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Abstract In this paper we introduce an architecture for a multi-key pirate decoder which employs decryption keys from
multiple traitors. The decoder has built-in monitoring and self protection functionalities and is capable of defeating most
multiple-round based traitor tracing schemes such as the schemes based on the black-box confirmation method. In particular,

the proposed pirate decoder is customized to defeat the private key and the public key fully collusion resistant traitor tracing
(FTT) schemes, respectively. We show how the decoder prolongs a trace process so that the tracer has to give up his effort.
FTT schemes are designed to identify all the traitors. We show that decoder enables the FTT schemes to identify at most 1
traitors. Finally, assuming the decoder is embedded with several bytes of memory, we demonstrate how the decoder is able
to frame innocent users at will.

Keywords broadcast encryption, multi-key pirate decoder, traitor tracing

1 Introduction

In a broadcast encryption system, each authorized
user has a legal decoder embedded with a unique de-
cryption key. A content distributor encrypts broadcast
content such that only authorized users can decode the
protected content with their legal decoders. However,
the rogue authorized users may violate copyright pro-
tection policies by sharing their decryption keys, con-
structing and distributing pirate decoders — illegal de-
vices which are not registered with the broadcaster but
are able to decrypt protected content. To deter au-
thorized users from leaking their decryption keys, the
broadcaster could confiscate suspicious pirate decoders,
and analyze the behaviors of the decoders in question
so as to arrest the traitors�.

1.1 Pirate Decoder

In the Broadcast Encryption And Traitor tracing
(BEAT for short) model, traitors disclose their own
decryption keys towards the construction of a pirate
decoder. Kiayias and Yung[1-2] categorized pirate de-
coders in two orthogonal dimensions based on their
initial state and self-protection attributes. The former
refers to the internal (e.g., memory) and external (e.g.,

system clock in software decoder) states of the pirate
decoder when an input message is received for the first
time, while the latter is an indication on the decoder’s
anti-tracing capability.

Based on the initial state attribute[1], a decoder is
“resetable” or “stateless” if it can be reset to its ini-
tial state after each decryption trial; otherwise, the de-
coder is “history-recording” or “stateful”. Thus, a “re-
setable” decoder cannot have any nonvolatile memory
(or simply memory) to record the information of pre-
vious trials. Conversely, a “history-recording” decoder
must have memory, whether it is internal or environ-
mental, to remember previous queries submitted by the
tracer and uses this history information to evade trac-
ing.

On the other hand, according to the self-protection
attribute, if a pirate decoder does not employ an in-
ternal reactive mechanism, it is called “available”, oth-
erwise, called “abrupt”. The first “abrupt” method is
the “aggressive action” mechanism[1] which crashes the
host tracing system, or releases a virus. The weak-
ness of this method is that it is not able to entirely
prohibit tracing, especially in Virtual-Machine protec-
tion environment. The second “abrupt” method is the
“shutting down” mechanism[3] which erases all internal
decryption keys in order to halt the tracing process.

Regular Paper
�Traitor: an authorized user who discloses his/her personal decryption key such that unauthorized users are able to decode

encrypted messages.
�2010 Springer Science +Business Media, LLC & Science Press, China
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This “suicidal” approach apparently renders the de-
coder useless. If the broadcaster can disseminate mes-
sages to make permanently shut down pirate decoders,
the copyright protection goal of the distributor is al-
most achieved. Hence, from the viewpoint of pirate,
the “aggressive action” method is more suitable for soft-
ware decoders, while the “shutting down” mechanism
is good for hardware decoders.

The third “abrupt” method is the “blind” mecha-
nism[4] which outputs ambiguous messages to confuse
the tracer. To this end, a pirate decoder analyzes the
input message, and then takes defensive action. For
example, if the decoder detects invalidate ciphertexts
in its input[5-7], it outputs noise. This mechanism is
applicable to both software decoders and hardware de-
coders.

1.2 Piracy Prevention

To defeat pirate decoders so as to protect copyright,
a broadcaster may employ either the pre-prevention
method or the post-tracing method. The former tries
to increase traitors’ difficulty in producing pirate de-
coders while the latter attempts to identify at least one
traitor from a confiscated pirate decoder.

As a pre-prevention technique, the self-enforcement
method (e.g., [8-9]) binds users’ credit card numbers
(or other sensitive data) with their decryption keys.
Self-enforcement assumes that the traitors are unwill-
ing to disclose such sensitive personal information to
others and thus makes it harder for pirates to obtain
users’ keys. However, crafty users may sidestep the self-
enforcement mechanism by wittingly making their sen-
sitive data obsolescent, e.g., reporting stolen of credit
cards before conspiratory. Albeit its attractiveness and
simplicity, there is currently very few satisfactory self-
enforcement solutions.

Contrary to the few pre-prevention methods avail-
able in the literature, post-tracing schemes are abun-
dant. Generally, three major post-tracing methods
are digital fingerprinting, black-box confirmation and
traitor tracing. Digital fingerprinting technology (e.g.,
[10-13]) embeds a unique label into the digital con-
tent so as to identify the illegal distributor. Since this
technology is tightly related to watermarking, and it
is orthogonal to the objective of this paper. Black-
box confirmation (e.g., [5, 14-16]) is used to confirm
whether or not a subset of users are traitors or not,
is a time-consuming process, and therefore is ineffec-
tive when the number of traitors is large. Traitor trac-
ing can be further classified into white-box , black-box
and gray-box methods. The white-box method (e.g.,

[15]) assumes that the tracer knows the internal de-
tail of the decoder; in the black-box tracing method
(e.g., [17-21]), the tracer treats the decoder as a black-
box, and executes trials by sending craft input to the
suspect decoder and observing the output from the de-
coder; the gray-box method assumes partial knowledge
on the internals of the decoder (e.g., the encrypted key
for content for decryption in [22]). The main challenge
in the white-box and gray-box methods are reverse-
engineering the decoder which is beyond scope of the
paper. We will focus on the black-box traitor tracing
method in the following.

Most traitor tracing schemes are only effective when
the number of traitors is much smaller than the number
of authorized users. The notion of a fully collusion re-
sistant traitor tracing (FTT) scheme was recently put
forward by Boneh, Sahai and Waters[23], and Boneh
and Waters[24]. An FTT scheme effectively identifies
the traitors even if all authorized users collude in pro-
ducing the pirate decoder.

