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Abstract

Monotonicity in a scalar unobservable is a now common assumption in economic theory

and applications. Among other things, it allows one to recover the underlying structural

function from certain conditional quantiles of observables. Nevertheless, monotonicity is a

strong assumption, and its failure can have substantive adverse consequences for structural

inference. So far, there are no generally applicable nonparametric speci�cation tests designed

to detect monotonicity failure. This paper provides such a test for cross-section data. We show

how to exploit an exclusion restriction together with a conditional independence assumption,

plausible in a variety of applications, to construct a test. Our statistic is asymptotically

normal under local alternatives and consistent against nonparametric alternatives violating the

conditional quantile representation. Monte Carlo experiments show that a suitable bootstrap

procedure yields tests with reasonable level behavior and useful power. We apply our test to

study the role of unobserved ability in determining Black-White wage di¤erences and to study

whether Engel curves are monotonically driven by a scalar unobservable.

Keywords: control variables, covariates, endogenous variables, exogeneity, monotonicity, non-
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1 Introduction

Model misspeci�cation �that is, the failure of the assumptions maintained to justify identi�cation,

estimation, and inference for the features of a given economic phenomenon � can have serious

adverse consequences. At one extreme, the resulting estimators may provide no information

whatever about the phenomenon of interest. Less extreme but still serious is that estimators may

be informative, but inference may be �awed by use of an incorrect sampling distribution.

In recognition of these dangers, economists and econometricians have begun to rely increas-

ingly on methods that require ever weaker maintained assumptions. The use of nonparametric

methods for structural estimation and the use of bootstrap methods for inference are two promi-

nent examples of these trends. Nevertheless, no matter how �exible methods of estimation and

inference may become, identifying economic features of interest1 always requires some assumed

economic structure that may or may not be embodied in the data. The possibility of misspeci�-

cation at this fundamental level must always be confronted.

Global identi�cation of structural features of interest generically involves exclusion restrictions

(i.e., that certain variables do not a¤ect the dependent variable of interest) and some form of ex-

ogeneity condition (i.e., that certain variables are stochastically orthogonal to �e.g., independent

of �unobservable drivers of the dependent variable, possibly conditioned on other observables).

These assumptions permit identi�cation of such important structural features as average marginal

e¤ects or various average e¤ects of treatment. Seminal examples are the LATE of Imbens and

Angrist (1994), the MTE of Heckman and Vytlacil (1999, 2005), or the control function model of

Imbens and Newey (2009, IN) to name but a few.

In addition, there may be nonparametric restrictions placed on the structural function of

interest, such as separability between observable and unobservable drivers of the dependent vari-

able (�structural separability�), or, more generally, the assumption that the dependent variable

depends monotonically on a scalar unobservable (�scalar monotonicity�). Although these assump-

tions need not be crucial to identifying and estimating average e¤ects of interest, when they do

hold, they permit recovery of the structural function itself. This line of work dates back to Roehrig

(1988); see also Matzkin (2003) and IN. Thus, knowing whether scalar monotonicity holds is key

to knowing whether one can access the economic relationship of interest in its entirety, with all

that this entails for the resulting economic insight, or whether one must make do with knowing

average or distributional properties of the structural relationship.

In recognition of the potentially adverse consequences of misspeci�cation, nonparametric spec-

i�cation testing procedures have been receiving increasing attention. As White and Chalak (2010)

discuss, there are now numerous nonparametric tests for various forms of exogeneity. Further,

1The identi�cation considered here is that discussed by Hurwicz (1950), which entails the correspondence of

structural features of economic interest to features of the distribution of observable data.
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Hoderlein and Mammen (2009) and Lu and White (2011) have proposed convenient nonparamet-

ric tests for structural separability. But generally applicable speci�cation tests for monotonicity

as so far lacking. Su, Hoderlein, and White (2011) do provide a test for scalar monotonicity under

a strict exogeneity assumption for panel data with large T , but its applicability is limited by

these data requirements. Thus, our main goal and contribution here is to provide a new generally

applicable test designed speci�cally to detect the failure of scalar monotonicity, adding a further

weapon to the nonparametric speci�cation testing arsenal.

We also contribute by complementing and extending the literature on the identi�cation and

estimation of nonseparable models with scalar monotonicity. Our results build on, complement,

and extend those of Altonji and Matzkin (2005, AM). Our results also complement those of IN; for

example, our new test can assess the validity of instruments that IN construct from a �rst-stage

nonparametric structural equation, relying on scalar monotonicity.

A �nal contribution is the application of our new test to study the black-white earnings gap

and to study consumer demand. For the former, we test the speci�cation proposed by Neal and

Johnson (1996), which includes unobserved ability as scalar monotonic factor, A, and the armed

forces quali�cation test (AFQT) as a control variable. We fail to reject the null, providing support

for Neal and Johnson�s (1996) speci�cation. That our test has power is illustrated by an analysis

of Engel curves, where a scalar monotone unobservable is implausible (Hoderlein, 2011). In a

control function setup virtually identical to that analyzed in IN, we �nd that indeed the null of a

scalar monotone unobservable as a description of unobserved preference heterogeneity is rejected.

This suggests a demand analysis that allows for heterogeneity in a more structural fashion.

The remainder of this paper is organized as follows: In Section 2, we discuss relevant aspects of

the literature on nonparametric structural estimation with scalar monotonicity and motivate our

testing approach. In Section 3, we give a detailed analysis of identi�cation under monotonicity.

Based on these results, we discuss the heuristics for our test in Section 4, turning to the formal

asymptotics of our estimators and tests in the �fth and sixth sections. A Monte Carlo study

occupies Section 7, and in Section 8 we present our two applications. Section 9 contains a summary

and conclusion. Proofs of all results are gathered into a Mathematical Appendix

2 Scalar Monotonicity and Test Motivation

Monotonicity of a structural function in one important - yet unobservable - factor is an assumption

widely invoked in economics. For instance, it is often postulated in labor economics that ability

enters a returns-to-schooling model in a monotonic fashion: Other things equal, the higher the

individual�s ability, the higher her resulting wage. Similarly, monotonicity in unobservables has

frequently been invoked in industrial organization, e.g., in the literature on production functions

(see, e.g., Olley and Pakes, 1996) and the literature on auctions. In econometrics, monotonicity
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has been used to point identify single-equation nonseparable structures (Matzkin, 2003).

The appeal of monotonicity stems at least in part from the fact that it allows one to spec-

ify structural functions that allow for complicated interaction patterns between observables and

unobservables without losing tractability. Indeed, monotonicity combined with other appropri-

ate assumptions allows one to recover the unknown structural functional from the regression

quantiles. Speci�cally, if G�1(� j x) denotes the � -conditional quantile of Y given X = x; and

Y = m(X;A) is the structural equation, then strict monotonicity of m(x; �), combined with full
independence of A and X (strict exogeneity of X) and a normalization, allows recovery of m as

m(x; a) = G�1(a j x) for all (a; x):
Clearly, however, scalar monotonicity is a strong assumption. As Hoderlein and Mammen

(2007) argue, some of its implications in certain applications, such as consumer demand, may be

unpalatable. In particular, monotonicity implies that the conditional rank order of the individual

must be preserved under interventions to x: For example, under independence, if individual j

attains the conditional median food consumption G�1(:5 j xj); then he would remain at the
conditional median for all other values of x:

The existence of the regression quantile representation makes it impossible to test for monotonic-

ity without further information. One source of such information is that provided by panel data,

as exploited by Su, Hoderlein, and White (2011). Here, we follow a di¤erent strategy, using ad-

ditional cross-section information. In particular, we assume there are random variables Z that

are excluded from the structural function, and conditional on which X is independent of A (for

this, we use the shorthand X ? A j Z). Chalak and White (2011a) call such variables Z �con-

ditioning instruments,�and say that X is �conditionally exogenous�with respect to A given Z:

For example, X could be randomly assigned given Z; or Z could be a (generalized) proxy for A:

Alternatively, Z could be the unobservable in a �rst-stage equation that relates X to an instru-

ment S. For instance, the �rst stage could be X = �(S;Z), where S ? (A;Z) and � is strictly

monotonic in Z, with Z appropriately estimated, as in IN.

Our test is based on the fact that, under mild assumptions, the availability of Z enables

one to construct multiple consistent estimators of A: If scalar monotonicity holds, then these

estimators will be close to one another; otherwise, they will diverge. We develop asymptotic

distribution theory and propose bootstrap methods suitable for testing whether the di¤erences

between multiple estimators of A accord with the null of scalar monotonicity or whether this null

must be rejected.

3 Identi�cation Under Monotonicity

In this section, we �rst review a pioneering identi�cation result of AM, their theorem 4.1. This

relies on a certain exogeneity condition plausible for panel data. We then present a complement
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to AM�s result, relying on a related but di¤erent exogeneity condition often plausible not only

for panels, but also for pure cross-sections or time-series. This motivates structural estimators

complementary to those of AM, as well as natural speci�cation testing procedures.

We begin by stating the needed assumptions. We modify AM�s notation somewhat, but

maintain the content. First, we make explicit the data generating process (DGP).

Assumption A.0 (
;F ; P ) is a complete probability space on which are de�ned the �nitely
dimensioned random vectors X and Z and the random scalar A:

Typically, X and Z are observable, and A is unobservable. We write the supports of X; Z; and A

as X ; Z; and A; respectively. Below we require that A has a continuous distribution. We permit,
but do not require, X and Z to be continuously distributed; either or both may have a �nite or

countable discrete distribution for now.

Assumptions A.1 - A.5 below correspond to AM�s Assumptions 4.1 - 4.5. To specify the

structural relationship, we say m is product measurable if m : X �A ! R is a measurable

function on the product measurable space (X �A; �(X) 
 �(A)): This ensures that m(x; �) is
measurable��(A) for each x in X and m(�; a) is measurable��(X) for each a in A:

Assumption A.1 There exists a product measurable function m : X �A ! R such that Y is

structurally determined as Y = m(X;A):

AM also assume that A = �("); for some measurable function � and random vector "; but as

Su, Hoderlein, and White (2011) show, this imposes essentially no further restrictions on the

structure generating Y . Observe that Z is excluded as a driver of Y: The product measurability

of m ensures that Y is a random variable. We let Y denote the support of Y:
We call Y the �structural response�or simply the response. Similarly, we callm the �structural

response function�, or simply the �structural function�or the �response function�.

Next, we impose monotonicity.

Assumption A.2 For all x 2 X ; m(x; �) is strictly increasing.

AM refer to the next assumption as a normalization. Below, we discuss this further.

Assumption A.3 There exists �x such that m(�x; a) = a for all a 2 A:

In general, X and A can be correlated or otherwise dependent. That is, X can be endoge-

nous. AM�s next condition accommodates endogeneity by imposing a certain conditional form of

exogeneity. Following AM, we let f(a j x; z) de�ne the conditional probability density function
(PDF) of A given X = x; Z = z:

Assumption A.4 There exist measurable functions �1 and �2 such that f(a j x; �1(x)) = f(a j
�x; �2(x)) for all (a; x) 2 A� X .

Finally, AM require that A is conditionally (and unconditionally) continuously distributed:
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Assumption A.5 For all (a; x; z) 2 A� X �Z; f(a j x; z) is strictly positive.

The conditional cumulative distribution function (CDF) of Y given X = x; Z = z is de�ned by

G(y j x; z) � P [Y � y j X = x;Z = z]: A.5 ensures that G is invertible. We also let GY jX(� j x) be
the conditional CDF for Y given X = x and FAjX(� j x) the conditional CDF of A given X = x:

3.1 Identi�cation via Conditional Quantiles

AM�s identi�cation result represents m using the conditional quantiles of Y :

Theorem 3.1 Suppose Assumptions A.0 - A.5 hold. Then

m(x; a) = G�1(G(a j �x; �2(x)) j x; �1(x)) 8(x; a) 2 X �A;

FAjX(a j x) = GY jX [ G
�1(G(a j �x; �2(x)) j x; �1(x)) j x] 8(x; a) 2 X �A;

A = G�1[G(Y j X; �1(X)) j �x; �2(X)]):

The �nal equality, providing a representation for A; is implicit in AM. We make this explicit here,

as recovering A facilitates important analyses. Speci�cally, this representation could be used for

estimating the control variables used in IN or for conducting speci�cation tests.

Although AM provide discussion at the bottom of p.1073 that seems to suggest that A:3

imposes additional structure, A:3 is in fact redundant in a precise sense. Speci�cally, A:1 and

A:2 ensure that for every �x in X , there is a function, say �m, for which A:1�A:3 hold. This is a

consequence of the following result.

Theorem 3.2 Let Assumption A:1 hold. Suppose there exists �x 2 X such that m(�x; �) is strictly
increasing, and let V := fy : y = m(�x; a); a 2 Ag: Then there exists a product measurable function
�m : X � V ! R such that
(a) for each v in V; there exists a in A such that m(x; a) = �m(x; v) for every x in X ; and for

each a in A; there exists v in V such that m(x; a) = �m(x; v) for every x in X ;
(b) for any x in X such that m(x; �) is strictly increasing on A, �m(x; �) is strictly increasing

on V: In particular, �m(�x; �) is strictly increasing on V;
(c) for each v in V; �m(�x; v) = v:

It follows that if m(x; �) is strictly increasing for all x in X ; as ensured by A:2, then any point in
X can play the role of �x in A:3. That is, once Assumptions A:1 and A:2 hold, then for each �x

in X the function �m(�; v) � m(�; ���1(v)) also satis�es A:1�A:3, where ��(�) � m(�x; �): The proof
of this result remains valid if we replace �strictly increasing�with �invertible�. We focus on the

strictly increasing case, as we will not need the greater generality of invertibility.

Theorem 3.2 implies that the main role of �x is to ensure that A:4 holds. Thus, A:3 and A:4

in Theorem 3.1 can be replaced by
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Assumption A.40 There exist �x in X and measurable functions �1 and �2 such that f(a j
x; �1(x)) = f(a j �x; �2(x)) for all a; x in A�X :

Given this �x, one can replace m with �m; with �m(�x; v) = v necessarily holding for all v in V:With
this normalization understood, one can drop reference to �m and simply work with m:

AM provide detailed discussion of an exchangeability condition, useful for panel data, that

makes plausible the particular choices �1(x) = �x; �2(x) = x; where the choice of �x is natural and

may di¤er across sample observations. With di¤ering �x; however, recovered values for A are not

comparable across observations, due to the lack of a common normalization for unobservables.

This can create di¢ culties in interpretation and may pose other challenges in applications.

3.2 Characterizing the Conditional Quantile Representation

In pure cross-section or time-series data, exchangeability is not a natural assumption. Further,

even if they exist, choices for �x; �1; and �2 are often not obvious. Nor is attempting to estimate

�x; �1; and �2 appealing, due to di¢ culties with their identi�cation.

Fortunately, however, there is an alternate assumption that permits X to be endogenous and

that can be plausible in panels and elsewhere. This is a version of AM�s conditional exogeneity

Assumption 2.1, that X is independent of A given the �covariates�or �control variables�Z :

Assumption B.1 X ? A j Z; where Z is not measurable-�(X):

An advantage of B:1 is that it allows a choice of an analog of �x in A:3 that is common across sample

observations. This makes A comparable across observations. We will exploit this comparability

to identify A and to construct computationally feasible speci�cation tests. Further, by requiring

Z not to be solely a function of X; as it is in A:40; we permit important �exibility for recovering

objects of interest. See, for example, Hoderlein and Mammen (2007, 2009) and IN. White and Lu

(2011) and Chalak and White (2011b) explicitly discuss structures ensuring B.1 where Z is not a

function of X:

We also impose a more direct variant of Assumption A.5.

Assumption B.2 For each (x; z) in X � Z; G(� j x; z) is invertible.

Our �rst main result characterizes the conditional quantile representation (CQR) of the struc-

tural function. We state this without assuming monotonicity. Thus, for (x; y) 2 X � Y; let
m�1
x fyg = f� 2 A : m(x; �) � yg denote the pre-image of the interval (�1; y] under m(x; �); and

let �m�1
x fyg = fa 2 A : m(x; a) = yg denote the pre-image of the point y:

Theorem 3.3 Suppose Assumptions A:0; A:1; B:1; and B:2 hold. For each (a; x; ~x; z) 2 A� X�
X �Z; the following are equivalent:

(i) m(x; a) = G�1(G(m(~x; a) j ~x; z) j x; z);
(ii) a 2 �m�1

x fG�1[G(m(x; a) j x; z) j ~x; z]g;
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(iii) P [A 2 m�1
x fm(x; a)g j Z = z] = P [A 2 m�1

~x fm(~x; a)g j Z = z]:

Result (i) is the conditional quantile representation of the structural function. Result (ii) gives

a partial identi�cation result for the unobservable a: If the referenced set is a singleton, we have

point identi�cation. Result (iii) gives a necessary and su¢ cient condition for CQR and for partial

identi�cation of the unobservable. Assumption A:2 ensures this for all (a; x; ~x; z), as it ensures

m�1
x fm(x; a)g = m�1

~x fm(~x; a)g = (�1; a] for all (a; x; ~x): A:2 also ensures point identi�cation of
a. Nevertheless, there are non-monotone functions m for which (iii) and therefore CQR always

hold. A non-monotone (indeed, non-invertible) example is

m(x; a) = (a� x) 1f0 � a� x < :5g+ (1:5� (a� x)) 1f:5 � a� x � 1g;

where x 2 [0; 1] and A j Z � U [0; 2]; as some calculation veri�es. Such non-monotone structures

are clearly exceptional; indeed, we conjecture they are shy (see Corbae et al., 2009, pp.545-547).

