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Abstract

We propose a new (and restricted) model for global
transactions which allows asynchronous commitment
of subtransactions. Qur model requires each global
transaction to have a fived structure with update to the
data wn at most one database. Based on this transac-
tion model, we present two concurrency control algo-
rithms, namely Asynchronous Site Graph and Asyn-
chronous VirtGlobalSG, which employ asynchronous
commitment and achieve global serializability. Com-
pared to other proposed algorithms, our algorithms
employ asynchronous commitment so as to increase
transaction performance.  Furthermore, our algo-
rithms do not put restrictions on transaction data ac-
cess or local histories.

1 Introduction

A federated database system (FDBS) integrates
and provides a uniform access to a set of pre-existing
local databases, each of which is managed by its own
DBMS. A key feature of FDBSs is to reduce the inter-
ference to the local DBMSs and existing local database
applications. Ideally, each local DBMS and applica-
tion must continue to operate without any modifica-
tion in the integrated environment. Each local DBMS
must be able to decide how to execute a command
without any coordination from FDBS, and determine
what information to reveal to the FDBS. These fea-
tures are referred to as autonomy.

To preserve autonomy of component DBMSs, an
FDBS supports two types of transactions, namely lo-
cal transactions and global transactions. Local trans-
actions are generated by the existing local applications
and each local transaction accesses data from a local
database. Furthermore, local transactions are submit-
ted directly to their respective local DBMSs with the
FDBS having no knowledge of them. Global transac-
tions are submitted to the FDBS and and may access
data across multiple local databases.

To achieve atomic execution of both global and
local transactions, a number of FDBS concurrency
control algorithms, which work in conjunction with
2 phase commit (2PC) protocol, have been proposed.

In general, this requires that the local DBMSs pro-
vide a visible prepared-to-commait state to the FDBS
concurrency control. Since providing such control in-
formation violates autonomy, various researchers have
proposed that the FDBS simulates a prepared to com-
mit state. However, unlike a real prepared to commit
state, this simulated prepared-to-commit state can-
not tolerate failure, i.e. a failure at the local DBMS
will undo the effect of a simulated prepared-to-commit
transaction. This causes a problem since the FDBS
transaction management may have decided to com-
mit such a transaction. A number of mechanisms
have been proposed to solve this problem (e.g., see
[HST.93a]). However, each of these proposed solu-
tions imposes restrictions on the type of local site con-
currency control mechanisms and the data that local
transactions can access. These restrictions affect the
autonomy of local databases.

Furthermore, even if the prepared-to-commit state
is supported by the local DBMSs, the execution
cost of the 2PC protocol can be high. Thus, some
mechanisms have recently been proposed to allow
asynchronous commitment and to use compensating
transactions to achieve semantic atomicity (e.g., see
[RELL90]). In these protocols, a subtransaction can
commit without synchronizing with other subtrans-
actions. If the subtransaction is aborted, the entire
global transaction is considered aborted, and a com-
pensating subtransaction is executed for each sub-
transaction that has committed earlier. Although this
approach looks appealing, in an FDBS environment it
is difficult, both for the systems and the users, to spec-
ify a compensating transaction for each global sub-
transaction.

In [HS90], a unilateral commit paradigm is pro-
posed for distributed transaction management to com-
mit each subtransaction unilaterally. When a sub-
transaction is aborted, it is refried until 1t 18 commit-
ted. A distributed transaction is modeled as a hierar-
chy of subtransactions, and a subtransaction can not
be started until its parent commits. This restricted
transaction model i1s valid only for certain applica-
tions. Besides, serializability cannot be achieved in an
FDBS environment where local transactions are be-
yond the control the FDBS.

In [EJK91], asynchronous commitment is analyzed



from a theoretical viewpoint, and sufficient conditions
are proposed to achieve global serializability in the
presence of failures. The transaction model presented
requires that the dependency between subtransactions
of a global transaction be acyclic. The proposed suf-
ficiency conditions require each local DBMS to pro-
duce rigorous histories (i.e., each local DBMS must
use strict two phase locking (2PL) as its concurrency
control mechanism).

To achieve asynchronous commitment of a global
transaction, it is required that no two update sub-
transactions of the global transaction depend on each
other. To ensure this, we have proposed restrictions
on the structure of global transactions. Specifically,
a transaction in our model consists of a number of
multi-site retrieval queries and at most one single site
update. This transaction model serves an interest-
ing class of applications in which a federated appli-
cation retrieves information from a number of local
databases, makes its decision, and then updates at
most one database. While standard 2PC has to be
used for full-fledged transactions, asynchronous com-
mitment is sufficient for the restricted transactions.
No restrictions are placed on local transactions. In
this paper we identify the problems encountered in
asynchronous commitment. We also present two al-
gorithms for asynchronous commitment and analyze
their behavior.

