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Sequential Decision Learning for Social Good and
Fairness
Dexun Li

Abstract

Sequential decision learning is one of the key research areas in artificial intel-

ligence. Typically, a sequence of events is observed through a transformation

that introduces uncertainty into the observations and based on these observa-

tions, the recognition process produces a hypothesis of the underlying events.

This learning process is characterized by maximizing the sum of the reward

signals. However, many real-life problems are inherently constrained by limited

resources. Besides, when the learning algorithms are used to inform decisions

involving human beings (e.g., Security and justice, health intervention, etc), they

may inherit the potential, pre-existing bias in the dataset and exhibit similar

discrimination against protected attributes such as race and gender. Therefore, it

is essential to ensure fairness constraints are met and budget constraints are not

violated when applying sequential decision learning algorithms in real-world sce-

narios. In this dissertation, we focus on the practical problem of fair sequential

decision learning that contributes to the social good, within settings of Restless

Multi-Armed Bandits (RMAB) and Reinforcement Learning (RL). In particular,

the dissertation is split into two major parts.

In the first part of the work, we consider the RMAB setting. RMAB is an

apt model to represent decision learning problems in public health interventions

(e.g., tuberculosis, maternal, and child care), anti-poaching planning, sensor

monitoring, personalized recommendations, and many more. In the context

of public health settings, the problem is characterized by multiple arms (i.e.,

patients) whose state evolves in an uncertain manner (e.g., medication usage in

the case of tuberculosis) and threads moving to ”bad” states have to be steered



to ”good” outcomes through interventions. Due to the limited resources (e.g.,

public health workers), typically certain individuals, communities, or regions

are starved of interventions, which can potentially have a significant negative

impact on the individual/community in the long term. To that end, we argue

the need to ensure fairness during decision-making (e.g., select arms/patients to

give health interventions). We, therefore, combine recent advances in RMAB

research with our proposed definition of fairness in the face of uncertainty to

develop a scalable and efficient algorithm to learn a policy that can handle

fairness constraints without sacrificing significant solution quality. We provide

theoretical performance guarantees and validate our approaches on simulated

benchmarks.

In the second part of the thesis, we address the sequential decision learning

in a reinforcement learning setting, starting with the problem of influence max-

imization in an unknown social network. The objective is to identify a set of

peer leaders within a real-world physical social network who can disseminate

information to a large group of people. This approach has found a wide range

of applications, including HIV prevention, substance abuse prevention, micro-

finance adoption, etc. Unlike online social networks, real-world networks are not

completely known, and collecting information about the network is costly as it

involves surveying multiple people. Specifically, we focus on the problem of the

network discovery process for influence maximization with a limited budget (i.e.,

certain numbers of surveying). Because interactions with the environment in

real-world settings are costly, it is crucial for reinforcement learning algorithms

to have minimum possible environment interactions, i.e., to be sample efficient.

To achieve this, we propose a curriculum-based approach that enhances the

sample efficiency of existing RL methods. Our proposed algorithm has been

demonstrated to outperform existing approaches in a sample-efficient manner.

We further explore training generally capable RL agents in complex envi-

ronments. Recent research has highlighted the potential of the Unsupervised

3



Environment Design (UED), a framework that automatically generates a cur-

riculum of training environments. Agents trained in these environments can

develop general capabilities. Specifically, our focus lies on applying UED in

scenarios where resources are limited, characterized by a limited number of

generated environments and limited training horizons. To this end, we introduce

a hierarchical MDP framework, which consists of an upper-level RL teacher

agent tasked with generating suitable training environments for a lower-level

student agent. The RL teacher can leverage previously discovered environment

structures and generate challenging environments at the frontier of the student’s

capabilities by observing the representation of the student policy. We incorporate

an additional fairness reward to accurately guide the environment generation

process and leverage recent advances in generative models to minimize the

costly collection of experiences required to train the teacher agent. Our pro-

posed method significantly reduces the resource-intensive interactions between

agents and environments, and empirical experiments across various domains

demonstrate the effectiveness of our approach. Our research can lead to more

principled, robust, and widely accepted systems that can be used to assist in

training non-expert humans.
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Chapter 1

Introduction

This dissertation is concerned with the study of sequential decision learning in

real-world scenarios where the agent faces constraints due to limited resources.