In a private key FTT scheme, the tracer must know
a private tracing key and therefore is assumed to be
trusted by all users. Boneh, Sahai and Waters[23] in-
troduced a primitive called private linear broadcast en-
cryption (PLBE) and showed that any PLBE gives a
private key FTT scheme, refereed to as FTT1 scheme
here. However, private key traitor tracing schemes suf-
fer from the customer’s right problem�[25]. A pub-
lic key FTT scheme solves the above problem and
allows anyone to run the tracing algorithm. Boneh
and Waters[24] presented a primitive called Augmented
Broadcast Encryption (ABE) that is sufficient to con-
struct public key FTT schemes, called FTT2 schemes in
this paper. FTT2 schemes are resistant to an arbitrary
number of colluders and are secure against adaptive ad-
versaries.

1.3 Features of BEAT Systems

In any BEAT (Broadcast Encryption And Traitor
tracing) system, a broadcaster encrypts a message M
into a ciphertext C, then transmits C and some de-
cryption tokens over a broadcast channel. A user can
correctly decrypt/decode C if she/he is possession of a
legal decoder. A traitor tracing algorithm in a broad-
cast encryption system identifies traitors from a confis-
cated pirate decoder. A broadcast encryption system
with traitor tracing should have the following features:

1) Large User Population. Broadcast (e.g., en-
crypted satellite radio broadcast[23]) can deliver a mes-
sage to a group of users simultaneously over a single
broadcast channel, but it incurs much more overhead

�In a private key traitor tracing scheme, since the broadcaster knows all the decryption keys, he may create a pirate decoder to
frame any user at will.
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than unicast communications in terms of setting up and
management cost. Hence, the larger the user group is,
the more efficient utilization of the broadcast channel
is. A typical broadcast application is characterized by
a large number of users N (e.g., N � 106 in [3, 17]).

2) Easy Accessibility of Pirate Decoders. In order to
start a tracing process, the tracer has to confiscate a
pirate decoder. This pre-requisition can be met when
pirate decoders are easily accessible.

3) Guaranteed QoS. QoS (Quality of Service) is im-
portant in broadcast. For example, video stream should
be of high quality; otherwise, users will not subscribe
and pay the service. Hence, the broadcaster can only
insert a small amount of control data (e.g., the message
for shutting down pirate decoders in [3]).

4) Structured Message. Messages transmitted in
broadcast applications targeted for designated decoders
which are designed to process structured messages fol-
lowing international or industrial standards. For ex-
ample, content sent to VCD decoders follows format
specified by MPEG-2. Messages transmitted in either
broadcast mode or traitor tracing mode must follow
the predefined structure or format, since unstructured
messages may crash legal decoders and/or alert pirate
decoders that traitor tracing is underway. For this rea-
son, it seems that the traitor tracing scheme in [7] is
not practical since it assumes that a pirate decoder is
not able to distinguish random data from structured
messages.

Table 1. Notations and Abbreviations

N The number of users

Uj The j-th user

Dj The decoder of the j-th user

n The actual number of collusion traitors

t The maximum number of tolerable traitors

Uπj The j-th traitor, πj < πj+1

T The set of the traitors

D The pirate decoder

M Plaintext message

C Ciphertext in broadcasting/tracing period

Mj Output of decoder Dj

τ Initialization time of a decoder

ε The minimal decoding probability

λ A security parameter

BEAT Broadcast encryption and traitor tracing

DOT Denial of trace

QoS Quality of service

FTT Fully collusion resistant traitor tracing

FTT1 Private FTT[23]

FTT2 Public FTT[24]

5) Realistic Tracing Cost. A practical traitor trac-
ing scheme must allow a tracer to find traitors at an

affordable cost either in terms of time (e.g., within the
life-time of broadcast system) or in terms of budget
(e.g., at a small fraction of the operating cost of the
broadcast system). It is simply not viable if a tracer has
to spend 10 years or �10 millions in trying to identify a
traitor. For this reason, we think it is inappropriate to
evaluate tracing cost based on notions in computational
complexity. For example, despite the complexity of the
hybrid coloring tracing algorithm is polynomial (e.g.,
O(N3 log2 N)[1]), its exact cost could be too formidable
to bear by the tracer.

1.4 Our Contribution

We present a generic pirate decoder and show how
the decoder can be used to foil the traitor tracing
schemes including FTT1 and FTT2. Specifically:

1) We introduce an architecture for a multi-key pi-
rate decoder which employs decryption keys from mul-
tiple traitors. The decoder has built-in monitoring and
anti-tracing functionalities. The monitoring function-
ality detects whether or not the decoder is under in-
vestigation. Once the decoder decides that it is be-
ing traced, the anti-tracing functionality takes appro-
priate self-protection countermeasures. Among them,
our novel denial-of-trace (DOT) mechanism forces the
tracing process taking a very long time to complete such
that the tracer is left no choice but gives up the arm-
race game. Table 2 summarizes traitor tracing schemes
which are vulnerable to the DOT attack.

Table 2. DOT Attack Effect

Schemes Number of Trials Trial Timea

CFNPb 32t8 log N log2(2t2) 221

[5]c [9, 14] 100
(N

t

)
700

[23] 8λN2 log N/ε 700

[24] 8λN3/ε2 1.5× 105

aThe trial time in years given τ = 1 minute,

N = 100, t = 4, ε = 0.1, and λ = 100.
bCFNP means [19] + [1].
cTo indicate the black-box confirmation algorithm

since [1, 4] break the tracing algorithm in [5].

2) We tailor our generic multi-key pirate decoder
to evade both FTT1 and FTT2. First we show that
with our decoder, both FTT1 and FTT2 only allow the
tracer to identify at most 1 traitor, instead of identi-
fying all traitors as they are designed to be. Next, as-
suming the decoder is embedded with just several bytes
of memory, we demonstrate how the decoder is able to
mislead the tracer to frame innocent users at will. We
also improve FTT1 and FTT2 to prevent this framing
attack.

The rest of the paper is organized as follows.
Section 2 presents the architecture of the generic
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multi-key pirate decoder. DOT attacks on black-box
confirmation schemes and on combinatorial-key traitor
tracing schemes are given in Sections 3 and 4, re-
spectively. Section 5 illustrates how to customize our
generic pirate decoder to exploit the weaknesses of
FFT1. Section 6 addresses FTT2 and its vulnerabili-
ties. Section 7 presents a stateful version of the decoder
to launch framing attack. In Section 8, we discuss DOT
attack to the general traitor tracing schemes. Section
9 draws our conclusion.

