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Genetic Algorithms for Communications Network
Design—An Empirical Study of the Factors that
Influence Performance

Hsinghua Chou, G. Premkumar, and Chao-Hsien Chu

Abstract—Genetic algorithms (GAs) are being used exten- criterion, etc. [5]-[7]. For example, researchers have examined
sively in optimization problems as an alternative to traditional the impact of different crossover operators [8]—[15]. Deregiz
heuristics. Although the results have been mixed, very limited 5 171 examined the impact of population size, crossover rate,
research has been performed on the impact of various GA factors d mutati te. Abuadit al. 16 dth f
on performance. We explore the use of GAs for solving a network and muta _|0n rate. Abu . al.[16] compare“ € per ormanc_e
optimization problem, the degree-constrained minimum spanning Of three different encoding methods—Prufer, Link-node bias,
tree problem. We also examine the impact of encoding, crossover,and determinant encoding. Booker [17] compared one-point
and mutation on the performance of the GA. A specialized repair and two-point crossover methods for nonorder problems. Most
heuristic is used to improve performance. An experimental design yagearch has focused on only one factor—crossover or mutation
with 48 cells and ten data points in each cell is used to examine t lati . di thod. Limited
the impact of two encoding methods (Priifer and determinant Operator, popua_lon S_'ZE' or enco |ng_ me 0d. Limited re-
encoding)’ three crossover methods (One_point, tWO_point, and search has examined ImpaCt of a combination of these factors.
uniform), two mutation methods (insert and exchange), and four The interaction of encoding and reproduction operators is a key
networks of varying node sizes (20, 40, 60, 80). Two performanceto GA's performance [18], [19]. Since these factors are closely
measures, solution quality and computation time, are used 10 jyiarrelated, evaluating the role of these different factors and
evaluate performance. The results indicate that encoding has their int lati hi hould helo in identifvina the i tant
the greatest effect on solution quality, followed by mutation erin errealo_n§ PSS ou_ e_plnl en |fy|n_g € Imporian
and crossover. Among the various Optionsl the combination of factors and their ideal combinations for effective performance
determinant encoding, exchange mutation, and uniform crossover in different settings. This study examines some of these factors
more often provides better results for solution quality than other  in solving communications network design problems.
co_mblnatlons._For computation tlm_e, the comblnatl(_)n of deter- The minimum spanning tree (MST) problem is one of the
minant encoding, exchange mutation, and one-point crossover best-k twork optimizati bl d for desiani
provides better results. est-known network optimization problems used for designing

backbone networks. A special case of MST is a degree-con-
strained minimum spanning tree (DCMST), where additional
constraints specify the upper and lower bounds of the number
of links to a node. The DCMST problem is NP-hard and tradi-
|. INTRODUCTION tional heuristics have had only limited success in solving small

ENETIC algorithms (GAs) and other evolutionar);%:)}urélgi/d;ié:.a problems [20]. The major objectives of the current

algorithms have been used extensively in a wide varie
of application domains including engineering, economics, 1) to develop a GA approach to solve the DCMST problem;
finance, manufacturing, agriculture, and business. Simple GAs2) to determine the impact of various factors, specifically
seem to perform well in certain problem areas, but not so  theimpact of encoding, crossover, and mutation, on GA's
well in other areas [1]. Since GAs consist of various compo-  performance.
nents and parameters that can be modified, it is important toThe paper is organized as follows. In Section II, we present
understand the impact of these factors on GA performandke details of the DCMST problem. In Section I, we elabo-
Many factors such as population size, reproduction operatorste on the GA approach to solve this problem; specifically, we
fitness function, encoding methods, etc., can have a significaliécuss our encoding strategies, various crossover and muta-
impact [2]-[4]. Researchers have studied the impact of variotisn operators, initialization and selection strategy, and the re-
factors including problem encoding, crossover and mutatigair method. In Section IV, we describe the research hypotheses
operators, population size, crossover and mutation rate, haltangd experimental design. Finally, in Section V, the results are

presented and discussed.

Manuscript received February 22, 1999; revised July 13, 1999, January 3,
2000, and July 25, 2000.

Index Terms—Degree-constrained minimum spanning tree, ge-
netic algorithms, GA operators, network design.
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line, etc. There might be other constraints imposed on the dries. The details of the GA used for this problem are described
sign such as the number of nodes in a subtree, degree constrdiatsw.

on nodes, flow and capacity constraints on any edge or node,

and type of services available on the edge or node. The MAT problem Representation

problem is found in communication networks, circuit design, . .
; dna network design problem, the strings used for representa-

the basic problem have been identified for different design cord" could have infarmation on the link identification, capacity

texts [21], [22]. The complexity of the MST problem increase%f the network, cost of th? link, and whether the link is part
ér_le solution. The encoding should represent all the relevant

as the number of nodes increases. Many heuristics have beenoéi ; £th bl d be able t torml t
veloped to solve large problems, prominent among them beip@rame.ers ot Ihe problem and be able o unrformly represen
alf possible solutions to the problem. The encoding can be of

Kruskal [23] and Prim [24] algorithms.
[23] [ ]. g ... two types: direct or indirect [2], [38]. With direct encoding, the
One of the popular variations of the MST problem is the, . . S .
: i .Strings can be read directly, while with indirect encoding, a de-
DCMST. The MST algorithm may occasionally generate amin-_ . . . . . .
. . . coding algorithm is used to expand the strings into meaningful
imal spanning tree where all the links connect to one or two . .
information for evaluation.

nodes. This solution, although optimal, may be highly vulner- Spanning trees have been used extensively in a variety of
able to failure due to overreliance on a few nodes. Furthermore, P g trees . yn y
twork optimization problems and various encoding methods

. n
the technology to connect m?‘”y"”"s to a_node may notbe aVEHEve been used to represent trees [38]. They can be classified
able or may be too expensive. Hence, it may be necessa% 0

T ) . . roadly into three categories: edge, node, and edge-node
limit the number of links connecting to a node. Alternatively . : g A

- S . éncoding. Inedge encoding39], a binary string is used to
from a reliability perspective it is desirable to have more tharré resent the edges of the spanning tree. Deegial. [7]
one link connect to a node so that alternative routes can be ‘S&2 9 P 9 ' gial.

lected in the case of a node or link failure [25], [26]. Henceused an integer string _to represer_nt a_tree In communication
etworks, where each integer arbitrarily represents an edge.

in practice, we may add additional constraints that specify t %lge encoding has been found to be a poor representation for

upper and lower bound of the number of links connecting to o .
node. DCMST was specifically developed as a special case'@?T due to the low probability of obtaining a tree [34], [38].

