Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

1-2013

Hypergraph Index: An Index for Context-aware Nearest Neighbor
Query on Social Networks

Yazhe WANG
Singapore Management University, yazhe.wang.2008@smu.edu.sg

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Communication Technology and New Media Commons, Databases and Information

Systems Commons, and the Numerical Analysis and Scientific Computing Commons

Citation

WANG, Yazhe and ZHENG, Baihua. Hypergraph Index: An Index for Context-aware Nearest Neighbor Query
on Social Networks. (2013). Social Network Analysis and Mining. 3, (4), 813-828.
Available at: https://ink.library.smu.edu.sg/sis_research/1835

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.


https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/327?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Noname manuscript No.
(will be inserted by the editor)

Hyper-Graph Index: an Index for Context-Aware Nearest Neighbor
Query on Social Networks

Yazhe Wang - Baihua Zheng

Received: date / Accepted: date

Abstract Social network has been touted as the No. 2 innoity of our method is demonstrated based on both theoretical
vation in a recent IEEE Spectrum Special Report on “Top 1JProofs and experimental results.

Technologies of the Decade”, and it has cemented its status

as a bona fide Internet phenomenon. With more and more

people starting using social networks to share ideas,-actiy |ntroduction

ities, events, and interests with other members within the

network, social networks contain a huge amount of contentsocial network has been touted as the No. 2 innovation in
However, it might not be easy to navigate social networks t recent IEEE Spectrum Special Report on “Top 11 Tech-
find specific information. In this paper, we define a new typenologies of the Decade”, and it has cemented its status as
of queries, namelgontext-aware nearest neighbor (CANN) a hona fide Internet phenomenon. Reported by Nielsen, the
search over social network to retrieve the nearest nodeto thyorld's leading marketing and media information company,
query node that matches the textual context specified. Th@e social networks and blogs reach neay% of active
textual context of a node is defined as a set of keywords thq.ﬁternet users and represent the majority of users’ time on-
describe the important aspects of the nodes. CANN consigine in U.S. Similarly, it was reported tha8% of UK In-

ers both the network structure and the textual context of thﬁarnet users re|y on social networks. Take Facebook, one of
nodes, and it has a very broad application base. the most famous and successful social networking websites,

Two existing searching strategies can be applied to sugfS an example. The average Facebook user spends around 8
port CANN search. The first one performs the search basddeurs per month on Facebook, and Facebook is rapidly ap-
on the network distance, and the other one conducts theroaching 1 billion users soon. Obviously, more and more
search based on the node context information. Each of the§§0Ple start using social networks to share ideas, aeyiti
methods operates according to only one factor but ignoredvents, and interests with other members within the network
the other one. They can be very inefficient for large sociafnd social networks contain a huge amount of content. How-
networks, where one factor alone normally has a very lim€Ver, it might not be easy to navigate social networks to find
ited pruning power. In this paper, we desighyper graph  SPecific information. Consequently, we focus this paper on
based method to support efficient approximated CANN sea@¥€"ying social networks.
via considering the network structure and nodes’ textuaico ~ Without loss of generality, the social network is mod-
texts simultaneously. Experimental results show that the h €led as an undirected weighted graph, with nodes represent-
per graph based method provides approximated results dftg the network users and edges representing the social con-
ficiently with low preprocessing and storage costs, and i§ections between the users. The weight on each edge repre-

scalable to |arge social networks. The approximation qua|sents the inverse Strength of the social connection. Beside
the graph structure, we also consider the textual content re

lated to the users, e.g., the key features of the users’ @rofil
School of Information Systems, Singapore Management Uisitye the keywords of the users’ publication, and the tags of the
Tel.: +65-68280915 users’ shared resource. We abstract these textual informa-
Fax: +65-68280919 tion into a set of keywords as the context of the nodes. Take
E-mail: {yazhe.wang.2008, bhzhey@smu.edu.sg the co-authorship networ depicted in Figure 1 as an ex-




2 Yazhe Wang, Baihua Zheng

ample. Each node represents a scientist. An edge betwegnorithm) to visit nodes based on ascending order of their
two nodes states that those two scientists have collalibratelistances to the query node, and determines the correspond-
at least once, and the weight on the edge is the inverse nurimg textual relevancy on the run. TR-based search conducts
ber of collaborations. For the simplicity of discussion, wethe search based on the textual factor. It locates the textu-
assume the weight on every edgd is this example. The ally relevant users first as the intermediate results, aed th
contexts of the nodes include the users’ name, professionrders them based on their distances to the queried node.
and research keywords, as depicted in Figure 1. AlthougBoth approaches ar@efficientespecially for large social
majority of the nearest neighbor algorithms focus on thenetworks, as they only consider one factor which results in
structure of the graph, we believe that both the structude anvery limited pruning power. On the one hand, Sl-based ap-
the context information of the nodes are important on socigbroach traverses the social network purely based on the dis-
networks. Therefore, in this paper, we proposeoatext- tance but not context. Consequently, when the answer node
aware nearest neighbor (CANMNuery to search over social is relatively far from the queried node, it has to visit many
network based on both the network structure and context indnnecessary nodes before the answer node is reached. On
formation. It retrieves the nearest node to the query naate ththe other hand, TR-based approach may find many nodes
matches the context specified, as well as the shortest path tbat match the queried keywords as intermediate resukts, es
tween them. For example, Michael (i.e., nad¢ may issue  pecially when the queried keywords are popular, and hence
a CANN queryR; “finding me the shortest path to the near- the ranking process based on the distances between query
est professor working on data mining”. Hedéstancefrom  node andill the intermediate nodes could be very costly.

the query nodes to a nodev is evaluated by the shortest

path distance. A smaller distance indicates a stronger con- aijyen the fact that existing approaches cannot support
nection between the query node and the target node, and theznNN search efficiently, we, in this paper, propodeyaer-
shortest path gives the information of how the two nodes argraph indexto supporhigh-performancapproximated CANN
connected. The queriembntextis represented by keywords (ACANN) searches via considering the distance and the con-
{professordata mining. The answer t@, is nodevs With ey factors simultaneously. The hyper-graph index casisis
the shortest patfws, v4} asvy is the node which is the near- ¢ ahyper graphandlocal signature-mapsThe hyper graph
est tovz and contains the queried keywords in its contexts formed among a set of selecteehter nodeghat are very
CANN query considers two key factors on social networkjikely to be crossed by many shortest paths in the network,
i.e., network distance and the context, and it has broad-applyith hyper edges created between center nodes. Each center
cation base. For example, scientists can issue CANN to findgde maintains a local signature-map for a local cluster of
potential collaborators to start new research and empoyeqgdes that center around it. The local signature map records
can issue CANN to locate qualified employees to work onpe abstracted context and distance information of thesiode
specific tasks. within each cluster. Compared with existing methods, the
hyper-graph based search mainly conducts the search leygrav

Jonson, , ~ Emmy, 7; = |O  student ing the hyper graph, which is much smaller than the whole
% /\ research fellow network, and thus is more efficient. In addition, the local
E [] professor signature map facilitates the search space pruning based on
5 |0 database management queried keywords and distance simultaneously.
( N § t;; II inf;)n?mti‘or.l rftrieval
fames, f; - Kelly, 1, Michael,# 2 7| Gata privacy In order to demonstrate the efficiency of hyper-graph
based search, we first conduct a theoretical study to derive
Fig. 1 A collaboration social network:. the upper bound of approximation error, and then conduct a

comprehensive simulation study to evaluate the performanc
The newly proposed CANN search shares some simief the proposed approach in terms of the index construction
larity with the social web search problem studied in [36]cost, storage cost, query time, and approximation quality.
that considers both the network structural and textual fac-

tors in their objective function to retrieve the relevanéus The rest of the paper is organized as follows. Section 2
generated documents on the social web. The correspondip@fines CANN search and approximated CANN search, to-
approaches proposed to conduct social web search, inClugather with a review of the related work. Section 3 presents
ing Sl-based searchand TR-based searcrare also appli-  the details of the hyper-graph based index, and the ACANN
cable to CANN query. Sl-based search considers distancgarch algorithm is described in Section 4. Section 5 intro-
factor first and examines the network users based on thejfces a simplified variant of hyper-graph based index. Fi-

distances to the queried node. To be more specific, itinvokeg,|ly Section 6 reports the experimental results, and Sec-
traditional shortest path search algorithm (e.g., Digstal-  +ion 7 concludes this paper.
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2 Preliminary is the shortest among all the nodes with context matching
Q.k. In other words, CANND) = (v;, P) = v;.k D Q.k

Inthis section, we first describe the graph model of the $ocian P = SP(Q.v,v;), and meanwhilélv; € V such that

network, and then formally define tle®ntext-aware near- Q.k C v;.k A ||Q.v,v;|| < |P). O

est neighbor (CANNjuery and approximated CANN query

(ACANN). In addition, we also briefly review existing work Generally, the exact CANN search on large social net-

related to CANN search, including (approximated) shortesworks is very expensive. In this paper, we explore approxi-

path search, keyword query and signature technique used inated CANN search as defined in Definition 3.

information retrieval.

