
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

1-2013 

Hypergraph Index: An Index for Context-aware Nearest Neighbor Hypergraph Index: An Index for Context-aware Nearest Neighbor 

Query on Social Networks Query on Social Networks 

Yazhe WANG 
Singapore Management University, yazhe.wang.2008@smu.edu.sg 

Baihua ZHENG 
Singapore Management University, bhzheng@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Communication Technology and New Media Commons, Databases and Information 

Systems Commons, and the Numerical Analysis and Scientific Computing Commons 

Citation Citation 
WANG, Yazhe and ZHENG, Baihua. Hypergraph Index: An Index for Context-aware Nearest Neighbor Query 
on Social Networks. (2013). Social Network Analysis and Mining. 3, (4), 813-828. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1835 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/327?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Noname manuscript No.
(will be inserted by the editor)

Hyper-Graph Index: an Index for Context-Aware Nearest Neighbor
Query on Social Networks

Yazhe Wang · Baihua Zheng

Received: date / Accepted: date

Abstract Social network has been touted as the No. 2 inno-
vation in a recent IEEE Spectrum Special Report on “Top 11
Technologies of the Decade”, and it has cemented its status
as a bona fide Internet phenomenon. With more and more
people starting using social networks to share ideas, activ-
ities, events, and interests with other members within the
network, social networks contain a huge amount of content.
However, it might not be easy to navigate social networks to
find specific information. In this paper, we define a new type
of queries, namelycontext-aware nearest neighbor (CANN)
search over social network to retrieve the nearest node to the
query node that matches the textual context specified. The
textual context of a node is defined as a set of keywords that
describe the important aspects of the nodes. CANN consid-
ers both the network structure and the textual context of the
nodes, and it has a very broad application base.

Two existing searching strategies can be applied to sup-
port CANN search. The first one performs the search based
on the network distance, and the other one conducts the
search based on the node context information. Each of these
methods operates according to only one factor but ignores
the other one. They can be very inefficient for large social
networks, where one factor alone normally has a very lim-
ited pruning power. In this paper, we design ahyper graph
based method to support efficient approximated CANN search
via considering the network structure and nodes’ textual con-
texts simultaneously. Experimental results show that the hy-
per graph based method provides approximated results ef-
ficiently with low preprocessing and storage costs, and is
scalable to large social networks. The approximation qual-

School of Information Systems, Singapore Management University
Tel.: +65-68280915
Fax: +65-68280919
E-mail:{yazhe.wang.2008, bhzheng}@smu.edu.sg

ity of our method is demonstrated based on both theoretical
proofs and experimental results.

1 Introduction

Social network has been touted as the No. 2 innovation in
a recent IEEE Spectrum Special Report on “Top 11 Tech-
nologies of the Decade”, and it has cemented its status as
a bona fide Internet phenomenon. Reported by Nielsen, the
world’s leading marketing and media information company,
the social networks and blogs reach nearly80% of active
Internet users and represent the majority of users’ time on-
line in U.S. Similarly, it was reported that73% of UK In-
ternet users rely on social networks. Take Facebook, one of
the most famous and successful social networking websites,
as an example. The average Facebook user spends around 8
hours per month on Facebook, and Facebook is rapidly ap-
proaching 1 billion users soon. Obviously, more and more
people start using social networks to share ideas, activities,
events, and interests with other members within the network,
and social networks contain a huge amount of content. How-
ever, it might not be easy to navigate social networks to find
specific information. Consequently, we focus this paper on
querying social networks.

Without loss of generality, the social network is mod-
eled as an undirected weighted graph, with nodes represent-
ing the network users and edges representing the social con-
nections between the users. The weight on each edge repre-
sents the inverse strength of the social connection. Besides
the graph structure, we also consider the textual content re-
lated to the users, e.g., the key features of the users’ profile,
the keywords of the users’ publication, and the tags of the
users’ shared resource. We abstract these textual informa-
tion into a set of keywords as the context of the nodes. Take
the co-authorship networkG depicted in Figure 1 as an ex-



2 Yazhe Wang, Baihua Zheng

ample. Each node represents a scientist. An edge between
two nodes states that those two scientists have collaborated
at least once, and the weight on the edge is the inverse num-
ber of collaborations. For the simplicity of discussion, we
assume the weight on every edge is1 in this example. The
contexts of the nodes include the users’ name, profession,
and research keywords, as depicted in Figure 1. Although
majority of the nearest neighbor algorithms focus on the
structure of the graph, we believe that both the structure and
the context information of the nodes are important on social
networks. Therefore, in this paper, we propose acontext-
aware nearest neighbor (CANN)query to search over social
network based on both the network structure and context in-
formation. It retrieves the nearest node to the query node that
matches the context specified, as well as the shortest path be-
tween them. For example, Michael (i.e., nodev3) may issue
a CANN queryQ1 “finding me the shortest path to the near-
est professor working on data mining”. Here,distancefrom
the query nodev3 to a nodev is evaluated by the shortest
path distance. A smaller distance indicates a stronger con-
nection between the query node and the target node, and the
shortest path gives the information of how the two nodes are
connected. The queriedcontextis represented by keywords
{professor, data mining}. The answer toQ1 is nodev4 with
the shortest path{v3, v4} asv4 is the node which is the near-
est tov3 and contains the queried keywords in its context.
CANN query considers two key factors on social network,
i.e., network distance and the context, and it has broad appli-
cation base. For example, scientists can issue CANN to find
potential collaborators to start new research and employers
can issue CANN to locate qualified employees to work on
specific tasks.

v5v3

v8

v1

v10

v11

research fellow

student

v2

v6 professor
v4

v7

v9

James, t1 Kelly, t2 Michael, t1
Anna, t4

Grace, t3

Robert, t4

Emmy, t3Jonson, t2

Sara, t1

Tony, t1 Robin, t3

t3 

t2 

t1 

t4 

database management

information retrieval

data mining
data privacy

p
ro
fe
ss
io
n

R
es
ea
rc
h
 

to
p
ic
s

Fig. 1 A collaboration social networkG.

The newly proposed CANN search shares some simi-
larity with the social web search problem studied in [36]
that considers both the network structural and textual fac-
tors in their objective function to retrieve the relevant user
generated documents on the social web. The corresponding
approaches proposed to conduct social web search, includ-
ing SI-based searchand TR-based search, are also appli-
cable to CANN query. SI-based search considers distance
factor first and examines the network users based on their
distances to the queried node. To be more specific, it invokes
traditional shortest path search algorithm (e.g., Dijkstra’s al-

gorithm) to visit nodes based on ascending order of their
distances to the query node, and determines the correspond-
ing textual relevancy on the run. TR-based search conducts
the search based on the textual factor. It locates the textu-
ally relevant users first as the intermediate results, and then
orders them based on their distances to the queried node.
Both approaches areinefficientespecially for large social
networks, as they only consider one factor which results in
very limited pruning power. On the one hand, SI-based ap-
proach traverses the social network purely based on the dis-
tance but not context. Consequently, when the answer node
is relatively far from the queried node, it has to visit many
unnecessary nodes before the answer node is reached. On
the other hand, TR-based approach may find many nodes
that match the queried keywords as intermediate results, es-
pecially when the queried keywords are popular, and hence
the ranking process based on the distances between query
node andall the intermediate nodes could be very costly.

Given the fact that existing approaches cannot support
CANN search efficiently, we, in this paper, propose ahyper-
graph indexto supporthigh-performanceapproximated CANN
(ACANN) searches via considering the distance and the con-
text factors simultaneously. The hyper-graph index consists
of ahyper graphandlocal signature-maps. The hyper graph
is formed among a set of selectedcenter nodesthat are very
likely to be crossed by many shortest paths in the network,
with hyper edges created between center nodes. Each center
node maintains a local signature-map for a local cluster of
nodes that center around it. The local signature map records
the abstracted context and distance information of the nodes
within each cluster. Compared with existing methods, the
hyper-graphbased search mainly conducts the search by travers-
ing the hyper graph, which is much smaller than the whole
network, and thus is more efficient. In addition, the local
signature map facilitates the search space pruning based on
queried keywords and distance simultaneously.

In order to demonstrate the efficiency of hyper-graph
based search, we first conduct a theoretical study to derive
the upper bound of approximation error, and then conduct a
comprehensive simulation study to evaluate the performance
of the proposed approach in terms of the index construction
cost, storage cost, query time, and approximation quality.

The rest of the paper is organized as follows. Section 2
defines CANN search and approximated CANN search, to-
gether with a review of the related work. Section 3 presents
the details of the hyper-graph based index, and the ACANN
search algorithm is described in Section 4. Section 5 intro-
duces a simplified variant of hyper-graph based index. Fi-
nally, Section 6 reports the experimental results, and Sec-
tion 7 concludes this paper.



Hyper-Graph Index: an Index for Context-Aware Nearest Neighbor Query on Social Networks 3

2 Preliminary

In this section, we first describe the graph model of the social
network, and then formally define thecontext-aware near-
est neighbor (CANN)query and approximated CANN query
(ACANN). In addition, we also briefly review existing work
related to CANN search, including (approximated) shortest
path search, keyword query and signature technique used in
information retrieval.

2.1 Problem Definition

In general, we model a social network as an undirected graph
G(V,E), with V being a set of nodes andE being the set
of edges. An edgee(vi, vj) ∈ E represents that nodesvi
andvj are connected in the network. The weights of edges
are captured byW . A non-negative weightw(vi, vj) ∈ W

of edgee(vi, vj) ∈ E represents the inverse strength of the
linkages, i.e. smaller weight indicates stronger social con-
nection. In this paper, we assume that the context of each
nodevi ∈ V is maintained as a set of keywords, denoted as
vi.k. The domain of keywords for a graphG is represented
by L with L = ∪vi∈V vi.k. Given two nodesvi andvj of a
graphG(V,E), a path and the shortest path connecting them
is described in Definition 1.