2 Multi-Key Pirate Decoder

In this section, we introduce a multi-key pirate de-
coder. Not only can it detect the tracing activity, but
also take anti-tracing action accordingly so as to de-
feat several traitor tracing schemes such as [3, 5, 9, 20,
23-24].

2.1 Structure of Pirate Decoder

A pirate decoder should be as useful as a genuine
decoder, i.e., it is able to decrypt the broadcast data.
According to the definition in [14, 18, 24], a pirate de-
coder is useful if it can decode protected messages with
probability

Pr(M ′ = M) � ε (1)

for any message M , the output M ′ of the pirate de-
coder, and some threshold ε.

As an improvement of the pirate decoders of [1, 4],
Fig.1 is the structure of the present multi-key pirate
decoder D which integrates traitors’ decoder Dπi with
some components: MUX, RST, WATCH, ACT and
NVM. Each Dπi may be duplicated from an original de-
coder, and whose output Mπi is indistinguishable from
the original decoder; MUX component distributes the
input ciphertext C to each traitor’s decoder; RST unit
is necessary to start the decoder; WATCH unit decides
whether the decoder is being traced or not; ACT takes
action based on the decision. Optionally, NVM unit is
used to log the usage history.

Fig.1. Multi-key pirate decoder structure. The components in

the dash box constitute the pirate decoder. Dπ1 , . . . ,Dπn are

the duplicated decoders of the traitors.

Although the single-key pirate model is simple but
realistic in the pirate market[26], the multi-key pirate
decoder is easy in designing, practical in manufacturing
with present semi-conductor technology, robust in de-
feating the traitor tracing algorithms, and cost-effective
in comparing with the expensive broadcast subscription
fee.

2.2 Workflow of Pirate Decoder

When a decoder is power-on or re-started, the RST
unit is activated so as to load the program code, check
the memory, and initialize the variables. In addition,
RST unit may execute some delay code for the sake of
DOT (denial-of-trace, see Subsection 2.3) attack. In
reality, it takes some time to run the RST unit.

Next, the pirate decoder D is on standby status.
When it receives a ciphertext C generated from mes-
sage M , the MUX component distributes the cipher-
text C to each traitor’s decoder Dπj ; each decoder Dπj

will decrypt C independently, and output Mπi to the
WATCH unit; WATCH unit will compare the results
Mπ1 , . . . , Mπn and make a decision in accordance to
the traitor-tracing scheme.

If the decision is that the ciphertext is the normal
broadcast data, it will output the decrypted message
(e.g., Mπ1). Clearly, in the broadcast period, the multi-
key pirate decoder will output the original message M
since all the Mπi are identical. That is to say, the pirate
decoder meets (1), and thus it is useful.

Conversely, if the decision indicates that the decoder
is being traced, ACT may take actions to frustrate the
tracing. The anti-tracing approaches include escape
tracing, frame innocent users, output noise[4], erase the
keys[1,3], and start the following DOT attack.

2.3 Denial of Trace

Independent from the previous three “abrupt” self-
protection mechanisms introduced in Subsection 1.1,
this paper presents a fourth mechanism called as DOT.
DOT attack will be activated when the pirate decoder
concludes that it is traced or the tracer has to reset the
decoder.

Generally speaking, the important parameters which
determine the performance of DOT are τ and Ttrace,
where τ , the time for either decoder initialization or
intentional delay, is related to the toleration time for
a legal user to start a decoder; while Ttrace, the time
to finish the tracing process, is determined by the trac-
ing budget and the lifetime of the decoder. Thus, if
the tracer resets the decoder after each trial to make
sure the decoder is stateless (e.g., [23]), the maximum
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number of budgeted tracing trials is

ω = Ttrace/τ.

If the number of tracing trials is greater than ω, the
tracer will give up tracing. Therefore, any traitor trac-
ing algorithm for stateless decoder may be vulnerable to
DOT attack if it demands for a lot of trials to accuse a
traitor. In this paper, we will employ DOT attack to de-
feat black-box confirmation schemes, combination-key
traitor tracing, FTT1 and FTT2 tracing methods.

3 DOT Attack to Black-Box Confirmation

In each trial of black-box confirmation algorithm
(e.g., [5, 14-16]), a tracer selects a set T of at most
t suspected users, and creates a specific ciphertext by
which the decoders of the users in T should have differ-
ent output from those of other users. By observing the
output, the tracer can tell whether T does include all
the traitors that cooperated to construct a given pirate
decoder D. Hence, black-box confirmation might have
to go through all

(
N
t

)
coalitions to do full-fledged trac-

ing. In order to elaborate the DOT attack to black-box
confirmation algorithm, let us use the scheme in [14] as
an example.

3.1 Overview of [14]

3.1.1 Key Setup

The broadcaster selects a cyclic multiplication group
G of order q, and two secret random polynomials

A(x) = a0 + a1x + · · · + a2tx
2t, and

B(x) = b0 + b1x + · · · + b2tx
2t.

The public key is PK = KeyGen(A(x), B(x)) given a
designated key generation algorithm KeyGen(·). When
a user subscribes the broadcast service, she is securely
delivered a secret key 〈xi, A(xi), B(xi)〉 with a unique
xi ∈ [0, q − 1].

3.1.2 Encryption

With the public key PK, the broadcaster encrypts
M (M ∈ G) with a probabilistic encryption function
E(·) such that the ciphertext

C = E(PK , M).

The broadcaster sends C to the users. For simplicity,
we ignore the decryption function.

3.1.3 Black-Box Confirmation

After confiscating a suspicious decoder, the tracer
will repeatedly confirm the suspect set of users as Fig.2.

(a) Select a suspect set T ⊂ {U1 . . . UN}, whose size is at
most t. Repeat the following steps for Ω1 times.

• Fake two random (2t)-degree polynomials Af (x)
and Bf (x) such that ∀Ui ∈ T, Af (xi) = A(xi),
Bf (xi) = B(xi).

• Generate PK f = KeyGen(A′(x), B′(x)) as a new
fake public key. Clearly, only the users in subset
T whose secret keys match both PK f and PK.

• Encrypt a message Mf as Cf = E(PK f , Mf )
with the fake public key PK f . Thus, only the
users in subset T can decrypt Cf .