Definition 3 Approximated CANN Search (ACANNYGiven

a graph G(V, E), an ACANN search) specifies a query

node@.v and a set of queried keyword3.k. It returns a
ath P to a nodev; € V such that the context of matches

queried keywords. However, it does not guarantee that i)

is the nearest node that satisfies the query; otHijs the

! . shortest path frond).v to v;. The quality of the approxima-

andv; are connected in the network. The weights of edge%.Ion is measured by the Jerror rate of the length of the re-

are captured byV’. A non-negative weighto(v;, v;) € W ooy path of ACANN search to that of CANN query, i.e.,
of edgee(v;, v;) € E represents the inverse strength of the | acanN(Q).P|—|cANN(Q).P]| 0

linkages, i.e. smaller weight indicates stronger social-co ICANN(Q)-P]|
nection. In this paper, we assume that the context of each

nodev; € V is maintained as a set of keywords, denoted as

v;.k. The domain of keywords for a graghis represented 2 2 Related Work

by L with L = U,,cvv;.k. Given two nodes; andv; of a

graphG(V, E), a path and the shortest path connecting then® 2.1 Shortest Path Search
is described in Definition 1.

2.1 Problem Definition

In general, we model a social network as an undirected gra
G(V, E), with V being a set of nodes anfd being the set
of edges. An edge(v;,v;) € E represents that nodes

The point-to-point shortest path problem has been exten-
sively studied. It retrieves the shortest path from a source
node to agivendestination node in the network. However,
our CANN query requires the shortest path from the source
) node to arunknowndestination that is nearest to the source
with vp, = v; andu,,,,, = v;. The length o (v;, v;), de- 546 and the context matches the queried keywords. Thus

H m
nOtEd as| P (vi, v >|k’1 IS Zn=_0;”(ﬁpn ’;’PnH)'Jhe shortest many efficient shortest path algorithms cannot be directly
pathSP(vi, v;) is the one with the shortest distance amongapplied to our problem. However, some of them could be

all the paths between; a”‘?'”w and its disal_"nce, denoted as utilized as the sub-function for the distance related datcu
[[vi, vjl| (= [SP(vi, v;)]), is the shortest distance between ;|

vi andv;. The most well-known shortest path search algorithm on

Take the social network shown in Figure 1 as an examdr@phs is the Dijkstra’s algorithm [8]. It explores the dnap
ple. PathP(vy, vs) = {v1, vo, v4, v3} is a path fromy; tovs ina best—firs_t manner starting fro_m the query node until the
via nodessy andvy, and path?’ (vy, v3) = {v1,vs,v5} is  @rget node is reacheq. The e?qstmg SI-k_Jased search and TR-
another one via,. AssumeG(V, E) is an unweighted graph ba_sed search use th|§ _algonthm_ for distance based explo-
with Ve(vs,v;) € E, w(v;,v;) = 1, the pathP’(vy, vs) ration. Some more efﬂm_ent solutions were propoged to re-
is the shortest path between anduvs, i.e., SP(vy, v3) = duce_ tr_\e graph exploratlo_n space based on domain-specific
{v1,v2,v3} and [|vy, vs]| = [SP(vi,v3)| = wlvy,vs) + heurlstlc_ and. pre-processing. For example_, A* search [13]
w(vy,vs3) = 2. uses estimation on distance to the destination to guide node

With v; .k capturing the context af;, CANN search is to selection in the search from the source, thus is more effi-

locate the nearest node with its context matching the gaieriefi€nt than the Dijkstra’s algorithm. In our simulation, we
keywords, as given in Definition 2. use A* instead of Dijkstra in the TR-based search for re-

trieving the shortest paths from the query node to the inter-
Definition 2 Context-aware Nearest Neighbor Sear@@BANN)mediate result nodes. Many of these approaches use heuris-
Given agraphG(V, E), a CANN searcld) specifies a query tics that are datasets-dependent (e.g. GIS data), which can
node@.v and a set of queried keywordg.k. It asks for notbe extended to other graphs, e.g., the reach based method
a shortest pathP to a nodev; € V such that the con- in [14]. A comprehensive survey of these algorithms is re-
text ofv; matches queried keywords and its distanc&to  ported in [12].

Definition 1 Path and Shortest PathGiven a social net-
work G(V, E) and two nodes;,v; € V, a pathP(v;,v;)
connecting; andv; sequentially passes nodgs, vp,, - - -,
Up,.» denoted a$(vi, v;5) = {Vpys Vp1s Vpss - - 3 Upps Uppis 1o
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In recent years, efficient indexing technigues have beethe query node to the destination node gives the information
designed for shortest path search on large graphs. Some imbout how the two users are connected, thus is important
dex techniques are designed based on partial pre-congoutatior many applications. Therefore, these approaches are not
For example, HEPV [18] and HiTi [19] build index based applicable to the CANN problem.
on partition graphs, and maintain local shortest pathsaéla
to.the boundar)_/ nodes. The global shortest path is then 05-_2_2 Keyword Query
tained by combining selected local shortest paths. ROAD [24

25] organizes a .Iarge road network as a hierarchy of InKeyword guery on graphs considers both the structure and
terconnected regional sub-networks (called Rnets) and AUl ontextinformation. Given a set of queried keywords, ibis t

ments Rnets with shortcuts a”o_' Obje(_:t abstracts to accelegs closely connected clusters of nodes in the graph which
ate n(_atwork traversals and provide quick object lookups, ' ontain all the specific keywords. Some of the works search
spectively. These methods work well on planar graphs (€.G, 1oted subtrees with the leaves containing the queried
road networks), where a small number of boundary nOdeﬁeywords. The results are ranked based on the distances from

can be constructed easily. However, they could be irery the roots to the leaf nodes. For instance, backward expan-

efficienton non-planar graphs (_e.g. social network_s), WherPsion algorithm and bidirectional search are proposed in [17
the number of boundary nodes is large. TEDI [34] is anotheﬁo] respectively to solve this problem; while a bi-leveléxd

graph partition based index approach. It partitions thelgra is designed in [15] to improve the search efficiency. Differ-

based on the tree decompos!tl_on that is in general e_xpens%%tly, [27] performs the keyword query on graphs to retrieve
on gr;_aphs. TEDI supports eff|C|en_t shprtest path retrieval f connected subgraphs which contain the queried keywords,
any g|ven_pa|r of source_ and destme_mon nodes by a botto”{hen the results are ranked based on the keywords matching
up oper_at|on. However, its constr_ucnon and storage CO8tS g 1e and the compactness of the sub-graph. The issue of
expensive on large graphs, and it cannot be easily extended,.osqing the keyword query on external memory graphs
to support efficient network exploration from a given SOurc, s paen also discussed in [7]. Obviously, keyword query
”Qde to find an ”unknown” destination which satisfies Cer'problems studied by the above works are different from our
tain context constraint. CANN search.