Definition 1 Path and Shortest Path.Given a social net-
work G(V,E) and two nodesvi, vj ∈ V , a pathP (vi, vj)

connectingvi andvj sequentially passes nodesvp1 , vp2 , · · · ,
vpm

, denoted asP (vi, vj) = {vp0 , vp1 , vp2 , . . . , vpm
, vpm+1},

with vp0 = vi andvpm+1 = vj . The length ofP (vi, vj), de-
noted as|P (vi, vj)|, is

∑m
n=0 w(vpn

, vpn+1). The shortest
pathSP (vi, vj) is the one with the shortest distance among
all the paths betweenvi andvj , and its disance, denoted as
||vi, vj || (= |SP (vi, vj)|), is the shortest distance between
vi andvj . �

Take the social network shown in Figure 1 as an exam-
ple. PathP (v1, v3) = {v1, v9, v4, v3} is a path fromv1 to v3
via nodesv9 andv4, and pathP ′(v1, v3) = {v1, v2, v3} is
another one viav2. AssumeG(V,E) is an unweighted graph
with ∀e(vi, vj) ∈ E, w(vi, vj) = 1, the pathP ′(v1, v3)

is the shortest path betweenv1 andv3, i.e.,SP (v1, v3) =

{v1, v2, v3} and ||v1, v3|| = |SP (v1, v3)| = w(v1, v2) +

w(v2, v3) = 2.
With vj .k capturing the context ofvj , CANN search is to

locate the nearest node with its context matching the queried
keywords, as given in Definition 2.

Definition 2 Context-aware Nearest Neighbor Search(CANN).
Given a graphG(V,E), a CANN searchQ specifies a query
nodeQ.v and a set of queried keywordsQ.k. It asks for
a shortest pathP to a nodevj ∈ V such that the con-
text ofvj matches queried keywords and its distance toQ.v

is the shortest among all the nodes with context matching
Q.k. In other words, CANN(Q) = 〈vj , P 〉 ⇒ vj .k ⊇ Q.k

∧ P = SP (Q.v, vj), and meanwhile∄vi ∈ V such that
Q.k ⊆ vi.k ∧ ||Q.v, vi|| < |P |. �

Generally, the exact CANN search on large social net-
works is very expensive. In this paper, we explore approxi-
mated CANN search as defined in Definition 3.

Definition 3 Approximated CANN Search (ACANN).Given
a graphG(V,E), an ACANN searchQ specifies a query
nodeQ.v and a set of queried keywordsQ.k. It returns a
pathP to a nodevj ∈ V such that the context ofvj matches
queried keywords. However, it does not guarantee that i)vj
is the nearest node that satisfies the query; or ii)P is the
shortest path fromQ.v to vj . The quality of the approxima-
tion is measured by the error rate of the length of the re-
turned path of ACANN search to that of CANN query, i.e.,
|ACANN(Q).P |−|CANN(Q).P |

|CANN(Q).P | . �

2.2 Related Work

2.2.1 Shortest Path Search

The point-to-point shortest path problem has been exten-
sively studied. It retrieves the shortest path from a source
node to agivendestination node in the network. However,
our CANN query requires the shortest path from the source
node to anunknowndestination that is nearest to the source
node and the context matches the queried keywords. Thus
many efficient shortest path algorithms cannot be directly
applied to our problem. However, some of them could be
utilized as the sub-function for the distance related calcula-
tion.

The most well-known shortest path search algorithm on
graphs is the Dijkstra’s algorithm [8]. It explores the graph
in a best-first manner starting from the query node until the
target node is reached. The existing SI-based search and TR-
based search use this algorithm for distance based explo-
ration. Some more efficient solutions were proposed to re-
duce the graph exploration space based on domain-specific
heuristic and pre-processing. For example, A* search [13]
uses estimation on distance to the destination to guide node
selection in the search from the source, thus is more effi-
cient than the Dijkstra’s algorithm. In our simulation, we
use A* instead of Dijkstra in the TR-based search for re-
trieving the shortest paths from the query node to the inter-
mediate result nodes. Many of these approaches use heuris-
tics that are datasets-dependent (e.g. GIS data), which can-
not be extended to other graphs, e.g., the reach based method
in [14]. A comprehensive survey of these algorithms is re-
ported in [12].



4 Yazhe Wang, Baihua Zheng

In recent years, efficient indexing techniques have been
designed for shortest path search on large graphs. Some in-
dex techniques are designed based on partial pre-computation.
For example, HEPV [18] and HiTi [19] build index based
on partition graphs, and maintain local shortest paths related
to the boundary nodes. The global shortest path is then ob-
tained by combining selected local shortest paths. ROAD [24,
25] organizes a large road network as a hierarchy of in-
terconnected regional sub-networks (called Rnets) and aug-
ments Rnets with shortcuts and object abstracts to acceler-
ate network traversals and provide quick object lookups, re-
spectively. These methods work well on planar graphs (e.g.
road networks), where a small number of boundary nodes
can be constructed easily. However, they could be veryin-
efficienton non-planar graphs (e.g. social networks), where
the number of boundary nodes is large. TEDI [34] is another
graph partition based index approach. It partitions the graph
based on the tree decomposition that is in general expensive
on graphs. TEDI supports efficient shortest path retrieval for
any given pair of source and destination nodes by a bottom-
up operation. However, its construction and storage costs are
expensive on large graphs, and it cannot be easily extended
to support efficient network exploration from a given source
node to find an ”unknown” destination which satisfies cer-
tain context constraint.

There are other works considering encoding all-pairs short-
est paths of a graph in small-sized indexes. For instance, a
quadtree-structured index is proposed in [31] to utilize the
spatial coherence of the destination (or source and destina-
tion) nodes. Distance signature method [16] pre-computes
the distance from each nodev to a set of objects of in-
terests, and maintains this information as a signature atv.
Compact BFS-tree [35] is another example. It exploits sym-
metry properties of graphs to reduce the index size of all-
pairs shortest paths, but is only applicable to unweighted
graphs. These discussed approaches require pre-computing
the shortest paths between all-pairs of nodes, which is ex-
tremely expensive on large or even middle sized graphs.
Therefore, in this work, we try to avoid these all-pair short-
est paths based methods.

Approximated shortest path/distance problem has been
studied as well. Spanner [6] is a subgraph obtained by delet-
ing edges from the original graph. Due to the smaller size,
the search performed on the spanner is much faster. How-
ever, it is hard to decide which edges to delete to generate a
good spanner with the distances between nodes not chang-
ing substantially. Spanners do not perform well on dense
graphs with large girth. Distant labeling and embedding tech-
niques [11,30] assign each node of a graph a label such that
the (approximated) distance between two nodes can be di-
rectly computed based on the corresponding labels. How-
ever, these approaches can only provide distance informa-
tion but not the paths. For the CANN, the shortest path from

the query node to the destination node gives the information
about how the two users are connected, thus is important
for many applications. Therefore, these approaches are not
applicable to the CANN problem.

2.2.2 Keyword Query

Keyword query on graphs considers both the structure and
context information. Given a set of queried keywords, it is to
find closely connected clusters of nodes in the graph which
contain all the specific keywords. Some of the works search
for rooted subtrees with the leaves containing the queried
keywords. The results are ranked based on the distances from
the roots to the leaf nodes. For instance, backward expan-
sion algorithm and bidirectional search are proposed in [17,
20] respectively to solve this problem; while a bi-level index
is designed in [15] to improve the search efficiency. Differ-
ently, [27] performs the keyword query on graphs to retrieve
connected subgraphs which contain the queried keywords,
then the results are ranked based on the keywords matching
score and the compactness of the sub-graph. The issue of
processing the keyword query on external memory graphs
has been also discussed in [7]. Obviously, keyword query
problems studied by the above works are different from our
CANN search.

Recently, the idea of integrating social networks to key-
words based document search has drawn much attention [4,
32,33,36]. The social affinity between the users is incorpo-
rated to improve the quality of the document search results.
Some of the works consider this problem under complex
social tagging systems, and the social affinity is evaluated
based on the number of common tags [4,32]. Those works
usually emphasize on the effectiveness of the results more
than the efficiency of the search process. Some other works
define social affinity based on the network distance [33,36].
They retrieve documents based on two factors, i.e., the rel-
evancy of the documents to the queried keywords, and the
network distances from the query node to the authors of
the documents. Although their purposes are different, their
query conditions are quite similar to our CANN search. Con-
sequently, some of the proposed search strategies can be ex-
tended to CANN search, e.g., the SI-based search and the
TR-based search proposed in [36]. The SI-based search ex-
amines the documents’ authors based on their distance to the
query node, while the TR-based strategy conducts the search
by locating the most textually relevant documents first, and
then examining the shortest path distances from their au-
thors to the query node. However, in this paper, we conduct
the CANN search by considering the distance and textual
relevancy simultaneously. To avoid the expensive shortest
path distance computation, a distance labeling technique is
adopted in [33] to quickly estimate the distance between
any two users. However, distance labeling does not provide



Hyper-Graph Index: an Index for Context-Aware Nearest Neighbor Query on Social Networks 5

shortest path information that is requested by CANN search
and hence is not applicable to CANN search.

2.2.3 Node betweenness centrality

The betweenness centrality of a node in a graph is defined
as the number of shortest paths from all nodes to all others
that pass through that node. It is an important measurement
in graph theory that determins the relative importance of a
node in the graph. The betweenness centrality and its vari-
ances have been wildly studied [10,29,21], and proved to
be useful for many network analysis applications, such as
finding keystone species in pollination networks [1], under-
standing the interaction patterns of the players of massive
online games [2], and identifying significant nodes in wire-
less ad hoc networks [28]. In this work, we explore the usage
of the node betweenness as the criteria to select the center
nodes to build efficient index structure on social networks to
support CANN queries.

2.2.4 Signature

Signature techniques have been studied extensively in infor-
mation retrieval [22,26]. A signature is basically an abstract
of the keywords information of a data item. Given a set of
keywords that represent the data itemi, the signatureSi is
typically formed by first hashing each keyword in the set
into a bit string and thensuperimposing(i.e., bitwise-OR,
∨) all these bit strings into a signature. Note that the size of
a signature equals to the size of the bit string. An example
of signature generation is depicted in Figure 2(a), in which
each keyword is hashed into a 12-bit string.