Shyness is the function-theoretic analog of being a subset of a set of measure zero.

Because economic theory often motivates or justi�es strict monotonicity but is typically un-

informative about the characterizing condition (iii); our focus here is on strict monotonicity.

The exceptional alternatives to A:2 ensuring CQR become part of the �implicit null�; we further

discuss this below and in the Appendix.

With the same ~x for all sample observations, say2 ~x = x�; and the normalization a = m(x�; a);

A becomes comparable across observations, in line with Theorem 3.2 and its discussion. For

example, x� can be the vector of medians of X: A complement to AM�s theorem 4.1 is:

Corollary 3.4 Let A:0�A:2; B:1; and B:2 hold. Then with the normalization a = m(x�; a);

m(x; a) = G�1(G(a j x�; z) j x; z) 8(a; x; z) 2 A� X �Z; (3.1)

A = G�1(G(Y j X; z) j x�; z)) 8z 2 Z; (3.2)

and for all (a; x; z) 2 A� X �Z;

FAjZ(a j z) = FAjX;Z(a j x; z) = G( m(x; a) j x; z); (3.3)

FAjX(a; x) = GY jX [ G
�1(G(a j x�; z) j x; z) j x]:

The normalization thus ensures that the unconditional distribution of A is that of Y given

X = x�: In the strictly exogenous case, where covariates Z are absent (e.g., Su, Hoderlein, and

White, 2011), the unconditional distribution of A is typically normalized to be standard uniform.

2 In what follows, we always let x� denote a choice common across sample observations, reserving �x to denote a

choice that may vary across observations, as in AM.
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4 Heuristics of Estimation and Speci�cation Testing

4.1 Estimation

Corollary 3.4 provides the basis for convenient estimators complementary to those proposed by

AM. Because this result ensures that m(x; a) = G�1(G(a j x�; z) j x; z) for given x� and any z;
one can estimate m(x; a) as

m̂z(x; a) = Ĝ�1(Ĝ(a j x�; z) j x; z));

for any choice of z; where Ĝ and Ĝ�1 are any convenient estimators of G and G�1 respectively.

(One might, but need not, obtain Ĝ�1 from Ĝ by inversion or vice-versa.) Estimators dependent

on z may exhibit undesirable variability; averaging over multiple z�s may provide more reliable

results. Such estimators have the form

m̂H(x; a) =

Z
Ĝ�1(Ĝ(a j x�; z) j x; z)) dH(z);

where H is a known or estimated distribution supported on Z0 � Z; say, like the uniform or the

sample distribution of Z: In the next section we examine the properties of m̂H(x; a) constructed

using p-th order local polynomial estimators Ĝp;b and Ĝ
�1
p;b using a bandwidth b.

As one should expect, even when monotonicity (A.2) fails, m̂H is nevertheless generally con-

sistent for3

m�
H(x; a) �

Z
G�1(G(a j x�; z) j x; z)) dH(z):

Thus, m�
H is a �pseudo-true� value, meaningful regardless of misspeci�cation, with m = m�

H

under correct speci�cation, i.e., when the conditions of Corollary 3.4 hold.

Similarly, one can estimate A as

Âz = Ĝ�1(Ĝ(Y j X; z) j x�; z));

for given x� and any choice of z: Averaging over multiple z�s gives estimators of the form

ÂH =

Z
Ĝ�1(Ĝ(Y j X; z) j x�; z)) dH(z):

Alternative estimators of A can be obtained by inverting m̂H(X;A); yielding

~AH = m̂�1
H (X;Y ) � inf fa : m̂H(X; a) � Y g :

We analyze ÂH and ~AH constructed using Ĝp;b and Ĝ
�1
p;b in the next section.

3 If m̂H is de�ned using a sampling distribution, the distribution H appearing in the next expression is interpreted

as the corresponding population distribution.
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Parallel to the situation for m̂H ; regardless of misspeci�cation, ÂH and ~AH are generally

consistent for pseudo-true values

A�H �
Z

G�1(G(Y j X; z) j x�; z)) dH(z);

AyH � m��1
H (X;Y ) � inf fa : m�

H(X; a) � Y g :

Under correct speci�cation, A�H = AyH = A:

4.2 Speci�cation Testing

Corollary 3.4 motivates constructing speci�cation tests by comparing various estimators of A; as

there are multiple consistent estimators of A under correct speci�cation. Under A:0; A:1; B:1;

and B:2; the failure of these estimators to coincide asymptotically signals non-monotonicity. Su,

Hoderlein, and White (2011) take a similar approach for the panel data case without covariates.

Below we will study the asymptotic properties of the test statistic

Ĵn � bdX
nX
i=1

(Â1;i � Â2;i)2� (Xi; Yi)

= bdX
nX
i=1

�Z
Ĝ�1

�
Ĝ (YijXi; z) jx�; z

�
d�(z)

�2
�i; (4.1)

where b � bn is a suitable bandwidth; dX is the dimension ofX; Âj;i �
R
Ĝ�1(Ĝ(Yi j Xi; z) j x�; z))

dHj(z); j = 1; 2; Ĝ and Ĝ�1 are based on a sample of observations fXi; Yi; Zigni=1 distributed
identically to (X;Y; Z); and � (�; �) is a nonnegative weight function with support on a compact
subset X0 � Y0 of X � Y, �i � � (Xi; Yi) : The weight �i downweights observations for which

Ĝ(Yi j Xi; z) is close either to 0 or 1, so that Ĝ�1 can not be accurately obtained.
Finally, �(z) � H1 (z)�H2 (z) ; where H1 and H2 are distinct distribution functions having

supports Z1 and Z2 respectively, each a subset of a compact subset Z0 of Z: These supports can
be disjoint. As it turns out, we can allow H1 and H2 to depend on the data without altering the

�rst-order asymptotic distribution of the test statistic Ĵn: Thus, for notational simplicity, we do

not distinguish between estimated and population H�s. Di¤erent choices for � focus the power

of the test in di¤erent directions. Our power analysis below suggests ways of ensuring that Ĵn
can consistently detect violations of Theorem 3.3(iii): In fact, multiple choices of � may well be

of interest, as the nonparametric context rules out a globally optimal test. We leave treatment of

multiple ��s aside here, as this is straightforward given the theory for a single choice of �.

As we show below, Tn; a standardized version of Ĵn constructed using Ĝ = Ĝp;b and Ĝ�1 =

Ĝ�1p;b ; is asymptotically standard normal under correct speci�cation. If Tn is incompatible with

this distribution, we have evidence against correct speci�cation. As we also show, this test has

power against Pitman local alternatives converging to zero at rate n�1=2b�dX=2 and is consistent

against the class of global alternatives: those structures violating Theorem 3.3(iii):
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Despite having a standard normal asymptotic distribution, Tn requires use of the bootstrap

to compute useful critical values. This is an extreme but feasible computational task, making this

statistic relevant for practical applications.4

4.3 Multiple Tests for Misspeci�cation

Our test is explicitly designed to detect failures of monotonicity (A:2). Nevertheless, if conditional

exogeneity (B:1) fails, then Tn may also detect this failure. If indeed conditional exogeneity is in

question, we suggest applying the proper tool for the job. Speci�cally, one can and should test

B:1 directly by applying any of a variety of available tests (e.g., White and Chalak, 2010) that

do not rely on (and are not sensitive to) the monotonicity assumption. For those cases where

both B:1 and A:2 are in question, one can use Tn together with a conditional exogeneity test to

perform a multiple test of misspeci�cation.

The joint null hypothesis for the multiple test is H00 : H001 and H002; where H001 is that B:1
holds and H002 is that A:2 holds. Let p1 be the p-value associated with a test for B:1 that does
not maintain monotonicity, and let p2 be the p-value associated with our Tn statistic. By the

Bonferroni inequality, we reject H00 at level p � 2min(p1; p2): Alternatively, one can apply recent
methods of King, Zhang, and Akram (2011) to directly estimate p for this multiple test.

Under rejection, the pattern of values of (p1; p2) provides diagnostic information about the

plausible sources of misspeci�cation. Speci�cally, if p2 is small but not p1; this indicates non-

monotonicity only. If p1 and p2 are both small, this indicates failure of conditional exogeneity,

but is silent about non-monotonicity. If p1 is small, but not p2; this again indicates failure of

conditional exogeneity, but is silent about non-monotonicity. In this last case, the failure of p2 to be

small re�ects the plausibly lower power associated with the Tn statistic in this context, as the power

of this test is now spread across failures of both B:1 and A:2; whereas the conditional exogeneity

test is more tightly focused. The fact that the multiple test is silent about non-monotonicity in

the latter two cases is not particularly signi�cant. When B:1 fails, the adverse consequences are

much more severe than when monotonicity fails, as the discussion of the introduction suggests.

5 Asymptotics for Estimation and Inference

5.1 Local polynomial estimators

Throughout, we rely on local polynomial regression to estimate various unknown population

objects. Let u � (x0; z0)0 = (u1; :::; ud)
0 be a d � 1 vector, d � dX + dZ ; where x is dX � 1

and z is dZ � 1: Let j � (j1; :::; jd) be a d � 1 vector of non-negative integers. Following Masry
4The invariance properties of Theorem 3.3 and Corollary 3.4 support construction of other speci�cation tests.

Nevertheless, each requires its own analysis and involves signi�cant computational challenges. We thus leave their

study to other work.
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(1996), we adopt the notation: uj � �d
i=1u

ji
i ; j! � �d

i=1ji!; jjj �
Pd
i=1 ji; and

P
0�jjj�p �Pp

k=0

Pk
j1=0

� � �
Pk
jd=0

j1+���+jd=k
:

We �rst describe the p-th order local polynomial estimator Ĝp;b (yjx; z) of G (yjx; z) : The sub-
script b = bn is a bandwidth parameter. Let Ui � (X 0

i; Z
0
i)
0 so that Ui�u = ((Xi � x)0; (Zi � z)0)0:

Given observations f(Yi; Ui) ; i = 1; :::; ng; Ĝp;b (yjx; z) can be obtained as the minimizing intercept
term in the following minimization problem

min
�
n�1

nX
i=1

241 fYi � yg �
X

0�jjj�p
�0j ((Ui � u) =b)

j

352Kb (Ui � u) ; (5.1)

where � stacks the �j�s (0 � jjj � p) in lexicographic order (with �0; indexed by 0 � (0; :::; 0);
in the �rst position, the element with index (0; 0; :::; 1) next, etc.) and Kb (�) � K (�=b) =b; with
K (�) a symmetric probability density function (PDF) on Rd.

Let Np;l � (l+d�1)!=(l!(d�1)!) be the number of distinct d-tuples j with jjj = l: In the above

estimation problem, this denotes the number of distinct lth order partial derivatives of G(yju)
with respect to u: Let Np �

Pp
l=0Np;l: Let �p (�) be a stacking function such that �p ((Ui � u)=b)

denotes an Np � 1 vector that stacks ((Ui � u) =b)j ; 0 � jjj � p; in lexicographic order (e.g.,

�p (u) = (1; u
0)0 when p = 1). Let �p;b (u) � �p (u=b) : Then Ĝp;b (yju) = e01;p�̂ (yju) where

�̂ (yju) = [Sp;b (u)]
�1 n�1

nX
i=1

Kb (Ui � u)�p;b (Ui � u) 1 fYi � yg ; (5.2)

Sp;b (u) � n�1
nX
i=1

Kb (Ui � u)�p;b (Ui � u)�p;b (Ui � u)0 ; (5.3)

and e1;p � (1; 0; :::; 0)0 is an Np � 1 vector with 1 in the �rst position and zeros elsewhere.
We also use p-th order local polynomial estimation to estimate G�1 (� ju) ; the �th conditional

quantile function of Yi given Ui = u: We denote this Ĝ�1p;b (� ju). Let �� (u) � u(� � 1fu � 0g)
be the �check�function. We obtain Ĝ�1p;b (� ju) as the minimizing intercept term in the weighted

quantile estimation problem

min
�
n�1

nX
i=1

��

0@Yi � X
0�jjj�p

�0j ((Ui � u) =b)
j

1AKb (Ui � u) ; (5.4)

where � stacks the �j�s (0 � jjj � p) in lexicographic order. Alternatively, one can invert

Ĝp;b (�ju) to obtain an estimator of G�1 (�ju) ; as in Cai (2002). We do not pursue this here.
In the next subsection, we study the asymptotic properties of the estimators m̂H ; ÂH ; and

~AH de�ned above, constructed using the local polynomial estimators Ĝp;b and Ĝ
�1
p;b just de�ned.

5.2 Asymptotic properties of m̂H (x; a) ; ÂH ; and ~AH

We use the following assumptions.
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Assumption C.1 Let Wi � (X 0
i; Yi; Z

0
i)
0 ; i = 1; 2; ::: be IID random variables on (
;F ; P ); with

(Xi; Zi) distributed identically to (X;Z) in Assumption A.0.

Let g (u) and g (yju) denote the joint PDF of Ui and the conditional PDF of Yi given Ui = u;

respectively. Let U � X � Z and U0 � X0 � Z0: Let Y denote the (common) support of Yi; and
let Y0 � [y; �y] for �nite real numbers y; �y:

Assumption C.2 (i) g (u) is continuous in u 2 U , and g (yju) is continuous in (y; u) 2 Y � U .
(ii) There exist C1; C2 2 (0;1) such that C1 � infu2U0 g (u) � supu2U0 g (u) � C2 and

C1 � inf(y;u)2Y0�U0 g (yju) � sup(y;u)2Y0�U0 g (yju) � C2:

Assumption C.3 (i) There exist � ; �� 2 (0; 1) such that � � infu2U0 G
�
yju
�
� supu2U0 G (�yju) �

�� and � � infz2Z0 G
�
yjx�; z

�
� supz2Z0 G (�yjx�; z) � �� :

(ii) G (�ju) is equicontinuous: 8� > 0; 9� > 0 : jy � ~yj < � ) supu2U0 jG(yju) � G(~yju)j < �:

For each y 2 Y0; G(y j �) is Lipschitz continuous on U0 and has all partial derivatives up to order
p+ 1, p 2 N:

(iii) Let DjG (yju) � @jjjG (yju) =@j1u1:::@jdud: For each y 2 Y0; DjG (y j �) with jjj = p+1 is

uniformly bounded and Lipschitz continuous on U0 : for all u; ~u 2 U0, jDjG (y j u)�DjG (y j ~u) j �
C3jju� ~ujj for some C3 2 (0;1) where k�k is the Euclidean norm.

(iv) For each u 2 U0 and for all y; ~y 2 Y0; jDjG (y j u) �DjG (~y j u) j � C4 jy � ~yj for some
C4 2 (0;1) where jjj = p+ 1:

Assumption C.4 (i) The kernel K : Rd ! R+ is a continuous, bounded, and symmetric PDF.
(ii) u! kuk2p+1K (u) is integrable on Rd with respect to the Lebesgue measure.
(iii) Let Kj(u) � ujK(u) for all j with 0 � jjj � 2p+1: For some �nite constants �K ; ��1; and

��2; either K (�) is compactly supported such that K (u) = 0 for kuk > �K ; and jKj(u)�Kj(~u)j �
��2 ku� ~uk for any u; ~u 2 Rd and for all j with 0 � jjj � 2p + 1; or K(�) is di¤erentiable,
k@Kj (u) =@uk � ��1; and for some �0 > 1; j@Kj (u) =@uj � ��1 kuk��0 for all kuk > �K and for all

j with 0 � jjj � 2p+ 1:

Assumption C.5 The distribution function H (z) admits a PDF h (z) continuous on Z0:

Assumption C.6 As n ! 1; b ! 0; bp+1�dZ=2 ! 0; and nb2(p+1)+dX=2 ! c0 2 [0; 1): There
exists some �� > 0 such that n1��

�
bd+2dZ !1:

The IID requirement of Assumption C.1 is standard in cross-section studies. Nevertheless,

the asymptotic theory developed here can be readily extended to weakly dependent time series.

To keep the results uncluttered, we leave the time-series case for study elsewhere. Assumption

C.2 is standard for nonparametric local polynomial estimation of conditional mean and density.

If Ui has compact support U and g (u) is bounded away from zero on U , it is possible to choose
U0 = U : Assumptions C.3-C.4 ensure the uniform consistency for our local polynomial estimators,
based on results of Masry (1996) and Hansen (2008). Assumption C.5 makes Z continuously
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distributed, simplifying the analysis. Assumption C.6 appropriately restricts the choices of

bandwidth sequence and the order of local polynomial regression.

To proceed, arrange the Np;l d-tuples as a sequence in lexicographical order, so that �l(1) �
(0; 0; :::; l) is the �rst element and �l(Nl) � (l; 0; :::; 0) is the last, and let ��1l be the mapping

inverse to �l: For each j with 0 � jjj � 2p; let �j =
R
Rd u

jK(u)du: De�ne the Np�Np matrix Sp
and the Np �Np;p+1 matrix Bp respectively by

Sp �

266664
M0;0 M0;1 ::: M0;p

M1;0 M1;1 ::: M1;p

...
...

. . .
...

Mp;0 Mp;1 ::: Mp;p

377775 and Bp =

266664
M0;p+1

M1;p+1

...

