
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

12-1993 

Asynchronous Transaction Commitment in Federated Database Asynchronous Transaction Commitment in Federated Database 

Systems Systems 

San-Yih HWANG 
University of Minnesota 

Ee Peng LIM 
Singapore Management University, eplim@smu.edu.sg 

Jaideep SRIVASTAVA 
University of Minnesota 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific 

Computing Commons 

Citation Citation 
HWANG, San-Yih; LIM, Ee Peng; and SRIVASTAVA, Jaideep. Asynchronous Transaction Commitment in 
Federated Database Systems. (1993). ICPADS '93: International Conference on Parallel and Distributed 
Systems, December 15-17, 1993, Taipei: Proceedings. 440-444. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/909 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F909&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F909&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F909&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F909&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Asynchronous Transaction Commitment in Federated DatabaseSystemsSan-Yih Hwang Ee-Peng Lim Jaideep SrivastavaDepartment of Computer Science, University of MinnesotaMinneapolis, MN 55455AbstractWe propose a new (and restricted) model for globaltransactions which allows asynchronous commitmentof subtransactions. Our model requires each globaltransaction to have a �xed structure with update to thedata in at most one database. Based on this transac-tion model, we present two concurrency control algo-rithms, namely Asynchronous Site Graph and Asyn-chronous VirtGlobalSG, which employ asynchronouscommitment and achieve global serializability. Com-pared to other proposed algorithms, our algorithmsemploy asynchronous commitment so as to increasetransaction performance. Furthermore, our algo-rithms do not put restrictions on transaction data ac-cess or local histories.1 IntroductionA federated database system (FDBS) integratesand provides a uniform access to a set of pre-existinglocal databases, each of which is managed by its ownDBMS. A key feature of FDBSs is to reduce the inter-ference to the local DBMSs and existing local databaseapplications. Ideally, each local DBMS and applica-tion must continue to operate without any modi�ca-tion in the integrated environment. Each local DBMSmust be able to decide how to execute a commandwithout any coordination from FDBS, and determinewhat information to reveal to the FDBS. These fea-tures are referred to as autonomy.To preserve autonomy of component DBMSs, anFDBS supports two types of transactions, namely lo-cal transactions and global transactions. Local trans-actions are generated by the existing local applicationsand each local transaction accesses data from a localdatabase. Furthermore, local transactions are submit-ted directly to their respective local DBMSs with theFDBS having no knowledge of them. Global transac-tions are submitted to the FDBS and and may accessdata across multiple local databases.To achieve atomic execution of both global andlocal transactions, a number of FDBS concurrencycontrol algorithms, which work in conjunction with2 phase commit (2PC) protocol, have been proposed.

In general, this requires that the local DBMSs pro-vide a visible prepared-to-commit state to the FDBSconcurrency control. Since providing such control in-formation violates autonomy, various researchers haveproposed that the FDBS simulates a prepared to com-mit state. However, unlike a real prepared to commitstate, this simulated prepared-to-commit state can-not tolerate failure, i.e. a failure at the local DBMSwill undo the e�ect of a simulated prepared-to-committransaction. This causes a problem since the FDBStransaction management may have decided to com-mit such a transaction. A number of mechanismshave been proposed to solve this problem (e.g., see[HSL93a]). However, each of these proposed solu-tions imposes restrictions on the type of local site con-currency control mechanisms and the data that localtransactions can access. These restrictions a�ect theautonomy of local databases.Furthermore, even if the prepared-to-commit stateis supported by the local DBMSs, the executioncost of the 2PC protocol can be high. Thus, somemechanisms have recently been proposed to allowasynchronous commitment and to use compensatingtransactions to achieve semantic atomicity (e.g., see[RELL90]). In these protocols, a subtransaction cancommit without synchronizing with other subtrans-actions. If the subtransaction is aborted, the entireglobal transaction is considered aborted, and a com-pensating subtransaction is executed for each sub-transaction that has committed earlier. Although thisapproach looks appealing, in an FDBS environment itis di�cult, both for the systems and the users, to spec-ify a compensating transaction for each global sub-transaction.In [HS90], a unilateral commit paradigm is pro-posed for distributed transaction management to com-mit each subtransaction unilaterally. When a sub-transaction is aborted, it is retried until it is commit-ted. A distributed transaction is modeled as a hierar-chy of subtransactions, and a subtransaction can notbe started until its parent commits. This restrictedtransaction model is valid only for certain applica-tions. Besides, serializability cannot be achieved in anFDBS environment where local transactions are be-yond the control the FDBS.In [EJK91], asynchronous commitment is analyzed