This process requires the agent to interact with the environment sequentially

amidst uncertainty. The agent iteratively collects information, updating decision

parameters based on the cumulative information available, and then makes a

decision. The goal is to identify an optimal sequence of actions to perform a

specific task. Such systems hold broad potential across various social domains.

For example, as shown in Figure 1.1, in the public health intervention domain,

they address challenges related to health and hunger, including early-stage

diagnosis and optimized food allocation. In the domain of security and justice,

they tackle societal challenges by preventing crime and other physical dangers

and protecting the world’s wildlife and forests from poaching and illegal logging.

However, In many application domains, especially those involving safety-

critical or resource-related decision-learning, a common feature is the presence of

limited resources, which typically restricts the agent’s exploration in the environ-

ment during the decision process. These scenarios can lead to budget constraints

when deploying algorithms. This necessitates reducing the costly interactions

between agents and environments, particularly in the context of reinforcement

learning, to achieve sample efficiency. Moreover, when decision-learning algo-

1



Figure 1.1: The applications of sequential decision-learning in real-world sce-
narios.

rithms, which use real-world datasets, are applied to inform decisions involving

human beings (e.g., health interventions, skill training), they may inherit un-

derlying, pre-existing biases in the dataset and exhibit similar discrimination or

sensitivity to protected attributes such as gender. In these cases, it is crucial to

consider fairness constraints in methods.

Specifically, we develop and employ algorithmic to address the above chal-

lenges through two major settings discussed in Parts II and parts III:

Part II We focus on Restless Multi-Armed Bandits (RMAB)framework for the

health intervention problem, particularly in settings where resources are scarce

and there is a need to consider fairness constraints for resource allocations.

Part III We explore a reinforcement learning framework for two specific prob-

lems, utilizing curriculum-based insights to enhance sample efficiency.

1.1 Motivation for RMAB setting-Part II

Restless Multi-Armed Bandits Process is a generalization of the classical Multi-

Armed Bandits (MAB) process, which has been studied since the 1930s [41].

RMAB is a powerful framework for budget-constrained resource allocation tasks

in which a decision-maker must select a subset of arms for interventions in

each round. Each arm evolves according to an underlying Markov Decision

Process (MDP). The overall objective in an RMAB model is to sequentially

select arms so as to maximize the expected value of the cumulative rewards

collected over all the arms. RMAB is of relevance in public health monitoring
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scenarios, recommendation systems and many others. Tracking a patient’s health

or adherence and intervening at the right time is an ideal problem setting for an

RMAB [2, 9, 56], where the patient health/adherence state is represented using

an arm. Resource limitation constraint in RMAB comes about due to the severely

limited availability of healthcare personnel. By developing practically relevant

approaches for solving RMAB within severe resource limitations, RMAB can

assist patients in alleviating health issues such as diabetes [66]. hypertension [11],

tuberculosis [15, 69], depression [55, 62], etc.

While Whittle index based approaches [56, 46] address the RMAB problem

with an infinite time horizon by providing an asymptotically optimal solution and

contribute theoretical results, they are susceptible to starving arms, which can

have severe repercussions in public health scenarios. Owing to the deterministic

selection strategy of picking arms that provide the maximum benefit, in many

problems, only a small set of arms typically get picked. As shown in our

experimental analysis, where almost 50% of the arms do not get any interventions

using the Whittle index approach. While it is an optimal decision, it should

be noted that interventions help educate patients or beneficiaries on potential

benefits and starvation of such interventions for many patients can result in a

lack of proper understanding of the program and reduce its effectiveness in the

long run. Thus, there is a need to not starve arms without significantly sacrificing

optimality.

Existing works have proposed different notions of fairness in the context

of MAB to prevent starvation by enabling the selection of non-optimal arms.