There are other works considering encoding all-pairs short Recently, the idea of integrating social networks to key-
est paths of a graph in small-sized indexes. For instance,\gords based document search has drawn much attention [4,
quadtree-structured index is proposed in [31] to utilize th 32 33 36]. The social affinity between the users is incorpo-
spatial coherence of the destination (or source and destinggted to improve the quality of the document search results.
tion) nodes. Distance signature method [16] pre-compute§ome of the works consider this problem under complex
the distance from each nodeto a set of objects of in-  gqcjal tagging systems, and the social affinity is evaluated
terests, and maintains this information as a signature at pased on the number of common tags [4,32]. Those works
Compact BFS-tree [35] is another example. It exploits symysyally emphasize on the effectiveness of the results more
metry properties of graphs to reduce the index size of allyzan the efficiency of the search process. Some other works
pairs shortest paths, but is only applicable to unweightedefine social affinity based on the network distance [33, 36].
graphs. These discussed approaches require pre-computifigey retrieve documents based on two factors, i.e., the rel-
the shortest paths between all-pairs of nodes, which is €%vancy of the documents to the queried keywords, and the
tremely expensive on large or even middle sized graphsetwork distances from the query node to the authors of
Therefore, in this work, we try to avoid these all-pair short the documents. Although their purposes are differenty thei
est paths based methods. query conditions are quite similar to our CANN search. Con-

Approximated shortest path/distance problem has beesequently, some of the proposed search strategies can be ex-
studied as well. Spanner [6] is a subgraph obtained by deletended to CANN search, e.g., the Sl-based search and the
ing edges from the original graph. Due to the smaller sizeTR-based search proposed in [36]. The Sl-based search ex-
the search performed on the spanner is much faster. Hovemines the documents’ authors based on their distance to the
ever, it is hard to decide which edges to delete to generatequery node, while the TR-based strategy conducts the search
good spanner with the distances between nodes not changy locating the most textually relevant documents first, and
ing substantially. Spanners do not perform well on denséhen examining the shortest path distances from their au-
graphs with large girth. Distant labeling and embedding+tec thors to the query node. However, in this paper, we conduct
niques [11,30] assign each node of a graph a label such thiéite CANN search by considering the distance and textual
the (approximated) distance between two nodes can be dielevancy simultaneously. To avoid the expensive shortest
rectly computed based on the corresponding labels. Howpath distance computation, a distance labeling technigue i
ever, these approaches can only provide distance informadopted in [33] to quickly estimate the distance between
tion but not the paths. For the CANN, the shortest path fromany two users. However, distance labeling does not provide
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shortest path information that is requested by CANN search  — false drop(or false matclr the data item in fact does
and hence is not applicable to CANN search. not satisfy the search criteria although the signature
comparison indicates a match.

2.2.3 Node betweenness centrali
ty As shown in Figure 2(b), three queries are issued and

The betweenness centrality of a node in a graph is defindif€ir corresponding signatures are produced based on the
as the number of shortest paths from all nodes to all other¥Me hash function. According to the resultSef A 5;, the
that pass through that node. It is an important measuremefif@mined data item is not qualified for the first quepy, =

in graph theory that determins the relative importance of 41acker, butqualified for the other two querieg, = Secu-
node in the graph. The betweenness centrality and its vafity @ndQ@s = Mobile. Itis a true match fo, as the data
ances have been wildly studied [10,29,21], and proved t§em does contain the keywofgecurity while it is a false

be useful for many network analysis applications, such adroP for@s because the data item does not contain the key-
finding keystone species in pollination networks [1], urder Word Mobile. Bloom Filter, commonly used in networking,
standing the interaction patterns of the players of massivé12r€S some similarities as signature [3]. However, it &xlop
online games [2], and identifying significant nodes in wire-Multiple hash functions to generate bit strings.

less ad hoc networks [28]. In this work, we explore the usage

of the node betweenness as the criteria to select the cen®mHyper-Graph based Index

nodes to build efficient index structure on social netwooks t

support CANN queries. To support efficient ACANN search, we design a novel in-
dex structure, namelltyper-graph based index consists
2.2.4 Signature of two parts, yper graphand thelocal signature mapdn

this section, we present the detailed structures of these tw
Signature techniques have been studied extensively inrinfoparts and their constructions respectively.

mation retrieval [22,26]. A signature is basically an ahstr
of the keywords information of a data item. Given a set of3 1H Graph
keywords that represent the data iténthe signatures; is -+ Rypersrap

_typlcally fOrT“ed by first hashl_ng eac h _keywc_)rd_ in the SGtGiven the fact that the retrieval of shortest paths is expen-
into abit string and thensuperimposindi.e., bitwise-OR,

N ) . . ive on large graphs and some applications are willing to
V) all these bit strings into a signature. Note that the size o - .
. . o rade efficiency for accuracy, we desighyper graph struc-
a signature equals to the size of the bit string. An exampl

; o . - . . Ture based on graph partition and partial pre-computation
of signature ggneraﬂon 1S depicted n F|.gure 2(2), in Wh'Chto support approximated shortest path retrieval. To be more
each keyword is hashed into a 12-bit string.

specific, we first identify a small set of center nodes in the
graph, and divide the graph into disjoint partitioRswith

each around one center node The shortest paths from a
center node; to every node of its corresponding partition

P, are computed. Then, we form the hyper graph with the
center nodes as the hyper nodes, and generate hyper edges
between every pair of center nodes. Each hyper edge rep-

‘ Data Item: Attr. 1: Security Attr. 2: Pervasive ‘
Security 001 100 001 001
Pervasive V) 101 000 100 001

Data Signature  Si 101 100 101 001

(a) Signature generation

Query Q  Query Signature Sy SoNSi Results .
Facker 000 101 000 107 000100 000001 No March resents the shortest path between the corr_esp_ondl_ng center
Security 001100001 001 001 100 001 001  True Match nodes. The formal definition of hyper graph is given in Def-
Mobile 100 100 001 001 100 100 001 001  False Match inition 4.
(b) Query comparision
F|g 2 Signature generation and Comparison DefInItIOI’] 4 Hyper Grath|Ven a SOC'al netWOI‘@(V, E)

and a set of center nod€s = {ci, co, ..., ¢}, the hyper
To decide whether a data iteinmatches/contains the graphGu(Vy, Ex) consists of the set of center nodes, and
queried keyword), aquery signatures,, is generated first, the connections between them, iy = C, and Ey =
based on the same hash function. Thereafferis com- U, c,cCn|SP(cic;) 200 €(Cir ¢j) Withw(ci, ¢;) = |SP(cq, ¢5)].
pared against the signatuseusing bitwise-AND (). There U

are two possible outcomes of the comparison: . . N .
P P An example hyper graph is depicted in Figure 3, with

— S A Si # Sg: data itemi does not match querd. nodeswy, vy, andvg being the center nodes. Given a hy-
— So N S; = Sg: amatch has two possible implications: per graph, the approximation of the shortest path from a
— true match the data item is really what the query source node to a destination node is performed as fol-
searches for; and lows. We assume thatbelongs to the partitio®; with the
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Graph Partition. Once the center nodes are fixed, we par-
tition the graph into disjoint sub-graphs with each cerdere
at one center node. In this work, we assign each non-center
node to its nearest center node based on the shortest path
distance. When there is a tie (i.e., a non-center node has
more than one closest center node), the non-center node is
randomly assigned to one closest center node. Definition 5
gives a formal definition. It is noted that finding the closest
center node for each non-center node is expensive if we de-
rive the distances from each non-center node to all the cen-
ter nodes. We adopt the parallel expansion algorithm pro-
posed in [9]. It initiates graph expansion from all the cen-
ter nodes concurrently. Ldfzp; represent thé-th expan-

sion initiated at center node. All the nodes reached by
Exp; first will be included into the partition correspond-
ing to ¢;. The worst time complexity of this algorithm is
O(|E|+ |V |+ |V —r|log(]V —r|)|), wherer is the number

of center nodes.

