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Earth’s climate sensitivity has been the subject of heated debate for decades, and recently spurred 

renewed interest after the latest IPCC assessment report suggested a downward adjustment of the most 

likely range of climate sensitivities (1). Here, we present an observation-based study based on the time 

period 1964 to 2010, which is unique in that it does not rely on global climate models (GCMs) in any 

way. The study uses surface observations of temperature and incoming solar radiation from 

approximately 1300 surface sites, along with observations of the equivalent CO2 concentration (CO2,eq) in 

the atmosphere, to produce a new best estimate for the transient climate sensitivity of 1.9K (95% 

confidence interval 1.2K – 2.7K). This is higher than other recent observation-based estimates (2, 3), and 

is better aligned with the estimate of 1.8K and range (1.1K – 2.5K) derived from the latest generation of 

GCMs. The new estimate is produced by incorporating the observations in an energy balance framework, 

and by applying statistical methods that are standard in the field of Econometrics, but less common in 

climate studies. The study further suggests that about a third of the continental warming due to increasing 

CO2,eq was masked by aerosol cooling during the time period studied.  

 

Atmospheric CO2 concentration is projected to double from preindustrial levels during this century (4), 

and constraining Earth’s temperature response is a primary objective for designing mitigation and 

adaptation policies (5). While substantial attention has been devoted to model estimates of Earth’s 

equilibrium climate sensitivity (6) (i.e., the temperature response to CO2 doubling once a new equilibrium 

climate state is reached over several thousand years (7)), more relevant to public and policy makers is the 

temperature change that occurs at the time of CO2 doubling, known as ‘transient climate sensitivity’ 

(TCS). Constraining TCS based on observational records is complicated by the fact that recent climate 

change was not forced by CO2 changes alone. Downward solar radiation at the surface (DSRS, measured 

in Wm-2) reported at approximately 1300 surface stations over the time period 1964 -2010 (Fig. 1a) from 

1964 to 2010 (Fig. 1b) display a downward trend in DSRS which is commonly referred to as ‘global 

dimming’ (8). The most plausible explanation for global dimming is increased atmospheric aerosol 

loading derived from anthropogenic burning of fossil fuels and biomass. The overall effect of aerosols 

increases Earth’s albedo, either by direct interaction with solar radiation, or by increasing the lifetime, 
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areal extent, and/or reflectivity of clouds (9). For some portions of the world, the appearance of regional 

trends opposing the global negative DSRS trend (i.e., regional brightening) is observed towards the end of 

the 20th century, consistent with a reduction in aerosol emissions in much of the developed world (8).  

Atmospheric aerosol loading is broadly reflected in global emissions of sulfur dioxide (SO2), a precursor 

for sulfate aerosols (Fig.1b). Sulfate is only one of several aerosol species emitted by human activity, but 

the relationship between SO2 emissions and downward solar radiation broadly reflects the impact of 

anthropogenic atmospheric aerosol loading on global dimming, and thereafter on the somewhat weaker 

patterns of regional brightening. Note that trends in volcanic activity or insolation would also affect 

DSRS, and that similar emissions may have different radiative effects depending on factors like latitude 

and climate regime (10).  

 

Perturbations to Earth’s radiation budget, whether by greenhouse gases or aerosols, are 

commonly referred to as radiative forcings (RFs, Wm-2). Positive RFs exerted by anthropogenic CO2, 

imply a net energy gain by the Earth-atmosphere system and subsequent warming, while negative RFs 

exerted by anthropogenic aerosols, imply net energy loss.  

TCS relates the net RF (ΔF) to the change in global mean temperature (ΔT) through the following 

equation: 

 

𝑇𝐶𝑆 = !!!∆!
∆!