Li et al. [50] study a new Combinatorial Sleeping MAB model with Fairness

constraints, called CSMAB-F. Their fairness definition requires algorithm to

ensure a minimum selection fraction for each arm. Patil et al. [71] introduce

similar fairness constraints in the stochastic MAB problem, where they use a pre-

specified vector to denote the guaranteed number of selections. Joseph et al. [37]

define fairness as saying that a worse arm should not be picked compared to a
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better arm, despite the uncertainty on payoffs. Chen et al. [17] form the allocation

decision-making problem as the MAB with fairness constraints, where fairness

is defined as a minimum rate at which a task or resource is assigned to a user. We

build on the notion of fairness for reinforcement learning setting and introduce

two different fairness notions for our RMAB setting: a deterministic fairness

constraint and a probabilistic fairness constraint. Specifically, the deterministic

fairness constraint requires that for any arm (or more generally, for a type of arm),

the number of decision epochs since the arm (or the type of arm) was activated

last time is upper bounded, while the probabilistic fairness definition requires

that an RMAB algorithm never favor an arm probabilistically over another arm,

if the long-term cumulative reward of choosing the latter arm is higher. Providing

such decision support with a fairness mindset can promote acceptability among

community [76, 42].

1.2 Motivation for RL setting-Part III

In contrast to the previous RMAB setting, Reinforcement Learning (RL) is a

subset of machine learning in which the agent learns how to behave optimally in

an unknown environment. Essentially, the agent must learn what the best action

is in each state of the environment over time. The agent in reinforcement learning

employs the principle of trial and error to investigate the consequences of actions

in a given state. This is accomplished by examining the scalar feedback signal

associated with each action. However, interactions between the environment

and RL agents are expensive in many real-world applications, limiting our

ability to collect data. That raises the necessity for sample-efficient algorithms.

Furthermore, fairness concerns highlight the importance of learning risk-sensitive

policies in practical applications. In this dissertation, we explore two specific

sequential decision-learning problems for social good constrained by limited

resources. In both these problems, we employ curriculum-based approaches to
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improve sample efficiency and reduce costly interactions.

The first problem of interest is influence maximization, which aims to iden-

tify a small subset of nodes in a network that can maximize the diffusion of

information. It has found application in HIV prevention, substance abuse pre-

vention, micro-finance adoption, etc. Unlike online social networks, real-world

networks are not completely known, and collecting information about network

is costly as it involves surveying multiple people. Therefore, in these applica-

tions, it is also important to efficiently discover a subset of the network within a

limited budget such that selecting peer leaders from this subgraph can help in

maximizing the influence in the complete network. The existing work in this

direction proposes a reinforcement learning framework to discover a subset of

networks within a given budget by leveraging the automatically learned node

and graph representations. The set of peer leaders is chosen from the discovered

network structure. To learn an efficient policy, the reinforcement learning agent

needs to explore the environment which requires multiple interactions with the

environment during training. The environment interactions in real-world settings

are costly, so it is important for the reinforcement learning algorithms to have

minimum possible environment interactions. To address this, we combine recent

advances in reinforcement learning in the face of uncertainty to create a scalable

algorithm for learning an optimal policy in a sample-efficient manner in order to

reduce the number of interactions with the environment. We first translate the

problem into a goal-directed learning problem by proposing a novel heuristic to

design an appropriate goal for each input state. It then uses insights from past

work on Curriculum-guided Hindsight Experience Replay (CHER) to improve

sample efficiency. CHER involves replaying each episode with multiple pseudo

goals, so the agent can get multiple experiences in a single environment interac-

tion. We conduct experiments on real-world datasets and show that our approach

can significantly outperform the existing approach.

The advancements in Reinforcement Learning (RL) have led to significant
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successes in various applications, such as game playing [61, 85], robot con-

trol [47, 3], and many others. However, training RL agents with general capabili-

ties remains a major challenge due to the millions of experiences required to train

an RL agent in each environment, which is both time-consuming and expensive.

One promising approach to address this problem is to ”shallowly” train an agent

on a sequence of tasks or environments [22, 36, 70, 51]. In the second research

problem, we focus on designing an adaptive curriculum for the environment

generation process to train an RL agent with general capabilities, applicable to

real-world human training scenarios. This process involves adaptively generating

environment instances/levels at the frontier of the agent’s capabilities, which

can lead to a more robust agent. However, existing approaches in this area

focus primarily on randomly generating environments for open-ended training.

