figure 3: Coverage probability

The upper-right subplot of Figures 1 and 2 report the true functions of qτ (t) and ∂tqτ (t)

for τ = 0.25, 0.5, 0.75 and t ∈ (0.2, 1.8). Both qτ (t) and ∂tqτ (t) are heterogeneous across τ

and t, which imposes difficulties for estimation and inference. The rest of the subplots in
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Figures 1 and 2 show that all the biases of our estimators are of smaller order of magnitude of

the root mean squared error(rMSE), which indicates the doubly robust moments effectively

remove the selection bias induced by the Lasso method. The estimators of the quantile

functions are very accurate. The estimators of the quantile partial derivatives are less so

because they have slower convergence rates. Figure 3 shows the 90% bootstrap confidence

intervals have reasonable performances for both the quantile functions and their derivatives,

across all τ and t values considered, with slight over-covers for the quantile function when

τ = 0.75. The results of variable selections depend on the values of t and (t, u) for the

penalized conditional density estimation and penalized local MLE, respectively, which are

tedious to report, and thus are omitted for brevity. However, overall, about 7 covariates for

the density estimations and 1 to 8 covariates for the MLE method are selected.

6 Empirical Illustration

To investigate our proposed estimation and inference procedures, we use the 1979 National

Longitudinal Survey of Youth (NLSY79) and consider the effect of father’s income on son’s

income in the presence of many control variables. Our analysis is based on Bhattacharya and

Mazumder (2011). The data consists of a nationally representative sample of individuals

with age 14-22 years old as of 1979. We use only white and black males and discard the

individuals with missing values in the covariates we use. The resulting sample size is 1,795,

out of which 1,272 individuals are white and 523 individuals are black.

The treatment variable of interest is the logarithm of father’s income, in which father’s

income is computed as the average family income for 1978, 1979, and 1980. The outcome

variable is the logarithm of son income, in which son income is computed as the average

family income for 1997, 1999, 2001 and 2003. We create control variables by interacting

a list of demographic variables with the cubic splines of the AFQT score and the years of
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education. The list includes the mother’s education level, the father education level, the

indicators of (i) living in urban areas at age 14, (ii) living in the south, (iii) speaking a

foreign language at childhood, and (iv) being born outside the U.S. The resulting number

of control variables is 112.

Figure 4: Whites. First row: the father’s log income (X-axis), the son’s log income (Y-
axis), the estimated unconditional quantile function at τ (solid line), and its 90% confidence
interval (dot-dash line). Second row: the father’s log income (X-axis), the intergenerational
elasticity (Y-axis), the estimated derivative of the unconditional quantile function at τ (solid
line), and its 90% confidence interval (dot-dash line).

We apply the proposed estimation and inference procedures for black and white indi-

viduals separately. We use the same bandwidth choices as in the previous section, such

that our effective sample size is nh = 106 for whites and nh = 60 for blacks. The number

of control variables, 112, is larger than the effective sample size. Figures 4 and 5 show

the estimated unconditional quantile functions and the estimated derivative, as well as the

point-wise confidence intervals for τ = 25%, 50%, and 75%. Under the context of inter-

generational income mobility, the unconditional quantile and its derivative represent the
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quantile of son’s potential log income indexed by father’s log income and the intergener-

ational elasticity, respectively. The unconditional quantile functions have a slight upward

trend and the estimated derivative is positive in most part of father’s log income. The

confidence intervals for the unconditional quantile functions are quite narrow. However, we

cannot reject the (locally) zero intergenerational elasticity for most of the values of father’s

log income, except for the whites with father’s log income around 10 and τ = 50% and 75%.

This is considered as the cost of our fully nonparametric specification.

Figure 5: Blacks. First row: the father’s log income (X-axis), the son’s log income (Y-
axis), the estimated unconditional quantile function at τ (solid line), and its 90% confidence
interval (dot-dash line). Second row: the father’s log income (X-axis), the intergenerational
elasticity (Y-axis), the estimated derivative of the unconditional quantile function at τ (solid
line), and its 90% confidence interval (dot-dash line).

It is worthwhile to mention the variable selection in this application. For whites, on

average, about 7 and 5 control variables are selected for the density estimations and the

penalized local MLE, respectively. The indicator of speaking a foreign language at childhood

and the (linear term of) years of education are the two leading control variables selected. For
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blacks, on average, about 10 and 7 control variables are selected for the density estimations

and the penalized local MLE, respectively. The interaction of the indicator of speaking a

foreign language at childhood and (the quadratic term of) the years of education and the

indicator of being born outside the U.S. are the two leading variables selected.

7 Conclusion

This paper studies non-separable models with a continuous treatment and high-dimensional

control variables. It extends the existing results on the causal inference in non-separable

models to the case with both continuous treatment and high-dimensional covariates. It

develops a method based on localized L1-penalization to select covariates at each value of

the continuous treatment. It then proposes a multi-stage estimation and inference procedure

for average, quantile, and marginal treatment effects. The simulation and empirical exercises

support the theoretical findings in finite samples.
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Appendix

A Proof of the Main Results in the Paper

Before proving the theorem, we first introduce some additional notation and Assumption

6, which is a restatement of Sasaki (2015, Assumptions 1 and 2) in our framework. Denote

by dimX (resp. dimA) the dimensionality of X (resp. A). We define ∂V (y, t) = {(x, a) :

Γ(t, x, a) = y} and ∂V (y, t) can be parametrized as a mapping from a (dimX + dimA−1)-

dimensional rectangle, denoted by Σ, to ∂V (y, t). HdimX + dimA−1 is the (dimX + dimA−1)-

dimensional Hausdorff measure restricted from RdimX + dimA to (∂V (y, t),B(y, t)), where

B(y, t) is the set of the interactions between ∂V (y, t) and a Borel set in RdimX + dimA .

∂v(y, ·;u)/∂y (resp. ∂v(·, t;u)/∂t) is the velocity of ∂V (y, t) at u with respect to y (resp.

t).

Assumption 6 1. Γ is continuously differentiable.

2. ‖∇(x,a)Γ(t, ·, ·)‖ 6= 0 on ∂V (y, x).

3. The conditional distribution of (X,A) given T is absolutely continuous with respect to

the Lebesgue measure, and f(X,A)|T is a continuously differentiable function of T to

L1(RdimX + dimA).

4.
∫
∂V (y,t)

f(X,A)|TdH
dimX + dimA−1(u) > 0.

5. t 7→ ∂V (y, t) is a continuously differentiable function of Σ×T to RdimX + dimA for every

y and y 7→ ∂V (y, t) is a continuously differentiable function of Σ× Y to RdimX + dimA

for every t.

6. The mapping ∂v(y, ·; ·)/∂t is a continuously differentiable function of T to RdimX + dimA

and ∂v(·, t; ·)/∂y is a continuously differentiable function of Y to RdimX + dimA.
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7. There is p, q ≥ 1 with 1
p

+ 1
q

= 1 such that the mapping (x, a) 7→ ‖∇(x,a)Γ(t, x, a)‖−1

is bounded in Lp(∂V (y, t), HdimX + dimA) and that the mapping (x, a) 7→ f(X,A)=(x,a) is

bounded in Lq(∂V (y, t), HdimX + dimA).

Assumption 6 is a combination of Assumptions 1 and 2 in Sasaki (2015). We refer the

readers to the latter paper for detailed explanation.

Proof of Theorem 2.1. For the marginal distribution of Y (t), we note that, by Assumption 1,

P (Y (t) ≤ u) = E[E(1{Y (t) ≤ u}|X,T = t)]. The first result follows as E(1{Y (t) ≤ u}|X,T = t)

is identified.

For the second result, consider a random variable T ∗ which has the same marginal distribution

as T and is independent of (X,A). Define

Y ∗ = Γ(T ∗, X,A). (A.1)

Note that the (i) (X,A) and T ∗ are independent, and (ii) the τ -th quantile of Y ∗ given T ∗ = t is

qτ (t) for all t, because P (Y ∗ ≤ qτ (t) | T ∗ = t) = P (Γ(t,X,A) ≤ qτ (t)) = τ . Assumption 6 implies

Assumptions 1 and 2 in Sasaki (2015) for (Y ∗, T ∗, U∗) with U∗ = (X,A), and then his Theorem 1

implies that the derivative of the τ -th quantile of Y ∗ given T ∗ = t is equal to Eµτ,t [∂tΓ(t,X,A)].

Lemma 3.1 is the local version of the compatibility condition, which is one of the key building

blocks for Lemma A.1. Then, Lemma A.1 is used to prove Theorem 3.1.

Proof of Lemma 3.1. By Assumption 4, we can work on the set

{
{X}ni=1 : sup

|δ|0≤s`n

||b(X)′δ||Pn,2
||δ||2

≤ κ′′ <∞.
}

We use the same partition as in Bickel et al. (2009). Let S0 = St,u and m ≥ s be an integer

which will be specified later. Partition Sct,u, the complement of St,u, as
∑L

l=1 Sl such that |Sl| = m

for 1 ≤ l < L, |SL| ≤ m, where Sl, for l < L, contains the indices corresponding to m largest

34



coordinates (in absolute value) of δ outside ∪l−1
j=0Sj and SL collects the remaining indices. Further

denote δj = δSj and δ01 = δS0∪S1 . Then

||b(X)′δK(
T − t
h

)1/2||Pn,2 ≥ ||b(X)′δ01K(
T − t
h

)1/2||Pn,2 −
L∑
l=2

||b(X)′δlK(
T − t
h

)1/2||Pn,2. (A.2)

For the first term on the right hand side (r.h.s.) of (A.2), we have

||b(X)′δ01K(
T − t
h

)1/2||2Pn,2

≥||b(X)′δ01K(
T − t
h

)1/2||2P,2 − |(Pn − P)(b(X)′δ01)2K(
T − t
h

)|

≥Ch||b(X)′δ01||2P,2 − |(Pn − P)(b(X)′δ01)2K(
T − t
h

)|

≥Ch||b(X)′δ01||2Pn,2 − Ch|(Pn − P)(b(X)′δ01)2| − |(Pn − P)(b(X)′δ01)2K(
T − t
h

)|

≥Ch||δ01||22(κ′)2 − Ch|(Pn − P)(b(X)′δ01)2| − |(Pn − P)(b(X)′δ01)2K(
T − t
h

)|

(A.3)

where the second inequality holds because

E(b(X)′δ01)2K(
T − t
h

) = hE(b(X)′δ01)2

∫
ft+hv(X)K(v)dv ≥ ChE(b(X)′δ01)2.

We next bound the last term on the r.h.s. of (A.2). The second term can be bounded in the

same manner. Let δ̃01 = δ01/||δ01||2. Then we have

|(Pn − P)(b(X)′δ01)2K(
T − t
h

)| = ||δ01||22|(Pn − P)(b(X)′δ̃01)2K(
T − t
h

)|.

Let {ηi}ni=1 be a sequence of Rademacher random variables which is independent of the data and

F = {ηb(X)′δK(T−th ) : ||δ||0 = m + s, ||δ||2 = 1, t ∈ T } with envelope F = CKζn(m + s)1/2.
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Denote π1n as ( log(p∨n)(s+m)2ζ2n
nh )1/2 with m = s`

1/2
n . Then,

E sup
||δ̃01||0≤m+s,||δ̃01||2=1,t∈T

|(Pn − P)(b(X)′δ̃01)2K(
T − t
h

)|

≤2E sup
||δ̃01||0≤m+s,||δ̃01||2=1,t∈T

|Pnη(b(X)′δ̃01)2K(
T − t
h

)|

≤2ζn

(
sup

||δ̃01||0≤m+s,||δ̃01||2=1

||δ̃01||1
)(

E sup
f∈F
|Pnηf |

)

.2ζn(m+ s)1/2

[
(
log(p ∨ n)(s+m)h

n
)1/2 +

CKζn(m+ s)1/2 log(p ∨ n)(s+m)

n

]
.

(
log(p ∨ n)(s+m)2hζ2

n

n

)1/2

= hπ1n,

where the first inequality is by Lemma 2.3.1 in van der Vaart and Wellner (1996), the second

inequality is by Theorem 4.4 in Ledoux and Talagrand (2013), and the third one is by applying

Corollary 5.1 of Chernozhukov, Chetverikov, and Kato (2014) with σ2 = supf∈ F Ef2 . h and, for

some A ≥ e,

sup
Q
N(F , eQ, ε||F ||Q,2) ≤ (ps+m)(

A

ε
)s+m . (

Ap

ε
)s+m.

By Assumption 2, π1n → 0. Then we have, w.p.a.1.,

|(Pn − P)(b(X)′δ01)2K(
T − t
h

)| ≤ 3hC(κ′)2||δ01||22/8. (A.4)

By the same token we can show that

E sup
||δ̃01||0≤m+s,||δ̃01||2=1,t∈T

|(Pn − P)(b(X)′δ̃01)2| .
√
hπ1n → 0.

Therefore, we have, w.p.a.1.,

|(Pn − P)(b(X)′δ01)2| ≤ 3(κ′)2||δ01||22/8. (A.5)
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Combining (A.3), (A.4), and (A.5) yields that w.p.a.1.,

||b(X)′δ01K(
T − t
h

)1/2||2Pn,2 ≥ ||δ01||22h(κ′)2C/4.

Analogously, we can show that, w.p.a.1,

||b(X)′δlK(
T − t
h

)1/2||2Pn,2 ≤ 4||δl||22C−1h(κ′′)2.