MST with additional constraints to improve the reliability of th(—:!n node-or vertexbased encoding the nodes, rather than edges,

network and rerouting of traffic in the case of node failures. ?Orre t:zg;efsegfsdeén;r:]epfgf(;?d;\z?ﬁkfe rp&%ljlavrvﬁxogn?e;?gog
The DCMST problem can be stated as follows:. Lét= ' P

(V, E) be a complete graph afnodes in which each edge ;) tree ofn nodes withn — 2 digits, where each digit is an integer

. A . : between one and. Prifer encoding is an indirect encoding
has an associated weigf{t, 7). Determine a spanning tree of
g 4 . method that has been used to represent an MST [39]. However,
minimum total edge weight (sum of the weights of the edges

minimum) such that, at each nodethe degreel; is between l—l’?rl,!fe.r encodlqg has very limited |OCEl|It¥ as changing any one
.~ digit in the Prifer number can dramatically change the tree
a lower boundLd; and upper bound/d;. The mathematical . . ;
. : . . [34]. Abuali et al. [16] suggested determinant encoding as an
formulation of the problem is presented in Appendix I. alternate node-based encoding for representing spanning trees
The problem of constrained trees has been studied for m '

. ge and nodeencoding uses information about both nodes
years [20]. The popular travelling salesman problem (TSP)a'\%d links. An example in this category is link and node biased

a subset of the DCMST, where the degree constraint is tvﬁ B) encoding [34], which uses a bias value for each node and

Johnson [27] describes ten constrained MST problems that ; . )
are NP-hard. The earliest heuristic algorithm for DCMST w Igsn in calculating the cost of the network. This representation

. as some limitations including long encoding and lack of
proposed by Obruca [28] as a solution to TSP. Narula and k Bormation about degree on no?jes ,gblmlal [16? compared
[20] proposed three heuristic algorithms to solve the DCM : :

rélfer, determinant, and LNB encoding methods and found

problem: primal, dual, and branch and bound. Savelsbergh n ; ; : .
. u , . at determinant encoding provided better performance. In this
Volgenant [29] introduced an “edge exchange” algorithm tha{ . . : )
. udy, we examine the impact of two encoding meth&ugéfer
provided better performance. Although these methods solve : . .
. : . . . and determinant encodinthat are appropriate for the DCMST
experimental size problems, the computation time increases ! L . : .
. . foblem. A brief description of the two algorithms is provided
dramatically when the problem size gets larger. In recent yeaf?sA endix |1
researchers have attempted using meta-heuristics such as ‘F{l\bLP P '
search and genetic (evolutionary) algorithms to solve these . o
problems. B. Population Initialization
There are two parameters to be decided for initialization: the
initial population size and the procedure to initialize the pop-
IIl. APPLYING GAS To NETWORK DESIGN ulation. Initially, researchers thought that the population size
needed to increase exponentially with the length of the chro-
GAs have been used to solve communications network designsome string in order to generate good solutions [41]. Recent
problems in a wide variety of contexts [7], [16], [30]-[37]. How-studies have shown, however, that satisfactory results can be ob-
ever, there is very limited research on using GAs for DCMSthined with a much smaller population size [42]. There are two
problems and also examining the impact of GA parameters ways to generate the initial population—random initialization

its performance. This study attempts to address both theseaisd heuristic initialization. We use the random method, where
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TABLE | .
(a) LINk CosTs FOR ANINE-NODE SPANNING TREE. (b) UPPER AND Fixed Position: l 3_3_ :t__S__ _6_7_ _8__9; :
LowER DEGREECONSTRAINTS FORNODES l l
Chromosome: I342§8532|
1 2 3 4 5 6 7 8 9
1 * 224 1224 361 | 671 [224 [539 | 800 | 943
2 224 | * 200 | 200 | 447 {283 [400 | 728 | 762
3 224 [ 200 |* 400 | 556 | 447 | 600 (922 | 949
Self-loop
4 361 | 200 [400 [* 400 1200 | 200 | 539 | 583 «-" !
1
5 671 [ 447 [566 [400 [* 600 | 447 | 781 | 510 @'
6 224 [ 283 | 447 | 200 [447 | * 283 | 500 | 707
7 539 (400 | 600 | 200 {447 | 283 |* 361 | 424
8 800 | 728 (922 {539 | 781 [500 {361 |* 500
9 943 | 762 | 949 | 583 | 510 | 707 | 424 | 500 |*

@

Fig. 1. Problem representation with determinant encoding—illegal tree.

Node Lower Upper
1 | 3
2 1 |
3 2 5
4 1 2
5 4 8
6 1 3
7 1 3
8 1 4
9 1 3

(b)

the original node, in which case one of the links may be unnec-
essary. The algorithm illustrated below describes a strategy to
solve all the three situations that lead to illegal spanning trees.
Given a determinant encoding strigbwith length of N — 1,
whereN represents number of nodes. Assufi{e:) represents
the allele of thecth fixed position in chromosomé€', wherezx
starts from two taV. The algorithm is presented below along
with an example that illustrates every step of the algorithm.
The cost for a nine-node spanning tree problem is shown in
Table I(a). Fig. 1 shows the chromosome coded by the determi-
nant encoding method, which contains three kinds of problems:
missing node 1, self-loop, and cycles.

S1) Repair missing node 1.

for each gene we randomly generate an integer from a range of
one to the number of nodes (Fig. 2 has nine nodes). The initial
chromosomes need not represent a legal or feasible tree.

C. Repair Function

Determinant encoding generates some chromosomes that are
illegal (not a spanning tree) and some that are legal, but infea-
sible due to constraint violations. A combination of repair and
penalty functions is used in this study to repair both illegal and
infeasible solutions.