from a theoretical viewpoint, and su�cient conditionsare proposed to achieve global serializability in thepresence of failures. The transaction model presentedrequires that the dependency between subtransactionsof a global transaction be acyclic. The proposed suf-�ciency conditions require each local DBMS to pro-duce rigorous histories (i.e., each local DBMS mustuse strict two phase locking (2PL) as its concurrencycontrol mechanism).To achieve asynchronous commitment of a globaltransaction, it is required that no two update sub-transactions of the global transaction depend on eachother. To ensure this, we have proposed restrictionson the structure of global transactions. Speci�cally,a transaction in our model consists of a number ofmulti-site retrieval queries and at most one single siteupdate. This transaction model serves an interest-ing class of applications in which a federated appli-cation retrieves information from a number of localdatabases, makes its decision, and then updates atmost one database. While standard 2PC has to beused for full-edged transactions, asynchronous com-mitment is su�cient for the restricted transactions.No restrictions are placed on local transactions. Inthis paper we identify the problems encountered inasynchronous commitment. We also present two al-gorithms for asynchronous commitment and analyzetheir behavior.The rest of this paper is organized as follows. In sec-tion 2, we describe the transaction and system models.In section 3, we identify the problems for asynchronouscommit protocol and de�ne the set of executions thatis allowed for asynchronous commitment. Section 4presents two concurrency control algorithms that em-ploy asynchronous commitment. Finally, in Section 5we conclude this paper.2 Transaction ModelIn this section, we present the new model for globaltransactions and describe their execution when sub-transactions can unilaterally commit.2.1 Transaction and Query ModelA federated database system provides a globalschema, which is derived from the local schemas ofcomponent local databases. Global users issue queriesto the FDBS, which operate on the global schema. Aglobal query is decomposed into a set of subqueries,each of which is executed at a local site, based on thequery execution plan produced by the FDBS query op-timizer [LS93]. The execution plan for a global query,represented as a partial order, determines the depen-dencies among subqueries.To allow asynchronous commit of global transac-tions under an FDBS environment, we restrict our-

selves to the following transaction model.De�nition 1 (ac-transaction) An asynchronouscommit global transaction, called ac-transaction, is atransaction that is generated from a �xed structuredprogram1. Each ac-transaction is a partial order of aset of global queries2, among which at most one globalquery is an update. Furthermore, this update querycan only access a single site.To achieve asynchronous commitment, no two writesubtransactions of a global transaction depend oneach other. Otherwise these two subtransactions mustbe committed synchronously. By de�nition of ac-transaction, it is clear that such a situation is pre-cluded since there is at most one subtransaction con-taining update operations. When a read only sub-transaction Gi mutually depends on another (reador write) subtransaction Gj, Gi can commit with-out the synchronous commit of Gj. In case Gj getsaborted later, Gi's results can be simply discardedsince the read operations of Gi do not cause anypermanent e�ect on the local database. Besides,since ac-transactions require the transaction programsbe �xed-structured, when some subtransactions ofa global transaction are committed and others areaborted, the results of the committed subtransactionscan be used when the global transaction is restarted.We will describe how to re-execute a partially com-mitted ac-transaction in the next section.2.2 Execution of ac-transactionsAs described earlier, a global query can be repre-sented as a partial order of a set of subqueries. Sev-eral of the subqueries, however, may access the samedatabase. By grouping subqueries accessing the samesite together, we obtain the site dependency graph ofthe global query.A global transaction is a partial ordering of itsconstituent global queries, between which dependencymay exist. That is, a global query can be formulatedonly after the values of some of its previous queriesare obtained. A subtransaction is a set of subqueriesthat access data stored in the same local database.Considering both intra- and inter-query dependency,we de�ne the subtransaction dependency graph of aglobal transaction.De�nition 2 (Subtransaction Dependency Graph)Let G be an ac-transaction that has a partial order �Gof n global queries, f Q1, Q2, ..., Qng, and (Vi, Ei) bethe site dependency graph of Qi, 1 � i � n. The sub-transaction dependency graph of G is a directed graph1A transaction program is said to be �xed-structured if theexecution of the program from any database state results in thesame sequence of read and write operations [MRKS91].2The term `query' used in this paper has a broader meaning.It indicates either retrieval operation (e.g., `Select' statement inSQL) or update operation (e.g., `Update' statement in SQL).