Following (A.2), we have, w.p.a.1,

||b(X)′δK(
T − t
h

)1/2||Pn,2 ≥h1/2||δ01||2κ′C1/2/2− h1/2
L∑
l=2

2||δl||2κ
′′
C−1/2

≥h1/2||δ01||2κ′C1/2/2− h1/2
L∑
l=2

2κ
′′
C−1/2(||δl−1||1||δl||1)1/2/

√
m

≥h1/2||δ01||2κ′C1/2/2− 2h1/2κ
′′
C−1/2||δT c ||1/

√
m

≥h1/2||δ01||2κ′C1/2/2− 2h1/2κ
′′
C−1/2c1/2||δ0||1/

√
m

≥h1/2||δ01||2κ′C1/2/2− 2h1/2κ
′′
C−1/2c1/2||δ0||2

√
s/
√
m

≥h1/2||δ0||2
[
κ′C1/2/2− 2κ

′′
C−1/2c1/2√s/

√
m

]
,

where the second inequality holds because, by construction, ||δl||22 ≤ ||δl−1||1||δl||1/
√
m. Since

m = s`
1/2
n , s/m = `

−1/2
n → 0, and thus, for n large enough, the constant inside the brackets is

greater than κ′C1/2/4 which is independent of (t, u, n). Therefore, we can conclude that, for n

large enough,

inf
(t,u)∈T U

inf
δ∈∆2c̃,t,u

||b(X)′δK(T−th )1/2||Pn,2
||δSt,u ||2

√
h

≥ κ′C1/2/4 ≡ κ.

This completes the proof of the lemma.

We aim to prove the results with regard to φ̂t,u(X) and θ̂t,u in Theorem 3.1. The derivations

for the results regarding φ̃t,u(X) and θ̃t,u are exactly the same. We do not need to deal with

the nonlinear logistic link function when deriving the results regarding ν̂t(X), ν̃t(X), γ̂t, and γ̃t.
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Therefore, the corresponding results can be shown by following the same proving strategy as below

and treating ωt,u defined below as 1. The proofs for results regarding ν̂t(X), ν̃t(X), γ̂t, and γ̃t are

omitted for brevity.

Let r̃φt,u = Λ−1(E(Yu|X,T = t))−b(X)′θt,u, δt,u = θ̂t,u−θt,u, ŝt,u = ||θ̂t,u||0, ωt,u = E(Yu(t)|X)(1−

E(Yu(t)|X)), and Ŝt,u be the support of θ̂t,u. We need the following four lemmas, whose proofs are

relegated to the online supplement.

Lemma A.1 If Assumptions 1–4 hold, then

sup
(t,u)∈T U

||ω1/2
t,u b(X)′δt,uK(

T − t
h

)1/2||Pn,2 = Op((log(p ∨ n)s)1/2n−1/2)

and

sup
(t,u)∈T U

||δt,u||1 = Op((log(p ∨ n)s2)1/2(nh)−1/2).

Lemma A.2 Suppose Assumptions 1–4 hold. Let ξt,u = Yu − φt,u(X). Then

sup
(t,u)∈T U

∣∣∣∣∣∣∣∣Ψ̂−1
t,uPn

[
ξt,uK(

T − t
h

)b(X)

]∣∣∣∣∣∣∣∣
∞

= Op((log(p ∨ n)h/n)1/2).

Lemma A.3 If the assumptions in Theorem 3.1 hold, then there exists a constant Cψ ∈ (0, 1)

such that w.p.a.1,

Cψ/2 ≤ inf
(t,u)∈T U

||Ψ̂t,u,0||∞ ≤ sup
(t,u)∈T U

||Ψ̂t,u,0||∞ ≤ 2/Cψ. (A.6)

For any k = 0, 1, · · · ,K and Ψ̂k
t,u defined in Algorithm 2, there exists a constant Ck ∈ (0, 1) such

that, w.p.a.1,

Ck/2 ≤ inf
(t,u)∈T U

||Ψ̂k
t,u||∞ ≤ sup

(t,u)∈T U
||Ψ̂k

t,u||∞ ≤ 2Ck. (A.7)
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In addition, for any k = 0, 1, · · · ,K and Ψ̂k
t,u defined in Algorithm 2, there exist constants l < 1 < L

independent of n, (t, u), and k such that, uniformly in (t, u) ∈ T U and w.p.a.1,

lΨ̂t,u,0 ≤ Ψ̂k
t,u ≤ LΨ̂t,u,0. (A.8)

Lemma A.4 If the assumptions in Theorem 3.1 hold, then w.p.a.1,

sup
t∈T ,||δ||2=1,||δ||0≤s`n

||b(X)′δK(
T − t
h

)1/2||Pn,2h−1/2 ≤ 2C−1/2κ
′′
.

Proof of Theorem 3.1. By the mean value theorem, there exist θt,u ∈ (θt,u, θ̂t,u) and

rφt,u ∈ (0, r̃φt,u) such that

|φt,u(X)− φ̂t,u(X)| ≤ Λ(b(X)′θt,u + rφt,u)(1− Λ(b(X)′θt,u + rφt,u))(b(X)′δt,u + r̃φt,u),

where δt,u= θ̂t,u−θt,u. By the proof of Lemma A.1, we have, w.p.a.1,

|r̃φt,u| ≤ [C/2(1− C/2)]−1|rφt,u|.

Therefore, by Lemma A.1 and Assumptions 3.4-3.5 we have

sup
(t,u)∈T U

|b(X)′θt,u + rφt,u − b(X)′θt,u − r̃φt,u|

. sup
(t,u)∈T U

|b(X)′δt,u|+ sup
(t,u)∈T U

|rφt,u|

.ζn sup
(t,u)∈T U

||δt,u||1 +O((log(p ∨ n)s2ζ2
n/(nh))−1/2) = op(1),

where the last equality is because sup(t,u)∈T U ||δt,u||1 = Op((log(p ∨ n)s2)1/2(nh)−1/2) by Lemma
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A.1 and log(p ∨ n)s2ζ2
n/(nh)→ 0 by Assumption 3.5. In addition, under Assumption 4.4 we have

Λ(b(X)′θt,u + r̃φt,u) = E(Yu|X,T = t) ∈ [C, 1− C].

Hence, there exist some positive constants c and c′ only depending on C such that, w.p.a.1,

Λ(b(X)′θt,u + rφt,u)(1− Λ(b(X)′θt,u + rφt,u)) ≤ c

and uniformly over (t, u) ∈ T U ,

|φt,u(X)− φ̂t,u(X)| ≤ c(b(X)′δt,u + r̃φt,u) ≤ c′(b(X)′δt,u + rφt,u). (A.9)

By Assumptions 3.3-3.4, Lemma A.1, and the fact that ωt,u is bounded and bounded away from

zero uniformly over T U , we have, w.p.a.1,

sup
(t,u)∈T U

||(φt,u(X)− φ̂t,u(X))K(
T − t
h

)1/2||Pn,2

≤ sup
(t,u)∈T U

c

[
||b(X)′δt,uK(

T − t
h

)1/2||Pn,2 + ||rφt,uK(
T − t
h

)1/2||Pn,2
]

=Op((log(p ∨ n)s/n)1/2)

and

sup
(t,u)∈T U

||φt,u(X)− φ̂t,u(X)||P,∞ .ζn sup
(t,u)∈T U

||δt,u||1 +O((log(p ∨ n)s2ζ2
n/(nh))1/2)

=Op((log(p ∨ n)s2ζ2
n/(nh))1/2).

This gives the first and second results in Theorem 3.1.

Next, recall that λ = `n(log(p∨n)nh)1/2. By the first order conditions (FOC), for any j ∈ Ŝt,u,

we have ∣∣∣∣Pn[(Yu − Λ(b(X)′θ̂t,u))bj(X)K(
T − t
h

)

]∣∣∣∣ = Ψ̂t,u,jj
λ

n
.

40



Denote ξt,u = Yu − φt,u(X). By Lemmas A.1, A.2 and A.3, for any ε > 0, with probability greater

than 1− ε, there exist positive constants Cλ and C, which only depend on ε and are independent

of (t, u, n), such that

λŝ
1/2
t,u

n
=

∣∣∣∣∣∣∣∣Ψ̂−1
t,u

{
Pn
[
(Yu − Λ(b(X)′θ̂t,u))b(X)K(

T − t
h

)

]}
Ŝt,u

∣∣∣∣∣∣∣∣
2

≤ sup
||θ||0≤ŝt,u,||θ||2=1

||θ||1 sup
(t,u)∈T U

||Ψ̂−1
t,u(Pnξt,ub(X)K(

T − t
h

))||∞

+
||Ψ̂−1

t,u,0||∞
l

sup
||θ||0≤ŝt,u,||θ||2=1

∣∣∣∣{Pn(Λ(b(X)′θ̂t,u)− Λ(b(X)′θt,u)− rφt,u
)
b(X)′θK(

T − t
h

)

}∣∣∣∣
≤
Cλλŝ

1/2
t,u

n`n
+
c′||Ψ̂−1

t,u,0||∞
l

||(b(X)′δt,u + rφt,u)K(
T − t
h

)1/2||Pn,2

× sup
||θ||0≤ŝt,u,||θ||2=1

||b(X)′θK(
T − t
h

)1/2||Pn,2

≤
λŝ

1/2
t,u

2n
+ C(log(p ∨ n)s/n)1/2φ1/2

max(ŝt,u)

≤
λŝ

1/2
t,u

2n
+

Cλ

nh1/2
φ1/2
max(ŝt,u)

where φmax(s) = sup||θ||0≤s,||θ||2=1 ||b(X)′θK(T−th )1/2||2Pn,2 and rφt,u = rφt,u(X). This implies that

there exists a constant C only depending on ε, such that, with probability greater than 1− ε,

ŝt,u ≤ Csφmax(ŝt,u)/h. (A.10)

Let M = {m ∈ Z : m > 2Csφmax(m)/h}. By (A.10), for any m ∈ M, ŝt,u ≤ m. In addition, by

Lemma A.4, we can choose Cs > 4CC−1(κ′′)2, which is independent of (t, u, n), such that

2Csφmax(Css)/h ≤ 4CC−1(κ′′)2s < Css.

This implies Css ∈ M and thus with probability greater than 1− ε, ŝt,u ≤ Css. This result holds

uniformly over (t, u) ∈ T U .

To prove Theorem 3.2, we need the following two lemmas, whose proofs are relegated to the
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online supplement.

Lemma A.5 If the assumptions in Theorem 3.2 hold, then there exists a constant Cf ∈ (0, 1)

such that w.p.a.1,

Cf/2 ≤ inf
t∈T
||Ψ̂t,0||∞ ≤ sup

t∈T
||Ψ̂t,0||∞ ≤ 2/Cf . (A.11)

For any k = 0, 1, · · · ,K and Ψ̂k
t defined in Algorithm 2, there exists a constant Ck ∈ (0, 1) such

that, w.p.a.1,

Ck/2 ≤ inf
t∈T
||Ψ̂k

t ||∞ ≤ sup
t∈T
||Ψ̂k

t ||∞ ≤ 2Ck. (A.12)

In addition, for any k = 0, 1, · · · ,K and Ψ̂k
t defined in Algorithm 2, there exist constants l < 1 < L

independent of n, t, and k such that, uniformly in t ∈ T and w.p.a.1,

lΨ̂t,0 ≤ Ψ̂k
t ≤ LΨ̂t,0. (A.13)

Lemma A.6 Let ξt(X) = 1
hK(T−th )− ft(X). Suppose that the assumptions in Theorem 3.2 hold.

Then supt∈T ||PnΨ̂−1
t0 ξt(X)b(X)||∞ = Op((log(p ∨ n)/(nh))1/2).

Proof of Theorem 3.2. Recall that λ = `n(log(p∨ n)nh)1/2, and some Cλ large enough such

that C−1
λ < l < 1 < L. In addition, denote

E1 = {||rft (X)||Pn,2 ≤ Cr(log(p ∨ n)s/(nh))1/2},

E2 = {sup
t∈T

Cλ||PnΨ̂−1
t0 ξt(X)b(X)||∞ ≤

λ

nh
},

and

E3 = {lΨ̂t,0 ≤ Ψ̂t ≤ LΨ̂t,0 and Cf/2 ≤ inf
t∈T
||Ψ̂t,0||∞ ≤ sup

t∈T
||Ψ̂t,0||∞ ≤ 2/Cf}

where Cr and Cf are some positive constants which will be defined later in this proof and in
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Lemma A.5, respectively. Ψ̂t,0 = Diag(lt,0,1, · · · , lt,0,p) with

lt,0,j =

[
Pnh

(
1

h
K(

T − t
h

)− ft(X)

)2

f2
j (X)

]1/2

is the ideal weight.

By Assumption 3.4, for any ε > 0, there exists a constant Cr (possibly dependent on ε) such

that E1 holds with probability greater than 1 − ε. Lemma A.6 and the fact that `n → ∞ imply

that, for any ε > 0 and any Cλ > 0 such that C−1
λ < l and E2 holds with probability greater than

1 − ε. By Lemma A.5, there exists l < 1 < L independent of n, t such that E3 holds uniformly

over t ∈ T with probability greater than 1 − εn for some εn → 0. Under E1, E2, and E3, which

occur with probability greater than 1 − 2ε − εn, by Lemma J.3 and J.4 in Belloni et al. (2017a)

with their λ replaced by `n(log(p ∨ n)nh)1/2/h (i.e., our λ divided by h) and their cr replaced by

(log(p ∨ n)s/(nh))1/2, we have

sup
t∈T
||f̂t(X)− ft(X)||Pn,2 = Op(`n(log(p ∨ n)s/(nh))1/2),

ŝ = sup
t∈T
||β̂t||0 = Op(s),

and

sup
t∈T
||β̂t − βt||1 = Op(`n(log(p ∨ n)s2/(nh))1/2).

Following the analysis of ||φ̂t,u(X)− φt,u(X)||P,∞ in the proof of Theorem 3.1 we can show that

sup
t∈T
||f̂t(X)− ft(X)||P,∞ = Op(`n(log(p ∨ n)s2ζ2

n/(nh))1/2).

In addition, by Lemma J.5 in Belloni et al. (2017a) with their λ and cr replaced by `n(log(p ∨

n)nh)1/2/h and (log(p ∨ n)s/(nh))1/2, respectively,

sup
t∈T
||f̃t(X)− ft(X)||Pn,2 = Op(`n(log(p ∨ n)s/(nh))1/2),
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and

sup
t∈T
||f̃t(X)− ft(X)||P,∞ = O(`n(log(p ∨ n)s2ζ2

n/(nh))1/2).

This completes the proof of the theorem.