     (1) 

 

where F2X is the forcing due to a doubling of atmospheric CO2 concentrations. Over the last century, the 

net forcing has been dominated by the two competing RFs due to long-lived greenhouse gases (GHGs) 

and aerosols (ΔF≈ΔFGHG+ΔFAER) (11). For an observed temperature change, an overestimation of ΔF 

translates into an underestimation of the TCS (Eq. 1), and vice versa (12). Compared to the RF resulting 

from GHG increases, the RF associated with aerosol forcing is poorly constrained. While tremendous 

progress has been made on the representation of various aerosol processes in GCMs, aerosol-cloud 

interactions remain a major source of uncertainty (21), and the spread in GCM estimates of cloud-

mediated and total aerosol effects on climate is almost as wide today as when the field emerged two 

decades ago (13). Because of the intimate coupling between the uncertain ΔF and TCS (14), estimates of 

the TCS simulated by GCMs are considered unreliable. TCS estimates that are independent of GCMs are 

critical for advancing the topic. 

 For this study, we estimate TCS by applying surface air temperature observations from the high-

resolution (0.5°) data set from the Climate Research Unit (CRU) (15), equivalent CO2 concentrations 

(CO2,eq) from the Annual Greenhouse Gas Index (AGGI) (16) and DSRS from the Global Energy Balance 
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Archive (GEBA) (17). Observations from the ~1300 surface stations considered were used to estimate the 

free parameters of a set of equations predicting temperature at individual stations as a function of CO2,eq  

and SRDS, using a so-called ‘Dynamic Panel Data Method’ (18)). Using this framework, the observed 

temperature evolution from 1964 to 2010 can be reasonably reproduced, and yields a spatially averaged 

temperature increase of approximately 0.8K (Fig. 3). Furthermore, a calculation of temperature evolution 

under the hypothetical case that CO2,eq remained constant at 1964 values results in a cooling that reflects 

the total aerosol effect. Surface cooling is approximately 0.4K averaged over the surface stations 

considered. Conversely, if DSRS is kept constant at 1964 levels, corresponding to constant atmospheric 

aerosol concentrations, a warming of 1.2K is calculated. In other words, about one third of potential 

continental warming attributable to increased greenhouse gas concentrations has been masked by aerosol 

cooling during this time period. The masking effect is strongest before 1990, consistent with previous 

studies for that time period (19). 

The analysis also yields a best estimate of the TCS of 3.0K for land, with a 95% confidence 

interval of 1.8 – 4.2K, which is obtained by computing γ3log2 where γ3 is the parameter in Eq. 2 that 

controls the sensitivity to CO2,eq. Given that land has warmed at exactly double the rate of the ocean over 

the past century, TCS for the entire globe is estimated to be ~1.9K (95% confidence interval 1.2 – 2.7˚K) 

(obtained by taking TCSGlobe ≈ TCSLand(fLand+0.5fOcean), where fOcean and fLand refer to the global land/ocean 

fractions). A recent analysis used energy budget calculations combined with observations to constrain 

climate sensitivity (2), but required GCMs for information on radiative forcings. That study reported a 

95% confidence interval for TCS based on the time period 1970-2009 of 0.7-2.5K, and a best estimate of 

1.4K. Our GCM-independent method yields a best estimate that is 0.5K higher, and uncomfortably close 

to the amount of warming that more than 100 countries have adopted as a limit beyond which dangerous 

climate change is thought to ensue.  

The hiatus in global warming observed over the last decade has been the topic of numerous 

papers in recent years, and its cause is currently being debated (20-22). Some recent estimates of climate 

sensitivity that incorporate the most up-to-date observational data sets, including the apparent global 

warming hiatus, have reported very low climate sensitivities (3, 23). To test the sensitivity of our method 

to the period selected for analysis, we analyzed 25-year subsets of the time period 1964 to 2010, and 

produced probability density functions (PDFs) for TCS (Fig. 4).  Independent of which 25-year time 

window is selected, the TCS for land lies in the interval 2-4.5K. The PDFs are relatively broad, with high 