(b) If the suspect decoder decrypts Cf into Mf at a “large
enough” probability, the tracer can confirm that T

includes all the traitors.
(c) By refining T, the tracer can arrest at least one traitor.

Fig.2. One trial in traitor tracing algorithm[14]. A full-fledged

tracing algorithm needs
(N

t

)
trials.

3.2 DOT Attack to [14]

Since black-box confirmation requires a lot of trials,
it is vulnerable to DOT attack in nature. For a state-
less pirate decoder, the most important task in starting
DOT attack is how to activate the RST unit automati-
cally, or equally, how to detect the tracing activity. In-
deed, it is easy for the present multi-key pirate decoder
to finish the task with one of the following two detect-
ing methods. For each trial, 1) if the current public key
is different from the old one (i.e., the decoder should
record the old public key), it means that the decoder
is being traced and the tracer does not reset the de-
coder; or 2) if the WATCH unit observes that not all
the {Mπi}t

i=1 are the same (i.e., T does not include all
traitors), it concludes the pirate decoder is inspected.
The first detecting method is simple while the second
one is flexible in adjusting reset rate and applicable
to all black-box confirmation methods. Each detecting
method can instruct the ACT unit to reset the pirate
decoder. Therefore the total tracing time is at least

Ttrace = Ω1

(
N

t

)
τ.

Fig.3 shows the restriction on the user size and
traitor size even if Ω1 = 1. It demonstrates that black-
box confirmation is difficult in protecting broadcast
content since all suitable N are very small. For ex-
ample, suppose τ = 1 minute, the maximum number of
traitors is t = 4, and the budget tracing time Ttrace = 3
years ≈ 1.6 × 106 minutes, the black-box tracing algo-
rithm requires at least W = 1.6 × 106 trials, the max-
imum number of users is only N ≈ 70 which is too
small to be viable in real broadcast applications. Fur-
thermore, Ω1 should be much larger than 1 so as to
reduce the error probability, thus, N and t should be
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much smaller than those shown in Fig.3.

Fig.3. Relationship among the maximum user size N , the traitor

size t and affordable trace time Ttrace due to DOT attack (τ = 1

minute).

3.3 Discussion on DOT Countermeasure

To defeat the “shutting down” protection of pirate
decoder, the broadcaster may deliver invalid messages
so as to disable all the pirate decoders forever[3]. Simi-
larly, as a countermeasure on DOT attack, the broad-
caster may send invalid messages so as to reset a pirate
decoder, and hence reduce the decoding probability of
pirate decoder.

Let us study the countermeasure performance with
a video stream broadcast example. As in the sche-
mes[10-12], the video stream is divided into segments of
θ minutes each, and each segment is protected with a
broadcast encryption scheme (e.g., [14]) independently.
Since θ is determined with the capacity of the legal de-
coder (e.g., CPU speed or cost), network efficiency, and
the content distribution attack shown in [10-12]. As a
tradeoff, we select θ = 0.5 minutes. Define

p0: the probability of broadcasting an invalid mes-
sage;

p1: the resetting probability of the pirate decoder;
p2: the decoding probability of a pirate decoder by

considering the missing traffic in resetting period;
p3: the decoding probability of a legal decoder.

Then

p1 = p0(1 − 1/

(
N

t

)
) ≈ p0

p2 = 1 − p1(�τ/θ�) ≈ 1 − p0(�τ/θ�) = 1 − 2p0

p3 = (1 − p0) + p0

(
1 −

(
N − 1

t

)/(
N

t

))
≈ 1 − p0

Δ = p3 − p2 ≈ p0.

Therefore, p2 is only slightly smaller than p3 since p0

must be small enough to guarantee the video quality.
As a result, the countermeasure by sending invalid mes-
sages cannot obviously reduce the availability of the pi-
rate decoder. Furthermore, the pirate decoder can ad-
just the resetting probability so as to balance the DOT
attack and availability.

4 DOT Attack to CFNP Scheme

As a seminal work, Chor et al. addressed the broad-
cast encryption scheme by assigning a key-set to each
user, and constructed a traitor tracing method given
that the traitors’ keys are known to the tracer in ad-
vance. But Chor et al.[17] did not explain how the tracer
can obtain these keys. Fortunately, paper [19] elabo-
rated the process of key retrieving so that it is possible
to provide a full BEAT scheme. We call the full scheme
as CFNP in the following.

4.1 Overview of CFNP

The broadcast encryption scheme in [19] includes
two modes: single-level and multi-level. Since the
multi-level mode is merely an extension of the former
so as to reduce the network overhead, we just investi-
gate the single-level mode in the following. The attack
method is also applicable to the multi-level mode.

4.1.1 Setup

The broadcaster generates a key matrix K of size
l × b as

K = {Kij}l×b =

⎛
⎜⎜⎝

K11 K12 . . . K1b

K21 K22 . . . K2b
...

...
Kl1 Kl2 . . . Klb

⎞
⎟⎟⎠ .

For every row i of matrix K, each user is assigned
one of the keys {Ki1, . . . , Kib} at random. Conse-
quently each user is assigned an l-tuple of keys, or one
key from each row of the matrix K = {Kij}l×b.

4.1.2 Encryption

In order to broadcast a message M to a group
of users, the broadcaster randomly divides M into l
“shares” si, i.e.,

M = s1 ⊕ s2 ⊕ · · · ⊕ sl (2)

where ⊕ is an operator for bitwise exclusive OR. With
an encryption scheme E(·), the broadcaster generates a
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ciphertext of M as

C =

⎛
⎜⎜⎜⎝

E(K11, s1) E(K12, s1) · · · E(K1b, s1)
E(K21, s2) E(K22, s2) · · · E(K2b, s2)

...
...

E(Kl1, sl) E(Kl2, sl) · · · E(Klb, sl)

⎞
⎟⎟⎟⎠ .

(3)
The ciphertext matrix C = {cij}l×b will be broad-

cast to all the users. Since each user has one key for each
row, upon receiving C, she can obtain all the shares si,
i = 1, 2, . . . , l, and recover M with (2).

4.1.3 Black-Box Tracing

In order to find the traitors involved in the pirate
decoder, a tracer will deduce the decryption keys as
shown in Fig.4.

(a) for i = 1 to l,

• for j = 1 to b− 1,

repeat the following trial for Ω2 times

– reset the suspicious decoder, select a random

M ,

– create a matrix C with (3), and replace
ci1, ci2, . . . , cij with random numbers.