Proof of Theorem 3.3. Let α̂∗(t, u) = PnηΠt,u(Wu, φ̂t,u, f̂t) where either η = 1 or η is

a random variable that has sub-exponential tails with unit mean and variance. When η = 1,

α̂∗(t, u) = α̂(t, u), which is our original estimator. When η is random, α̂∗(t, u) is the bootstrap

estimator. In the following, we establish the linear expansion of both the original and bootstrap

estimators together.

Let εn = `n(log(p∨ n)s/(nh))1/2 and δn = `n(log(p∨ n)s2ζ2
n/(nh))1/2. For some M > 0, which

will be specified later, denote

Gt =

b(X)′β : ||β||0 ≤Ms, ||b(X)′β − ft(X)||P,∞ ≤Mδn,

||b(X)′β − ft(X)||Pn,2 ≤Mεn


and

Ht,u =

Λ(b(x)′θ) : ||θ||0 ≤Ms, ||(Λ(b(X)′θ)− φt,u(X))K(T−th )1/2||Pn,2 ≤Mεnh
1/2,

||Λ(b(X)′θ)− φt,u(X)||P,∞ ≤Mδn.


By Theorem 3.1 and 3.2, for any ε > 0, there exists a constant M such that, with probability

greater than 1 − ε, f̂t(·) ∈ Gt uniformly in t ∈ T and φ̂t,u(·) ∈ Ht,u uniformly in (t, u) ∈ T U . We

focus on the case in which (φ̂t,u, f̂t) ∈ Gt ×Ht,u. Then

α̂∗(t, u)− α(t, u) =(Pn − P)ηΠt,u(Wu, φt,u, ft) + (Pn − P)

[
ηΠt,u(Wu, φ, f)− ηΠt,u(Wu, φt,u, ft)

]
+P
[
ηΠt,u(Wu, φ, f)− ηΠt,u(Wu, φt,u, ft)

]
+

[
PηΠt,u(Wu, φt,u, ft)− α(t, u)

]
=:I + II + III + IV,

where (φ, f) = (φ̂t,u, f̂t).
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Below we fix (φ, f)∈ Gt × Ht,u. Term IV is O(h2) uniformly in (t, u) ∈ T U . For term III,

uniformly over (t, u) ∈ T U , we have

Pη
[
Πt,u(Wu, φ, f)−Πt,u(Wu, φt,u, ft)

]
=E
(
φ(X)− φt,u(X)

)(
1−

E(K(T−th )|X)

hft(X)

)
+ E

(
Yu − φ(X)

f t(X)ft(X)

)(
ft(X)− f t(X)

h

)
K(

T − t
h

)

=O(εnh
2) + E

(
Yu − φ (X)

f t(X)ft(X)

)(
ft(X)− f t(X)

h

)
K(

T − t
h

)

=O(δnh
2) +O(h−1||(φt,u(X)− φ(X))K(

T − t
h

)1/2||P,2||(ft(X)− f t(X))K(
T − t
h

)1/2||P,2)

=O(ε2
n + h2).

(A.14)

The second equality of (A.14) follows because that there exists a constant c independent of n such

that

sup
(t,u)∈T U

∣∣∣∣1− E(K(T−th )|X)

hft(X)

∣∣∣∣ ≤ ch2

and then

E
(
φ(X)− φt,u(X)

)(
1−

E(K(T−th )|X)

hft(X)

)
≤ch3/2||(φ(X)− φt,u(X))K(

T − t
h

)1/2||P,2

=ch3/2[E||(φ(X)− φt,u(X))K(
T − t
h

)1/2||2Pn,2]1/2 = O(εnh
2).

The third equality of (A.14) holds by the fact that ||f t(X) − ft(X)||P,∞ = O(δn) = o(1), ft(x) is

assumed to be bounded away from zero uniformly over t, τ , the Cauchy inequality, and

sup
(t,u)∈T U

E((Yu − φt,u(X))K(
T − t
h

)|X) = O(h3).

The fourth inequality of (A.14) holds because

||(φt,u(X)− φ(X))K(
T − t
h

)1/2||P,2 = [E||(φt,u(X)− φ(X))K(
T − t
h

)1/2||2Pn,2]1/2 = O(εnh
1/2)
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and for some constant c > 0 independent of (t, u, n),

||(ft(X)− f t(X))K(
T − t
h

)1/2||P,2) ≤ c[hE||ft(X)− f t(X)||2Pn,2]1/2 = O(εnh
1/2).

For the term II, we have

E(Pn − P)η

[
Πt,u(Wu, φ, f)−Πt,u(Wu, φt,u, ft)

]
≤ E||Pn − P||F

where

F = ∪(t,u)∈T UFt,u and Ft,u =

{
η

[
Πt,u(Wu, φ, f t)−Πt,u(Wu, φt,u, ft)

]
: φ ∈ Ht,u, f t ∈ Gt

}
.

Note F has envelope | ηh |,

σ2 ≡ sup
f∈F

Ef2

. sup
(t,u)∈T U

E
[
(φ(X)− φ(X))2

(
1−

K(T−th )

ft(X)h

)2]
+ sup

(t,u)∈T U
E
[
Yu − φ(X)

f t(X)ft(X)h
K(

T − t
h

)

(
ft(X)− f t(X)

)]2

. sup
(t,u)∈T U

E
[
(φ(X)− φ(X))2

]
h−1 + h−1 sup

(t,u)∈T U
E
[
ft(X)− f t(X)

]2

. h−1ε2
n,

and F is nested by

F =

 Πt,u(Wu,Λ(b(X)′θ), b(X)′β)−Πt,u(Wu, φt,u, ft) : (t, u) ∈ T U ,

||θ||0 ≤Ms, ||β||0 ≤Ms

 ,

where

sup
Q

logN(F , eQ, ε||F ||Q,2) . s log(p ∨ n) + s log(
1

ε
) ∨ 0.

In addition, we claim ||max1≤i≤n |ηi/h|||p,2 . log(n)h−1. When η = 1, the above claim holds
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trivially. When η has sub-exponential tail, and the claim holds by Lemma 2.2.2 in van der Vaart

and Wellner (1996). Therefore, by Corollary 5.1 of Chernozhukov et al. (2014), we have

E||Pn − P||F . εn(nh)−1/2s1/2 log1/2(p ∨ n) + log(n)(nh)−1s log(p ∨ n) . ε2
n.

This implies that sup(t,u)∈T U II = Op(ε
2
n). Combining the bounds for II, III, and IV , we have

α̂∗(t, u)−α(t, u) = (Pn−P)ηΠt,u(Wu, φt,u, ft) +Rn(t, u) and sup
(t,u)∈T U

|Rn(t, u)| = Op(ε
2
n + h2).

Then, Assumption 5 implies the desired results.

Proof of Theorem 3.4. We first derive the linear expansion of the rearrangement of α̂∗(t, u)

as defined in the proof of Theorem 3.3. For z ∈ (0, 1), let

F (t, z) =

∫ 1

0
1{α(t, ψ←(v)) ≤ z}dv, F (t, z|hn) =

∫ 1

0
1{α̂∗(t, ψ←(v)) ≤ y}dv.

Then, by Lemma B.2, we have

F (t, z|hn)− F (t, z)

sn
+
hn(t, ψ(qz(t)))ψ

′(qz(t))

fY (t)(qz(t))
= op(δn) (A.15)

and

α̂∗r(t, u)− α(t, u)

sn
+
F (t, α(t, u)|hn)− F (t, α(t, u))fY (t)(u)

snψ′(u)
= op(δn). (A.16)

where sn = (nh)−1/2, hn(t, v) = (nh)1/2(α̂∗(t, ψ←(v))−α(t, ψ←(v))), fY (t)(·) is the density of Y (t),

qz(t) is the z-th quantile of Y (t), and δn equals to either 1 or h1/2, depending on either Assumption

5.1 or 5.2 is in place.

Combining (A.15) and (A.16), we have

(nh)1/2(α̂∗r(t, u)− α(t, u)) = hn(t, ψ(u)) + op(δn) = (nh)1/2(α̂∗(t, u)− α(t, u)) + op(δn) (A.17)

uniformly over (t, u) ∈ T U .
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We can apply Lemma B.2 on α̂∗r(t, u) again with Jn(t, u) = (nh)1/2(α̂∗r(t, u) − α(t, u)),

F (t, u) = P (Y (t) ≤ u) = α(t, u), f(t, u) = fY (t)(u), and F←(t, τ) = qτ (t). Then, for δn equals 1 or

h1/2 under either Assumption 5.1 or 5.2, respectively, we have,

q̂∗τ (t)− qτ (t)

sn
= − Jn(t, qτ (t))

fY (t)(qτ (t))
+ op(δn) = −(nh)1/2(α̂∗r(t, qτ (t))− τ)

fY (t)(qτ (t))
+ op(δn) (A.18)

uniformly over (t, τ) ∈ T I.

Combining (A.17), (A.18), and Theorem 3.3, we have

q̂∗τ (t)− qτ (t) = −(Pn − P)ηΠt,u(Wqτ (t), φt,qτ (t), ft)/fY (t)(qτ (t)) +Rn(t, τ) + op(δn(nh)−1/2).

By taking δn = 1 and δn = h1/2 under Assumptions 5.1 and 5.2, respectively, we have establish

the desired results.

Proof of Theorem 3.5. We consider the general case in which the observations are weighted

by {ηi}ni=1 as above. For brevity, denote δ̂ ≡ (δ̂0, δ̂1)′ = (β̂∗0τ (t), β̂∗1τ (t))′ and δ ≡ (δ0, δ1)′ =

(β0
τ (t), β1

τ (t)). Then δ̂ = Σ̂−1
2 Σ̂1, where

Σ̂1 =

 1
n

∑n
i=1K(Ti−th )ηiq̂

∗
τ (Ti)

1
n

∑n
i=1K(Ti−th )(Ti − t)ηiq̂∗τ (Ti)


and

Σ̂2 =

 1
n

∑n
i=1K(Ti−th )ηi

1
n

∑n
i=1K(Ti−th )(Ti − t)ηi

1
n

∑n
i=1K(Ti−th )(Ti − t)ηi 1

n

∑n
i=1K(Ti−th )(Ti − t)2ηi

 .

Let Σ2 =

 f(t) 0

κ2f
(1)(t) κ2f(t)

 and G =

h−1 0

0 h−3

. Then we have

GΣ̂2 − Σ2 = O∗p(log1/2(n)(nh3)−1/2).
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In addition, note

q̂∗τ (Ti) = δ0 + δ1(Ti − t) + (qτ (Ti)− δ0 − δ1(Ti − t)) + (q̂∗τ (Ti)− qτ (Ti))

and 
1
nh

∑n
i=1K(Ti−th )ηi

(
qτ (Ti)− δ0 − δ1(Ti − t)

)
1
nh3
∑n

i=1K(Ti−th )(Ti − t)ηi
(
qτ (Ti)− δ0 − δ1(Ti − t)

)
 = O∗p(

√
log(n)h

n
+ h2)

Therefore,

GΣ̂1 = GΣ̂2δ +


1
nh

∑n
i=1K(Ti−th )

(
q̂τ (Ti)− qτ (Ti)

)
ηi

1
nh3
∑n

i=1K(Ti−th )(Ti − t)
(
q̂τ (Ti)− qτ (Ti)

)
ηi

+O∗p(

√
log(n)h

n
+ h2). (A.19)

By Theorem 3.4, the fact that EYu−φt,u(X)
ft(X)h K(T−th ) = O(h2), and that Eφt,qτ (t)(X) = τ, we have

q̂∗τ (t)−qτ (t) =
−1

fYt(qτ (t))

1

n

n∑
j=1

ηj

(
Yqτ (t),j − φt,qτ (t)(Xj)

ft(Xj)h
K(

Tj − t
h

)+φt,qτ (t)(Xj)−τ
)

+o∗p((nh)−1/2),

(A.20)

where o∗p((nh)−1/2) term is uniform over (t, τ) ∈ T I. Let Υi = (Yi, Ti, Xi, ηi). Then, by plugging

(A.20) in (A.19) and noticing that

 supt∈T
1
nh

∑n
i=1K(Ti−th )ηi

supt∈T
1
nh3
∑n

i=1K(Ti−th )|Ti − t|ηi

 =

 Op(1)

Op(h
−1)

 ,

we have

GΣ̂1 = GΣ̂2δ +
1

n(n− 1)

∑
i 6=j

ηiηjΓ(Υi,Υj ; t, τ) +

 o∗p((nh)−1/2)

o∗p((nh
3)−1/2)


where Γ(Υi,Υj ; t, τ) = (Γ0(Υi,Υj ; t, τ),Γ1(Υi,Υj ; t, τ))′, and

Γ`(Υi,Υj ; t, τ) =
(Ti − t)`

h1+2`fYTi (qτ (Ti))
K(

Ti − t
h

)

(
Yqτ (Ti),j − φTi,qτ (Ti)(Xj)

fTi(Xj)h
K(

Tj − Ti
h

)+φTi,qτ (Ti)(Xj)−τ
)

49



for ` = 0, 1. Let Γs(Υi,Υj ; t, τ) = (Γ(Υi,Υj ; t, τ) + Γ(Υj ,Υi; t, τ))/2. Then we have

β̂1∗
τ (t)− β1

τ (t) = e′2(GΣ̂2)−1Un(t, τ) + o∗p((nh
3)−1/2), (A.21)

where e2 = (0, 1)′ and Un(t, τ) = (C2
n)−1

∑
1≤i<j≤n ηiηjΓ

s(·, ·; t, τ) is a U-process indexed by (t, τ).

By Lemma B.3,

e′2(GΣ̂2)−1Un(t, τ) =
1

n

n∑
j=1

ηj(κ2fY (t)(qτ (t))ft(Xj)h
2)−1

[
Yqτ (t),j−φt,qτ (t)(Xj)

]
K(

Tj − t
h

)+o∗p((nh
3)−1/2).