TCSs typically stemming from 25-year periods of rapid warming and lower values during periods with 

weak temperature trends. Analyses based on shorter time windows are obviously more susceptible to 

climate variability, and therefore more likely to produce biased trends. Nevertheless, all three PDFs peak 

at a land TCS of 3-4K, increasing the confidence in the best estimate from the full 46-year time period. 
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Thus, the observational-based and GCM-independent analysis presented here supports the best TCS 

estimate and range produced by GCMs, despite incorporating observations from the so-called hiatus, 

which has caused other observational methods to produce anomalously low TCS estimates. The 

prevailing view is that the hiatus can be attributed to variability internal to the climate system, which 

temporarily causes more heat to mix into the deep ocean via the Equatorial Pacific (24). Thus, we suggest 

that studies that produce anomalously low climate sensitivities as a result of incorporating the hiatus 

period are overly sensitive to temperature trends of the past decade, and to climate variability in general.  

 

Methods 

 

This study relies on three observational datasets: The Global Energy Balance Archive (GEBA, 

www.geba.ethz.ch), the Climate Research Unit Time Series (CRU TS, version 3.2, 

badc.nerc.ac.uk/data/cru/) and the National Oceanic and Atmospheric Administration (NOAA) Annual 

Greenhouse Gas Index (AGGI, http://www.esrl.noaa.gov/gmd/aggi/) datasets. The GEBA dataset reports 

monthly mean downwelling shortwave radiation (SRDS) reaching the surface, as measured at 

approximately 2,500 instrumented surface stations worldwide. Out of these, data only from about 1,300 

surface stations are selected for the purpose of this study, based on strict criteria on time series length and 

continuity, as well as data quality control. The availability of high-quality continuous data limited the 

time period studied here to 1964 – 2010. For each selected station, i, the annual mean time series of 

SRDS, denoted Ri, is assigned a corresponding high-resolution temperature time series Ti from CRU 

TS3.2. The CRU TS3.2 dataset is available for download from the British Atmospheric Data Center 

(BADC) and is provided on a 0.5x0.5 degree horizontal resolution. The third and final dataset, AGGI, 

provides annual and global mean atmospheric abundances for all major well-mixed long-lived greenhouse 

gases: carbon dioxide, methane, nitrous oxide, CFC-12 and CFC-11, as well as 15 minor halogenated 

gases from the NOAA global air sampling network. By converting the abundances of all other gases than 

CO2 into CO2 equivalent abundances, the AGGI data set can offer an annual and global mean time series 

of equivalent CO2 abundance (CO2,eq), which is the time series that is used here. Because these well-

mixed GHGs exhibit little spatial variability, the global mean values can be taken as valid for all surface 

stations. These time series, two of them specific to each of the 1300 surface stations and the third offering 

one single annual value for the entire globe, are incorporated into Equations 1 and 2 below, which 

combined predict the temperature evolution at individual surface sites.  

The equations thus describe the annual mean temperature at any given station in year t+1 as a function of 

local and global mean temperatures (Ti and T), local and global mean SRDS, as well as the global mean 

CO2,eq, all for the previous year t. The dependence of local temperature evolution on these variables is 
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justified based on energy balance considerations, but note that we are not explicitly solving an energy 

balance model here. Instead, the energy balance framework is simply used to identify variables that might 

be expected to exert an influence on local temperature evolution. Thereafter, the parameters that relate 

local temperature evolution to these variables are determined entirely by our observed time series, using 

the following equations: 

 

𝑇!,!!! = 𝛽!𝑇!,! + 𝛽!𝑅!,! + 𝜆!                        (1) 

 

𝜆! = 𝛾! + 𝛾!𝑇! + 𝛾!𝑅! + 𝛾!log  (𝐶𝑂!,!")     (2) 

         

where β1 , β2 , γ0, γ1, γ2 and γ3 are parameters that are constrained by the 3-dimentional datasets. This is 

done by the use of a so-called Dynamic Panel Data Method (DPDM), which goal is to estimate the 

parameter values (the β′𝑠  and γ’s) that best describe all observations in both time and space. Table 1 

shows the parameter values that result from the application of the DPDM. Note that this method 

implicitly assumes that there is no long-term trend in Earth’s heat capacity, which is dominated by ocean 

heat uptake. 