(V, E), where V is the set of sites the queries access,and for sites si and sj in V, (si; sj) 2 E if either1. there exists a global query Qk such that (si; sj) 2Ek, or2. there exists a pair of global queries, Qk and Ql,such that si 2 Vk, sj 2 Vl, and Qk �G Ql.The subtransaction dependency graph of an ac-transaction describes the dependency relationshipamong its subtransactions. If a subtransaction Gidoes not depend on another subtransaction Gj, theabortion of Gj does not lead to the abortion of Gi.However, when a subtransaction T2 depends on an-other subtransaction T1, T1 may read a data item fromone site, and the value of that data item is used bysome subquery of T2 at another site. Therefore, whena subtransaction (T1) is aborted, all of its dependentsubtransactions (including T2) must be aborted.Once some subtransactions of an ac-transaction Gabort, G must be re-executed. However, since othersubtransactions of G may have committed, their re-sults are still valid and should be used in the re-execution. The following describes the re-executionprocedure, RESTART-PROC, which is invoked whena subtransaction Gi of an ac-transaction G is aborted.1. All subtransactions of G that depend on Gi areaborted. Each executed subquery in the queryexecution plans of the global queries in G thatdoes not belong to the aborted subtransactions ismarked as \EXECUTED".2. Re-execute the global transaction G. If a sub-query is marked as \EXECUTED", skip it anduse the previous result, and continue executingthe next subquery.3 Issues in Asynchronous Commit-mentTo achieve consistency, a global subtransaction can-not unilaterally commit without any control. Inthis section, we examine the impact of asynchronouscommitment on global serializability and identify theproperty that an asynchronous commitment algorithmmust satisfy in order to achieve consistent execution.With asynchronous commitment, an anomaly mayoccur where some subtransactions of an ac-transactionhave committed and other subtransactions cannotcommit without violating global serializability. In thiscase, the partially committed ac-transaction can neverfully commit, and is said to be starved.We now formally de�ne a desirable property ofthe set of transaction executions, namely starvationfree serializability, which must be ensured by anyFDBS concurrency control algorithm employing asyn-chronous commitment.

De�nition 3 (Pending Work) A subtransaction Giof an ac-transaction G is said to be in the pendingwork of G in a global history H if either1. Gi is not committed in H, or2. Gi is read-only and committed in H, and Gieither has no dependent subtransactions or allits dependent subtransactions are in the pendingwork of G.The pending work of an ac-transaction is the max-imum amount of work (subtransactions) that can bediscarded when it is restarted.De�nition 4 (Starvation-Free Serializability) LetC(hi) be the committed projection of a local historyhi. A global history H = fh1, h2, ..., hng, where hi'sare local histories, is said to be starvation-free serial-izable if, for each non-fully committed ac-transaction3G, the following modi�ed global history is serializable:fC(h1)�Gp1 jGp1, C(h2)�Gp2 jGp2, ..., C(hn)�Gpn jGpng,where fGp1, Gp2, ..., Gpng 4 is the pending work ofG, and C(hi) � Gpi j Gpi means the operations of Gpiare removed from C(hi) and appended to its end witha commit operation.A starvation-free serializable history is such that,for each non-fully committed ac-transaction, by dis-carding the pending work of the ac-transaction andimmediately re-executing the pending work, the resul-tant global history is serializable. Thus, each non-fullycommitted ac-transaction in a starvation-free serializ-able history still has the chance to fully commit.4 Concurrency Control Algorithmswith Asynchronous CommitmentIn this section, we propose two FDBS concurrencycontrol algorithms that employ asynchronous commit-ment.4.1 Asynchronous Site GraphSite graph algorithm was proposed by Breitbartand Silberschatz in [BS88]. It is a pessimistic ap-proach that assumes potential conicts exist betweenevery pair of global transactions executed concurrentlyat the same site. Site Graph algorithm maintains anacyclic bipartite graph called Site Graph. The two3An ac-transaction is said to be non-fully committed in ahistory if there exists at least one subtransactionwhose commitis not in the history.4Gpi is � if either G does not execute at site i or the sub-transaction of G at site i is not in G's pending work.



