
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2001

Genetic algorithms for communications network design - an Genetic algorithms for communications network design - an

empirical study of the factors that influence performance empirical study of the factors that influence performance

Hsinghua CHOU

G. Premkumar

Chao-Hsien CHU
Singapore Management University, chchu@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Theory and Algorithms Commons

Citation Citation
CHOU, Hsinghua; Premkumar, G.; and CHU, Chao-Hsien. Genetic algorithms for communications network
design - an empirical study of the factors that influence performance. (2001). IEEE Transactions on
Evolutionary Computation. 5, (3), 236-249.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1765

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1765&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1765&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

236 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 3, JUNE 2001

Genetic Algorithms for Communications Network
Design—An Empirical Study of the Factors that

Influence Performance
Hsinghua Chou, G. Premkumar, and Chao-Hsien Chu

Abstract—Genetic algorithms (GAs) are being used exten-
sively in optimization problems as an alternative to traditional
heuristics. Although the results have been mixed, very limited
research has been performed on the impact of various GA factors
on performance. We explore the use of GAs for solving a network
optimization problem, the degree-constrained minimum spanning
tree problem. We also examine the impact of encoding, crossover,
and mutation on the performance of the GA. A specialized repair
heuristic is used to improve performance. An experimental design
with 48 cells and ten data points in each cell is used to examine
the impact of two encoding methods (Prüfer and determinant
encoding), three crossover methods (one-point, two-point, and
uniform), two mutation methods (insert and exchange), and four
networks of varying node sizes (20, 40, 60, 80). Two performance
measures, solution quality and computation time, are used to
evaluate performance. The results indicate that encoding has
the greatest effect on solution quality, followed by mutation
and crossover. Among the various options, the combination of
determinant encoding, exchange mutation, and uniform crossover
more often provides better results for solution quality than other
combinations. For computation time, the combination of deter-
minant encoding, exchange mutation, and one-point crossover
provides better results.

Index Terms—Degree-constrained minimum spanning tree, ge-
netic algorithms, GA operators, network design.

I. INTRODUCTION

GENETIC algorithms (GAs) and other evolutionary
algorithms have been used extensively in a wide variety

of application domains including engineering, economics,
finance, manufacturing, agriculture, and business. Simple GAs
seem to perform well in certain problem areas, but not so
well in other areas [1]. Since GAs consist of various compo-
nents and parameters that can be modified, it is important to
understand the impact of these factors on GA performance.
Many factors such as population size, reproduction operators,
fitness function, encoding methods, etc., can have a significant
impact [2]–[4]. Researchers have studied the impact of various
factors including problem encoding, crossover and mutation
operators, population size, crossover and mutation rate, halting

Manuscript received February 22, 1999; revised July 13, 1999, January 3,
2000, and July 25, 2000.

H. Chou is with the Sprint Corporation, Overland Park, KS 66210 USA.
G. Premkumar is with the College of Business, Iowa State University, Ames,

IA 50011 USA (e-mail: prem@iastate.edu).
C.-H. Chu is with the School of Information Sciences and Technology,

Pennsylvania State University, University Park, PA 16802 USA (e-mail:
chu@ist.psu.edu).

Publisher Item Identifier S 1089-778X(01)00002-9.

criterion, etc. [5]–[7]. For example, researchers have examined
the impact of different crossover operators [8]–[15]. Dengizet
al. [7] examined the impact of population size, crossover rate,
and mutation rate. Abualiet al. [16] compared the performance
of three different encoding methods—Prüfer, Link-node bias,
and determinant encoding. Booker [17] compared one-point
and two-point crossover methods for nonorder problems. Most
research has focused on only one factor—crossover or mutation
operator, population size, or encoding method. Limited re-
search has examined impact of a combination of these factors.
The interaction of encoding and reproduction operators is a key
to GA’s performance [18], [19]. Since these factors are closely
interrelated, evaluating the role of these different factors and
their interrelationships should help in identifying the important
factors and their ideal combinations for effective performance
in different settings. This study examines some of these factors
in solving communications network design problems.

The minimum spanning tree (MST) problem is one of the
best-known network optimization problems used for designing
backbone networks. A special case of MST is a degree-con-
strained minimum spanning tree (DCMST), where additional
constraints specify the upper and lower bounds of the number
of links to a node. The DCMST problem is NP-hard and tradi-
tional heuristics have had only limited success in solving small
to midsize problems [20]. The major objectives of the current
study are:

1) to develop a GA approach to solve the DCMST problem;
2) to determine the impact of various factors, specifically

the impact of encoding, crossover, and mutation, on GA’s
performance.

The paper is organized as follows. In Section II, we present
the details of the DCMST problem. In Section III, we elabo-
rate on the GA approach to solve this problem; specifically, we
discuss our encoding strategies, various crossover and muta-
tion operators, initialization and selection strategy, and the re-
pair method. In Section IV, we describe the research hypotheses
and experimental design. Finally, in Section V, the results are
presented and discussed.

II. DCMST

Many of the network topology design problems start with the
MST, which attempts to find a minimum cost tree that connects
all the nodes of the network. The links or edges have associated
costs that could be based on their distance, capacity, quality of

1089–778X/01$10.00 © 2001 IEEE

Published in IEEE Transactions on Evolutionary Computation, 2001 June, Volume 5, Issue 3, Pages 236-249
https://doi.org/10.1109/4235.930313

CHOU et al.: GENETIC ALGORITHMS FOR COMMUNICATIONS NETWORK DESIGN—AN EMPIRICAL STUDY 237

line, etc. There might be other constraints imposed on the de-
sign such as the number of nodes in a subtree, degree constraints
on nodes, flow and capacity constraints on any edge or node,
and type of services available on the edge or node. The MST
problem is found in communication networks, circuit design,
transportation, and logistics among others. Several variations to
the basic problem have been identified for different design con-
texts [21], [22]. The complexity of the MST problem increases
as the number of nodes increases. Many heuristics have been de-
veloped to solve large problems, prominent among them being
Kruskal [23] and Prim [24] algorithms.

One of the popular variations of the MST problem is the
DCMST. The MST algorithm may occasionally generate a min-
imal spanning tree where all the links connect to one or two
nodes. This solution, although optimal, may be highly vulner-
able to failure due to overreliance on a few nodes. Furthermore,
the technology to connect many links to a node may not be avail-
able or may be too expensive. Hence, it may be necessary to
limit the number of links connecting to a node. Alternatively,
from a reliability perspective it is desirable to have more than
one link connect to a node so that alternative routes can be se-
lected in the case of a node or link failure [25], [26]. Hence,
in practice, we may add additional constraints that specify the
upper and lower bound of the number of links connecting to a
node. DCMST was specifically developed as a special case of
MST with additional constraints to improve the reliability of the
network and rerouting of traffic in the case of node failures.

The DCMST problem can be stated as follows:. Let
be a complete graph ofnodes in which each edge

has an associated weight . Determine a spanning tree of
minimum total edge weight (sum of the weights of the edges is
minimum) such that, at each node, the degree is between
a lower bound and upper bound . The mathematical
formulation of the problem is presented in Appendix I.

