
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

2-2014

Key-Aggregate Cryptosystem for Scalable Data Sharing in Cloud Key-Aggregate Cryptosystem for Scalable Data Sharing in Cloud

Storage Storage

Cheng-Kang CHU
Institute for Infocomm Research, Singapore

Sherman S. M. CHOW
University of Hong Kong

Wen-Guey TZENG
National Chiao Tung University

Jiangying ZHOU
Institute for Infocomm Research, Singapore

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
CHU, Cheng-Kang; CHOW, Sherman S. M.; TZENG, Wen-Guey; ZHOU, Jiangying; and DENG, Robert H.. Key-
Aggregate Cryptosystem for Scalable Data Sharing in Cloud Storage. (2014). IEEE Transactions on
Parallel and Distributed Systems. 25, (2), 468-477.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1938

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1938&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1938&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1

Key-Aggregate Cryptosystem
for Scalable Data Sharing in Cloud Storage

Cheng-Kang Chu, Sherman S. M. Chow, Wen-Guey Tzeng, Jianying Zhou, and
Robert H. Deng, Senior Member, IEEE

F

Abstract—Data sharing is an important functionality in cloud storage. In
this article, we show how to securely, efficiently, and flexibly share data
with others in cloud storage. We describe new public-key cryptosystems
which produce constant-size ciphertexts such that efficient delegation
of decryption rights for any set of ciphertexts are possible. The novelty
is that one can aggregate any set of secret keys and make them as
compact as a single key, but encompassing the power of all the keys
being aggregated. In other words, the secret key holder can release
a constant-size aggregate key for flexible choices of ciphertext set in
cloud storage, but the other encrypted files outside the set remain
confidential. This compact aggregate key can be conveniently sent to
others or be stored in a smart card with very limited secure storage. We
provide formal security analysis of our schemes in the standard model.
We also describe other application of our schemes. In particular, our
schemes give the first public-key patient-controlled encryption for flexible
hierarchy, which was yet to be known.

Index Terms—Cloud storage, data sharing, key-aggregate encryption,
patient-controlled encryption

1 INTRODUCTION

Cloud storage is gaining popularity recently. In en-
terprise settings, we see the rise in demand for data
outsourcing, which assists in the strategic management
of corporate data. It is also used as a core technology
behind many online services for personal applications.
Nowadays, it is easy to apply for free accounts for email,
photo album, file sharing and/or remote access, with
storage size more than 25GB (or a few dollars for more
than 1TB). Together with the current wireless technology,
users can access almost all of their files and emails by a
mobile phone in any corner of the world.

Considering data privacy, a traditional way to en-
sure it is to rely on the server to enforce the access
control after authentication (e.g., [1]), which means any

• C.-K. Chu and J. Zhou are with the Cryptography and Security Depart-
ment at Institute for Infocomm Research, Singapore.

• S. S.-M. Chow is with the Department of Information Engineering,
Chinese University of Hong Kong.

• W.-G. Tzeng is with the Department of Computer Science, National Chiao
Tung University, Taiwan.

• R. H. Deng is with the School of Information Systems, Singapore Man-
agement University.

• This work was supported by the Singapore A*STAR project SecDC-
112172014.

unexpected privilege escalation will expose all data. In
a shared-tenancy cloud computing environment, things
become even worse. Data from different clients can be
hosted on separate virtual machines (VMs) but reside
on a single physical machine. Data in a target VM could
be stolen by instantiating another VM co-resident with
the target one [2]. Regarding availability of files, there
are a series of cryptographic schemes which go as far as
allowing a third-party auditor to check the availability
of files on behalf of the data owner without leaking
anything about the data [3], or without compromising
the data owners anonymity [4]. Likewise, cloud users
probably will not hold the strong belief that the cloud
server is doing a good job in terms of confidentiality. A
cryptographic solution, e.g., [5], with proven security re-
lied on number-theoretic assumptions is more desirable,
whenever the user is not perfectly happy with trusting
the security of the VM or the honesty of the technical
staff. These users are motivated to encrypt their data
with their own keys before uploading them to the server.

Data sharing is an important functionality in cloud
storage. For example, bloggers can let their friends view
a subset of their private pictures; an enterprise may
grant her employees access to a portion of sensitive
data. The challenging problem is how to effectively
share encrypted data. Of course users can download
the encrypted data from the storage, decrypt them, then
send them to others for sharing, but it loses the value of
cloud storage. Users should be able to delegate the access
rights of the sharing data to others so that they can access
these data from the server directly. However, finding an
efficient and secure way to share partial data in cloud
storage is not trivial. Below we will take Dropbox1 as an
example for illustration.

Assume that Alice puts all her private photos on
Dropbox, and she does not want to expose her photos to
everyone. Due to various data leakage possibility Alice
cannot feel relieved by just relying on the privacy protec-
tion mechanisms provided by Dropbox, so she encrypts
all the photos using her own keys before uploading. One
day, Alice’s friend, Bob, asks her to share the photos

1. http://www.dropbox.com

2

taken over all these years which Bob appeared in. Alice
can then use the share function of Dropbox, but the
problem now is how to delegate the decryption rights
for these photos to Bob. A possible option Alice can
choose is to securely send Bob the secret keys involved.
Naturally, there are two extreme ways for her under the
traditional encryption paradigm:
• Alice encrypts all files with a single encryption key

and gives Bob the corresponding secret key directly.
• Alice encrypts files with distinct keys and sends Bob

the corresponding secret keys.
Obviously, the first method is inadequate since all un-
chosen data may be also leaked to Bob. For the second
method, there are practical concerns on efficiency. The
number of such keys is as many as the number of the
shared photos, say, a thousand. Transferring these secret
keys inherently requires a secure channel, and storing
these keys requires rather expensive secure storage. The
costs and complexities involved generally increase with
the number of the decryption keys to be shared. In short,
it is very heavy and costly to do that.

Encryption keys also come with two flavors — sym-
metric key or asymmetric (public) key. Using symmetric
encryption, when Alice wants the data to be originated
from a third party, she has to give the encryptor her
secret key; obviously, this is not always desirable. By
contrast, the encryption key and decryption key are
different in public-key encryption. The use of public-key
encryption gives more flexibility for our applications. For
example, in enterprise settings, every employee can up-
load encrypted data on the cloud storage server without
the knowledge of the company’s master-secret key.

Therefore, the best solution for the above problem is
that Alice encrypts files with distinct public-keys, but
only sends Bob a single (constant-size) decryption key.
Since the decryption key should be sent via a secure
channel and kept secret, small key size is always de-
sirable. For example, we can not expect large storage
for decryption keys in the resource-constraint devices
like smart phones, smart cards or wireless sensor nodes.
Especially, these secret keys are usually stored in the
tamper-proof memory, which is relatively expensive. The
present research efforts mainly focus on minimizing
the communication requirements (such as bandwidth,
rounds of communication) like aggregate signature [6].
However, not much has been done about the key itself
(see Section 3 for more details).