repeatwait(event)case event ofAn ac-transaction G is newly started:Add an edge between G and each site node to which asubtransaction of G is sent;if (the induced edges of G cause cycles in Site Graph)thenDelete all the induced edges of G;G is blocked;elseExecute G according to the query execution plans;endifGlobal subtransaction Gs of G at site s is aborted by thelocal DBMS:Re-execute G according to (RESTART-PROC);All operations of global subtransaction Gs of G are �nished:if (Gs is read only)thenCommit Gs;elseWait until all subtransactions of G on which Gsdepends commit and then commit Gs;endifif (Gs is the last committed subtransaction of G)thenInform the user about the commit of G;endifuntil FALSE;Figure 1: Site Graph with asynchronous commitvertex sets are formed by the set of global transac-tions and sites, respectively, while edges connect atransaction with all sites where its subtransactions ex-ecute. Before a global transaction can be executed, aset of edges, which connect the transaction node to allsite nodes the global transaction is going to access, isadded to the Site Graph. A global transaction is al-lowed to execute only when the induced edges do notcause cycles in the Site Graph.Figure 1 shows the Asynchronous Site Graph al-gorithm where asynchronous commit protocol is em-ployed. Theorem 1 demonstrates the correctness ofthis algorithm.Theorem 1 The Site Graph with asynchronous com-mitment always generates starvation-free serializablehistories. [HSL93b]4.2 Asynchronous Virtual Global Serial-ization GraphThe Virtual Global Serialization Graph (VirtGlob-alSG) was used in DAGSO (i.e., Dynamic Adjust-ment of Global Serialization Order) to achieve globalserializability[HHS93]. In this section, we further re-vise the VirtGlobalSG based approach to make it workwith the asynchronous commit protocol.The VirtGlobalSG is a graph that maintains theserialization orders of global transactions on variouslocal executions. Speci�cally, VirtGlobalSG is a di-

rected graph (V , E) with edge lables, where V is theset of global transactions, and an arc (Gi, Gj , s) 2E if the subtransaction of Gi is serialized before thesubtransaction of Gj at site s, and no other subtrans-action is serialized between Gi and Gj at site s.A global subtransaction is validated before it isstarted and after it is serialized. When a global sub-transaction of G starts at site s, an arc (LastSerial-ized(s), G, s) is added to VirtGlobalSG, where Last-Serialized(s) is the most recently serialized subtrans-action at site s (since it can be determined that Gat site s must be serialized after LastSerialized(s)).When a global subtransaction of G at site s is serial-ized, a set of arcs f (G, T , s) j T is an ac-transactionthat has been executed but not serialized at site sg areadded to VirtGlobalSG (since it can be inferred thatall non-serialized subtransactions executed at site smust be serialized after G at site s). If the inducededges of a subtransaction at a validation point cause acycle in the VirtGlobalSG, the global subtransactionis aborted.To prevent the anomalies caused by intra- andinter-transaction dependencies, we need to determinewhen a global subtransaction can unilaterally commit.In summary, a subtransaction Gs of G at site s cancommit only when all of the following conditions (re-ferred to as COMMIT-COND) hold:1. All operations of Gs are �nished.2. If Gs contains an update query, then(a) all subtransactions of G that Gs dependson in the subtransaction dependency graphhave committed, and(b) all subtransactions of G have been started.3. All subtransactions serialized before Gs at site shave committed.The algorithm for using VirtGlobalSG with theasynchronous commitment protocol is presented inFigure 2.Theorem 2 The VirtGlobalSG with asynchronouscommitment always generates a starvation-free seri-alizable history. [HSL93b]5 ConclusionsWe discussed the issues related to asynchronouscommit of global transactions in a federated databasesystem. We have proposed a global transaction modelfor asynchronous commitment. We require each globaltransaction to be �xed structured and have at mostone update operation. We also presented two con-currency control algorithms, namely Site Graph and