The problem of constrained trees has been studied for many
years [20]. The popular travelling salesman problem (TSP) is
a subset of the DCMST, where the degree constraint is two.
Johnson [27] describes ten constrained MST problems that
are NP-hard. The earliest heuristic algorithm for DCMST was
proposed by Obruca [28] as a solution to TSP. Narula and Ho
[20] proposed three heuristic algorithms to solve the DCMST
problem: primal, dual, and branch and bound. Savelsbergh and
Volgenant [29] introduced an “edge exchange” algorithm that
provided better performance. Although these methods solve
experimental size problems, the computation time increases
dramatically when the problem size gets larger. In recent years,
researchers have attempted using meta-heuristics such as Tabu
search and genetic (evolutionary) algorithms to solve these
problems.

III. A PPLYING GAS TO NETWORK DESIGN

GAs have been used to solve communications network design
problems in a wide variety of contexts [7], [16], [30]–[37]. How-
ever, there is very limited research on using GAs for DCMST
problems and also examining the impact of GA parameters on
its performance. This study attempts to address both these is-

sues. The details of the GA used for this problem are described
below.

A. Problem Representation

In a network design problem, the strings used for representa-
tion could have information on the link identification, capacity
of the network, cost of the link, and whether the link is part
of the solution. The encoding should represent all the relevant
parameters of the problem and be able to uniformly represent
all possible solutions to the problem. The encoding can be of
two types: direct or indirect [2], [38]. With direct encoding, the
strings can be read directly, while with indirect encoding, a de-
coding algorithm is used to expand the strings into meaningful
information for evaluation.

Spanning trees have been used extensively in a variety of
network optimization problems and various encoding methods
have been used to represent trees [38]. They can be classified
broadly into three categories: edge, node, and edge-node
encoding. Inedge encoding[39], a binary string is used to
represent the edges of the spanning tree. Dengizet al. [7]
used an integer string to represent a tree in communication
networks, where each integer arbitrarily represents an edge.
Edge encoding has been found to be a poor representation for
MST due to the low probability of obtaining a tree [34], [38].
In node-or vertex-based encoding the nodes, rather than edges,
are represented in the encoding. A popular encoding method
for trees is based on Prüfer number [40], which represents a
tree of nodes with digits, where each digit is an integer
between one and. Prüfer encoding is an indirect encoding
method that has been used to represent an MST [39]. However,
Prüfer encoding has very limited locality as changing any one
digit in the Prüfer number can dramatically change the tree
[34]. Abuali et al. [16] suggested determinant encoding as an
alternate node-based encoding for representing spanning trees.
Edge and nodeencoding uses information about both nodes
and links. An example in this category is link and node biased
(LNB) encoding [34], which uses a bias value for each node and
link in calculating the cost of the network. This representation
has some limitations including long encoding and lack of
information about degree on nodes. Abualiet al.[16] compared
Prüfer, determinant, and LNB encoding methods and found
that determinant encoding provided better performance. In this
study, we examine the impact of two encoding methods,Prüfer
and determinant encoding, that are appropriate for the DCMST
problem. A brief description of the two algorithms is provided
in Appendix II.

B. Population Initialization

There are two parameters to be decided for initialization: the
initial population size and the procedure to initialize the pop-
ulation. Initially, researchers thought that the population size
needed to increase exponentially with the length of the chro-
mosome string in order to generate good solutions [41]. Recent
studies have shown, however, that satisfactory results can be ob-
tained with a much smaller population size [42]. There are two
ways to generate the initial population—random initialization
and heuristic initialization. We use the random method, where

238 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 3, JUNE 2001

TABLE I
(a) LINK COSTS FOR ANINE-NODE SPANNING TREE. (b) UPPER AND

LOWER DEGREECONSTRAINTS FORNODES

(a)

(b)

for each gene we randomly generate an integer from a range of
one to the number of nodes (Fig. 2 has nine nodes). The initial
chromosomes need not represent a legal or feasible tree.

C. Repair Function

Determinant encoding generates some chromosomes that are
illegal (not a spanning tree) and some that are legal, but infea-
sible due to constraint violations. A combination of repair and
penalty functions is used in this study to repair both illegal and
infeasible solutions.

1) Repair Function for Illegal Chromosomes:The spanning
tree may be illegal due to three reasons: missing node “1,” self-
loop, or cycles.Missing node “1” occurs when a chromosome
does not contain any gene that has a value “1.” Since the fixed
position starts from two, the generated spanning tree will not
contain “1” and, therefore, will not span all the nodes.Self-loop
occurs when the value of a gene is equal to its correspondent
node position. For example, in determinant coding, a chromo-
some (4 4 2 5) cannot construct a five-node spanning tree be-
cause the value of the gene is five and its correspondent node po-
sition is five, which causes an illegal self-loop connection (5–5).
Cycleoccurs if a subset of links connect in a loop, returning to

Fig. 1. Problem representation with determinant encoding—illegal tree.

the original node, in which case one of the links may be unnec-
essary. The algorithm illustrated below describes a strategy to
solve all the three situations that lead to illegal spanning trees.

Given a determinant encoding stringwith length of ,
where represents number of nodes. Assume represents
the allele of the th fixed position in chromosome, where
starts from two to . The algorithm is presented below along
with an example that illustrates every step of the algorithm.
The cost for a nine-node spanning tree problem is shown in
Table I(a). Fig. 1 shows the chromosome coded by the determi-
nant encoding method, which contains three kinds of problems:
missing node 1, self-loop, and cycles.

S1) Repair missing node 1.
For a given encoding string , identify , where

. If exists, go to S2; otherwise, check cost
table and pick node , where has the lowest
connecting cost to node1. Set . If there is a
tie, randomly select a position.

Check if “1” exists in the string. If not, find the
lowest-cost node connected to node “1.” Based on the
cost table, nodes “2,” “3,” and “6” have the lowest con-
nection cost to node “1.” Since they all have the same
cost randomly choose one of them, say, fixed position
“6.” Replace the allele in fixed position “6” with “1.”
The result is shown in Fig. 2(a).

S2) Repair self-loop.
For a given encoding string, identify , where

. Check the cost of connecting each node
with node . Select node , which has the lowest

connecting cost with nodeand set . If there
is a tie, randomly select a position.

Check for self-loop. The fourth and the last position
generate a self loop— 5–5 and 9–9. Select a node with
lowest cost connection to nodes “5” and “9.” Using the
cost table, node “4” is paired with node “5” and node
“7” is paired with node “9”. The result is presented in
Fig. 2(b).

CHOU et al.: GENETIC ALGORITHMS FOR COMMUNICATIONS NETWORK DESIGN—AN EMPIRICAL STUDY 239

Fig. 2. Repair of illegal tree—missing node and self loop.

S3) Examining cycle.
For a given encoding string , allocatevectors

and of size and initialize value as Null. Assume
and are the th position invectors and .