The notion of open-ended training requires training an agent across hundreds

of thousands of randomly generated environments for hundreds of millions of

time steps. This is impractical in scenarios with limited resources, such as the

constraints on the number of generated environments. Therefore, it is crucial to

design a framework that achieves the same performance of RL agents using fewer

generated environments, thus reducing costly interactions between the agents and

the environments. We introduce a hierarchical MDP framework for environment

design tailored for scenarios with resource constraints. This framework consists

of an upper-level RL teacher agent responsible for generating suitable training

environments for a lower-level student agent. We incorporate an additional

fairness reward to guide the teacher agent to generate suitable environments.

Furthermore, we leverage advances in generative models to reduce the time-

consuming experience collection process. Our proposed method significantly

reduces the resource-intensive interactions between agents and environments

and empirical experiments across various domains demonstrate the effectiveness

of our approach.
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Figure 1.2: The relationship between my works under the AI for Social Good
with limited resources initiative. The works are categorized into two main areas:
RMABs Setting and RL Setting. Within the RMABs Setting, two parallel works
focus on health intervention: FaWT and SoftFair. FaWT considers deterministic
fairness constraints while SoftFair deals with probabilistic fairness constraints.
The RL Setting includes two parallel works: CLAIM, which focuses on influ-
ence maximization, and SHED, which focuses on training non-expert agents or
humans.

1.3 Contributions and Outline

The contributions and the outline of this dissertation are as follows:

• Chapter 2 (Restless Multi-Armed Bandits with Fairness Constraints): This

chapter covers sequential decision-learning in the Restless Multi-Armed

Bandits (RMAB) setting. We formally introduce the finite/infinite horizon

RMAB model with a new objective of computing policies that balance the

trade-off between maximizing cumulative rewards while giving a reason-

able chance for each arm (proportional to their value) to get selected for

intervention. We are interested in ensuring that RMAB decision-making is

also fair to different arms. We first give two different types of fairness def-

initions and further develop scalable and efficient algorithms for balancing

the trade-off between the goal of having resources uniformly distributed

and maximizing cumulative rewards. Our methods leverage recent ad-

vances in RAMB research to handle proposed fairness constraints and we

provide theoretical performance guarantees for our proposed methods. We

also demonstrate the utility of our approaches on simulated benchmarks

and show that our proposed fairness objectives can be handled without a

significant sacrifice on the performance quality.

7



• Chapter 3 (Influence Maximization in Unknown Social Networks): We

discuss the reinforcement learning setting where an agent interacts with

the environment to find an optimal sequence of actions to perform a

specific task. We introduce the problem of influence maximization in

unknown social networks, which is widely used in applications such as

viral marketing [43], rumor control [13], HIV prevention [105, 109], etc.

Unlike online social networks, real-world networks are not completely

known, and collecting information about the network is costly as it involves

surveying multiple people. In this chapter, we focus on the problem of

network discovery for influence maximization. The existing work in this

direction proposes a reinforcement learning framework. As in real-world

settings, the environment interactions are costly, the approach can be

improved by reducing the costly environment interactions. We develop

a curriculum-based algorithm to improve the sample efficiency of RL

methods. Additionally, we conduct experiments on real-world datasets

and show that our approach can outperform the existing approaches.

• Chapter 4 (Training Robust Agent with Limited Resources): There has

been rapid progress in the deployment of RL systems in the real world.