– send C into the suspected decoder, record the
output as M̃ . Let p̂ij be the fraction of trial

times such that M̃ = M .

• ∀j, if p̂i(j−1) − p̂ij is “large enough”, the tracer
concludes Kij is present in the suspect decoder.

(b) The tracer will obtain at least l keys.

(c) Since the number of traitors is at most t, there is at least
one user U who contributes at least l/t keys in the pirate
decoder. The tracer identifies U is a traitor.

Fig.4. Traitor tracing algorithm in CFNP[19].

4.2 DOT Attack to CFNP

To make sure that CFNP scheme is resistant to at
most t traitors, Chor et al.[19] selected b = 2t2, and
gave a theoretical lower-bound l = 4t2 log N . Mean-
while, they stated that l should be O(t6 log N) so as to
explicitly construct their schemes with [27]. Although
Ω2 is not expressed in [19], Kiayias and Yung[1] chose
Ω2 = b2 log2 b such that the framing error probability is
negligible. With these parameters, we can analyze the
DOT attack to CFNP. Since the decoder is reset for
each trial, the total time in tracing the pirate decoder
D is

Ttrace = l × (b − 1) × Ω2 × τ

= 4t2 log N × 2t2 × (2t2)2 log2(2t2) × τ

= 32t8τ log N log2(2t2).

Let us select conservative parameters N = 100, t = 4
(Note: the example values N = 106, t = 500 in [19]),
and τ = 1 minute. The total tracing time is

Ttrace > 1.14 × 109 minutes ≈ 213 years!

4.3 Discussion on Countermeasure

Similar to the countermeasure in Subsection 3.3, the
broadcaster may broadcast invalid message so as to re-
set the pirate decoder. Unfortunately, since this coun-
termeasure is a two-edge sword and it may degrade the
QoS for the legal users, its effect is not significant either.

One possible countermeasure is that the tracer does
not reset the decoder so as to undermine DOT attack.
In the original CFNP scheme, why does the tracer re-
set the suspect decoder before each trial such that the
decoder is stateless? The answer is that the tracer
may obtain a key which is not in the traitors’ key-set
from the non-resetting decoder. As an example, given
that the pirate decoder has keys K11 and K1b, when
the tracer scans the first row, the pirate decoder may
output correct message for the second trial (i.e., de-
cryption with K1b), but incorrect message for the third
one (i.e., decryption with K11). The tracer concludes
p̂12 − p̂13 = 1, hence K13 is one of traitors’ keys. As a
result, the trace fails. With further analysis, we know
that it is not useful yet if the tracer resets the pirate
decoder in a batch of trials.

5 DOT Attack to FTT1

Constructed with bilinear maps in groups of compo-
site order, FTT1 is the first fully collusion resistant
tracing traitors system whose ciphertext is of size
O(

√
N) and private key is of size O(1). Nonetheless,

its private key property enables the pirate decoder to
detect the tracing activity. This section overviews and
analyzes FFT1.

5.1 Overview of FFT1

In the private fully collusion resistant traitor trac-
ing scheme (or FTT1 for short)[23], Boneh et al. pro-
posed a Private Linear Broadcast Encryption (PLBE)
primitive, and employs PLBE to design traitor tracing
algorithm Trace(·).

5.1.1 PLBE Algorithm

Like other cipher systems, PLBE consists of a
set of cryptographic functions Setup(·), Encrypt(·),
TrEncrypt(·), and Decrypt(·) as

• Setup(N, λ): a probabilistic algorithm that takes
as input N , and a security parameter λ. The algorithm
runs in polynomial time in λ and outputs a public key
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PK, a secret key TK and private keys K1, . . . , KN ,
where Ki is given to user Ui.

• Encrypt(PK , M): takes as input PK, and a mes-
sage M . It outputs a ciphertext C which will be broad-
cast to all the users.

• TrEncrypt(TK , i, M): takes as input TK, an in-
teger i satisfying 1 � i � N + 1, and a message M . It
outputs a ciphertext C. TrEncrypt(·) is primarily used
for traitor tracing. (Note: TrEncryptL(TK , 1, M) out-
puts a ciphertext distribution that is indistinguishable
from the distribution generated by Encrypt(PK , M).)

• Decrypt(j, Kj , C,PK ): takes as input a subset the
private key Kj for user j, a ciphertext C, and the public
key PK. The algorithm outputs a message M or ⊥.

PLBE property: ∀i ∈ [1, N + 1], ∀j ∈ [1, N ], and all messages
M :
Let (PK , TK , (K1, . . . , KN ))← Setup(N, λ),

and C ← TrEncrypt(TK , i, M).
If j � i then Decrypt(j, Kj , C,PK ) = M .

Loosely speaking, PLBE property is similar to en-
cryption with key-chain. But PLBE can result in the
following tracing algorithm.

5.1.2 Tracing Algorithm

For a suspected decoder D, and a given ε > 0, the
tracer will perform the tracing algorithm Trace(TK , ε)
as Fig.5.

Let the traitor set T = φ,

(a) For i = 1 to N + 1, do the following:

Let η = 0. Repeat the following steps Ω3 =
8λ(N log N/ε) times:

� Sample message M from the finite message space
at random.

� Let C ← TrEncrypt(TK , i, M).

� Call D on input C to get the output M̃ .

If M̃ = M, η ← η + 1.

Let p̂i be the fraction of times that D decrypted the
ciphertexts correctly, thus, p̂i = η/Ω3.

If p̂i − p̂i+1 � ε/(4N), add i into T.

(b) Output T as the set of guilty colluders.

Fig.5. Traitor tracing algorithm in FTT1.

5.2 Attack to FTT1 Scheme

As constructed in Fig.1, a pirate decoder D can de-
tect the tracing activity easily, then it may perform
escaping from identifying, denying tracing, or framing
innocent users.

5.2.1 Detecting Trace

Assume that the traitors divide the users into
n + 1 groups as Gj = {Uu | πj < u � πj+1},

j = 1, 2, . . . , n − 1. Specially, G0 = {Uu | u � π1}, and
Gn = {Uu | πn < u � N}.

• In the tracing process Trace(TK , ε), the tracer will
generate a ciphertext C = TrEncrypt(TK , i, M), and
send C to the suspected decoder D.