For a given chromosome C:

If and are Null,
select the smaller of and .

Suppose ,then set
and set .

Else, if is Null and is
not Null,

set .
Else, if is not Null and

is Null,
set .

Else, if both and are
not Null,

then if , set ;
otherwise, select the smaller of

and . Suppose ,
then scan , where 1 .
If , set .
Set and Go to S4.

The repair operator initially checks if cycles or sub-
trees exist by using a grouping algorithm. Nodes in the
same subtree are grouped in the same set numbered by
the smallest node number. In this example, we find that
there is one cycle causing two subtrees. The algorithm
maintains two arrays: and . Array contains infor-
mation on sets where each node belongs to and array

Fig. 3. Repair of illegal tree—cycle.

keeps track of information on node pairs that cause cy-
cles. Based on the subsets in, repair function is used
to connect broken subset into one set. The result after
examining cycles is presented in Fig. 3.

S4) Repairing cycle.
Exam , if , stop; else, if Null,

set and go back to S4; otherwise, iden-
tify , where and has
the lowest connection costto node . Identify ,
where and has the lowest
connection cost to node . Select the smaller of
and . Assume is the smaller, then set .
Exam , where , if , set

. Set and go to S4.
After examining cycles, the repair function picks the

first pair from array and checks the cost table to
locate the node in different set which has the lowest
cost to link with the fixed position. In our example, we
find out the possible links are and . After
checking the cost table, is found to be the lower
in cost. Thus, we replace the allele in fixed position
“4” by node “6.” The updated table and chromosome
is represented in Fig. 4.

2) Repair Function for Infeasible Chromosomes:Both en-
coding methods may generate a spanning tree that violates the
degree constraints on the nodes. There are two choices to deal
with infeasible solutions. One is to repair and the other is to as-
sign a penalty value. The repair option is used extensively, but
may be computationally expensive and/or may disturb the cer-
tain desirable aspects of the parent solution carried in the chil-
dren. The penalty option has also been used with considerable
success [43]. The design of the penalty function is critical to en-
sure quick convergence without sacrificing on the search of the
entire solution space or expensive computation time.

We use a method that combines both repair and penalty. The
repair function has to first check if each node’s degree is within
the lower and upper degree constraints. If it violates the con-
straints, the network has to be repaired. The repair algorithm

240 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 3, JUNE 2001

Fig. 4. Legal spanning tree after repair.

replaces a degree-violated node by randomly choosing another
node that does not violate the degree constraints.

S1) For a given encoding string with length of ,
where represents nodes. Avector is used to store
the degree status of all nodes in a graph. Let rep-
resent the value in theth position invector . Assume

represents the allele of the fixed position in
chromosome , where starts from 2 to . Set
and go to S2.

S2) Check the number of times “” appears in . Add the
number by one (because there is an extra connection
from the fixed position) as its correspondent degree
level . Set . Set , if ,
set and go to S3; otherwise go back to S2.

S3) Compare with its upper and lower degree limita-
tion, , and .

If ,
Randomly select a node ,

where will not be greater
than after adding the extra
one.

Randomly select a , where
and set .

Update the degree status of and
in vector such that

and ;
Else, if ,

Randomly select a node ,
where will not be less than

after subtracting the extra
one.

Randomly select a , where
and set .

Fig. 5. Random repair for infeasible solutions.

Update the degree status of and
in vector such that

and ;
If or , go back to

S3.
Set , if , stop; other-

wise, go back to S3.

To illustrate, examine the network in Fig. 4. The requirements
of degree-constraints are shown in Table I(b). Comparing the de-
gree constraint values in Table I(b) with the given chromosome
we observe that node 4 exceeds the upper-level degree constraint
by 1 and node 5 is below the lower-level degree constraint by 2.
The random repair algorithm, described above, is used to repair
the network to satisfy the constraints. Examine the chromosome
and find the nodes that violate degree constraints: nodes 4 and
5 in this case. Randomly find a node, say node 5, that does not
exceed the upper-level degree constraint after incrementing by
one and replace it with node 4. Replace the allele in fixed posi-
tion 3 (a randomly selected gene contains “4”) with node 5. This
increases the degree constraint of node 5 by one and decreases
node 4 by one. We find from the summary table of degree con-
straints that node 5 is one degree less than the constraint. Ran-
domly select a fixed position, say “2,” so that its correspondent
gene’s degree will not be less than its lower limitation after de-
creasing by one. Assign node 5 to fixed position “2” and de-
crease the degree of node 3 (the original gene in fixed position
“2”) by one and increase the degree of node 5 by one. The final
network layout is presented in Fig. 5.

3) Penalty Function:Since the network generated after re-
pairing the degree constraints could now be illegal (not a span-
ning tree), the illegal repair algorithm will be used one more
time to ensure that all the repaired chromosomes are legal. After
this repair, a few chromosomes may still violate the degree con-
straints. A function is used to penalize chromosomes that violate
the constraints by adding a negative value to the fitness value.
Since the cost of network is dependent on the network size and,
therefore, the chromosome length, the penalty value has to be

CHOU et al.: GENETIC ALGORITHMS FOR COMMUNICATIONS NETWORK DESIGN—AN EMPIRICAL STUDY 241

proportional to the cost of the network. The value is computed
by providing a weightage for the length of the chromosome. The
penalty function is computed as follows:

where
new cost value of chromosome;
original cost value of chromosome;
penalty value of chromosome;
length of chromosome;
weight given by the user;
degree of node in chromosome ;
lower/upper degree limitation of nodein chromo-
some .

As shown above, the penalty value is based on the differ-
ence of each allele and the degree constraint of its correspon-
dent node, and the length of the chromosome.

D. Fitness Function

The fitness function will interpret the chromosome in terms
of the physical representation (phenotype) and evaluate its fit-
ness based on certain characteristics that are desired in the so-
lution. The definition of the fitness function is very critical be-
cause it must accurately measure the desirability of the features
described by the chromosome. The function should be efficient
in its computation since it is used a large number of times to
evaluate each and every solution. The fitness function computes
a fitness value for each chromosome. The fitness value is not an
absolute value, but a value relative to a given population [41]

when
otherwise.

indicates the new fitness value being scaled and is the
smallest objective value in the current generation of the popu-
lation. The chromosomes are ranked based on the fitness value
for selection for the next generation.

E. Selection Methods

There are many methods to select the population. Each has
advantages and disadvantages [44]–[46]. Some researchers
prefer to use the enlarged sampling approach since it reduces
the possibility of duplicate chromosomes entering the popu-
lation during selection [38]. Typically, there are two enlarged
sampling strategies: and . In strategy,

parents and offsprings compete for survival and the
best solutions are selected for the next generation. In
strategy, we select thebest solutions from out of

offspring solutions. We used the stochastic method.