Fig. 3 An example of the hyper graph.

corresponding center nodeg, andwu belongs to the parti-
tion P; with the corresponding center nodg. First, we
get the shortest path (v, ¢;) from v to the center nodes
¢; within partition P;. Then, based on the hyper graph, we
can find the shortest path;(c;, ¢;) from ¢; to ¢;. Finally,
we get the shortest path;(c;, u) from ¢; to u inside the
partition P;. The combination ofP; (v, ¢;), P2(c;, ¢;) and
Ps(c;,u) then forms the approximated shortest path from
to u. We embed certain information in each center node t®efinition 5 Graph Partition. Given a graphG(V, E) and

facilitate the retrieval of (v, ¢;)/P3(c;, u) (to be explained 3 set of center nodeS = {cy, ¢z, , ¢} With C C V,

in Section 3.2), and the hyper graph carries information of graph partitionP; = {Py,P,,---, P} is a set of node

Py(c;, ¢;). Consequently, this approximation will be much setsp; that i) Ve; € C,¢; € Py ii) Vi, j(i # j) € [1,7],

faster than deriving the real shortest patR(v, u). P,0P; =0AU, <, P =V;andii) Yo € P AVj(#
In the following, we explain three key steps of forming ag) e [1,7], |Jv, eil] < [Jv, ¢4l 0O

hyper graph, namelgenter node selectiograph partition

andhyper graph formation Hyper Graph Formation. Once the graph is partitioned,

Center Nodes SelectionWe assume each shortest path will We need to build the hyper graph. A hyper graph has the cen-
cross at least one center node in our shortest path approXg’ nodes as hyper nodes and has hyper edges between ev-
mation. Consequently, the center nodes have a direct impa@ty pair of center nodes that are reachable. Each hyper edge
on the quality of the shortest path and we need to carefulljePresents the shortest path between the corresponding cen
select the center nodes in order to improve the approximd€r nodes. The weight on a hyper edge equals to the shortest
tion quality. In this paper, we propose to choose the centdpath distance between the corresponding hyper nodes.
nodes based on their betweenness scores. The betweennesd-igure 3 depicts an example of the hyper graph. As-
score of a node counts the number of shortest paths that tggme the number of center nodes3isand nodesyy, vz,
node falls on. Intuitively, by selecting the nodes laying onandug are selected as center nodes based on betweenness
many shortest paths (i.e. having highest betweenness)scofores. Thereafter, the network partition takes placehEac
as the center nodes, the approximated shortest path betwe@n-center node is attached to its nearest center node as
two nodes, which passes their corresponding center nodedgmonstrated by the dashed circle in Figure 3. Then, we
will be close to the real shortest one. We will evaluate thigProceed to form the hyper graph. Three hyper edges are
intuition later in Section 6. built among the hyper nodes, i.e(vs, v7), e(v7,v9) and
However, the betweenness scores are computationalﬁ(”4vv9)-A5 the shortest path distances between these nodes
expensive to derive as it requires computing all-pair sksart  are alll, the weight on every hyper edge is assigned.as
paths of a graph. Instead of computing the shortest paths for
every pair of nodes, we adopt the algorithm proposed in [5B.2 Local Signature Map
to efficiently fetch the set of nodes with highest between-
ness. It chooses a set of nodes as pivots, and only computéke hyper graph builds a graph skeleton that can facilitate
the shortest paths from pivots to the other nodes. Then, the approximation on shortest paths by assembling some
uses those partial shortest paths to estimate the nodes wiine-computed shortest paths. As discussed earlier, ibilnees
highest betweenness. The algorithm runs this process iteraodev and the destination nodeare known (i.e., the cor-
tively. At each iteration, some new pivots are added and theesponding partitiong; and P; thatv andu are located re-
highest betweenness node set is updated. The algorithm tespectively are known), its shortest path can be approxiinate
minates if the membership of the highest betweenness nodby the combination of the shortest path fremno the center
set remains largely stable. nodec;, the shortest path from to ¢;, and the shortest path
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from u to ¢;. However, for a given ACANN search, the des- Algorithm 1 Local Signature Map Construction

tination node is unknown. In other words, we do not knowlinput: a center node; and the partition?;, 5, a hash functiork();

who the destination node is and where it is located. We hav@utput: map;

to traverse the hyper graph to visit the center nodes by cerf "cedUre: _ _ _

tain order, and then at each center nodeve scan the nodes 1: order the nodes i®; based on ascending order of their shortest
_y ! : o distances t@;, so thatvv; € P;, with ||v;, ¢;|| < ||vj+1,¢ills

within the corresponding partitio?; to see whether any  2: for eachw; € P; do

node satisfies the query condition. To speedup this check3: if j == 1then

ing process of each patrtition, we introduce a new structure“f =1

I — [
namelylocal signature mapto carry some abstractinforma- . elsgé if| L{Jv]}’l vk Uvs k| < n then
tion about the shortest distances from non-center nodes tq. g = gfzg{iv_}_ e

i Ji J5

the center node and textual contexts of the non-center nodes  ¢jse
in the corresponding partition. It can effectively filtertou 9: I=1+1;
those partitions that do not contain any answer node. 100 g = ok

Given a center node with corresponding partitiod®;, E for;:;?;ziiz =V
|t§ local S|gnatgre map incorporates two parts, _t@(tual 3 mapil].dis = MIN ool
signatureanddistance lower boundThe textual signature ,. returnmap:: Ve
sig represents the keyword sét in a compact manner,
with L; (= Uyep,v.k) summarizing the textual contexts of
the nodes inP;. As explained in Section 2.2.4, for a given
queried keywordy.k, we can compareig against the sig-
nature ofQ).k. If the signatures do not match, it is certain that

vegl h(v.k);

information is that it can be used to estimate the (approxi-
mated) distance from the center nagéo the potential qual-

i : A o ified node in the partition, thus helps to further prune the
L; does not contai).k (i.e., no node withinP; satisfies the  ¢o5,ch space. To be more specific, during ACANN search,
textual condjtion of_ the query) anBl; can be sa}fely filtgred when a temporary answer node is found with distarce
out. Otherwise, a signature match occurs which implies twgy, following search can discard the node groups whose es-
possible implications, i.e., true match and false dropc&in i ated lower bound distances are no smaller thaeven
each false drop results imnecessargxploration of the cor- |\ han their contexts match the queried keywords. This is
responding partition, a longer signature is preferred @eor o5 se these node groups cannot contain an answer node
to maintain a low false drop rate. However, for a large social,hose distance is smaller than the current ansivém or-
network, each partition contains different number of nodesyq, words, only the node group whose lower bound distance

Some partitions could be very large in size, and the corre smajler than the current answer node is worth further ex-
spondingZ; could be large as well. To make our approach, ination.

scalable, we propose to use multiple relatively small signa To sum up, given a partitiol; that is divided intaz;
tures, instead of one single long signature, to represent disjoint node groups, the local signature map of the cen-
Given the pre-defined false drop rate threshgldnd the ter nodec;, denoted asnap;, is the union of an array of
length |sig| of the signature, we can derive the maximumxi two-tuple vectors, denoted &siap;[1].sig, map;[I].dis),
number of keywords that a signature can represent based ?{1 < 1 < a). mapy|l].sig is the textual signature of the
Equation (1) [23], denoted as Then, we partition the nodes g_roup_ofPZ-, andmap;|[l].dis is the distance lower bound

L l
of P into sgbgroup@i such t_hat_ the number of keywords representing the minimum distance frepto a node within
corresponding to the nodes inside each subgroup does NG /-th group

exceed;. A signature is generated based on each subgroup

. : . ; Algorithm 1 lists the pseudo-code of the local signature
g;, and the local signature map contains all these S|gnature|§].a

p construction. For a given center nageand its parti-
tion P;, we first order the nodes € P; based on ascending
(1) order of their shortest distances dp(line 1). To simplify
the discussion, we usg to represent nodes withiR; with
Now the issue is how to group nodes into subgroups. In < j < |P;|, and assume thijy;, ¢;|| < ||vj+1, ¢il|- Next,
this work, we group the nodes it based on their distances we cluster nodes into groups (lines 2-10). To be more spe-
to c;. To be more specific, nodes i are clustered inta;  cific, supposev; is within groupg!, and now we are ex-
groups with each groug} (1 < I < z;) associated with a aminingv;. If the total number of distinct keywords as-
distance parametek. All the nodes within the group have sociated with nodes withip! and nodev;;; does not ex-
their shortest distances tpbounded by the randéﬁ,dﬁ“) ceedr, v;41 is clustered into group! (lines 6-7). Other-
with d7 't = oo, i.e.,Yu; € g, ||vi, ;|| € [d,diTh). The  wise, a new group'™ is generated with; ., as the initial
distance parametelf is stored with the textual signatuseg  value (lines 9-10). Finally, for each grogp we generate the
of the nodes group. The advantage of attaching the distansignaturemap;[l].sig and record the distance lower bound

sig| - (10ge2)?
77=L| gll( ge2)
—L0ge”Y
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Table 1 Local signature map associated with(n = 4)

