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Abstract—Network Utility Maximization (NUM) techniques,
which cast resource sharing problems as one of distributed utility
maximization, have been investigated for a variety of optimization
problems in wireless and wired networks. Our recent work has
extended the NUM framework to consider the case of resource
sharing by multiple competing missions in a military-centric
wireless sensor network (WSN) environment. Our enhanced
NUM-based protocols provide rapid and dynamic mission-based
adaptation of tactical wireless networks to support the transport
of sensor data streams with very small control overhead. In
particular, we focus specifically on mechanisms that capture the
joint nature of mission utilities and the presence of prioritized
mission demands. We then introduce a new problem, of joint
utility and network lifetime maximization, as a representative of
a new class of multi-metric optimization problems, and provide
early evidence that techniques from optimal control theory can
be used to derive distributed adaptation protocols conforming to
the basic NUM paradigm. We also enumerate and motivate a
list of open cross-layer dynamic adaptation problems of direct
relevance to military C4I operations.

I. INTRODUCTION

Data feeds from various sophisticated sensors (e.g., video,
acoustic, shortrange radar, infra-red and magnetic) are ex-
pected to provide critical situational intelligence for a variety
of missions in future military battlefield operations. In contrast
to conventional civilian wireless sensor network (WSN) appli-
cations that focus on long-term, low data-rate environmental
monitoring and are principally energy-constrained, many mil-
itary missions (e.g., search and rescue, gunfire localization,
insurgent tracking) are tactical in nature, lasting for relatively
shorter and often well-defined durations. Given the high
sampling rates and stream-oriented nature of the data from
the underlying sensors, bandwidth (link capacities) is also a
critical shared resource in such wireless networks–accordingly,
the military WSN environment is both energy and bandwidth
constrained.

In this paper, we investigate the use of Network Utility Max-
imization (NUM) based techniques for dynamic adaptation of
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various network parameters in such mission-centric WSN en-
vironments. The NUM problem and its distributed implemen-
tation have been extensively studied as a resource allocation
mechanism for unicast flows in wireline [1], [2], wireless
networks [3], and, more recently, for multicast flows in ad-
hoc wireless scenarios [9]. The NUM paradigm, pioneered in
[1] for Internet congestion control, models resource sharing
among competing applications as a form of cooperative utility
maximization and uses the theory of decomposition [7] to
develop distributed algorithms that achieve close-to optimal
performance without any global coordination. In this paper, we
derive several extensions to the NUM framework to capture
the following unique features of mission-oriented operations:

• Joint Utility Functions and Multiple Mission Subscrip-
tions: An individual missions utility is often derived
from multiple sensor sources, implying that it is not
possible to articulate a missions benefit from a specific
sensor independently of the data rates that it is receiving
from other sensors. Conversely, multiple missions often
consume the data stream from a single sensor, implying
that a change in a sensor’s data rate potentially alters the
‘goodness’ of different missions in different ways.

• Differentiated Mission Priorities and Inelastic Demands:
Different missions may have different priorities, with
some missions deemed more critical than others (e.g.,
gunfire localization vs. perimeter monitoring). In general,
prioritized missions can be modeled by a combination of
both a priority order and a lower bound on the acceptable
utility. These requirements differ significantly from the
basic best-effort oriented NUM framework that focuses
purely on cumulative utility, and thus permits the traffic
rates for some missions to become arbitrarily low, if it
contributes to the collective good.

• Utility vs. Network Lifetime Tradeoff: In many environ-
ments, different missions have well-defined durations;
in many instances, the entire WSN infrastructure may
be required to be operational for a predetermined time
period. Given the energy constraints on individual nodes,
the instantaneous utilities of missions must be maximized
in a manner that does not compromise the required
operational lifetime.

Figure 1 illustrates some of these distinct features of mission-
oriented WSNs. We see a high priority surveillance application
that consumes streams from one video sensor and a short range
radar, while a medium priority ‘asset verification’ mission uses
data from two video sensors and a lower priority ‘individual
identification’ mission utilizes the feed from one video and



one audio sensor.

Fig. 1: An example WSN network with missions of different priorities,
consuming data from multiple shared sensors.