As expected, at any year the present temperature will be a relatively good predictor of next year’s 

temperature (parameter β1). The temperature influence of the local DSRS is evident by the fact that β2 is 

positive and significantly different from zero – the more incoming solar radiation at the surface, the 

warmer. The parameter that relates local temperature in year t+1 to the station mean temperature in year t 

(γ1) represents two processes; transport of heat to/from the stations from/to the surroundings, as well as 

the Planck feedback (a warmer land surface loses more energy to space through infrared radiation). The 

observations suggest that the latter dominates. The parameter relating local temperature to global (that is, 

station-mean) DSRS (γ2) is not significantly different from zero, and the observations therefore suggest 

that the global solar radiation balance does not have a strong influence on local temperature trends. 

Finally, CO2,eq has a strong impact on local temperatures, as evident by the positive γ3 which is 

significantly different from zero. 

 

Table 1: Parameter values, standard errors and confidence intervals for the parameters of Eqs. 1 and 2. 

Parameter Value Std. Error 95% confidence interval Relevant variable 
β1 0.9212 0.0040 (0.9133, 0.9292) Ti 
β2 0.0127 0.0006 (0.0108, 0.0146) Ri 
ϒ1 -0.8900 0.1568 (-1.2065, -0.5737) T 
ϒ2 0.0002 0.0066 (-0.0131, 0.0136) R 
ϒ3 4.3143 0.8705 (2.5588, 6.0699) CO2, eq 
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A) 

 
B) 

 
 
Fig. 1: Upper panel: Blue dots indicate the location of each of the ~1300 surface stations incorporated in 
the study. Lower panel: Trend in DSRS, shown as the change relative to 1964, calculated by averaging 
the year-to-year change over all stations displayed above (right axis, green curve). Also shown are global 
mean emissions of sulfur dioxide, SO2 (blue curve, left axis, reversed) (25, 26), a precursor to sulfate 
aerosols. Both curves show 5-year running means. 
 

10
0

11
0

12
0

13
0

14
0

G
lo

ba
l E

m
m

iss
io

ns
 o

f S
O

2 i
n 

Tg

-1
0

-8
-6

-4
-2

0
Ch

an
ge

 in
 D

SR
S

1960 1970 1980 1990 2000 2010
Year

Global Radiation (DSRS)
Global SO2 Emmisions

Correlation coefficients (SO2 vs. DSRS):  R(1964-1985) = -0.83, R(1986-2010) = -0.78

Five year moving averages over the time period 1964-2010
Global Solar Radiation and SO2 Emmisions



DRAFT MANUSCRIPT IN PREPARATION 

 
 
 

 
 
Fig. 3: Global land temperature as observed (black curve, CRU TS3.2 data sampled at GEBA stations  
only, displayed as 5-year running mean), and as predicted with Equations 1 and 2 (green curve). The red 
curve is calculated using the same framework, but setting CO2,eq concentrations constant at 1964 values, 
such that the temperature trend is controlled by the DSRS trend alone. Likewise the blue curve shows the 
temperature predicted with DSRS constant at 1964 values, such that the temperature trend is controlled 
only by CO2,eq. Shadings represent the standard error.  
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Fig. 4: TCS distributions calculated based on 25-year rolling windows: (A) For 25-year periods beginning 
in 1964-1974, (B) For 25-year periods beginning in 1975-1985, (C) For all 25-year periods of the 46-year 
record. Also shown (D) are the median (horizontal lines), 25th and 75th percentiles  (boxes) and 
maximum/minimum values for all distributions (outliers marked with circles). Note that these TCS 
estimates are valid for land areas. 
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