• The WATCH unit of D gets n plaintext Mπj gen-
erated by traitor’s decoder Dπj . With regard to Fig.6,
the index i of examined user must be

i ∈

⎧⎪⎨
⎪⎩

G0 = [1, π1], Mπ1 = Mπn ,

Gj = (πj , πj+1], ∃j, Mπj �= Mπj+1 = Mπj+2 ,

Gn = (πn−1, N ], ∀j, k, j �= k, Mπj �= Mπk
.
(4)

1 π1 πj i

�

πj+1 πj+2 πn

random
�

M
�

Fig.6. Determinate the range of the examined index i.

Hence, according to (4), the statement in [23] “a
broadcast to users {i, . . . , N} should reveal no non-
trivial information about i” is not true since the pirate
decoder can know the interval of i.

• The ACT unit of D will handle all the results Mπj

as

Op =

⎧⎪⎨
⎪⎩

1, i ∈ G0,

−1, i ∈ Gj , j ∈ [1, n − 1],
0, i ∈ Gn.

(5)

If Op = 1, the pirate decoder cannot tell tracing from
broadcasting, and regards that it is normal broadcast.
In this case, it outputs the correct message M . Thus,
(1) is met easily, i.e., the pirate decoder is useful. But if
Op �= 1, the decoder regards it is traced, and may take
protective actions against the tracer as the following
Subsections.

5.2.2 Minimizing the Number of Disclosed Traitors

With the tracing algorithm in FTT1, Boneh et al.
proved that at least one traitor will be identified theo-
rematically. But the tracing algorithm may arrest all
the traitors if they do not act properly. Therefore, from
the viewpoint of traitors, it is the best strategy if the
number of disclosed traitors is only one.

To this end, the traitors may select a fix victim Uj ,
e.g., Uj = Uπn . For any input ciphertext, the pirate
decoder always outputs Mj . In this case, one traitor
is identified in theory. But if the tracer has no enough
patience/resource due to the following “denial-of-trace”
attack, no one is identified in practice.

5.2.3 DOT Attack

FTT1 is designed to defeat against stateless decoder.
Hence, the RST unit should be activated before each
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trial. There are two activation events. One is that the
tracer activates the resetting function (e.g., by pushing
a “RESET” button); the other is the decoder initiates
the resetting process if Op �= 1. Any of the resetting
event will start the reset process which will take ini-
tialization time τ . Recall that the initialization time
is decided by the pirate decoder designer, rather than
the tracer. Therefore, if the decoder is reset after each
tracing trial, the total tracing time in FTT1 is at least

Ttrace = τΩ3 = 8τλN2 log N/ε.

Example 1. Let us select some conservative para-
meters, N = 100, λ = 500, ε = 0.1 (Note: Dodis et
al. select ε = 0.01 in [14]), τ = 1 minute, a full trace
process takes

Ttrace ≈ 8 × 1 × 100 × 1002 × log 100/0.1

≈ 3.68 × 108 minutes ≈ 700 years !

Even the binary search is used, the tracing process
takes at least 32 years ! Thus, the tracing algorithm is
infeasible if RST unit is performed in each tracing trial
to make sure stateless. But if the decoder is stateful, it
will start a framing attack which is more serious attack
(see Section 6).

6 DOT Attack to FTT2

The public fully collusion traitor tracing scheme (or
FTT2)[24] enables any one to trace a suspected decoder.
In addition, a broadcaster can revoke any set of users.
However, since FTT2 is similar to FTT1, the traitors
can build a pirate decoder to exploit FTT2 with the
similar methods in Section 5.

6.1 Overview of FTT2 Scheme

The cryptographic primitive in FFT2[24] is ABE
(Augmented Broadcast Encryption). As PLBE, ABE
can also result in a traitor tracing algorithm Trace(·).

6.1.1 ABE Algorithm

ABE consists of a set of cryptographic functions:
Setup(·), Encrypt(·), and Decrypt(·). Their definitions
are

• Setup(N, λ): a probabilistic algorithm that takes
as input N , and a security parameter λ. The algorithm
runs in polynomial time in λ and outputs a public key
PK and private keys K1, . . . , KN , where Kj is given to
user Uj .

• Encrypt(SD,PK , i, M): takes as input a subset of
users SD ⊆ {1, . . . , N}, a public key PK, an integer i

satisfying 1 � i � N + 1, and a message M . It outputs
a ciphertext C. This algorithm encrypts a message to
a set SD ∩ {i, . . . , N}.

• Decrypt(SD, j, Kj, C,PK ): takes as input a sub-
set SD ⊆ {1, . . . , N}, the private key Kj for user j, a
ciphertext C, and the public key PK. The algorithm
outputs a message M or ⊥.

ABE property: for all subsets SD ⊆ {1, . . . , N}, ∀i, j ∈
{1, . . . , N + 1} (where j � N), and all messages M :

Let (PK , (K1, . . . , KN ))← Setup(N, λ),
and C ← Encrypt(SD ,PK , i, M).

If j ∈ SD and j � i, Decrypt(SD , j,Kj , C,PK ) is M , oth-
erwise, ⊥.

6.1.2 Tracing Algorithm

In the tracing algorithm Trace(SD,PK , ε), the
tracer confiscates a suspected decoder D, for a given
ε > 0 and a set SD, the tracing processing is as Fig.7.

Let suspect set T = φ.

(a) For i = 1 to N + 1 do
Let η = 0. Repeat the following steps Ω4 = 8λ(N/ε)2

times:

� Sample message M from the finite message space
at random.

� Let C = Encrypt(SD , PK , i, M).

� Call D on input C to get decoder output M̃ . If
M̃ = M , η ← η + 1.

Let p̂i be the fraction of times that D decrypted the
ciphertexts correctly, i.e., p̂i = η/Ω4.

(b) If p̂i − p̂i+1 � ε/(4N), then add i to set T.

(c) Output T as the set of guilty colluders.

Fig.7. Traitor tracing algorithm in FTT2.

6.1.3 Tracing All Traitors

As the tracing algorithm in FTT1, the above
Trace(SD,PK , ε) may identify only one traitor. To
identify all the traitors, Boneh et al.[24] propose to ite-
ratively update the set SD so as to revoke the identi-
fied traitors. Specifically, the TraceAll(SD,PK , ε) al-
gorithm is shown in Fig.8.