Our primary goal in this paper is to address progressively
more sophisticated and realistic resource optimization prob-
lems for mission-oriented WSN environments, and demon-
strate the broad applicability of “decomposable optimization
techniques” [7], embodied by NUM-based protocols, to these
scenarios. More broadly, we shall also show how the generic
resource optimization problems may be captured within the
broader, and more general framework of “optimal control”
theory. The use of optimal-control based tools allows us to
address not just the much-studied problem of instantaneous
‘rate’ or ‘congestion’ control, but also a more generic class of
multi-objective problems that relate to the optimal allocation
of resources over a temporal horizon. Besides presenting the
optimal control framework, we also discuss a set of open
and relevant dynamic cross-layer optimization problems in
resource-constrained mission-oriented wireless networks. We
shall also discuss why suitable modifications of existing NUM
protocols are likely to provide close-to-optimal solutions to
these problems. From a broader perspective, our goal in this
paper is to demonstrate the broad applicability, and motivate
additional investigation, of NUM-based “decomposable opti-
mization” techniques for a variety of intelligent cross-layer
adaptation challenges in future WSN-based environments.

The rest of this paper is organized as follows. Section II
details the modification of the basic NUM algorithms to
capture the many-to-many relationships between sensor data
streams and subscribing missions. Section III then considers
the additional challenges that arise from the introduction of
differentiated mission priorities and the specification of quasi-
elastic demands. Section IV then focuses on the problem of
joint utility and network lifetime optimization and demon-
strates the use of an optimal control-theoretic framework for
a specific, well-defined problem. Section V describes some
of the open and relevant cross-layer problems that we are
addressing in our ongoing work; finally, Section VI concludes
the paper.

II. THE GENERALIZED NUM FRAMEWORK FOR JOINT
MISSION UTILITIES AND SENSOR SHARING

To mathematically abstract the mission-oriented WSN en-
vironment, consider a set of M missions operating over a set
of S sensors. Let the utility function of the mth mission be
denoted as Um(Xm), where Xm represents the S-dimensional

vector of rates associated with the set of sensors S (i.e., let
Xm[i] be the transmission rate of sensor si and Xm[i] = 0
if sensor si is not a source for mission m). Furthermore, for
any mission m, let set(m) be the set of sensors to which
mission m subscribes; conversely, let Miss(s) be the set of
missions subscribing to the data stream from sensor s. Also,
let K denote the set of all (source, sink and forwarding) nodes
in the network.

The capacity constraint in wireless environments needs to
reflect the fact that the wireless channel is shared and that a
node can transmit its data only when there are no interfering
transmissions. To express these interference constraints, we
characterize the link-layer broadcast transmission by a node
k to its child nodes by the tuple (k, s), where s is the sensor
source node for this flow; a sensor flow is thus a series of
transmissions by the nodes in the corresponding multicast
forwarding tree. The forwarding tree is itself assumed to be
created by some external routing protocol. Given this model,
the capacity constraint is shown in [10] to apply to each
maximal clique (denoted by l) in the conflict graph (CG)
formed from the underlying set of transmissions, and can be
expressed as: ∑

∀(k,s)∈l

xs
ck,s
≤ 1, (1)

where xs is the flow rate, ck,s is the transmission rate for
transmission (k, s) and L is the set of all maximal cliques in
the CG corresponding to the WSN.

The problem of mission-oriented adaptation of the sensor
data rates in the WSN may then be expressed by the opti-
mization problem SENSOR as:
SENSOR(U ;L) :

maximize
∑
m∈M

Um(Xm) (2)

subject to
∑
∀(k,s)∈l

xs
ck,s
≤ 1, ∀l ∈ L.

By taking the Lagrangian of this constrained problem and
setting the partial derivatives to 0, we can then show that if
• the sensor node si adjusts it rate according to the equation

d

dt
xsi(t) = κ(

∑
m∈Miss(si)

wmsi(t)− xsi(t) ∗

∑
∀l∈flow(si)

µl(t) ∗
∑

∀(k,si)∈l

1
ck,si

) (3)

where µl is the ‘cost’ charged per bit by each forwarding
clique, and is given by µl(t) =

pl(
∑
∀(k,s)∈l

xs(t)
ck,s

)) = (
∑
∀(k,s)∈l

xs(t)
ck,s

− 1 + ε)+/ε2 (4)

• each mission adjust’s its so-called ’willingness to pay’
value for each subscribed sensor as:

wms(t) = xs(t)
∂Um
∂xs

(5)

then the distributed and iterative rate adjustment scheme will
converge to rates that optimize a relaxation of the problem
SENSOR(U ;L).