The rest of this paper is organized as follows. In sec-
tion 2, we describe the transaction and system models.
In section 3, we identify the problems for asynchronous
commit protocol and define the set of executions that
is allowed for asynchronous commitment. Section 4
presents two concurrency control algorithms that em-
ploy asynchronous commitment. Finally, in Section 5
we conclude this paper.

2 Transaction Model

In this section, we present the new model for global
transactions and describe their execution when sub-
transactions can unilaterally commit.

2.1 Transaction and Query Model

A federated database system provides a global
schema, which 1s derived from the local schemas of
component local databases. Global users issue queries
to the FDBS, which operate on the global schema. A
global query is decomposed into a set of subqueries,
each of which is executed at a local site, based on the
query execution plan produced by the FDBS query op-
timizer [LS93]. The execution plan for a global query,
represented as a partial order, determines the depen-
dencies among subqueries.

To allow asynchronous commit of global transac-
tions under an FDBS environment, we restrict our-

selves to the following transaction model.

Definition 1 (ac-transaction) An  asynchronous
commut global transaction, called ac-transaction, is a
transaction that ts generated from a fized structured
program!. Fach ac-transaction is a partial order of a
set of global queries®, among which at most one global
query ts an update. Furthermore, this update query
can only access a single site.

To achieve asynchronous commitment, no two write
subtransactions of a global transaction depend on
each other. Otherwise these two subtransactions must
be committed synchronously. By definition of ac-
transaction, it is clear that such a situation is pre-
cluded since there i1s at most one subtransaction con-
taining update operations. When a read only sub-
transaction (; mutually depends on another (read
or write) subtransaction G, G; can commit with-
out the synchronous commit of G;. In case G gets
aborted later, G;’s results can be simply discarded
since the read operations of (; do not cause any
permanent effect on the local database. Besides,
since ac-transactions require the transaction programs
be fixed-structured, when some subtransactions of
a global transaction are committed and others are
aborted, the results of the committed subtransactions
can be used when the global transaction is restarted.
We will describe how to re-execute a partially com-
mitted ac-transaction in the next section.

2.2 Execution of ac-transactions

As described earlier, a global query can be repre-
sented as a partial order of a set of subqueries. Sev-
eral of the subqueries, however, may access the same
database. By grouping subqueries accessing the same
site together, we obtain the site dependency graph of
the global query.

A global transaction is a partial ordering of its
constituent global queries, between which dependency
may exist. That is; a global query can be formulated
only after the values of some of its previous queries
are obtained. A subtransaction is a set of subqueries
that access data stored in the same local database.
Considering both intra- and inter-query dependency,
we define the subtransaction dependency graph of a
global transaction.

Definition 2 (Subtransaction Dependency Graph)
Let G be an ac-transaction that has a partial order <g
of n global queries, { Q1, Q2, ..., Qn}, and (V;, E; ) be
the site dependency graph of Q;, 1 < i <mn. The sub-
transaction dependency graph of G is a directed graph

1A transaction program is said to be fixed-structured if the
execution of the program from any database state results in the
same sequence of read and write operations [MRKS91].

2The term ‘query’ used in this paper has a broader meaning.
It indicates either retrieval operation (e.g., ‘Select’ statement in
SQL) or update operation (e.g., ‘Update’ statement in SQL).



(V, E), where V is the set of sites the queries access,
and for sites s; and s; in 'V, (s;i,s;) € E if either

1. there exists a global query Qy such that (s;,s;) €
Ey, or

2. there exists a pair of global queries, Qy and @,
such that s; € Vi, s; € Vi, and Q1 <¢ Q1.

The subtransaction dependency graph of an ac-
transaction describes the dependency relationship
among its subtransactions. If a subtransaction Gj
does not depend on another subtransaction G, the
abortion of (; does not lead to the abortion of Gj.
However, when a subtransaction 75 depends on an-
other subtransaction 77, 77 may read a data item from
one site, and the value of that data item is used by
some subquery of T, at another site. Therefore, when
a subtransaction (77) is aborted, all of its dependent
subtransactions (including 7%) must be aborted.