Table 2 Notation table

sig dis | group member
v7.51g V 06519 V7, V6 G(V,E) social network with node sét and edge sef/
vs.51g 1 vs Gu(Vu,Eg) | hyper graph constructed @nwith hyper(center)
node set’y and hyper edge séiy
Q,Q.v, Q.k an ACANN query issued at query nodewv, and
map; [[].dis (lines 11-13). We use this algorithm to _generat\_ ) Lhiiﬂlﬁgcegol;eﬁgﬁf;enerate signature for al set
signature map for every center node. Table 1 depicts the lo- of keywords
cal signature map of center node Here,v;.sig means the ¢ center node of partitio®;
signature of node;’s context (i.ew;.k). map;, map;[l] | local signature map attached ¢g and the map
entry for thelth group
) ) map;[l].sig, the signature, distance lower bound, and grqup
4 Approximated Search Algorithm map; [1].dis, members information recorded in the map enfry
map;[l].nodes | of thelth group
In this section, we discuss the detailed approximated kearg i, v;l| the shortest distance between nodgandv,
algorithm based on hyper-graph based index, and then prp£ (vi:v;) a path between nodes andv,
vide a theoretical analysis on the approximation quality. |2 (%i:%) the shortest path between nodesandy
) Que a priority queue to assist the distance based hyper
graph expansion
do the shortest distance from th@.v to its corre-
4.1 Basic Idea sponding center node
dp(ci,cj) the shortest distance from to ¢; based on hyper
As explained earlier, the shortest path from a nodle par- ?hr‘:p: e
tition P; to a nodeu in partition P; can be approximated fui]((cgcg])) graphy,pand th% Corresp?)j?iding %Z/eight yP

by three segments, i.e., the shortest path froto ¢;, the
shortest path from; to c¢;, and the shortest path from to
u. Since the hyper edge betweegnandc; carries||c;, ¢;||,

node@.v, the challenge is to quickly find a center nage

tance||Q.v, ¢;|| + ||ci, ]| + ||¢j, u|| is the shortest.
In order to address this issue, we proposedistance

the query nod€).v. Every time a center nods is visited,

and Table 2 lists the useful notations. First, we initialize

will be updated as well. The priority quedh.e carries two-
and ||v, ¢;|| and||c;j, u|| are known, the approximation is tuple vectors(c;, dx(c;, ¢;)) that are ordered based on as-
fast. Recall that the answer node of an ACANN search igending order oflx (c;, ¢;), and itis initialized asc;, dg (c;,
unknown. Consequently, given an ACANN search issued at;) = 0) (line 7). Thereafter, we traverse the hyper graph by
continuously dequeuing the head entry fr@me until it be-
on the hyper graph, whose partition contains an answer nodmmes empty (line 8-24).
u that matches the queried keywords, and approximated dis- Every time when a head entty;, dg (c;, ¢;)) is dequeued,
the lower bound of the approximated distance frQm to
any node in partitiorP; centered at; (i.e.,do + d g (ci, ¢;))
based network expansian the hyper graph. It starts the is compared against,,, (i.e., the approximated distance
expansion frome; with corresponding partition containing from Q.v to the current answer node). If the lower bound
is larger thani,, s, the partitionP; can be safely discarded
alocal examinations performed in its corresponding parti- as none of the nodes insid& will be closer toQ.v than
tion P; to find the answer node. In the following, we explain the current answer node. In addition, all the remaining en-
the details of the network expansion and local examinationtries(c}, dr (c;, ¢})) in Que have theid g (c;, ¢;) larger than
Algorithm 2 presents the pseudo code of ACANN searchj (c;, ¢;) and hence their corresponding partitidfs can
be pruned away. In other words, none of the nodes in the
temporary answer nodg,,; as empty and its approximated unexplored partitions will satisfy the query conditighk
distanced,,s to be infinity (line 1). For an ACANN query and meanwhile be closer .v than the current the answer

Q issued at nod€.v, if the query node matches the queriednode. We can safely terminate the current expansion and re-
keywordsQ.k, the search terminates (lines 2-3). Otherwiseturn the current answer node (lines 10-11). Otherwiseij-part
we perform a distance based expansion on the hyper grapiion P; needs local examination. We use the local signature
We first locate the center nodg whose partition contains mapmap; attached to the center nodg to facilitate the
Q.v, as well as the the shortest distance frQm to ¢;, de-  pruning. As explained before, the nodes in the partitign
noted asdy (line 4). Then, the local expansion starts fromare clustered into groupg, and the pruning process is to
¢;. To enable the distance based expansion, we maintafiiter out those groups that do not contain any node satisfy-
two important structures, a distance set and a priority queuing the query condition. The first filtering criterion is bdse
Que. Each elementy (c;, c;) in the distance set correspondson distance. We calculatéy + d (ci, ¢;) + map;[l].dis),

to the distance from; to another hyper node with initial  the lower bound of the approximated distance from a node
valueco (line 5-6). As the expansion proceeds;(c;,¢;)  in thelth group of P; to Q.v. If it is longer thand,,,s, there
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Algorithm 2 ACANN Search based on Hyper-Graph Index @ @

Input: a social networkG(V, E) with corresponding context. and
weight W, a hash functiork(), hyper graphG g (Vi, Egr) with lo-

cal signature maps, an ACANN quey. 0 @
Output: the answer node and the approximated shortest path.
Procedure: Fig. 4 A demonstration of the shortest paths between two nogdasd

1 vans = 0, dans = 0o vj, (i # j) and their corresponding center nodes, c,, .

2: if Q.k C Q.v.k then
3: returnugns = Q.v,dans = 0, Pans = {Q’U}
4

: locate the corresponding center nodeof Q.v, anddy =  search returns answer nodehat is located in the partition
‘. pocregcﬂl € Vir, G 1) do centered at center nodgwith corresponding apprqximated
6 dur (C¢,}7:j) :Ho’o J shortest patl.SP(Q.v, u). First, we analyze the difference
7: Que = (c;, dp (ci, c;) = 0) between ASP(Q.v,u)| returned by ACANN and the real
8: while Que is not emptydo distancg|Q.v, u|| between).v andu, with its upper bound
9 (ej,du(cis c5)) = dequeue(Que) presented in Lemma 1. Next, we analyze the difference of

100 if (do + dy (¢, ¢5)) 2 dans then |ASP(Q.v,u)| compare tdCANN(Q).P| in Lemma 2.

11: returMvans, Pans

12:  for eachmap,[l] € map; do ) )

13: if (do + dp (ci, ¢5) + map;[l].dis) > dans then Lemma 1 Given a social network:(V, E), a set of center

14f break A nodesC, the corresponding social network partitions, and

15: else ifh(Q.k) A map;[l].sig == h(Q.k) then two nodesy;, v;, we assume; is within partition P; andv;

16: for eachv;, € map;|i].nodes do . L o .

17: if Q.k C vk and(do +dp (i, i) +lcs, vpl]) < dans 1S W|th!n partition P; with ¢ # j, _andcvi,cvj are the corre-
then sponding center nodes respectivelye;, ., ||+ ||cu, , co, ||+

18: Vans = Uk; Vi, o 1) = vi, vil| <2 x (||vi, o, || + |v5, €, |])-

18 e+ o] g0, 1) = o, 0511 < 2% (o, e[| + [l o )

20: Pans = append(SP(Q.v,¢;), P(ci,cj), SP(cj, vk)) - .