A. Protocol Version of the NUM Algorithm

The above NUM algorithm can be adapted into a distributed
dynamic rate adaptation protocol, called WSN-NUM that re-
quires minor modifications at the sensor and sink (mission)
nodes and somewhat more sophisticated functionality at inter-
mediate (forwarding) nodes. Each mission has to periodically
compute the partial derivatives of its utility with respect to
the individual sensor rates and transmits these wms terms
back as feedback signals to the corresponding sensors. Each
sensor, in turn, collects the feedback terms from each of its
subscribed sensors, computes the cumulative ‘willingness to
pay’ across all its missions and then adapts its transmission
rate according to Equation 3. To enable individual missions
to compute the wms terms, the sensor must piggyback its
instantaneous data rate on a fraction of its data packets.
While Equation 3 specifies a continuous adaptation process,
the practical protocol operates by having the sensor si collect
the wms terms over a relatively small ‘time window’ and
then perform a ‘step adjustment’ of its transmission rate; this
transmission rate is then held constant until the end of the next
time window. In particular, it has been demonstrated that this
discrete version of the NUM algorithm will converge to the
global optimum even in the presence of different round-trip
delays in the feedback provided by individual missions.

Intermediate forwarding nodes must perform several addi-
tional functions. First, each node has to compute the maximal
cliques to which it belongs-this is computed using the cor-
rected Bierstone algorithm applied to a local conflict graph,
which itself is computed by exchanging information about
the set of all distinct (k, s) transmissions within its r + 1
neighborhood (where the interference range is assumed to be r
times the transmission range). Second, to compute the shadow
prices1 associated with each clique, the nodes that have
transmissions belonging to the same clique must exchange
their current airtime fractions, i.e., xs

ck,s
at a time scale faster

than that employed for rate adaptation by each sensor. Finally,
to avoid duplicate and incorrect counting of the shadow price,
each forwarding node must first divide the total cumulative
shadow prices (from the upstream nodes) by the number of
downstream child nodes on the forwarding tree, and also
attach a unique clique ID (to ensure that downstream nodes
belonging to the same clique do not repeat the same price).
Table I summarizes the principal modifications required in our
WSN-NUM protocol, compared to the unicast oriented base
NUM protocol. Note that the WSN-NUM protocol described
here assumes a completely cooperative environment, where all
nodes accurately exchange and compute their shadow prices
and individual sensors use Equation 3 to adjust their data
rates. The general problem of NUM-oriented adaptation in
the face of inaccurate or partially accurate information or rate
adaptation is an open problem, beyond the scope of this paper.

1The term ‘shadow price’ refers to the price per bit computed in Equation 4
and implicitly reflects a per-bit resource consumption charge that typically
increases rapidly as the consumption rate (in this case, the bandwidth
utilization) approaches the capacity constraint.

Node Prior Unicast Modified WSN-NUM
Adaptation Protocol

Source Node performs rate performs only rate
and w adaptation adaptation based on

sum of wms values
Sink Node echoes back costs computes wms;
(Mission) echoes back cost and wms

Intermediate adds link cost(s) adds and splits clique’s cost
Forwarding Node before relaying before broadcasting to multiple

downstream neighbors;
computes maximal cliques

TABLE I: Key Differences in Distributed Adaptation Pro-
cedure

B. WSN-NUM Performance and Convergence

Simulation experiments performed using an implementation
of the WSN-NUM protocol on the Qualnet discrete-event
simulator, and using an 802.11b MAC protocol, demonstrate
that the algorithm can converge close to the theoretical opti-
mum, with only a very modest signaling overhead. Figure 2
shows the evolution of the cumulative system utility for a ran-
domly distributed topology consisting of 50 nodes; Figures 3
and 4 show the corresponding signaling packet overhead and
the mean end-to-end flow latency and packet delivery ratios
achieved by our WSN-NUM protocol. It is easy to see that the
WSN-NUM protocol can dynamically adjust the data rates of
individual sensor streams and ensure that the packet delivery
rate (even without a reliable MAC layer) stays above 80−90%.

III. DYNAMIC ADAPTATION WITH PRIORITIZED MISSIONS

The basic NUM adaptation strategy focuses only on max-
imizing the cumulative utility, i.e., there is no notion of
priorities across the missions and it is acceptable to provide
arbitrarily small rates (and low utility) to one or more missions,
if that contributes to the “collective good”. In many military
scenarios, there is often a clear notion of relative priority
assigned to missions, with the priority values used for arbi-
trating across missions in the face of unplanned or unexpected
resource shortages. To incorporate the notion of priorities,
we must also introduce the notion of a minimum-acceptable
demand; accordingly, we now model each prioritized mission
through a priority order and a quasi-elastic demand function
(as the mission will always benefit from sensor data rates
that exceed its bare minimum requirements). Thus, a prior-
itized mission m is associated with a priority value POm
and a minimal demand function that is represented by the
function fm(set(m)) ≥ Dm, where Dm is a scalar constant.
This formulation effectively specifies an |set(m)|-dimensional
surface (where |set(m)| is the number of sensors used by
the mission) in the utility space, demarcating the unsatisfied
region, corresponding to the various combinations of rates
from the set(m) sensors that satisfy the minimal utility; see
Figure 5 for an example. The modified NUM problem can
then be defined as: SENSOR− P (U ;L) :

maximize
∑
m∈M Um(Xm) over xs ≥ 0

subject to i)
∑
∀(k,s)∈l

xs

ck,s
≤ 1, and

ii) fm(X) ≥ Dm, ∀m ∈ {1, . . . ,H} (6)