1.1 Our Contributions
In modern cryptography, a fundamental problem we
often study is about leveraging the secrecy of a small
piece of knowledge into the ability to perform crypto-
graphic functions (e.g. encryption, authentication) mul-
tiple times. In this paper, we study how to make a
decryption key more powerful in the sense that it allows
decryption of multiple ciphertexts, without increasing its
size. Specifically, our problem statement is –

Fig. 1. Alice shares files with identifiers 2, 3, 6 and 8 with
Bob by sending him a single aggregate key.

“To design an efficient public-key encryption scheme which
supports flexible delegation in the sense that any subset of the
ciphertexts (produced by the encryption scheme) is decryptable
by a constant-size decryption key (generated by the owner of
the master-secret key).”

We solve this problem by introducing a special type
of public-key encryption which we call key-aggregate
cryptosystem (KAC). In KAC, users encrypt a message
not only under a public-key, but also under an identifier
of ciphertext called class. That means the ciphertexts are
further categorized into different classes. The key owner
holds a master-secret called master-secret key, which can
be used to extract secret keys for different classes. More
importantly, the extracted key have can be an aggregate
key which is as compact as a secret key for a single class,
but aggregates the power of many such keys, i.e., the
decryption power for any subset of ciphertext classes.

With our solution, Alice can simply send Bob a single
aggregate key via a secure e-mail. Bob can download
the encrypted photos from Alice’s Dropbox space and
then use this aggregate key to decrypt these encrypted
photos. The scenario is depicted in Figure 1.

The sizes of ciphertext, public-key, master-secret key
and aggregate key in our KAC schemes are all of constant
size. The public system parameter has size linear in the
number of ciphertext classes, but only a small part of it
is needed each time and it can be fetched on demand
from large (but non-confidential) cloud storage.

Previous results may achieve a similar property featur-
ing a constant-size decryption key, but the classes need
to conform to some pre-defined hierarchical relationship.
Our work is flexible in the sense that this constraint
is eliminated, that is, no special relation is required
between the classes. The detail and other related works
can be found in Section 3.

We propose several concrete KAC schemes with dif-
ferent security levels and extensions in this article. All

3

constructions can be proven secure in the standard
model. To the best of our knowledge, our aggregation
mechanism2 in KAC has not been investigated.

2 KEY-AGGREGATE ENCRYPTION

We first give the framework and definition for key-
aggregate encryption. Then we describe how to use KAC
in a scenario of its application in cloud storage.

2.1 Framework

A key-aggregate encryption scheme consists of five
polynomial-time algorithms as follows.

The data owner establishes the public system param-
eter via Setup and generates a public/master-secret3 key
pair via KeyGen. Messages can be encrypted via Encrypt
by anyone who also decides what ciphertext class is
associated with the plaintext message to be encrypted.
The data owner can use the master-secret to generate
an aggregate decryption key for a set of ciphertext
classes via Extract. The generated keys can be passed to
delegatees securely (via secure e-mails or secure devices)
Finally, any user with an aggregate key can decrypt
any ciphertext provided that the ciphertext’s class is
contained in the aggregate key via Decrypt4.
• Setup(1λ, n): executed by the data owner to setup an

account on an untrusted server. On input a security
level parameter 1λ and the number of ciphertext
classes n (i.e., class index should be an integer
bounded by 1 and n), it outputs the public system
parameter param, which is omitted from the input
of the other algorithms for brevity.

• KeyGen: executed by the data owner to randomly
generate a public/master-secret key pair (pk, msk).

• Encrypt(pk, i,m): executed by anyone who wants to
encrypt data. On input a public-key pk, an index i
denoting the ciphertext class, and a message m, it
outputs a ciphertext C.

• Extract(msk,S): executed by the data owner for del-
egating the decrypting power for a certain set of ci-
phertext classes to a delegatee. On input the master-
secret key msk and a set S of indices corresponding
to different classes, it outputs the aggregate key for
set S denoted by KS .

• Decrypt(KS ,S, i,C): executed by a delegatee who
received an aggregate key KS generated by Extract.
On input KS , the set S, an index i denoting the

2. It is obvious that we are not proposing an algorithm to compress
the decryption key. On one hand, cryptographic keys come from a
high-entropy source and are hardly compressible. On the other hand,
decryption keys for all possible combinations of ciphertext classes
are all in constant-size — information theoretically speaking such
compression scheme cannot exist.

3. We call this as master-secret key to avoid confusion with the
delegated key we will explain later.

4. For simplicity, we omit the inclusion of a decryption algorithm
for the original data owner using the master-secret key. In our specific
constructions, we will show how the knowledge of the master-secret
key allows a faster decryption than using Extract followed by Decrypt.

ciphertext class the ciphertext C belongs to, and C,
it outputs the decrypted result m if i ∈ S.

There are two functional requirements:
• Correctness For any integers λ and n, any set S ⊆
{1, · · · , n}, any index i ∈ S and any message m,

Pr[Decrypt(KS ,S, i,C) = m : param← Setup(1λ, n),

(pk, msk)← KeyGen(),C← Encrypt(pk, i,m),

KS ← Extract(msk,S)] = 1.

• Compactness For any integers λ, n, any set
S, any index i ∈ S and any message m;
param ← Setup(1λ, n), (pk, msk) ← KeyGen(), KS ←
Extract(msk,S) and C ← Encrypt(pk, i,m); |KS | and
|C| only depend on the security parameter λ but
independent of the number of classes n.

2.2 Sharing Encrypted Data
A canonical application of KAC is data sharing. The
key aggregation property is especially useful when we
expect the delegation to be efficient and flexible. The
schemes enable a content provider to share her data in
a confidential and selective way, with a fixed and small
ciphertext expansion, by distributing to each authorized
user a single and small aggregate key.

Here we describe the main idea of data sharing in
cloud storage using KAC, illustrated in Figure 2. Suppose
Alice wants to share her data m1,m2, . . . ,mν on the
server. She first performs Setup(1λ, n) to get param and
execute KeyGen to get the public/master-secret key pair
(pk, msk). The system parameter param and public-key
pk can be made public and master-secret key msk should
be kept secret by Alice. Anyone (including Alice herself)
can then encrypt each mi by Ci = Encrypt(pk, i,mi). The
encrypted data are uploaded to the server.

With param and pk, people who cooperate with Alice
can update Alice’s data on the server. Once Alice is
willing to share a set S of her data with a friend Bob,
she can compute the aggregate key KS for Bob by
performing Extract(msk,S). Since KS is just a constant-
size key, it is easy to be sent to Bob via a secure e-mail.

After obtaining the aggregate key, Bob can download
the data he is authorized to access. That is, for each i ∈ S,
Bob downloads Ci (and some needed values in param)
from the server. With the aggregate key KS , Bob can
decrypt each Ci by Decrypt(KS ,S, i,Ci) for each i ∈ S.

3 RELATED WORK

This section we compare our basic KAC scheme with
other possible solutions on sharing in secure cloud stor-
age. We summarize our comparisons in Table 1.