(a) set SD as the set of all of users;

(b) find one traitor u with Trace(SD ,PK , ε);

(c) T← T ∪ {u}, and calculate SD ← SD\{u};
(d) if Trace(SD , PK , ε) outputs a traitor, go to step (b).

Otherwise, quit.

Fig.8. Tracing all of the traitors in FTT2.
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6.2 Attack to FTT2 Scheme

Since the tracing algorithm of FTT2 is similar to
that of FTT1, FTT2 has all the vulnerabilities as
FTT1. Especially, albeit FTT2 has TraceAll(·), it can
arrest at most one traitor. For brevity, we do not repeat
the attacks in Subsection 5.2 on FFT2. But we should
emphasize that FTT2 is very vulnerable to DOT attack
since Trace(SD,PK , ε) needs 8λN3/ε2 tracing trials for
linear scan, and almost 8λN2 log N/ε2 trials for binary
scan.

Example 2. Let us estimate the time for the linear
tracing with the same parameters as Example 1. τ = 1
minute, N = 100, ε = 0.1, λ = 100, the total tracing
time is

Ttrace = N × Ω4 × τ = N × 8λ(N2/ε2)

= 8λτN3/ε2 = 800 × 106/10−2

= 8 × 1010 minutes = 1.5 × 105 years !

Thus, on average, it requires about 7.7 × 104 years to
trace a traitor of a small group of users. If the trace-
revoke process TraceAll(SD,PK , ε) is used to trace all
the traitors, it costs about 7.7 × 106 years.

7 Framing Attack

In this section, we discuss the soundness of stateless
decoder, and then create a stateful decoder such that
the tracer is fooled to frame innocent users. Finally, we
propose a countermeasure to defeat the framing attack.
For simplicity, we address FTT1 only as it is straight-
forward to extend the attack and countermeasure to
FTT2.

7.1 Stateless vs. Stateful Decoder

FTT[23] “solves the tracing traitors problem in the
stateless model, where the tracer is allowed to reset the
pirate algorithm after each tracing query”. Although
Boneh et al. explicitly stated that the pirate decoder is
stateless, we think the stateless model is too strict to
be practical because:

(a) Cheap in Manufacturing. Nowadays, it is easy
to manufacture a stateful decoder. For example, a de-
coder with NVM� which cost below �0.01 is stateful.
In reality, many devices (e.g., RFID, smartcard, DVD
player etc.) themselves have NVM to store the private
data. In other words, it almost costs nothing to enable
a stateless decoder into a stateful decoder.

(b) Volatile memory retains the data for some time
after power-off. As far back as in 1978, researchers

showed that if DRAM is cooled with liquid nitrogen, its
data retention period could last up to a week. Practi-
cally, Halderman et al.[28] showed that encryption keys
can be recovered from memory chips several minutes
after power is disconnected. Hence, the decoder can
read the previous result after a resetting is performed.

(c) Necessary for Decoding. History information is
necessary in most of multimedia decoders which are
compliant with International Standards (e.g., MPEG).
For example, in order to decode MPEG video and MP3
audio, the decoder has to store the recently decoded
pictures/chips.

(d) Hard in Reducing. To explain the soundness of
stateless model, Boneh and Water argued that any trac-
ing system for stateless decoders can be converted into
a tracing system for stateful decoders by embedding
watermarks[1]. However, the conversion algorithm[1]

has three pre-requisitions:
• Partial collusion: as the scheme in [17], Kiayias and

Yung’s scheme guarantees to arrest a traitor when the
number of traitors is below a predefined value. Since
FTT1 and FTT2 assume that all the users are involved
in collusion, the transform method[1] is invalid for either
FTT1 or FTT2.

• Best-effort decryption: the conversion algorithm[1]

requires the decoder to try its best to decrypt all the
input ciphertexts. Otherwise, their method does not
work. However, Boneh and Waters[24] merely required
useful decoder which can partially decrypt cipher-
texts. Thus, if a pirate decoder discards some de-
coded messages intentionally, (1) is still satisfied, but
the tracing algorithm[1] fails. That is to say, the
tracing algorithms[1] have more strict condition than
FTT[23-24], thus the conversion method[1] is not suit-
able to either FTT1 or FTT2.

• Solid watermarking assumption: Kiayias and Yung
assumed that it was possible to identify at least one
traitor from a copy generated from several watermarked
copies. This assumption is still questionable:

∗ Ergun et al.[29] proved that no traitor will be
identified with a pirated copy if the number of the
traitors is below a threshold given that the proba-
bility of implicating innocent is low;

∗ The international initiative SDMI (Secure
Digital Music Initiative) (http://www.sdmi.org/)
aimed to develop and standardize technologies
that “protect the playing, storing, and distribut-
ing of digital music”. Although no documentation
explained the implementations of the SDMI tech-
nologies, and neither watermark embedding nor

�NVM: non-volatile memory includes read-only memory, flash memory, most types of magnetic computer storage devices (e.g.,
hard disks, floppy disk drives, and magnetic tape), optical disc drives, and early computer storage methods such as paper tape and
punch cards. See http://en.wikipedia.org/wiki/Non-volatile storage.
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detecting software was directly accessible to chal-
lenge participants, Craver et al.[30] have defeated
all four of the audio watermarking technologies;

∗ A bulk of papers related to watermark analy-
sis are published annually. In fact, a lot of water-
marking methods are broken, even the well-cited
spread spectrum method[31] is also challenged[32].

Thus, it is still challenging to convert a tracing
system for stateless decoders into a tracing system
for stateful decoders, especially in case of FTT.

In all, FTT[23-24] model supposes: the colluders are
willing to recruit cryptanalysts to break semantically
secure broadcast encryption scheme, but they will not
spend �0.01 to change a stateless decoder into stateful
decoder. Do the traitors regard that cryptanalysts are
valueless? Clearly, this model is not sound, especially
for hardware decoders.

7.2 Framing Innocent User with Stateful

Decoder

According to Subsection 7.1, it is easy to design a
stateful decoder. With a stateful decoder, the traitors
can cheat FFT1 tracer to frame innocent users. Speci-
fically, if only one NVM counter lC is used to recode
the number of ciphertexts received by the decoder, the
pirate decoder D may be used to frame innocent users
as Fig.9.

(a) Let lC = 0.

(b) For each ciphertext received, D will perform steps
(c)∼(f).