(A.22)

Combining (A.21) and (A.22), we have

β̂1∗
τ (t)−β1

τ (t) =
1

n

n∑
j=1

ηj(κ2fYt(qτ (t))ft(Xj)h
2)−1

[
Yqτ (t),j−φt,qτ (t)(Xj)

]
K(

Tj − t
h

)+o∗p((nh
3)−1/2).

Proof of Theorem 4.1. By the proofs of Theorem 3.4 and 3.5, we have

q̂bτ (t)− q̂τ (t) = −(Pn − P)(η − 1)Πt,u(Wqτ (t), φt,qτ (t), ft)/ft(qτ (t)) + op((nh)−1/2)

and

β̂1b
τ (t)−β̂1

τ (t) =
1

n

n∑
j=1

(ηj−1)(κ2fY (t)(qτ (t))ft(Xj)h
2)−1

[
Yqτ (t),j−φt,qτ (t)(Xj)

]
K(

Tj − t
h

)+o∗p((nh
3)−1/2).

Then, it is straightforward to show that
√
nh(q̂bτ (t)− q̂τ (t)) and (nh3)1/2(β̂1b

τ (t)− β̂1
τ (t)) converge

weakly to the limiting distribution of
√
nh(q̂τ (t)− qτ (t)) and (nh3)1/2(β̂1

τ (t)− β1
τ (t)), respectively,

conditional on data in the sense of van der Vaart and Wellner (1996, Section 2.9). The desired

results then follow.
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Frölich, M., Melly, B., 2013. Unconditional quantile treatment effects under endogeneity. Journal

of Business & Economic Statistics 31 (3), 346–357.

Galvao, A. F., Wang, L., 2015. Uniformly semiparametric efficient estimation of treatment effects

with a continuous treatment. Journal of the American Statistical Association 110, 1528–1542.

Graham, B. S., Imbens, G. W., Ridder, G., 2014. Complementarity and aggregate implications of

assortative matching: A nonparametric analysis. Quantitative Economics 5 (1), 29–66.

Graham, B. S., Imbens, G. W., Ridder, G., 2016. Identification and efficiency bounds for the

average match function under conditionally exogenous matching.

Hirano, K., Imbens, G. W., 2004. The propensity score with continuous treatments. in Applied

Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, ed. A. Gelman

and X.-L. Meng 226164, 73–84.

Hirano, K., Imbens, G. W., Ridder, G., 2003. Efficient estimation of average treatment effects

using the estimated propensity score. Econometrica 71 (4), 1161–1189.

Hoderlein, S., Mammen, E., 2007. Identification of marginal effects in nonseparable models without

monotonicity. Econometrica 75 (5), 1513–1518.

Hoderlein, S., Su, L., White, H., Yang, T. T., 2016. Testing for monotonicity in unobservables

under unconfoundedness. Journal of Econometrics 193 (1), 183–202.

Imbens, G. W., Newey, W. K., 2009. Identification and estimation of triangular simultaneous

equations models without additivity. Econometrica 77 (5), 1481–1512.

Khan, S., Tamer, E., 2010. Irregular identification, support conditions, and inverse weight estima-

tion. Econometrica 78 (6), 2021–2042.

54



Ledoux, M., Talagrand, M., 2013. Probability in Banach Spaces: Isoperimetry and Processes.

Springer Science & Business Media.

Lewbel, A., Lu, X., Su, L., 2015. Specification testing for transformation models with an application

to generalized accelerated failure-time models. Journal of Econometrics 184 (1), 81–96.

Matzkin, R. L., 1994. Restrictions of economic theory in nonparametric methods. Handbook of

econometrics 4, 2523–2558.

Matzkin, R. L., 2003. Nonparametric estimation of nonadditive random functions. Econometrica

71 (5), 1339–1375.

Ning, Y., Liu, H., 2017. A general theory of hypothesis tests and confidence regions for sparse high

dimensional models. The Annal of Statistics 45 (1), 158–195.

Nolan, D., Pollard, D., 1987. U-processes: Rates of convergence. The Annals of Statistics 15 (2),

780–799.

Powell, D., 2010. Unconditional quantile regression for panel data with exogenous or endogenous

regressors. Working paper.

Rosenbaum, P. R., Rubin, D. B., 1983. The central role of the propensity score in observational

studies for causal effects. Biometrika 70 (1), 41–55.

Sasaki, Y., 2015. What do quantile regressions identify for general structural functions? Econo-

metric Theory 31 (05), 1102–1116.

Su, L., Chen, Q., 2013. Testing homogeneity in panel data models with interactive fixed effects.

Econometric Theory 29 (06), 1079–1135.

Su, L., Hoshino, T., 2016. Sieve instrumental variable quantile regression estimation of functional

coefficient models. Journal of Econometrics 191 (1), 231–254.

Su, L., Jin, S., Zhang, Y., 2015. Specification test for panel data models with interactive fixed

effects. Journal of Econometrics 186 (1), 222–244.

55



van der Vaart, A. W., Wellner, J. A., 1996. Weak Convergence and Empirical Processes: With

Applications to Statistics. Springer.

Wager, S., Athey, S., 2016. Estimation and inference of heterogeneous treatment effects using

random forests. Journal of the American Statistical Association.

Yu, K., Jones, M., 1998. Local linear quantile regression. Journal of the American statistical

Association 93 (441), 228–237.

56



Supplementary Material for

“Non-separable Models with High-dimensional Data”

[NOT INTENDED FOR PUBLICATION]

Liangjun Sua, Takuya Urab and Yichong Zhanga

a School of Economics, Singapore Management University

b Department of Economics, University of California, Davis

This supplement is composed of three parts. Appendix B provides the proofs of some technical

lemmas used in the proofs of the main results in the paper. Appendix C studies the rearrangement

operator on a local process. Appendix D derives a new bound for the second order degenerate

U-process.

B Proofs of the Technical Lemmas

Lemma A.1 and Lemma B.1 below are closely related to Lemmas J.6 and O.2 in Belloni et al.

(2017a) with one major difference: we have an additional kernel function which affects the rate of

convergence. We follow the proof strategies in Belloni et al. (2017a) in general, but use the local

compatibility condition established in Lemma 3.1 when needed. We include these proofs mainly

for completeness. Lemma A.2 and A.6 are proved without referring to the theory of moderate

deviations for self-normalized sums, in contrast to the proof of Lemma J.1 in Belloni et al. (2017a).

Consequently, we have the additional `n term but avoid one constraint on the rates of p, s, and n,

as well.

Proof of Lemma A.1. We define the following three events.

E1 = {Cr(log(p ∨ n)s/n)1/2 ≥ sup
(t,u)∈T U

||
rφt,u

ω
1/2
t,u

K(
T − t
h

)1/2||Pn,2},

E2 =

{
λ

n
≥ sup

(t,u)∈T U
Cλ

∣∣∣∣∣∣∣∣Ψ̂−1
t,u,0Pn

[
ξt,uK(

T − t
h

)b(X)

]∣∣∣∣∣∣∣∣
∞

}
,

1



and

E3 = {lΨ̂t,u,0 ≤ Ψ̂t,u ≤ LΨ̂t,u,0 and Cψ/2 ≤ inf
(t,u)∈T U

||Ψ̂t,u,0||∞ ≤ sup
(t,u)∈T U

||Ψ̂t,u,0||∞ ≤ 2/Cψ}

where l, L, and Cψ are defined in the statement of Lemma A.3 and the generic penalty loading

matrix is Ψ̂t,u = Φ̂k
t,u for k = 0, · · · ,K.

By Assumption 2.3, for an arbitrary ε > 0, we can choose Cr and n sufficiently large so that

P (E1) ≥ 1− ε. By Lemma A.2 below and the fact that `n →∞, for any ε > 0 and any Cλ > 0, for

n sufficiently large, we have P (E2) ≥ 1− ε. In particular, we choose Cλ such that Cλl > 1. Last,

by Lemma A.3 below, P (E3) > 1− εn for some deterministic sequence εn ↓ 0.

From now on we assume E1, E2, and E3 hold with constants Cr, Cλ, l, and L, which occurs

with probability greater than 1− 2ε− εn. Let δt,u = θ̂t,u − θt,u and S0
t,u = Supp(θt,u). Let

Γt,u = ||ω1/2
t,u b(X)′δt,uK(

T − t
h

)1/2||Pn,2,

and

c̃ = max(4(LCλ + 1)(lCλ − 1)−1C−2
ψ , 1).

Then, under E3,

c̃ ≥ max((LCλ + 1)/(lCλ − 1) sup
(t,u)∈T U

||Ψ̂t,u,0||∞||Ψ̂−1
t,u,0||∞, 1) ≥ 1.

Let Qt,u(θ) = PnM(Yu, X; θ)K(T−th ). By the fact that θ̂t,u solves the minimization problem in

(3.5), we have

Qt,u(θ̂t,u)−Qt,u(θt,u) ≤λ
n
||Ψ̂t,uθt,u||1 −

λ

n
||Ψ̂t,uθ̂t,u||1

≤λ
n
||Ψ̂t,u(δt,u)S0t,u ||1 −

λ

n
||Ψ̂t,u(θ̂t,u)S0ct,u ||1

=
λ

n
||Ψ̂t,u(δt,u)S0t,u ||1 −

λ

n
||Ψ̂t,u(δt,u)S0ct,u ||1

≤λL
n
||Ψ̂t,u,0(δt,u)S0t,u ||1 −

λl

n
||Ψ̂t,u,0(δt,u)S0ct,u ||1.

(B.1)

Because the kernel function K(·) is nonnegative, Qt,u(θ) is convex in θ. It follows that Qt,u(θ̂t,u)−

Qt,u(θt,u) ≥ ∂θQt,u(θt,u)′δt,u.

2



Let Dt,u = −Pnb(X)ξt,uK(T−th ) and ξt,u = Yu − φt,u(X). Then,

|∂θQt,u(θt,u)′δt,u|

=|Pn(Λ(b(X)′θt,u)− Yu)K(
T − t
h

)b(X)′δt,u|

=|Pnrφt,ub(X)′δt,uK(
T − t
h

) +D′t,uδt,u|

≤||Ψ̂−1
t,u,0Dt,u||∞||Ψ̂t,u,0δt,u||1 + ||

rφt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2Γt,u

≤ λ

nCλ
||Ψ̂t,u,0δt,u||1 + ||

rφt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2Γt,u

≤ λ

nCλ
||Ψ̂t,u,0(δt,u)S0t,u ||1 +

λ

nCλ
||Ψ̂t,u,0(δt,u)S0ct,u ||1 + ||

rφt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2Γt,u,

(B.2)

where rφt,u = rφt,u(X). Combining (B.1) and (B.2), we have

λ(lCλ − 1)

nCλ
||Ψ̂t,u,0(δt,u)S0ct,u ||1 ≤

λ(LCλ + 1)

nCλ
||Ψ̂t,u,0(δt,u)S0t,u ||1 + ||

rφt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2Γt,u.

Then

||(δt,u)S0ct,u ||1 ≤
LCλ + 1

lCλ − 1
||Ψ̂−1

t,u,0||∞||Ψ̂t,u,0(δt,u)S0t,u ||1 +
nCλ||Ψ̂−1

t,u,0||∞
λ(Cλl − 1)

||
rφt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2Γt,u

≤c̃||(δt,u)S0t,u ||1 +
nCλ||Ψ̂−1

t,u,0||∞
λ(Cλl − 1)

||
rφt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2Γt,u.

We will consider two cases: δt,u /∈ ∆2c̃,t,u and δt,u ∈ ∆2c̃,t,u.

First, if δt,u /∈ ∆2c̃,t,u, i.e., ||(δt,u)S0ct,u ||1 ≥ 2c̃||(δt,u)S0t,u ||1, then

||δt,u||1 ≤(1 +
1

2̃c
)||(δt,u)S0ct,u ||1

≤(c̃+
1

2
)||(δt,u)S0t,u ||1 + (1 +

1

2c̃
)
nCλ||Ψ̂−1

t,u,0||∞
λ(Cλl − 1)

||
rφt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2Γt,u

≤(
1

2
+

1

4c̃
)||(δt,u)S0ct,u ||1 + (1 +

1

2c̃
)
nCλ||Ψ̂−1

t,u,0||∞
λ(Cλl − 1)

||
rφt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2Γt,u

≤(
1

2
+

1

4c̃
)||δt,u||1 + (1 +

1

2c̃
)
nCλ||Ψ̂−1

t,u,0||∞
λ(Cλl − 1)

||
rφt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2Γt,u.

3



Noting that c̃ ≥ 1, we have

||δt,u||1 ≤
[

4c̃+ 2

2c̃− 1

]
nCλ||Ψ̂−1

t,u,0||∞
λ(Cλl − 1)

||
rφt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2Γt,u

≤6
nCλ||Ψ̂−1

t,u,0||∞
λ(Cλl − 1)

||
rφt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2Γt,u =: It,u.

Now, we consider the case where δt,u ∈ ∆2c̃,t,u. By Lemma 3.1, we have

κ ≤ inf
(t,u)∈T U

min
δ∈∆2c̃,t,u

||b(X)′δK(T−th )1/2||Pn,2√
h||δS0t,u ||2

.

In addition, ωt,u ∈ (C(1− C), 1/4). If δt,u ∈ ∆2c̃,t,u, then

||(δt,u)S0t,u ||1 ≤
√
s

κ
√
hω

1/2
t,u

Γt,u =: IIt,u.

In this case, ||δt,u||1 ≤ (1 + 2c̃)IIt,u.

In sum, we have

||δt,u||1 ≤ It,u + (1 + 2c̃)IIt,u ≤
(

6
nCλ||Ψ̂−1

t,u,0||∞
λ(Cλl − 1)

||
rφt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2 +
(1 + 2c̃)

√
s

κ
√
hω

1/2
t,u

)
Γt,u (B.3)

and δt,u ∈ At,u ≡ ∆2c̃,t,u ∪ {δ : ||δ||1 ≤ It,u}.
Recall r̃φt,u = Λ−1(Λ(b(X)′θt,u) + rφt,u)− b(X)′θt,u and denote

qAt,u = inf
δ∈At,u

[Pnωt,u|b(X)′δ|2K(T−th )]3/2

Pn[ωt,u|b(X)′δ|3K(T−th )]
.