Mp;p+1

377775 , (5.5)

where Mi;j are Np;i � Np;j matrices whose (l; s) element is ��i(l)+�j(s): In addition, we arrange

DjG (aju) =j! with jjj = p+ 1 as an Np+1 � 1 vector, Gp+1 (aju) ; in lexicographical order.
Let AH = fa : m�

H(x; a) = y; x 2 X0; y 2 Y0g: The asymptotic behavior of m̂H (x; a) follows:

Theorem 5.1 Suppose Assumptions C.1-C.6 hold. Let x� 2 X0 and (x; a) 2 X0 �AH : Then
p
nbdX (m̂H (x; a)�m�

H (x; a)�Bm (x; a;x�))
d! N

�
0; �2m (x; a;x

�)
�
; where

Bm (x; a;x
�) � bp+1e01;pS�1p Bp

Z �
Gp+1 (ajx�; z)

g (G�1 (G(ajx�; z)jx; z) jx; z) +G
�1
p+1 (G(ajx�; z)jx; z)

�
dH(z);

(5.6)

�2m (x; a;x
�) � �1p

Z
G(ajx�; z) [1�G(ajx�; z)]h (z)2

g (G�1 (G(ajx�; z)jx; z) jx; z)2

�
1

g (x�; z)
+

1

g (x; z)

�
dz; (5.7)

and �1p �
R
e01;pS�1p �p (~x; ~z)�p (~x; ~z � �z)0 S�1p e1;pK (~x; ~z) K (~x; ~z � �z) d (~x; ~z; �z) : In addition,

sup
(x;a)2X0�AH

jm̂H (x; a)�m�
H (x; a) j = OP (n

�1=2b�dX=2
p
log n+ bp+1): (5.8)

This result does not impose correct speci�cation. When this holds, we can replace m�
H with m:

To obtain m̂H (x; a) ; we estimate both G (�jx�; z) and G�1(�jx; z). Above, we use the same
bandwidth and kernel for both, yielding nice expressions for Bm (x; a;x�) and �2m (x; a;x

�) : Both

the �rst-stage estimator Ĝp;b(a j x�; z) and the second-stage estimator Ĝ�1p;b(� jx; z) with � =

Ĝp;b(a j x�; z) contribute to the asymptotic bias and variance. The terms involving Gp+1(ajx�;z)
g(G�1(G(ajx�;z)jx;z)jx;z)

in Bm (x; a;x
�) and 1

g(x�;z) in �2m (x; a;x
�) are due to the �rst stage, whereas those involving

G�1
p+1 (G(ajx�; z)jx; z) in Bm (x; a;x�) and 1

g(x;z) in �
2
m (x; a;x

�) are due to the second stage.

It is well known that in many nonparametric applications, the choice of kernel function is

not so critical, but the choice of bandwidth may be crucial. Di¤erent choices of bandwidth for

the �rst- and second-stage estimators may thus be important in practice. If we choose b1 in the
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�rst-stage estimation of G(a j x�; z) to obtain Ĝp;b1(� j x�; z) and b2 in the second-stage estimation
of G�1(� j x; z) with � = Ĝp;b1(a j x�; z) to obtain Ĝ�1p;b2(� j x; z); say, then the asymptotic bias and
variance must be modi�ed accordingly. In particular, if b1 � b2 in the sense that b1 = o (b2) ; then

the asymptotic bias will mainly be contributed by the second-stage estimation and the asymptotic

variance by the �rst-stage estimation; and vice versa.

To state the next results, we de�ne A�H;i (and A
y
H;i below) in the obvious manner. Theorem

5.1 implies the following asymptotic properties for ÂH;i:

Corollary 5.2 Suppose Assumptions C.1-C.6 hold. Then conditional on (Xi; Yi) 2 X0 � Y0;p
nbdX

�
ÂH;i �A�H;i �Bm (x�; Yi;Xi)

�
d! N

�
0; �2m (x

�; Yi;Xi)
�
: Further, for i such that (Xi; Yi) 2

X0 � Y0; ÂH;i �A�H;i = OP (n
�1=2b�dX=2 �

p
log n+ bp+1) uniformly in i:

The asymptotic properties of ~AH;i follow from the next theorem.

Theorem 5.3 Suppose Assumptions C.1-C.6 hold. Then for any (x; y) 2 X0 �Y0; m̂�1
H (x; y)

P!
m��1
H (x; y) and

p
nbdX

�
m̂�1
H (x; y)�m��1

H (x; y)�Bm�1 (x; y;x�)
� d! N

�
0; �2m�1 (x; y;x

�)
�
; where

Bm�1 (x; y;x�) � �Bm
�
x;m��1

H (x; y) ;x�
�
=D�

H

�
x;m��1

H (x; y)
�
;

�2m�1 (x; y;x
�) � �2m

�
x;m��1

H (x; y) ;x�
�
=
�
D�
H

�
x;m��1

H (x; y)
��2

;

and D�
H (x; a) �

R g(ajx�;z)
g(G�1(G(ajx�;z)jx;z)jx;z)dH(z):

When correct speci�cation holds, we can show thatD�
H (x; a) =

R g(ajx�;z)
g(m(x;a)jx;z)dH(z) = @m (x; a)

=@a by Corollary 3.4, the fact that @m (x; a) =@a = g(ajx�; z)=g (m (x; a) jx; z) ; and that
R
dH (z) =

1: Further, Theorem 5.3 implies that conditional on (Xi; Yi) 2 X0 � Y0;
p
nbdX ( ~AH;i � AyH;i

�Bm�1(Xi; Yi;x
�))

d! N
�
0; �2m�1 (Xi; Yi;x

�)
�
:

6 Asymptotics for Speci�cation Testing

In this section, we study the asymptotic behavior of the test statistic in (4.1).

6.1 Asymptotic distributions

To state the next result, we write wi � (x0i; yi; z0i)
0, and we introduce the following notation:

Sp;b (� ;u) � n�1
nX
i=1

Kb (Ui � u) g(G�1 (� jUi) jUi)�p;b (Ui � u)�p;b (Ui � u)0 ; (6.1)

�1k (� ;u) � e01;p�Sp;b (u)�p;b (Uk � u)Kb (Uk � u) =g
�
G�1 (� jx�; z) jx�; z

�
;

�2k (� ;u) � e01;p �Sp;b (� ;u)�p;b (Uk � u)Kb (Uk � u) ;

�0 (Wi;Wk; z) � �1k (� iz;Xi; z)�1Yi (Wk) + �2k (� iz;x
�; z) � iz

�
Yk �G�1 (� izjUk)

�
; and

' (wi; wj) � E

�Z Z
�0 (W1; wi; z) �0 (W1; wj ; �z) d�(z) d�(�z)�i

�
;
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where �Sp;b (u) � E [Sp;b (u)] ; �Sp;b (� ;u) � E [Sp;b (� ;u)] ; � iz � G (YijXi; z) ; �1Yi (Wk) � 1 (Yk � Yi)�
G (YijUk) ; and  � (u) � � � 1 (u � 0) : The asymptotic bias and variance are respectively

BJn � n�2bdX
nX
i=1

nX
j=1

�Z
�0 (Wi;Wj ; z) d�(z)

�2
�i and �2Jn = 2b

2dXE[' (W1;W2)
2]:

To establish the asymptotic properties of Ĵn; we add the following condition on the bandwidth.

Assumption C.7 As n!1; nb2dX !1; and nb3d=2= (log n)2 !1:

Assumptions C.6 and C.7 imply that a higher order local polynomial (i.e., p � 2) may be

required in the case where dX or dZ is large in order to ensure that p + 1 � dZ=2 > 0 and

2 (p+ 1)+dX=2 > max(2dX ; d+2dZ ; 3d=2): Intuitively, the use of higher order local polynomials

helps to remove the asymptotic bias of nonparametric estimates.

We establish the asymptotic null distribution of the Ĵn test statistic as follows:

Theorem 6.1 Suppose Assumptions C.1-C.7 hold. Then under A.1, A.2, B.1, and B.2 we have

Ĵn � BJn
d! N

�
0; �2J

�
; where �2J � limn!1 �2Jn.

The key to obtaining the asymptotic bias and variance of the test statistic Ĵn is �0(Wi;Wk; z): The

�rst term, �1k (� iz;Xi; z)�1Yi (Wk) ; in the de�nition of �0 re�ects the in�uence of the �rst-stage

estimator Ĝp;b(Yi j Xi; z); whereas the second term �2k (� iz;x
�; z) � iz(Yk�G

�1 (� izjUk)) embodies
the e¤ect of the second-stage estimator Ĝ�1p;b(� j x�; z)) evaluated at � = Ĝp;b(Yi j Xi; z): A careful
analysis of BJn indicates that both terms contribute to the asymptotic bias of Ĵn to the order of
O (1) : On the other hand, a detailed study of �2Jn shows that they contribute asymmetrically to

the asymptotic variance: the asymptotic variance of Ĵn is mainly determined by the second-stage

estimator, whereas the role played by the �rst-stage estimator is asymptotically negligible. The

main reason for this is that the term Xi in �1k (� iz;Xi; z) (but not the term x� appearing in

�2k (� iz;x
�; z)) is subject to a (smooth) expectation operator in the de�nition of ' (wi; wj) ; which

helps reduce the variation of the �rst-stage estimator. For the same reason, we need bdX instead

of the usual term bdX=2 as the normalization constant in the de�nition of Ĵn; which unavoidably

reduces the size of the class of local alternatives that this test has power to detect.

To implement, we need consistent estimates of the asymptotic bias and variance. Let

�̂0 (Wi;Wk; z)

� 1

ĝiz

h
e01;pSp;b (Xi; z)

�1 �b (Xk �Xi; Zk � z)Kb (Xk �Xi; Zk � z) 1̂Yi (Wk)

+e01;pSp;b (x
�; z)�1 �b (Xk � x�; Zk � z)Kb (Xk � x�; Zk � z) �̂ iz

�
Yk � Ĝ�1p;b (�̂ izjUk)

�i
;

where ĝiz � ĝ
�
Ĝ�1p;b (�̂ zijx�; z) jx�; z

�
and 1̂Yi (Wk) � 1 fYk � Yig � Ĝp;b (YijUk) : We propose
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estimating BJn and �2Jn respectively by

B̂Jn = n�2bdX
nX
i=1

nX
j=1

�Z
�̂0 (Wi;Wj ; z) d�(z)

�2
�i and

�̂2Jn =
2hdX

n2

nX
i=1

nX
j=1

"
1

n

nX
l=1

Z
�̂0 (Wl;Wi; z) d�(z)

Z
�̂0 (Wl;Wj ; �z) d�(�z)�l

#2
:

It is not hard to show B̂Jn � BJn = oP (1) and �̂2Jn � �
2
Jn
= oP (1) : Then we can compare

Tn �
�
Ĵn � B̂Jn

�
=
q
�̂2Jn (6.2)

to the critical value z�; the upper � percentile from the N(0; 1) distribution, as the test is one-

sided; we reject the null when Tn > z�:

To study the local power of the Tn test, consider the sequence of Pitman local alternatives:

H1 (
n) :
Z
G�1n (Gn(yjx; z) j x�; z))d�(z) = 
n�n (x; y) ; (6.3)

where 
n ! 0 as n ! 1; and �n is a non-constant measurable function with �0 � limn!1E[

�n (X1; Y1)
2 � (X1; Y1)] <1. Given B:1, such alternatives arise from non-monotonicity.

Theorem 6.2 Suppose Assumptions C.1-C.7 hold. Then under H1 (
n) with 
n = n�1=2b�dX=2;

Tn
d! N (�0=�J ; 1) :

Theorem 6.2 implies that the Tn test has non-trivial power against Pitman local alternatives that

converge to zero at rate n�1=2b�dX=2; provided 0 < �0 <1: The asymptotic local power function
of the test is given by 1� � (z� � �0=�J) ; where � is the standard normal CDF.

The following theorem shows that the test is consistent for the class of global alternatives

H1 : �A � E

(�Z
G�1(G(Y1jX1; z) j x�; z))d�(z)

�2
� (X1; Y1)

)
> 0:

Theorem 6.3 Suppose Assumptions C.1-C.7 hold. Given H1; P (Tn > �n) ! 1 for any nonsto-

chastic sequence �n = o(nbdX ).

The Appendix discusses how proper choice of H1 and H2 assures �A > 0 when CQR fails.

6.2 A bootstrap version of the test

It is well known that nonparametric tests based on their asymptotic normal null distributions may

perform poorly in �nite samples. Preliminary experiments showed this to be true here. Thus, we

suggest using a bootstrap method to obtain bootstrap p-values.

Let Wn � fWi = (Xi; Yi; Zi)gni=1 : Following Su and White (2008), we draw bootstrap resam-
ples {X�

i ; Y
�
i ; Z

�
i }
n
i=1 based on the following smoothed local bootstrap procedure:
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1. For i = 1; :::; n; obtain a preliminary estimate of Ai as Âi = (Â1;i + Â2;i)=2; where Âj;i =
R

Ĝ�1p;b(Ĝp;b(YijXi; z)jx�; z)) dHj(z):

2. Draw a bootstrap sample fZ�i g
n
i=1 from the smoothed kernel density ~fZ (z) = n�1

Pn
i=1 ��z

(Zi � z), where �� (z) = ��dZ� (z=�) ; � (�) is the standard normal PDF in the case where
Zt is scalar valued and becomes the product of univariate standard normal PDF otherwise,

and �z > 0 is a bandwidth parameter.

3. For i = 1; :::; n; given Z�i ; drawX
�
i and A

�
i independently from the smoothed conditional den-

sity ~fXjZ (xjZ�i ) =
Pn
j=1 ��x (Xj � x)��z (Zj � Z�i ) =

Pn
l=1 ��z (Zl � Z�i ) and ~fAjZ (ajZ�i ) =Pn

j=1 ��a(Âj�a)��z (Zj � Z�i ) =
Pn
l=1 ��z (Zl � Z�i ) ; respectively, where �z; �x; and �a are

given bandwidths.

4. For i = 1; :::; n; compute the bootstrap version of Yi as Y �i = (m̂H1 (X
�
i ; A

�
i )+m̂H2 (X

�
i ; A

�
i ))=2:

5. Compute a bootstrap statistic T �n in the same way as Tn; withW�
n � fW �

i = (X
�
i ; Y

�
i ; Z

�
i )g

n
i=1

replacing Wn.

6. Repeat Steps 2-5 B times to obtain bootstrap test statistics
n
T �nj

oB
j=1

: Calculate the boot-

strap p-values p� � B�1
PB
j=1 1

�
T �nj � Tn

�
and reject the null hypothesis if p� is smaller

than the prescribed nominal level of signi�cance.

Clearly, we impose conditional exogeneity (X�
i and A�i are independent given Z�i ) in the

bootstrap world in Step 3. The null hypothesis of monotonicity is implicitly imposed in Step 4.

A full formal analysis of this procedure is lengthy and well beyond our scope here. Nevertheless,

the Appendix sketches the main ideas needed to show that this bootstrap method is asymptotically

valid under suitable conditions, that is,

(i) P (T �n � tjWn)! � (t) for all t 2 R; and (ii) P (Tn > z��)! 1 under H1; (6.4)

where z�� is the �-level bootstrap critical value based on B bootstrap resamples, i.e., z�� is the

1� � quantile of the empirical distribution of
n
T �nj

oB
j=1

:

7 Estimation and Speci�cation Testing in Finite Samples

In this section, we conduct some Monte Carlo simulations to evaluate the �nite-sample perfor-

mance of our estimators and tests. We �rst consider estimation of the response under correct

speci�cation. We then examine the behavior of the Tn test. The already signi�cant computa-

tional burden of our statistics is substantially multiplied by the replications necessary for Monte

Carlo study. Thus, we restrict attention to a modest number of judiciously chosen experiments.
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7.1 Estimation of response

We begin by considering the following two DGPs:

DGP 1: Yi = (0:5 + 0:1X2
i )Ai;

DGP 2: Yi = �((Xi + 1)Ai=4) (Xi + 1) ;

where i = 1; :::; n; � (�) is the standard normal CDF, Ai = 0:5Zi+�1i; Xi = 0:25+Zi�0:25Z2i +�2i;
and �1i; �2i; and Zi are each IID N (0; 1) and mutually independent. Clearly, m (x; a) = (0:5 +

0:1x2)a in DGP 1 and = �((x+ 1)a=4) (x + 1) in DGP 2. In either DGP, m (x; �) is strictly
monotone for each x but does not satisfy the normalization condition m (xmed; a) = a for all

a 2 A; where xmed ' 0:116 is the population median of Xi:5

To illustrate how the normalization condition is met with x� = xmed; we rede�ne the un-

observable heterogeneity Ai and the functional form of m: For DGP 1, let a� = a=c1 and

m� (x; a�) = c1(0:5 + 0:1x
2)a� for some nonzero value c1: To ensure m� (xmed; a

�) = c1(0:5 +

0:1x2med)a
� = a� for all a� 2 A�; where A� is the support of Ai=c1; we can solve for c1 to

obtain c1 = 1=
�
0:5 + 0:1x2med

�
= 1:9946. For DGP 2, let a� = (x� + 1)� (a(x� + 1)=4) (i.e.,

a = 4��1(a�=(x� + 1))=(x� + 1)): Then m (x; a) = �
�
x+1
x�+1�

�1
�

a�

x�+1

��
(x+ 1) � m� (x; a�) : It

is easy to verify that m� (xmed; a
�) = a� for all a� 2 A� provided x� = xmed; where A� is now the

support of (xmed + 1)� (Ai (xmed + 1) =4) : For notational simplicity, we continue to use m (x; a)

and Ai to denote m� (x; a) and A�i ; respectively.