Fig. 2: Evolution of total network utility (N = 50)
Fig. 3: Total packet overhead/node/minute
(bytes) vs. network size
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Fig. 4: Average packet delivery ratio (PDR) and
latency vs. network size

where fm(X) denotes the minimum demand of a prioritized
mission in terms of its utility and H is the total number of
such ‘prioritized’ missions (let HP denote the set of such
prioritized missions).

A. Solving the Prioritized NUM Problem For Feasible Sce-
narios

Using the basic principle of decomposable optimization,
the SENSOR-P(U;L) problem can be decomposed into the
following independent SINK and NETWORK problems.
SINKm(Um;λm) :

maximize Um(
w̄m
λ̄m

)− (
∑

s∈set(m)

wms) over wms > 0 (7)

where w̄m is a vector of terms wms, λ̄m is a vector of
λms, and element-wise division of w̄m by λ̄m is assumed.
NETWORK(L;w) :

maximize
∑
s∈S

∑
m∈M wmslog(xs) over xs ≥ 0

subject to i)
∑
∀(k,s)∈l

xs

ck,s
≤ 1, for each clique l ∈ L,

and ii) fm(X) ≥ Dm, ∀m ∈ {1, . . . ,H} (8)

Note the absence of the priority values POi in this
specification–this arises from the assumption that all mission
demands are collectively feasible; the POi values become
relevant in determining the set of missions only in cases
where the network can satisfy only a partial set of the mission
demands.

By taking the Lagrangian of this joint problem and setting
the first-order derivatives to 0, we can now show that (under
the assumption that the set of demands is collectively feasible)
if
• An individual sensor s continues to adapt its rate accord-

ing to Equation 3
• Each mission computes its ‘willigness to pay’ according

to the modified ‘η-corrected’ equation:

wms(t) = xs(t)
∂Um
∂xs

+ xs(t) ∗ ηms ∗
(
∂fm(X)
∂xs

)
, (9)

where ηms is an additional‘payment term’ computed
according to:

ηms = (1− fm(X(t))/Dm)+/εp if fm(X) < Dm

= 0 otherwise, (10)

then this iterative rate adjustment scheme will converge to
rates that optimize a relaxation of the problem SENSOR −

P (U ;L). (Here p is a scaling coefficient that determines the
sensitivity of the gradient ascent algorithm.) The ‘additional
payment term’ ηms is non-zero only when the mission’s
current utility is lower than its minimal specified demand Dm;
a non-zero value of ηms effectively causes the sensor rate
adjustment (via Equation 3) to have an additional ‘positive
bias’ towards a higher rate (to drive the subscribed mission’s
utility to a higher, minimally acceptable, value). The important
point to note here is that this relatively more-complicated opti-
mization objective has been met through a simple modification
(localized only to each receiving mission) of the distributed
WSN-NUM protocol.

However, this simple adjustment in the adaptation scheme
does not, by itself, guarantee that all prioritized missions
will have their minimum demands satisfied. However, if we
set an upper bound Nmax on the number of missions that
the system can admit, and restrict the maximum slope of a
mission’s utility function (which occurs at the origin, due to
the concavity of utility functions) to an arbitrary value Smax,
we can ensure that all the prioritized missions will have their
minimal demand met (to within ε) by ensuring that:

1
εp−1

> Nmax ∗ Smax. (11)

Intuitively, this condition ensures that the marginal cost for a
priority flow receiving utility that is more than ε lower than its
minimum demand is always greater than the marginal utility
of all other missions. In practice, given Nmax and Smax, we
set ε = 1

Nmax∗Smax

1
p−1 .

Fig. 5: Surface demarcating
feasible and infeasible regions
for the minimum utility demand
of a prioritized mission.