Then, w.p.a.1., for some rφt,u between 0 and rφt,u,

|r̃φt,u| ={[Λ(b(X)′θt,u) + rφt,u][1− Λ(b(X)′θt,u)− rφt,u]}−1|rφt,u|

∈[4|rφt,u|, {(C/2)(1− C/2)}−1|rφt,u|],

where the second line holds because sup(t,u)∈T U ||r
φ
t,u||P,∞

p−→ 0. In addition, by Lemma B.1 below
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and equations (B.1)–(B.3), we have

min(
1

3
Γ2
t,u,

qAt,u
3

Γt,u)

≤Qt,u(θt,u + δt,u)−Qt,u(θt,u)− ∂θQt,u(θt,u)′δt,u + 2||
r̃φt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2Γt,u

≤λ
n

(L+
1

Cλ
)||Ψ̂t,u,0(δt,u)S0t,u ||1 −

λ

n
(l − 1

Cλ
)||Ψ̂t,u,0(δt,u)S0ct,u ||1 + 3||

r̃φt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2Γt,u

≤λ
n

(L+
1

Cλ
)||Ψ̂t,u,0||∞||δt,u||1 + 3||

r̃φt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2Γt,u

≤
(

9c̃||
r̃φt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2 +
λ

n
(L+

1

Cλ
)||Ψ̂t,u,0||∞

(1 + 2c̃)
√
s

κ
√
h

)
Γt,u,

where the last inequality holds because |rφt,u| ≤ |r̃
φ
t,u|. If

qAu,r > 3

{
9c̃||

r̃φt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2 +
λ

n
(L+

1

Cλ
)||Ψ̂t,u,0||∞

(1 + 2c̃)
√
s

κ
√
h

}
, (B.4)

then

Γt,u ≤ 3

{
9c̃||

r̃φt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2 +
λ

n
(L+

1

Cλ
)||Ψ̂t,u,0||∞

(1 + 2c̃)
√
s

κ
√
h

}
(B.5)

and

||δt,u||1 ≤
(

6
nCλ||Ψ̂−1

t,u,0||∞
λ(Cλl − 1)

||
rφt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2 +
(1 + 2c̃)

√
s

κ
√
h

)

× 3

{
9c̃||

r̃φt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2 +
λ

n
(L+

1

Cλ
)||Ψ̂t,u,0||∞

(1 + 2c̃)
√
s

κ
√
h

}
.

(B.6)

Since E1 holds,

sup
(t,u)∈T U

||
r̃φt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2 ≤ [C/2(1− C/2)]−1Cr(

√
log(p ∨ n)s

n
).

Further note that λ = `n(log(p∨ n)nh)1/2. Hence, if (B.4) holds, then (B.5) and (B.6) imply that

sup
(t,u)∈T U

Γt,u ≤ CΓ`n(log(p ∨ n)s)1/2n−1/2
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with CΓ = 3(9c̃[C/2(1− C/2)]−1Cr + (LCλ + 1)2Cψ(1 + 2c̃)/κ) and

sup
(t,u)∈T U

||δt,u||1 ≤ C1`n(log(p ∨ n)s2)1/2(nh)−1/2

with C1 = 2(1+2c̃)
κ CΓ, which are the desired results.

Last, we verify (B.4). By Lemma B.1, since `2n log(p ∨ n)s2ζ2
n/(nh)→ 0,

qAu,r

3

{
9c̃|| r̃

φ
t,uK(T−t

h
)1/2

ω
1/2
t,u

||Pn,2 + λ
n(L+ 1

Cλ
)||Ψ̂t,u,0||∞ (1+2c̃)

√
s

κ
√
h

} ≥ c√ nh

log(p ∨ n)s2ζ2
n`

2
n

→∞.

This concludes the proof.

Proof of Lemma A.2. By Lemma A.3 below, Ψ̂−1
t,u is bounded away from zero w.p.a.1,

uniformly over (t, u). Therefore, we can just focus on bounding

sup
(t,u)∈T U

∣∣∣∣∣∣∣∣Pn[ξt,uK(
T − t
h

)b(X)

]∣∣∣∣∣∣∣∣
∞
.

For j-th element, 1 ≤ j ≤ p,

|E[ξt,uK(
T − t
h

)bj(X)| ≤ cE|bj(X)|h3 ≤ c||bj(X)||P,2h3 ≤ ch3.

where c is a universal constant independent of (j, t, u, n). In addition,

nh3/(log(p ∨ n)hn)1/2 = (nh5/ log(p ∨ n))1/2 → 0.

So sup(t,u)∈T U ||E[ξt,uK(T−th )b(X)||∞ is asymptotically negligible. We focus on the centered term:

supg∈G |(Pn − P)g|, where G = {ξt,ubj(X)K(T−th ) : (t, u) ∈ T U , 1 ≤ j ≤ p} with envelope G =

CKζn. Note that supg∈G Eg2 . h and supQN(G, eQ, ε||G||) ≤ p

(
A
ε

)v
for some A > e and v > 0.

So by Corollary 5.1 of Chernozhukov et al. (2014), we have

E sup
g∈G
|(Pn − P)g| ≤ (log(p ∨ n)h/n)1/2 + log(p ∨ n)ζn/n . (log(p ∨ n)h/n)1/2

because log(p ∨ n)ζ2
n/(nh)→ 0.

Proof of Lemma A.3. We only show the first result. The rest can be derived in a similar

manner. In addition, analogous to the proof of Lemma A.5 below, we only need to compute

E(Yu − φt,u(X))2b2j (X)K(
T − t
h

)2h−1.

6



Let κ1 =
∫
K(u)2du. Then,

E(Yu − φt,u(X))2b2j (X)K(
T − t
h

)2h−1

=E
∫ [

φt+hv,u(X)− 2φt+hv,u(X)φt,u(X) + φ2
t,u(X)

]
ft+hv(X)K(v)2dvb2j (X)

≥CE
∫ [

φt,u(X)(1− φt,u(X))− h|∂tφt̃,u(X)v|
]
K(v)2dvb2j (X)

≥κ1C
2(1− C)Eb2j (X)/2 ≥ Cψ.

Similarly,

E(Yu − φt,u(X))2b2j (X)K(
T − t
h

)2h−1

=E
∫ [

φt+hv,u(X)− 2φt+hv,u(X)φt,u(X) + φ2
t,u(X)

]
ft+hv(X)K(v)2dvb2j (X)

≤CE
∫ [

φt,u(X)(1− φt,u(X)) + h|∂tφt̃,u(X)v|
]
K(v)2dvb2j (X)

≤2κ1CEb2j (X) ≤ 1/Cψ.

Proof of Lemma A.4. Following the same arguments as used in the proof of Lemma 3.1 and

by Assumption 5, we have, w.p.a.1,

sup
t∈T ,||δ||2=1,||δ||0≤s`n

||b(X)′δK(
T − t
h

)1/2||2Pn,2

≤ sup
t∈T ,||δ||2=1,||δ||0≤s`n

|(Pn − P)(b(X)′δ)2K(
T − t
h

)|

+ sup
t∈T ,||δ||2=1,||δ||0≤s`n

|P(b(X)′δ)2K(
T − t
h

)|

≤Op(hπn1) + C−1h sup
t∈T ,||δ||2=1,||δ||0≤s`n

|P(b(X)′δ)2|

≤op(h) + C−1h( sup
t∈T ,||δ||2=1,||δ||0≤s`n

|(Pn − P)(b(X)′δ)2|+ sup
t∈T ,||δ||2=1,||δ||0≤s`n

|Pn(b(X)′δ)2|)

≤op(h) + C−1h(Op(πn2) + κ
′′2)

≤2C−1κ
′′2h

where the second inequality holds because

E(b(X)′δ)2K(
T − t
h

) = E(b(X)′δ)2

∫
ft+hu(X)K(u)du ≤ E(b(X)′δ)2

C
.
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Proof of Lemma A.5. For (A.11), we denote F = {h( 1
hK(T−th )− ft(X))2b2j (X) : t ∈ T , j =

1, · · · , p} with envelope 2C
2
Kζ

2
n/h. By the proof of Lemma A.6 below, the entropy of F is bounded

by p(Aε )v. In addition, supf∈F Ef2 . ζ2
n. Therefore,

||Pn − P||2F . Op(log(p ∨ n)ζ2
n/(nh)).

In addition,

hE
(

1

h
K(

T − t
h

)− ft(X)

)2

b2j (X) = E
∫ [

K2(u)− 2hK(u) + h2f2
t (X)

]
ft+hu(X)dub2j (X).

Note that ft(x) is bounded and bounded away from zero uniformly over (t, x) ∈ T X . Therefore,

there exists some positive constant Cf such that,

Cf ≤h inf
t∈T ,j=1,··· ,p

E
(

1

h
K(

T − t
h

)− ft(X)

)2

b2j (X)

≤h sup
t∈T ,j=1,··· ,p

E
(

1

h
K(

T − t
h

)− ft(X)

)2

b2j (X) ≤ 1/Cf .

Therefore, w.p.a.1,

Cf/2 ≤h inf
t∈T ,j=1,··· ,p

Pn
(

1

h
K(

T − t
h

)− ft(X)

)2

b2j (X)

≤h sup
t∈T ,j=1,··· ,p

Pn
(

1

h
K(

T − t
h

)− ft(X)

)2

b2j (X) ≤ 2/Cf .

For k = 0, we let F = { 1
hK

2(T−th )f2
j (X) : t ∈ T , j = 1, · · · , p} with envelope C2

Kζ
2
n/h. By the

same argument as above, we can show that, w.p.a.1,

C0/2 ≤ inf
t∈T ,j=1,··· ,p

Pn
1

h
K2(

T − t
h

)b2j (X) ≤ sup
t∈T ,j=1,··· ,p

Pn
1

h
K2(

T − t
h

)b2j (X) ≤ 2/C0.
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For k ≥ 1, by Theorem 3.2 with Ψ̂t = Ψ̂k−1
t , we have, w.p.a.1,

sup
t∈T ,j=1,··· ,p

|Pnh(
1

h
K(

T − t
h

)− f̂kt (X))2b2j (X)|

≤ 2 sup
t∈T ,j=1,··· ,p

|Pnh(
1

h
K(

T − t
h

)− ft(X))2b2j (X)|+ sup
t∈T ,j=1,··· ,p

|Pnh(f̂kt (X)− ft(X))2b2j (X)|

≤ 2 sup
t∈T ,j=1,··· ,p

l2t,0,j +Op(`n log(p ∨ n)sζ2
nh/n)

≤2/Cf .

Similarly, we can show that w.p.a.1. inft∈T ,j=1,··· ,p ||Pnh( 1
hK(T−th )−f̂kt (X))2b2j (X)||∞ ≥ Cf/2. This

concludes (A.12) wit Ck = Cf for k = 1, · · · ,K. Last, (A.13) holds with l = min(C0Cf/4, · · · , CkCf/4, 1)

and L = max(4/(C0Cf ), · · · , 4/(CkCf ), 1).

Proof of Lemma A.6. Let F = {ξt(X)bj(X) : t ∈ T , j = 1, · · · , p} with envelope F =

2CKζn/h. Then

sup
t∈T
||PnΨ̂−1

t,0 ξt(X)b(X)||∞ ≤ sup
t∈T
||Ψ̂−1

t,0 ||∞ sup
t∈T
||Pnξt(X)b(X)||∞

≤Op(1)(||Pn − P||F + ||P||F )

≤Op(1)(||Pn − P||F +O(h2))

where the second inequality because supt∈T ||Ψ̂−1
t,0 ||∞ = Op(1) by Lemma A.5.

Next, we bound the term ||Pn−P||F . Note that there exist some constants A and v independent

of n such that the entropy of F is bounded by

sup
Q
N(F , eQ, ε||F ||Q,2) ≤ p

(
A

ε

)v
.

In addition, supf∈F Ef2 . h−1. Therefore, by Corollary 5.1 of Chernozhukov et al. (2014),

||Pn − P||F . Op
(

(log(p ∨ n)/(nh))1/2 + ζ2
n log(p ∨ n)/(nh)

)
= Op((log(p ∨ n)/(nh))1/2).

This concludes the proof.

Lemma B.1 Recall that Qt,u(θ) = PnM(Yu, X; θ)K(T−th ). Let qAt,u = infδ∈At,u
[Pnωt,u|b(X)′δ|2K(T−t

h
)]3/2

Pnωt,u|b(X)′δ|3K(T−t
h

)
,

Γδt,u = ||ω1/2
t,u b(X)′δK(T−th )1/2||Pn,2, and st,u = ||θt,u||0. Let events E1, E2, and E3 defined in the

9



proof of Lemma A.1 hold. Then, for any (t, u) ∈ T U and δ ∈ At,u, we have

Ft,u(δ) =: Qt,u(θt,u + δ)−Qt,u(θt,u)− ∂θQt,u(θt,u)′δ + 2||
r̃φt,uK(T−th )1/2

ω
1/2
t,u

||Pn,2Γδt,u

≥min(
1

3
||ω1/2

t,u b(X)′δK(
T − t
h

)1/2||2Pn,2,
1

3
qAt,uΓδt,u)

and w.p.a.1,

qAt,u ≥
1

ζn
min

(
κ
√
h

√
st,u(1 + 2c̃)

,
(λ/n)(lCλ − 1)

6c||Ψ̂−1
t,u,0||∞||

rφt,uK(T−t
h

)1/2

ω
1/2
t,u

||Pn,2

)
.

Proof. The proof follows closely from that of Lemma O.2 in Belloni et al. (2017a). Note that

Qt,u(θt,u + δ)−Qt,u(θt,u)− ∂θQt,u(θt,u)′δ = Pn[g̃t,u(1)− g̃t,u(0)− g̃′t,u(0)],

where g̃t,u(s) = log[1 + exp(b(X)′(θt,u + sδ))]K(T−th ). Let gt,u(s) = log[1 + exp(b(X)′(θt,u + sδ) +

r̃φt,u)]K(T−th ). Then

g′t,u(0) = (b(X)′δ)E(Yu|X,T = t)K(
T − t
h

),

g
′′
t,u(0) = (b(X)′δ)2E(Yu|X,T = t)(1− E(Yu|X,T = t))K(

T − t
h

),

and

g
′′′
t,u(0) = (b(X)′δ)3E(Yu|X,T = t)(1− E(Yu|X,T = t))(1− 2E(Yu|X,T = t))K(

T − t
h

).