Data Signature     Si

Data Item:  Attr. 1: Security Attr. 2: Pervasive

001  100  001  001

Pervasive 101  000  100  001

Security

)

101  100  101  001

Query Q Query Signature SQ SQ    Si Results

Security 001 100 001 001

Hacker 000 101 000 101 000 100 000 001

001 100 001 001

Mobile 100 100 001 001 100 100 001 001

No Match

True Match

False Match

(a) Signature generation

(b) Query comparision

Fig. 2 Signature generation and comparison

To decide whether a data itemi matches/contains the
queried keywordQ, aquery signatureSQ is generated first,
based on the same hash function. Thereafter,SQ is com-
pared against the signatureSi using bitwise-AND (∧). There
are two possible outcomes of the comparison:

– SQ ∧ Si 6= SQ: data itemi does not match queryQ.
– SQ ∧ Si = SQ: a match has two possible implications:

– true match: the data item is really what the query
searches for; and

– false drop(or false match): the data item in fact does
not satisfy the search criteria although the signature
comparison indicates a match.

As shown in Figure 2(b), three queries are issued and
their corresponding signatures are produced based on the
same hash function. According to the result ofSQ ∧ Si, the
examined data item is not qualified for the first query,Q1 =
Hacker, but qualified for the other two queries,Q2 = Secu-
rity andQ3 = Mobile. It is a true match forQ2 as the data
item does contain the keywordSecurity while it is a false
drop forQ3 because the data item does not contain the key-
word Mobile. Bloom Filter, commonly used in networking,
shares some similarities as signature [3]. However, it adopts
multiple hash functions to generate bit strings.

3 Hyper-Graph based Index

To support efficient ACANN search, we design a novel in-
dex structure, namelyhyper-graph based index. It consists
of two parts, ahyper graphand thelocal signature maps. In
this section, we present the detailed structures of these two
parts and their constructions respectively.

3.1 Hyper Graph

Given the fact that the retrieval of shortest paths is expen-
sive on large graphs and some applications are willing to
trade efficiency for accuracy, we design ahyper graph struc-
ture based on graph partition and partial pre-computation
to support approximated shortest path retrieval. To be more
specific, we first identify a small set of center nodes in the
graph, and divide the graph into disjoint partitionsPi with
each around one center nodeci. The shortest paths from a
center nodeci to every node of its corresponding partition
Pi are computed. Then, we form the hyper graph with the
center nodes as the hyper nodes, and generate hyper edges
between every pair of center nodes. Each hyper edge rep-
resents the shortest path between the corresponding center
nodes. The formal definition of hyper graph is given in Def-
inition 4.

Definition 4 Hyper Graph.Given a social networkG(V,E)

and a set of center nodesC = {c1, c2, . . ., cr}, the hyper
graphGH(VH , EH) consists of the set of center nodes, and
the connections between them, i.e.,VH = C, andEH =
∪ci,cj∈C∧|SP (ci,cj)|6=∞ e(ci, cj)withw(ci, cj) = |SP (ci, cj)|.
�

An example hyper graph is depicted in Figure 3, with
nodesv4, v7, andv9 being the center nodes. Given a hy-
per graph, the approximation of the shortest path from a
source nodev to a destination nodeu is performed as fol-
lows. We assume thatv belongs to the partitionPi with the



6 Yazhe Wang, Baihua Zheng

1

1

1

v10

v11

v9

v1 v2 v3

v4

v5

v6

v7

v8

Fig. 3 An example of the hyper graph.

corresponding center nodeci, andu belongs to the parti-
tion Pj with the corresponding center nodecj . First, we
get the shortest pathP1(v, ci) from v to the center nodes
ci within partitionPi. Then, based on the hyper graph, we
can find the shortest pathP2(ci, cj) from ci to cj . Finally,
we get the shortest pathP3(cj , u) from cj to u inside the
partitionPj . The combination ofP1(v, ci), P2(ci, cj) and
P3(cj , u) then forms the approximated shortest path fromv

to u. We embed certain information in each center node to
facilitate the retrieval ofP1(v, ci)/P3(cj , u) (to be explained
in Section 3.2), and the hyper graph carries information of
P2(ci, cj). Consequently, this approximation will be much
faster than deriving the real shortest pathSP (v, u).

In the following, we explain three key steps of forming a
hyper graph, namelycenter node selection, graph partition,
andhyper graph formation.
Center Nodes Selection.We assume each shortest path will
cross at least one center node in our shortest path approxi-
mation. Consequently, the center nodes have a direct impact
on the quality of the shortest path and we need to carefully
select the center nodes in order to improve the approxima-
tion quality. In this paper, we propose to choose the center
nodes based on their betweenness scores. The betweenness
score of a node counts the number of shortest paths that the
node falls on. Intuitively, by selecting the nodes laying on
many shortest paths (i.e. having highest betweenness score)
as the center nodes, the approximated shortest path between
two nodes, which passes their corresponding center nodes,
will be close to the real shortest one. We will evaluate this
intuition later in Section 6.

However, the betweenness scores are computationally
expensive to derive as it requires computing all-pair shortest
paths of a graph. Instead of computing the shortest paths for
every pair of nodes, we adopt the algorithm proposed in [5]
to efficiently fetch the set of nodes with highest between-
ness. It chooses a set of nodes as pivots, and only computes
the shortest paths from pivots to the other nodes. Then, it
uses those partial shortest paths to estimate the nodes with
highest betweenness. The algorithm runs this process itera-
tively. At each iteration, some new pivots are added and the
highest betweenness node set is updated. The algorithm ter-
minates if the membership of the highest betweenness node
set remains largely stable.

Graph Partition. Once the center nodes are fixed, we par-
tition the graph into disjoint sub-graphs with each centered
at one center node. In this work, we assign each non-center
node to its nearest center node based on the shortest path
distance. When there is a tie (i.e., a non-center node has
more than one closest center node), the non-center node is
randomly assigned to one closest center node. Definition 5
gives a formal definition. It is noted that finding the closest
center node for each non-center node is expensive if we de-
rive the distances from each non-center node to all the cen-
ter nodes. We adopt the parallel expansion algorithm pro-
posed in [9]. It initiates graph expansion from all the cen-
ter nodes concurrently. LetExpi represent thei-th expan-
sion initiated at center nodeci. All the nodes reached by
Expi first will be included into the partition correspond-
ing to ci. The worst time complexity of this algorithm is
O(|E|+ |V |+ |V − r| log(|V − r|)|), wherer is the number
of center nodes.

Definition 5 Graph Partition.Given a graphG(V,E) and
a set of center nodesC = {c1, c2, · · · , cr} with C ⊂ V ,
a graph partitionPG = {P1, P2, · · · , Pr} is a set of node
setsPi that i) ∀ci ∈ C, ci ∈ Pi; ii) ∀i, j(i 6= j) ∈ [1, r],
Pi ∩ Pj = ∅ ∧

⋃
1≤i≤r Pi = V ; and iii) ∀v ∈ Pi ∧ ∀j(6=

i) ∈ [1, r], ||v, ci|| ≤ ||v, cj ||. �

Hyper Graph Formation. Once the graph is partitioned,
we need to build the hyper graph. A hyper graph has the cen-
ter nodes as hyper nodes and has hyper edges between ev-
ery pair of center nodes that are reachable. Each hyper edge
represents the shortest path between the corresponding cen-
ter nodes. The weight on a hyper edge equals to the shortest
path distance between the corresponding hyper nodes.

Figure 3 depicts an example of the hyper graph. As-
sume the number of center nodes is3, and nodesv4, v7,
andv9 are selected as center nodes based on betweenness
scores. Thereafter, the network partition takes place. Each
non-center node is attached to its nearest center node as
demonstrated by the dashed circle in Figure 3. Then, we
proceed to form the hyper graph. Three hyper edges are
built among the hyper nodes, i.e.e(v4, v7), e(v7, v9) and
e(v4, v9). As the shortest path distances between these nodes
are all1, the weight on every hyper edge is assigned as1.

3.2 Local Signature Map

The hyper graph builds a graph skeleton that can facilitate
the approximation on shortest paths by assembling some
pre-computedshortest paths. As discussed earlier, if the source
nodev and the destination nodeu are known (i.e., the cor-
responding partitionsPi andPj thatv andu are located re-
spectively are known), its shortest path can be approximated
by the combination of the shortest path fromv to the center
nodeci, the shortest path fromci to cj , and the shortest path



Hyper-Graph Index: an Index for Context-Aware Nearest Neighbor Query on Social Networks 7

from u to cj . However, for a given ACANN search, the des-
tination node is unknown. In other words, we do not know
who the destination node is and where it is located. We have
to traverse the hyper graph to visit the center nodes by cer-
tain order, and then at each center nodeci, we scan the nodes
within the corresponding partitionPi to see whether any
node satisfies the query condition. To speedup this check-
ing process of each partition, we introduce a new structure,
namelylocal signature map, to carry some abstract informa-
tion about the shortest distances from non-center nodes to
the center node and textual contexts of the non-center nodes
in the corresponding partition. It can effectively filter out
those partitions that do not contain any answer node.