repeatwait(event)case event ofGlobal subtransaction of G at site s is newly started:if (the induced arcs cause cycles in VirtGlobalSG)thenabort subtransactions of G to resolve the cycles;endifGlobal subtransaction of G at site s is re-started:if (the induced arcs cause cycles in VirtGlobalSG)thenabort other subtransactions at site s toresolve the cycles;endifGlobal subtransaction of G at site s is serialized:if (the induced arcs cause cycles in VirtGlobalSG)thenabort subtransaction of G at site s;endifGlobal subtransaction of G at site s is aborted by thelocal DBMS:abort subtransaction of G at site s;All operations of global subtransaction of G at site s are�nished:wait until (COMMIT-COND)commit the global subtransaction of G at site s;until FALSE;Figure 2: Asynchronous VirtGlobalSGVirtGlobalSG, which employ asynchronous commit-ment and achieve global serializability.Asynchronous commitment algorithms have the fol-lowing advantages:� Simplify the recovery procedures.� Preserve autonomy.� Decrease the chance of deadlocks.� Increase the performance of both global and localtransaction execution.However, these advantages come at the cost of astricter transaction model, i.e., ac-transactions. Itis impossible to have asynchronous commitment ona general transaction model, while at the same timeachieving global serializability. There is a tradeo�among performance, transaction model, and correct-ness criterion. Our work imposes reasonable restric-tions on global transaction model and obtains perfor-mance gains, while maintaining the desirable correct-ness criterion of global serializability.AcknowledgementsThe idea of asynchronous commitment emergesfrom our discussion with Dr. Jiangdong Huang atHoneywell Technology Center. We would also like tothank him for his useful comments on this paper.

References[BS88] Y. Breitbart and A. Silberschatz. Multi-database update issues. In Proc. of ACMSIGMOD Int'l. Conf. on Management ofData, 1988.[EJK91] A. K. Elmargarmid, Jin Jing, and WonKim. Global commitment in multi-database systems. Technical Report 91-017, Dept. Computer Sci., Purdue Univ.,IN, 1991.[HHS93] S.-Y. Hwang, J. Huang, and J. Srivas-tava. Concurrency control in federateddatabases: A dynamic approach. In Proc.of the 2nd Int'l Conf. on Information andKnowledge Management, 1993.[HS90] M. Hsu and A. Silberschatz. Unilateralcommit: A new paradigm for reliable dis-tributed transaction processing. In Proc.of the 7th Int'l Conf. on Data Engineering,1990.[HSL93a] S.-Y. Hwang, J. Srivastava, and J. Li.Transaction recovery in federated au-tonomous databases. Distributed and Par-allel Databases, An Interational Journal,to appear, 1993.[HSL93b] S.-Y. Hwang, J. Srivastava, and E.-P. Lim.Asynchronous transaction commitment infederated database systems. Technical Re-port 93-54, Dept. Computer Sci., U. ofMinnesota, MN, 1993.[LS93] E.-P. Lim and J. Srivastava. Query opti-mization/processing in federated databasesystems. In Proc. of the 2nd Int'l Conf. onInformation and Knowledge Management,1993.[MRKS91] S. Mehrotra, R. Rastogi, H. F. Korth,and A. Silberschatz. Non-serializableexecutions in heterogeneous distributeddatabase systems. In Proc. of the 2nd Int'lSymposium on Databases in Parallel andDistributed Systems, 1991.[RELL90] M. Rusinkiewicz, A. Elmagarmid, Y. Leu,and W. Litwin. Extending the transactionmodel to capture more meaning. SIGMODRecord, 19(1), 1990.


	Asynchronous Transaction Commitment in Federated Database Systems
	Citation

	tmp.1452244937.pdf.hCC6g