Fig. 6: Utility of three mis-
sions in a network, with de-
mands at different times

B. Protocol Performance and More Complex Situations

To demonstrate our modified NUM framework, we simu-
lated the operation of the modified WSN-NUM-P protocol
over a 20-node wireless sensor network with random topol-
ogy. There are 6 sources and 10 missions of which m1,



m2, m3 are prioritized. The utility functions are given by
Um1(x1, x2) = log(1+x1)+ log(1+x2), Um2(x1, x3, x5) =
log(1 + x1) + log(1 + x2) + log(1 + x3) and Um3(x3, 4) =
log(1 + x3) + log(1 + x4). At time t=500, m1 demands a
minimum utility of 15; at t=1000, m2 demands 35; at t=1500,
m3 demands 30. The utilities of the three missions over time
is shown in Fig. 6. We see that when the demands arrive, the
utilities are adjusted to meet the minimal demands. Moreover,
we can see that for any network configuration, the global utility
always approaches the optimal utility (shown in dotted lines).

The above formulation assumes that the set of demands
made by the set of prioritized missions are inherently fea-
sible. However, there may be cases when impairments in the
underlying network cause a violation of this assumption–in
such cases, the NUM protocols must be modified to find the
‘optimal’ set of satisfied flows SF (SF ⊂ HP : mi ∈
SF iff fi(X) > Di). In this case, optimality is defined by the
following properties: (i) Priority Property: A mission mi with
priority POi cannot be in the set SF if removing this mission
from SF (i.e., reducing its utility below its minimum demand)
enables a higher priority mission, Pj : Pj > Pi, not in set SF ,
to become a member of SF , and (ii) Utility Property: Given
the set SF , the set of sensor rates chosen, {xs}, maximizes
system utility (subject to capacity constraints) and meets the
minimum demand for all mi ∈ SF . This is a considerably
more complex problem, requiring more elaborate modification
to the base WSN-NUM protocols. However, as detailed in
[11], our initial results suggest that heuristic modifications to
the distributed protocols enable us to achieve close-to-optimal
performance, with only modestly higher signaling overhead.

IV. BALANCING INSTANTANEOUS UTILITY AND LIFETIME
OBJECTIVES

We now turn our attention to a new problem–that of jointly
maximizing the cumulative system utility and the operational
lifetime of the WSN. This is a departure from the prior body
of NUM work, in that our objective is now multi-dimensional.
Indeed, the conventional NUM protocols focus on the adap-
tation of the current source data rates (and optionally, the
link capacities) to maximize the instantaneous system utility;
such greedy optimization might result in rapid depletion of
the residual energy on the intermediate network nodes and
lead to unsatisfactorily small operational lifetime. In contrast,
a multi-dimensional objective helps capture the presence of
both bandwidth and lifetime (or energy) constraints more ac-
curately. We show that such constraints can be captured by the
general “optimal control” framework, where the problem of
determining the instantaneous rates is equivalent to selecting,
not just instantaneous sensor data rates, but rather a functional
(or time-indexed function) of the sensor data rates. This type
of multi-dimensional optimization is applicable to a variety of
military problems, e.g., determining the maximum amount of
video feeds that can be transmitted from land-based sensors,
given that a mission has to last for 48 hours.

A. Review of Optimal Control
The basic theory for optimizing the mission utility under

a lifetime objective comes from Optimal Control, a math-

ematical framework used for determining adaptive behavior
of a system over time. It has wide applications in modeling
dynamic engineering systems and also in economics [15]. The
general form of the objective function of an inter-temporal
optimization problem can be written as:

maximize
∫ T

t0

f(s(t), c(t), t)dt (12)

subject to
ds

dt
= g(s(t), c(t), t) (13)

with s(t0) = s0 and s(T ) = sT

Here s(t) is a state variable and c(t) is a control variable.
The constraint in Eq.(13) denotes the rate of change of the state
of the system. By taking Lagrangian and simplifying using
integration by parts, we get

J =
∫ T

t0

[f(s, c, t)+ψg(s, c, t)+s
dψ

dt
]dt−ψ(T )s(T )+ψ(t0)s(t0)

(14)
By using the first-order necessary condition for optimality
(dJdt = 0), we can show that the optimal solution satisfies
the relationships:

Hc = fc + ψgc = 0 (15)
dψ

dt
= −Hs = −(fs + ψgs) (16)

where H = f(s, c, t) + ψ(t)g(s, c, t) and is referred to as
the Hamiltonian function. Equations (15) and (16) are both
necessary and sufficient for optimization over time [16].