F. Reproduction Operator—Crossover

Crossover methods such as one-point, two-point, and
uniform crossover are extensively used in GA models [10].
Booker [17] compared one and two-point crossover and found
the two-point crossover to be better for nonorder problems.
Syswerda [10] compared one-point, two-point, and uniform

crossover operator on six different types of problems using a
steady–state GA with simple mutation and binary encoding. He
found uniform crossover to be more effective than two-point
crossover and two-point crossover consistently better than
one-point crossover. Poon and Carter [15] compared the
performance of ten crossover operators over six applications
and found that order and union crossover operators performed
uniformly well in all applications and position-based and
intersection-crossover operators were the worst performers. We
evaluate the effectiveness of one-point, two-point, and uniform
crossover methods. Inone-point crossover, a random position is
generated for a pair of chromosomes and the alleles of the first
chromosome from this fixed position to the end are exchanged
with the second chromosome in the same range. In this process,
the alleles of the second chromosome are transferred to the
respective alleles in the first chromosome.Two-point crossover
generates two random positions, head and tail. The alleles of
the first chromosome from the head position to the tail are
exchanged with the second chromosome in the same range.
Uniform crossoveris a dynamic and nondeterministic method
where a set of positions, called a mask, is chosen for each of
the chromosomes and their alleles are exchanged with each
other based on the generated positions. There are two random
decisions—the positions to replace and the number of genes to
replace.

G. Reproduction Operator—Mutation

Various mutation methods have been examined including
inversion, insertion, displacement, reciprocal exchange, and
heuristic mutation [38]. Two mutation methods were used
here, namely, insert and exchange mutation.Insert mutation
randomly generates two positions in a given chromosome
and inserts the gene from the first position in the second
position and shifts all the genes to the right by one position.
Exchange mutationrandomly selects two positions in a given
chromosome and exchanges both genes. Insert mutation causes
greater changes to the chromosome compared to exchange
mutation. This is particularly true in our study since the genes
in a chromosome are related to their fixed positions.

H. Control Parameters

An important control parameter is thehalting criterion. There
are severalhalting criteria to choose from including number of
generations, computing time, and fitness convergence. Fitness
convergence occurs when all the chromosomes in the population
have the same fitness value. In this study, fitness convergence is
selected as the halting criterion.

The population size, crossover rate, and mutation rate are
three other important control parameters for GA. The initial
population sizewas fixed at 100 and stochastic selection
method was used. Since researchers suggest a high crossover
and mutation rate for enlarged sampling method [38], we chose
1.0 as thecrossover and mutation rate.

IV. RESEARCHHYPOTHESES ANDEXPERIMENTAL DESIGN

We use two performance measures to evaluate the results:
the value of the objective function (solution quality) and com-

242 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 3, JUNE 2001

TABLE II
SOLUTION QUALITY (COST) AND COMPUTATION TIME PERFORMANCE FORCOMBINATIONS OF ENCODING, CROSSOVER, MUTATION, AND NETWORK SIZE

putation time. The factors identified for study are encoding,
crossover, mutation, and network size.

The following null hypotheses were formulated.

H1: The mean value of solution quality is the same for the
two encoding methods.

H2: The mean value of computation time is the same for the
two encoding methods.

H3: The mean value of solution quality is the same for the
three crossover methods.

H4: The mean value of computation time is the same for the
three crossover methods.

H5: The mean value of solution quality is the same for the
two mutation methods.

H6: The mean value of computation time is the same for the
two mutation methods.

A. Experimental Design

There are four experimental variables—encoding, crossover,
mutation, and network size. We considered two encoding
methods (determinant and Prüfer), three crossover methods
(one-point, two-point, and uniform), two mutation methods
(insert and exchange), and four networks of varying node sizes
(20, 40, 60, 80). Hence, an experimental design with 48 cells
(2 3 2 4) was used to represent the combinations of all the
factors. For each cell, ten data sets were generated randomly.
In total, there were 480 data points for the experiment, 48
cells with ten data points in each cell. Each network was
generated using a special-purpose algorithm [47], where the
coordinates of each node in the data set were generated from
a 500 500 graphic plane with each data set using a different
random number seed scaled from 0.1 to 0.9. For each cell, ten
different networks were created using ten different random
number seeds. The cost of the edges was calculated based on

the Euclidean distance between the nodes. The experiment
controlled for other factors such as population size, selection
method, crossover rate, and mutation rate.

V. COMPUTATIONAL RESULTS

A. Comparison of GA Operators

The results of the experiment are shown in Table II. The
column represents the network size and the rows show the var-
ious combinations of GA factors. The values in the cell report
the average value for the ten data sets in each cell. The high-
lighted cells represent the best solution.

Table III presents the results of an analysis of variance
(ANOVA) for solution quality using four main factors—en-
coding, crossover, mutation, and network size. The results
indicate that all the factors are significant at ,
thereby rejecting the null hypotheses H1, H3, and H5. We also
evaluated the two-way interaction among the four factors. All
the interactions, except crossover with encoding, are signifi-
cant. In general, the values of interaction terms for crossover
with the other three factors are relatively lower than the other
interaction terms.

Table IV presents the results of ANOVA for computation
time. The results indicate that all the factors are significant at

, thereby rejecting the null hypotheses H2, H4, and
H6. Among the interaction terms, encoding with mutation and
crossover with mutation had high values.

The variation in the absolute value of solution quality for the
different combinations are more pronounced for larger networks
as compared to smaller networks. While the difference between
the lowest and highest cost value is only 278 (18% of absolute
value) for the 20-node network it is around 3180 (103% of abso-
lute value) for the 80-node network. Hence, for larger network

CHOU et al.: GENETIC ALGORITHMS FOR COMMUNICATIONS NETWORK DESIGN—AN EMPIRICAL STUDY 243

TABLE III
ANOVA—SOLUTION QUALITY , CROSSOVER, MUTATION, ENCODING, AND NETWORK SIZE

TABLE IV
ANOVA—COMPUTATION TIME, CROSSOVER, MUTATION, ENCODING, AND NETWORK SIZE

sizes, there is a greater possibility of the solution being further
away from the minimal solution. A similar pattern is also no-
ticed in the absolute value of computation time. While the dif-
ference is 13.3 s for the 20-node network, it is 1466 s for the

80-node network. These results highlight clearly the importance
of selecting the right GA parameters. The selection of appro-
priate parameters becomes more critical as the problem size in-
creases.

244 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 3, JUNE 2001

TABLE V
EFFECT OFENCODING, CROSSOVER, AND MUTATION ON SOLUTION QUALITY —PAIRED t-TEST. (a) SOLUTION QUALITY AND ENCODING. (b)

SOLUTION QUALITY AND CROSSOVER. (c) SOLUTION QUALITY AND MUTATION

(a)

(b)

(c)

While ANOVA results generally indicate the factors that
have the maximum impact on performance, they do not indicate
which of the options in each of these factors lead to better
performance. An examination of the mean values in Table II
indicates that the combination of uniform crossover, exchange
mutation, and determinant encoding generates the best solution
quality for all network sizes.