To estimate the response m (x; a) ; we need to choose the local polynomial order p; the kernel

function K; the bandwidth b; and the weight function H: Since dX = dZ = 1; it su¢ ces to

choose p = 1 to obtain the local linear estimates Ĝp;b (ajx�; z) and Ĝ�1p;b

�
Ĝp;b (ajx�; z) jx; z

�
;

which we use to construct the estimator m̂H (x; a) : We choose K to be the product of univariate

standard normal PDFs. To save time in computation, we choose b using Silverman�s rule of

thumb: b = (1:06SXn
�1=6; 1:06SZn

�1=6); where, e.g., SX is the sample standard deviation of

fXigni=1 : Note that we use di¤erent bandwidth sequences for X and Z: We consider two choices

for H: H1 is the CDF for the uniform distribution on [��0 ; �1��0 ], and H2 is a scaled beta(3; 3)

distribution on [��0 ; �1��0 ], where ��0 is the �0-th sample quantile of fZig
n
i=1 and �0 = 0:05: For

either H1 or H2; we choose N = 30 points for numerical integration.

We evaluate the estimates of m (x; a) at prescribed points. We choose 15 equally spaced points

on the interval [�1:895; 1:750] for x; where �1:895 and 1:750 are the 10th and 90th quantiles
of Xi, respectively. For a; we choose 15 equally spaced points on the interval [�0:718; 0:718] for
DGP 1, where �0:718 and 0:718 are the 10th and 90th quantiles of Ai(= A�i ): For DGP 2, we

choose 15 equally spaced points on the interval [0:384; 0:731], where 0:384 and 0:731 are the 10th

and 90th quantiles of Ai(= A�i ) in DGP 2. Thus, (x; a) will take 15 � 15 = 225 possible values;
we let (xj ; aj), j = 1; :::; 225; denote these values. We obtain the estimates m̂Hl (x; a) ; l = 1; 2; of

5For DGP 1, m (x; a) = a for all a at x = x� = �
p
5.
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Table 1: Finite sample performance of the estimates of the response
DGP n H MADH RMSEH

5th 50th 95th mean 5th 50th 95th mean
1 100 Uniform 0.186 0.267 0.390 0.276 0.246 0.350 0.506 0.360

Beta 0.145 0.208 0.290 0.210 0.191 0.280 0.405 0.239
400 Uniform 0.125 0.179 0.243 0.180 0.164 0.235 0.315 0.239

Beta 0.085 0.118 0.160 0.121 0.116 0.166 0.229 0.168

2 100 Uniform 0.091 0.120 0.146 0.120 0.157 0.208 0.268 0.209
Beta 0.083 0.112 0.136 0.112 0.140 0.193 0.246 0.174

400 Uniform 0.082 0.101 0.117 0.100 0.138 0.174 0.213 0.174
Beta 0.076 0.095 0.108 0.094 0.126 0.161 0.188 0.160

m (x; a) at these 225 points, and calculate the corresponding mean absolute deviations (MADs)

and root mean squared errors (RMSEs):

MAD
(r)
Hl

=
1

225

225X
j=1

���m (xj ; aj)� m̂(r)
Hl
(xj;aj)

��� ; (7.1)

RMSE
(r)
Hl

=

8<: 1

225

225X
j=1

h
m (xj ; aj)� m̂(r)

Hl
(xj;aj)

i29=;
1=2

; (7.2)

where, for r = 1; :::; 250; m̂(r)
Hl
(xj;aj) is the estimate of m (xj;aj) in the rth replication with weight

function Hl, l = 1; 2: For feasibility in computation, we consider two sample sizes in our simulation

study, namely, n = 100 and 400:

Table 1 reports the 5th, 50th, and 95th percentiles of MAD
(r)
Hl
and RMSE

(r)
Hl
for the estimates

of the m (x; a) ; together with their means obtained by averaging over the 250 replications. We

summarize the main �ndings from Table 1. First, for di¤erent choices of the distributional weights

(H1 or H2), the MAD or RMSE performances of the response estimators may be quite di¤erent.

In particular, we �nd that the estimators using the beta weightH2 tend to have smaller MADs and

RMSEs. This is especially true for DGP 1. Second, as n quadruples, both the MADs and RMSEs

tend to improve, as expected. Third, and also as expected, the MADs and RMSEs improve at a

rate much slower than the parametric rate n�1=2:

Figure 1 plots the ratio of m̂H2 (xj ; aj) to m̂H1 (xj ; aj) for DGPs 1-2 and n = 100; 400, where

m̂Hl (xj ; aj) � 1
250

P250
r=1 m̂

(r)
Hl
(xj ; aj) for l = 1; 2; and j = 1; 2; :::; 225: In theory, both m̂H1 (xj ; aj)

and m̂H2 (xj ; aj) converge tom (xj ; aj) in probability so that the points (m̂H1(xj ; aj); m̂H2 (xj ; aj))

should lie on the 45 degree line as n ! 1: Nevertheless, we see some discrepancies between
m̂H1 (xj ; aj) and m̂H2 (xj ; aj) for both DGPs and sample sizes. Clearly, the discrepancy is much

larger for DGP 1 than that for DGP 2 for both sample sizes.

20



­ 0 .8 ­ 0 .6 ­ 0 .4 ­ 0 .2 0 0 .2 0 .4 0 .6
­ 1

­ 0 .8

­ 0 .6

­ 0 .4

­ 0 .2

0

0 .2

0 .4

0 .6

0 .8

1

m
H1

m
H

2

( a )  D G P  1 , n  =  10 0

­ 1 ­ 0 .8 ­ 0 .6 ­ 0 .4 ­ 0 .2 0 0 .2 0 .4 0 .6 0 .8
­ 1

­ 0 .8

­ 0 .6

­ 0 .4

­ 0 .2

0

0 .2

0 .4

0 .6

0 .8

1

m
H1

m
H

2

( b )  D G P  1 , n  =  40 0

­ 1 ­ 0 .8 ­ 0 .6 ­ 0 .4 ­ 0 .2 0 0 .2 0 .4 0 .6 0 .8 1

­ 1

­ 0 .8

­ 0 .6

­ 0 .4

­ 0 .2

0

0 .2

0 .4

0 .6

0 .8

1

m
H1

m
H

2

( c )  D G P  2 , n  =  10 0

­ 1 ­ 0 .8 ­ 0 .6 ­ 0 .4 ­ 0 .2 0 0 .2 0 .4 0 .6 0 .8 1

­ 1

­ 0 .8

­ 0 .6

­ 0 .4

­ 0 .2

0

0 .2

0 .4

0 .6

0 .8

1

m
H1

m
H

2

( d )  D G P  2 , n  =  40 0

Plots of m̂H2 over m̂H1 for DGPs 1-2: the solid line is the 45 degree line, the points for (m̂H1 ;

m̂H2) on the dotted line are obtained as averages of (m̂
(r)
H1
(xj ; aj) ; m̂

(r)
H2
(xj ; aj)), r = 1; :::; 250;

over 250 replications

7.2 Speci�cation Testing

To examine the �nite-sample properties of the speci�cation test, we consider the two DGPs:

DGP 3: Yi = (0:5 + 0:1X2
i )Ai + 2�0Xi=(0:1 + e

A2i =2);

DGP 4: Yi = �((Xi + 1)Ai=4) (Xi + 1)� 0:5�0Ai=(1 +X2
i );

where i = 1; :::; n; and Ai; Xi and Zi are generated as in DGPs 1-2. Note that when �0 = 0;

DGPs 3 and 4 reduce to DGPs 1 and 2, respectively, permitting us to study the level behavior

of our test. For other well-chosen values of �0; m (x; a) as de�ned in DGP 3 or 4 is not strictly

monotonic in a; permitting study of the test�s power against non-monotone alternatives.

To construct the raw test statistic Ĵn, we �rst obtain Ĝp;b (YijXi; z) and Ĝ�1p;b(Ĝp;b (YijXi; z) j
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Table 2: Finite sample rejection frequency for DGPs 3-4

DGP n �0 Warp-speed bootstrap Full bootstrap
1% 5% 10% 1% 5% 10%

3 100 0 0.018 0.042 0.124 0.008 0.080 0.140
1 0.320 0.388 0.420 0.316 0.404 0.456

200 0 0.020 0.060 0.148 0.020 0.076 0.140
1 0.392 0.442 0.474 0.408 0.464 0.508

4 100 0 0.014 0.032 0.068 0.016 0.032 0.056
1 0.288 0.576 0.660 0.456 0.656 0.724

200 0 0.004 0.014 0.036 0.008 0.012 0.056
1 0.356 0.564 0.688 0.476 0.712 0.792

x�; z) by choosing the order of the local polynomial regression, the kernel function K; and the

bandwidth b: As when estimating the response, we choose p = 1 and let K be the product

of univariate standard normal PDFs. Since we require undersmoothing for our test, we set b =

(c2SXn
�1=5; c2SZn

�1=5); where c2 is a positive scalar that we use to check the sensitivity of our test

to the choice of bandwidth. Next, we need to choose weight functions H1; H2; and �: We choose

H1 and H2 as above and set � (Xi; Yi) = 1
�
��0;X � Xi � �1��0;X

	
� 1

�
��0;Y � Yi � �1��0;Y

	
;

where, e.g., ��0;X is the �0th sample quantile of fXig
n
i=1 and �0 = 0:0125: These sample quantiles

converge to their population analogs at the parametric
p
n rate, so they can be replaced by the

latter in deriving the asymptotic theory. By construction, we trim Ĝp;b and Ĝ
�1
p;b in the tails.

In the bootstrap, we set �z = SZn
�1=6; �x = SXn

�1=6; and �a = SAn
�1=6; where, e.g., SA

is the sample standard deviation of Âi: For computational feasibility, we consider two sample

sizes, n = 100; 200; in our simulation study. Also for computational feasibility, for each sample

size n; our �full�bootstrap experiments use 250 replications and B = 100 bootstrap resamples in

each replication. Before performing the full bootstrap with B = 100, we study the sensitivity of

the test to the bandwidth b = (c2SXn
�1=5; c2SZn

�1=5) as suggested by Giacomini, Politis, and

White (2007), using their warp-speed bootstrap. In this procedure, only one bootstrap resample

is drawn in each replication. Because of its relatively low computational cost, we can use 500

replications for this study. We �nd that our test is not very sensitive to the choice of b as long as

c2 is not too big or small. For example, the test behaves reasonably well for c2 lying between 1

and 2. Table 2 reports the warp-speed bootstrap results for the case c2 = 1:5; together with the

full bootstrap results for c2 = 1:5 with B = 100.

Table 2 reports the empirical rejection frequencies for our test at various nominal levels for

DGPs 3-4. The rows with �0 = 0 report the empirical level of our test; those with �0 = 1 show

empirical power. We summarize the main �ndings from Table 2 as follows: First, the level of

our test is fairly well behaved, and it can be close to the nominal level for sample sizes as small

as n = 100: When n increases, the level generally improves somewhat. Second, the power of
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our test is reasonably good. It increases as the sample size doubles for both the warp-speed

and full bootstrap methods. Finally, the full bootstrap tends to deliver somewhat better power

performance than the warp-speed bootstrap, similar to �ndings of Cho and White (2011).

8 Empirical Applications

This section illustrates the usefulness of our tests with two examples. To show their broad applica-

bility, we consider two very di¤erent applications. The �rst application analyzes an important

question for policy analysis, namely the determinants of the Black-White earnings gap. The sec-

ond application comes from a traditional area of economics: classical consumer demand using

Engel curves. We discuss the economic background, provide details of the data and the test

implementation, and discuss our �ndings.

8.1 The Black-White Earnings Gap: Just Ability?

8.1.1 Economic Background

The quest for the sources of the apparent di¤erences in economic circumstances between the

three major races in the US, i.e., Blacks, Hispanics, and Whites, has spurred an extensive and

controversial debate over the last few decades. Starting with the seminal paper by Neal and

Johnson (1996, NJ), a �ourishing literature has emerged that focuses primarily on the sources

of the Black-White earnings gap; obviously, a key concern in this is the potential existence of

racial discrimination, i.e., the fact that people with the exact same ability get di¤erential wages

for the same task. Carneiro, Heckman, and Masterov (2005, CHM) give a recent overview of this

literature, emphasizing the points important to our application.

As NJ argue, to obtain a measure of the full e¤ect of discrimination in labor outcomes (e.g.,

wages) from a regression, one should not condition on variables that may indirectly channel

discrimination, such as schooling, occupational choice, or years of work experience, as these may

mask the full e¤ects. As CHM aptly put it, the �full force�of discrimination would not be visible.

Chalak and White (2011a) contains supporting discussion of the �included variable bias�arising

by conditioning on variables indirectly channeling a cause of interest.

As argued convincingly in CHM, however, schooling is no longer a plausible channel of dis-

crimination, given the extent of a¢ rmative action. Indeed, CHM show that when conditioned

just on schooling, the wage gap increases, rather than decreasing, as would be the case if schooling

were an indirect channel of discrimination. Thus, we include years of schooling as a causal factor

in our analysis. The structural relation is then

Y = m(X1; X2; A);
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where A is work-related ability; X1 is years of schooling; X2 is race, a discrete variable taking

three values; and Y is the wage an individual receives. As X and A are plausibly correlated, we

seek a conditioning instrument Z such that X is independent of A given Z.

To �nd this variable, we go back to the literature. NJ suggest the 1980 AFQT score as a proxy

for ability. Once NJ condition on the AFQT, which we now denote Z, the maintained hypothesis

is that there is no relationship between X and A, that is, X ? A j Z. This means that whatever
is not exactly accounted for in A by using Z does not correlate with race or schooling, in line with

NJ. Their �nding (corroborated by the analysis in CHM, with the additional schooling variable)

of an absence of a Black (X2 = 1) � White (X2 = 0) earnings gap means in our notation that

E [m(X1; 1; A)jX1; Z] � E [m(X1; 0; A)jX1; Z] = 0: This evidence is consistent with the absence

of discrimination in the labor market.

Nevertheless, this is not the only testable implication of their hypotheses. We can now test the

null hypothesis that there is indeed only a single unobservable that monotonically drives wages.

Accordingly, we de�ne ability as a scalar factor that drives up wages for all values of X = x.

As such, scalar monotonicity is a natural assumption - the more able somebody is, the higher

his wage is, ceteris paribus. The fact that we can apply this logic here hinges on the Z variable,

AFQT80, which is chosen to ensure unconfoundedness. The alternative is that there is some more

complex mechanism that generates wage outcomes. There are a number of reasons why there

may be a more complex relationship. One is that discrimination acts through several unobserved

channels; another is what CHM have argued, namely that there are unobserved (in their data,

actually at least partially observed) factors in the early childhood of an individual that have a

large impact on labor market outcomes, and that should be accounted for. With the data at

hand, we cannot separate these two explanations; however, we can shed light on whether a scalar

�ability�accounts for observed outcomes.

8.1.2 The Data

Our data come from NJ�s original study,6 which is based on the National Longitudinal Survey

of Youth (NLSY). The NLSY is a panel data set of 12,686 youths born between 1957 and 1964.

This data set provides us with information on schooling, race, and labor market outcomes. The

Z variable is the normalized AFQT80 test score, i.e., the armed forces test in 1980. Individuals

already in the labor market have been excluded. The test score is also year-adjusted and then

normalized to have mean 0 and variance 1 as in NJ. After cleaning the data, we have 3,659

and 3,783 valid observations for the female and male subsamples, respectively, and following

the literature, we analyze men and women separately. Since the data set is quite large and

the computational requirements exceed what we can handle on our computers, we divide each

subsample into three sub-subsamples to obtain 1,220 + 1,220 + 1,219 female observations, and

6 Indeed, our data are exactly NJ�s original data; we are indebted to Derek Neal for providing us with this.

24



1,261+1,261+1,261 male observations. These subpopulations were selected randomly by taking

every third observation in each group. Since we are otherwise using exactly the same data as NJ,

we refer to their paper for summary statistics and other data details.

8.1.3 Implementation Details

The details of the testing procedure we implement are largely identical to those for the simulation

study of Section 6.2. The kernel is the product of univariate standard normal PDFs; the order of

the local polynomial is 1. The bandwidth is chosen by the rule of thumb in Section 6.2, paragraph

2. We perform 200 bootstrap replications; with n � 1; 200; each replication takes about two hours
using Matlab code running on modern high-speed processors.

8.1.4 Empirical Results

The values of the test statistics we obtain using the procedures described above are 9.381, 12.633,

and 85.119 for the three female subsamples, and 250.24, 140.55, and 246.85 for the male sub-

samples. The associated p-values are 0.995, 1, and 0.815 for the three female subsamples, and

0.510, 0.925, and 0.720 for the three male subsamples. Obviously, the fact that we have drawn

subsamples reduces the power of our procedure. But increasing the sample size even moder-

ately increases the processing time for each bootstrap replications to signi�cant multiples of the

two hours required with n � 1; 200: Nevertheless, since the test statistic values are so far from

the critical values and the p-values are so large, we believe it safe to conclude that the null of

scalar monotonicity is not rejected. This is evidence consistent with the correct speci�cation of

the NJ/CHM model. Of course, further research with better data is required to analyze the

importance of early childhood education as CHM suggest, but this is beyond our scope here.

Recall that we maintain conditional exogeneity, B:1. Without this, the test is a joint test for

A:2 and B:1: Under this interpretation, we have no evidence against either A:2 or B:1: To illustrate

use of a multiple test for misspeci�cation, we also report the results of a pure test of B:1: By White

and Chalak (2010, prop.2), we can test B:1 by testing X ? S j Z; where S = q(Z;A; V ); with

X ? V j (A;Z): A plausible candidate for S is another proxy for A; viewing V as a measurement

error. Here, a natural choice for S is the 1989 AFQT score. To implement, we standardize

AFQT89 in the same way as AFQT80, and we apply the conditional independence test of Huang

and White (2010). The table below reports the results for each of the samples described above.