1) Repair Function for lllegal Chromosomed:he spanning
tree may be illegal due to three reasons: missing node “1,” self-
loop, or cyclesMissing node “1” occurs when a chromosome
does not contain any gene that has a value “1.” Since the fixed
position starts from two, the generated spanning tree will not
contain “1” and, therefore, will not span all the nod8slf-loop
occurs when the value of a gene is equal to its correspondent
node position. For example, in determinant coding, a chromo-
some (4 4 2 5) cannot construct a five-node spanning tree be-
cause the value of the gene is five and its correspondent node po-
sition is five, which causes an illegal self-loop connection (5-5).
Cycleoccurs if a subset of links connect in a loop, returning to

For a given encoding strin@, identify x, where
C(xz) = 1. If z exists, go to S2; otherwise, check cost
table and pick node (x # 1), wherex has the lowest
connecting cost to nodel. S&{x) = 1. If there is a
tie, randomly select a position.

Check if “1” exists in the string. If not, find the
lowest-cost node connected to node “1.” Based on the
cost table, nodes “2,”“3,” and “6” have the lowest con-
nection cost to node “1.” Since they all have the same
cost randomly choose one of them, say, fixed position
“6.” Replace the allele in fixed position “6” with “1.”
The result is shown in Fig. 2(a).

S2) Repair self-loop.

For a given encoding string, identify z, wherer =
C(z). Check the cost of connecting each nage #

z) with nodez. Select node:, which has the lowest
connecting cost with nodeand setC(x) = n. If there
is a tie, randomly select a position.

Check for self-loop. The fourth and the last position
generate a self loop— 5-5 and 9-9. Select a node with
lowest cost connection to nodes “5” and “9.” Using the
cost table, node “4” is paired with node “5” and node
“T” is paired with node “9”. The result is presented in
Fig. 2(b).
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Fig. 2. Repair of illegal tree—missing node and self loop.

N P
%) Repair Missing Node 1 Fixed Position: 12345678 91
_____________ '
Tie, randomly @ @ @ l l
select node 3
¥ Chromosome: 3424153 ll
Fixed Position: :- 23456789!
I e
Fixed Position Node
Chromosome: |3425§539I Ax 4 2 Bx
[342515309] Nl———"desf—eté
2 2
b) Repair Self-Loop 3 )
4 2
_____________ .
Fixed Position: :-2 3456 789! 5 2
| P e 6 1
7 2
8 2
Chromosome: 9 2

Closest nodetonode 5 ~ .

~

| 3 4
keeps track of information on node pairs that cause cy-
Closest tode tonode 9 cles. Based on the subsetsdnrepair function is used
to connect broken subset into one set. The result after
examining cycles is presented in Fig. 3.
S4) Repairing cycle.

Fig. 3. Repair of illegal tree—cycle.

i\ 4

[ |
w
E Y
[S]
1 =]l | —
[
2]
w
s fo|e] -

S3) Examining cycle. ExamB(j), if j > N, stop; else, ifB(j) = Null,

For a given encoding strin@, allocatevectors A setj = j + 1 and go back to S4; otherwise, iden-
and B of size N and initialize value as Null. Assume tify 4, wherel < i < N, A(i) # A(B(5)) and has
A(¢) andB(:) are theith position invectorsA and B. the lowest connection costto nodeB(5). Identify %,

For a given chromosome C: wherel < k < N, A(k) # A(j) and has the lowest

connection cost’” to nodej. Select the smaller of
f A(C(z)) and A(z) are Null, andt”. Assume’ isthesmaller,thenséI(B(j)) =1..
sele(ct(trzt)a smaller( gf C(z) and =. Exam A(1), wherel S ! S N, it AQ) = A(i), set
Suppose Cf()then set  AC(z)) =C(x) A(l) = A(B(j)). Setj = j +1and goto S4.
and set A(z) = C(x). _ After_examlmng cycles, the repair function picks the
Else. if A(C(z)) is Null and Alz) is first pair from ar_rayB and checks _the cost table to
no,t Null, locate the nqde in qwferent ;gt which has the lowest
set  A(C(z)) = A(x). 1Eozt tollrr:k with trtl)(le f:gekd po{znoln]: Ingﬂ eze;mpp\)flte,we
. ind out the possible links arel—1} and{4—6}. After
Elf’l\;;” A(C(z)) is not Null and Al) _checking the cost tabl¢d—6} isfoundt_o b_ethe Iow_e_r
set’ Alz) = A(C(z)). in cost. Thus, we replace the allele in fixed position
Else. if both A(C(x)) and A(z) are 4 by node 6 Th.e updated table and chromosome
no,t Null, is represented in Fig. 4.
then if  ACE)=A(x), set Ba)=Oa): 2) Repair Function for Infeasible ChromosomeBoth en-
otherwise, select the smaller of coding methods may generate a spanning tree that violates the

A(C(x)) and A(@z). Suppose A(C(x)), d(_egrfee copstraints on the nod_es. Thert_a are two choicgs to deal
then scan A(j) , where 1 <j<N. Wlth infeasible solutions. One is to repair and the other.ls to as-
If A(j) = A(x), set A(j) = A(C(x)). sign a penalty value. The repair option is used extensively, but

Set j=1 and Go to S4. may be _computationally expensive and/o_r may d_istu_rb the cer-
tain desirable aspects of the parent solution carried in the chil-
dren. The penalty option has also been used with considerable

The repair operator initially checks if cycles or subsuccess [43]. The design of the penalty function is critical to en-
trees exist by using a grouping algorithm. Nodes in theure quick convergence without sacrificing on the search of the
same subtree are grouped in the same set numberedthtire solution space or expensive computation time.
the smallest node number. In this example, we find that We use a method that combines both repair and penalty. The
there is one cycle causing two subtrees. The algorithmapair function has to first check if each node’s degree is within
maintains two arraysd andB. Array A containsinfor- the lower and upper degree constraints. If it violates the con-
mation on sets where each node belongs to and &traystraints, the network has to be repaired. The repair algorithm
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Fig.

replaces a degree-violated node by randomly choosing another
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Fixed Position: 12345678 2:
Chromosome: |3 464153 7|
Fixed Position Node
Bx
Ax
Nodes ets

O 002 W & W=
e e e e e e

4. Legal spanning tree after repair.

node that does not violate the degree constraints.

S1) For a given encoding string with length of N — 1,
whereN represents nodes. vector A is used to store
the degree status of all nodes in a graph. Aét) rep-
resent the value in thigh position invectorA. Assume
C(x) represents the allele of the fixed position in
chromosome”, wherez starts from 2 taVv. Sets = 1
and go to S2.