Once some subtransactions of an ac-transaction GG
abort, ¢ must be re-executed. However, since other
subtransactions of (G may have committed, their re-
sults are still valid and should be used in the re-
execution. The following describes the re-execution
procedure, RESTART-PROC, which is invoked when

a subtransaction (; of an ac-transaction (G is aborted.

1. All subtransactions of G that depend on G are
aborted. Each executed subquery in the query
execution plans of the global queries in G that
does not belong to the aborted subtransactions is

marked as “EXECUTED”.

2. Re-execute the global transaction G. If a sub-
query is marked as “EXECUTED”, skip it and
use the previous result, and continue executing
the next subquery.

3 Issues Commit-

ment

in Asynchronous

To achieve consistency, a global subtransaction can-
not unilaterally commit without any control. In
this section, we examine the impact of asynchronous
commitment on global serializability and identify the
property that an asynchronous commitment algorithm
must satisfy in order to achieve consistent execution.

With asynchronous commitment, an anomaly may
occur where some subtransactions of an ac-transaction
have committed and other subtransactions cannot
commit without violating global serializability. In this
case, the partially committed ac-transaction can never
fully commit, and is said to be starved.

We now formally define a desirable property of
the set of transaction executions, namely starvation
free serializability, which must be ensured by any
FDBS concurrency control algorithm employing asyn-
chronous commitment.

Definition 3 (Pending Work) A subtransaction G
of an ac-transaction G s said to be in the pending
work of G 1 a global history H if either

1. Gy is not commatted i H, or

2. Gy s read-only and committed in H, and G
either has no dependent subtransactions or all
its dependent subtransactions are in the pending

work of G.

The pending work of an ac-transaction is the max-
imum amount of work (subtransactions) that can be
discarded when 1t is restarted.

Definition 4 (Starvation-Free Serializability) Let
C(h;) be the commitied projection of a local history
hi. A global history H = {hy, ha, ..., h,}, where h;’s
are local histories, is said to be starvation-free serial-
izable if, for each non-fully committed ac-transaction®
G, the following modified global history is serializable:

{C(hl)_GZ”GZl)f C(hQ)_GZ2)|G12)7 ) C(hn)_
G GRY,

where {GY, GY, ..., GE} * is the pending work of
G, and C(h;) — GY' | GY means the operations of G¥
are removed from C(h;) and appended to its end with
a commil operation.

A starvation-free serializable history is such that,
for each non-fully committed ac-transaction, by dis-
carding the pending work of the ac-transaction and
immediately re-executing the pending work, the resul-
tant global history is serializable. Thus, each non-fully
committed ac-transaction in a starvation-free serializ-
able history still has the chance to fully commit.

4 Concurrency Control Algorithms
with Asynchronous Commitment

In this section, we propose two FDBS concurrency
control algorithms that employ asynchronous commit-
ment.

4.1 Asynchronous Site Graph

Site graph algorithm was proposed by Breitbart
and Silberschatz in [BS88]. Tt is a pessimistic ap-
proach that assumes potential conflicts exist between
every pair of global transactions executed concurrently
at the same site. Site Graph algorithm maintains an
acyclic bipartite graph called Site Graph. The two

3An ac-transaction is said to be non-fully committed in a
history if there exists at least one subtransaction whose commit
is not in the history.

4Gf is ¢ if either G does not execute at site ¢ or the sub-

transaction of G at site ¢ is not in G’s pending work.



repeat
walt(event)
case event of
An ac-transaction (G is newly started:
Add an edge between G and each site node to which a
subtransaction of G is sent;
if (the induced edges of G cause cycles in Site Graph)
then
Delete all the induced edges of G
G is blocked;

else
Execute G according to the query execution plans;
endif
Global subtransaction GG¢ of G at site s is aborted by the
local DBMS:

Re-execute G according to (RESTART-PROC);
All operations of global subtransaction G¢ of GG are finished:
if (G is read only)
then
Commit Gg;
else
Wait until all subtransactions of G on which G
depends commit and then commit Gg;
endif
if (G is the last committed subtransaction of G)
then
Inform the user about the commit of G}
endif
until FALSE;

Figure 1: Site Graph with asynchronous commit

vertex sets are formed by the set of global transac-
tions and sites, respectively, while edges connect a
transaction with all sites where its subtransactions ex-
ecute. Before a global transaction can be executed, a
set of edges, which connect the transaction node to all
site nodes the global transaction is going to access, is
added to the Site Graph. A global transaction is al-
lowed to execute only when the induced edges do not
cause cycles in the Site Graph.