3.1 Cryptographic Keys for a Predefined Hierarchy
We start by discussing the most relevant study in the
literature of cryptography/security. Cryptographic key
assignment schemes (e.g., [11], [12], [13], [14]) aim to

4

Decryption key size Ciphertext size Encryption type
Key assignment schemes most likely non-constant constant symmetric or public-key

for a predefined hierarchy (e.g., [7]) (depends on the hierarchy)
Symmetric-key encryption with Compact Key (e.g., [8]) constant constant symmetric-key

IBE with Compact Key (e.g., [9]) constant non-constant public-key
Attribute-Based Encryption (e.g., [10]) non-constant constant public-key

KAC constant constant public-key

TABLE 1
Comparisons between our basic KAC scheme and other related schemes

Fig. 2. Using KAC for data sharing in cloud storage

minimize the expense in storing and managing secret
keys for general cryptographic use. Utilizing a tree struc-
ture, a key for a given branch can be used to derive
the keys of its descendant nodes (but not the other way
round). Just granting the parent key implicitly grants all
the keys of its descendant nodes. Sandhu [15] proposed
a method to generate a tree hierarchy of symmetric-
keys by using repeated evaluations of pseudorandom
function/block-cipher on a fixed secret. The concept can
be generalized from a tree to a graph. More advanced
cryptographic key assignment schemes support access
policy that can be modeled by an acyclic graph or a
cyclic graph [16], [17], [7]. Most of these schemes pro-
duce keys for symmetric-key cryptosystems, even though
the key derivations may require modular arithmetic as
used in public-key cryptosystems, which are generally
more expensive than “symmetric-key operations” such
as pseudorandom function.

We take the tree structure as an example. Alice can
first classify the ciphertext classes according to their
subjects like Figure 3. Each node in the tree represents
a secret key, while the leaf nodes represents the keys
for individual ciphertext classes. Filled circles represent
the keys for the classes to be delegated and circles
circumvented by dotted lines represent the keys to be
granted. Note that every key of the non-leaf node can
derive the keys of its descendant nodes.

(a) (b)

Fig. 3. Compact key is not always possible for a fixed
hierarchy

In Figure 3(a), if Alice wants to share all the files in
the “personal” category, she only needs to grant the key
for the node “personal”, which automatically grants the
delegatee the keys of all the descendant nodes (“photo”,
“music”). This is the ideal case, where most classes to
be shared belong to the same branch and thus a parent
key of them is sufficient.

However, it is still difficult for general cases. As
shown in Figure 3(b), if Alice shares her demo
music at work (“work”→“casual”→“demo” and
“work”→“confidential”→“demo”) with a colleague
who also has the rights to see some of her personal
data, what she can do is to give more keys, which leads
to an increase in the total key size. One can see that
this approach is not flexible when the classifications
are more complex and she wants to share different sets
of files to different people. For this delegatee in our
example, the number of granted secret keys becomes
the same as the number of classes.

In general, hierarchical approaches can solve the prob-
lem partially if one intends to share all files under a cer-
tain branch in the hierarchy. On average, the number of
keys increases with the number of branches. It is unlikely
to come up with a hierarchy that can save the number
of total keys to be granted for all individuals (which can
access a different set of leaf-nodes) simultaneously.

3.2 Compact Key in Symmetric-Key Encryption
Motivated by the same problem of supporting flexi-
ble hierarchy in decryption power delegation (but in
symmetric-key setting), Benaloh et al. [8] presented an
encryption scheme which is originally proposed for con-
cisely transmitting large number of keys in broadcast
scenario [18]. The construction is simple and we briefly

5

review its key derivation process here for a concrete
description of what are the desirable properties we want
to achieve. The derivation of the key for a set of classes
(which is a subset of all possible ciphertext classes) is
as follows. A composite modulus N = p · q is chosen
where p and q are two large random primes. A master-
secret key Y is chosen at random from Z∗N . Each class
is associated with a distinct prime ei. All these prime
numbers can be put in the public system parameter5

A constant-size key for set S ′ can be generated (with
the knowledge of φ(N)) as kS′ = Y 1/

∏
j∈S′ (ej) mod N .

For those who have been delegated the access rights for
S where S ′ ⊂ S, kS′ can be computed by k

∏
j∈S\S′ (ej)

S .
As a concrete example, a key for classes represented by
e1, e2, e3 can be generated as Y 1/(e1·e2·e3), from which
each of Y 1/e1 , Y 1/e2 , Y 1/e3 can easily be derived (while
providing no information about keys for any other class,
say, e4). This approach achieves similar properties and
performances as our schemes. However, it is designed
for the symmetric-key setting instead. The encryptor needs
to get the corresponding secret keys to encrypt data,
which is not suitable for many applications. Since their
method is used to generate a secret value rather than a
pair of public/secret keys, it is unclear how to apply this
idea for public-key encryption scheme.

Finally, we note that there are schemes which try
to reduce the key size for achieving authentication in
symmetric-key encryption, e.g., [19]. However, sharing
of decryption power is not a concern in these schemes.

3.3 Compact Key in Identity-Based Encryption
Identity-based encryption (IBE) (e.g., [20], [21], [22]) is a
type of public-key encryption in which the public-key of
a user can be set as an identity-string of the user (e.g.,
an email address). There is a trusted party called private
key generator (PKG) in IBE which holds a master-secret
key and issues a secret key to each user with respect
to the user identity. The encryptor can take the public
parameter and a user identity to encrypt a message. The
recipient can decrypt this ciphertext by his secret key.

Guo et al. [23], [9] tried to build IBE with key ag-
gregation. One of their schemes [23] assumes random
oracles but another [9] does not. In their schemes, key
aggregation is constrained in the sense that all keys
to be aggregated must come from different “identity
divisions”. While there are an exponential number of
identities and thus secret keys, only a polynomial num-
ber of them can be aggregated. Most importantly, their
key-aggregation [23], [9] comes at the expense of O(n)
sizes for both ciphertexts and the public parameter, where
n is the number of secret keys which can be aggregated
into a constant size one. This greatly increases the costs
of storing and transmitting ciphertexts, which is imprac-
tical in many situations such as shared cloud storage. As

5. Another way to do this is to apply hash function to the string
denoting the class, and keep hashing repeatedly until a prime is
obtained as the output of the hash function.

we mentioned, our schemes feature constant ciphertext
size, and their security holds in the standard model.

In fuzzy IBE [21], one single compact secret key can
decrypt ciphertexts encrypted under many identities
which are close in a certain metric space, but not for
an arbitrary set of identities and therefore it does not
match with our idea of key aggregation.

3.4 Other Encryption Schemes
Attribute-based encryption (ABE) [10], [24] allows each
ciphertext to be associated with an attribute, and the
master-secret key holder can extract a secret key for a
policy of these attributes so that a ciphertext can be
decrypted by this key if its associated attribute conforms
to the policy. For example, with the secret key for the
policy (2 ∨ 3 ∨ 6 ∨ 8), one can decrypt ciphertext tagged
with class 2, 3, 6 or 8. However, the major concern in
ABE is collusion-resistance but not the compactness of
secret keys. Indeed, the size of the key often increases
linearly with the number of attributes it encompasses,
or the ciphertext-size is not constant (e.g., [25]).