By Lemmas O.3 and O.4 in Belloni et al. (2017a),

gt,u(1)− gt,u(0)− g′t,u(0) ≥ ωt,uK(
T − t
h

)

[
(b(X)′δ)2

2
− |b(X)′δ|3

6

]
.

Let Υt,u(s) = g̃t,u(s)− gt,u(s). Then

|Υ′t,u(s)| ≤ |ω1/2
t,u b(X)′δK(

T − t
h

)1/2|
∣∣∣∣ r̃φt,uK(T−th )1/2

ω
1/2
t,u

∣∣∣∣.
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It follows that

Pn|g̃t,u(1)− gt,u(1)− (g̃t,u(0)− gt,u(0))− (g̃′t,u(0)− g′t,u(0))|

=Pn|Υt,u(1)−Υt,u(0)−Υ′t,u(0)|

≤2Pn|ω1/2
t,u b(X)′δK(

T − t
h

)1/2|
∣∣∣∣ r̃φt,uK(T−th )1/2

ω
1/2
t,u

∣∣∣∣
≤2Γδt,u

∣∣∣∣∣∣∣∣ r̃φt,uK(T−th )1/2

ω
1/2
t,u

∣∣∣∣∣∣∣∣
Pn,2

,

and

Ft,u(δ) ≥ 1

2
Pnωt,u(b(X)′δ)2K(

T − t
h

)− 1

6
Pnωt,u|b(X)′δ|3K(

T − t
h

).

We consider two cases: Γδt,u ≤ qAt,u and Γδt,u > qAt,u .

First, if Γδt,u ≤ qAt,u , we have

Pnωt,u|b(X)′δ|3K(
T − t
h

) ≤ ||ω1/2
t,u b(X)′δK(

T − t
h

)1/2||2Pn,2

and

Ft,u(δ) ≥ 1

3
(Γδt,u)2.

When Γδt,u > qAt,u , we let δ̃ = δqAt,u/Γ
δ
t,u ∈ At,u. Then by the convexity of Ft,u(δ) and the fact

that Ft,u(0) = 0, we have

Ft,u(δ) ≥
Γδt,u
qAt,u

Ft,u(δ̃) ≥
Γδt,u
qAt,u

(
1

3
||ω1/2

t,u b(X)′δ̃K(
T − t
h

)1/2||2Pn,2
)

=
1

3
qAt,uΓδt,u.

Consequently, we have Ft,u(δ) ≥ min(1
3(Γδt,u)2,

qAt,u
3 Γδt,u).

For the second result, note that

qAt,u ≥ inf
δ∈At,u

||ω1/2
t,u b(X)′δK(T−th )1/2||Pn,2

ζn||δ||1
.

If δ ∈ ∆2c̃,t,u, then by Lemma 3.1

Γδt,u
ζn||δ||1

≥
||ω1/2

t,u b(X)′δK(T−th )1/2||Pn,2
ζn||δS0t,u ||2(1 + 2c̃)s

1/2
t,u

≥ 1

ζn

κ
√
h

√
st,u(1 + 2c̃)

.
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If ||δ||1 ≤ It,u, where It,u is defined in the proof of Lemma A.1, then

Γδt,u
ζn||δ||1

≥
||ω1/2

t,u b(X)′δK(T−th )1/2||Pn,2
ζnIt,u

≥ 1

ζn

(λ/n)(lCλ − 1)

6c||Ψ̂−1
t,u,0||∞||

rφt,uK(T−t
h

)1/2

ω
1/2
t,u

||Pn,2
.

Combining the above two results, we obtain that

qAt,u ≥
1

ζn
min

(
κ
√
h

√
st,u(1 + 2c̃)

,
(λ/n)(lCλ − 1)

6c||Ψ̂−1
t,u,0||∞||

rφt,uK(T−t
h

)1/2

ω
1/2
t,u

||Pn,2

)
.

Lemma B.2 Let qy(t) be the y-th quantile of Y (t), fY (t)(·) the unconditional density of Y (t),

F (t, y) =

∫ 1

0
1{α(t, ψ←(v)) ≤ y}dv, F (t, y|hn) =

∫ 1

0
1{α̂∗(t, ψ←(v)) ≤ y}dv,

sn = (nh)−1/2, hn(t, v) = (nh)1/2(α̂∗(t, ψ←(v)) − α(t, ψ←(v))), and Jn(t, y) = F (t,y|hn)−F (t,y)
sn

.

Then, for δn being either 1 or h1/2, depending on either Assumption 5.1 or 5.2 is in place,

F (t, y|hn)− F (t, y)

sn
+
hn(t, ψ(qy(t)))ψ

′(qy(t))

fY (t)(qy(t))
= op(δn) (B.7)

and
α̂∗r(t, u)− α(t, u)

sn
+
F (t, α(t, u)|hn)− F (t, α(t, u))fY (t)(u)

snψ′(u)
= op(δn). (B.8)

uniformly over (t, y) ∈ {(t, y) : y = α(t, ψ←(v)), (t, v) ∈ T × [0, 1]}.

Proof. Let Q(t, v) = α(t, ψ←(v)) for v ∈ [0, 1]. Then, we have

F (t, y) =

∫ 1

0
1{Q(t, v) ≤ y}dv and F (t, y|hn) =

∫ 1

0
1{Q(t, v) + snhn ≤ y}dv.

We prove the lemma by applying Propositions C.1 and C.2 in Appendix C.

First, we verify Assumption 7 with (δn, εn) = (1, (nh)−1/2 log(n)) and (δn, εn) = (h1/2, (nh)−1/2 log(n))

under Assumptions 5.1 and 5.2, respectively, in order to apply Proposition C.1 to prove (B.7). We

only consider the case in which δn = h1/2 as the δn = 1 case can be studied similarly. Note that

Q(t, v) = α(t, ψ←(v)), ∂uα(t, u) = fY (t)(u) > 0 uniformly over (t, u) ∈ T U , and ψ(·) can be chosen

such that ∂vψ
←(v) > 0 uniformly over v ∈ [0, 1]. This verifies Assumption 7.1.
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For Assumption 7.2, by Theorem 3.3, sup(t,v)∈T ×[0,1] |hn(t, v)| = Op(log1/2(n)). So we can take

εn = (nh)−1/2 log(n). In addition, sup(t,v)∈T ×[0,1] |h2
n(t, v)|sn = Op(log(n)(nh)−1/2) = op(h

1/2)

because nh2/ log2(n) →∞. So we only need to show

sup
(t,v,v′)∈T ×[0,1]2,|v−v′|≤εn

|hn(t, v)− hn(t, v′)| = op(h
1/2). (B.9)

Let

G =

{
ηΠt,u(Wu, φt,u, ft)−Πt,u′(W

′
u, φt,u′ , ft) : u = ψ←(v), u′ = ψ←(v′),

(t, v, v′) ∈ T × [0, 1]2, |v − v′| ≤ εn

}
with envelope cηh−1. By Theorem 3.3, we have

hn(t, v)− hn(t, v′) = (Pn − P)g +Rn(t, ψ←(v))−Rn(t, ψ←(v′)).

sup(t,v)∈T ×[0,1]Rn(t, ψ←(v)) = op(δn). So we only have to show that

sup
g∈G
|(Pn − P)g| = op(h

1/2).

We know that G is VC-type with fixed VC index and that supg∈G Eg2 ≤ εnh
−1. In addition, as

shown in the proof of Theorem 3.4, ||max1≤i≤n |ηih−1|||P,2 ≤ log(n). Therefore, by Corollary 5.1

of Chernozhukov et al. (2014), we have

(nh)1/2||(Pn − P)g||G = Op((log(n)εn)1/2).

Given εn = (nh)−1/2 log(n), (log(n)εn)1/2 = o(h1/2) because h = Chn
−H for some H < 1/3. This

establishes (B.9). Then (B.7) follows by Proposition C.1.

To prove(B.8), we apply Proposition C.2 by verifying Assumption 8. We note that α̂∗r(t, u) =

F←(t, ψ(u)|hn) and Jn(t, y) = F (t,y|hn)−F (t,y)
sn

. Furthermore, notice that α∗r(t, u) = α(t, u) =

F←(t, ψ(u)), F←(t, v) = α(t, ψ←(v)),

F (t, y) =

∫ 1

0
1{Q(t, v) ≤ y}dv =

∫ 1

0
1{v ≤ ψ(qy(t))}dv = ψ(qy(t)),

and

∂yF (t, y) = ψ′(qy(t))/fY (t)(qy(t)).

Because fY (t)(qy(t)) is bounded and bounded away from zero uniformly over (t, y) ∈ T Y, so be

∂yF (t, y). In addition,

∂2
yyF (t, y) = f”(qy(t))/f

2
Y (t)(qy(t))− φ

′(qy(t))f
′
Y (t)(qy(t))/f

3
Y (t)(qy(t)),
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which is bounded because f ′Y (t)(qy(t)) is bounded. This verifies Assumption 8.2.

For Assumption 8.3, we note that

Jn(t, y) =
F (t, y|hn)− F (t, y|hn)

sn
= −hn(t, ψ(qy(t)))ψ

′(qy(t))

fY (t)(qy(t))
+ op(δn),

where the op(δn) is uniform over (t, y) ∈ T Y. In addition, by definition, (t, qy(t)) ∈ T U , fY (t)(qy(t))

is bounded away from zero, and we can choose ψ such that ψ′(qy(t)) is bounded. Therefore, by

Theorem 3.3 ,

sup
(t,y)∈T Y

|Jn(t, y)| = Op( sup
(t,u)∈T U

|hn(t, ψ(u))|) + op(δn) = Op(log1/2(n)).

We can choose εn = sn log(n). In addition, sup(t,y)∈T Y |Jn(t, y)|2sn = op(h
1/2) because nh3 →∞.

So we only need to show that

sup
(t,y,y′)∈T YY,|y−y′|≤max(εn,snδn)

|Jn(t, y)− Jn(t, y′)| = op(δn).

Note that, for v = ψ(QYt(y)) and v′ = ψ(QYt(y
′))

|Jn(t, y)− Jn(t, y′)| . |hn(t, v)− hn(t, v′)|+ op(δn).

In addition, φ(QYt(y)) is Lipschitz uniformly over (t, y) ∈ T Y. Thus,

sup
(t,y,y′)∈T YY,|y−y′|≤max(εn,snδn)

|Jn(t, y)− Jn(t, y′)|

≤ sup
(t,v,v′)∈T ×[0,1]2,|v−v′|≤Cεn

|hn(t, v)− hn(t, v′)| = op(δn),

given that h = Chn
−H for some H < 1/3. This completes the verification of Assumption 8.2.

Last, it is essentially the same as above to verify Assumption 8 for Jn(t, u) = (nh)1/2(α̂∗r(t, u)−

α(t, u)). The proof is omitted.

Lemma B.3 Suppose the conditions in Theorem 3.5 hold. Then

e′2(GΣ̂2)−1Un(t, τ)

=
1

n

n∑
j=1

ηj(κ2fY (t)(qτ (t))ft(Xj)h
2)−1

[
Yqτ (t),j − φt,qτ (t)(Xj)

]
K(

Tj − t
h

) + o∗p((nh
3)−1/2).
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Proof. Note that

Un(t, τ) =
2

n

n∑
j=1

ηjPΓs(·,Υj ; t, τ) + UnH(·, ·; t, τ), (B.10)

where Un assigns probability 1
n(n−1) to each pair of observations and

H(Υi,Υj ; t, τ) = ηiηjΓ
s(Υi,Υj ; t, τ)− ηiPΓs(·,Υj ; t, τ)− ηjPΓs(Υi, ·; t, τ) + PΓs(·, ·; t, τ).

Further denote η̃i = ηi1{|ηi| ≤ C ′ log(n)}, χn = 1− Eη̃i, and

H̃(Υi,Υj ; t, τ) =η̃iη̃jΓ
s(Υi,Υj ; t, τ)− (1− χn)η̃iPΓs(·,Υj ; t, τ)

− (1− χn)η̃jPΓs(Υi, ·; t, τ) + (1− χn)2PΓs(·, ·; t, τ).

Since η has a sub-exponential tail, we can choose C ′ large enough such that

|χn| ≤ n−2 and lim
n→∞

P

(
max

1≤i≤n
|ηi| > C ′ log(n)

)
= 0.

This means that, w.p.a.1,

max
(t,τ)∈T I

∣∣∣∣Un[H(Υi,Υj ; t, τ)− H̃(Υi,Υj ; t, τ)

]∣∣∣∣ . n−1,

because

|K(
Ti − t
h

)(Ti − t)| ≤ Ch, (B.11)

sup(t,τ)∈T I |Γs(Υi,Υj ; t, τ)| . h−3, and nh3 →∞.

We next bound the U-process UnH̃(·, ·; t, τ) = (C2
n)−1

∑
1≤i<j≤n H̃(Υi,Υj ; t, τ). Let H =

{H̃(·, ·; t, τ), (t, τ) ∈ T I}. Then H is Euclidean and has envelop (C log2(n)h−2, C log2(n)h−3)′ for

some large constantC. Denote g(Υ; t, τ) = EH2(Υ, ·; t, τ) with envelope (C log2(n)h−3, C log2(n)h−5).

By simple moment calculations, we have

sup
(t,τ)∈T I

Eg(Υ; t, τ) . (Ch−2, Ch−4)′

and

sup
(t,τ)∈T I

Eg2(Υ; t, τ) . (Ch−5, Ch−9)′.