Figure 1 shows the Asynchronous Site Graph al-
gorithm where asynchronous commit protocol is em-
ployed. Theorem 1 demonstrates the correctness of
this algorithm.

Theorem 1 The Site Graph with asynchronous com-
mitment always generates starvation-free serializable

histories. [HSL93b]

4.2 Asynchronous Virtual Global Serial-
ization Graph

The Virtual Global Serialization Graph (VirtGlob-
alSG) was used in DAGSO (i.e., Dynamic Adjust-
ment of Global Serialization Order) to achieve global
serializability[HHS93]. In this section, we further re-
vise the VirtGlobalSG based approach to make it work
with the asynchronous commit protocol.

The VirtGlobalSG is a graph that maintains the
serialization orders of global transactions on various
local executions. Specifically, VirtGlobalSG is a di-

rected graph (V, E) with edge lables, where V is the
set of global transactions, and an arc (G;, Gj, s) €
E if the subtransaction of (; is serialized before the
subtransaction of G at site s, and no other subtrans-
action is serialized between G; and G; at site s.

A global subtransaction is validated before it is
started and after it is serialized. When a global sub-
transaction of G starts at site s, an arc (LastSerial-
ized(s), G, s) is added to VirtGlobalSG, where Last-
Serialized(s) is the most recently serialized subtrans-
action at site s (since it can be determined that G
at site s must be serialized after LastSerialized(s)).
When a global subtransaction of G at site s is serial-
ized, a set of arcs { (G, T, s) | T is an ac-transaction
that has been executed but not serialized at site s} are
added to VirtGlobalSG (since it can be inferred that
all non-serialized subtransactions executed at site s
must be serialized after G at site s). If the induced
edges of a subtransaction at a validation point cause a
cycle in the VirtGlobalSG, the global subtransaction
is aborted.

To prevent the anomalies caused by intra- and
inter-transaction dependencies, we need to determine
when a global subtransaction can unilaterally commit.
In summary, a subtransaction G of GG at site s can
commit only when all of the following conditions (re-

ferred to as COMMIT-COND) hold:

1. All operations of (G5 are finished.
2. If G5 contains an update query, then

(a) all subtransactions of G that G depends
on in the subtransaction dependency graph
have committed, and

(b) all subtransactions of G have been started.

3. All subtransactions serialized before GG, at site s
have committed.

The algorithm for using VirtGlobalSG with the
asynchronous commitment protocol is presented in
Figure 2.

Theorem 2 The VirtGlobalSG with asynchronous
commitment always generates a starvation-free seri-

alizable history. [HSLY93b]

5 Conclusions

We discussed the issues related to asynchronous
commit of global transactions in a federated database
system. We have proposed a global transaction model
for asynchronous commitment. We require each global
transaction to be fixed structured and have at most
one update operation. We also presented two con-
currency control algorithms, namely Site Graph and



repeat
walt(event)
case event of
Global subtransaction of G at site s is newly started:
if (the induced arcs cause cycles in VirtGlobalSG)
then
abort subtransactions of (G to resolve the cycles;
endif
Global subtransaction of G at site s is re-started:
if (the induced arcs cause cycles in VirtGlobalSG)
then
abort other subtransactions at site s to
resolve the cycles;
endif
Global subtransaction of G at site s is serialized:
if (the induced arcs cause cycles in VirtGlobalSG)
then
abort subtransaction of G at site s;
endif
Global subtransaction of G at site s is aborted by the
local DBMS:
abort subtransaction of G at site s;
All operations of global subtransaction of G at site s are
finished:
wailt until (COMMIT-COND)
commit the global subtransaction of G at site s;

until FALSE;

Figure 2: Asynchronous VirtGlobalSG

VirtGlobalSG, which employ asynchronous commit-
ment and achieve global serializability.

Asynchronous commitment algorithms have the fol-
lowing advantages:

e Simplify the recovery procedures.
e Preserve autonomy.
e Decrease the chance of deadlocks.

e Increase the performance of both global and local
transaction execution.

However, these advantages come at the cost of a
stricter transaction model, i.e., ac-transactions. It
is impossible to have asynchronous commitment on
a general transaction model, while at the same time
achieving global serializability. There is a tradeoff
among performance, transaction model and correct-
ness criterion. Qur work imposes reasonable restric-
tions on global transaction model and obtains perfor-
mance gains, while maintaining the desirable correct-
ness criterion of global serializability.
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