B. Application of Optimal Control-based NUM Adaptation in
Mission-oriented WSNs

As an easy-to-understand but representative example of
the application of this technique to mission-oriented WSN
environments, we consider the problem of utility optimization
of a set of missions over a pre-defined network operational
lifetime. We consider the scenario where the number of
missions M remains fixed throughout a time interval T , and
the goal is to continuously regulate the individual sensor rates
to maximize the global utility over this entire network lifetime.
We assume that a node k in the network has an initial, non-
renewable battery capacity Ek; furthermore, as communication
costs typically dominate computing costs, we assume that the
transmission and reception energy for one bit of data by node
k is αkt and αkr units, respectively. Our objective function can
then be framed as follows: SENSOR− LIFE(U ;L) :

maximize
∫ T

0

∑
∀m∈M

Um(xs:s∈set(m)(t))dt

(17)
subject to

Energy (i)
dpk
dt

= −(
∑

∀i∈InFlows(k)

αkrxi(t)+∑
∀i∈OutF lows(k)

αkt xi(t) = −αk
∑

∀i∈Flows(k)

xi(t)∀ k ∈ K,

(18)



Capacity (ii)
∑
∀(k,s)∈l

xs(t)
Cks

≤ 1 ∀t ∀l ∈ L (19)

(iii) pk(T ) ≥ 0 ∀nodes k, (20)

where pk(t) is the residual battery in node k at time t,
pk(0) = Ek and αk = αkr + αkt . The constraint in Eq.(18)
models the consumption of battery power at each node,
while Equation (19) reflects the bandwidth constraints of the
network.

The Hamiltonian for the problem in Eq.(17)-(20) is given
as:

H =
∑
∀m∈M

Um(xs:s∈set(m))−
∑
∀l∈L

µl
∑
∀(k,s)∈l

(
xs
Cks
− 1)−

∑
∀k∈K

ψkαk
∑

∀i∈Flows(k)

xi

where µq and ψk are now (time-dependent) Lagrangian
multipliers.

The necessary and sufficient conditions for optimization
then reduce to:

(i)Hxs =
∑
∀m∈M

∂Um
∂xs

−
∑
∀l∈L

µl
∑

(k,i)∈l

1
Cki

−
∑

∀k∈Path(s)

ψkαk = 0 and (21)

(ii)
dψk
dt

= −Hpk
= 0 (22)

Differentiating Eq.(21) and using Eq.(22), we get dxs

dt = 0.
Similarly, we can also derive that dψk

dt = 0. This implies that
the marginal cost associated with the depletion of a node’s
battery resources stays constant over time. Taken together,
these relationships indicate that the optimal strategy is for the
sensors to transmit data at a constant rate over the entire
duration T , subject to the constraints that the rates do not
collectively violate either the capacity or power depletion
constraints. Accordingly, for this specific problem, we can
show that if:
• each individual forwarding clique l and forwarding node
k computes its capacity shadow cost µl and ‘power’
shadow cost νk according to (with the time index for
both of these costs being implicitly dropped):

µl = (
∑
∀(k,s)∈l

xs(t)
ck,s

− 1 + ε1)+/ε2

νk = (αk ∗
∑

∀s∈Path(k)

xs(t)−
Ek
T

+ ε2)+/ε22

where ε1 and ε2 are arbitrarily small constants,
• each sensor node si adjusts it rate according to the

equation

d

dt
xsi

(t) = κ(
∑

m∈Miss(si)

wmsi
(t)− xsi

(t) ∗ {

∑
∀l∈flow(si)

µl(t) ∗
∑

∀(k,si)∈l

1
ck,si

+
∑

∀k∈Path(si)

νk(t)}) (23)

• each mission adjust’s its so-called ’willingness to pay’
value for each subscribed sensor as:

wms(t) = xs(t)
∂Um
∂xs

(24)

then the distributed and iterative rate adjustment scheme
converges to a relaxation of the problem SENSOR −
LIFE(U ;L).

The important point here is that the sensor data rates are
controlled by the more-restrictive of the capacity or power con-
sumption constraints at each node. While the above adaptation
is fairly simple, the basic dual-layer NUM adaptation strategy
described here is applicable to a much broader set of problems.
For example, optimal-control based NUM adaptation can be
used to optimize other, more complex scenarios, such as when
the network has replenishable battery or when missions arrive
and depart at unpredictable instants (but can be described
through statistical arrival and departure processes).

V. OPEN AND ONGOING PROBLEMS

The NUM-related modifications described in the previous
sections demonstrate the ability to solve many complex re-
source optimization problems via the principle of decom-
posable optimization. However, each of the three problems
described before relate largely to the control of ‘source data’
rates and thus correspond to various adaptations performed
purely at the network layer. We now describe a set of ongoing
research activities related to more sophisticated cross-layer
optimization problems of relevance to mission-centric mili-
tary operations, especially in resource-constrained battlefield
environments.