To delegate the decryption power of some ciphertexts
without sending the secret key to the delegatee, a useful
primitive is proxy re-encryption (PRE) (e.g., [26], [27],
[28], [29]). A PRE scheme allows Alice to delegate to
the server (proxy) the ability to convert the ciphertexts
encrypted under her public-key into ones for Bob. PRE
is well known to have numerous applications includ-
ing cryptographic file system [30]. Nevertheless, Alice
has to trust the proxy that it only converts ciphertexts
according to her instruction, which is what we want
to avoid at the first place. Even worse, if the proxy
colludes with Bob, some form of Alice’s secret key can
be recovered which can decrypt Alice’s (convertible)
ciphertexts without Bob’s further help. That also means
that the transformation key of proxy should be well-
protected. Using PRE just moves the secure key storage
requirement from the delegatee to the proxy. It is thus
undesirable to let the proxy reside in the storage server.
That will also be inconvenient since every decryption
requires separate interaction with the proxy.

4 CONCRETE CONSTRUCTIONS OF KAC
Let G and GT be two cyclic groups of prime order p and
ê : G×G→ GT be a map with the following properties:
• Bilinear: ∀g1, g2 ∈ G, a, b ∈ Z, ê(ga1 , gb2) = ê(g1, g2)

ab.
• Non-degenerate: for some g ∈ G, ê(g, g) 6= 1.

G is a bilinear group if all the operations involved above
are efficiently computable. Many classes of elliptic curves
feature bilinear groups.

4.1 A Basic Construction
The design of our basic scheme is inspired from the
collusion-resistant broadcast encryption scheme pro-
posed by Boneh et al. [31]. Although their scheme
supports constant-size secret keys, every key only has

6

the power for decrypting ciphertexts associated to a
particular index. We thus need to devise a new Extract
algorithm and the corresponding Decrypt algorithm.
• Setup(1λ, n): Randomly pick a bilinear group G of

prime order p where 2λ ≤ p ≤ 2λ+1, a generator
g ∈ G and α ∈R Zp. Compute gi = gα

i ∈ G for i =
1, · · · , n, n+2, · · · , 2n. Output the system parameter
as param = 〈g, g1, · · · , gn, gn+2, · · · , g2n〉 (α can be
safely deleted after Setup).
Note that each ciphertext class is represented by an
index in the integer set {1, 2, · · · , n}, where n is the
maximum number of ciphertext classes.

• KeyGen(): Pick γ ∈R Zp, output the public and
master-secret key pair: (pk = v = gγ , msk = γ).

• Encrypt(pk, i,m): For a message m ∈ GT and an
index i ∈ {1, 2, · · · , n}, randomly pick t ∈R Zp
and compute the ciphertext as C = 〈gt, (vgi)t,m ·
ê(g1, gn)

t〉.
• Extract(msk = γ,S): For the set S of indices j’s,

the aggregate key is computed as KS =
∏
j∈S

gγn+1−j .

Since S does not include 0, gn+1−j = gα
n+1−j

can
always be retrieved from param.

• Decrypt(KS ,S, i,C = 〈c1, c2, c3〉): If i /∈ S , output
⊥. Otherwise, return the message: m = c3 · ê(KS ·∏
j∈S,j 6=i

gn+1−j+i, c1)/ê(
∏
j∈S

gn+1−j , c2).

For the data owner, with the knowledge of γ,
the term ê(g1, gn)

t can be easily recovered by
ê(c1, gn)

γ = ê(gt, gn)
γ = ê(g1, gn)

t.
For correctness, we can see that

c3 · ê(KS ·
∏

j∈S,j 6=i
gn+1−j+i, c1)/ê(

∏
j∈S

gn+1−j , c2)

= c3 ·
ê(

∏
j∈S

gγn+1−j ·
∏

j∈S,j 6=i
gn+1−j+i,g

t)

ê(
∏
j∈S

gn+1−j ,(vgi)t)

= c3 · ê(
∏

j∈S,j 6=i
gn+1−j+i, g

t)/ê(
∏
j∈S

gn+1−j , g
t
i)

= c3 ·
ê(

∏
j∈S

gn+1−j+i,g
t)/ê(gn+1,g

t)

ê(
∏
j∈S

gn+1−j+i,gt)

= m · ê(g1, gn)t/ê(gn+1, g
t) = m.

4.1.1 Performance
For encryption, the value ê(g1, gn) can be pre-computed
and put in the system parameter. On the other hand,
we can see that decryption only takes two pairings
while only one of them involves the aggregate key. That
means we only need one pairing computation within
the security chip storing the (secret) aggregate key. It is
fast to compute a pairing nowadays, even in resource-
constrained devices. Efficient software implementations
exist even for sensor nodes [32].

4.1.2 Discussions
The “magic” of getting constant-size aggregate key and
constant-size ciphertext simultaneously comes from the
linear-size system parameter. Our motivation is to re-
duce the secure storage and this is a trade-off between

Fig. 4. Key assignment in our approach

two kinds of storage. The parameter can be placed in
non-confidential local storage or in a cache provided
by the service company. They can also be fetched on
demand, as not all of them are required in all occasions.

The system parameter can also be generated by a
trusted party, shared between all users and even hard-
coded to the user program (and can be updated via
“patches”). In this case, while the users need to trust the
parameter-generator for securely erasing any ephemeral
values used, the access control is still ensured by a
cryptographic mean instead of relying on some server
to restrict the accesses honestly.

4.2 Public-Key Extension

If a user needs to classify his ciphertexts into more
than n classes, he can register for additional key pairs
(pk2, msk2), · · · , (pk`, msk`). Each class now is indexed by
a 2-level index in {(i, j)|1 ≤ i ≤ `, 1 ≤ j ≤ n} and the
number of classes is increased by n for each added key.

Since the new public-key can be essentially treated as
a new user, one may have the concern that key aggre-
gation across two independent users is not possible. It
seems that we face the problem of hierarchical solution
as reviewed in Section 1, but indeed, we still achieve
shorter key size and gain flexibility as illustrated in
Figure 4. Figure 4 shows the flexibility of our approach.
We achieve “local aggregation”, which means the secret
keys under the same branch can always be aggregated.
We use a quaternary tree for the last level just for better
illustration of our distinctive feature. Our advantage is
still preserved when compared with quaternary trees in
hierarchical approach, in which the latter either delegates
the decryption power for all 4 classes (if the key for their
parent class is delegated) or the number of keys will be
the same as the number of classes. For our approach, at
most 2 aggregate keys are needed in our example.

Below we give the details on how encryption and
decryption work when the public-key is extended, which
is similar to the “

√
n-approach” [31].

• Setup and KeyGen: Same as the basic construction.
• Extend(pkl, mskl): Execute KeyGen() to

get (vl+1, γl+1) ∈ G × Zp, output the
extended public and master-secret keys as
pkl+1 = (pkl, vl+1), mskl+1 = (mskl, γl+1).