To generalize from our experiments, we performed additional
data analysis on subgroups. The values for solution quality and
computation time are influenced by various options within the
four factors: encoding, crossover, mutation, and network size.
To compare the options within each factor, we need to control
for the effect of all the other factors. For example, if we have to
compare the performance of insert and exchange mutation, we
need to control for the variations due to encoding, crossover,
network size, and problem set. Hence, we recast the data set so
that we compared the results of two sets of experiments where
all factors, except the one under study, are kept constant. For
example, to compare insert and exchange mutation we created
pairs of data sets (240 in all), where all the other factors were
same, but varied only in the mutation treatment. Paired-tests
were conducted between these pairs to statistically test if the
mean values of solution quality and computation time were dif-
ferent for each of the different options. The results for solution
quality and computation time are shown in Tables V and VI,
respectively. The results for solution quality indicate that: 1)
determinant encoding was better than Prüfer encoding; 2) ex-
change mutation was better than insert mutation; and 3) uni-
form crossover was better than one- or two-point crossover. The
results for computation time indicate that: 1) determinant en-

coding was better than Prüfer encoding; 2) exchange mutation
was better than insert mutation;and 3) one-point crossover was
better than two-point or uniform crossover.

VI. DISCUSSION

We found that Prüfer encoding did not provide good results.
Since Prüfer encoding does not possess locality, small changes
in the chromosome due to mutation or crossover create totally
new solutions. Therefore, Prüfer number, although a useful
way to represent trees, is not an effective representation
for a GA. Determinant encoding generates both illegal and
infeasible solutions. The repair of infeasible solutions is a
significant computation cost. In our case, the repair of illegal
and infeasible solutions could go through an endless cycle, one
creating the other—repairing legal infeasible solutions creating
illegal solutions, which on repair could become infeasible. We
went through two cycles of repair (illegal–infeasible–illegal)
and chose a function to penalize illegal solutions that did not
get repaired. We chose a simple penalty function based on a
distance vector, but better penalty functions can be designed
to reduce repair without sacrificing on global search space.
Adaptive penalty function, where the function varies between
generations, could be used to improve performance [43],
[48]–[50]. We could use an adaptive penalty function that uses
a low penalty value in the earlier generations to widen the
search space, but increases the penalty in later generations to
lead to faster convergence.

An area for performance improvement lies in the repair al-
gorithm. Researchers have advocated the use of heuristics for
improving a GA’s performance [18]. We could expect some im-

CHOU et al.: GENETIC ALGORITHMS FOR COMMUNICATIONS NETWORK DESIGN—AN EMPIRICAL STUDY 245

TABLE VI
EFFECT OFENCODING, CROSSOVER, AND MUTATION ON COMPUTATION TIME—PAIRED t-TEST. (a) COMPUTATION TIME AND ENCODING. (b)

COMPUTATION TIME AND CROSSOVER. (c) COMPUTATION TIME AND MUTATION

(a)

(b)

(c)

provement in performance by using a heuristic for repair rather
than the random repair method that is currently being used. With
Prüfer encoding, it is difficult to use heuristics for repairing
infeasible networks. However, determinant encoding provides
an opportunity to use heuristics to repair networks that vio-
late degree constraints. Hence, a heuristic was used and its per-
formance was compared with the random repair method. This
heuristic used a “local search hill climber” approach to repair
chromosomes and improve performance.

The heuristic repair algorithm selects the longest neighbor
node to disconnect and the closest neighbor node to connect so
as to meet the degree requirements. The algorithm is as follows.

S1) For the given encoding stringwith length of ,
where represents the number of nodes. Avector
is used to store the degree status of all nodes in a graph.
Let represent the value in theth position invector

. Assume represents the allele of the fixed
position in chromosome , where starts from 2 to

. Set and go to S2.
S2) Check the total number of times “” appears in . Add

the number by one (because there is an extra connec-
tion from the fixed position) as its correspondent de-
gree levels . Set and . If ,
set and go to S3, otherwise go back to S2.

S3) Compare with its upper and lower degree limita-
tions and .

If ,
scan string and identify ,
where and node has the
highest connecting cost with .
Scan the cost table and identify
node , , which has the
lowest connecting cost with node

and will not be greater than
, after adding the extra one.

Set , and update de-
gree status in vector such that

and .
Else, if ,

identify , where will
not be less than after sub-
tracting the extra one and node

has the lowest connecting cost
with . Update the degree status
such that and

and set .
If or , go back

to S3.
Set , if , stop; other-

wise, go back to S3.

246 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 3, JUNE 2001

Fig. 6. Heuristic repair for infeasible solutions.

Let us examine how the heuristic algorithm repairs the net-
work shown in Fig. 4. It examines the chromosome and find
that nodes 4 and 5 violate degree constraints. Identify the two
highest cost links (3–4), (5–4) connected to node 4. Randomly
break one of them, say link (3–4). Check the cost table and pick
the node that has the lowest cost connecting to node 3 and meets
the degree constraint requirements after incrementing the de-
gree by one. We notice node 1 is the best fit. Replace the allele
in fixed position 3 by node 1 (Fig. 6); increase node 1’s degree
by one and decrease node 5’s degree by one. We find from the
degree status table, that node 5 has 2 degrees less than the lower
degree limitation. Check the cost table and find out the fixed po-
sition node (from 2) that has the lowest connection cost to node
5 and also its correspondent gene’s degree does not violate the
lower limitation after decreasing by one. Fixed node 2 is the
best fit and its correspondent gene 3 does not violate lower lim-
itation after being decreased by one. Replace the allele in fixed
position 2 by node 5. However, it is to be noted that it is still
one degree less than the lower limitation. Check the table once
again and find that the fixed node 9 is the second candidate and
its correspondent gene 7 does not violate lower limitation after
being decreased by one. Finally, replace the allele in fixed posi-
tion 9 by 5 and update the final degree status table. The finalized
DCMST is as shown in Fig. 6.

The results from random and heuristic repair algorithms are
quite different, as is shown in Fig. 5 and 6. In random repair,
the convergence of the result will be primarily based on GA
evolution. In heuristic repair we specifically identify the closest
qualified node, resulting in faster convergence of the result.

An experiment was conducted to compare the performance of
random and heuristic repair for various combinations of network
sizes, crossover, and mutation operators. Ten samples were run
for each combination (4 3 2), resulting in 480 data points,
240 for each repair method. A paired-test was performed to de-
termine if there was any difference in the performance (solution
quality and computation time) between the two repair methods

Fig. 7. Tree representation using Prüfer encoding.

after controlling for all the other factors. The results are shown
in Table VII. The results indicate the heuristic repair performs
better than random repair in both performance measures. The
computation time is reduced by 50% by using heuristic repair.
The results from the repair method highlight the potential for
integrating traditional heuristics with GAs to get improved per-
formance. While GAs are good at finding promising areas of
search space but slow to converge to an optimal solution, heuris-
tics are good at converging to optimal solution in a local space,
but lack global focus in their search. The combination of these
two approaches in a hybrid algorithm provides an algorithm that
would be better than the two independently.