For none of these do we reject B:1; consistent with our monotonicity test �ndings.

Male Female

Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3

p-value .80 .28 .20 .39 .88 .85
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8.2 Engel Curves in a Heterogeneous Population

8.2.1 Economic Background

Engel curves are among the oldest objects analyzed by economists.7 Modern econometric Engel

curve analysis assumes that

Y = m(X1; X2; A); (8.1)

where Y is a K-vector of budget shares for K continuously-valued consumption goods; X1 is

wealth, represented by (log) total expenditure under the assumption that preferences are time-

separable; X2 denotes observable factors that re�ect preference heterogeneity; and A denotes

unobservable preference heterogeneity. Prices are absent here, as Engel curve analysis involves a

single cross section only, and prices are assumed invariant. However, it is commonly thought that

log total expenditure is endogenous8 and is hence instrumented for, typically by labor income,

say S: This is justi�ed by the same intertemporal separability assumption.

Here, we follow IN, and write the X1 structural equation as

X1 = �(S;X2; Z); (8.2)

where the unobserved drivers of X1 are denoted Z. For simplicity, we assume X2 is exogenous.

Following IN, we also assume S is exogenous, so we take (S;X2) ? (A;Z); implying (X1; X2) ?
A j Z. With the usual normalization, Z j (S;X2) is U [0; 1]; and Z is identi�ed as

Z = F (X1 j S;X2): (8.3)

IN�s control function approach thus provides us with a variable Z that satis�es our assumptions.

We are now able to test the hypothesis that there is a single unobservable A in equation (8.1) that

enters monotonically. Put di¤erently, due to the tight relationship between quantiles and nonsep-

arable models with monotonicity, we can test whether in the conditional �-quantile regression of

Y on X and Z, the parameter � can be given a structural interpretation. The alternative is that

there is a more complex structure in the unobservables.

An example of a structural model that assumes monotonicity is provided in Blundell, Chen,

and Kristensen (2007), who assume

Y = m(X1; X2) +A:

Nevertheless, to test this speci�cation, we also must specify equation (8.2) as above.

7They were �rst analyzed in1857 by the Saxonian economist Ernst Engel (1821�1896), not to be confused with

Friedrich Engels, the companion of Karl Marx.
8Nevertheless, the evidence is not strong; see Blundell, Horowitz, and Parey (2009) or Hoderlein (2010).
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8.2.2 The Data

For our test, we use the British FES in exactly the form employed in IN.9 The FES reports a yearly

cross section of labor income, expenditures, demographic composition, and other characteristics

of about 7,000 households in every year. Since we are considering Engel curves, we use only the

cross section for 1995. We focus on households with two adults, where the adults are married or

cohabiting, at least one is working, and the household head is aged between 20 and 55. We also

exclude households with 3 or more children. This yields a sample with n = 1; 655: This will be

our operational subpopulation, not least because it is the one commonly used in the parametric

demand system literature; see Lewbel (1999).

The expenditures for all goods are grouped into several categories. The �rst is related to food

consumption and consists of the subcategories food bought, food out (catering), and tobacco.

The second and third categories contain expenditures related to alcohol and catering. The alcohol

category is probably mismeasured, so we do not employ it as dependent variable. The next group

consists of transportation categories: motoring, fuel expenditures, and fares. Leisure goods and

services are the last category. For brevity, we call these categories Food, Catering, Transportation,

and Leisure. We work with these broader categories since more detailed accounts su¤er from

infrequent purchases (recall that the recording period is 14 days) and are thus often underreported.

Together these account for approximately half of total expenditure, leaving a large fourth residual

category. Labor income is as de�ned in the Household Below Average Income study (HBAI).

Roughly, this is net labor income to the household head after taxes, but including state transfers.

The following table gives some summary statistics; for more details, see Hoderlein (2010).

Variable Food Catering Alcohol Transport Leisure LogExp LogWage nKids

Mean 0.2074 0.0805 0.0578 0.2204 0.1297 5.4215 5.8581 0.6205

8.2.3 Implementation Details

To apply the test, we let Y be the budget shares of Food, Catering, Transportation, or Leisure

in (8.1).10 In each case, we specify X1 as the logarithm of total expenditure and X2 as the

number of kids in a family. The details of the testing procedure are again largely identical to

those implemented in the simulation study in Section 6.2 and in the previous application. We use

a product kernel and select the bandwidth by the same rule of thumb as in Section 6.2, paragraph

2. Again, we performed 200 bootstrap replications, each of which takes approximately 3.3 hours.

The major di¤erence is that the instrument Z = F (X1 j S;X2) must be estimated from the

data in a �rst stage. To mitigate the bias from the �rst stage, we use local quadratic regression,

9We are grateful to Whitney Newey and Richard Blundell for providing us with the data.
10We did not consider the budget share for alcohol because there are too many 0 observations (258 out of 1,665)

in the data.
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employing a Gaussian kernel and Silverman�s rule-of-thumb bandwidth. Standard U -statistic

theory straightforwardly shows that the variance term in the decomposition of the di¤erence

between Z and its estimate will not a¤ect the asymptotic null distribution of our test statistic.

Consequently, the Tn statistic based on estimated Z is asymptotically equivalent to that based on

the true unobservable Z under the null and some side conditions. This behavior is well known in

the literature on nonparametrically estimated regressors, so to conserve space, we do not provide

formal details. Using estimated Z also has implications for the bootstrap. Ideally, one would

prefer a bootstrap method alternative to that applied here, based entirely on observables, while

imposing the null. Developing and justifying this is a substantive undertaking, deserving of a

paper in itself. We therefore leave this as a topic for future research.

8.2.4 Empirical Results

The following table summarizes our test results:

Food Catering Transportation Leisure

Value of Test Statistic 1:2895 0:7336 1:5905 1:1492

p-values � 0:005 � 0:005 � 0:005 0:010

Two things are noteworthy. First, observe that rather small values of the test statistic are

associated with small p-values. This indicates that the normal approximation is a poor description

of the true �nite-sample behavior, a result that is quite familiar in the nonparametric testing

literature. Second, in all four categories analyzed, we soundly reject the null of monotonicity. The

rejections are strongest in Food, Catering, and Transportation, and slightly less pronounced for

Leisure. Whereas in the labor application above it seems conceivable that there is only one major

omitted unobservable, i.e., ability, our test here suggests that this is not a valid description of

the unobservables driving consumer behavior. This should not be surprising, given that consumer

demand is usually thought to be a result of optimizing a rather complex preference ordering, given

a budget set. Still, empirically establishing this fact, uniformly over a number of expenditure

categories, is encouraging evidence of the ability of our test to produce economically interesting

results in real-world applications.

9 Concluding Remarks

Monotonicity in unobservables is a now common assumption in applied economics. Its appeal

arises from the fact that it allows one to recover the unknown structural function from the regres-

sion quantiles of the data. As we discuss, monotonicity is a strong assumption, and its failure has

substantive consequences for structural inference.
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So far, there are no generally applicable nonparametric speci�cation tests designed to detect

monotonicity failure. This paper provides such a test for cross-section data. We show how to ex-

ploit the power of an exclusion restriction together with a conditional independence assumption,

plausible in a variety of applications, to construct a test statistic. We analyze the large-sample

behavior of our estimators and tests and study their �nite-sample behavior in Monte Carlo exper-

iments. Our experiments show that a suitable bootstrap procedure yields tests with reasonably

well behaved levels. Both theory and experiment show that the test has useful power.

When applied to data, the test exhibits these features. In a labor economics application

where monotonicity in unobserved ability is plausible, we �nd that the test does not reject. In a

consumer demand application, where monotonicity in a scalar unobserved preference parameter is

less plausible, we �nd that the test clearly rejects. These two distinct applications also illustrate

that our test applies to both observed and unobserved conditioning instrument cases and works

well in both. Finally, we expect that our approach, or elements thereof, extends to tests for

monotonicity in richer economic structures such as in Olley and Pakes (1996), but we leave this,

in our opinion fascinating, extension for future research.

10 Mathematical Appendix

Proof of Theorem 3.2: Let �(�) � m(�x; �) : A ! R: Clearly, �(a) takes values in V; so �(�) :
A ! V: By assumption, � is measurable and strictly increasing, so its inverse function ��1(�) :
V ! A exists and is measurable and strictly increasing. Let �m : X � V ! R be de�ned as �m(�; �) �
m(�(�); ��1(�)); where �(�) is the identity map. This is the composition of m with the measurable

map # : X � V ! X �A; de�ned by #(x; v) = (#1(x; v); #2(x; v)); where #1(x; v) = �(x); and

#2(x; v) = ��1(v): As compositions of measurable functions are measurable, �m : X � V ! R is
(product) measurable.

(a) Let x 2 X be arbitrary. Take any v 2 V; and put a = ��1(v): Then m(x; a) =

m(x; ��1(v)) = �m(x; v); as desired. The argument for the second claim is similar.

(b) By assumption, m(x; �) is strictly increasing on A, and by construction, ��1 is strictly
increasing on V. Because compositions of strictly increasing functions are strictly increasing, it
follows that �m(x; �) = m(x; ��1(�)) is strictly increasing on V:

(c) For each v in V; there exists a = ��1(v) such that v = �(a) = m(�x; a) = m(�x; ��1[�(a)]) =

m(�x; ��1(v)) = �m(�x; v): �

Proof of Theorem 3.3 A:0, A:1; and B:1 ensure that for all (y; x; z)

G(yjx; z) � P [Y � yjX = x;X = z] = P [m(X;A) � yjX = x;Z = z] = P [m(x;A) � yjZ = z]:

Setting y = m(x; a); it follows from B:2 that for all a; x; z

m(x; a) = G�1(P [m(x;A) � m(x; a)jZ = z] j x; z): (10.1)
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Pick any (a; x; ~x; z) 2 A� X � X �Z:
(a) We show that (i) implies (ii) : a 2 �m�1

~x fG�1[G(m(x; a) j x; z) j ~x; z]g: By B:2; m(x; a) =
G�1(G(m(~x; a) j ~x; z) j x; z) implies G(m(x; a) j x; z) = G(m(~x; a) j ~x; z); and

m(~x; a) = G�1[G(m(x; a) j x; z) j ~x; z]:

Taking the pre-image �m�1
~x gives the desired result.

(b)We show that (ii) implies (i): By the de�nition of the pre-image, a 2 �m�1
~x fG�1[G(m(x; a) j

x; z) j ~x; z]g implies
m(~x; a) = G�1[G(m(x; a) j x; z) j ~x; z]:

Invoking B:2 to invert G twice, we obtain the desired result.

(c) We show that (i) implies (iii): Given (i); we have

m(x; a) = G�1(G(m(~x; a) j ~x; z) j x; z)

= G�1(P [Y � m(~x; a) j X = ~x;Z = z] j x; z)

= G�1(P [m(X;A) � m(~x; a) j X = ~x; Z = z] j x; z)

= G�1(P [m(~x;A) � m(~x; a) j X = ~x; Z = z] j x; z)

= G�1(P [m(~x;A) � m(~x; a) j Z = z] j x; z);

where the last step follows from B:1. Using this result and (10.1) ensures that

G�1(P [m(x;A) � m(x; a)jZ = z] j x; z) = G�1(P [m(~x;A) � m(~x; a) j Z = z] j x; z):

By the invertibility of G�1 ensured by B:2, it follows that

P [m(x;A) � m(x; a)jZ = z] = P [m(~x;A) � m(~x; a) j Z = z] or

P [A 2 m�1
x fm(x; a)gjZ = z] = P [A � m�1

~x fm(~x; a)g j Z = z],

as desired.

(b) We show that (iii) implies (i): Thus, suppose that

P [A 2 m�1
x fm(x; a)gjZ = z] = P [A � m�1

~x fm(~x; a)g j Z = z] or

P [m(x;A) � m(x; a)jZ = z] = P [m(~x;A) � m(~x; a) j Z = z]:

Applying (10.1), the equality above, and B:2 gives

m(x; a) = G�1(P [m(x;A) � m(x; a)jZ = z] j x; z)

= G�1(P [m(~x;A) � m(~x; a) j Z = z] j x; z):
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Applying B:1 and simplifying gives

m(x; a) = G�1(P [m(~x;A) � m(~x; a) j X = ~x;Z = z] j x; z)

= G�1(P [m(X;A) � m(~x; a) j X = ~x;Z = z] j x; z)

= G�1(P [Y � m(~x; a) j X = ~x;Z = z] j x; z)

= G�1(G(m(~x; a) j ~x; z) j x; z): �

Proof of Corollary 3.4 A:2 ensures Theorem 3.3(iii) for all (a; x; ~x; z): This ensures m(x; a) =

G�1(G(m(~x; a) j ~x; z) j x; z): Letting ~x = x� with a = m(x�; a) gives m(x; a) = G�1(a j x�; z) j
x; z); ensuring (3.1). Successively inverting Y = G�1(G(A j x�; z) j X; z) for any z gives (3.2).

Next, Y = m(X;A), X ? A j Z; and strict monotonicity imply that for all y; x; and z;

G(y j x; z) � P [ Y � y j X = x;Z = z]

= P [ m(X;A) � y j X = x;Z = z] = P [m(x;A) � y j X = x; Z = z]

= P [ m(x;A) � y j Z = z] = P [ A � m�1(x; y) j Z = z]: (10.2)

Setting y = m(x; a) so that a = m�1(x; y) immediately gives

FAjZ(a j z) = G( m(x; a) j x; z):

We have FAjZ(a j z) = FAjX;Z(a j x; z) since X ? A j Z: This establishes eq.(3.3).
Finally, for all (a; x; z) 2 A� X �Z;

P [ A � a j X = x] = P [ m(x;A) � m(x; a) j X = x]

= P [ m(X;A) � m(x; a) j X = x]

= P [Y � m(x; a) j X = x] = GY jX(m(x; a) j x)

= GY jX(G
�1[G(a j x�; z) j x; z] j x): �

For the next results, recall that U0 � X0 � Z0; Ui � (X 0
i; Z

0
i)
0 ; u � (x0; z0)0 ; Kb (u) �

b�dK (u=b) ; and �p;b (u) � �p (u=b) : Let Wi � (Yi; U 0i)0 and w � (y; u0)
0 : Let Sp;b (u) and Sp;b (u)

be as de�ned in (5.3) and (6.1), respectively. De�ne

�Vp;b (� ;u) � 1

n

nX
i=1

Kb (Ui � u)�p;b (Ui � u) � (Yi � �b (� ;u)) ;

Vp;b (� ;u) � 1

n

nX
i=1

Kb (Ui � u)�p;b (Ui � u) �
�
Yi �G�1 (� jUi)

�
;

Bp;b (y;u) � 1

n

nX
i=1

Kb (Ui � u)�p;b(Ui � u)�i;y (u) ;

Vp;b (y;u) � 1

n

nX
i=1

Kb (Ui � u)�p;b (Ui � u)�1y (Wi) ;
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where  � (u) � � � 1 (u � 0) ; �i;y (u) � G (yjUi)�G (yju)�
P
1�jjj�p

1
j!G

(j) (yju) (Ui � u)j ; and
�1y (Wi) � 1 fYi � yg �G (yjUi) : Let Uis and us denote the sth elements of Ui and u.