21:  for each neighboring node, of ¢, in G do Proof. To facmta_te the proof of 'FhIS lemma, we construct

22 if dys (ci,c;) +wp (¢, en) < dp(ci,cn) then a graph as shown in Figure 4. It includes nodgandv;,

23: enqueue({cn, di (i, ¢;) + wr(cj,en)))i Ples,en) = and center nodes, andc, ;. An edge between two nodes in

appendp(ci, c;), err (¢), cn)) Figure 4 represents that those two nodes are reachable with
24: dH(CZ',Cn) :d(ci,Cj)-i-wH(Ci,Ci)

the edge weight set to their shortest distan8ased on the
triangular inequality on triangle&vhcvwcv‘ andAvi,cvj 0

. : e the following inequalities are established.
is no need to examine nodes within this group and the fol- gineq

lowing groups (lines 13-14). The second filtering criterion
is based on the textual context. We can safely discard the., ¢, || < ||v;, ¢y,

+ [[i; e, |

Ith group ifmap;,|[l].sig does not match the query context 1108, o || < 11055 Cos || + [Jvs, 03| (@)
Q.k. If this groupg}, passes these two criteria, we examine " = 7 v
the nodes in this_group one by one, and update the answgg, 4dding the two inequalities in (2), we derive that
when the nodes; in the group that match the search context
are found (lines 15-19). Up to this point, we have examined|Cvi> Co; || < i o[ + [0, o [ 4 [0, 5]
the partition centered at. We then continue to expand the iously. the i i |
search by inserting all the unexamined neighboring centépPViously, the inequality below stands.
nodesc,, of ¢; in Gy for further examination (lines 21-24).  ({|v;, ¢y, || + |[cu, » ¢o, || + |5, o, 1) — [Jvis vy
< 2% ([Jviy eu, [ + [[vgs o 11)
4.2 Approximation Quality -

Compared with CANN search, ACANN search can effec-
tively improve the search performance. However, the resu

node returned by ACANN search might not be the closest’" ¥ . .
node, and the returned path might not be the shortest pat kisu”, andthe approximated nearest node which ACANN

Consequently, it makes sense to replace CANN search Witﬁfgorithm returns ig, with corre_sponding approximated short-
ACANN search only if a high approximation quality can be est patTASP(Q'U’ u), we defined = |ASP(Q.v,u)| -
achieved. In the following, we conduct a theoretical stuly t “Q'U,’u I thenA < 4 x max; <j<|v| [V, cv || Wherecy,
analyze the approximation quality of our ACANN search.'S kS nearest center node.

For a given queny issued at the nod€.v located in the 1 Ifthere is no edge between two nodes, it does not mean thees no
partition centered at center nodg.,,, we assume ACANN  are not reachable but mean that edge is not needed to prevertitha.

emma 2 Given a query nodé).v, and a corresponding
yper graph= i, suppose the real nearest node which matches
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Proof. As mentioned previously, the approximated short- €9 €2 ) ———
est path from nod€).v to nodeu* passes their correspond- Hyper graph
ing center nodes, i.e., center nagg, and center node,«. Original graph
In other words, the following equation holdgl.S P(Q.v, u™)| G- — G- — (- — — — (%)
= [|Q.v, cq.v||+||cq.v, cu ||+]||cu, u*||. Based on Lemma 1, Vil : Vi
we have shortest path from v; to v;

Fig. 5 A demonstration of the shortest path between nadesdv;,

ASP(Qu0,u")|~[|Quv, u[| < 2x([|Q.v, cquull+|lu” ey ). (i # ) on simpiiied hyper graph.

Because that: is the nearest node found based on the ap-
proximated shortest path distan¢éSP(Q.v, u)| <
|ASP(Q.v,u*)|. Obviously, we have

A= |ASP(Q.u,u)| - ||Qv,u*]]

The ACANN search algorithm presented in Algorithm 2
is still applicable on the simplified hyper graph. However,
Lemma 2 is no longer valid for the simplified hyper graph.
This is because, for two non-adjacent partitions, the path b

< |ASP(Q.u,u™)| — ||Q.v, u™|] tween those two center nodesand ¢; derived based on
< 2% (||Q, ol + |[u*, cur|]). simplified hyper graph, denoted 4%sx (¢;, ¢;), might not
be the real shortest path, i.6SPsg(ci,c;)| > ||ei, ¢l

For every nodey;, ||v;, c,, || < maxi<p<|v||[vk,co. |l We re-derive the upper bound of the difference between the
Therefore, in the worst case, shortest distance returned by ACANN based on simplified
A<4dx max |lvg, o] hyper graph and the real shortest distance returned by CANN

1<k<|V]| in Lemma 3.
|

Lemma 3 Given a social network:(V, E), and the simpli-

fied hyper grapltz s 7, we assume the real nearest node that
5 Simplified Hyper Graph matchesy.k is v*, and the approximated nearest node re-

turned by ACANN algorithm via simplified hyper graphis
The hyper graph defined above contains all pairs shortegiet AS Psy (Q.v, u) denote the approximated shortest path
paths between any two center nodes that are reachable. WHesm Q.v to « based onGgy. A = |ASPsy(Q.v,u)| —
a large social network is considered, the number of cenjQ.v, u*|| < 2 x p x maxy<x<|v| ||k, ¢y, ||, herep is the
ter nodes might be big and consequently, the computatiomaximum number of adjacent partitions that a shortest path
cost and storage overhead for the hyper graph is not negligbn G can cross.
ble. Actually, we observe that the shortest path from a ecente
nodec; to another center node must cross the boundary be- Proof. First, given two nodes;,v; € V, (i # j), we
tweeng;'s partition P; and one of its adjacent partitions. Par- prove the difference between their approximated shortest
tition adjacency is formally defined in Definition 6. In other path based oli"s and their real distance. To simplify our
words, the shortest path between two center nodes of twdiscussion, we assume is associated with the center node
non-adjacent partitions could be approximated by the short.,, andv; is associated with the center node. In addi-
est paths between center nodes of adjacent partitionsdBaston, we assume the real shortest path frano v; passes
on this observation, we proposinplified hyper graptthat ~ several adjacent partitions. In other worl$}(v;, v;) crosses
only includes the links between the center nodes of two adpartitionsP,,, Py, - - -, Py, in sequence, with their corre-
jacent partitions, as defined in Definition 7. sponding center nodes represented.as c,, - - -, €z,, @S

o - _ _ _ shown in Figure 5. Sinc&P(v;,v;) passesP,, (t < 1),

Defl_n_ltlon 6 Part|t|0|_"| Adjacency.Given a social ne_tyvork there must be at least one nadewithin partition P,, that
partition P of a social network(V, E) and two partitions  contributes taS P(v;, v;). Let the dashed lines depicted in
by, Pi(i # j) € Pa, P and P; are adjacent to each other Figyre 5 represent the real shortest paths betwgesnd
if and only if3e(v;, v;) € E such thaw,; € P, andv; € P}, 2441. According to Lemma 1, we havélz 1, ca, ||| ey » Cas|
denoted as’; ¢ P;. O oz, eal) = lon, 22l < 2 x (lor, o, || + |22, ¢ ),
which mean$|cw1v Cxy ||7||:C1a :C2|| < ||l‘1, Cxy ||+||Z2a czz”'

Definition 7 Simplified Hyper Graph.Given a social net- Similarly, the following inequalities hold:

work G(V, E) and a set of center node&s = {ci, ca, ...,
¢r }, the simplified hypergrapﬁSH(VgH,ngH) consists of lcors aall = 121, ]| < 121, coy || + ||22, €yl

the set of center nodes, and the connections between those

center nodes with their corresponding partitions beinggadi |Cans Cay || = |22, 23]| < |22, an|| + |23, as
cent,i.e.Vsy = C,andEgy = Upﬂpj/\|SP(Ci7Cj)‘¢OO€(Ci, Cj)

Withw(c,-,cj): |SP(C’ivcj)|' 0 ||Cw171acle|_||xl—1aml|| < ||ml—1vcl‘zf1||+||xlvcl‘l||'
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Becaus€c,,, ¢z, - - - , Cg, | @re the center nodes of a se- 6 Experiments
quence of adjacent partitionBg 1 (¢z, , €z,) = {Ca1» Cogs - - - »
¢z, } is a path on simplified hyper graghisy from ¢, to  In order to evaluate the performance of proposed ACANN
Cay- |Pst(Cays Co)| = ||Cars Canll + ||Cags Casl| + -+ - + search on hyper-graph/simplified hyper-graph, we conduct
llcz,_, 5 ¢z || Notice thatPsy is not necessarily the short- a comprehensive experimental study and report its results
est path frome; to ¢; based onGsy, i.e., Psy(ci,¢) #  inthis section. First, we evaluate various center nodecsele
SPsy(c1,c;). Also, we know that|zy, xo|| + ||z2, 23| +  tion schemes for the hyper-graph based index construction.