VII. CONCLUSION

We identified the factors that influence the performance of
GAs and examined the influence of three critical factors: en-
coding, crossover, and mutation. The algorithm was used to
solve a network optimization problem for DCMST. An experi-
mental design with 48 cells to represent different options within
these three factors and ten data points in each cell was used
to study the factors and their interactions. The results high-
light the importance of choosing the right parameters to get
the best performance [19]. We could see a cost reduction of
200% between the best and worst combinations. The combi-
nation of determinant encoding, exchange mutation, and uni-
form crossover provides better results than other combinations
most of the time. The study also examined two repair methods,
random and heuristic repair, and found that heuristic repair im-
proves performance. This study provides many new opportuni-
ties for future research.

First, the study only looked at a few factors. Other possible
areas for study are population size, stop criteria, and crossover
and mutation rate. There are tradeoffs in each of these and it may
be dependent on the problem context. For instance, choosing a
smaller population size may reduce the number of computations
per generation, but it may take more generations to reach con-
vergence or it may converge in a local optimal area of the search

CHOU et al.: GENETIC ALGORITHMS FOR COMMUNICATIONS NETWORK DESIGN—AN EMPIRICAL STUDY 247

TABLE VII
EFFECT OFREPAIR STRATEGIES(RANDOM AND HEURISTIC) ON PERFORMANCE—PAIRED t-TEST. (a) SOLUTION QUALITY . (b) COMPUTATION TIME

(a)

(b)

space providing poor results. Researchers have to examine var-
ious population sizes to determine the most optimal size that
produces reasonably good results.

Second, other alternatives for the halting criterion could be
examined. If our interest in using GAs is in achieving reasonably
good solutions rather than best solutions, we could change the
halting criterion from convergence to a single value to a range
between a minimum and maximum value (e.g., 1% range for
quality and time). A graph plot of solution quality generated
for various generations indicates that significant improvements
in the objective value happens in the first few generations and
there is only marginal improvement in subsequent generations.
It takes a significant number of generations to converge to a
single value for the total population. We could possibly reduce
computation time at the cost of a slight variation in solution
quality by using a range approach for the halting criterion.

Third, it may be interesting to examine using heuristics
in other areas. While this study integrated heuristics in the
repair function, future research could explore integrating it in
crossover or mutation operators.

APPENDIX I

The mathematical formulation of the DCMST problem is pre-
sented below. The following notation is used in the model.

Indices
Index of nodes, .
Set of nodes in the spanning tree.

Parameters
Cost to link nodes to .
Upper degree constraint on node.
Lower degree constraint on node.
Number of nodes in a subset of nodes in .
Number of the nodes in .

Decision Variables
Equals one if the link between nodesto exists;
zero, otherwise.

Minimize

(1)

subject to

(2)

(3)

(4)

(5)

or (6)

The objective function (1) seeks to minimize the total con-
necting cost between nodes. The total cost could be distance
cost, material cost, or customers’ requirement cost. Constraint
(2) and (3) specify the lower and upper bound constraints on the
number of edges connecting to a node. Constraint (4) is an anti-
cycle constraint and constraint (5) indicates that the number of
edges in a spanning tree is equal to the number of nodes minus
one. Constraint (6) expresses the binary requirements of the de-
cision variables. In the formulation, there are con-
straints and binary variables. Constraint (4) in-
creases exponentially with network node size, thereby making
it impractical to solve large size problems.

APPENDIX II

A brief description of Prüfer and determinant encoding algo-
rithm is provided below.

A. Prüfer Encoding

Each gene in the chromosome represents a correspondent
node in the network. The length of the chromosome in Prüfer
encoding is , where is the number of nodes in a given
graph . The procedure to generate a unique tree using Prüfer
encoding is as follows.

S1) Let be the original Prüfer string and be the set of
all nodes not included in .

248 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 3, JUNE 2001

S2) Let be the eligible nodes with smallest label in
and be the leftmost digit of . Add the edge from
to into the tree. Removefrom and from . If

does not occur anymore in, put into . Repeat
the process until no digits remain in.

S3) After S2 completes, there will be exactly one nodein
and in . Add edge to , connecting the tree and

forming a spanning tree.
For example, a Prüfer string (3 2 1 3) corresponds to a span-

ning tree on a six-node graph (Fig. 1). In the construction of the
spanning tree, the Prüfer numbers are (3 2 1 3) and
(4 5 6). Node 4 is the eligible node with the smallest label and
node 3 is the leftmost digit in . Add edge (3–4) to the tree,
remove node 4 from , and node 3 from . Node 5 is now eli-
gible with the smallest label and the second node inis 2. Add
edge (2–5) to the tree, remove node 5 from, and node 2 from

. Since node 2 does not exist anywhere in, add node 2 to
and, hence, (2 6). Node 2 is eligible with the smallest

label and node1 is the leftmost in. Add edge (2–1) to the tree,
remove 2 from and 1 from . Since node 1 does not exist
anywhere in , add node 1 to and, hence, (1 6). Node
1 is eligible with the smallest label and 3 is the leftmost digit in

. Add edge (1–3) to the tree and remove node 3 fromand 1
from . Finally, connect the last digit in with the last digit
in , which adds edge (3–6) to the tree.

Since the chromosomes coded by Prüfer are all legal spanning
trees, there is no need to repair illegal chromosomes. The degree
of each node can be easily checked based on the number of each
node in a chromosome. The chromosomes, however, may vio-
late the degree constraints. The strategy for repairing infeasible
Prüfer coded chromosomes is a difficult task. While it is easy to
repair degree-violated genes by random method, it is very diffi-
cult to repair genes by heuristic method since we need to decode
every chromosome. In addition, due to lack of locality in Prüfer
encoding, even a slight change in a gene can cause a completely
different spanning tree compared to the original spanning tree
[16].

B. Determinant Encoding

Determinant encoding is a simple node-based indirect en-
coding strategy proposed by Abualiet al. [16] to overcome the
bottlenecks of Prüfer encoding. The length of the chromosome
is , where is the number of nodes. The decoding al-
gorithm treats each allele of gene to correspond to its posi-
tion in the chromosome and the position represents its direct
connecting node. The first gene is decoded as fixed-position 2,
second as fixed-position 3, and so on. The procedure for de-
coding the algorithm is as follows.

S1) Let be the given determination string andbe its
length. If is the th allele in chromosome and

, the number of the nodes in the given graph
is , where a node is denoted as node and

.
S2) Set , if , go to S3, else Stop.
S3) Connect node with node , Set ,

go back to S2.
For example, let Fig. 2 represent a chromosome coded by de-

terminant encoding. Each corresponding fixed position in the
figure is equal to the order of the gene plus one. Each allele of

chromosome can be connected to its corresponding fixed posi-
tion as in S3 above. The links in the tree are (2–3), (3–4), (4–2),
(5–5), (6–8), (7–5), (8–3), (9–9). The final layout of the tree is
shown in Fig. 1. The generated tree may not be legal and need
to be repaired by reallocating genes in appropriate positions to
generate a legal tree.