S2) Check the number of times™appears inC. Add the

Principal (I)

Principal (IT)

|§5641537|

|§5641537J

Fig. 5. Random repair for infeasible solutions.

Update the degree status of n and
s in vector A such that A(s)
=A(s)+1 and A(n) = A(n) —1;

A(s) < Lds, or A(s) > Uds, go back to

S3.

Set s=s+41, if s> N, stop; other-
wise, go back to S3.

If

Toillustrate, examine the network in Fig. 4. The requirements
of degree-constraints are shown in Table I(b). Comparing the de-
gree constraint values in Table I(b) with the given chromosome
we observe that node 4 exceeds the upper-level degree constraint
by 1 and node 5 is below the lower-level degree constraint by 2.
The random repair algorithm, described above, is used to repair

number by one (because there is an extra connectigie network to satisfy the constraints. Examine the chromosome
from the fixed position) as its correspondent degregnd find the nodes that violate degree constraints: nodes 4 and

level d;. SetA(s) = ds. Sets = s+ 1,if s > N,
sets = 1 and go to S3; otherwise go back to S2.

5 in this case. Randomly find a node, say node 5, that does not
exceed the upper-level degree constraint after incrementing by

S3) Compared(s) with its upper and lower degree limita-one and replace it with node 4. Replace the allele in fixed posi-

tion, Ud,, and Ld,.

If  A(s) > Ud,,

Randomly select a node n(n # s),
where A(n) will not be greater

than Ud, after adding the extra
one.

Randomly select a C(x), where
C(z) =s and set C(z) =n.

Update the degree status of n and
s in vector A such that A(n)
=A(n)+1 and A(s) = A(s) — 1;

Else, if A(s) < Lds,
Randomly select a node n(n#s),

where d,, will not be less than

Ld, after subtracting the extra
one.

Randomly select a
C(z) =n and set

C(z), where
O()

’
= S.

tion 3 (arandomly selected gene contains “4”) with node 5. This
increases the degree constraint of node 5 by one and decreases
node 4 by one. We find from the summary table of degree con-
straints that node 5 is one degree less than the constraint. Ran-
domly select a fixed position, say “2,” so that its correspondent
gene’s degree will not be less than its lower limitation after de-
creasing by one. Assign node 5 to fixed position “2” and de-
crease the degree of node 3 (the original gene in fixed position
“2") by one and increase the degree of node 5 by one. The final
network layout is presented in Fig. 5.

3) Penalty Function: Since the network generated after re-
pairing the degree constraints could now be illegal (not a span-
ning tree), the illegal repair algorithm will be used one more

time to ensure that all the repaired chromosomes are legal. After

this repair, a few chromosomes may still violate the degree con-
straints. A function is used to penalize chromosomes that violate
the constraints by adding a negative value to the fitness value.
Since the cost of network is dependent on the network size and,
therefore, the chromosome length, the penalty value has to be
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proportional to the cost of the network. The value is computedossover operator on six different types of problems using a
by providing a weightage for the length of the chromosome. Tlsteady—state GA with simple mutation and binary encoding. He

penalty function is computed as follows: found uniform crossover to be more effective than two-point
crossover and two-point crossover consistently better than
P(z) = Z|di($)—Dv¢($)| one-point crossover. Poon and Carter [15] compared the
i€ performance of ten crossover operators over six applications
g'(z) = g(x) + (P(x) + L(z))"W and found that order and union crossover operators performed
where uniformly well in all applications and position-based and

intersection-crossover operators were the worst performers. We
evaluate the effectiveness of one-point, two-point, and uniform
crossover methods. me-point crossovea random position is
generated for a pair of chromosomes and the alleles of the first
chromosome from this fixed position to the end are exchanged
with the second chromosome in the same range. In this process,
S . the alleles of the second chromosome are transferred to the
Di(=) lower/upper degree limitation of nodén chromo- respective alleles in the first chromosorieo-point crossover

somez. - )
. ... generates two random positions, head and tail. The alleles of
As shown above, the penalty value is based on the diffel- P

. . e first chromosome from the head position to the tail are
ence of each allele and the degree constraint of its correspggéhanged with the second chromosome in the same range
dent node, and the length of the chromosome. '

Uniform crossoveis a dynamic and nondeterministic method
D. Fitness Eunction where a set of positions, called a mask, is chosen for each of
. . o . the chromosomes and their alleles are exchanged with each
The fitness function will interpret the chromosome in termgiher based on the generated positions. There are two random

of the physical representation (phenotype) and evaluate its fscisions—the positions to replace and the number of genes to
ness based on certain characteristics that are desired in therggrace.

lution. The definition of the fitness function is very critical be-
cause it must accurately measure the desirability of the featuggs Reproduction Operator—Mutation
described by the chromosome. The function should be efﬁmen\/ . ati thods h b ined includi
in its computation since it is used a large number of times to arious mu at!on rg.e Io S av;a een exalmmeh inci 'n%
evaluate each and every solution. The fitness function compu'l%\éer.s'tc_m’ m‘:fetr. |on,38|sp_?cement, t_reuproc;ﬁ dexc ange, ar(‘;
a fitness value for each chromosome. The fitness value is no hfr*ms Ic mT' ation [t ].d wo hmu ation tmf 0 tS W?r? use
absolute value, but a value relative to a given population [41] ere, namely, Insert and exchange mutatioisert mutation
randomly generates two positions in a given chromosome
f(@) = Cyin + 9(x), wheng(z) > —Chin and inserts the gene from the first position in the second
=0, otherwise. position and shifts all the genes to the right by one position.
Exchange mutatiomandomly selects two positions in a given

f(x) indicates the new fitness value being scaled@gg, is the .
L ) . chromosome and exchanges both genes. Insert mutation causes
smallest objective value in the current generation of the popu-

. . reater changes to the chromosome compared to exchange
lation. The chromosomes are ranked based on the fithess v%‘; 9 P 9

for selection for the next aeneration {ftation. This is particularly true in our study since the genes
9 ' in a chromosome are related to their fixed positions.