Then, by Proposition D.1 in Appendix D, we have

sup
(t,τ)∈T I

UnH̃(·, ·; t, τ) = (Op(log(n)(nh)−1), Op(log(n)(nh2)−1))′

15



and thus

sup
(t,τ)∈T I

UnH(·, ·; t, τ) = (Op(log(n)(nh)−1), Op(log(n)(nh2)−1))′. (B.12)

We now compute PΓs(·,Υj ; t, τ).

PΓs(·,Υj ; t, τ)

=


∫ fT (t+hv)
fYt+hv (qτ (t+hv))

(
Yqτ (t+hv),j−φt+hv,qτ (t+hv)(Xj)

ft+hv(Xj)h
K(

Tj−t−hv
h ) + φt+hv,qτ (t+hv)(Xj)− τ

)
K(v)dv∫ vfT (t+hv)

hfYt+hv (qτ (t+hv))

(
Yqτ (t+hv),j−φt+hv,qτ (t+hv)(Xj)

ft+hv(Xj)h
K(

Tj−t−hv
h ) + φt+hv,qτ (t+hv)(Xj)− τ

)
K(v)dv

 .

By the usual maximal inequality,

sup
(t,τ)∈T I

∣∣∣∣ 2n
n∑
j=1

ηj

∫
fT (t+ hv)

fYt+hv(qτ (t+ hv))

(
Yqτ (t+hv),j − φt+hv,qτ (t+hv)(Xj)

ft+hv(Xj)h
K(

Tj − t− hv
h

)

+ φt+hv,qτ (t+hv)(Xj)− τ
)
K(v)dv

∣∣∣∣ = Op(log1/2(n)(nh)−1/2).

For the second element in PΓs(·,Υj ; t, τ), we first note that

sup
(t,τ)∈T I

|
∫

vfT (t+ hv)

hfYt+hv(qτ (t+ hv))

(
φt+hv,qτ (t+hv)(Xj)− τ

)
K(v)dv| = Op(h

2).

So we can focus on∫
vf(Xj ; t+ hv)

Yqτ (t+hv),j − φt+hv,qτ (t+hv)(Xj)

h2
K(

Tj − t− hv
h

)K(v)dv,

where f(Xj ; t) = fT (t)
fYt (qτ (t))ft(Xj)

. Since

sup
(t,τ)∈T I

E
∫
v[f(Xj ; t+hv)−f(Xj ; t)]

Yqτ (t+hv),j − φt+hv,qτ (t+hv)(Xj)

h2
K(

Tj − t− hv
h

)K(v)dv = O(h2)

and

sup
(t,τ)∈T I

E
[∫

v[f(Xj ; t+ hv)− f(Xj ; t)]
Yqτ (t+hv),j − φt+hv,qτ (t+hv)(Xj)

h2
K(

Tj − t− hv
h

)K(v)dv

]2

. sup
t∈T

∫
h−2v2EK2(

Tj − t− hv
h

)K(v)dv . h−1,
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we have

sup
(t,τ)∈T I

1

n

n∑
j=1

ηj

∫
v[f(Xj ; t+ hv)− f(Xj ; t)]

Yqτ (t+hv),j − φt+hv,qτ (t+hv)(Xj)

h2
K(

Tj − t− hv
h

)K(v)dv

=Op(log1/2(n)(nh)−1/2).

Furthermore, uniformly over (t, τ) ∈ T I,∫
vf(Xj ; t)

h2

[
Yqτ (t+hv),j − φt+hv,qτ (t+hv)(Xj)− (Yqτ (t),j − φt,qτ (t)(Xj))

]
K(

Tj − t− hv
h

)K(v)dv

has O(h2) bias and

E
{∫

vf(Xj ; t)

h2

[
Yqτ (t+hv),j − φt+hv,qτ (t+hv)(Xj)− (Yqτ (t),j − φt,qτ (t)(Xj))

]
K(

Tj − t− hv
h

)K(v)dv

}2

.
∫

Ev2h−4

(
|φTj ,qτ (t+hv)(Xj)− φTj ,qτ (t)(Xj)|+ (φt+hv,qτ (t+hv)(Xj)− φt,qτ (t)(Xj))

2

)
×K2(

Tj − t− hv
h

)K(v)dv . h−2.

Therefore,

1

n

n∑
j=1

ηj

∫
vf(Xj ; t)

h2
[Yqτ (t+hv),j − φt+hv,qτ (t+hv)(Xj)− (Yqτ (t),j − φt,qτ (t)(Xj))]K(

Tj − t− hv
h

)K(v)dv

=O∗p(log1/2(n)(nh2)−1/2).

Combining the above results and denoting K(u) =
∫
vK(u− v)K(v)dv, we have

1

n

n∑
j=1

ηj

∫
vf(Xj ; t+ hv)

Yqτ (t+hv),j − φt+hv,qτ (t+hv)(Xj)

h2
K(

Tj − t− hv
h

)K(v)dv

=
1

n

n∑
j=1

ηj
f(Xj ; t)

h2
[Yqτ (t),j − φt,qτ (t)(Xj)]K(

Tj − t
h

) = O∗p(log1/2(n)(nh3)−1/2)

and

2

n

n∑
j=1

ηjPΓs(·,Υj ; t, τ) =

{
O∗p(log1/2(n)(nh)−1/2)

1
n

∑n
j=1 ηj

f(Xj ;t)
h2

[Yqτ (t),j − φt,qτ (t)(Xj)]K(
Tj−t
h ) +O∗p(log1/2(n)(nh2)−1/2)

}
(B.13)

Combining (B.10), (B.12), and (B.13), we have the desired results.
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C Rearrangement Operator on A Local Process

The rearrangement operator has been previously studied by Chernozhukov et al. (2010), in which

they required the underlying process to be tight to apply the continuous mapping theorem. How-

ever, the local processes encountered in our paper are not tight due to the presence of the kernel

function. Therefore, the original results on the rearrangement operate cannot directly apply to

our case. Instead, in this section, we extend the results in Chernozhukov et al. (2010) and show

that the linear expansion of the rearrangement operator is valid under general conditions, allowing

for the underlying process not to be tight.

Let Q(t, v) be a generic monotonic function in v ∈ [0, 1]. The functional Ψ maps Q(t, v) to

F (t, y) as follows:

Ψ(Q)(t, y) ≡ F (t, y) =

∫ 1

0
1{Q(t, v) ≤ y}dv.

We want to derive a linear expansion of Ψ(Q + snhn) − Ψ(Q) where sn ↓ 0 as the sample size

n→∞ and hn(t, v) is some perturbation function.

Assumption 7

1. Q(t, v) is twice differentiable w.r.t. v with both derivatives bounded. In addition, ∂vQ(t, v) >

c for some positive constant c, uniformly over (t, v) ∈ T × [0, 1].

2. There exist two vanishing sequences εn and δn such that

sup
(t,v,v′)∈T ×[0,1]2,|v−v′|≤εn

|hn(t, v)− hn(t, v′)| = o(δn),

sup
(t,v)∈T ×[0,1]

|hn(t, v)|sn = o(εn), and sup
(t,v)∈T ×[0,1]

|hn(t, v)|2sn = o(δn).

The following proposition extends the first part of Proposition 2 in Chernozhukov et al. (2010).

Proposition C.1 Let (t, y) ∈ T Y ≡ {(t, y) : y = Q(t, v), (t, v) ∈ T × [0, 1]}, F (t, y|hn) =∫ 1
0 1{Q(t, v) + snhn(t, v) ≤ y}dv, and y = Q(t, vy). If Assumption 7 holds, then

F (t, y|hn)− F (t, y)

sn
− (
−hn(t, vy)

∂vQ(t, vy)
) = o(δn)

uniformly over (t, y) ∈ T Y.
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Proof. Consider (tn, yn)→ (t0, y0) and denote vn as yn = Q(tn, vn). Note that

F (tn, yn|hn) =

∫ 1

0
1{Q(tn, v) + snhn(tn, v) ≤ yn}dv

=

∫ 1

0
1{Q(tn, v) + sn(hn(tn, vn) + hn(tn, v)− hn(tn, vn)) ≤ yn}dv.

Let Bε(v) = {v′ : |v − v′| ≤ ε}. For fixed n, if v ∈ Bεn(vn) ∩ [0, 1], by Assumption 7,

hn(tn, v)− hn(tn, vn) = o(δn).

Then for any δ > 0, there exists n1 such that if n ≥ n1 , |hn(tn, v)− hn(tn, vn)| ≤ δδn and

F (tn, yn|hn) ≤
∫ 1

0
1{Q(tn, v) + sn(hn(tn, vn)− δδn) ≤ yn}dv.

If v /∈ Bεn(vn), then there exists n2 such that for n ≥ n2,

|Q(tn, v)− yn| ≥ cεn. (C.1)

Furthermore, by Assumption 7,

snhn(tn, v) ≤ sup
(t,v)∈T ×[0,1]

|hn(t, v)|sn = o(εn).

Therefore,

F (tn, yn|hn) =

∫ 1

0
1{Q(tn, v) ≤ yn}dv

and

F (tn, yn|hn)− F (tn, yn)

sn
− (
−hn(tn, vn)

∂vQ(tn, vn)
)

≤
∫
Bεn (vn)

1

sn

(
1{Q(tn, v) + sn(hn(tn, vn)− δδn) ≤ yn} − 1{Q(tn, v) ≤ yn}

)
dv + (

hn(tn, vn)

∂vQ(tn, vn)
)

=

∫
Jn∩[yn,yn−sn(hn(tn,vn)−δδn)]

dy

sn∂vQ(tn, vn(y))
+

hn(tn, vn)

∂vQ(tn, vn)
,

(C.2)

where the equality follows by the change of variables: y = Q(tn, v), vn(y) = Q←(tn, ·)(y), and Jn
is the image of Bεn(vn). By (C.1) again, we know that [yn, yn − sn(hn(tn, vn) − δδn)] is nested

by Jn for n sufficiently large. In addition, since ∂vQ(t, v) > c uniformly over T × [0, 1], for
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y ∈ [yn, yn − sn(hn(tn, vn)− δδn)],

|vn(y)− vn| = |Q←(tn, ·)(y)−Q←(tn, ·)(yn)| ≤ Csn( sup
(t,v)∈T ×[0,1]

|hn(t, v)|+ δδn).

Then the r.h.s. of (C.2) is bounded from above by

δδn
∂vQ(tn, vn)

+

∫
[yn,yn−sn(hn(tn,vn)−δδn)]

(
1

∂vQ(tn, vn(y))
− 1

∂vQ(tn, vn)
)
dy

sn

≤Cδδn + Csn( sup
(t,v)∈T ×[0,1]

|h2
n(t, v)|+ δ2δ2

n) ≤ C ′δδn.

Since δ is arbitrary, by letting δ → 0, we obtain that

F (tn, yn|hn)− F (tn, yn)

sn
− (
−hn(tn, vn)

∂vQ(tn, vn)
) ≤ o(δn).

Similarly, we can show that

F (tn, yn|hn)− F (tn, yn)

sn
− (
−hn(tn, vn)

∂vQ(tn, vn)
) ≥ o(δn).

Therefore, we have proved that

F (tn, yn|hn)− F (tn, yn)

sn
− (
−hn(tn, vn)

∂vQ(tn, vn)
) = o(δn).

Since the above result holds for any sequence of (tn, yn), then by Lemma 1 Chernozhukov et al.

(2010), we have that uniformly over (t, y) ∈ T Y,

F (t, y|hn)− F (t, y)

sn
− (
−hn(t, vy)

∂vQ(t, vy)
) = o(δn).

This completes the proof of the proposition.

Let F (t, y) and F←(t, u) be a monotonic function and its inverse w.r.t. y, respectively. Next,

we consider the linear expansion of the inverse functional:

(F + snJn)← − F←

where sn ↓ 0 as the sample size n→∞ and Jn(t, y) is some perturbation function.

Assumption 8

1. F (t, y) has a compact support T Y = {(t, y) : y = Q(t, v), (t, v) ∈ T V ≡ T × V}. Denote

Vε, T Yε, Ytε, and y
t

as a compact subset of V , {(t, y) : y = Q(t, v), (t, v) ∈ T × Vε}, the
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projection of T Yε on T = t, and the lower bound of (Yεt)ε, respectively. Then for any t ∈ T ,

y
t
> −∞ and (Yεt)ε ⊂ Yt.

2. F (t, y) is monotonic and twice continuously differentiable w.r.t. y. The first and second

derivatives are denoted as f(t, y) and f ′(t, y) respectively. Then both f(t, y) and f ′(t, y) are

bounded and f(t, y) is also bounded away from zero, uniformly over T Y.

3. Let T YY = {(t, y, y′) : y = Q(t, v), y′ = Q(t, v′), (t, v, v′) ∈ T × V × V}. Then, there exist

two vanishing sequences εn and δn such that

sup
(t,y,y′)∈T YY,|y−y′|≤max(εn,snδn)

|Jn(t, y)− Jn(t, y′)| = o(δn),

sup
(t,y)∈T Y

|Jn(t, y)|sn = o(εn), and sup
(t,y)∈T Y

|Jn(t, y)|2sn = o(δn).

Proposition C.2 If Assumption 8 holds, then

(F + snJn)←(t, v)− F←(t, v)

sn
+
Jn(t, F←(t, v))

f(t, F←(t, v))
= o(δn)

uniformly over (t, v) ∈ T Vε.

Proof. Without loss of generality, we assume F (t, y) is monotonically increasing in y. Let ξ(t, v) =

F←(t, v) and ξn(t, v) = (F+snJn)←(t, v). Since for n sufficiently large, sup(t,v)∈T Vε sn|J
←
n (t, v)| < ε

and by the definition of Vε, we can choose ξ(t, v) ∈ Yt and ξn(t, v) ∈ Yt. In addition, since F is

differentiable, we have F (t, ξ(t, v)) = v. Denote ηn(t, v) = min(snδ
2
n, ξn(t, v) − y

t
). Then, the

definition of the inverse function implies that

(F + snJn)(t, ξn(t, v)− ηn(t, v)) ≤ v ≤ (F + snJn)(t, ξn(t, v)). (C.3)

Since f(t, y) is bounded uniformly in (t, y) ∈ T Y, we have

F (t, ξn(t, v)− ηn(t, v))− v = F (t, ξn(t, v))− F (t, ξ(t, v)) + o(snδn)

and

|snJn(t, ξn(t, v)− ηn(t, v))| ≤ sup
(t,y)∈T Y

sn|Jn(t, y)|.