7

• Encrypt(pkl, (a, b),m): Let pkl = {v1, · · · , vl}. For an
index (a, b), 1 ≤ a ≤ l, 1 ≤ b ≤ n, pick t ∈R Zp, out-
put the ciphertext as C = 〈gt, (vagb)t,m · ê(g1, gn)t〉.

• Extract(mskl,Sl): Let mskl = {γ1, γ2, · · · , γl}. For a
set Sl of indices (i, j), 1 ≤ i ≤ l, 1 ≤ j ≤ n, get
gn+1−j = gα

n+1−j
from param, output:

KSl = (
∏

(1,j)∈Sl

gγ1n+1−j ,
∏

(2,j)∈Sl

gγ2n+1−j ,

· · · ,
∏

(l,j)∈Sl

gγln+1−j).

• Decrypt(KSl ,Sl, (a, b),C): If (a, b) /∈ Sl, output ⊥.
Otherwise, let KSl = (d1, · · · , dl) and C = 〈c1, c2, c3〉.
Output the message:

m =

c3 · ê(da ·
∏

(a,j)∈Sl,j 6=b
gn+1−j+b, c1)

ê(
∏

(a,j)∈Sl
gn+1−j , c2)

.

Just like the basic construction, the decryption can
be done more efficiently with the knowledge of γi’s.

Correctness is not much more difficult to see:

c3 · ê(da ·
∏

(a,j)∈Sl,j 6=b
gn+1−j+b, c1)

/ ê(
∏

(a,j)∈Sl
gn+1−j , c2)

= c3 · ê(
∏

(a,j)∈Sl
gγan+1−j ·

∏
(a,j)∈Sl,j 6=b

gn+1−j+b, g
t)

/ ê(
∏

(a,j)∈Sl
gn+1−j , (vagb)

t)

= c3 · ê(
∏

(a,j)∈Sl,j 6=b
gn+1−j+b, g

t)/ê(
∏

(a,j)∈Sl
gn+1−j , g

t
b)

= m · ê(g1, gn)t/ê(gn+1, g
t) = m.

We can also prove the semantic security of this ex-
tended scheme. The proof is very similar to that for the
basic scheme and therefore is omitted. The public-key of
our CCA construction to be presented below can also be
extended using the same Extend algorithm.

4.2.1 Discussions

To make the best out of our extended scheme (i.e., to
make the key size as small as possible), we suggest that
the ciphertext classes for different purposes should be
corresponded to different public-keys. This is reason-
able in practice and does not contradict our criticism
on hierarchical methods that an efficient assignment of
hierarchy requires a priori knowledge on what to be
shared. Using our example, pk1 and pk2 correspond to
“personal” and “work”. It is likely to have many sub-
categories under either of them but it may not be equally
likely to share both of them (if the user does not gossip
about office drama with friends and do not expose party
photos to colleagues). Another example, say a user’s
categorization include “music” and “game”. One day she
becomes a graduate student and needs to publish, and
therefore find the new need to add a category “paper”,
which is probably independent of “music” and “game”.

4.2.2 Other Implication
This key extension approach can also be seen as a key
update process. In case a secret value is compromised,
we can replace the compromised pk1 with a new key
pk2. The small aggregate key size minimizes the com-
munication overhead for transferring the new key.

5 PERFORMANCE ANALYSIS

5.1 Compression Factors
For a concrete comparison, we investigate the space
requirements of the tree-based key assignment approach
we described in Section 3.1. This is used in the Complete
Subtree scheme, which is a representative solution to the
broadcast encryption problem following the well-known
Subset-Cover framework [33]. It employs a static logical
key hierarchy, which is materialized with a full binary
key tree of height h (equals to 3 in Figure 3), and thus
can support up to 2h ciphertext classes, a selected part
of which is intended for an authorized delegatee.

In an ideal case as depicted in Figure 3(a), the dele-
gatee can be granted the access to 2hs classes with the
possession of only one key, where hs is the height of a
certain subtree (e.g., hs = 2 in Figure 3(a)). On the other
hand, to decrypt ciphertexts of a set of classes, sometimes
the delegatee may have to hold a large number of keys,
as depicted in Figure 3(b). Therefore, we are interested
in na, the number of symmetric-keys to be assigned in this
hierarchical key approach, in an average sense.

We assume that there are exactly 2h ciphertext classes,
and the delegatee of concern is entitled to a portion
r of them. That is, r is the delegation ratio, the ratio
of the delegated ciphertext classes to the total classes.
Obviously, if r = 0, na should also be 0, which means
no access to any of the classes; if r = 100%, na should
be as low as 1, which means that the possession of only
the root key in the hierarchy can grant the access to all
the 2h classes. Consequently, one may expect that na
may first increase with r, and may decrease later. We
set r = 10%, 20%, · · · , 90%, and choose the portion in a
random manner to model an arbitrary “delegation pat-
tern” for different delegatees. For each combination of r
and h, we randomly generate 104 different combinations
of classes to be delegated, and the output key set size
na is the average over random delegations.

We tabulate the results in Table 2, where h = 16, 18, 20
respectively6. For a given h, na increases with the dele-
gation ratio r until r reaches ∼ 70%. An amazing fact is
that, the ratio of na to N(= 2h+1 − 1), the total number of
keys in the hierarchy (e.g., N = 15 in Figure 3), appears
to be only determined by r but irrelevant of h. This
is because when the number of ciphertext classes (2h)
is large and the delegation ratio (r) is fixed, this kind
of random delegation achieves roughly the same key

6. Legend: h: The height of the binary tree: there are total 2h

ciphertext classes, na: The number of keys to be assigned, N : The
total number of keys in the hierarchy, r: The delegation ratio: the ratio
of the delegated ciphertext classes to the total classes.

8

h r 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
na 6224.8 11772.5 16579.3 20545.8 23520.7 25263.8 25400.1 23252.6 17334.6 11670.2

16 na
N

4.75% 8.98% 12.65% 15.68% 17.94% 19.27% 19.38% 17.74% 13.23% 8.90%
na 24895.8 47076.1 66312.4 82187.1 94078.8 101052.4 101594.8 93025.4 69337.4 46678.8

18 na
N

4.75% 8.98% 12.65% 15.68% 17.94% 19.27% 19.38% 17.74% 13.23% 8.90%
na 99590.5 188322.0 265254.1 328749.5 376317.4 404205.0 406385.1 372085.2 277343.1 186725.4

20 na
N

4.75% 8.98% 12.65% 15.68% 17.94% 19.27% 19.38% 17.74% 13.22% 8.90%

TABLE 2
Compression ratios for different delegation ratios and tree heights

assignment ratios (na/N). Thus, for the same r, na grows
exponentially with h. We can easily estimate how many
keys we need to assign when we are given r and h.