This involves automatically generating a curriculum of training environ-

ments, enabling agents trained in these environments to develop general

capabilities, i.e., achieving good zero-shot transfer performance. How-

ever, existing environment generation approaches focus primarily on the

random generation of environments for open-ended agent training. This

is impractical in scenarios with limited resources, such as the constraints

on the number of generated environments. In this chapter, we introduce

a hierarchical MDP framework for environment design under resource

constraints. Our proposed method can significantly reduce the resource-

intensive interactions between agents and environments and empirical
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experiments across various domains demonstrate the effectiveness of our

approach. We hope our research can lead to more principled, robust, and

widely accepted systems that can be used to assist in training non-expert

humans. Figure

• Chapter 5 (Conclusion and Future Work): Finally, we summarize our

works and describe future research directions.
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Chapter 2

Restless Multi-Armed Bandits

Restless multi-armed bandits (RMAB) is a popular framework for optimizing

performance with limited resources under uncertainty. It is an extremely useful

model for monitoring beneficiaries (arms) and executing timely interventions

using health workers (limited resources) to ensure optimal benefit in public

health settings. For instance, RMAB has been used to track patients’ health

and monitor their adherence in tuberculosis settings, ensure pregnant mothers

listen to automated calls about good pregnancy practices, etc. Due to the limited

resources, typically certain individuals, communities, or regions are starved of

interventions, which can potentially have a significant negative impact on the

individual/community in the long term. For example, in the context of public

health settings, this would ensure that different people and/or communities are

fairly represented while making public health intervention decisions. To that

end, we first define two different types of fairness objectives. Then we provide

scalable approaches to ensure long-term optimality while satisfying the proposed

fairness constraints in RMAB. We also provide theoretical properties and show

our proposed methods are asymptotically optimal. Finally, we demonstrate the

utility of our approaches on simulated benchmarks and show that the our fairness

objectives can be handled without a significant sacrifice on the optimal value.

The two works in this Chapter are presented in:
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• Li, Dexun, and Pradeep Varakantham. “Avoiding Starvation of Arms in

Restless Multi-Armed Bandits.” Proceedings of the 2023 International

Conference on Autonomous Agents and Multiagent Systems. 2023.

• Li, Dexun, and Pradeep Varakantham. “Efficient resource allocation

with fairness constraints in restless multi-armed bandits.” Uncertainty in

Artificial Intelligence. PMLR, 2022.

2.1 Introduction

Picking the right time and manner of limited interventions is a problem of great

practical importance in tuberculosis [56], maternal and child care [10, 58], anti-

poaching operations [74], cancer detection [46], and many others. All these

problems are characterized by multiple arms (i.e., patients, pregnant mothers,

regions of a forest) whose state evolves in an uncertain manner (e.g., medication

usage in the case of tuberculosis, engagement patterns of mothers on calls related

to good practices in pregnancy) and threads moving to “bad” states have to

be steered to “good” outcomes through interventions. The key challenge is

that the number of interventions is limited due to a limited set of resources

(e.g., public health workers, patrol officers in anti-poaching operations). Restless

Multi-Armed Bandits (RMAB), a generalization of Multi-Armed Bandits (MAB)

that allows non-active bandits to also undergo the Markovian state transition, has

become an ideal model to represent the aforementioned problems of interest as

it models uncertainty in arm transitions (to capture uncertain state evolution),

actions (to represent interventions) and budget constraint (to represent limited

resources).

Existing work [56, 10, 57] has focused on developing theoretical insights and

practically efficient methods to solve RMAB. At each decision epoch, RMAB

methods identify arms that provide the biggest improvement with an intervention.
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Such an approach though technically optimal can result in certain arms (or type

of arms) getting starved for interventions.

In the case of interventions with regards to public health, RMAB algorithms

focus interventions on the top beneficiaries who will improve the objective

(public health outcomes) the most. This can result in certain beneficiaries never

talking to public health workers and thereby moving to bad states (and potentially

also impacting other beneficiaries in the same community) from where improve-

ments can be minor even with intervention and hence never getting picked by

RMAB algorithms. As shown in Fig. 2.1, when using the Threshold Whittle

index approach proposed by Mate et al. [56], the arm activation probability is

lopsided, with 30% of arms getting activated more than 50 times and 50% of

the arms are never activated. Such starvation of interventions can result in arms

moving to a bad state from where interventions cannot provide big improvements

and therefore there is further starvation of interventions for those arms. Such

starvation can happen to entire regions or communities, resulting in lack of fair

support for beneficiaries in those regions/communities. To avoid such cycles

between bad outcomes, there is a need for RMAB algorithms to consider fairness

in addition to maximizing expected reward when picking arms. Risk sensitive

RMAB [58] considers an objective that targets to reduce such starvation, how-

ever, they do not guarantee that arms (or types of arms) are picked a minimum

number of times.