Therefore,

− sup
(t,y)∈T Y

sn|Jn(t, y)| ≤ F (t, ξn(t, v))− F (t, ξ(t, v)) ≤ sup
(t,y)∈T Y

sn|Jn(t, y)|+ o(snδn).
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Since f(t, y) is bounded and bounded away from zero, we have

|ξn(t, v)− ξ(t, v)| = O( sup
(t,y)∈T Y

sn|Jn(t, y)|) + o(snδn) = o(max(εn, snδn)).

Then,

F (t, ξn(t, v)− ηn(t, v))− F (t, ξ(t, v)) + snJn(t, ξn(t, v)− ηn(t, v))

≥F (t, ξn(t, v))− F (t, ξ(t, v)) + o(snδn) + snJn(t, ξ(t, v))− sn sup |Jn(t, y)− Jn(t, y′)|

≥f(t, ξ(t, v))(ξn(t, v)− ξ(t, v)) + snJn(t, ξ(t, v))−O( sup
(t,y)∈T Y

s2
n|Jn(t, y)|2)− o(s2

nδ
2
n)− o(snδn)

≥f(t, ξ(t, v))(ξn(t, v)− ξ(t, v)) + snJn(t, ξ(t, v))− o(snδn),

where the supremum in the second line is taken over (t, y, y′) ∈ T YY, |y − y′| ≤ max(εn, snδn),

and the third line is because f ′(t, y) is bounded uniformly in (t, y) ∈ T Y.

On the other hand, by (C.3),

F (t, ξn(t, v)− ηn(t, v))− F (t, ξ(t, v)) + snJn(t, ξn(t, v)− ηn(t, v)) ≤ 0.

Therefore, we have
(ξn(t, v)− ξ(t, v))

sn
+
Jn(t, ξ(t, v))

f(t, ξ(t, v))
≤ o(δn). (C.4)

Similarly, we can show that

F (t, ξn(t, v))− F (t, ξ(t, v)) + snJn(t, ξn(t, v))

≤f(t, ξ(t, v))(ξn(t, v)− ξ(t, v)) + snJn(t, ξ(t, v)) + o(snδn).

The r.h.s. of (C.3) implies that

F (t, ξn(t, v))− F (t, ξ(t, v)) + snJn(t, ξn(t, v)) ≥ 0.

Therefore,
(ξn(t, v)− ξ(t, v))

sn
+
Jn(t, ξ(t, v))

f(t, ξ(t, v))
≥ −o(δn). (C.5)

(C.4) and (C.5) imply that

(ξn(t, v)− ξ(t, v))

sn
+
Jn(t, ξ(t, v))

f(t, ξ(t, v))
= o(δn)

uniformly over (t, v) ∈ T V.

22



D A Maximal Inequality for the Second Order P-degenerate U-process

In this section, we derive a new bound for the second order P-degenerate U-process, which sharp-

ens the results in Nolan and Pollard (1987). We combine the symmetrization, the exponential

inequality, and the entropy bound of the U-process established in Nolan and Pollard (1987) with

the innovative proving strategy used in Chernozhukov et al. (2014) for the empirical process. In

addition, we establish a contraction principle for the second order U-process in the same manner

as (Ledoux and Talagrand, 2013, Theorem 4.4) in our Lemma D.2, which seems to be new to the

literature.

Let {Xi}ni=1 be a sequence of i.i.d. random variables taking values in a measurable space

(X ,X ) with common distribution P . Let F be a class of real-valued, symmetric functions with

a nonnegative envelope F , i.e., supf∈F |f(·, ·)| ≤ F (·, ·). Let M ≡ sup(x1,x2)∈X×X F (x1, x2) < ∞,
l(x) = Ef2(x, ·), L = {l : f ∈ F} with envelope L(x), and ML = supx∈X L(x) < ∞. In addition,

denote

σ2
2 = sup

f∈F
Ef2 and σ2

1 = sup
l∈L

El2.

f is P -degenerate, i.e., Pf(x1, ·) = 0 for all x1 ∈ X . Sn(f) =
∑

1≤i 6=j≤n f(Xi, Xj). Un is

the empirical U-process that place probability mass 1
n(n−1) on each pair of (Xi, Xj), i.e., Unf =

1
n(n−1)Sn(f).

Proposition D.1 If there exist constants A and v (potentially dependent on n) such that

sup
Q
N(ε||F ||Q, eQ,F) ≤

(
A

e

)v
,

then

sup
f∈F
|Unf | = Op(

(σ2 + π)v

n
log(

A||F ||P,2
σ2

) +
M

n2
v2 log2(

A||F ||P,2
σ2

)),

where π2 ≡
√

vσ2
1
n log(

2A||L||P,2
σ1

) +
v||ML||P,2

n log(
2A||L||P,2

σ1
).

Proof of Proposition D.1.

Step 1: Symmetrization. We symmetrize the U-process using Rademacher random variables.
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Take an independent copy Y1, Y2, · · · , Yn of X1, X2, · · · , Xn from P and define

T 0
n(f) =

∑
1≤i 6=j≤n

ηiηj(f(Xi, Xj)− f(Xi, Yj)− f(Yi, Xj) + f(Yi, Yj)),

and

S0
n(f) =

∑
1≤i 6=j≤n

ηiηjf(Xi, Xj),

where {ηi}ni=1 is a sequence of Rademacher random variables. Then, by Lemma 1 of Nolan and

Pollard (1987),

E sup
f∈F
|Sn(f)| ≤ E sup

f∈F
|T 0
n(f)| ≤ 4E sup

f∈F
|S0
n(f)|.

Define U0
n(f) = S0

n(f)/(n(n− 1)). We have

E sup
f∈F
|Un(f)| ≤ 4E sup

f∈F
|U0
n(f)|. (D.1)

Therefore, we can focus on bounding E|U0
n(f)|.

Step 2: Entropy integral inequality. Following Corollary 4 of Nolan and Pollard (1987) with

T 0
n replaced by S0

n, we have

Pη(S
0
n(f) > x) ≤ 2 exp(− x

13(Snf2)1/2
).

This means, for a realization (x1, · · · , xn),

||
∑

1≤i 6=j≤n
ηiηjf(xi, xj)||ψ1 . [

∑
1≤i 6=j≤n

f2(xi, xj)]
1/2

where || · ||ψ1 is the Orlicz norm with ψ1(x) = exp(x) − 1. Let σ2
n = supf∈F Unf2 and J(δ) =∫ δ

0 λ(ε)dε where λ(ε) = 1 + supQ logN(ε||F ||Q,2, eQ,F), which is nonincreasing in ε. Then by

Lemma 5 in Nolan and Pollard (1987), we have

Pηn sup
f∈F
|U0
n(f)| .

∫ σn

0
(1 + logN(ε, eUn ,F))dε

.||F ||Un,2
∫ σn
||F ||Un,2

0
(1 + logN(ε||F ||Un,2, eUn ,F))dε

.||F ||Un,2
∫ σn
||F ||Un,2

0
(1 + sup

Q
logN(ε||F ||Q,2, eQ,F))dε

.||F ||Un,2J
(

σn
||F ||Un,2

)
.
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Taking expectation w.r.t. (X1, X2, · · · , Xn) on both sides, we obtain that

Pn sup
f∈F
|U0
n(f)| ≤ E

[
||F ||Un,2J(

σn
||F ||Un,2

)

]
.

The following lemma is borrowed from Chernozhukov et al. (2014):

Lemma D.1 Write J(δ) for J(δ,F , F ) and suppose that J(1) <∞. Then

1. δ 7→ J(δ) is concave.

2. J(cδ) ≤ cJ(δ), ∀c ≥ 1.

3. δ 7→ J(δ)/δ is non-increasing.

4. The map (x, y) 7→ J(
√
x/y)
√
y is concave for (x, y) ∈ [0,+∞)× (0,+∞).

Although Chernozhukov et al. (2014) proved this lemma for

λ(ε) =
√

1 + sup
Q

logN(ε||F ||Q,2, eQ,F),

their proofs work for λ(ε) = 1 + supQ logN(ε||F ||Q,2, eQ,F), as well. Therefore, by Jensen’s

inequality, we have

Z =: Pn sup
f∈F
|U0
n(f)| ≤ ||F ||P,2J

(√
Eσ2

n

||F ||P,2

)
. (D.2)

Step 3: Bound Eσ2
n. To bound Eσ2

n, let σ2
2 = supf∈F Ef2, l(f)(x) = Ef2(x, ·), L = {l(f) :

f ∈ F} with envelope L(x) = EF 2(x, ·), h(x1, x2) = f2(x1, x2) − l(x1) − l(x2) − Ef2(X1, X2) +

El(X1) + El(X2), and H = {h : f ∈ F}. In the following, we omit the dependence of l on f and

simply write l(x). Then we have

f2(x1, x2) = Ef2(X1, X2) + l(x1)− El(X1) + l(x2)− El(X2) + h(x1, x2).
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By the triangle inequality,

Eσ2
n =E sup

f∈F
|Unh+ Ef2(X1, X2) + 2(Pn − P)l(·)|

≤σ2
2 + E sup

h∈H
|Unh|+ 2E sup

l∈L
|(Pn − P)l(·)|

≤σ2
2 +

1

n(n− 1)
E sup
h∈H
|T 0
nh|+ 2E sup

l∈L
|(Pn − P)l(·)|

=σ2
2 +

1

n(n− 1)
E sup
f∈F
|T 0
nf

2|+ 2E sup
l∈L
|(Pn − P)l(·)|

≤σ2
2 + 4E sup

f∈F
|U0
nf

2|+ 2E sup
l∈L
|(Pn − P)l(·)|.

Step 4: A contraction inequality.

Lemma D.2 If supf∈F |f | ≤M , then

E sup
f∈F
|U0
nf

2| ≤ME sup
f∈F
|U0
nf |.

Proof of Lemma D.2. Note that {ηiηj}1≤i<j≤n takes each value of {a0
i,j}1≤i<j≤n ∈

{1,−1}n(n−1)/2 with equal probability. For j < i, let a0
j,i = a0

i,j . Then, for any symmet-

ric {bi,j}1≤i 6=j≤n, {ηiηja0
i,jbi,j}1≤i 6=j≤n and {ηiηjbi,j}1≤i 6=j≤n have the same distribution. Let

(x1, · · · , xn) be an arbitrary realization of (X1, · · · , Xn) and fi,j = f(xi, xj). Then

Eη sup
f∈F
|U0
nMfi,j | = Eη sup

f∈F
|U0
nfi,jMa0

i,j |. (D.3)

In addition, E supf∈F |U0
nfi,jMai,j | is convex in {ai,j}1≤i 6=j≤n . So for any |ai,j | ≤ 1, ai,j = aj,i,

Eη sup
f∈F
|U0
nfi,jMai,j |

obtains its maximal at extreme points, i.e., some {a0
i,j}1≤i 6=j≤n with a0

i,j = a0
j,i. This and (D.3)

imply that, for any any |ai,j | ≤ 1, ai,j = aj,i,

Eη sup
f∈F
|U0
nfi,jMai,j | ≤ Eη sup

f∈F
|U0
nfi,jM |.

Letting ai,j = fi,j/M , we have Eη supf∈F |U0
nf

2
i,j | ≤ MEη supf∈F |U0

nfi,j |. Taking expectations

w.r.t. (X1, · · · , Xn), we have the desired result.
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Step 5: The upper bound. Since

sup
Q
N(ε||F ||Q, eQ,F) ≤

(
A

e

)v
,

by Lemma L.2 in Belloni et al. (2017a),

sup
Q
N(ε||L||Q, eQ,L) ≤

(
2A

e

)v
.

Denote σ2
1 = supl∈L El2, L(x) = PF (x, ·), and ML = max1≤i≤n L(Xi), then we have

E sup
l∈L
|(Pn − P)l(·)| . π2 ≡

√
vσ2

1

n
log(

2A||L||P,2
σ1

) +
v||ML||P,2

n
log(

2A||L||P,2
σ1

)

and thus

Eσ2
n . σ

2
2 + π2 +MZ/n . ||F ||2P,2 max(∆2, DZ) (D.4)

where ∆2 = max(σ2
2, π

2)/||F ||2P,2, Z ≡ Pn supf∈F |U0(f)|, and D = M/(n||F ||2P,2). Plugging (D.4)

in (D.2), we have

Z = ||F ||P,2J(C max(∆,
√
DZ)) . ||F ||P,2J(max(∆,

√
DZ)).

We discuss two cases.

1.
√
DZ ≤ ∆. We have Z . ||F ||P,2J(∆). In addition, recall δ = σ2/||F ||P,2, then ∆ ≥ δ and

by Lemma D.1,

J(∆) = ∆
J(∆)

∆
≤ ∆

J(δ)

δ
= max

(
J(δ),

πJ(δ)

δ||F ||P,2

)
.

2.
√
DZ > ∆. Then by Lemma D.1

J(∆,
√
DZ) ≤ J(

√
DZ) =

√
DZ

J(
√
DZ)√
DZ

≤
√
DZ

J(∆)

∆
≤
√
DZ

J(δ)

δ
.

It follows that Z ≤ C||F ||P,2
√
DZ J(δ)

δ , or equivalently,

Z . ||F ||2P,2D
J2(δ)

δ2
. ||F ||P,2

M

n||F ||P,2
J2(δ)

δ2
.

So overall,

Z . ||F ||P,2 max

(
J(δ),

πJ(δ)

δ||F ||P,2
,

M

n||F ||P,2
J2(δ)

δ2

)
.
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Note that J(δ) ≤ Cδv log(Aδ ). So

Z ≡ Pn sup
f∈F
|U0
n(f)| . (σ2 + π)v log(

A||F ||P,2
σ2

) +
M

n
v2 log2(

A||F ||P,2
σ2

).

Then (D.1) implies the desired result.
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