Although determinant encoding is an indirect encoding
strategy, the decoding algorithm is very simple. We can easily
determine degree constraint violations by simply examining the
chromosome and counting the number of links starting from a
single node. The only disadvantage is that it generates illegal
trees that need to be repaired.

REFERENCES

[1] A. Kershenbaum, “When genetic algorithms work best,”INFORMS J.
Comput., vol. 9, no. 3, pp. 254–255, 1997.

[2] L. Davis, Ed., Genetic Algorithm and Simulated Annealing. San
Mateo, CA: Morgan Kaufmann, 1987.

[3] L. Davis, “Adapting operator probabilities in genetic algorithms,” in
Proceedings of the Third International Conference on Genetic Algo-
rithms, D. Schaffer, Ed. San Mateo, CA: Morgan Kaufmann, 1989,
pp. 61–69.

[4] C. Reeves, “Genetic algorithms for the operations researcher,”IN-
FORMS J. Comput., vol. 9, no. 3, pp. 231–250, 1997.

[5] K. A. DeJong, “Analysis of the behavior of a class of genetic adaptive
systems,” Ph.D. dissertation, Univ. Michigan, Ann Arbor, MI, 1975.

[6] J. J. Grefenstette, “Optimization of control parameters for genetic algo-
rithms,” IEEE Trans. Syst., Man, Cybern., vol. SMC-16, pp. 122–128,
Jan. 1986.

[7] B. Dengiz, F. Altiparmak, and A. E. Smith, “Local search genetic al-
gorithm for optimal design of reliable networks,”IEEE Trans. Evol.
Comput., vol. 1, pp. 179–188, Sept. 1997.

[8] H. J. Bremermann, M. Rogson, and S. Salaff, “Global properties of evo-
lution processes,” inNatural Automata and Useful Simulations, H. H.
Pattee, E. A. Edlsack, L. Fein, and A. B. Callahan, Eds. Washington,
DC: Spartan, 1966, pp. 3–41.

[9] J. Reed, R. Toombs, and N. A. Barricelli, “Simulation of biological evo-
lution and machine learning: I. Selection of self-reproducing numeric
patterns by data processing machines, effects of hereditary control, mu-
tation type, and crossing,”J. Theor. Bio., vol. 17, no. 3, pp. 319–342,
1967.

[10] G. Syswerda, “Uniform crossover in genetic algorithms,” inProceed-
ings of the Third International Conference on Genetic Algorithms, J. D.
Schaffer, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp. 2–9.

[11] D. E. Goldberg and Jr. R. Lingle, “Alleles loci and the traveling salesman
problem,” inProceedings of the First International Conference on Ge-
netic Algorithms, J. J. Grefenstette, Ed. Hillsdale, NJ: Lawrence Erl-
baum, 1985, pp. 154–159.

[12] J. J. Grefenstette and J. M. Fitzpatrick, “Genetic search with approx-
imate function evaluations,” inProceedings of the First International
Conference on Genetic Algorithms, J. J. Grefenstette, Ed. Hillsdale,
NJ: Lawrence Erlbaum, 1985, pp. 160–168.

[13] D. Smith, “Bin packing with adaptive search,” inProceedings of the
First International Conference on Genetic Algorithms, J. J. Grefenstette,
Ed. Hillsdale, NJ: Lawrence Erlbaum, 1985, pp. 202–206.

[14] J. J. Grefenstette, “Multilevel credit assignment in a genetic learning
system,” inProceedings of the Second International Conference on Ge-
netic Algorithms, J. J. Grefenstette, Ed. Hillsdale, NJ: Lawrence Erl-
baum, 1987, pp. 202–209.

[15] P. W. Poon and J. N. Carter, “Genetic algorithm crossover operators for
ordering applications,”Comput. Oper. Res., vol. 22, no. 1, pp. 135–147,
1995.

[16] F. N. Abuali, R. L. Wainwright, and D. A. Schoenefeld, “Determinant
factorization: Anew encoding scheme for spanning trees applied to the
probabilistic minimum spanning tree problem,” inProceedings of The
Sixth International Conference on Genetic Algorithms, L. J. Eshelman,
Ed. San Mateo, CA: Morgan Kaufmann, 1995, pp. 470–477.

[17] L. Booker, “Improving search in genetic algorithm,” inGenetic
Algorithms and Simulated Annealing, L. Davis, Ed. San Mateo, CA:
Morgan Kaufmann, 1987, pp. 61–73.

[18] R. K. Ahuja and J. B. Orlin, “Developing fitter genetic algorithms,”IN-
FORMS J. Comput., vol. 9, no. 5, pp. 251–253, 1997.

CHOU et al.: GENETIC ALGORITHMS FOR COMMUNICATIONS NETWORK DESIGN—AN EMPIRICAL STUDY 249

[19] D. H. Wolpert and W. G. Macready, “No free lunch theorems for opti-
mization,” IEEE Trans. Evol. Comput., vol. 1, pp. 67–82, Apr. 1997.

[20] S. C. Narula and C. A. Ho, “Degree-constrained minimum spanning
tree,”Comput. Oper. Res., vol. 7, no. 4, pp. 239–249, 1980.

[21] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin,Network Flows: Theory,
Algorithms, Applications. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[22] R. L. Graham and P. Hell, “On the history of minimum spanning tree
problem,”Ann. History Comput., vol. 7, no. 1, pp. 43–57, 1985.

[23] J. B. Kruskal, “On the shortest spanning subtree of a graph and the trav-
eling salesman problem,” inProc. Amer. Math. Soc., vol. 7, 1956, pp.
48–50.

[24] R. C. Prim, “Shortest connection networks and some generalizations,”
Bell Syst. Tech. J., vol. 36, pp. 1389–1401, 1957.

[25] F. Harary and J. P. Hayes, “Node fault tolerance in graphs,”Networks,
vol. 27, no. 1, pp. 19–23, 1996.

[26] H. K. Ku and J. P. Hayes, “Optimally edge fault-tolerant trees,”Net-
works, vol. 27, no. 3, pp. 203–214, 1996.

[27] D. S. Johnson, “The NP-completeness column: An ongoing guide,”J.
Algorithms, vol. 6, no. 1, pp. 145–159, 1985.

[28] A. K. Obruca, “Spanning tree manipulation and the travelling-salesman
problem,”Comput. J., vol. 10, no. 4, pp. 374–377, 1968.

[29] M. Savelsbergh and T. Volgenant, “Edge exchanges in the degree-con-
strained spanning tree problem,”Comput. Oper. Res., vol. 12, no. 4, pp.
341–348, 1985.

[30] S. Coombs and L. Davis, “Genetic algorithms and communication
link speed design: constraints and operators,” inProceedings of the
Second International Conference on Genetic Algorithms and their
Applications, J. J. Grefenstette, Ed. Hillsdale, NJ: Lawrence Erlbaum,
1987, pp. 257–260.