Given a center nodeci with corresponding partitionPi,
its local signature map incorporates two parts, i.e.,textual
signatureanddistance lower bound. The textual signature
sig represents the keyword setLi in a compact manner,
with Li (= ∪v∈Pi

v.k) summarizing the textual contexts of
the nodes inPi. As explained in Section 2.2.4, for a given
queried keywordQ.k, we can comparesig against the sig-
nature ofQ.k. If the signatures do not match, it is certain that
Li does not containQ.k (i.e., no node withinPi satisfies the
textual condition of the query) andPi can be safely filtered
out. Otherwise, a signature match occurs which implies two
possible implications, i.e., true match and false drop. Since
each false drop results inunnecessaryexploration of the cor-
responding partition, a longer signature is preferred in order
to maintain a low false drop rate. However, for a large social
network, each partition contains different number of nodes.
Some partitions could be very large in size, and the corre-
spondingLi could be large as well. To make our approach
scalable, we propose to use multiple relatively small signa-
tures, instead of one single long signature, to representLi.
Given the pre-defined false drop rate thresholdγ and the
length |sig| of the signature, we can derive the maximum
number of keywords that a signature can represent based on
Equation (1) [23], denoted asη. Then, we partition the nodes
of Pi into subgroupsgli such that the number of keywords
corresponding to the nodes inside each subgroup does not
exceedη. A signature is generated based on each subgroup
gli, and the local signature map contains all these signatures.

η = ⌊
|sig| · (loge2)2

−logeγ
⌋ (1)

Now the issue is how to group nodes into subgroups. In
this work, we group the nodes inPi based on their distances
to ci. To be more specific, nodes inPi are clustered intoxi

groups with each groupgli (1 ≤ l ≤ xi) associated with a
distance parameterdli. All the nodes within the group have
their shortest distances toci bounded by the range[dli, d

l+1
i )

with dxi+1
i = ∞, i.e.,∀vj ∈ gli, ||vi, vj || ∈ [dli, d

l+1
i ). The

distance parameterdli is stored with the textual signaturesig
of the nodes group. The advantage of attaching the distance

Algorithm 1 Local Signature Map Construction

Input : a center nodeci and the partitionPi, η, a hash functionh();
Output : mapi;
Procedure:
1: order the nodes inPi based on ascending order of their shortest

distances toci, so that∀vj ∈ Pi, with ||vj , ci|| ≤ ||vj+1, ci||;
2: for eachvj ∈ Pi do
3: if j == 1 then
4: l = 1;
5: gli = {vj};
6: else if| ∪

v∈gl
i
v.k ∪ vj .k| ≤ η then

7: gli = gli ∪ {vj};
8: else
9: l = l+ 1;

10: gli = {vj};
11: for eachgli do
12: mapi[l].sig = ∨

v∈gl
i
h(v.k);

13: mapi[l].dis = MIN
v∈gl

i
||vi, v||;

14: returnmapi;

information is that it can be used to estimate the (approxi-
mated) distance from the center nodeci to the potential qual-
ified node in the partition, thus helps to further prune the
search space. To be more specific, during ACANN search,
when a temporary answer node is found with distanced,
the following search can discard the node groups whose es-
timated lower bound distances are no smaller thand, even
when their contexts match the queried keywords. This is
because these node groups cannot contain an answer node
whose distance is smaller than the current answerd. In or-
der words, only the node group whose lower bound distance
is smaller than the current answer node is worth further ex-
amination.

To sum up, given a partitionPi that is divided intoxi

disjoint node groups, the local signature map of the cen-
ter nodeci, denoted asmapi, is the union of an array of
xi two-tuple vectors, denoted as〈mapi[l].sig,mapi[l].dis〉,
(1 ≤ l ≤ xi). mapi[l].sig is the textual signature of the
lth group ofPi, andmapi[l].dis is the distance lower bound
representing the minimum distance fromci to a node within
thel-th group.

Algorithm 1 lists the pseudo-code of the local signature
map construction. For a given center nodeci and its parti-
tionPi, we first order the nodesvj ∈ Pi based on ascending
order of their shortest distances toci (line 1). To simplify
the discussion, we usevj to represent nodes withinPi with
1 ≤ j ≤ |Pi|, and assume that||vj , ci|| ≤ ||vj+1, ci||. Next,
we cluster nodes into groups (lines 2-10). To be more spe-
cific, supposevj is within groupgli, and now we are ex-
aminingvj+1. If the total number of distinct keywords as-
sociated with nodes withingli and nodevj+1 does not ex-
ceedη, vj+1 is clustered into groupgli (lines 6-7). Other-
wise, a new groupgl+1

i is generated withvj+1 as the initial
value (lines 9-10). Finally, for each groupgli, we generate the
signaturemapi[l].sig and record the distance lower bound



8 Yazhe Wang, Baihua Zheng

Table 1 Local signature map associated withv7 (η = 4)

sig dis group member
v7.sig ∨ v6.sig 0 v7, v6

v8.sig 1 v8

mapi[l].dis (lines 11-13). We use this algorithm to generate
signature map for every center node. Table 1 depicts the lo-
cal signature map of center nodev7. Here,vi.sig means the
signature of nodevi’s context (i.e.vi.k).

4 Approximated Search Algorithm

In this section, we discuss the detailed approximated search
algorithm based on hyper-graph based index, and then pro-
vide a theoretical analysis on the approximation quality.

4.1 Basic Idea

As explained earlier, the shortest path from a nodev in par-
tition Pi to a nodeu in partitionPj can be approximated
by three segments, i.e., the shortest path fromv to ci, the
shortest path fromci to cj , and the shortest path fromcj to
u. Since the hyper edge betweenci andcj carries||ci, cj ||,
and ||v, ci|| and ||cj , u|| are known, the approximation is
fast. Recall that the answer node of an ACANN search is
unknown. Consequently, given an ACANN search issued at
nodeQ.v, the challenge is to quickly find a center nodecj
on the hyper graph, whose partition contains an answer node
u that matches the queried keywords, and approximated dis-
tance||Q.v, ci||+ ||ci, cj||+ ||cj , u|| is the shortest.

In order to address this issue, we propose thedistance
based network expansionon the hyper graph. It starts the
expansion fromci with corresponding partition containing
the query nodeQ.v. Every time a center nodecj is visited,
a local examinationis performed in its corresponding parti-
tionPj to find the answer node. In the following, we explain
the details of the network expansion and local examination.

Algorithm 2 presents the pseudo code of ACANN search,
and Table 2 lists the useful notations. First, we initializethe
temporary answer nodevans as empty and its approximated
distancedans to be infinity (line 1). For an ACANN query
Q issued at nodeQ.v, if the query node matches the queried
keywordsQ.k, the search terminates (lines 2-3). Otherwise,
we perform a distance based expansion on the hyper graph.
We first locate the center nodeci whose partition contains
Q.v, as well as the the shortest distance fromQ.v to ci, de-
noted asd0 (line 4). Then, the local expansion starts from
ci. To enable the distance based expansion, we maintain
two important structures, a distance set and a priority queue
Que. Each elementdH(ci, cj) in the distance set corresponds
to the distance fromci to another hyper nodecj with initial
value∞ (line 5-6). As the expansion proceeds,dH(ci, cj)

Table 2 Notation table

G(V, E) social network with node setV and edge setE
GH(VH , EH) hyper graph constructed onG with hyper(center)

node setVH and hyper edge setEH

Q, Q.v, Q.k an ACANN query issued at query nodeQ.v, and
the queried keywordsQ.k

h() hash function used to generate signature for a set
of keywords

ci center node of partitionPi

mapi, mapi[l] local signature map attached toci, and the map
entry for thelth group

mapi[l].sig,
mapi[l].dis,
mapi[l].nodes

the signature, distance lower bound, and group
members information recorded in the map entry
of thelth group

||vi, vj || the shortest distance between nodesvi andvj
P (vi, vj) a path between nodesvi andvj
SP (vi, vj) the shortest path between nodesvi andvj
Que a priority queue to assist the distance based hyper

graph expansion
d0 the shortest distance from theQ.v to its corre-

sponding center node
dH(ci, cj) the shortest distance fromci to cj based on hyper

graph
eH(ci, cj),
wH(ci, cj)

the hyper edge betweenci and cj on the hyper
graph, and the corresponding weight

will be updated as well. The priority queueQue carries two-
tuple vectors〈cj , dH(ci, cj)〉 that are ordered based on as-
cending order ofdH(ci, cj), and it is initialized as〈ci, dH(ci,

ci) = 0〉 (line 7). Thereafter, we traverse the hyper graph by
continuously dequeuing the head entry fromQue until it be-
comes empty (line 8-24).

Every time when a head entry〈cj , dH(ci, cj)〉 is dequeued,
the lower bound of the approximated distance fromQ.v to
any node in partitionPj centered atcj (i.e.,d0+dH(ci, cj))
is compared againstdans (i.e., the approximated distance
from Q.v to the current answer node). If the lower bound
is larger thandans, the partitionPj can be safely discarded
as none of the nodes insidePj will be closer toQ.v than
the current answer node. In addition, all the remaining en-
tries〈c′j , dH(ci, c

′
j)〉 inQue have theirdH(ci, c

′
j) larger than

dH(ci, cj) and hence their corresponding partitionsPj′ can
be pruned away. In other words, none of the nodes in the
unexplored partitions will satisfy the query conditionQ.k

and meanwhile be closer toQ.v than the current the answer
node. We can safely terminate the current expansion and re-
turn the current answer node (lines 10-11). Otherwise, parti-
tion Pj needs local examination. We use the local signature
mapmapj attached to the center nodecj to facilitate the
pruning. As explained before, the nodes in the partitionPj

are clustered into groupsglj , and the pruning process is to
filter out those groups that do not contain any node satisfy-
ing the query condition. The first filtering criterion is based
on distance. We calculate(d0 + dH(ci, cj) +mapj [l].dis),
the lower bound of the approximated distance from a node
in thelth group ofPj to Q.v. If it is longer thandans, there



Hyper-Graph Index: an Index for Context-Aware Nearest Neighbor Query on Social Networks 9

Algorithm 2 ACANN Search based on Hyper-Graph Index

Input: a social networkG(V, E) with corresponding contextL and
weight W , a hash functionh(), hyper graphGH(VH , EH) with lo-
cal signature maps, an ACANN queryQ.
Output: the answer node and the approximated shortest path.
Procedure:
1: vans = ∅, dans = ∞
2: if Q.k ⊆ Q.v.k then
3: returnvans = Q.v, dans = 0, Pans = {Q.v}
4: locate the corresponding center nodeci of Q.v, and d0 =

||ci, Q.v||
5: for eachcj ∈ VH , (j 6= i) do
6: dH(ci, cj) = ∞
7: Que = 〈ci, dH(ci, ci) = 0〉
8: while Que is not emptydo
9: 〈cj , dH(ci, cj)〉 = dequeue(Que)