• Joint Allocation of Sensor Assets and Rate Control:
In the problem formulations described here, the set of
sensors assigned to each mission (i.e., set(m)) and the
underlying routes for the data flows are assumed to be
provided a priori. In practice, the adaptive rate control
techniques described here are preceded by a separate
sensor assignment phase, where the sensor assets are
assigned or matched to both static and dynamic mission
demands. When sensor data are consumed by multiple
missions, the assignment process should, in general, arbi-
trate both the competition among contending missions for
common sensor resources and the (bandwidth,lifetime)
constraints associated with the wireless transport network.
So far, the practice, however, has largely been to solve
these two aspects of mission-based network adaptation
independently–in particular, the sensor-mission matching
activity typically does not consider the bandwidth con-
straints in the transport network.
Given the desire to avoid selecting sensors whose traffic
flows over congested paths, significant improvements in
overall system utility can be expected if we can jointly
optimize both the set of sensors set(m) assigned to a
mission and the data rates of the corresponding sensor
data streams. In a formal way, the problem may be



expressed as SENSOR− JOINT (U ;L) :

maximize
∑
m∈M

Um(xs ∈ A(S)m) over xs ≥ 0

subject to i)
∑
∀(k,s)∈l

xs
ck,s
≤ 1 ∀l ∈ L

ii) A(S)m ⊂ Req(M) ∀m ∈ {1, . . . ,M}
(25)

where A(X) is viewed as a vector of projections fromt
the set of sensors S, such that A(S)m (the mth row of
the vector) corresponds to the set of sensors set(m) to
which mission m subscribes, and Req(m) denotes the
specification of the number (and type) of sensors required
by mission m. Note that this problem is, in general, a
mixed-integer problem (as the decision of including a
sensor in set(m) is an integral one), and is NP-Hard.
However, it is very likely that smart, iterative heuristics
can be formulated that preserve the decentralized opera-
tion of the NUM protocols and that significantly improve
the overall utility of the network. An early and limited
example of this is available in [14], which considers the
more limited problem of jointly assigning each sensor
to a unique single mission and in maximizing the rate-
based utility of each mission. Results in [14] show that a
distributed but coupled optimization heuristic can result
in ≈ 15% improvement in overall utility, and provide
early evidence that this form of joint optimization can
result in significantly higher mission utilities.

• In-Network Sensor Fusion and Computational Energy
Constraints: In-network processing has been widely pro-
posed (e.g., [4]) as a fundamental technique for miti-
gating the communication load incurred in transporting
sensor data over energy-constrained wireless networks.
In-network processing or fusion typically reduces the
volume of data transmitted to the sink at the expense
of a potential loss of information that occurs during the
aggregation process. For many stream-oriented military
mission scenarios, where the data comes from a variety
of relatively high data-rate streaming sources (e.g., video
or radar feeds), in-network processing comprises rela-
tively sophisticated operations (e.g., MPEG compression
or wavelet transformations). Due to the non-negligble
energy footprint of in-network computation for such
applications, an interesting problem is to determine both
the degree and location of such in-network operations that
help to maximize the cumulative utility, subject to both
wireless bandwidth and energy constraints. While limited
past work (e.g., [6], [8]) has considered the presence
of simultaneous energy and communication constraints,
they do not consider the possibility of varying the level
or quality of the in-network processing performed to
adapt to these constraints. In many applications, however,
opportunities exist for either variable compression (of
a single stream; e.g. variable compression of MPEG
streams) or fusion (of multiple streams; e.g. mixing of
multiple video streams), resulting in a non-linear tradeoff
between computation and communication energy, with

corresponding effect on the overall mission utility.
For the relatively simple case where the location of the
fusion operators is fixed, this problem can be expressed
as SENSOR− INP (U ;C;P ) :

maximize
∑
m∈M

Um({xrecs }s∈set(m))− δ
∑

∀nodes,k

P ktot.

(26)
subject to

i) Capacity Constraint:∑
∀(k,i)∈l

xout(i, k)
cki

≤ 1,∀l ∈ L (27)

ii) Energy Constraint: P ktot ≤ P kmax,∀k ∈ K (28)

where P ktot = P krec + P ktrans + P kcomp,

0 ≤ δ ≤ 1 and xi, xout ≥ 0∀i

where xrecs is the data rate from sensor s received by
mission m and P ktot is a threshold on the maximum
power that can be consumed by node k. Clearly, the
NUM protocol must now be enhanced to capture the
fact that the rate received by a mission may differ from
the sensor’s source rate, due to variable compression or
fusion performed by nodes on the forwarding path.