[31] A. Kapsalis, V. J. Rayward-Smith, and G. D. Smith, “Solving the graph-
ical Steiner tree problem using genetic algorithms,”J. Oper. Res. Soc.,
vol. 44, no. 4, pp. 397–406, 1993.

[32] M. Cuppini, “A genetic algorithm for channel assignment problems,”
Eur. Trans. Telecommun. Related Technol., pp. 285–294, 1994.

[33] A. I. Oyman and C. E. Solvinf, “Concentrator location-problems using
genetic algorithms,” inProc. 7th Mediterranean Electrotechnical Conf.,
vol. 3, Antalya, Turkey, 1994, pp. 1341–1344.

[34] C. C. Palmer and A. Kershenbaum, “An approach to a problem in net-
work design using genetic algorithms,”Networks, vol. 26, no. 3, pp.
151–163, 1995.

[35] H. Esbensen, “Computing near-optimal solutions to the Steiner problem
in a graph using genetic algorithm,”Networks, vol. 26, no. 4, pp.
173–185, 1995.

[36] P. Charddaire, A. Kapsalis, J. W. Mann, V. J. Rayward-Smith, and G.
D. Smith, “Applications of genetic algorithms in telecommunications,”
in Proceedings of the Second International Workshop on Applications
of Neural Networks to Telecommunications, J. Alspector, R. Goodman,
and T. X. Brown, Eds. Hillsdale, NJ: Lawrence Erlbaum, 1995, pp.
290–299.

[37] G. Zhou and M. Gen, “A note in genetic algorithms for degree con-
strained spanning tree problems,”Networks, vol. 30, no. 2, pp. 91–97,
1997.

[38] M. Gen and R. Cheng,Genetic Algorithms and Engineering De-
sign. New York: Wiley, 1997.

[39] P. Piggott and F. Suraweera, “Encoding graph for genetic algo-
rithms: An investigation using the minimum spanning tree problem,”
in Evolutionary Computation: Theory and Applications, X. Yao,
Ed. Singapore: World Scientific, 1996, pp. 305–314.

[40] H. Prüfer , “Neuer beweis eines satzes uber permutation,”Arch. Math.
Phys., vol. 27, pp. 742–744, 1918.

[41] D. E. Goldberg,Genetic Algorithms in Search Optimization, and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[42] C. Reeves, “Genetic algorithms for flow shop sequencing,”Comput.
Oper. Res., vol. 22, no. 1, pp. 5–13, 1995.

[43] D. W. Coit, A.E. Smith, and D. M. Tate, “Adaptive penalty methods
for genetic optimization of constrained combinatorial problems,”IN-
FORMS J. Comput., vol. 8, no. 2, pp. 173–182, 1996.

[44] J. E. Baker, “Adaptive selection methods for genetic algorithms,”
in Proceedings of the First International Conference on Genetic
Algorithms, J. J. Grefenstette, Ed. Hillsdale, NJ: Lawrence Erlbaum,
1985, pp. 101–111.

[45] T. Bäck and F. Hoffmeister, “Extended selection mechanism in genetic
algorithms,” inProceedings of the Fourth International Conference on
Genetic Algorithms, R. K. Belew and L. B. Booker, Eds. San Mateo,
CA: Morgan Kaufmann, 1991, pp. 92–99.

[46] T. Bäck , D. Fogel, and Z. Michalewicz, Eds.,Handbook of Evolutionary
Computation. Oxford: Oxford Univ. Press, 1996.

[47] J. Xu, S. Y. Chiu, and F. Glover, “Using Tabu search to solve the Steiner
tree-star problem in telecommunication networks design,”Telecommun.
Syst., vol. 6, no. 2, pp. 117–127, 1996.

[48] J. A. Joines and C. R. Houck, “On the use of nonstationery penalty func-
tions to solve nonlinear constrained optimization problems with GAs.,”
in Proceedings of the First IEEE Conference on Evolutionary Compu-
tation, D. Fogel, Ed. Piscataway, NJ: IEEE Press, 1994, pp. 579–584.

[49] Z. Michalewicz and M. Schoenauer, “Evolutionary algorithms for con-
strained parameter optimization problems,”Evol. Comput., vol. 4, no. 1,
pp. 1–32, 1996.

[50] V. Petridis, S. Kazarlis, and A. Bakirtzis, “Varying fitness functions in
genetic algorithm constrained optimization: The cutting stock and unit
commitment problems,”IEEE Trans. Syst., Man, Cybern., vol. 28, pp.
629–640, Oct. 1998.

Hsinghua Chou received the undergraduate degree
in business administration from Sun Yat-sen Univer-
sity, Kaohsiung, Taiwan, in 1994, and the M.S. degree
in business administration sciences from Iowa State
University, Ames, IA, in 1998.

He is currently a Software Engineer with the
Sprint Corporation, Overland Park, KS. He has been
involved in the research of genetic algorithms and
its implementation in various business domains
including telecommunication network design and

operation management. His current research interests include application server
development, rule-based virtual machine, and the integration of distributed
environment.

G. Premkumar received the B.S. degree in engi-
neering from Regional Engineering College, Trichy,
India, the M.B.A. in management from the Indian
Institute of Management, Bangalore, India, in 1982,
and the Ph.D. degree in information systems from
the University of Pittsburgh, Pittsburgh, PA, in 1989.

He is currently a Union Pacific Chair and an Asso-
ciate Professor of Information Systems in the College
of Business at Iowa State University, Ames. He has
over nine years of industry experience in information
systems and related areas. He has authored or coau-

thored papers inInformation Systems Research, Decision Sciences, Journal of
Management Information Systems, European Journal of Operations Research,
IEEE TRANSACTIONS ONENGINEERINGMANAGEMENT, and other leading jour-
nals and conference proceedings. His current research interests include telecom-
munications, electronic commerce, interorganizational systems/EDI, and adop-
tion and diffusion of information technology.

Chao-Hsien Chu received the undergraduate
degree in industrial engineering from Chung Yuan
University, Changli, Taiwan, in 1974, the M.B.A.
from Tatung Institute of Technology, Taipei, Taiwan,
in 1978, and the Ph.D. degree from Pennsylvania
State University, University Park, PA, in 1984.

He is currently an Associate Professor of Informa-
tion Sciences and Technology at Pennsylvania State
University, University Park, and is also the Chief
Academic Advisor to the School of Management
at Hebei University of Sciences and Technology,

Hebei, China. He was on the faculty of Baruch College of the City University of
New York, Iowa State University, Ames, and the University of Tsukuba, Japan.
His research focuses on applying intelligent technologies (expert systems,
fuzzy logic, neural networks, and genetic algorithms, etc.) to manufacturing
management, communication networks design, and network security.

	Genetic algorithms for communications network design - an empirical study of the factors that influence performance
	Citation

	Genetic algorithms for communications network design - an empirical study of the factors that influence performance