10: if (d0 + dH(ci, cj)) ≥ dans then
11: returnvans, Pans

12: for eachmapj [l] ∈ mapj do
13: if (d0 + dH(ci, cj) +mapj [l].dis) ≥ dans then
14: break
15: else ifh(Q.k)∧mapj [l].sig == h(Q.k) then
16: for eachvk ∈ mapj [l].nodes do
17: if Q.k ⊆ vk .k and(d0+dH(ci, ci)+||cj , vk ||) < dans

then
18: vans = vk ;
19: dans = d0 + dH(ci, ci) + ||cj , vk||
20: Pans = append(SP (Q.v, ci), P (ci, cj), SP (cj, vk))
21: for each neighboring nodecn of cj in GH do
22: if dH(ci, cj) + wH(cj , cn) < dH(ci, cn) then
23: enqueue(〈cn, dH(ci, cj) + wH(cj , cn)〉); P (ci, cn) =

append(P (ci, cj), eH(cj , cn))
24: dH(ci, cn) = d(ci, cj) + wH(ci, ci)

is no need to examine nodes within this group and the fol-
lowing groups (lines 13-14). The second filtering criterion
is based on the textual context. We can safely discard the
lth group ifmapj [l].sig does not match the query context
Q.k. If this groupglj passes these two criteria, we examine
the nodes in this group one by one, and update the answer
when the nodesvj in the group that match the search context
are found (lines 15-19). Up to this point, we have examined
the partition centered atcj . We then continue to expand the
search by inserting all the unexamined neighboring center
nodescn of cj in GH for further examination (lines 21-24).

4.2 Approximation Quality

Compared with CANN search, ACANN search can effec-
tively improve the search performance. However, the result
node returned by ACANN search might not be the closest
node, and the returned path might not be the shortest path.
Consequently, it makes sense to replace CANN search with
ACANN search only if a high approximation quality can be
achieved. In the following, we conduct a theoretical study to
analyze the approximation quality of our ACANN search.
For a given queryQ issued at the nodeQ.v located in the
partition centered at center nodecQ.v, we assume ACANN

vi vj

cvi cvj

Fig. 4 A demonstration of the shortest paths between two nodesvi and
vj , (i 6= j) and their corresponding center nodescvi , cvj .

search returns answer nodeu that is located in the partition
centered at center nodecu with corresponding approximated
shortest pathASP (Q.v, u). First, we analyze the difference
between|ASP (Q.v, u)| returned by ACANN and the real
distance||Q.v, u|| betweenQ.v andu, with its upper bound
presented in Lemma 1. Next, we analyze the difference of
|ASP (Q.v, u)| compare to|CANN(Q).P | in Lemma 2.

Lemma 1 Given a social networkG(V,E), a set of center
nodesC, the corresponding social network partitions, and
two nodesvi, vj , we assumevi is within partitionPi andvj
is within partitionPj with i 6= j, andcvi , cvj are the corre-
sponding center nodes respectively.(||vi, cvi ||+||cvi, cvj ||+
||vj , cvj ||)− ||vi, vj || ≤ 2× (||vi, cvi ||+ ||vj , cvj ||).

Proof. To facilitate the proof of this lemma, we construct
a graph as shown in Figure 4. It includes nodesvi andvj ,
and center nodescvi andcvj . An edge between two nodes in
Figure 4 represents that those two nodes are reachable with
the edge weight set to their shortest distance1. Based on the
triangular inequality on triangles∆vi,cvi ,cvj

and∆vi,cvj ,vj
,

the following inequalities are established.

||cvi , cvj || ≤ ||vi, cvi ||+ ||vi, cvj ||

||vi, cvj || ≤ ||vj , cvj ||+ ||vi, vj ||
(2)

By adding the two inequalities in (2), we derive that

||cvi , cvj || ≤ ||vi, cvi ||+ ||vj , cvj ||+ ||vi, vj ||

Obviously, the inequality below stands.

(||vi, cvi ||+ ||cvi , cvj ||+ ||vj , cvj ||)− ||vi, vj ||

≤ 2× (||vi, cvi ||+ ||vj , cvj ||)

�

Lemma 2 Given a query nodeQ.v, and a corresponding
hyper graphGH , suppose the real nearest node which matches
Q.k isu∗, and the approximated nearest node which ACANN
algorithm returns isuwith corresponding approximated short-
est pathASP (Q.v, u), we define∆ = |ASP (Q.v, u)| −
||Q.v, u∗||, then∆ ≤ 4×max1≤k≤|V | ||vk, cvk || wherecvk
is vk ’s nearest center node.

1 If there is no edge between two nodes, it does not mean these nodes
are not reachable but mean that edge is not needed to prove this lemma.



10 Yazhe Wang, Baihua Zheng

Proof. As mentioned previously, the approximated short-
est path from nodeQ.v to nodeu∗ passes their correspond-
ing center nodes, i.e., center nodecQ.v and center nodecu∗ .
In other words, the following equation holds.|ASP (Q.v, u∗)|
= ||Q.v, cQ.v||+||cQ.v, cu∗ ||+||cu∗ , u∗||. Based on Lemma 1,
we have

|ASP (Q.v, u∗)|−||Q.v, u∗|| ≤ 2×(||Q.v, cQ.v||+||u∗, cu∗ ||).

Because thatu is the nearest node found based on the ap-
proximated shortest path distance,|ASP (Q.v, u)| ≤
|ASP (Q.v, u∗)|. Obviously, we have

∆ = |ASP (Q.v, u)| − ||Q.v, u∗||

≤ |ASP (Q.v, u∗)| − ||Q.v, u∗||

≤ 2× (||Q.v, cQ.v||+ ||u∗, cu∗ ||).

For every nodevi, ||vi, cvi || ≤ max1≤k≤|V | ||vk, cvk ||.
Therefore, in the worst case,

∆ ≤ 4× max
1≤k≤|V |

||vk, cvk ||.

�

5 Simplified Hyper Graph

The hyper graph defined above contains all pairs shortest
paths between any two center nodes that are reachable. When
a large social network is considered, the number of cen-
ter nodes might be big and consequently, the computation
cost and storage overhead for the hyper graph is not negligi-
ble. Actually, we observe that the shortest path from a center
nodeci to another center node must cross the boundary be-
tweenci’s partitionPi and one of its adjacent partitions. Par-
tition adjacency is formally defined in Definition 6. In other
words, the shortest path between two center nodes of two
non-adjacent partitions could be approximated by the short-
est paths between center nodes of adjacent partitions. Based
on this observation, we proposesimplified hyper graphthat
only includes the links between the center nodes of two ad-
jacent partitions, as defined in Definition 7.

Definition 6 Partition Adjacency.Given a social network
partitionPG of a social networkG(V,E) and two partitions
Pi, Pj(i 6= j) ∈ PG, Pi andPj are adjacent to each other
if and only if∃e(vi, vj) ∈ E such thatvi ∈ Pi andvj ∈ Pj ,
denoted asPi ≀ Pj . �

Definition 7 Simplified Hyper Graph.Given a social net-
work G(V,E) and a set of center nodesC = {c1, c2, . . .,
cr}, the simplified hyper graphGSH(VSH , ESH) consists of
the set of center nodes, and the connections between those
center nodes with their corresponding partitions being adja-
cent, i.e.,VSH = C, andESH = ∪Pi≀Pj∧|SP (ci,cj)|6=∞e(ci, cj)

with w(ci, cj) = |SP (ci, cj)|. �

Hyper graph

Original graph

vj

cx2 cx3 cxl

shortest path from vi to vj

vi

cx1

x1 xlx3x2

Fig. 5 A demonstration of the shortest path between nodesvi andvj ,
(i 6= j) on simplified hyper graph.

The ACANN search algorithm presented in Algorithm 2
is still applicable on the simplified hyper graph. However,
Lemma 2 is no longer valid for the simplified hyper graph.
This is because, for two non-adjacent partitions, the path be-
tween those two center nodesci and cj derived based on
simplified hyper graph, denoted asSPSH(ci, cj), might not
be the real shortest path, i.e.,|SPSH(ci, cj)| ≥ ||ci, cj ||.
We re-derive the upper bound of the difference between the
shortest distance returned by ACANN based on simplified
hyper graph and the real shortest distance returned by CANN
in Lemma 3.

Lemma 3 Given a social networkG(V,E), and the simpli-
fied hyper graphGSH , we assume the real nearest node that
matchesQ.k is u∗, and the approximated nearest node re-
turned by ACANN algorithm via simplified hyper graph isu.
LetASPSH(Q.v, u) denote the approximated shortest path
from Q.v to u based onGSH . ∆ = |ASPSH(Q.v, u)| −
||Q.v, u∗|| ≤ 2 × p × max1≤k≤|V | ||vk, cvk ||, herep is the
maximum number of adjacent partitions that a shortest path
onG can cross.

Proof. First, given two nodesvi, vj ∈ V , (i 6= j), we
prove the difference between their approximated shortest
path based onGSH and their real distance. To simplify our
discussion, we assumevi is associated with the center node
cx1 , andvj is associated with the center nodecxl

. In addi-
tion, we assume the real shortest path fromvi to vj passes
several adjacent partitions. In other words,SP (vi, vj) crosses
partitionsPx1 , Px2 , · · · , Pxl

in sequence, with their corre-
sponding center nodes represented ascx1 , cx2 , · · · , cxl

, as
shown in Figure 5. SinceSP (vi, vj) passesPxt

(t ≤ l),
there must be at least one nodext within partitionPxt

that
contributes toSP (vi, vj). Let the dashed lines depicted in
Figure 5 represent the real shortest paths betweenxt and
xt+1. According to Lemma 1, we have(||x1, cx1 ||+||cx1 , cx2 ||
+ ||x2, cx2 ||) − ||x1, x2|| ≤ 2 × (||x1, cx1 || + ||x2, cx2 ||),
which means||cx1 , cx2 ||−||x1, x2|| ≤ ||x1, cx1 ||+||x2, cx2 ||.
Similarly, the following inequalities hold:

||cx1 , cx2 || − ||x1, x2|| ≤ ||x1, cx1 ||+ ||x2, cx2 ||;

||cx2 , cx3 || − ||x2, x3|| ≤ ||x2, cx2 ||+ ||x3, cx3 ||;

. . .

||cxl−1
, cxl

|| − ||xl−1, xl|| ≤ ||xl−1, cxl−1
||+ ||xl, cxl

||.



