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Decentralized Multi-Agent Reinforcement Learning in
Average-Reward Dynamic DCOPs∗
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ABSTRACT
Researchers have introduced the Dynamic Distributed Con-
straint Optimization Problem (Dynamic DCOP) formula-
tion to model dynamically changing multi-agent coordina-
tion problems, where a dynamic DCOP is a sequence of
(static canonical) DCOPs, each partially different from the
DCOP preceding it. Existing work typically assumes that
the problem in each time step is decoupled from the prob-
lems in other time steps, which might not hold in some
applications. In this paper, we introduce a new model,
called Markovian Dynamic DCOPs (MD-DCOPs), where a
DCOP is a function of the value assignments in the preced-
ing DCOP. We also introduce a distributed reinforcement
learning algorithm that balances exploration and exploita-
tion to solve MD-DCOPs in an online manner.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI

Keywords
DCOP; Dynamic DCOP; MDP; Reinforcement Learning

1. INTRODUCTION AND BACKGROUND
Distributed Constraint Optimization Problems (DCOPs)

are problems where agents need to coordinate their value
assignments to maximize the sum of the resulting constraint
utilities [2, 3, 5]. Unfortunately, DCOPs only model static
problems or, in other words, problems that do not change
over time. In many multi-agent coordination problems, var-
ious events that change the problem can occur. As a re-
sult, researchers have extended DCOPs to Dynamic DCOPs,
where the problem can change over time. Researchers have
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thus far taken an online approach by modeling it as a se-
quence of (static canonical) DCOPs, each partially different
from the DCOP preceding it, and solving it by searching
for a new solution each time the problem changes. Existing
work typically assumes that the problem in each time step
is decoupled from the problems in other time steps, which
might not hold in some applications.

Therefore, in this paper, we introduce a new model,
called Markovian Dynamic DCOPs (MD-DCOPs), where
the DCOP in the next time step is a function of the value
assignments in the current time step. Similar to existing
work on dynamic DCOPs, we assume that the agents in
MD-DCOPs are not aware of the underlying transition func-
tions and, thus, need to solve the problem in an online man-
ner. Specifically, we introduce a reinforcement learning algo-
rithm, the distributed RVI Q-learning algorithm, that uses a
multi-arm bandit strategy to balance exploration (learning
the underlying transition functions) and exploitation (taking
the currently believed optimal joint action). We empirically
evaluate them against an existing multi-arm bandit DCOP
algorithm on dynamic DCOPs.

A DCOP is defined by 〈X ,D,F ,A, α〉, where X =
{x1, . . . , xn} is a set of variables; D = {D1, . . . , Dn} is
a set of finite domains, where Di is the domain of vari-
able xi; F = {f1, . . . , fm} is a set of utility functions
(also called constraints), where each k-ary utility function
fi : Di1 ×Di2 × . . .×Dik 7→ N ∪ {−∞, 0} specifies the util-
ity of each combination of values of variables in its scope
(i.e., xi1 , . . . , xik ); A = {a1, . . . , ap} is a set of agents; and
α : X → A maps each variable to one agent. A solution is
a value assignment for all variables. Its utility is the evalu-
ation of all utility functions on that solution. The goal is to
find a utility-maximal solution.

2. MARKOVIAN DYNAMIC DCOPs
At a high level, a Markovian Dynamic DCOP (MD-

DCOP) can be visualized as a sequence of (static canoni-
cal) DCOPs with one (static canonical) DCOP associated
with each time step. The variables X , domains D, agents
A, and ownership mapping α of the initial DCOP remains
unchanged across all time steps, but the reward functions
F can change and is a function of the global joint state s
at the current time step. The problem transitions from one
global joint state to another in the next time step according
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to a pre-defined joint transition probability function, which
is a function of the values of the agents in the current time
step. In this paper, we assume that the agents do not know
this underlying joint transition probability function.

In more detail, an MD-DCOP is defined by a tuple
〈S,D,P,F〉, where

S is the finite set of global joint states. S = ×1≤i≤m Si,
where Si is the set of local states of reward function
fi ∈ F . Each global joint state s ∈ S is defined by
〈s1, . . . , sm〉, where si ∈ Si.