o t|zi=1, 21|| = ||71, 21]]- By summing up above inequal- Next, we test the performance of the ACANN search based
ities, we have on hyper graph index, including pre-processing time, stor-
age overhead, query time, and approximation quality.
|Psr(Cars )| = [, 2] Two real social network datasets are used, inclu@iblp
<1, eay || + |21, €2y || + 2 % Z (|1z¢, ¢z, ||) andMyGamma. The former is extracted from DBLP (http://
2<t<(1-1) dblp.uni-trier.de/xml/). We sample dblp graphs with thenu
Consequently, ber of nodes changing from5K to 8K. qu each node, we
extract20 keywords from the papers published by the author
|21, oy || + | Psm (cay, ca)| + |2, e || — |21, 2| as the textual context. The latter is provided by MyGamma,
<2x Z (||z¢, ¢z, |])- (3) a mobile social networking service provider (http://m.my
1<t<i gamma.com/). We sample mygamma graphs with node num-

SupposelS Psy (v;, v;) is approximate shortest path frorﬁer changing from 0K to 20K. Ea}ch noFie has on averag(?
v; to v; derived based on simplified hyper grapl;, then 10 keywords extracted from user’s profile, including user’s

|AS P (vi, v;)| = |ASPsg (21, 21)| = ||21, o, || + nickname, race, country and so on. For both datasets, the

S Psyr(ca ,C;cj)|+||$z,cx 1| < |1, e ||+|PSH1(C;C co) |+ graphs are unweighted (i.e. the weight on every edge is 1).

20, e, Based on 3) we have v We implemented all the evaluated schemes in C++, run-
P ning on an AMD 2.4GHz Dual Processors server with 4GB

|AS Psa (vi, v5)| — [[vi, v RAM. In addition, the false drop rateis set to0.01 and the
= |ASPsp(z1,z1)| — |21, 21| size of the signaturésig| is set to 128 in our implementa-
< ||Z1ac$1|| + |PGH(CI170I1)| + ||xl7CIl|| - ||l‘1,£Cl|| tion.
<2x Y (le,call) (4)
1<t<l 6.1 Evaluating Center Node Selection Schemes
Next, we derive the lower bound af. Based on (4), for ) . . )
the givenQ.v andu*, As mentioned in Sectilon 31 the genter nodes have a direct
impact on the approximation quality, and we propose to se-
|ASPsu(Quu,u®)| = [|Qu,u*|| <2x > (|lar,¢a]l),  lectthe nodes with the highest betweenness score as the cen-
1<t<i ter nodes. Because the betweenness score is computationall

d- expensive to derive, we adopt a fast betweenness ranking
jacent partitions tha§ P(Q.v, u*) crosses, ang (1 < t < algorithm proposed in [5] to retrieve the approximated top-
1) is a node orSP(Q.v, u*) which belongs to the p_artiaon k nodes with the highest betweenness score, and we refer
of ¢, 71 = Quu,m :’ u*. Because that, is the nearest this method asstBTw. For comparison purpose, we imple-

node found based on the approximated shortest path digent another two center node selection methods, including
tance,| ASPsp (Q.v,u)| < |ASPsi(Q.v,u*)|. Straight- Random that selects the center nodes randomly,Bmd that

forwardly, we have selects the nodes based on the real betweenness score. In our
’ first set of experiments, we evaluate the performance of dif-

giventhat{c,,, ¢s,, - .., ¢z, } are the center nodes of the a

A = [ASPsu(Q.v,u)| — [|Q.v,u”|| ferent center node selection methods, including the sefect
< |ASPsp(Q.v,u™)| — ||Q.v, u*|| time, and the approximation quality.
<2x Z (2, ca, |])- First, we report the selectlon. time of different center
1< node selection methods under different numbers of center

nodes, presented as the percentage of the dataset size, on a
5K nodes dblp graph in Figure 6(a). The results on differ-
ent sized graphs show similar trend, and are omitted to the
A<2xpx | D vk, Coy |- interest of space. As we can s@egdom is very efficient as

) T ) . its running time is almost negligible. Howevermw is very
p is the maximum number of adjacent partitions that a shortg ., consuming due to the high cost of computing the be-

est path orty can cross. tweenness for each nodestBTW does not perform as well

For every nodey;, ||v;, ¢, || < max;<ip<|v| ||V, Co, |-
Therefore, in the worst case,
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Fig. 6 Performance of the center node selection schemes (dblp= Fi
5K).

. 7 Pre-processing time vs. dataset sizé (center nodes).

Q
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asRandom, but it is much more efficient thagTw. Gener- % Gi &>
ally, it takes only10%-20% of BTW’s time. S 2
Next, we report the approximation quality of ACANN £ ss g a0g
under different center node selection schemes in Figue 6(b 54— B
The approximation quality is measured by the error rate, Center node percentage (%) Center node percentage (%)
i.e, [ACANN(Q) PI-|CANN(Q).P]| , as defined in Definition 3. (@) Dblp(V| = 5K) (b) MyGamma(V'| = 16K).

[CANNQ.PT ,
We run200 random queries with each havingto 5 key-  Fig. 8 HGI/SHGI pre-processing time vs. # center nodes.

words on each graph and report the average result. As shown

in the figure,Random leads to very inaccurate results, while o ) o .
BTW offers the highest quality. The result @mtBTW is the destination. This heuristic enables the search to tuick

very close to that oBTw. Based on the above observation reach the destination, thus greatly reduces the search time
we believe thatastBTW achieves a good trade-off between Generally, the more the selected landmark nodes are, the
the center node selection time and approximation accuracW_Ore accurate the distance estimation is. Thus, less nodes

Consequently, we adopistBTW to generate hyper-graph will be visited during the network exploration. However, a
based index in the following experiments. large number of landmark nodes will cause high pre-computa-

tional costs. Therefore, in our implementation, we choose

5% nodes as landmarks. Based on some initial tests that we
6.2 Performance of ACANN Search Algorithm performed, the implemented A* algorithm can reduce the

shortest path search time by5-30 times. In the following,

In the second set of experiments, we evaluate the perfofe eyaluate the performance of ACANN search via four as-
mance of ACANN search based on the hyper-graph basegbcis, j.e., pre-processing time, storage costs, ques, tim
index. We implement both the hyper-graph index and the,,q approximation quality.

simplified hyper-graph index, referred asI andsHal, re-

spectively, together with another two existing algoritrmss ~Pre-processing TimeFirst, we evaluate the pre-processing
comparison, i.e., the Si-based approach, referresi, asd time of different approaches on different sized graphsgas r
the TR-based approach, referredTas si starts from the Ported in Figure 7. Note thai does not require any index
query node, and explores the graph based on distance uniffucture and hence it is not reported. The pre-processing
an answer node matching the queried keywords is reach&@st of TR mainly comes from finding landmarks and com-
(i.e. the classic Dijkstra’s algorithm [8]). This methodeo puting the distance information from landmarks to otheresd
not rely on any index structurer locates the nodes that Generally, itincurs more index construction time as thghgra
match the queried keywords as the intermediate results, théize grows. Compared with bothGl andsHGI, TR spends
performs network exploration to get the shortest paths fronfSs time on index construction. This is because the land-

them to the query node. mark based distance computation is less time consuming
It is reported in [36] thatr performs worse thaal. In  than the approximated betweenness score calculation.
our implementation, we changa to improve its query ef- We also report the pre-processing timeHafi andsHGI

ficiency. Different from originalrr, we implement a more with various number of selected center nodes, as depicted
efficient algorithm, i.e., A* algorithm [13], to support the in Figure 8. Generally, when the number of center nodes
shortest path search from the query node to the intermedincreases, the index construction time for both methods in-
ate results. A* algorithm first locates a small set of land-creases. We observe ttgic takes less time thanal, and
mark nodes, and calculates the distance from these landmate construction time ofiGl grows faster than that aHGI
nodes to every other node in the graph. Base on the previth the number of center nodes increasing. It is becagse
computed information, it estimates the distance from anyas to compute shortest paths between every pair of center
given node to a destination. During the network explorgtionnodes, while&sHGI only maintains the shortest paths of those