Hyper-Graph Index: an Index for Context-Aware Nearest Neighbor Query on Social Networks 11

Because{cx1, cx2 , · · · , cxl
} are the center nodes of a se-

quence of adjacent partitions,PSH(cx1 , cxl
) = {cx1, cx2 , . . . ,

cxl
} is a path on simplified hyper graphGSH from cx1 to

cxl
. |PSH(cx1 , cxl

)| = ||cx1 , cx2 ||+ ||cx2 , cx3 ||+ . . .+

||cxl−1
, cxl

||. Notice thatPSH is not necessarily the short-
est path fromc1 to cl based onGSH , i.e.,PSH(c1, cl) 6=
SPSH(c1, cl). Also, we know that||x1, x2|| + ||x2, x3|| +
. . .+||xl−1, xl|| = ||x1, xl||. By summing up above inequal-
ities, we have

|PSH(cx1 , cxl
)| − ||x1, xl||

≤||x1, cx1 ||+ ||xl, cxl
||+ 2×

∑

2≤t≤(l−1)

(||xt, cxt
||)

Consequently,

||x1, cx1 ||+ |PSH(cx1 , cxl
)|+ ||xl, cxl

|| − ||x1, xl||

≤ 2×
∑

1≤t≤l

(||xt, cxt
||). (3)

SupposeASPSH(vi, vj) is approximate shortest path from
vi to vj derived based on simplified hyper graphGSH , then
|ASPSH(vi, vj)| = |ASPSH(x1, xl)| = ||x1, cx1 ||+
|SPSH(cx1 , cxl

)|+||xl, cxl
|| ≤ ||x1, cx1 ||+|PSH(cx1 , cxl

)|+
||xl, cxl

||. Based on (3) we have

|ASPSH(vi, vj)| − ||vi, vj ||

= |ASPSH(x1, xl)| − ||x1, xl||

≤ ||x1, cx1 ||+ |PGH
(cx1 , cxl

)|+ ||xl, cxl
|| − ||x1, xl||

≤ 2×
∑

1≤t≤l

(||xt, cxt
||) (4)

Next, we derive the lower bound of∆. Based on (4), for
the givenQ.v andu∗,

|ASPSH(Q.v, u∗)| − ||Q.v, u∗|| ≤ 2×
∑

1≤t≤l

(||xt, cxt
||),

given that{cx1, cx2 , . . . , cxl
} are the center nodes of the ad-

jacent partitions thatSP (Q.v, u∗) crosses, andxt(1 ≤ t ≤
l) is a node onSP (Q.v, u∗) which belongs to the partition
of ct, x1 = Q.v, xl = u∗. Because thatu is the nearest
node found based on the approximated shortest path dis-
tance,|ASPSH(Q.v, u)| ≤ |ASPSH(Q.v, u∗)|. Straight-
forwardly, we have

∆ = |ASPSH(Q.v, u)| − ||Q.v, u∗||

≤ |ASPSH(Q.v, u∗)| − ||Q.v, u∗||

≤ 2×
∑

1≤t≤l

(||xt, cxt
||).

For every nodevi, ||vi, cvi || ≤ max1≤k≤|V | ||vk, cvk ||.
Therefore, in the worst case,

∆ ≤ 2× p× max
1≤k≤|V |

||vk, cvk ||.

p is the maximum number of adjacent partitions that a short-
est path onG can cross. �

6 Experiments

In order to evaluate the performance of proposed ACANN
search on hyper-graph/simplified hyper-graph, we conduct
a comprehensive experimental study and report its results
in this section. First, we evaluate various center node selec-
tion schemes for the hyper-graph based index construction.
Next, we test the performance of the ACANN search based
on hyper graph index, including pre-processing time, stor-
age overhead, query time, and approximation quality.

Two real social network datasets are used, includingDblp
andMyGamma. The former is extracted from DBLP (http://
dblp.uni-trier.de/xml/).We sample dblp graphs with the num-
ber of nodes changing from0.5K to 8K. For each node, we
extract20 keywords from the papers published by the author
as the textual context. The latter is provided by MyGamma,
a mobile social networking service provider (http://m.my
gamma.com/). We sample mygamma graphs with node num-
ber changing from10K to 20K. Each node has on average
10 keywords extracted from user’s profile, including user’s
nickname, race, country and so on. For both datasets, the
graphs are unweighted (i.e. the weight on every edge is 1).
We implemented all the evaluated schemes in C++, run-
ning on an AMD 2.4GHz Dual Processors server with 4GB
RAM. In addition, the false drop rateγ is set to0.01 and the
size of the signature|sig| is set to 128 in our implementa-
tion.

6.1 Evaluating Center Node Selection Schemes

As mentioned in Section 3.1, the center nodes have a direct
impact on the approximation quality, and we propose to se-
lect the nodes with the highest betweenness score as the cen-
ter nodes. Because the betweenness score is computationally
expensive to derive, we adopt a fast betweenness ranking
algorithm proposed in [5] to retrieve the approximated top-
k nodes with the highest betweenness score, and we refer
this method asfastBTW. For comparison purpose, we imple-
ment another two center node selection methods, including
Random that selects the center nodes randomly, andBTW that
selects the nodes based on the real betweenness score. In our
first set of experiments, we evaluate the performance of dif-
ferent center node selection methods, including the selection
time, and the approximation quality.

First, we report the selection time of different center
node selection methods under different numbers of center
nodes, presented as the percentage of the dataset size, on a
5K nodes dblp graph in Figure 6(a). The results on differ-
ent sized graphs show similar trend, and are omitted to the
interest of space. As we can see,Random is very efficient as
its running time is almost negligible. However,BTW is very
time consuming due to the high cost of computing the be-
tweenness for each node.fastBTW does not perform as well



12 Yazhe Wang, Baihua Zheng

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

1 2 3 4 5 6 7 8 9 10

S
e

le
c
ti
o

n
 t

im
e

 (
s
e

c
)

Center node percentage (%)

BTW

Radom

FastBTW

(a) Selection time.

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10

|A
C

A
N

N
(Q

).
P

|/
|C

A
N

N
(Q

).
P

|

Center node percentage (%)

fastBTW
Random

BTW

(b) Approximation quality.

Fig. 6 Performance of the center node selection schemes (dblp,|V | =
5K).

asRandom, but it is much more efficient thanBTW. Gener-
ally, it takes only10%-20% of BTW’s time.

Next, we report the approximation quality of ACANN
under different center node selection schemes in Figure 6(b).
The approximation quality is measured by the error rate,
i.e. |ACANN(Q).P |−|CANN(Q).P |

|CANN(Q).P | , as defined in Definition 3.
We run200 random queries with each having1 to 5 key-
words on each graph and report the average result. As shown
in the figure,Random leads to very inaccurate results, while
BTW offers the highest quality. The result onfastBTW is
very close to that ofBTW. Based on the above observation,
we believe thatfastBTW achieves a good trade-off between
the center node selection time and approximation accuracy.
Consequently, we adoptfastBTW to generate hyper-graph
based index in the following experiments.

6.2 Performance of ACANN Search Algorithm

In the second set of experiments, we evaluate the perfor-
mance of ACANN search based on the hyper-graph based
index. We implement both the hyper-graph index and the
simplified hyper-graph index, referred asHGI andSHGI, re-
spectively, together with another two existing algorithmsas
comparison, i.e., the SI-based approach, referred asSI, and
the TR-based approach, referred asTR. SI starts from the
query node, and explores the graph based on distance until
an answer node matching the queried keywords is reached
(i.e. the classic Dijkstra’s algorithm [8]). This method does
not rely on any index structure.TR locates the nodes that
match the queried keywords as the intermediate results, then
performs network exploration to get the shortest paths from
them to the query node.

It is reported in [36] thatTR performs worse thanSI. In
our implementation, we changeTR to improve its query ef-
ficiency. Different from originalTR, we implement a more
efficient algorithm, i.e., A* algorithm [13], to support the
shortest path search from the query node to the intermedi-
ate results. A* algorithm first locates a small set of land-
mark nodes, and calculates the distance from these landmark
nodes to every other node in the graph. Base on the pre-
computed information, it estimates the distance from any
given node to a destination. During the network exploration,
it first visits the node with smallest estimated distance to

 0

 5

 10

 15

 20

0.5 1 2 3 4 5 6 7 8

T
im

e(
×

10
2  s

ec
)

Number of nodes (×103)

TR
HGI

SHGI

(a) Dblp

 0

 20

 40

 60

 80

 100

1.0 1.2 1.4 1.6 1.8 2.0

T
im

e(
×

10
2  s

ec
)

Number of nodes (×104)

TR
HGI

SHGI

(b) MyGamma

Fig. 7 Pre-processing time vs. dataset size (5% center nodes).

 5.4

 5.6

 5.8

 6

 6.2

 6.4

1 2 3 4 5 6 7 8 9 10

T
im

e 
(×

10
2  s

ec
)

Center node percentage (%)

HGI
SHGI

(a) Dblp(|V | = 5K)

 35

 40

 45

 50

 55

1 2 3 4 5 6 7 8 9 10

T
im

e 
(×

10
2  s

ec
)

Center node percentage (%)

HGI
SHGI

(b) MyGamma(|V | = 16K).