To prove Theorem 5.1, we �rst establish some technical lemmas. Let Sp;b (u) � E[Sp;b (u)]

and Bp;b (y;u) � E[Bp;b (y;u)]: The next lemma establishes uniform consistency of �̂ (yju) :

Lemma 10.1 Suppose that Assumptions C.1-C.4 and C.6 hold. Then with �b � n�1=2b�d=2
p
log n;

we have that uniformly in (y; u) 2 R� U0;
(a) �̂ (yju)� � (yju) = Sp;b (u)�1 [Vp;b (y;u) +Bp;b (y;u)] +OP (�2b +�bbp+1);
(b) �̂ (yju)� � (yju) = OP (�b + b

p+1):

Proof. Since [Sp;b (u)]�1 Sp;b (u) = IN where IN is an N � N identity matrix, by (5.2) we

obtain the following standard bias and variance decomposition:

�̂ (yju)� � (yju) = [Sp;b (u)]�1Vp;b (y;u) + [Sp;b (u)]�1Bp;b (y;u) : (10.3)

By Theorems 2 and 4 in Masry (1996) with some modi�cation to account for the non-compact

support of the kernel function,11

Sp;b (u) = Sp;b (u)+OP (�b) ;Vp;b (y;u) = OP (�b) ; Bp;b (y;u)�Bp;b (y;u) = OP (�pb
p+1); (10.4)

where the probability orders hold uniformly in u 2 U0: By the same argument as used in the proof
of Theorem 4.1 of Boente and Fraiman (1991), we can show that the last two results in (10.4)

also hold uniformly in y 2 R under Assumption C.3. In addition, by the Slutsky lemma,

Sp;b (u)
�1 =

�
Sp;b (u) +

�
Sp;b (u)� Sp;b (u)

�	�1
= [Sp;b (u)]

�1 +OP (�b) : (10.5)

It follows that �̂ (yju)� � (yju) = fSp;b (u)�1 +OP (�b)gfVp;b (y;u) +[Bp;b (y;u) +OP (�bbp+1)]g
= Sp;b (u)

�1 [Vp;b (y;u) +Bp;b (y;u)] +OP (�
2
b +�bb

p+1) = OP (�b + b
p+1):

Recall that Ĝp;b(yjx; z) = e01;p�̂ (yju) where e1;p is de�ned after (5.3). Noting that uniformly in
(y; u) 2 R�U0; Sp;b (u) = g (u)Sp+O (b) ; andBp;b (y;u) = bp+1g (u)BpGp+1 (yju)+o

�
bp+1

�
; with

��b � �b + b
p+1; we have Ĝp;b(yju)�G(yju) = bp+1e01S�1p BpGp+1 (yju) + g (u)�1 e01S�1p Vp;b (y;u) +

OP (b��b):

Lemma 10.2 Suppose that Assumptions C.1-C.4 and C.6 hold. Let T be any compact subset of
(0; 1) : Then uniformly in (� ; u) 2 T � U0;

(a) Ĝ�1p;b(� ju)�G�1(� ju) = e01;p
�Sp;b (� ;u)

�1 �Vp;b (� ;u) +OP (�
2
b + �bb

p+1) + oP
�
n�1=2b�dX=2

�
;

(b) Ĝ�1p;b(� ju) � G�1(� ju) = e01;p
�Sp;b (� ;u)

�1 Vp;b (� ;u) + bp+1e01;pS�1p BpG
�1
p+1 (� ju) + OP (�

2
b) +

oP
�
bp+1 + n�1=2b�dX=2

�
;

(c) Ĝ�1p;b(� ju) � G�1(� ju) = e01;pSp (� ;u)
�1 Vp;b (� ;u) [1 + oP (1)] + bp+1e01;pS�1p BpG

�1
p+1 (� ju) +

oP
�
bp+1 + n�1=2b�dX=2

�
;

where Sp (� ;u) � Spg
�
G�1 (� ju) ju

�
g (u) is the limit of �Sp;b (� ;u) � E [Sp;b (� ;u)] :

11The compact support of the kernel function in Masry (1996) can be easily relaxed, following the line of proof
in Hansen (2008, Theorem 4).
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Proof. Noting that Sp;b (� ;u) � �Sp;b (� ;u) = OP (�b) and �Vp;b (� ;u) = OP (�b + bp+1) by

the proof of (b) below, (a) follows from Theorem 2.1 of Su and White (2011). To prove (b),

write �Vp;b (� ;u) = Vp;b (� ;u) + Rp;b (� ;u) ; where Rp;b (� ;u) � 1
n

Pn
i=1f1

�
Yi � G�1 (� jUi)

�
�

1(Yi � �b(� ; u)0�iu)gKb (Ui � u)�iu and �iu � �p;b (Ui � u) : Write Rp;b (� ;u) as E[Rp;b (� ;u)] +
fRp;b (� ;u)� E[Rp;b (� ;u)]g : The �rst term is

E[Rp;b (� ;u)] = E
��
G(G�1 (� jUi) jUi)�G(�b (� ; u)0 �iujUi)

�
Kb (Ui � u)�iu

	
= E

�
g(G�1 (� jUi) jUi)

�
G�1 (� jUi)� �b (� ; u)0 �iu

�
Kb (Ui � u)�iu

	
f1 + o (1)g

= bp+1g(G�1 (� ju) ju)g (u)BpG�1
p+1 (� ju) f1 + o (1)g :

It is easy to show the second term is oP (bp+1) uniformly in (� ; u). Thus (b) follows. For (c), it

su¢ ces to show that sup(�;x)2T �U0 kSp;b (� ;u)� Sp (� ;u)k = OP (n
�1=2b�d=2

p
log n+ b) = oP (1) :

The proof is similar to but simpler than that of Corollary 2 in Masry (1996) because we only need

convergence in probability, whereas Masry proved almost sure convergence.

If G (ajx�; z) 2 T0 = [� ; �� ] � (0; 1) for x� 2 X0 and all (a; z) 2 AH � Z0; by Lemma 10.1,
Ĝp;b(ajx�; z) 2 T �0 with probability approaching 1 for su¢ ciently large n; where T �0 � [���; ��+�] �
(0; 1) for some � > 0: Then the result in Lemma 10.2 holds uniformly in (� ; u) 2 T �0 � U0:

Lemma 10.3 Suppose that Assumptions C.1-C.4 and C.6 hold. Then
sup~�;�2T �0 ;j~��� j�Mvb

supu2U0
p
nbdX kVp;b (~� ;u)� Vp;b (� ;u)k = oP (1).

Proof. Let W (~� ; � ;u) = !0 (Vp;b (~� ;u)� Vp;b (� ;u)) where ! 2 RNp with k!k = 1: We need

to show that

sup
~�;�2T �0 ;j~��� j�Mvb

sup
u2U0

jW (~� ; � ;u)j = oP (#n) with #n = n�1=2b�dX=2: (10.6)

Let ai;u = K ((Ui � u) =b)!0�p;b (Ui � u) ; a+i;u = max (ai;u; 0) and a�i;u = max (�ai;u; 0) : Noting
thatW (~� ; � ;u) =

�
nbd
��1Pn

i=1 ai;u
�
~� � 1

�
Yi � G�1 (~� jUi)

	
� � + 1

�
Yi � G�1 (� jUi)

	�
; we can

analogously de�neW+ (~� ; � ;u) andW� (~� ; � ;u) by replacing ai;u in the de�nition ofW (~� ; � ;u) by

a+i;u and a
�
i;u; respectively. By the Minkowski inequality, (10.6) will hold if sup~�;�2T �0 ;j~��� j�Mvb

supu2U0
jW+ (~� ; � ;u)j = oP (#n) and sup~�;�2T �0 ;j~��� j�Mvb

supu2U0 jW� (~� ; � ;u)j = oP (#n) : We will only

show the �rst part as the other case is similar.

Let en � n�1=2: By selecting n1 = O
�
e�1n
�
grid points, �1 < �2 < : : : < �n1 with � j�� j�1 � en;

we can cover the compact set T �0 by Tj = [� j�1; � j ] for j = 1; : : : ; n1; where �0 = � � � and �n1 =
��+�. Similarly, we can select n2 = O

�
b�de�dn

�
grid points u1; :::; un2 to cover the compact set U0 by

Ul = fu : ku� ulk � enbg ; l = 1; :::; n2: Observe that sup~�;�2T �0 ;j~��� j�Mvb
supu2U0 jW+ (~� ; � ;u)j �

Wn1 +Wn2; where

Wn1 � max
1�l�n2

sup
~�;�2T �0 ;j~��� j�Mvb

��W+ (~� ; � ;ul)
�� ; and

Wn2 � max
1�l�n2

sup
u2Ul

sup
~�;�2T �0 ;j~��� j�Mvb

��W+ (~� ; � ;u)�W+ (~� ; � ;ul)
�� :
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Furthermore,

Wn1 � max
1�l�n2

max
1�k�n1

max
1�j�n1

sup
j�j��kj�M�b

��W+ (� j ; �k;ul)
��

+ max
1�l�n2

max
1�j;k�n1

sup
~�2Tj

sup
�2Tk

sup
j~��� j�M�b

sup
j�j��kj�M�b

��W+ (~� ; � ;ul)�W+ (� j ; �k;ul)
��

� Wn11 +Wn12; say.

Let & i;ul (� j ; �k) = a+i;ul
�
� j � 1

�
Yi � G�1 (� j jUi)

	
� �k + 1

�
Yi � G�1 (�kjUi)

	�
:Noting that j& i;ul

(� j ; �k) j � C; E [& i;ul (� j ; �k)] = 0 and E[& i;ul (� j ; �k)
2] � Cbd�b as j� j � �kj � M�b; we apply

the Bernstein inequality (e.g., Ser�ing, 1980, p.95) and Assumption C6. to obtain

P (Wn11 > #n�0) � C1n1n2�bn
1=2 max

1�l�n2
max

1�j;k�n1:j�j��kj�M�b
P
�
W+ (� j ; �k;ul) > #n�0

�
� 2C1n1n2�bn

1=2 exp

 
� n2b2d#2n�

2
0

2C2nbd�b +
2
3C3nb

d#n�0

!

= O
�
n1n2�bn

1=2
�
exp

 
� bdZ �20
C4
�
n�1=2b�d=2

p
log n+ n�1=2b�dX=2�0

�! = o (1) ;

where Ci; i = 1; 2; 3; 4; are positive constants. Thus Wn11 = oP (#n) : By the monotonicity of the

indicator and quantile functions and the nonnegativity of a+i;ul , we can readily show that

Wn12 = max
1�l�n2

max
1�j;k�n1

j�j��kj�M�b

sup
~�2Tj ;�2Tk
j~��� j�M�b

����� 1nbd
nX
i=1

a+i;ul [~� � 1
�
Yi � G�1 (~� jUi)

	
� �

+1
�
Yi � G�1 (� jUi)

	
]� a+i;ul

�
� j � 1

�
Yi � G�1 (� j jUi)

	
� �k + 1

�
Yi � G�1 (�kjUi)

	����
� max

1�l�n2;
1�j�n1

sup
~�2Tj

����� 1nhd
nX
i=1

a+i;ul
�
~� � 1

�
Yi � G�1 (~� jUi)

	
� � j + 1

�
Yi � G�1 (� j jUi)

	������
+ max
1�l�n2;
1�j�n1

sup
�2Tk

����� 1nhd
nX
i=1

a+i;ul
�
� � 1

�
Yi � G�1 (� jUi)

	
� �k � 1

�
Yi � G�1 (�kjUi)

	������
= OP (n

�1=2) = oP (#n):

We now study Wn2: Assumption C.4(iii) implies that for all ku1 � u2k � � � �K ;

jK (u2)�K (u1)j � �K� (u1) ; (10.7)

where K� (u) = C1 (kuk � 2d�K) for some constant C that depends on �1 and �2 in the assump-
tion. For any u 2 Ul, ku� ulk =b � en: It follows from (10.7) that jKiu �Kiul j � enK

�
iul
where
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Kiu � K ((Ui � ul)=b) and K�
iul
� K� ((Ui � ul)=b) ; and�����

�
Ui � u
b

�k
Kiu �

�
Ui � ul

b

�k
Kiul

�����
�

�����
�
Ui � u
b

�k����� jKiu �Kiul j+
�����
�
Ui � u
b

�k
�
�
Ui � ul

b

�k�����Kiul

� (2�k)
jkj enK

�
iul
+ (2�k)

jkj�1 enKiul1 (jkj > 0) � Cen(K
�
iul
+Kiul):

With this, we can show that for any u 2 Ul such that ku� ulk =b � en; we have���a+i;u � a+i;ul��� = ��Kiu!
0�p;b (Ui � u)�Kiul!

0�p;b (Ui � ul)
�� � Cen(K

�
iul
+Kiul):

It follows that

Wn2 = max
1�l�n2

sup
u2Ul

sup
�2T �0

sup
~�;j~��� j�M�b

��W+ (~� ; � ;u)�W+ (~� ; � ;ul)
��

� 2 max
1�l�n2

sup
u2Ul

�
nbd
��1 nX

i=1

���a+i;u � a+i;ul���
� Cen max

1�l�n2

�
nbd
��1 nX

i=1

�
K�
iul
+Kiul

�
= OP (en) = oP (#n):

Thus we have proved that sup~�;�2T �0 ;j~��� j�Mvb
supu2U0 jW+ (~� ; � ;u)j = oP (#n) :

By Lemmas 10.1 and 10.3, with probability approaching 1 we have

sup
(a;x;z)2AH�X0�Z0

p
nbdX

���Vp;b �Ĝp;b(ajx�; z);x; z�� Vp;b (G(ajx�; z);x; z)��� = oP (1) :

Proof of Theorem 5.1 Letting �̂ z � Ĝp;b(ajx�; z) and � z � G(ajx�; z), we have m̂H (x; a) �

m�
H (x; a) =

R
[G�1(�̂ z j x; z) � G�1(� z j x; z)]dH(z) +

R
[Ĝ�1p;b(�̂ z j x; z)�G�1(�̂ z j x; z)]dH(z) �

Mn1 (x; a) +Mn2 (x; a) ; say. Note that

G�1(�̂ zjx; z)�G�1(� zjx; z) =
�̂ z � � z

g (G�1 (� zjx; z) jx; z)
+ r̂ (a;x�; x; z) ;

where r̂ (a;x�; x; z) � �g0(G�1(��z jx;z)jx;z)
g(G�1(��z jx;z)jx;z)

3 (�̂ z � � z)
2 and ��z lies between �̂ z and � z: By the re-

mark after Lemma 10.1 and Assumption C.6, r̂ (a;x�; x; z) = OP
�
n�1b�d log n+ b2(p+1)

�
=

oP
�
n�1=2b�dX=2

�
uniformly in (a; x; z) 2 AH �X0 �Z0: It follows that for all (a; x) 2 AH �X0

p
nbdXMn1 (x; a) =

p
nbdX

Z
�̂ z � � z

g (G�1 (� zjx; z) jx; z)
dH (z) + oP (1)

=
p
nbdX

Z
e01;pSp;b (x

�; z)�1Bp;b (a;x
�; z)

g (G�1 (� zjx; z) jx; z)
dH (z)

+
p
nbdX

Z
e01;pSp;b (x

�; z)�1Vp;b (a;x
�; z)

g (G�1 (� zjx; z) jx; z)
dH (z) + oP (1)

� Mn11 (x; a) +Mn12 (x; a) + oP (1) ; say,
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where the second line follows from Lemma 10.1(a). Noting that Bp;b (a;u) = E[Kb (Ui � u)
�p;b(Ui � u)�i;a (u)] = bp+1g (u)BpGp+1 (aju) + o

�
bp+1

�
and Sp;b (u) = Spg (u) + o (1) uniformly

in (a; u) 2 AH � U0; we have

Mn11 (x; a) =
p
nbdX bp+1

Z
e01;pS�1p BpGp+1 (ajx�; z)
g (G�1 (� zjx; z) jx; z)

dH (z) f1 + oP (1)g (10.8)

and

Mn12 (x; a) =
p
nbdX

Z
e01;pS�1p Vn (a;x�; z)

g (x�; z) g (G�1 (� zjx; z) jx; z)
dH (z) f1 + oP (1)g

= �Mn12 (x; a) f1 + oP (1)g
d! N (0; V1) ; (10.9)

where �Mn12 (x; a) �
q

bdX
n

Pn
i=1

R e01;pS
�1
p Kb(Xi�x�;Zi�z)�p;b(Xi�x�;Zi�z)1a(Wi)

g(x�;z)g(G�1(�z jx;z)jx;z) dH (z) ; (10.8) holds

true uniformly in (a; x) 2 AH � X0, V1 � �1p
R �z(1��z)h(z)2

g(x�;z)g(G�1(�z jx;z)jx;z)2
dz; �1p �

R
e01;pS�1p �p (~x; ~z)

�p (~x; ~z � �z)0 S�1p e1;pK (~x; ~z) K (~x; ~z � �z) d (~x; ~z; �z) ; and (10.9) follows from straightforward mo-

ment calculations and Liapounov�s central limit theorem.

For Mn2; noting that
p
nbdXo(bp+1 + n�1=2b�dX=2) = o (1) under Assumption C.6, by Lemma

10.2 we have that uniformly in (a; x) 2 AH �X0
p
nbdXMn2 (x; a) =

p
nbdX

Z
bp+1e01;pS�1p BpG

�1
p+1 (�̂ zjx; z) dH(z)

+
p
nbdX

Z
e01;pSp (�̂ z;x; z)

�1 Vn (�̂ z;x; z) dH(z) + oP (1) ;

� Mn21 (x; a) +Mn22 (x; a) + oP (1) ; say,

where Sp (� ;u) � Spg
�
G�1 (� ju) ju

�
g (u) : By Lemmas 10.2 and 10.3, we have that uniformly in

(a; x) 2 AH �X0

Mn21 (x; a) =
p
nbdX bp+1

Z
e01;pS�1p BpG

�1
p+1 (� zjx; z) dH(z) + oP (1) ; (10.10)

andMn22 (x; a) = �Mn22 (x; a)+oP (1) ; where �Mn22 (x; a) �
R
e01;pSp (� z;x; z)

�1 Vn(� z;x; z)dH(z):

Furthermore,

�Mn22 (x; a) =

r
bdX

n

nX
i=1

Z
e01;pS�1p Kb (Ui � u)�p;b(Ui � u) �z

�
Yi �G�1 (� zjUi)

�
g (x; z) g (G�1 (� zjx; z) jx; z)

dH (z)

d! N (0; V2) ;

where V2 � �1p
R �z(1��z)h(z)2

g(x;z)g(G�1(�z jx;z)jx;z)2
dz: The asymptotic normality result follows by the Cramér-

Wold device and the fact that the asymptotic covariance of �Mn12 and �Mn22 zero. In sum, we

have
p
nbdX fm̂H (x; a)�m�

H (x; a)�Bm (x; a;x�)g
d! N

�
0; �2m (x; a;x

�)
�
; where Bm (x; a;x�)

and �2m (x; a;x
�) are de�ned in (5.6) and (5.7), respectively.