¢'(z)  new cost value of chromosome
g(z) original cost value of chromosome
P(z) penalty value of chromosome
L(z)  length of chromosome;

154 weight given by the user;

d;(x)  degree of nodeéin chromosomer;

E. Selection Methods
_ H. Control Parameters
There are many methods to select the population. Each has

advantages and disadvantages [44]-[46]. Some researchefd Important control parameter is thalting criterion There

prefer to use the enlarged sampling approach since it reduf&g Severahalting criteriato choose from including number of

the possibility of duplicate chromosomes entering the popg(_aneratlons, computing time, and fitness convergence. Fltngss

lation during selection [38]. Typically, there are two emargeaonvergence oceurs whenalithe ghromoso'mes inthe populatloin

sampling strategiesyc + A) and (i, A). In (1 + \) strategy. have the same fitness value. In this study, fithess convergence is
) . 1 . . .

. parents andh offsprings compete for survival and the S€lected as the halting criterion. _

best solutions are selected for the next generatior{ylm\) The population size, crossover rate, and mutation rate are

strategy, we select thebest(1 < 1 < A) solutions from out of three other important control parameters for GA. The initial

) offspring solutions. We used the stochagfict \) method. population sizevas fixed at 100 and stochastje+ ) selection
method was used. Since researchers suggest a high crossover

F. Reproduction Operator—Crossover and mutation rate for enlarged sampling method [38], we chose

. . 1.0 as thecrossover and mutation rate
Crossover methods such as one-point, two-point, an

uniform crossover are extensively used in GA models [10].
Booker [17] compared one and two-point crossover and found
the two-point crossover to be better for nonorder problems.We use two performance measures to evaluate the results:
Syswerda [10] compared one-point, two-point, and uniforthe value of the objective function (solution quality) and com-

IV. RESEARCHHYPOTHESES ANDEXPERIMENTAL DESIGN
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TABLE I
SOLUTION QUALITY (CoST) AND COMPUTATION TIME PERFORMANCE FORCOMBINATIONS OF ENCODING, CROSSOVER MUTATION, AND NETWORK SIZE

Network Size—p

Factors 20 40 60 80

Cost CPU(sec) Cost CPU(sec) Cost CPU(sec) Cost CPU(sec)

EiCIM1 1561.7 4.0 2167.4 294 2666.3 118.0 3082.2 396.8
E1C2M1 1562.2 4.0 2173.6 26.1 2668.9 99.2 3065.4 3426
E1C3M1 1560.8 38 2159.3 26.5 2658.7 854 3059.1 318.0
EiCIM2 1602.5 5.9 2456.6 352 3478.4 96.9 4600.2 214.6
E1C2M2 15913 6.4 2346.5 30.5 3206.8 96.6 4271.8 184.8
E1C3M2 1576.2 6.2 22425 38.6 2835 131.0 3403.1 274.4
E2CIM1 1789.9 6.5 3206.8 37.8 4333.8 1545 55225 391.9
E2C2M1 1748.9 72 3140.8 47.1 4246.2 156.1 5546.9 4297
E2C3M1 1749.0 438 2780.7 30.0 4064.7 121.6 5361.4 315.
E2CIM2 1838.2 8.6 32417 429 4670.3 169.3 62393 411.1
E2C2M2 1792.5 9.6 3165.8 59.1 4526.3 2033 6125.6 550.0
E2C3M2 1750.2 17.1 2784.9 127.8 4424.1 687.8 5689.0 1784.9

* El: Determinant encoding; E2: Priifer encoding;
* C1: one-point crossover; C2: two-point crossover; C3: uniform crossover;
* M1: exchange mutation; M2: insert mutation

putation time. The factors identified for study are encodingfe Euclidean distance between the nodes. The experiment

crossover, mutation, and network size. controlled for other factors such as population size, selection
The following null hypotheses were formulated. method, crossover rate, and mutation rate.
H1: The mean value of solution quality is the same for the
two encoding methods. V. COMPUTATIONAL RESULTS
H2: The mean value of computation time is the same for the
two encoding methods. A. Comparison of GA Operators
H3: The mean value of solution quality is the same for the The results of the experiment are shown in Table II. The
three crossover methods. column represents the network size and the rows show the var-
H4: The mean value of computation time is the same for theus combinations of GA factors. The values in the cell report
three crossover methods. the average value for the ten data sets in each cell. The high-
H5: The mean value of solution quality is the same for thgyhted cells represent the best solution.
two mutation methods. Table Il presents the results of an analysis of variance
H6: The mean value of Computation time is the same fOfﬂQANOVA) for solution qua”ty using four main factors—en-
two mutation methods. coding, crossover, mutation, and network size. The results
) . indicate that all the factors are significant & < 0.001,
A. Experimental Design thereby rejecting the null hypotheses H1, H3, and H5. We also

There are four experimental variables—encoding, crossovevaluated the two-way interaction among the four factors. All
mutation, and network size. We considered two encodirige interactions, except crossover with encoding, are signifi-
methods (determinant and Prifer), three crossover methedst. In general, the values of interaction terms for crossover
(one-point, two-point, and uniform), two mutation methodwith the other three factors are relatively lower than the other
(insert and exchange), and four networks of varying node sizeteraction terms.

(20, 40, 60, 80). Hence, an experimental design with 48 cellsTable IV presents the results of ANOVA for computation
(2x3x2x4) was used to represent the combinations of all thiene. The results indicate that all the factors are significant at
factors. For each cell, ten data sets were generated randorily< 0.001, thereby rejecting the null hypotheses H2, H4, and
In total, there were 480 data points for the experiment, 486. Among the interaction terms, encoding with mutation and
cells with ten data points in each cell. Each network wasossover with mutation had high values.

generated using a special-purpose algorithm [47], where theThe variation in the absolute value of solution quality for the
coordinates of each node in the data set were generated frdifferent combinations are more pronounced for larger networks
a 500x 500 graphic plane with each data set using a differeas compared to smaller networks. While the difference between
random number seed scaled from 0.1 to 0.9. For each cell, the lowest and highest cost value is only 278 (18% of absolute
different networks were created using ten different randowalue) for the 20-node network it is around 3180 (103% of abso-
number seeds. The cost of the edges was calculated basetutmvalue) for the 80-node network. Hence, for larger network
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TABLE Il
ANOVA—SOLUTION QUALITY , CROSSOVER MUTATION, ENCODING, AND NETWORK SIZE