Fig. 8 HGI/SHGI pre-processing time vs. # center nodes.

the destination. This heuristic enables the search to quickly
reach the destination, thus greatly reduces the search time.
Generally, the more the selected landmark nodes are, the
more accurate the distance estimation is. Thus, less nodes
will be visited during the network exploration. However, a
large number of landmark nodes will cause high pre-computa-
tional costs. Therefore, in our implementation, we choose
5% nodes as landmarks. Based on some initial tests that we
performed, the implemented A* algorithm can reduce the
shortest path search time by1.5-30 times. In the following,
we evaluate the performance of ACANN search via four as-
pects, i.e., pre-processing time, storage costs, query time,
and approximation quality.

Pre-processing Time.First, we evaluate the pre-processing
time of different approaches on different sized graphs, as re-
ported in Figure 7. Note thatSI does not require any index
structure and hence it is not reported. The pre-processing
cost ofTR mainly comes from finding landmarks and com-
puting the distance information from landmarks to other nodes.
Generally, it incurs more index construction time as the graph
size grows. Compared with bothHGI andSHGI, TR spends
less time on index construction. This is because the land-
mark based distance computation is less time consuming
than the approximated betweenness score calculation.

We also report the pre-processing time ofHGI andSHGI

with various number of selected center nodes, as depicted
in Figure 8. Generally, when the number of center nodes
increases, the index construction time for both methods in-
creases. We observe thatSHGI takes less time thanHGI, and
the construction time ofHGI grows faster than that ofSHGI

with the number of center nodes increasing. It is becauseHGI

has to compute shortest paths between every pair of center
nodes, whileSHGI only maintains the shortest paths of those
center nodes having their partitions adjacent.



Hyper-Graph Index: an Index for Context-Aware Nearest Neighbor Query on Social Networks 13

 0
 2
 4
 6
 8

 10
 12
 14

0.5 1 2 3 4 5 6 7 8

S
to

ra
ge

 (
M

B
)

Number of nodes (×103)

TR
HGI

SHGI

(a) Dblp.

 0

 5

 10

 15

 20

1.0 1.2 1.4 1.6 1.8 2.0

S
to

ra
ge

 (
M

B
)

Number of nodes (×104)

TR
HGI

SHGI

(b) MyGamma.

Fig. 9 Storage cost vs. datasets (5% center nodes).

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 3 4 5 6 7 8 9 10

S
to

ra
ge

 (
M

B
)

Center node percentage (%)

HGI
SHGI

(a) Dblp (|V | = 5K).

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 3 4 5 6 7 8 9 10

S
to

ra
ge

 (
M

B
)

Center node percentage (%)

HGI
SHGI

(b) MyGamma (|V | = 16K).

Fig. 10 HGI/SHGI storage cost vs. # center nodes.

 0
 50

 100
 150
 200
 250
 300
 350

0.5 1 2 3 4 5 6 7 8

Q
ue

ry
 ti

m
e 

(m
s)

Number of nodes (×103)

SI
TR

HGI
SHGI

(a) Dblp

 500
 1000
 1500
 2000
 2500
 3000
 3500

1.0 1.2 1.4 1.6 1.8 2.0

Q
ue

ry
 ti

m
e 

(m
s)

Number of nodes (×104)

SI
TR

HGI
SHGI

(b) MyGamma

Fig. 11 Query time vs. dataset size (5% center nodes).

Storage Costs.Next, we evaluate the storage costs of var-
ious approaches, with the results reported in Figure 9. No-
tice thatSI does not request any index, thus does not cause
additional storage cost. On the other hand,TR records the
shortest distances from each landmark node to every other
node to facilitate fast shortest path search. Intuitively,all the
approaches take more storage as the graph size grows. It is
observed thatTR takes up more space thanHGI andSHGI. For
example, on the Dblp graph with8K nodes,TR consumes
2.5 times more space thanHGI, and16 times more space than
SHGI. Similarly, on the MyGamma graphs, the space cost of
TR is around2-10 times more than that ofHGI andSHGI.

The storage cost of the hyper graph indexes is also af-
fected by the number of center nodes selected. Obviously,
the more the selected center nodes are, the larger the hy-
per graph is, thus the larger storage space it takes (see Fig-
ure 10). We can also observe that the storage cost ofHGI is
much larger than that ofSHGI. The more the selected center
nodes are, the larger the differences are. It is because that
HGI maintains a complete hyper graph on the center nodes,
while the hyper graph ofSHGI is much sparser.

Query Time. We also study the query time of different ap-
proaches with different sized graphs, as reported in Figure11.
The query time is the average running time of200 randomly
generated queries. Generally, on both datasets,HGI andSHGI

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 ti

m
e 

(m
s)

Center node percentage (%)

HGI
SHGI

(a) dblp (|V | = 5K).

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 ti

m
e 

(m
s)

Center node percentage (%)

HGI
SHGI

(b) gamma (|V | = 16K).

Fig. 12 HGI/SHGI query time vs. # center nodes (γ = 0.01, |sig| =
128).

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

0.5 1 2 3 4 5 6 7 8

|A
C

A
N

N
(Q

).
P

|/
|C

A
N

N
(Q

).
P

|

Number of nodes (×10
3
)

HGI
SHGI

(a) Dblp

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

1.0 1.2 1.4 1.6 1.8 2.0

|A
C

A
N

N
(Q

).
P

|/
|C

A
N

N
(Q

).
P

|

Number of nodes (×10
4
)

HGI
SHGI

(b) MyGamma

Fig. 13 Approximation quality vs. dataset size (5% center nodes).

perform significantly better than bothSI andTR. In addition,
we find that the query time increases as the graph size in-
creases. However,SHGI is more resilient to the change of
graph size than others and hence it has a better scalability to
large sized graphs.

On the Dblp graphs,SI is faster thanTR. Whereas, on
the MyGamma graphs,TR, in most cases, incurs smaller
query time thanSI. This is mainly caused by different query
keywords selectivity. The textual contexts of the nodes of
Dblp graphs consist of the keywords of the users scientific
publications. There are many common keywords shared by
different users. Therefore, for the CANN queries with the
common keywords,TR usually generates a large number of
intermediate answer nodes, i.e., those nodes matching the
queried keywords.TR needs to run A* algorithm several
times to retrieve the shortest path from each intermediate
node to the query node, thus causing longer running time.
While, for the MyGamma graphs, the node context contains
the unique user names. Many generated CANN queries with
the unique user name as keywords has selectivity of1. In
these cases,TR runs faster thanSI. We will examine the im-
pact of the query keywords selectivity to the query perfor-
mance in detail in the next set of experiments.

In addition, we also fix the graph size and change the
number of center nodes selected, and report its impact on
the query time ofHGI andSHGI in Figure 12. Similar as pre-
vious observation, the more the selected center nodes are,
the larger the index is, thus the longer the search time is.

Approximation Quality. We then evaluate the approxima-
tion quality of the ACANN search based on the hyper-graph
index. First, we study the impact of dataset size on the ap-
proximation quality ofHGI and SHGI, as depicted in Fig-
ure 13. We observe that the approximation quality ofHGI is
generally better than that ofSHGI. For example, for the Dblp



14 Yazhe Wang, Baihua Zheng

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1 2 3 4 5 6 7 8 9 10

|A
C

A
N

N
(Q

).
P

|/
|C

A
N

N
(Q

).
P

|

Center node percentage (%)

HGI
SHGI

(a) Dblp (|V | = 5K).

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1 2 3 4 5 6 7 8 9 10

|A
C

A
N

N
(Q

).
P

|/
|C

A
N

N
(Q

).
P

|

Center node percentage (%)

HGI
SHGI

(b) MyGamma (|V | = 16K).

Fig. 14 Approximation quality vs. # center nodes.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

[1] (1,10]
(10,20]

(20,30]
(30,40]

(40,50]

Q
u

e
ry

 t
im

e
 (

m
s
)

Selectivity

SI
TR

HGI
SHGI

(a) Query time changes with selec-
tivity.

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

[1] (1,10]
(10,20]

(20,30]
(30,40]

(40,50]

|A
C

A
N

N
(Q

).
P

|/
|C

A
N

N
(Q

).
P

|

Selectivity

HGI
SHGI

(b) Query accuracy changes with
selectivity

Fig. 15 Query performance vs. query keywords selectivity.

graphs, the approximated shortest path returned bySHGI is
under0.25 times longer than the real shortest distance, while,
the one returned byHGI is around0.15 times longer than
the real shortest path (see Figure 13(a)). Given that short-
est distances between nodes of the Dblp/MyGamma datasets
are short (usually less than5 for Dblp datasets, and around
3 for MyGamma datasets), the approximated shortest paths
are usually only one or at most two steps further, compared
to the real shortest paths. Consequently, for those applica-
tions with high demand on search performance, our ACANN
search algorithm provides considerably good approximations
with fast response time.

Next, we study the impact of the number of center nodes
selected on the approximation quality, as reported in Fig-
ure 14. Again as observed from the results, the more the se-
lected center nodes are, the better the approximation quality
is, for bothHGI andSHGI. It is because that when more center
nodes are selected, the graph is partitioned into finer parti-
tions. Consequently, each partition contains less non-center
nodes and the average distance from a non-center node to its
nearest center node is shorter.

6.3 Query Keywords Selectivity

In this set of experiments, we further study the impact of
the query keywords selectivity on the query performance of
different methods. Due to the similarity among the results
w.r.t. different parameter settings, we only present the re-
sults on the Dblp graph with5K nodes. We generate sev-
eral groups of CANN queries such that the queries in each
group have different query keywords selectivity. The aver-
age query performance of the queries with different selec-
tivity is reported in Figure 15. In the figure, the x-axis is the
range of the number of nodes whose textual context matches

the queried keywords (i.e. selectivity). Figure 15(a) demon-
strates the query time change with different query selectivi-
ties. We find that as the query selectivity increases, the run-
ning time ofSI decreases slightly. This is probably because
that when there are more nodes containing the query key-
words in a graph, the distance based network expansion of
SI is likely to meet the answer nodes earlier, thus terminates
faster. On the opposite, the query time ofTR increases dras-
tically with the selectivity increasing. It is easy to under-
stand, because the number of times thatTR issues A* short-
est path search is equal to the number of intermediate nodes
in the graph, whose context matches the queried keywords.
However, because that theHGI andSHGI methods prune the
search space based on distance and context simultaneously
during the search, their running time is not very sensitive to
the query selectivity changes, and so is their approximation
quality (see Figure 15).