• Mission-Interdependence and Adaptive Selection: The
existing NUM models assume that each mission is inde-
pendent of all others; accordingly, the cumulative utility
of the set of missions is simply the sum of the utilities
of each individual mission. While this abstraction holds
for most conventional applications, it may not be strictly
true for military mission-oriented environments, where
missions may exhibit several different types of interde-
pendence. For example, it is possible that missions may
be deployed in redundant configurations (e.g. it may be
OK for two out of 3 gunfire monitoring applications to
receive their sensor feeds) or be viable only in groups
(e.g. a mission monitoring the adversary’s movement
may not be useful unless an alternate mission monitoring
the location of friendly artillery assets receives adequate
data). For such scenarios, the basic NUM formulation
needs to be modified to capture the fact that the utilities
are not additive, but exhibit more complex relationships.
It is likely that the non-linear nature of the relationships
will make exact computation of the optimal sensor rates
an NP-hard problem. Accordingly, we feel that the most
promising way to view such scenarios is to model them
as cross-layer optimization problems, with one layer
focusing on the best selection of sensor data rates for a set
of ‘active’ missions and another higher layer dynamically
controlling the activation and deactivation of missions.
The goal in these cases is not to achieve the global
optimum, but use a set of coupled iterative loops to
achieve significantly better mission utilities than those
achieved without considering these inter-dependencies.
Such cross-layer NUM-based optimizations have been
explored for a limited set of optimization problems–e.g.
for the joint optimization [12] of source rates and node
transmission powers (for modulating link capacity) for



unicast flows. In general, most cross-layer techniques
have, however, been limited to the joint optimization of
variables within a single ‘layer’ (e.g., within the com-
munications network.) We believe that the principle of
decomposable optimization can be used for a much richer
set of cross-layer optimization problems, for example,
when one control parameter lies in the communications
layer (e.g., sensor transmission rate) and the other control
parameter lies in the information layer (e.g., the choice
of multiple locations where sensor data will be cached
for efficient search.)

• NUM Sensitivity to Incorrect Information: Besides
application-specific adaptations of NUM, an important
open question relates to the fundamental stability and
performance of the NUM-based framework in the face of
incorrect, missing or inaccurate information. In military
environments, it is likely that one or more individual
nodes may be compromised, causing the overall NUM
protocol to deviate from the optimal. For example, an
individual forwarding node may report abnormally high
shadow costs, thereby throttling the data rates of sensors
whose data dissemination paths traverse this node. Ac-
cordingly, practical deployment of NUM-based protocols
in tactical military networks requires the development
of both adequate distributed monitoring mechanisms (so
that nodes can detect potential incorrect behavior by
neighboring nodes) and corresponding modifications to
the adaptation protocols (so that the nodes can counteract
such faulty behavior). In addition to deliberately mali-
cious behavior, NUM-based protocols may also exhibit
performance degradation simply due to erroneous or
missing feedback (e.g., if clique congestion messages are
lost). An early study of the sensitivity of the basic NUM
protocol in [17] shows how noisy feedback can slow the
rate of NUM convergence and how the use of multiple
NUM-loops can be more susceptible to noisy feedback.
Further research is required to understand and character-
ize the sensitivity of WSN-NUM protocols, where sensor
data streams are typically multicast to and consumed by
multiple sinks (missions) and where different adaptation
loops often operate over widely differing time scales.

VI. CONCLUSIONS

This paper attempts to establish the wide applicability of the
Network Utility Maximization (NUM) optimization technique
as a tool for decentralized resource sharing in mission-based
wireless sensor networks. By framing the requirements of indi-
vidual missions as, potentially quasi-elastic, utility functions,
the problem of resource sharing can be viewed as a decen-
tralized optimization problem and solved through relatively
low-overhead localized signaling among the wireless network
nodes. In this paper, we have first shown the modifications to
the basic NUM strategy required to tackle two unique features
of missions that utilize a common set of sensor data streams:
i) the use by a mission of data from multiple sensor data
streams, and ii) the specification of strict priorities across
missions with quasi-elastic demand constraints. Our simulation

studies show that the modified NUM protocols can achieve
close-to-optimal utility with only modest signaling overheads
of ≈ 100s of bytes/min at each node. In addition, we have
provided initial evidence of how more complex objectives of
joint utility and lifetime maximization can be formulated as
an optimal control problem, and how the optimal behavior can
be achieved through NUM-based adaptive feedback.

Looking forward, we believe that this form of decoupled
optimization may be used to develop robust and quick-
reacting resource sharing protocols for a variety of problems
in mission-based operating environments. A particularly inter-
esting application of this technique may be in optimization of
resources ‘across’ different networks–for example, for finding
a good combination of active missions, sensor-mission assign-
ments and sensor data rates that satisfy the constraints in both
the communications and information networks.
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