Sum of Squares Df Mean Square F Value Sig.
Main effects
(Combined) 750000000.0 7 110000000.0 768.59 .0001
Crossover 4660076.0 2 2330038.0 16.675  .0001
Mutation 15000000.0 1 15000000.0 109.069  .0001
Encoding 150000000.0 1 150000000.0 1100.764  .0001
Network Size 580000000.0 3 190000000.0 1379.003  .0001
2-way 87000000.0 17 5108131 36.557  .0001
interactions
CxS 4241450.0 6 706908.3 5.059 .0001
CxE 256394.9 2 128197.4 917 400
CxM 1152652.0 2 576326.1 4.125 017
SxE 70000000.0 3 23000000.0 167.285  .0001
SxM 9136805.0 3 3045602.0 21.796  .0001
ExM 1925840.0 1 1925840.0 13.782  .0001
Model 840000000.0 24 350000000.0 250.069  .0001
Residual 64000000.0 455 139731.7
Total 900000000.0 479 1883507.0

* C: crossover; M: mutation; E: encoding; S: Network size.
* Sig.: significant level; df: degree of freedom.
*a=0.05

TABLE IV
ANOVA—COMPUTATION TIME, CROSSOVER MUTATION, ENCODING, AND NETWORK SIZE

Sum of Squares Df Mean Square F Value Sig.
Main effects
(Combined) 20000000.0 7 2865538.0 111.749 0001
Crossover 1333288.0 2 666644.2 25998 .0001
Mutation 864047.8 1 8640478 33.696 .0001
Encoding 2133028.0 1 2133028.00 83.183 0001
Network Size 16000000.0 3 5242800.0 204.457  .0001
2-way 9575061.0 17 563238.9 21.965 0001
interactions
CxE 1254605.0 2 627302.4 24.463  .0001
CxS 1597472.0 6 266245.4 10.383 400
CxM 2074420.0 2 1037210.0 40.449 017
SxE 2371599.0 3 790533.1 30.8295 0001
SxM 756049.3 3 252016.4 9.828  .0001
ExM 1520915.0 1 1520915.0 59.312  .0001
Model 30000000.0 24 1234743.0 48.152  .0001
Residual 12000000.0 455 25642.59
Total 41000000.0 479 86223.81

* C: crossover,; M: mutation; E: encoding; S: network size.
* Sig.: significant level; df; degree of freedom.
*o,=0.05

sizes, there is a greater possibility of the solution being furth8@-node network. These results highlight clearly the importance

away from the minimal solution. A similar pattern is also noef selecting the right GA parameters. The selection of appro-

ticed in the absolute value of computation time. While the difsriate parameters becomes more critical as the problem size in-
ference is 13.3 s for the 20-node network, it is 1466 s for ttoeeases.
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TABLE V
EFFECT OFENCODING, CROSSOVER AND MUTATION ON SOLUTION QUALITY —PAIRED ¢-TEST. (&) SOLUTION QUALITY AND ENCODING. (b)
SOLUTION QUALITY AND CROSSOVER (C) SOLUTION QUALITY AND MUTATION

Operator Mean SD t value P
Determinant 2583.438 889.899 21.840 0.0001
Priifer 3739.146 1529.513
(@
Operators Mean SD t value P
One point 3278.613 1423.130 3.537 (*a) 0.0001 (*a)
Two Point 3199.094 1385.219 7.022 (*b) 0.0001 (*b)
Uniform 3006.506 1304.137 8.410 (*¢) 0.0001 (*¢)

*a is t-test of one point and two point, b is t-test of two point and uniform, c is t-test of Uniform and

one point
(b)
Operators Mean SDh t value P
Exchange 2994.883 1248.756 10.53 0.0001
Insert 3327.258 1466.88

(©

While ANOVA results generally indicate the factors thatoding was better than Priufer encoding; 2) exchange mutation
have the maximum impact on performance, they do not indicates better than insert mutation;and 3) one-point crossover was
which of the options in each of these factors lead to bettbetter than two-point or uniform crossover.
performance. An examination of the mean values in Table I
indicates that the combination of uniform crossover, exchange
mutation, and determinant encoding generates the best solutio

quality for all network sizes. Since Prufer encoding does not possess locality, small changes

To genera_lllze from our experiments, we performed add'.t'orlfﬁ he chromosome due to mutation or crossover create totally
data analy5|s on subgroups. The values_ for solu_t|0n ql_Jal_'ty W solutions. Therefore, Priifer number although a useful
computation time are influenced by various options within t ay to represent trees, is not an effective representation

four factors: encodipg, Crossover, mutation, and network Sisz a GA. Determinant encoding generates both illegal and
;ro ck?mpf?re thfe ﬁprt:onshwn?ln each factor, Wel ne;zd tohcontriﬂ{easible solutions. The repair of infeasible solutions is a
or the effect of all the other factors. For example, if we have tanificant computation cost. In our case, the repair of illegal

compare the performance of insert and exchange mutation, ¥ infeasible solutions could go through an endless cycle, one
need to control for the variations due to encoding, crossoVgfeating the other—repairing legal infeasible solutions creating
network size, and problem set. Hence, we recast the data s&figga solutions, which on repair could become infeasible. We
that we compared the results of two sets of experiments whefgnt through two cycles of repair (illegal-infeasible—illegal)
all factors, except the one under study, are kept constant. Bggy chose a function to penalize illegal solutions that did not
example, to compare insert and exchange mutation we creajd repaired. We chose a simple penalty function based on a
pairs of data sets (240 in all), where all the other factors wegigstance vector, but better penalty functions can be designed
same, but varied only in the mutation treatment. Pairéebts to reduce repair without sacrificing on global search space.
were conducted between these pairs to statistically test if thgaptive penalty function, where the function varies between
mean values of solution quality and computation time were dienerations, could be used to improve performance [43],
ferent for each of the different options. The results for solutiqag]-[50]. We could use an adaptive penalty function that uses
quality and computation time are shown in Tables V and V& low penalty value in the earlier generations to widen the
respectively. The results for solution quality indicate that: gearch space, but increases the penalty in later generations to
determinant encoding was better than Prifer encoding; 2) éxad to faster convergence.

change mutation was better than insert mutation; and 3) uni-An area for performance improvement lies in the repair al-
form crossover was better than one- or two-point crossover. Tgerithm. Researchers have advocated the use of heuristics for
results for computation time indicate that: 1) determinant eimproving a GA's performance [18]. We could expect some im-