D is the finite set of global joint values. D = ×1≤i≤nDi,
where Di ∈ D is the set of local values of variable xi.
Each global joint value d ∈ D is defined by 〈d1, . . . , dn〉,
where di ∈ Di. We also use the notation Di to denote
the set of local joint values of variables xi1 through xik
that are in the scope of reward function fi ∈ F . Each
local joint value di ∈ Di is defined by 〈di1 , di2 , . . . , dik 〉,
where dij ∈ Dij .

P is the finite set of joint transition probability func-
tions that assume conditional transition independence.
P = ×s,s′∈S,d∈D P (s′ | s,d), where P (s′ | s,d) =
Π1≤i≤m Pi(s

′
i | si,di) is the probability of transitioning

to joint state s′ after taking joint value d in joint state s.
In this paper, we assume that the underlying joint tran-
sition probably functions are not known to the agents a
priori.

F is the finite set of joint reward functions. F(s,d) =∑
1≤i≤m fi(si,di), where fi(si,di) is the reward of tak-

ing joint value di in joint state si.

A solution to an MD-DCOP is a global joint policy Π :
S 7→ D that maps each global joint state s ∈ S to a global
joint value d ∈ D. The objective of an MD-DCOP is for
the agents to assign a sequence of values to their variables
(to learn the underlying transition probability function and
explore the state space) and converge on a global joint policy
that together maximizes the expected average reward:

lim
T→∞

1

T
E

[
T−1∑
t=0

m∑
i=1

fi(si,d
t
i)

]
(1)

where dt
i is the local joint value for local state si at time

step t.

3. DISTRIBUTED RVI Q-LEARNING
Since the underlying transition probability functions of

MD-DCOPs are not known to the agents a priori, there is
a clear need for algorithms that perform exploration vs. ex-
ploitation tradeoffs. In this paper, we explore reinforcement
learning methods to solve this problem. Specifically, we ex-
tend the (centralized) RVI Q-learning algorithm [1] to solve
MD-DCOPs in a distributed way:

Step 1: For each reward function fi ∈ F , the lower pri-
ority agent in the scope of the reward function will ini-
tialize (say to 0) the current time step t, local Q values

Qt
i (̂si, d̂i) for all local states ŝi ∈ Si and local joint values

d̂i ∈ Di.

Step 2: Let the current local state be si and the global joint
state be s. Choose the local joint value di based on the
multi-arm bandit exploration strategy described above.
Then, the immediate joint reward of choosing this value
in this state is fi(si,di), and let the next resulting local
state be s′i.
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Figure 1: Experimental Results

Step 3: Broadcast the new local state s′i, and let the new
global joint state be s′.

Step 4: Find the DCOP solution that maximizes∑m
i=1Q

t
i(s
′,d′i ∈ d′), and then update the local Q

values according to

Qt+1
i (si,di) = Qt

i(si,di) + γ(t)
[
fi(si,di)

+Qt
i(s
′
i,d
′
i | d′i ∈ argmax

d′∈D
Qt(s′,d′))

−Qt
i(si,di)−Qt

i(s
0
i ,d

0
i )
]

(2)

Step 5: Repeat Steps 2 through 4 until convergence.

4. RESULTS AND CONCLUSIONS
We compared the distributed Q-learning algorithm to

Multi-Arm Bandit DCOP (MAB-DCOP) [4], a regret-
minimizing algorithm that seeks to maximize the expected
cumulative reward over the time horizon in a DCOP with
reward uncertainty. We ran our experiments on a 64 core
Linux machine with 2GB of memory and evaluated the al-
gorithms on a sensor network domain. Figure 1 shows some
preliminary results, where our Distributed Q-learning algo-
rithm is shown to find better solutions than MAB-DCOP,
which is not surprising as MAB-DCOP was not designed to
solve MD-DCOPs and thus does not exploit the assumption
that the underlying transitions are Markovian.

In this paper, we take a first step towards capturing the
inter-dependence between problems in subsequent time steps
in a dynamic DCOP via the MD-DCOP model. We also
introduced a distributed reinforcement learning algorithm to
solve this problem, and showed that it outperforms MAB-
DPOP in a range of sensor network problems.
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