We then turn our focus to the compression7 factor F
for a certain h, i.e., the average number of delegated
classes that each granted key can decrypt. Specifically, it
is the ratio of the total number of delegated classes (r2h)
to the number of granted keys required (na). Certainly,
higher compression factor is preferable because it means
each granted key can decrypt more ciphertexts. Figure
5(a) illustrates the relationship between the compression
factor and the delegation ratio. Somewhat surprisingly,
we found that F = 3.2 even for delegation ratio of r =
0.9, and F < 6 for r = 0.95, which deviates from the
intuition that only a small number of “powerful” keys
are needed for delegating most of the classes. We can
only get a high (but still small) compression factor when
the delegation ratio is close to 1.

A comparison of the number of granted keys between
three methods is depicted in Figure 5(b). We can see that
if we grant the key one by one, the number of granted
keys would be equal to the number of the delegated
ciphertext classes. With the tree-based structure, we can
save a number of granted keys according to the delega-
tion ratio. On the contrary, in our proposed approach, the
delegation of decryption can be efficiently implemented
with the aggregate key, which is only of fixed size.

In our experiment, the delegation is randomly chosen.
It models the situation that the needs for delegating to
different users may not be predictable as time goes by,
even after a careful initial planning. This gives empirical
evidences to support our thesis that hierarchical key
assignment does not save much in all cases.

5.2 Performance of Our Proposed Schemes
Our approaches allow the compression factor F (F =
n in our schemes) to be a tunable parameter, at the
cost of O(n)-sized system parameter. Encryption can be
done in constant time, while decryption can be done
in O(|S|) group multiplications (or point addition on
elliptic curves) with 2 pairing operations, where S is
the set of ciphertext classes decryptable by the granted
aggregate key and |S| ≤ n. As expected, key extraction
requires O(|S|) group multiplications as well, which

7. As discussed, we are not proposing a compression mechanism,
yet we effectively save the costly secure storage requirement.

(a)

(b)

Fig. 5. (a) Compression achieved by the tree-based
approach for delegating different ratio of the classes (b)
Number of granted keys (na) required for different ap-
proaches in the case of 65536 classes of data

seems unavoidable. However, as demonstrated by the
experiment results, we do not need to set a very high n
to have better compression than the tree-based approach.
Note that group multiplication is a very fast operation.

Again, we confirm empirically that our analysis is
true. We implemented the basic KAC system in C with
the Pairing-Based Cryptography (PBC) Library8 version
0.4.18 for the underlying elliptic-curve group and pairing
operations. Since the granted key can be as small as
one G element, and the ciphertext only contains two

8. http://crypto.stanford.edu/pbc

9

r 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
Setup 8.4
Extract 2 4 5 7 8 9 10 10 11 11
Decrypt 4 6 9 12 14 15 16 18 20 20

TABLE 3
Performance of our basic construction for h = 16 with respect to different delegation ratio r (in milliseconds)

G and one GT elements, we used (symmetric) pairings
over Type-A (supersingular) curves as defined in the
PBC library which offers the highest efficiency among
all types of curves, even though Type-A curves do not
provide the shortest representation for group elements.
In our implementation, p is a 160-bit Solinas prime,
which offers 1024-bit of discrete-logarithm security. With
this Type-A curves setting in PBC, elements of groups G
and GT take 512 and 1024 bits to represent, respectively.

The test machine is a Sun UltraSparc IIIi system
with dual CPU (1002 MHz) running Solaris, each with
2GB RAM. The timings reported below are averaged
over 100 randomized runs. In our experiment, we take
the number of ciphertext classes n = 216 = 65536. The
Setup algorithm, while outputting (2n + 1) elements by
doing (2n − 2) exponentiations, can be made efficient
by preprocessing function offered by PBC, which saves
time for exponentiating the same element (g) in the long
run. This is the only “low-level” optimization trick we
have used. All other operations are implemented in a
straightforward manner. In particular, we did not exploit
the fact that ê(g1, gn) will be exponentiated many times
across different encryptions. However, we pre-computed
its value in the setup stage, such that the encryption can
be done without computing any pairing.

Our experiment results are shown in Table 3. The ex-
ecution times of Setup, KeyGen, Encrypt are independent
of the delegation ratio r. In our experiments, KeyGen
takes 3.3 milliseconds and Encrypt takes 6.8 milliseconds.
As expected, the running time complexities of Extract
and Decrypt increase linearly with the delegation ratio r
(which determines the size of the delegated set S). Our
timing results also conform to what can be seen from
the equation in Extract and Decrypt — two pairing oper-
ations take negligible time, the running time of Decrypt
is roughly a double of Extract. Note that our experiments
dealt with up to 65536 number of classes (which is also
the compression factor), and should be large enough for
fine-grained data sharing in most situations.

Finally, we remark that for applications where the
number of ciphertext classes is large but the non-
confidential storage is limited, one should deploy our
schemes using the Type-D pairing bundled with the
PBC, which only requires 170-bit to represent an element
in G. For n = 216, the system parameter requires ap-
proximately 2.6 megabytes, which is as large as a lower-
quality MP3 file or a higher-resolution JPEG file that a
typical cellphone can store more than a dozen of them.
But we saved expensive secure storage without the hassle
of managing a hierarchy of delegation classes.

6 NEW PATIENT-CONTROLLED ENCRYPTION

Motivated by the nationwide effort to computerize
America’s medical records, the concept of patient-
controlled encryption (PCE) has been studied [8]. In
PCE, the health record is decomposed into a hierarchical
representation based on the use of different ontologies,
and patients are the parties who generate and store secret
keys. When there is a need for a healthcare personnel to
access part of the record, a patient will release the secret
key for the concerned part of the record. In the work
of Benaloh et al. [8], three solutions have been provided,
which are symmetric-key PCE for fixed hierarchy (the
“folklore” tree-based method in Section 3.1), public-key
PCE for fixed hierarchy (the IBE analog of the folklore
method, as mentioned in Section 3.1), and RSA-based
symmetric-key PCE for “flexible hierarchy” (which is the
“set membership” access policy as we explained).

Our work provides a candidate solution for the miss-
ing piece, public-key PCE for flexible hierarchy, which
the existence of an efficient construction was an open
question. Any patient can either define her own hierar-
chy according to her need, or follow the set of categories
suggested by the electronic medical record system she
is using, such as “clinic visits”, “x-rays”, “allergies”,
“medications” and so on. When the patient wishes to
give access rights to her doctor, she can choose any
subset of these categories and issue a single key, from
which keys for all these categories can be computed.
Thus, we can essentially use any hierarchy we choose,
which is especially useful when the hierarchy can be
complex. Finally, one healthcare personnel deals with
many patients and the patient record is possible stored
in cloud storage due to its huge size (e.g., high resolution
medical imaging employing x-ray), compact key size and
easy key management are of paramount importance.

7 CONCLUSION AND FUTURE WORK

How to protect users’ data privacy is a central ques-
tion of cloud storage. With more mathematical tools,
cryptographic schemes are getting more versatile and
often involve multiple keys for a single application. In
this article, we consider how to “compress” secret keys
in public-key cryptosystems which support delegation
of secret keys for different ciphertext classes in cloud
storage. No matter which one among the power set of
classes, the delegatee can always get an aggregate key
of constant size. Our approach is more flexible than
hierarchical key assignment which can only save spaces
if all key-holders share a similar set of privileges.