Next, it is standard to show that sup(x;a)2X0�AH jMn12 (x; a)j = OP (
p
log n) and sup(x;a)2X0�AH�� �Mn22 (x; a)

�� = OP (
p
log n): Then the uniform convergence result follows. �
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Lemma 10.4 Suppose that Assumptions C.1-C.6 hold. Then for any �n = O(�b); we have
(a) Ĝp;b(a+ �nju)� Ĝp;b(aju) = g(aju)�n + oP

�
�n + n

�1=2b�dX=2
�
uniformly in u 2 U0;

(b) m̂H (x; a+ �n)� m̂H (x; a) = D�
H (x; a) �n + oP

�
�n + n

�1=2b�dX=2
�
;

where D�
H (x; a) �

R g(ajx�;z)
g(G�1(G(ajx�;z)jx;z)jx;z)dH(z):

Proof. By Lemma 10.1,

Ĝp;b(a+ �nju)� Ĝp;b(aju) = [G(a+ �nju)�G(aju)]

+e01;pSp;b (u)
�1 [Bp;b (a+ �n;u)�Bp;b (a;u)]

+e01;pSp;b (u)
�1 [Vp;b (a+ �n;u)�Vp;b (a;u)] +OP (�2b + �bbp+1):

Clearly, the �rst term on the right hand side of the last expression is g(ajx; z)�n + o(�n); the

second term is o(bp+1) = oP (n
�1=2b�dX=2) uniformly in u 2 U0 by the fact that Bp;b (a;u) =

bp+1BpGp+1 (aju) g (u)+ o
�
bp+1

�
uniformly in u and Sp;b (u) = Spg (u)+ o (1), and the continuity

ofGp+1: Analogously to the proof of Lemma 10.3, we can show thatVp;b (a+ �n;u)�Vp;b (a;u) =
oP (n

�1=2b�dX=2) uniformly in u 2 U0: Thus (a) follows.

To show (b), decompose m̂H (x; a+ �n)� m̂H (x; a) = Dn1 +Dn2; where

Dn1 �
Z h

G�1(Ĝp;b(a+ �njx�; z)jx; z))�G�1(Ĝp;b(ajx�; z)jx; z))
i
dH(z);

and

Dn2 �
Z h

Ĝ�1p;b(Ĝp;b(a+ �njx
�; z)jx; z))�G�1(Ĝp;b(a+ �njx�; z)jx; z))

i
dH(z)

�
Z h

Ĝ�1p;b(Ĝp;b(ajx
�; z)jx; z))�G�1(Ĝp;b(ajx�; z)jx; z))

i
dH(z):

For Dn1; we have

Dn1 =

Z
Ĝp;b(a+ �njx�; z)� Ĝp;b(ajx�; z)
g
�
G�1

�
Ĝp;b(ajx�; z)jx; z

�
jx; z

�dH(z) + oP ��n + n�1=2b�dX=2�
=

Z
g(ajx�; z)�n

g
�
G�1

�
Ĝp;b(ajx�; z)jx; z

�
jx; z

�dH(z) + oP ��n + n�1=2b�dX=2�
= D�

H (x; a) �n + oP

�
�n + n

�1=2b�dX=2
�
;

where the �rst equality follows from the Taylor expansion, the second from (a), and the third

from Lemma 10.1. By the proof of Theorem 5.1, we have

Dn2 � bp+1
Z
e01;pS�1p Bp

h
G�1
p+1 (G(a+ �njx�; z)ju)�G

�1
p+1 (G(ajx�; z)ju)

i
dH(z)

+

Z
e01;p[Sp (G(a+ �njx�; z);x; z)

�1 Vp;b (G(a+ �njx�; z);x; z)

� Sp (G(ajx�; z);x; z)�1 Vp;b (G(ajx�; z);x; z)]dH(z)

� Dn21 +Dn22; say.
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It is easy to see that Dn21 = o(bp+1) = oP (n
�1=2b�dX=2) by the continuity of G and G�1

p+1: Next,

we write Dn22 = Dn22;1 +Dn22;2; where

Dn22;1 =

Z
e01;pSp (G(a+�njx�; z);x; z)

�1 [Vp;b (G(a+�njx�; z);x; z)� Vp;b (G(ajx�; z);x; z)] dH(z);

Dn22;2 =

Z
e01;p[Sp (G(a+�njx�; z);x; z)

�1 � Sp (G(ajx�; z);x; z)�1]Vp;b (G(ajx�; z);x; z) dH(z):

One can readily show that Dn22;1 = oP (n
�1=2b�dX=2) and Dn22;2 = oP (n

�1=2b�dX=2) by standard

moment calculations and the dominated convergence theorem, and (b) follows.

Proof of Theorem 5.3 By the strict monotonicity of m�
H (x; �) for all x; its inverse function

m��1
H (x; �) exists and is unique. This implies that for any �xed (x; a) with y = m�

H (x; a) (and

thus a = m��1
H (x; y)); there is an � = � (x) > 0 such that

� = � (�) = minfm�
H (x; a)�m�

H (x; a� �) ; m�
H (x; a+ �)�m�

H (x; a)g > 0: (10.11)

It follows that for su¢ ciently large n;

P
���m̂�1

H (x; y)�m��1
H (x; y)

�� > �
	

= P
�
m̂�1
H (x; y) > m��1

H (x; y) + � or m̂�1
H (x; y) < m��1

H (x; y)� �
	

= P
�
m�
H

�
x; m̂�1

H (x; y)
�
> m�

H

�
x;m��1

H (x; y)+�
�
or m�

H

�
x; m̂�1

H (x; y)
�
< m�

H

�
x;m��1

H (x; y) -�
�
g

� P
���m�

H

�
x; m̂�1

H (x; y)
�
�m�

H

�
x;m��1

H (x; y)
��� > �

	
= P

���m�
H

�
x; m̂�1

H (x; y)
�
� y
�� > �

	
= P

���m�
H

�
x; m̂�1

H (x; y)
�
� m̂H

�
x; m̂�1

H (x; y)
��� > �

	
� P

(
sup
a2A�H

jm̂H (x; a)�m�
H (x; a) j > �

)
! 0;

where the third line follows from the monotonicity of m�
H (x; �) ; the fourth line holds by (10.11),

the �fth and six lines follow from the fact m�
H

�
x;m��1

H (x; y)
�
= y = m̂H

�
x; m̂�1

H (x; y)
�
; and

A�H � fa : ja� cj � � for some c 2 AHg and � > 0:
Let �n (v) � P

�
n1=2bdX=2��1

m�1 (x; y)
�
m̂�1
H (x; y)�m��1

H (x; y)�Bm�1 (x; y)
�
� v
	
for any

v 2 R: Then

�n (v) = P
�
m̂�1
H (x; y) � m��1

H (x; y) + �n (v;x; y)
	

= P
�
m̂H

�
x; m̂�1

H (x; y)
�
� m̂H

�
x;m��1

H (x; y) + �n (v;x; y)
�	

= P
�
m̂H

�
x;m��1

H (x; y) + �n (v;x; y)
�
� y
�
;
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where �n (v;x; y) � Bm�1 (x; y) + n�1=2b�dX=2�m�1 (y;x) v: By Lemma 10.4(b) and Theorem 5.1,

�n (v) � P
�
m̂H

�
x;m��1

H (x; y)
�
� �D�

H

�
x;m��1

H (x; y)
�
�n (v;x; y) + y

	
= P

�
m̂H

�
x;m��1

H (x; y)
�
� y +D�

H

�
x;m��1

H (x; y)
�
Bm�1 (x; y) �

�(n�1=2b�dX=2)D�
H

�
x;m��1

H (x; y)
�
�m�1 (y;x) v

o
= P

np
nbdX

�
D�
H

�
x;m��1

H (x; y)
�
�m�1 (y;x)

��1
�
h
m̂H

�
x;m��1

H (x; y)
�
� y +D�

H

�
x;m��1

H (x; y)
�
Bm�1 (x; y)

i
� �v

o
! 1� � (�v) = � (v) ;

where � is the CDF for the standard normal distribution. �

Proofs of Theorems 6.1 and 6.2 We prove Theorem 6.2, as Theorem 6.1 is a special case. Put

G = Gn; and let �Jn � bdX
Pn
i=1f

R
G�1(Ĝp;b (YijXi; z) jx�; z)d�(z)g2�i; �n (� ju) � Ĝ�1p;b (� ju) �

G�1 (� ju) ; �n1 (� ;u) � e01
�Sp;b (� ;u)

�1 �Vp;b (� ;u) ; and �n2 (� ;u) � �n (� ju) � �n1 (� ;u) ; � iz �
G (YijXi; z) ; and �̂ iz � Ĝp;b (YijXi; z) : Noting that a2 � b2 = (a� b)2 + 2 (a� b) b; we have

Ĵn = �Jn + (Ĵn � �Jn)

= �Jn + b
dX

nX
i=1

�Z h
Ĝ�1p;b (�̂ izjx

�; z)�G�1 (�̂ izjx�; z)
i
d�(z)

�2
�i

+2bdX
nX
i=1

Z h
Ĝ�1p;b (�̂ izjx

�; z)�G�1 (�̂ izjx�; z)
i
d�(z)

Z
G�1 (�̂ izjx�; z) d�(z)�i

= �Jn + b
dX

nX
i=1

�Z
�n1 (�̂ iz;x

�; z) d�(z)

�2
�i + b

dX

nX
i=1

�Z
�n2 (�̂ iz;x

�; z) d�(z)

�2
�i

+2bdX
nX
i=1

Z
�n1 (�̂ iz;x

�; z) d�(z)

Z
�n2 (�̂ iz;x

�; z) d�(z)�i

+2bdX
nX
i=1

Z
�n1 (�̂ iz;x

�; z) d�(z)

Z
G�1 (�̂ izjx�; z) d�(z)�i

+2bdX
nX
i=1

Z
�n2 (�̂ iz;x

�; z) d�(z)

Z
G�1 (�̂ izjx�; z) d�(z)�i

� �Jn + Ĵn1 + Ĵn2 + 2Ĵn3 + 2Ĵn4 + 2Ĵn5; say. (10.12)

We prove the theorem by �rst demonstrating that

Ĵn = Jn + oP (1) (10.13)

and then showing that

Jn �Bn
d! N

�
�0; �

2
J

�
; (10.14)
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where

Jn � bdX
nX
i=1

"Z
e01�Sp;b (Xi; z)

�1Vp;b (Yi;Xi; z)

g (G�1 (� izjx�; z) jx�; z)
+ e01 �Sp;b (� iz;x

�; z)�1 Vp;b (� iz;x
�; z) d�(z)

#2
�i:

We prove (10.13) by showing that

�Jn = bdX
nX
i=1

"Z
e01�Sp;b (Xi; z)

�1Vp;b (Yi;Xi; z)

g (G�1 (� izjx�; z) jx�; z)

#2
�i + �0 + oP (1) ; (10.15)

Ĵn1 = bdX
nX
i=1

�Z
e01 �Sp;b (� iz;x

�; z)�1 Vp;b (� iz;x
�; z) d�(z)

�2
�i + oP (1) ; (10.16)

Ĵn4 = ~Jn4 + oP (1) ; and (10.17)

Ĵns = oP (1) for s = 2; 3; 5; (10.18)

where

~Jn4 � bdX
nX
i=1

Z
e01�Sp;b (Xi; z)

�1Vp;b (Yi;Xi; z)

g (G�1 (� izjx�; z) jx�; z)
e01 �Sp;b (� iz;x

�; z)�1 Vp;b (� iz;x
�; z) d�(z)�i:

(10.19)

To show (10.15), write

�Jn = bdX
nX
i=1

�Z
G�1(� izjx�; z)d�(z)

�2
�i

+bdX
nX
i=1

�Z �
G�1(�̂ izjx�; z)�G�1(� izjx�; z)

�
d�(z)

�2
�i

+2bdX
nX
i=1

Z
G�1(� izjx�; z)d�(z)

Z �
G�1(�̂ izjx�; z)�G�1(� izjx�; z)

�
d�(z)�i

� �Jn1 + �Jn2 + 2 �Jn3; say.

Under H1 (
n) with 
n = n�1=2b�dX=2; �Jn1 = n�1
Pn
i=1 �n (Xi; Yi)

2 �i
P! �0: Noting that

G�1(�̂ izjx�; z)�G�1(� izjx�; z) =
�̂ iz � � iz

g (G�1 (� izjx�; z) jx�; z)
+ r̂i (z) ; (10.20)

where r̂i (z) = � g0(G�1(��iz jx�;z)jx�;z)
g(G�1(��iz jx�;z)jx�;z)

3 (�̂ iz � � iz)2 and ��iz lies between � iz and �̂ iz; we have that

under H1 (
n) ;

�Jn3 = n�1=2bdX=2
nX
i=1

�n (Xi; Yi)

Z �
G�1(�̂ izjx�; z)�G�1(� izjx�; z)

�
d�(z)�i

= n�1=2bdX=2
nX
i=1

�n (Xi; Yi)

Z
�̂ iz � � iz

g (G�1 (� izjx�; z) jx�; z)
d�(z)�i

+n�1=2bdX=2
nX
i=1

�n (Xi; Yi)

Z
r̂i (z) d�(z)�i

� �Jn31 + �Jn32; say.
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Observing that r̂i (z) = OP
�
n�1b�d log n+ b2(p+1)

�
uniformly in z; we have �Jn32 = n1=2bdX=2

�OP
�
n�1b�d log n+ b2(p+1)

�
= oP (1). By Lemma 10.1 and Assumption C.6, we have

�Jn31 = n�1=2bdX=2
nX
i=1

�n (Xi; Yi)

Z
Sp;b (Xi; z)

�1Vp;b (Yi;Xi; z)

g (G�1 (� izjx�; z) jx�; z)
d�(z)�i + oP (1) :

Writing the dominant term in the last expression as a second order U-statistic plus a smaller order

term (OP (n�1=2b�dX=2)), it is easy to show that this dominant term is OP (bdX=2+n�1=2b�dX=2) =

oP (1) by Chebyshev. Thus, Jn3 = oP (1) under H1 (
n) : Using (10.12), we decompose �Jn2 as
follows

�Jn2 = bdX
nX
i=1

�Z
�̂ iz � � iz

g (G�1 (� izjx�; z) jx�; z)
d�(z)

�2
�i + b

dX

nX
i=1

�Z
r̂i (z) d�(z)

�2
�i

+2bdX
nX
i=1

Z
�̂ iz � � iz

g (G�1 (� izjx�; z) jx�; z)
d�(z)

Z
r̂i (z) d�(z)�i

� �Jn21 + �Jn22 + 2 �Jn23; say.

By Lemma 10.1 and Assumption C.11, we can readily show that

�Jn21 = bdX
nX
i=1

"Z
Sp;b (Xi; z)

�1Vp;b (Yi;Xi; z)

g (G�1 (� izjx�; z) jx�; z)
d�(z)

#2
�i + oP (1) = OP (1) ;

and �Jn22 = nbdXOP (n
�2b�2d (log n)2+ b4(p+1)) = OP (n

�1b�3d=2 (log n)2+nh4(p+1)+dX ) = oP (1) :

Then �Jn23 = oP (1) by the Cauchy-Schwarz inequality. Consequently, (10.15) follows.

By Proposition 10.5 below, (10.16) holds. With (10.16), it is standard to show that Ĵn1 =

OP (1) : Using (10.20) we can decompose Ĵn4 as

Ĵn4 = bdX
nX
i=1

Z
�n1 (�̂ iz;x

�; z) d�(z)

Z
G�1(� izjx�; z)d�(z)�i

+bdX
nX
i=1

Z
�n1 (�̂ iz;x

�; z) d�(z)

Z
�̂ iz � � iz

g (G�1 (� izjx�; z) jx�; z)
d�(z)�i

+bdX
nX
i=1

Z
�n1 (�̂ iz;x

�; z) d�(z)

Z
r̂i (z) d�(z)�i �

3X
s=1

Ĵn4s; say.

Analogously to the case of �Jn31; we can readily show that Ĵn41 = 0: Ĵn43 is of smaller order. For

Ĵn42; we can apply Lemmas 10.1 and 10.2 to obtain Ĵn42 = ~Jn4 + oP (1) ; where ~Jn4 is de�ned in

(10.19).12 Thus (10.17) follows.