(c) The pirate decoder runs the detection algorithm to ob-
tain Op. If Op 
= −1, the pirate decoder can tell trac-
ing algorithm from broadcasting one, hence it output
Σn

i=1Mπi/n, and goes to step (b).

(d) But if Op = −1, the pirate decoder knows that the trac-
ing algorithm is being performed, and continues the fol-
lowing framing steps.

(e) Let lC = lC +1, and γ = �lC/Ω3�+1. Since each user is
examined for Ω3 times continuously, the decoder knows
that the user Uπ1+γ is examined.

(f) If (γ mod 2) = 1, output Mπn which is identical to M ,
otherwise, D outputs a noise.

Fig.9. Framing attack to FTT1.

After finishing all the tracing trials, the tracer con-
cludes: ∀α = π1 + 2d − 1 � πn for some integer d,
the pirate decoder D can decode all the ciphertexts
TrEncrypt(TK , α, M), but cannot decode any cipher-
text C = TrEncrypt(TK , α + 1, M), i.e.,

p̂α = 1 but p̂α+1 = 0.

Thus,
p̂α − p̂α+1 = 1 � ε/(4N).

According to the tracing rule, the tracer identifies Uα

as a traitor. Clearly, many users are framed. Thus, if
the traitors spend only �0.01 to install a counter, the
tracing algorithm will frame innocent users at proba-
bility 1. Thus, FTT1 tracing algorithm is too fragile to
be viable.

Example 3. Given N = 10 users, U3 and U8 are
traitors who created a pirate decoder. In the tracing
method in Subsection 5.1.2, if 3 < i � 8, decoder D will
find the tracing activity since the output of D8 is struc-
tural but D3 outputs random. Hence, when the tracer
performs tracing algorithm, the output for i = 4, 6 is
from D8, while the output for i = 5, 7 is from D3, hence,

p̂4 = p̂6 = 1 but p̂5 = p̂7 = 0.

That is to say,

p̂4 − p̂5 = 1 > ε/(4N).

and
p̂6 − p̂7 = 1 > ε/(4N).

Thus, users U4 and U6 are identified as traitors wrongly.

7.3 Countermeasure on Framing Attack

In the FTT scheme, the tracer scans the users in a
known pattern (linear or binary), if the tracer randomly
scans the users, the pirate decoder maybe fail to fram-
ing the innocent users. That is to say, the improved
tracing algorithm is as Fig.10.

(a) Let traitor set as empty T = φ.
(b) The algorithm repeats the following steps L times:

(i) Sample a structural message M , and select i ∈R

[1, N ] randomly.
(ii) Let C = Encrypt(SD , PK , i, M).
(iii) Call D on input C, and compare the output of D

to M .

(c) Let p̂i be the fraction of times that D decrypted the
ciphertexts correctly.

(d) If p̂i − p̂i+1 � ε/(4N), then add i to set T.

Fig.10. Countermeasure on framing attack. We think the tracing

message should be structural. Otherwise, the pirate decoder will

always output noise so as to defeat the tracing algorithm if the

message is not structural.

With the random scan pattern, albeit the craft de-
coder knows the range of i, the probability of p̂i − p̂i+1

is small, and hence no user in interval (πj , πj+k] is ac-
cused.
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8 Discussion

8.1 Traitor Tracing under One Roof

In most, if not all, of traitor tracing schemes, the
tracer will perform a trial:

• select a target event E (a suspect group of users
or keys),

• create a craft ciphertext for the target,
• observe the output or action so as to obtain the

occurrence rate of E.
Let us consider the tracing algorithm as throwing a

biased coin. One side is more likely to come up than
the other, but you do not know which and would like to
find out. The obvious solution is to flip it many times
and then choose the side that comes up the most. But
how many times do you have to flip it to be confident
that you have chosen correctly? One lower bound of
trial times may be the following version of Chernoff
bound[19]

P
( 1
Ω

Ω∑
i=1

Ei � βp
)

<
(eβ−1

ββ

)pΩ

(6)

where β > 1 is an error-tolerance parameter, and ob-
servation value Ei = 1 means that event E occurs, and
p = P (E) is the probability of event E which is related
to parameters N, t and ε in tracing algorithm. In order
to make the error of implicating the innocent user is
negligible, the right side of (6) should be very small,
such that Ω is selected. Therefore, Ω is very large such
that the traitor tracing scheme suffers from DOT at-
tack.

8.2 Countermeasure by Forging Reset Time

Subsection 8.1 indicates it is not easy to reduce the
resetting times unless other bound algorithm is avai-
lable. Is it possible to reduce the actual resetting
TIME? For hardware decoder, the hope is slim if we
do not reverse-engineer the decoder. But for software
decoder, it is possible since the execution time is ob-
tained from the OS (Operating System). If the pirate
decoder is cheated by a faked time such that the actual
resetting time is much smaller than τ , DOT attack fails.

8.3 Counter-Countermeasure

The above countermeasure is viable since the pirate
decoder cannot calibrate the system clock and hence is
cheated. Hence, the pirate decoder should testify OS
(or other environment). Here, assume that the pirate
software has no random resource since the resource is
under control of the tracer, but it has a secret data R,
e.g., decoding key or hard-code secret. The testation
process is as Fig.11.

(a) In the resetting, the pirate decode executes a module
F , and query OS the execute time, the OS may cheat
it with a time t1. Afterwards, the pirate decoder con-
tinues the resetting process. Please note the really re-
setting time may be smaller than τ .

(b) When the pirate decoder receives the first ciphertext
C, it will generate

n0 = H(C ‖ R)

where H(·) is a one-way function.

(c) The pirate decoder repeatedly executes the module F
for i times, and queries for the execution time t2.

(d) If | t2/t1 − n0 |> ε′′ for some threshold ε′′, the pirate
decoder confirms it is cheated and delay for some time,
otherwise, it works as usual.

Fig.11. Testify the environment by pirate decoder software.

9 Conclusion

This paper presents a crafty pirate decoder which
can exploit several traitor tracing schemes. Concretely,
it exploits the vulnerabilities of the fully collusion
traitor tracing schemes. To this end, the pirate de-
coder detects the tracing activity, and then takes action
such as starting denial-of-trace, and framing innocent
users. To be frameproof tracing, we replace the deter-
ministic trace scan into random scan. However, this
improvement cannot defeat denial-of-trace attack since
the property of the underlying cryptographic primitive
exposes the tracing activity to the craft decoders.
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