VI. DISCUSSION
Ve found that Prfer encoding did not provide good results.
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TABLE VI

EFFECT OFENCODING, CROSSOVER AND MUTATION ON COMPUTATION TIME—PAIRED ¢-TEST. (a) GCOMPUTATION TIME AND ENCODING. (b)
COMPUTATION TIME AND CROSSOVER (¢) COMPUTATION TIME AND MUTATION

Operators Mean SDb t value P
Determinant 107.287 123.980 6.210 0.0001
Priifer 240.611 385.373
(€Y
Operators Mean SD t value P
One point 132.724 149.077 1.437 0.076
(*a) (*a)
Two Point 140.785 169.510 3.964 0.0001
(*b) (*b)
Uniform 248.338 447.674 3.94 0.0001
(*c) (*c)
*a is t-test of one point and two point, b is t-test of two point and uniform, c is t-test of uniform and
one point
(b)
Operators Mean SD t value P
Exchange 131.512 149.780 3.951 0.0001
Insert 216.377 383.091
(©)
provement in performance by using a heuristic for repair rather
than the random repair method that is currently being used. With
Pri . L e L S A(s) > Uds,
rifer encoding, it is difficult to use heuristics for repairing . . .
scan string C and identify x,

infeasible networks. However, determinant encoding provides
an opportunity to use heuristics to repair networks that vio-
late degree constraints. Hence, a heuristic was used and its per-
formance was compared with the random repair method. This
heuristic used a “local search hill climber” approach to repair
chromosomes and improve performance.

The heuristic repair algorithm selects the longest neighbor
node to disconnect and the closest neighbor node to connect so
as to meet the degree requirements. The algorithm is as follows.

S1) For the given encoding stririgwith length of N — 1,
whereN represents the number of nodesvéctor A
is used to store the degree status of all nodes in a graph.
Let A(¢) represent the value in thith position invector
A. AssumeC(z) represents the allele of thefixed
position in chromosomé’, wherez starts from 2 to
N. Sets = 1 and go to S2.

S2) Check the total number of times appears inC'. Add
the number by one (because there is an extra connec-
tion from the fixed position) as its correspondent de-
gree levelsl;. SetA(s) =ds;ands = s+1.1f s > N,
sets = 1 and go to S3, otherwise go back to S2.

S3) Compared(s) with its upper and lower degree limita-
tionsU/d, and Ld,.

Else, if

Set s=s5+1, if

where C(z) =s and node z has the
highest connecting cost with s.
Scan the cost table and identify
node =, (n #s), which has the
lowest connecting cost with node
z and d, will not be greater than
Ud,, after adding the extra one.
Set C(z) =n, and update de-
gree status in vector A such that
An) =A(n)+1 and A(s) = A(s) — L.
A(s) < Ld,,
identify z(x # s), where de(gy will
not be less than Ld¢ (. after sub-
tracting the extra one and node
z has the lowest connecting cost
with s. Update the degree status
such that A(s)=A(s)+1 and A(C(x))
= A(C(z)) -1 and set C(z)=s.
A(s) < Lds or A(s) > Ud,, go back
to S3.
s > N, stop; other-
wise, go back to S3.
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Principal
rincipal () Priifer Base
3464153

* Chromosome
|3 164153
Principal (IT)
S1

|§56415_3

v

|§564153

S2
I i Degree Status 2 2311
|5 164153 §l Fig. 7. Tree representation using Priifer encoding.
Fig. 6. Heuristic repair for infeasible solutions. after controlling for all the other factors. The results are shown

in Table VII. The results indicate the heuristic repair performs
Let us examine how the heuristic algorithm repairs the Nefgtter than random repair in both performance measures. The
work shown in Fig. 4. It examines the chromosome and fincbmputation time is reduced by 50% by using heuristic repair.
that nodes 4 and 5 violate degree constraints. Identify the twhe results from the repair method highlight the potential for
highest cost links (3—4), (5-4) connected to node 4. Randony¥egrating traditional heuristics with GAs to get improved per-
break one of them, say link (3—-4). Check the cost table and pigfmance. While GAs are good at finding promising areas of
the node that has the lowest cost connecting to node 3 and megtsrch space but slow to converge to an optimal solution, heuris-
the degree constraint requirements after incrementing the ggs are good at converging to optimal solution in a local space,
gree by one. We notice node 1 is the best fit. Replace the allglg |ack global focus in their search. The combination of these
in fixed position 3 by node 1 (Fig. 6); increase node 1's degrego approaches in a hybrid algorithm provides an algorithm that

by one and decrease node 5’s degree by one. We find from {{iuid be better than the two independently.
degree status table, that node 5 has 2 degrees less than the lower

degree limitation. Check the cost table and find out the fixed po-
sition node (from 2) that has the lowest connection cost to node
5 and also its correspondent gene’s degree does not violate thé/e identified the factors that influence the performance of
lower limitation after decreasing by one. Fixed node 2 is tH8As and examined the influence of three critical factors: en-
best fit and its correspondent gene 3 does not violate lower lieeding, crossover, and mutation. The algorithm was used to
itation after being decreased by one. Replace the allele in fixeolve a network optimization problem for DCMST. An experi-
position 2 by node 5. However, it is to be noted that it is stilnental design with 48 cells to represent different options within
one degree less than the lower limitation. Check the table ortbese three factors and ten data points in each cell was used
again and find that the fixed node 9 is the second candidate dadstudy the factors and their interactions. The results high-
its correspondent gene 7 does not violate lower limitation aftight the importance of choosing the right parameters to get
being decreased by one. Finally, replace the allele in fixed poie best performance [19]. We could see a cost reduction of
tion 9 by 5 and update the final degree status table. The finaliZz2di0% between the best and worst combinations. The combi-
DCMST is as shown in Fig. 6. nation of determinant encoding, exchange mutation, and uni-

The results from random and heuristic repair algorithms afem crossover provides better results than other combinations
quite different, as is shown in Fig. 5 and 6. In random repaimost of the time. The study also examined two repair methods,
the convergence of the result will be primarily based on Gfandom and heuristic repair, and found that heuristic repair im-
evolution. In heuristic repair we specifically identify the closegtroves performance. This study provides many new opportuni-
qualified node, resulting in faster convergence of the result. ties for future research.