Recent work in Multi-Armed Bandits (MAB) has presented different notions

of fairness. For example, Li et al. [50] study a Combinatorial Sleeping MAB

model with Fairness constraints, called CSMAB-F. The fairness constraints

ensure a minimum selection fraction for each arm. Patil et al. [71] introduce

similar fairness constraints in the stochastic multi-armed bandit problem, where

they use a pre-specified vector to denote the guaranteed number of pulls. Joseph

et al. [37] define fairness as saying that a worse arm should not be picked

compared to a better arm, despite the uncertainty on payoffs. Chen et al. [17]
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Figure 2.1: The x-axis is the number of times activated, and the y-axis is the
percentage of each frequency range. We consider the RMAB with k = 10,
N = 100, T = 1000. Left: the result of using the Whittle index algorithm
without considering fairness constraints. Middel: the result of FaWT with
considering deterministic fairness constraints in Section 2.3, and we set L = 50,
η = 2. Right: the result of SoftFair when considering probabilistic fairness
constraints in Section 2.4. As can be noted, without fairness constraints in place,
almost 50% of the arms never get activated.

define the fairness constraint as a minimum rate that is required when allocating

a task or resource to a user. The above fairness definitions are relevant and

we generalize from these to propose two different types of fairness notions for

RMAB. Unfortunately, approaches developed for fair MAB cannot be utilized

for RMAB, due to uncertain state transitions with passive actions as well.

Contributions: To the best of our knowledge, we are the first one to consider

fairness constraints in RMAB. Here are the key contributions:

• We propose two different types of fairness constraints wherein the first

one is defined as for any arm (or more generally, for a type of arm), we

require that the number of decision epochs since the arm (or the type

of arm) was activated last time is upper bounded. This will ensure that

every arm (or type of arm) gets activated a minimum number of times,

thus generalizing on the fairness notions in MAB described earlier. The

second type is the soft fairness objective which entails an algorithm never

probabilistically favors one arm over another if the long-term cumulative

reward of choosing the latter arm is higher.

• For the first deterministic fairness constraint, we provide a modification to
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the Whittle index algorithm that is scalable and optimal while being able to

handle both finite and infinite horizon cases. We also provide a model-free

learning method to solve the problem when the transition probabilities are

not known beforehand.

• For the second probabilistic fairness constraint, we introduce a practically

relevant algorithm called SoftFair, SoftFair enforces the probabilistic

(also called “soft”) fairness constraint and thereby avoids starvation of

interventions for arms. Unlike the well-known Whittle index algorithm

that can only solve the infinite horizon setting, SoftFair can also easily

handle finite horizon RMAB. SoftFair provides a trade-off between optimal

performance and avoiding intervention starvation for arms. This trade-off

is highlighted by the performance bounds and theoretical properties of the

SoftFair algorithm.

• Experiment results on the generated dataset show that our approaches

can be competitive with other policies in terms of expected reward, while

significantly reducing the starvation of interventions for arms.

2.2 Related Work

We focus on two threads of relevant research, the first category is related to

approaches for solving RMAB, and the second category is related to fairness

definitions and related approaches in decision making.

2.2.1 Whittle Index Policy

As one of the most well-studied generalisations of the Multi-Armed Bandit

(MAB), RMAB is increasingly used for decision learning problems ranging from

wireless broadcast [75, 83], job allocation [35], cancer detection [46], wildlife

protection [74], recommender systems [60], and health intervention [44, 10].
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Whittle [103] considered the Lagrangian relaxation of the RMAB in which arm

selection constraint (number of arms selected = k) is enforced on average over

the horizon. This policy, referred as the Whittle index policy is asymptotically

optimal [102]. Liu and Zhao [53] investigate the application of RMAB in

dynamic multichannel access, establish indexability and obtain Whittle index in

closed form for both discounted and average reward criteria. In [74], the authors

formulate the wildlife protection problem as a RMAB model and present an

algorithm that is based on binary search to find Whittle index policy. Mate et al.