10

A limitation in our work is the predefined bound of
the number of maximum ciphertext classes. In cloud
storage, the number of ciphertexts usually grows rapidly.
So we have to reserve enough ciphertext classes for
the future extension. Otherwise, we need to expand the
public-key as we described in Section 4.2.

Although the parameter can be downloaded with
ciphertexts, it would be better if its size is independent of
the maximum number of ciphertext classes. On the other
hand, when one carries the delegated keys around in a
mobile device without using special trusted hardware,
the key is prompt to leakage, designing a leakage-
resilient cryptosystem [22], [34] yet allows efficient and
flexible key delegation is also an interesting direction.

REFERENCES

[1] S. S. M. Chow, Y. J. He, L. C. K. Hui, and S.-M. Yiu, “SPICE -
Simple Privacy-Preserving Identity-Management for Cloud Envi-
ronment,” in Applied Cryptography and Network Security - ACNS
2012, ser. LNCS, vol. 7341. Springer, 2012, pp. 526–543.

[2] L. Hardesty, “Secure computers aren’t so secure,” MIT press, 2009,
http://www.physorg.com/news176107396.html.

[3] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
Preserving Public Auditing for Secure Cloud Storage,” IEEE Trans.
Computers, vol. 62, no. 2, pp. 362–375, 2013.

[4] B. Wang, S. S. M. Chow, M. Li, and H. Li, “Storing Shared Data
on the Cloud via Security-Mediator,” in International Conference
on Distributed Computing Systems - ICDCS 2013. IEEE, 2013.

[5] S. S. M. Chow, C.-K. Chu, X. Huang, J. Zhou, and R. H. Deng,
“Dynamic Secure Cloud Storage with Provenance,” in Cryptog-
raphy and Security: From Theory to Applications - Essays Dedicated
to Jean-Jacques Quisquater on the Occasion of His 65th Birthday, ser.
LNCS, vol. 6805. Springer, 2012, pp. 442–464.

[6] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate
and Verifiably Encrypted Signatures from Bilinear Maps,” in
Proceedings of Advances in Cryptology - EUROCRYPT ’03, ser. LNCS,
vol. 2656. Springer, 2003, pp. 416–432.

[7] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken, “Dynamic
and Efficient Key Management for Access Hierarchies,” ACM
Transactions on Information and System Security (TISSEC), vol. 12,
no. 3, 2009.

[8] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, “Patient
Controlled Encryption: Ensuring Privacy of Electronic Medical
Records,” in Proceedings of ACM Workshop on Cloud Computing
Security (CCSW ’09). ACM, 2009, pp. 103–114.

[9] F. Guo, Y. Mu, Z. Chen, and L. Xu, “Multi-Identity Single-Key
Decryption without Random Oracles,” in Proceedings of Informa-
tion Security and Cryptology (Inscrypt ’07), ser. LNCS, vol. 4990.
Springer, 2007, pp. 384–398.

[10] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-Based
Encryption for Fine-Grained Access Control of Encrypted data,”
in Proceedings of the 13th ACM Conference on Computer and Com-
munications Security (CCS ’06). ACM, 2006, pp. 89–98.

[11] S. G. Akl and P. D. Taylor, “Cryptographic Solution to a Problem
of Access Control in a Hierarchy,” ACM Transactions on Computer
Systems (TOCS), vol. 1, no. 3, pp. 239–248, 1983.

[12] G. C. Chick and S. E. Tavares, “Flexible Access Control with
Master Keys,” in Proceedings of Advances in Cryptology - CRYPTO
’89, ser. LNCS, vol. 435. Springer, 1989, pp. 316–322.

[13] W.-G. Tzeng, “A Time-Bound Cryptographic Key Assignment
Scheme for Access Control in a Hierarchy,” IEEE Transactions on
Knowledge and Data Engineering (TKDE), vol. 14, no. 1, pp. 182–188,
2002.

[14] G. Ateniese, A. D. Santis, A. L. Ferrara, and B. Masucci,
“Provably-Secure Time-Bound Hierarchical Key Assignment
Schemes,” J. Cryptology, vol. 25, no. 2, pp. 243–270, 2012.

[15] R. S. Sandhu, “Cryptographic Implementation of a Tree Hierarchy
for Access Control,” Information Processing Letters, vol. 27, no. 2,
pp. 95–98, 1988.

[16] Y. Sun and K. J. R. Liu, “Scalable Hierarchical Access Control in
Secure Group Communications,” in Proceedings of the 23th IEEE
International Conference on Computer Communications (INFOCOM
’04). IEEE, 2004.

[17] Q. Zhang and Y. Wang, “A Centralized Key Management Scheme
for Hierarchical Access Control,” in Proceedings of IEEE Global
Telecommunications Conference (GLOBECOM ’04). IEEE, 2004, pp.
2067–2071.

[18] J. Benaloh, “Key Compression and Its Application to Digital
Fingerprinting,” Microsoft Research, Tech. Rep., 2009.

[19] B. Alomair and R. Poovendran, “Information Theoretically Secure
Encryption with Almost Free Authentication,” J. UCS, vol. 15,
no. 15, pp. 2937–2956, 2009.

[20] D. Boneh and M. K. Franklin, “Identity-Based Encryption from the
Weil Pairing,” in Proceedings of Advances in Cryptology - CRYPTO
’01, ser. LNCS, vol. 2139. Springer, 2001, pp. 213–229.

[21] A. Sahai and B. Waters, “Fuzzy Identity-Based Encryption,” in
Proceedings of Advances in Cryptology - EUROCRYPT ’05, ser. LNCS,
vol. 3494. Springer, 2005, pp. 457–473.

[22] S. S. M. Chow, Y. Dodis, Y. Rouselakis, and B. Waters, “Practi-
cal Leakage-Resilient Identity-Based Encryption from Simple As-
sumptions,” in ACM Conference on Computer and Communications
Security, 2010, pp. 152–161.

[23] F. Guo, Y. Mu, and Z. Chen, “Identity-Based Encryption: How to
Decrypt Multiple Ciphertexts Using a Single Decryption Key,” in
Proceedings of Pairing-Based Cryptography (Pairing ’07), ser. LNCS,
vol. 4575. Springer, 2007, pp. 392–406.

[24] M. Chase and S. S. M. Chow, “Improving Privacy and Security in
Multi-Authority Attribute-Based Encryption,” in ACM Conference
on Computer and Communications Security, 2009, pp. 121–130.

[25] T. Okamoto and K. Takashima, “Achieving Short Ciphertexts or
Short Secret-Keys for Adaptively Secure General Inner-Product
Encryption,” in Cryptology and Network Security (CANS ’11), 2011,
pp. 138–159.

[26] R. Canetti and S. Hohenberger, “Chosen-Ciphertext Secure Proxy
Re-Encryption,” in Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS ’07). ACM, 2007,
pp. 185–194.