it first visits the node with smallest estimated distance tacenter nodes having their partitions adjacent.
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Fig. 10 HGI/SHGI storage cost vs. # center nodes. ) o . .
9 s50 9 Fig. 13 Approximation quality vs. dataset siz&% center nodes).
T T T T T 3500 T T T
2 300 o a 2 3000
3 B0F pol o L T 2500 - -
g 200 | SHGI - f A g 2000 perform significantly better than boshandTr. In addition,
§ 100 ; ] § 1000 p we find that the query time increases as the graph size in-
- e -84 o . ™
o st n i i A creases. HowevesHGI is more resilient to the change of
0512345678 10 12 14 16 18 20 graph size than others and hence it has a better scalability t
Number of nodes (x10%) Number of nodes (x10™) .
large sized graphs.
(2) Dblp (b) MyGamma On the Dblp graphss is faster thanrR. Whereas, on
Fig. 11 Query time vs. dataset siz&% center nodes). the MyGamma graphsir, in most cases, incurs smaller

guery time tharsi. This is mainly caused by different query

keywords selectivity. The textual contexts of the nodes of
Storage CostsNext, we evaluate the storage costs of var-Dblp graphs consist of the keywords of the users scientific
ious approaches, with the results reported in Figure 9. Nopublications. There are many common keywords shared by
tice thatsi does not request any index, thus does not causdifferent users. Therefore, for the CANN queries with the
additional storage cost. On the other hamd,records the common keywordsrTr usually generates a large number of
shortest distances from each landmark node to every othéitermediate answer nodes, i.e., those nodes matching the
node to facilitate fast shortest path search. Intuitivaliythe ~ queried keywordsTr needs to run A* algorithm several
approaches take more storage as the graph size grows. Ittiges to retrieve the shortest path from each intermediate
observed thatr takes up more space thaal andsHcl. For  node to the query node, thus causing longer running time.
example, on the Dblp graph with/X nodes, TR consumes While, for the MyGamma graphs, the node context contains
2.5 times more space thasel, and16 times more space than the unique user names. Many generated CANN queries with
SHal. Similarly, on the MyGamma graphs, the space cost ofhe unique user name as keywords has selectivity. df
TR is around2-10 times more than that efcl andsHal. these casegr runs faster thani. We will examine the im-

The storage cost of the hyper graph indexes is also apact of the query keywords selectivity to the query perfor-

fected by the number of center nodes selected. Obviouslynance in detail in the next set of experiments.
the more the selected center nodes are, the larger the hy- In addition, we also fix the graph size and change the
per graph is, thus the larger storage space it takes (see Figumber of center nodes selected, and report its impact on
ure 10). We can also observe that the storage costpfs  the query time ofiGl andsHal in Figure 12. Similar as pre-
much larger than that ofHGI. The more the selected center vious observation, the more the selected center nodes are,
nodes are, the larger the differences are. It is because thidue larger the index is, thus the longer the search time is.

HGI. maintains a complete hyper graph on the center ”Odeﬁepproximation Quality. We then evaluate the approxima-
while the hyper graph afHcl is much sparser. tion quality of the ACANN search based on the hyper-graph
Query Time. We also study the query time of different ap- index. First, we study the impact of dataset size on the ap-
proaches with different sized graphs, as reported in Figsire proximation quality ofHGI and sHGI, as depicted in Fig-
The query time is the average running time66 randomly  ure 13. We observe that the approximation qualityiof is
generated queries. Generally, on both dataseisandsHGI  generally better than that efiGI. For example, for the Dblp
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§ by :E‘F.;ﬁ;vgg\ ] § ot R the queried keywords (i.e. selectivity). Figure 15(a) damo
2 :fg i e T - E strates the query time change with different query seliectiv
T 110 k:?:t%\,\“ T 110} ] ties. We find that as the query selectivity increases, the run
% Yo sHGl = ] % ol ning time ofsi decreases slightly. This is probably because
s 2545678910 s 2545678910 that when there are more nodes containing the query key-
= Center node percentage (%) Center node percentage (%) words in a graph, the distance based network expansion of
(a) Dblp (V| = 5K). (b) MyGamma (V| = 16K). siis likely to meet the answer nodes earlier, thus terminates
Fig. 14 Approximation quality vs. # center nodes. faster. On the opposite, the query timetafincreases dras-
_ e T 135 F v tically with the selectivity increasing. It is easy to under
€ ot % el SHGI msemn stand, because the number of times tiratssues A* short-
E 10k s A8 ] est path search is equal to the number of intermediate nodes
§ 20 g el I \BRE in the graph, whose context matches the queried keywords.
S =y v v vy goob BRI However, because that thes! andsHGI methods prune the
010024705 9593 W 0188045y search space based on distance and context simultaneously
| Selectviy ~ Selectivity _ during the search, their running time is not very sensitive t
gfl)itfuery time changes with Selegz e(gtli’\ﬁg accuracy changes wWith w0 o jery selectivity changes, and so is their approximatio

quality (see Figure 15).
To sum up, in our experimental study, we evaluate the

pre-processing time, storage overhead, query time, and ap-
graphs, the approximated shortest path returnesHgy is  proximation quality of the proposedti andsHGI methods.
under0.25 times longer than the real shortest distance, Whilecompared with the existing andTr methods, our methods
the one returned bwal is around0.15 times longer than  3ke more pre-processing time, and they require less storag
the real shortest path (see Figure 13(a)). Given that shorgyerhead thamr2. HoweverHGl andsHal significantly ac-
est distances between nodes of the Dblp/MyGamma dataselgjerate the CANN search with an average error factor less
are short (usually less thainfor Dblp datasets, and around thano.3. In addition, the query efficiency efcl andsHal is

3 for MyGamma datasets), the approximated shortest pathyt sensitive to the query keywords selectivity changes.
are usually only one or at most two steps further, compared

to the real shortest paths. Consequently, for those applica
tions with high demand on search performance, our ACANN; conclusion and Future Works
search algorithm provides considerably good approximatio
with fast response time. Social networking has been gaining popularity and grow-
Next, we study the impact of the number of center nodesng rapidly in recent years. The problem of efficiently nav-
selected on the approximation quality, as reported in Figigating and searching social networks has attracted more
ure 14. Again as observed from the results, the more the sand more attentions. In this paper, we formulate a new type
lected center nodes are, the better the approximationtyualiof queries, namelgontext aware nearest neighbor search
is, for bothHGI andsHal. Itis because that when more center (CANN) on social networks. It returns a node that is closest
nodes are selected, the graph is partitioned into finer-partio the query node, and meanwhile has its context matching
tions. Consequently, each partition contains less notecen the query condition. CANN considers two important factors
nodes and the average distance from a non-center node to #f social networks simultaneously in its search condition:
nearest center node is shorter. the network structure and node context . We desigyer-
graph based index structure and a simplified hyper-graph
variant to support approximate CANN search. According
to extensive evaluation tests, hyper-graph based appgsach
fsupport efficient query processing with limited sacrifice on

Fig. 15 Query performance vs. query keywords selectivity.

6.3 Query Keywords Selectivity

'I[E this setkof expgrlmelnt?, y;/e furtt:er study th;a impact O}he query accuracy.
d.; que:y et)r/]wgr ste etc I\t/rl]y on .le guery ber (:;mancelf In our definition of CANN query, we use shortest path
fierent methods. Hue 1o the simiianty among e resUllSyqiance to evaluate the connection strength of two users in
w.r.t. different parameter settings, we only present the re , . S
: a social network, and consider finding the nearest user based
sults on the Dblp graph with X nodes. We generate sev-
. o n boolean keywords match. In the future works, we would
eral groups of CANN queries such that the queries in eac

. o ike to study other network distance metrics, e.g. the ran-
group have different query keywords selectivity. The aver- ; .
: oo dom walk distance, and other keywords matching scores e.qg.
age query performance of the queries with different sele

2 I . . “TF/IDF score. In addition, besides the betweenness based
tivity is reported in Figure 15. In the figure, the x-axis ig th

range of the number of nodes whose textual context matches? The additional storage consumptionSsfis none.
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center nodes selection scheme, we want to explore other.

center node selection criteria. Finally, we want to studiy ef

cient ad-hoc search on dynamic social networks, where th

network structure and node context are updated rapidly.
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