We now show (10.18). By Lemma 10.2(a), Ĵn2 = nbdX [OP (�
4
b) + oP

�
b2(p+1) + n�1b�dX

�
] =

oP (1) : By the fact that Ĵn1 = OP (1) and the Cauchy-Schwarz inequality, Ĵn3 = oP (1). For Ĵn5;

12Using the expressions for Vp;b and Vp;b; we can write ~Jn42 as a third order U-statistic. By straightforward
moment conditions, we can verify that E[( ~Jn42)2] = o (1) : Despite the asymptotic negligibility of ~Jn42; we keep it
in our asymptotic analysis, as it will simplify notation in other places.
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we have Ĵn5 = nbdX [OP (�
2
b) + oP

�
bp+1 + n�1=2b�dX=2

�
] OP (n

�1=2b�d=2
p
log n+ bp+1) = oP (1) :

Consequently, (10.13) follows. To show (10.14), let

�1k (� ;x; z) � e01�Sp;b (x; z)�p;b (Xk � x; Zk � z)Kb (Xk � x;Zk � z) =g
�
G�1 (� jx�; z) jx�; z

�
;

�2k (� ;x; z) � e01 �Sp;b (� ;x; z)�p;b (Xk � x;Zk � z)Kb (Xk � x;Zk � z) ;

and �0 (Wi;Wk; z) � �1k (� iz;Xi; z)�1Yi (Wk) + �2k (� iz;x
�; z) � iz

�
Yk �G�1 (� izjUk)

�
: Then

e01�Sp;b (Xi; z)
�1Vp;b (Yi;Xi; z)

g (G�1 (� izjx�; z) jx�; z)
+ e01 �Sp;b (� iz;x

�; z)�1 Vp;b (� iz;x
�; z) =

1

n

nX
k=1

�0 (Wi;Wk; z) :

It follows that

Jn = bdX
nX
i=1

"Z
n�1

nX
k=1

�0 (Wi;Wk; z) d�(z)

#2
�i = n�2bdX

nX
i1=1

nX
i2=1

nX
i3=1

� (Wi1 ;Wi2 ;Wi3) ;

where � (Wi1 ;Wi2 ;Wi3) �
R R

�0 (Wi1 ;Wi2 ; z) �0 (Wi1 ;Wi3 ; �z) d�(z) d�(�z)�i1 : Let ' (wi1 ; wi2) �
E [� (W1; wi1 ; wi2)] ; and ��(wi1 ; wi2 ; wi3) � � (wi1 ; wi2 ; wi3)�' (wi2 ; wi3) : Then we can decompose
Jn as Jn = Jn1 + Jn2; where

Jn1 = n�1bdX
nX

i1=1

nX
i2=1

' (Wi1 ;Wi2) and Jn2 = n�2bdX
nX

i1=1

nX
i2=1

nX
i3=1

�� (Wi1 ;Wi2 ;Wi3) :

Consider Jn2 �rst. Write E
�
J2n2
�
= n�4b2dX

Pn
i1;:::;i6

E
�
�� (Wi1 ;Wi2 ;Wi3)

�� (Wi4 ;Wi5 ;Wi6)
�
: Not-

ing that E
�
�� (Wi1 ; wi2 ; wi3)

�
= E

�
�� (wi1 ;Wi2 ; wi3)

�
= E[��(wi1 ; wi2 ;Wi3)] = 0; E[��(Wi1 ;Wi2 ;

Wi3)
�� (Wi4 ;Wi5 ;Wi6)] = 0 if there are more than three distinct elements in fi1; : : : ; i6g : With

this, it is easy to show that E
�
J2n2
�
= O(n�1b�2dX + n�2b�3dX + n�3b�4dX ) = o (1) : Hence

Jn2 = oP (1) by the Chebyshev inequality.

For Jn1; let ' (Wi;Wj) =
R R R

�0 ( ~w;Wi; z) �0 ( ~w;Wj ; �z)� (~x; ~y) d�(z) d�(�z) dG ( ~w) : Then

Jn1 = n�1bdX
Pn
i=1 ' (Wi;Wi) +2n

�1bdX
P
1�i<j�n ' (Wi;Wj) � BJn + VJn ; say, where BJn and

VJn contribute to the asymptotic bias and variance of our test statistic, respectively. Note that as
Vn is a second-order degenerate U -statistic, we can easily verify that all the conditions of Theorem
1 of Hall (1984) are satis�ed and a central limit theorem applies to it: VJn

dX! N
�
0; �2J

�
; where

�2J = limn!1 �2Jn and �
2
Jn
= 2h2dXE [' (W1;W2)]

2. �

Proposition 10.5 Ĵn1 = �Jn1 + oP (1) ; where �Jn1 = bdX
Pn
i=1[
R
e01
�Sp;b (� iz;x

�; z)�1 Vp;b(� iz;
x�; z)d�(z)]2�i:

Proof. To prove the result, we de�ne ~Jn1 analogously as �Jn1 with � iz replaced by �̂ iz: ~Jn1 =

bdX
Pn
i=1

hR
e01
�Sp;b (�̂ iz;x

�; z)�1 Vp;b (�̂ iz;x
�; z) d�(z)

i2
�i: It su¢ ces to show (i) Ĵn1 = ~Jn1 +
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oP (1) ; and (ii) ~Jn1 = �Jn1 + oP (1) : To prove (i), let dn1 (� ;u) = e01
�Sp;b (� ;x; z)

�1 [ �Vp;b (� ;x; z) �
Vp;b (� ;x; z)]: Then we have Ĵn1 � ~Jn1 = Dn1 + 2Dn2; where

Dn1 � bdX
nX
i=1

�Z
dn1 (�̂ iz;x

�; z) d�(z)

�2
�i; and

Dn2 � bdX
nX
i=1

Z
dn1 (�̂ iz;x

�; z) d�(z)

Z
e01 �Sp;b (�̂ iz;x

�; z)�1 Vp;b (�̂ iz;x
�; z) d�(z)�i:

As dn1 (� ;u) = OP
�
bp+1

�
uniformly in (� ; u) 2 T0 � U0; we have Dn1 = nbdXOP (b

2(p+1))

= oP (1) : For Dn2; we get Dn2 = �Dn2 + oP (1) using Lemmas 10.1 and 10.3, where �Dn2 =

bdX
Pn
i=1

R
dn1 (� iz;x

�; z) d�(z)
R
e01
�Sp;b (� iz;x

�; z)�1 Vp;b (� iz;x
�; z) d�(z)�i. Standard moment

calculations give �Dn2 = nbdXOP (b
p+1)OP (n

�1=2 b�dX=2) = oP (1) ; so (i) holds.

Next, we show (ii). Let dn2 (�̂ iz; � iz;x�; z) = e01
�Sp;b (�̂ iz;x

�; z)�1 Vn (�̂ iz;x�; z)� e01
�Sp;b(� iz;

x�; z)�1Vn (� iz;x�; z) ; �dn2 (�̂ iz; � iz;x�; z) = e01
�Sp;b (� iz;x

�; z)�1 [Vn (�̂ iz;x�; z)� Vn (� iz;x�; z)] ; and
�rn2 = dn2 � �dn2: Then uniformly in z 2 Z0 and conditional on �̂ iz 2 T �0 ;

�rn2 (�̂ iz; � iz;x
�; z) = e01

h
�Sp;b (� iz;x

�; z)�1 � �Sp;b (�̂ iz;x
�; z)�1

i
Vn (�̂ iz;x

�; z) (10.21)

= OP (�̂ iz � � iz)OP (vb) = OP
�
vb(vb + b

p+1)
�
:

Decompose ~Jn1 � �Jn1 as

~Jn11 + 2 ~Jn12 � bdX
nX
i=1

�Z
dn2 (�̂ iz; � iz;x

�; z) d�(z)

�2
�i

+ 2bdX
nX
i=1

Z
[dn2 (�̂ iz; � iz;x

�; z)] d�(z)

Z
e01 �Sp;b (� iz;x

�; z)�1 Vp;b (� iz;x
�; z) d�(z)�i

Further decompose ~Jn11 as ~Jn11 = ~Jn11;a + ~Jn11;b + 2 ~Jn11;c; say, with

~Jn11;a + ~Jn11;b + 2 ~Jn11;c � bdX
nX
i=1

�Z
�dn2 (�̂ iz; � iz;x

�; z) d�(z)

�2
�i

+ bdX
nX
i=1

�Z
�rn2 (�̂ iz; � iz;x

�; z) d�(z)

�2
�i

+ 2bdX
nX
i=1

nX
j=1

Z
�dn2 (�̂ iz; � iz;x

�; z) d�(z)

Z
�rn2 (�̂ iz; � iz;x

�; z) d�(z)�i:

Fix � > 0: By the uniform consistency of �̂ iz for � iz; there existsM > 0 such that P (supzmax1�i;j�n
j�̂ iz � � izj �M�b) < �=2 for su¢ ciently large n: It follows that

P
���� ~Jn11;a��� � #n�

�
� P

���� ~Jn11;a��� � #n�; sup
z
max
1�i�n

j�̂ iz � � izj �M�b

�
+ �=2;
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and showing ~Jn11;a = oP (1) is equivalent to showing that the �rst term in the last expression is

o (1) : Conditional on supz2Z0 max1�i�n j�̂ iz � � izj �M�b and � iz 2 T0 � (0; 1) ; by Lemma 10.3

~Jn11;a = bdX
nX
i=1

�Z
e01 �Sp;b (� iz;x

�; z)�1 [Vp;b (�̂ iz;x
�; z)� Vp;b (� iz;x�; z)] d�(z)

�2
�i

� CnbdX sup
������; j~��� j�M�n

sup
u2U0

kVp;b (~� ;u)� Vp;b (� ;u)k2 = oP (1) ;

By (10.21), ~Jn11;b = nbd=2OP ((n
�1b�d log n + b2(p+1)) n�1b�d log n) = OP (n

�1b�3d=2 (log n)2+

b2(p+1)�d=2 log n) = oP (1) : By Cauchy-Schwarz inequality, ~Jn11;c = oP (1) ; so ~Jn11 = oP (1) :

Analogously to the determination of the probability order of ~Jn11; we can show that ~Jn12 =
~Jn12;a + oP (1) ; where ~Jn12;a = bdX

Pn
i=1

R
�dn2 (�̂ iz; � iz;x

�; z) d�(z)
R
e01
�Sp;b (� iz;x

�; z)�1 Vp;b(� iz;

x�; z)d�(z)�i: By the Cauchy-Schwarz inequality and Lemmas 10.1 and 10.3, ~Jn12;a = oP (1) :

Thus ~Jn12 = oP (1) : This completes the proof of (ii).

Proof of Theorem 6.3 The proof is much simpler than that of Theorems 6.1-6.2, so we only

sketch the main steps. Under H1; we can apply Lemmas 10.2 and 10.1 in turn to obtain

n�1b�dX Ĵn = n�1
nX
i=1

�Z
G�1

�
Ĝp;b (YijXi; z) jx�; z

�
d�(z)

�2
�i + oP (1)

= n�1
nX
i=1

�Z
G�1 (G (YijXi; z) jx�; z) d�(z)

�2
�i + oP (1) :

The dominant term in the last equality tends to �A > 0 in probability; the result follows. �

The power of the test: discussion To gain insight into the power of the test, we examine the

conditions under which �A � Ef[
R
G�1(G(Y j X; z) j x�; z))d�(z)]2� (X;Y )g = 0 or �A > 0: Let

w � (x0; y0)0; and write

f(w; z) � 1f�(x; y) > 0g G�1(G(y j x; z) j x�; z)):

First, we note that if f(w; z) does not depend on z; then �A = 0: This can happen either because

the "implicit null" holds, i.e., Theorem 3.3(iii) holds with singleton sets in Theorem 3.3(ii) (e.g.,

strict monotonicity); or because the implicit null fails, but � puts zero weight on the values of w

that could reveal this failure. Although this latter case is possible, we consider this part of the

price to be paid for constructing a tractable test.

Thus, suppose that f(w; z) depends on both z and on w � (x0; y0)0 (it must depend at least on
y):We now show that if f(w; z) has a unique Fourier series representation, then �A > 0; provided

that H1 and H2 have no common harmonic moments, as de�ned below.

By Bartle (1966, lemma 4.10), we have �A > 0 if and only if [
R
G�1(G(Y j X; z) j x�; z))d�(z)]2

� (X;Y ) > 0 a:s: As � (x; y) � 0; it is necessary and su¢ cient thatZ
f(w; z) d�(z) = 1f�(x; y) > 0g

Z
G�1(G(y j x; z) j x�; z)) d�(z) 6= 0 a:e: (10.22)
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To ensure (10.22), it is equivalent that
R
f(w; z) dH1(z) 6=

R
f(w; z) dH2(z) a:e:

Let f(w; z) have the Fourier representation

f(w; z) = a0 +
1X
j=1

aj cos(w
0�j + z

0
j) + bj sin(w
0�j + z

0
j);

where f(aj ; bj)g are Fourier coe¢ cients and f(�j ; 
j)g are the Fourier (multi-)frequencies. Re-
call the trigonometric identities cos(� + �) = cos(�) cos(�) � sin(�) sin(�) and sin(� + �) =

sin(�) cos(�) + cos(�) sin(�): Applying these for j = 1; 2; :::; we have

cos(w0�j + z
0
j) = cos(w0�j) cos(z

0
j)� sin(w0�j) sin(z0
j)

sin(w0�j + z
0
j) = sin(w0�j) cos(z

0
j) + cos(w
0�j) sin(z

0
j);

so that

f(w; z) = a0 +
1X
j=1

aj [cos(w
0�j) cos(z

0
j)� sin(w0�j) sin(z0
j)]

+ bj [sin(w
0�j) cos(z

0
j) + cos(w
0�j) sin(z

0
j)]

= a0 +
1X
j=1

(aj cos((z
0
j) + bj sin(z

0
j)) cos(w
0�j)

+ (bj cos(z
0
j)� aj sin(z0
j)) sin(w0�j):

For i = 1; 2; integrating givesZ
f(w; z)dHi(z) = a0 +

1X
j=1

[

Z
(aj cos(z

0
j) + bj sin(z
0
j))dHi(z)] cos(w

0�j)

+
1X
j=1

[

Z
(bj cos(z

0
j)� aj sin(z0
j))dHi(z)] sin(w0�j)

= a0 +

1X
j=1

~ai;j cos(w
0�j) + ~bi;j sin(w

0�j);

where ~ai;j �
R
(aj cos(z

0
j) + bj sin(z
0
j))dHi(z) and ~bi;j �

R
(bj cos(z

0
j) � aj sin(z
0
j))dHi(z):

By the uniqueness of the Fourier representation, it follows that �A > 0 if and only if for some j

we have ~a1;j 6= ~a2;j or ~b1:j 6= ~b2;j : When ~a1;j = ~a2;j and ~b1:j = ~b2;j ; we haveZ
(aj cos(z

0
j) + bj sin(z
0
j))dH1(z) =

Z
(aj cos(z

0
j) + bj sin(z
0
j))dH2(z)Z

(bj cos(z
0
j)� aj sin(z0
j))dH1(z) =

Z
(bj cos(z

0
j)� aj sin(z0
j))dH2(z); or

"
aj bj

bj �aj

#"
�11j

�12j

#
=

"
aj bj

bj �aj

#"
�21j

�22j

#
;
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where �11j �
R
cos(z0
j))dH1(z), �12j �

R
sin(z0
j))dH1(z), �21j �

R
cos(z0
j))dH2(z), and

�22j �
R
sin(z0
j))dH2(z); j = 1; 2; :::, are the �harmonic moments�of H1 and H2; respectively.

Because f(w; z) depends on both w and z; it follows that for some j; aj 6= 0 or bj 6= 0; ensuring
that a2j + b2j 6= 0, so that the matrix inverse exists. Thus, for �A > 0; it su¢ ces that for this j;

�11j 6= �21j or �12j 6= �22j : For this it su¢ ces that for all j; �11j 6= �21j and �12j 6= �22j ; that is,

H1 and H2 have no common harmonic moments. If H1 and H2 di¤er but do have some common

harmonic moments, then it is possible that �A = 0; since it could happen that whenever aj 6= 0
or bj 6= 0 we have �11j = �21j and �12j = �22j : Nevertheless, this is clearly a quite special case.

Use of the Fourier series representation here is convenient, but not necessary. Under suit-

able regularity conditions, one could use other series representations, such as polynomials, or

transforms, such as the Fourier or Laplace transforms, and obtain similar results.

Proof sketch for (6.4). Let Ĝ�p;b; Ĝ
�1�
p;b and Ĵ�n be de�ned as Ĝp;b; Ĝ

�1
p;b and Ĵn; with W�

n

replacingWn: De�ne S (C) � fsup(y;u)2R�U0 jĜp;b (yju)�G (yju) j � Cn�1=2b�d=2(log n)1=2+bp+1;

sup(�;u)2T �U0 jĜ
�1
p;b (� ju)�G�1 (� ju) j � Cn�1=2b�d=2(log n)1=2 + bp+1g; where T = [�0; 1� �0] for

some small �0 2 (0; 1=2) : Then by Lemmas 10.1 and 10.2, for any � > 0; there exists a su¢ ciently
large constant C such that P (Sc (C)) � � for su¢ ciently large n where Sc (C) is the complement
of S (C) : Noting that

P (T �n � tjWn) = P (T �n � tjWn \ S (C))P (S (C)) + P (T �n � tjWn \ Sc (C))P (Sc (C))

and that the second term in the above expression can be made arbitrarily small for su¢ ciently

large n; it su¢ ces to prove (i) by showing that P (T �n � tjWn \ S (C)) ! � (t) for all t 2 R.
Conditional on Wn \ S (C) ; Âi is well de�ned, and one can follow the proof of Theorem 6.2 and

that of Theorem 4.1 in Su and White (2008) to show that

Ĵ�n = n�1bdX
nX
i=1

'� (W �
i ;W

�
i ) + 2n

�1bdX
X

1�i<j�n
'�
�
W �
i ;W

�
j

�
+ oP � (1)

� BJ�n + VJ�n + oP � (1) ;

where P � denotes probability conditional on Wn \ S (C) ; and '� is de�ned analogously to '
with E replaced by E�; the expectation with respect to P �: Noting that VJ�n is a second-order
U-statistic based on the triangular process fW �

i g and that the W ��s are IID conditional on Wn;

one can continue to apply the CLT of Hall (1984) to VJ�n to demonstrate that it is asymptotically
N
�
0; ��2J

�
conditional on Wn; where ��2J � 2plimn!1E�['� (W �

1 ;W
�
2 )
2]: The asymptotic bias

and variance terms can be estimated analogously as B̂Jn and �̂2Jn in the paper. The asymptotic
normality of T �n conditional on Wn \ S (C) then follows.

For (ii) ; let �z�� denote the 1�� conditional quantile of T �n givenWn; i.e., P (T �n � �z��jWn) = �:

By choosing B su¢ ciently large, the approximation error of z�� to �z
�
� can be made arbitrarily small

and negligible. By (i), �z�� ! z� in probability where z� is the 1 � � quantile of the standard
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normal distribution. Then, in view of Theorem 6.1, Tn diverges to 1 at the rate nbdX ; implying

that limn!1 P (Tn � z��) = limn!1 P (Tn � z�) = 1 under H1: �
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