[27] C.-K. Chu and W.-G. Tzeng, “Identity-Based Proxy Re-encryption
Without Random Oracles,” in Information Security Conference (ISC
’07), ser. LNCS, vol. 4779. Springer, 2007, pp. 189–202.

[28] C.-K. Chu, J. Weng, S. S. M. Chow, J. Zhou, and R. H. Deng,
“Conditional Proxy Broadcast Re-Encryption,” in Australasian
Conference on Information Security and Privacy (ACISP ’09), ser.
LNCS, vol. 5594. Springer, 2009, pp. 327–342.

[29] S. S. M. Chow, J. Weng, Y. Yang, and R. H. Deng, “Efficient
Unidirectional Proxy Re-Encryption,” in Progress in Cryptology -
AFRICACRYPT 2010, ser. LNCS, vol. 6055. Springer, 2010, pp.
316–332.

[30] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved
Proxy Re-Encryption Schemes with Applications to Secure Dis-
tributed Storage,” ACM Transactions on Information and System
Security (TISSEC), vol. 9, no. 1, pp. 1–30, 2006.

[31] D. Boneh, C. Gentry, and B. Waters, “Collusion Resistant Broad-
cast Encryption with Short Ciphertexts and Private Keys,” in
Proceedings of Advances in Cryptology - CRYPTO ’05, ser. LNCS,
vol. 3621. Springer, 2005, pp. 258–275.

[32] L. B. Oliveira, D. Aranha, E. Morais, F. Daguano, J. Lopez, and
R. Dahab, “TinyTate: Computing the Tate Pairing in Resource-
Constrained Sensor Nodes,” in Proceedings of 6th IEEE International
Symposium on Network Computing and Applications (NCA ’07).
IEEE, 2007, pp. 318–323.

[33] D. Naor, M. Naor, and J. Lotspiech, “Revocation and Tracing
Schemes for Stateless Receivers,” in Proceedings of Advances in
Cryptology - CRYPTO ’01, ser. LNCS. Springer, 2001, pp. 41–62.

[34] T. H. Yuen, S. S. M. Chow, Y. Zhang, and S. M. Yiu, “Identity-
Based Encryption Resilient to Continual Auxiliary Leakage,” in
Proceedings of Advances in Cryptology - EUROCRYPT ’12, ser. LNCS,
vol. 7237, 2012, pp. 117–134.

[35] D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical Identity Based
Encryption with Constant Size Ciphertext,” in Proceedings of Ad-
vances in Cryptology - EUROCRYPT ’05, ser. LNCS, vol. 3494.
Springer, 2005, pp. 440–456.

[36] D. Boneh, R. Canetti, S. Halevi, and J. Katz, “Chosen-Ciphertext
Security from Identity-Based Encryption,” SIAM Journal on Com-
puting (SIAMCOMP), vol. 36, no. 5, pp. 1301–1328, 2007.

11

Cheng-Kang Chu received his Ph.D. in Com-
puter Science from National Chiao Tung Uni-
versity (Hsinchu, Taiwan). After a postdoctoral
fellowship in Singapore Management University
with Prof. Robert H. Deng, he joined Cryptogra-
phy and Security department at Institute for Info-
comm Research (I2R) as a Research Scientist.
He has had a long-term interest in the develop-
ment of new technologies in Applied Cryptogra-
phy, Cloud Computing Security, Wireless Sensor
Network Security and Smart Grid Security. Now

he is mainly working on a project to develop security techniques in large
scale shared storage systems. He has published many research papers
in major conferences like PKC, CT-RSA, ACNS, etc. and received the
best student paper award in ISC 2007. He also served as vice chair of
IEEE CCNC 2012 and on the program committee of many international
conferences including TrustBus, WISTP, IEEE CCNC, IEEE CloudCom,
etc.

Sherman S. M. Chow joined the Department
of Information Engineering at the Chinese Uni-
versity of Hong Kong as an assistant profes-
sor in November 2012. He was a research fel-
low at Department of Combinatorics and Opti-
mization, University of Waterloo, a position he
commenced after receiving his Ph.D. degree
from the Courant Institute of Mathematical Sci-
ences, New York University. He interned at NTT
Research and Development (Tokyo), Microsoft
Research (Redmond) and Fuji Xerox Palo Alto

Laboratory, and has made research visits to U. Maryland, U. Calgary,
U. Texas, HKU, MIT, and Queensland University of Technology. These
visits resulted in US patent applications and also in publications at major
conferences such as ACM CCS and IACR EUROCRYPT. His research
interests are applied cryptography, privacy and distributed systems
security in general. He serves on the program committees of several in-
ternational conferences including ASIACRYPT 2012-2013, ACNS 2012-
2013, ASIACCS 2013, IEEE-CNS 2013 and Financial Crypt. 2013.

Wen-Guey Tzeng received his BS degree in
Computer Science and Information Engineering
from National Taiwan University, Taiwan, 1985;
and MS and PhD degrees in Computer Science
from the State University of New York at Stony
Brook, USA, in 1987 and 1991, respectively.
He joined the Department of Computer Science,
National Chiao Tung University, Taiwan, in 1991.
Professor Tzeng now serves as Chairman of the
department. His current research interests in-
clude Cryptology, Information Security and Net-

work Security.

Jianying Zhou is a senior scientist at Institute
for Infocomm Research, and heads the Network
Security Group. He received PhD in Information
Security from University of London. His research
interests are in computer and network security,
mobile and wireless communications security,
cloud security, and smart grid security.

Robert H. Deng has been a Professor at the
School of Information Systems, Singapore Man-
agement University since 2004. Prior to this,
he was Principal Scientist and Manager of In-
focomm Security Department, Institute for Info-
comm Research, Singapore. His research in-
terests include data security and privacy, mul-
timedia security, network and system security.
He was the Associate Editor of the IEEE Trans-
actions on Information Forensics and Security
from 2009 to 2012. He is currently Associate

Editor of IEEE Transactions on Dependable and Secure Computing,
Associate Editor of Security and Communication Networks (John Wiley),
and a member of Editorial Board of Journal of Computer Science and
Technology (the Chinese Academy of Sciences). He is the co-chair
of the Steering Committee of the ACM Symposium on Information,
Computer and Communications Security (ASIACCS).

He received the University Outstanding Researcher Award from the
National University of Singapore in 1999 and the Lee Kuan Yew Fellow
for Research Excellence from the Singapore Management University
in 2006. He was named Community Service Star and Showcased
Senior Information Security Professional by (ISC)2 under its Asia-Pacific
Information Security Leadership Achievements program in 2010. He
received the Distinguished Paper Award of the 19th Annual Network
& Distributed System Security Symposium (NDSS 2012) and the Best
Paper Award of the 13th Joint IFIP TC6 & TC11 Conference on Com-
munications and Multimedia Security (CMS 2012).

	Key-Aggregate Cryptosystem for Scalable Data Sharing in Cloud Storage
	Citation

	tmp.1388127054.pdf.DN1mu