To sum up, in our experimental study, we evaluate the
pre-processing time, storage overhead, query time, and ap-
proximation quality of the proposedHGI andSHGI methods.
Compared with the existingSI andTR methods, our methods
take more pre-processing time, and they require less storage
overhead thanTR2. However,HGI andSHGI significantly ac-
celerate the CANN search with an average error factor less
than0.3. In addition, the query efficiency ofHGI andSHGI is
not sensitive to the query keywords selectivity changes.

7 Conclusion and Future Works

Social networking has been gaining popularity and grow-
ing rapidly in recent years. The problem of efficiently nav-
igating and searching social networks has attracted more
and more attentions. In this paper, we formulate a new type
of queries, namelycontext aware nearest neighbor search
(CANN) on social networks. It returns a node that is closest
to the query node, and meanwhile has its context matching
the query condition. CANN considers two important factors
of social networks simultaneously in its search condition:
the network structure and node context . We design ahyper-
graph based index structure and a simplified hyper-graph
variant to support approximate CANN search. According
to extensive evaluation tests, hyper-graph based approaches
support efficient query processing with limited sacrifice on
the query accuracy.

In our definition of CANN query, we use shortest path
distance to evaluate the connection strength of two users in
a social network, and consider finding the nearest user based
on boolean keywords match. In the future works, we would
like to study other network distance metrics, e.g. the ran-
dom walk distance, and other keywords matching scores e.g.
TF/IDF score. In addition, besides the betweenness based

2 The additional storage consumption ofSI is none.



Hyper-Graph Index: an Index for Context-Aware Nearest Neighbor Query on Social Networks 15

center nodes selection scheme, we want to explore other
center node selection criteria. Finally, we want to study effi-
cient ad-hoc search on dynamic social networks, where the
network structure and node context are updated rapidly.

Acknowledgements This research is supported by the Singapore Na-
tional Research Foundation under its International Research Centre @
Singapore Funding Initiative and administered by the IDM Programme
Office, and Baihua Zheng is supported by Singapore Management Uni-
versity.

References

1. Ana M. Martn Gonzlez Bo Dalsgaardb, J.M.O.: Centrality mea-
sures and the importance of generalist species in pollination net-
works. Ecological Complexity7(1), 36–43 (2010)

2. Ang, C.: Interaction networks and patterns of guild community in
massively multiplayer online games. Social Network Analysis and
Mining 1, 341–353 (2011)

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM (CACM)13(7), 422–426
(1970)

4. Carmel, D., Zwerdling, N., Guy, I., Ofek-Koifman, S., Har’el, N.,
Ronen, I., Uziel, E., Yogev, S., Chernov, S.: Personalized social
search based on the user’s social network. In: Proceedings of
the 18th ACM conference on Information and knowledge man-
agement (CIKM ’09), pp. 1227–1236 (2009)

5. Chong, W.H., Toh, W.S.B., Teow, L.N.: Efficient extraction of
high-betweenness vertices. In: Proceedings of the 2010 Interna-
tional Conference on Advances in Social Networks Analysis and
Mining (ASONAM ’10), pp. 286–290 (2010)

6. Cohen, E.: Fast algorithms for constructing t-spanners and paths
with stretch t. SIAM Journal on Computing28, 210–236 (1999)

7. Dalvi, B.B., Kshirsagar, M., Sudarshan, S.: Keyword search on
external memory data graphs. VLDB Endow.1(1), 1189–1204
(2008)

8. Dijkstra, E.W.: A note on two problems in connexion with graphs.
Numerische Mathematik1(1), 269–271 (1959)

9. Erwig, M.: The graph Voronoi diagram with applications. Net-
works36(3), 156–163 (2000)

10. Freeman, L.C.: A Set of Measures of Centrality Based on Be-
tweenness. Sociometry40(1), 35–41 (1977)

11. Gaboille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in
graphs. Journal of Algorithms53(1), 85–112 (2004)

12. Goldberg, A.V.: Point-to-point shortest path algorithms with pre-
processing. In: Proceedings of the 33rd conference on Cur-
rent Trends in Theory and Practice of Computer Science (SOF-
SEM’07), pp. 88–102 (2007)

13. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A
search meets graph theory. In: Proceedings of the sixteenthan-
nual ACM-SIAM symposium on Discrete algorithms (SODA’05),
pp. 156–165 (2005)

14. Gutman, R.: Reach-based routing: A new approach to shortest
path algorithms optimized for road networks. In: Proceeding of
the sixth Workshop on Algorithm Engineering and Experiments
(ALENEX’04), pp. 100–111 (2004)

15. He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword
searches on graphs. In: Proceedings of the 2007 ACM SIGMOD
international conference on Management of data (SIGMOD’07),
pp. 305–316 (2007)

16. Hu, H., Lee, D.L., Lee, V.C.S.: Distance indexing on roadnet-
works. In: Proceedings of the 32nd international conference on
Very large data bases (VLDB’06), pp. 894–905 (2006)

17. Hulgeri, A., Nakhe, C.: Keyword searching and browsing in
databases using banks. In: Proceedings of the 18th International
Conference on Data Engineering (ICDE’02), pp. 431–443 (2002)

18. Jing, N., Huang, Y.W., Rundensteiner, E.A.: Hierarchical encoded
path views for path query processing: An optimal model and its
performance evaluation. IEEE Transactions on Knowledge and
Data Engineering (TKDE)10(3), 409–432 (1998)

19. Jung, S., Pramanik, S.: An efficient path computation model for
hierarchically structured topographical road maps. IEEE Transac-
tions on Knowledge and Data Engineering (TKDE)14(5), 1029–
1046 (2002)

20. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R.,
Karambelkar, H.: Bidirectional expansion for keyword search on
graph databases. In: Proceedings of the 31st internationalconfer-
ence on Very large data bases (VLDB’05), pp. 505–516 (2005)

21. Kourtellis, N., Alahakoon, T., Simha, R., Iamnitchi, A., Tripathi,
R.: Identifying high betweenness centrality nodes in largesocial
networks. Social Network Analysis and Mining pp. 1–16 (2012)

22. Lee, D., Leng, C.: Partitioned signature file: Design considerations
and performance evaluation. ACM Transactions on Information
Systems (TOIS)7(2), 158–180 (1989)

23. Lee, D.L., Kim, Y.M., Patel, G.: Efficient signature file methods
for text retrieval. IEEE Transactions on Knowledge and DataEn-
gineering (TKDE)7(3), 423–435 (1995)

24. Lee, K.C.K., Lee, W.C., Zheng, B.: Fast object search on road
networks. In: Proceedings of the 12th International Conference
on Extending Database Technology (EDBT’09), pp. 1018–1029
(2009)

25. Lee, K.C.K., Lee, W.C., Zheng, B., Tian, Y.: Road: A new spatial
object search framework for road networks. IEEE Transactions on
Knowledge and Data Engineering (TKDE)24(3), 547–560 (2012)

26. Leng, C., Lee, D.: Optimal weight assignment for signature gen-
eration. ACM Transactions on Database Systems (TODS)17(2),
346–373 (1992)

27. Li, G., Feng, J., Chin Ooi, B., Wang, J., Zhou, L.: An effective
3-in-1 keyword search method over heterogeneous data sources.
Information Systems36, 248–266 (2011)

28. Maglaras, L.A., Katsaros, D.: New measures for characterizing the
significance of nodes in wireless ad hoc networks via localized
path-based neighborhood analysis. Social Network Analysis and
Mining pp. 97–106 (2012)

29. Newman, M.: A measure of betweenness centrality based onran-
dom walks. Social networks27(1), 39–54 (2005)

30. Peleg, D.: Proximity-preserving labeling schemes. Journal of
Graph Theory33, 167–176 (2000)

31. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalablenetwork
distance browsing in spatial databases. In: Proceedings ofthe 2008
ACM SIGMOD international conference on Management of Data
(SIGMOD’08), pp. 43–54 (2008)

32. Schenkel, R., Crecelius, T., Kacimi, M., Michel, S., Neumann, T.,
Parreira, J.X., Weikum, G.: Efficient top-k querying over social-
tagging networks. In: Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in infor-
mation retrieval (SIGIR’08), pp. 523–530 (2008)

33. Vieira, M.V., Fonseca, B.M., Damazio, R., Golgher, P.B., Reis,
D.d.C., Ribeiro-Neto, B.: Efficient search ranking in social net-
works. In: Proceedings of the sixteenth ACM conference on Con-
ference on information and knowledge management (CIKM’07),
pp. 563–572 (2007)

34. Wei, F.: TEDI: efficient shortest path query answering ongraphs.
In: Proceedings of the 2010 international conference on Manage-
ment of Data (SIGMOD’10), pp. 99–110. New York, New York,
USA (2010)

35. Xiao, Y., Wu, W., Pei, J., Wang, W., He, Z.: Efficiently indexing
shortest paths by exploiting symmetry in graphs. In: Proceedings
of the 12th International Conference on Extending DatabaseTech-
nology (EDBT’09), pp. 493–504 (2009)



16 Yazhe Wang, Baihua Zheng

36. Yin, P., Lee, W.C., Lee, K.C.: On top-k social web search.In:
Proceedings of the 19th ACM international conference on Infor-
mation and knowledge management (CIKM ’10), pp. 1313–1316
(2010)


	Hypergraph Index: An Index for Context-aware Nearest Neighbor Query on Social Networks
	Citation

	dblp_num.eps