An experiment was conducted to compare the performance ofirst, the study only looked at a few factors. Other possible
random and heuristic repair for various combinations of netwodteas for study are population size, stop criteria, and crossover
sizes, crossover, and mutation operators. Ten samples wereand mutation rate. There are tradeoffs in each of these and it may
for each combination (4 3 x 2), resulting in 480 data points, be dependent on the problem context. For instance, choosing a
240 for each repair method. A pairedest was performed to de- smaller population size may reduce the number of computations
termine if there was any difference in the performance (solutiger generation, but it may take more generations to reach con-
guality and computation time) between the two repair methodsrgence or it may converge in a local optimal area of the search

VIl. CONCLUSION
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TABLE VII

EFFECT OFREPAIR STRATEGIES (RANDOM AND HEURISTIC) ON PERFORMANCE—PAIRED ¢-TEST. (a) SOLUTION QUALITY . (b) COMPUTATION TIME

Operator Mean SD t value P
Heuristic 2392.737 596.707
6.557 0.0001
Random 2606.995 889.899
(€Y
Operator Mean Sb t value P
Heuristic 55.225 65.336
9.403 0.0001
Random 107.287 123.980
(b)
space providing poor results. Researchers have to examine gabject to
ious population sizes to determine the most optimal size that Z Xy <Ud;, YieV @)
produces reasonably good results. &
Second, other alternatives for the halting criterion could be i7j

examined. If our interest in using GAs is in achieving reasonably )
good solutions rather than best solutions, we could change the Z Xy 2Ld; VieV 3
halting criterion from convergence to a single value to a range {g
between a minimum and maximum value (e.g., 1% range for
quality and time). A graph plot of solution quality generated Z Xy <IN|-1 YNCV (4)
for various generations indicates that significant improvements Z}<j,€N
in the objective value happens in the first few generations and !
there is only marginal improvement in subsequent generations. Z X, =|V|-1 (5)
It takes a significant number of generations to converge to a i,jev
single value for the total population. We could possibly reduce vy o
computation time at the cost of a slight variation in solution Xiy=0o0rl 4,j€eV. (6)

quality by using a range approach for the halting criterion.

The objective function (1) seeks to minimize the total con-

Third, it may be interesting to examine using heuristicgecting cost between nodes. The total cost could be distance
in other areas. While this study integrated heuristics in tle@st, material cost, or customers’ requirement cost. Constraint
repair function, future research could explore integrating it i2) and (3) specify the lower and upper bound constraints on the

crossover or mutation operators.
APPENDIX |

The mathematical formulation of the DCMST problemiis pr

sented below. The following notation is used in the model.
Indices

i, Index of nodes, j = 1,2, ...,n.
V Set of nodes in the spanning tree.
Parameters
Cij Cost to link nodes to ;.
Ud; Upper degree constraint on node
Ld; Lower degree constraint on node
| V] Number of nodes in a subsat of nodes inV.
V] Number of the nodes .
Decision Variables
Xij Equals one if the link between nodéso j exists;

zero, otherwise.

Minimize

> CiyXy )
igev
i<

€

number of edges connecting to a node. Constraint (4) is an anti-
cycle constraint and constraint (5) indicates that the number of
edges in a spanning tree is equal to the number of nodes minus
one. Constraint (6) expresses the binary requirements of the de-
cision variables. In the formulation, there @& + 2V con-
straints andV*(N — 1)/4 binary variables. Constraint (4) in-
creases exponentially with network node size, thereby making
it impractical to solve large size problems.

APPENDIX I

A brief description of Priifer and determinant encoding algo-
rithm is provided below.

A. Prifer Encoding

Each gene in the chromosome represents a correspondent
node in the network. The length of the chromosome in Priifer
encoding isV — 2, wherelV is the number of nodes in a given
graphG. The procedure to generate a unique tree using Prufer
encoding is as follows.

S1) LetC be the original Prifer string ar@’ be the set of
all nodes not included ig.
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S2) Let: be the eligible nodes with smallest labeldd chromosome can be connected to its corresponding fixed posi-
andj be the leftmost digit of”. Add the edge fromi tion as in S3 above. The links in the tree are (2-3), (3—-4), (4-2),
to j into the tree. Removefrom ¢’ andj from C. If  (5-5), (6-8), (7-5), (8-3), (9-9). The final layout of the tree is
7 does not occur anymore i, putj into C’. Repeat shown in Fig. 1. The generated tree may not be legal and need
the process until no digits remain . to be repaired by reallocating genes in appropriate positions to

S3) After S2 completes, there will be exactly one nede generate a legal tree.

C’ ands in C. Add edger to s, connecting thetree and  Although determinant encoding is an indirect encoding

forming a spanning tree. strategy, the decoding algorithm is very simple. We can easily

For example, a Priifer string (3 2 1 3) corresponds to a spél¢termine degree constraint violations by simply examining the
ning tree on a six-node graph (Fig. 1). In the construction of tig@romosome and counting the number of links starting from a
spanning tree, the Priifer numbers ére= (32 1 3) andZ’ = single node. The only disadvantage is that it generates illegal
(4 5 6). Node 4 is the eligible node with the smallest label aritees that need to be repaired.
node 3 is the leftmost digit id’. Add edge (3—4) to the tree,
remove node 4 frond”, and node 3 fron®”'. Node 5 is now eli-
gible with the smallest label and the second nod€'is 2. Add
edge (2-5) to the tree, remove node 5 fréfpand node 2 from [1] A. Kershenbaum, “When genetic algorithms work bedyFORMS J.
. . Comput, vol. 9, no. 3, pp. 254-255, 1997.

C. Since node 2 does not exist anywhereCinadd node 2 to [2] L. Davis, Ed., Genetic Algorithm and Simulated AnnealingSan
C’ and, hence(’ = (2 6). Node 2 is eligible with the smallest Mateo, CA: Morgan Kaufmann, 1987.
label and node1 is the leftmost@ Add edge (2-1) to the tree, [3] L. Davis, “Adapting operator probabilities in genetic algorithms,” in

’ . . Proceedings of the Third International Conference on Genetic Algo-
remove 2 fromC” and 1 fromC. Since node 1 does not exist rithms D. Schaffer, Ed. San Mateo, CA: Morgan Kaufmann, 1989,
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