[56] build a fast algorithm for computing the Whittle index, which provides an

order-of-magnitude speedup compared to Qian et al. [74]. Biswas et al. [10]

develop a model-free learning method based on Q-learning mechanism and show

that it converge to the optimal solution asymptotically. Online RMAB has also

raised some attentions in recent years, Wang et al. [98] present a learning policy

to construct offline instances in guiding action selection. Xiong et al. [108]

propose a generative model based reinforcement learning augmented algorithm

toward an index policy.

2.2.2 Fairness in Decision-making

Another line of work that is closely related to ours is the growing body of

literature on ensuring fairness in decision making [34, 18], in particular in the

domain of resource allocation [50, 17]. For example, ensuring resources are

fairly distributed among the arms is an important design concern in wireless

communication systems [25]. In the case of beneficiaries, an arm/patient might

consider action/participation fair when the participation of a certain patient (i.e.,

due to receiving an active action) resulted in a greater increase in expected time

spent in an adherent state compared to non-participation (i.e., the passive action

on the arm/patient) [42]. One widely used fairness notion in MAB literature is

to ensure that there is a minimum rate of arm activation for each user (arm) over
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time [50, 72]. Joseph et al. [37] introduce the study of fairness in MAB problems,

where their fairness notion is defined as not giving preference to a worse arm

over a better one. The quality of an action is the expected immediate reward

for selecting an action from the current state. However, this notion of fairness

can lead to policies favoring short-term rewards and ignoring long-term rewards.

Jabbari et al. [34] therefore adapt the fairness notion by defining the quality of

an action as its potential long-term reward and generalize it to a reinforcement

learning setting.

We generalize these fairness concepts to the RMAB setting and propose

deterministic and probabilistic fairness constraints. The deterministic fairness

constraint is defined as that for any arm, we require that there is an upper bound

for the length of the decision epochs since that arm was last activated. This will

ensure that each arm has a minimum number of selections. The second type is a

probabilistic fairness constraint, where the algorithm will never probabilistically

favor another arm if the long-term cumulative reward of the latter arm is higher.

Discussion of Fairness Choice. It is natural to ask what makes the proposed

notion of fairness in this chapter the right one? Our proposed fairness constraint

is driven by the flaw of SOTA that a substantial number of arms are never

selected, such starvation of intervention results in a huge demand for fairness

requirement in the real world. Furthermore, while our proposed algorithm can

still be used, our notion of fairness can also be extended to fairness on the

group/type of arms (i.e., check if the group fairness requirement is violated, and

if so, select the arm with the highest index value in that group/type). One of the

most widely used fairness notions is to define a minimum rate that is required

when allocating resources to users, and our deterministic fairness constraint can

be viewed as a variant of this [17, 50, 71]. Another form of fairness constraint

is to require that the algorithm never prefers a worse action over a better one

based on the expected immediate reward [37]. This can be seen as a variant of
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the Myopic algorithm, while our probabilistic fairness constraint ensures that

the probability is proportional to the long-term cumulative reward. There might

be many other measures of fairness and it may be impossible to satisfy multiple

types of fairness simultaneously (COMPAS Case Study). However, our proposed

fairness constraints are the most appropriate forms in the real world. Namely, in

the field of medical interventions, we can meet the requirement that everyone will

receive or have the probability to receive medical treatment without sacrificing

a significant overall performance, while SOTA/Myopic will only favor certain

beneficiaries.

In the following sections, we first discuss the deterministic fairness constraint

in RMAB, and then move to the probabilistic fairness constraint.

2.3 RMAB with deterministic fairness constraint

2.3.1 Problem Description

In this section, we formally introduce the RMAB problem. There are N indepen-

dent arms, each of which evolves according to an associated Markov Decision

Process (MDP). An MDP is characterized by a tuple {S,A,P , r}, where S rep-

resents the state space, A represents the action space, P represents the transition

function, and r is the state-dependent reward function. Specifically, each arm has

a binary-state space: 1 (“good”) and 0 (“bad”), with action-dependent transition

matrix P that is potentially different for each arm. Let ait ∈ {0, 1} denote the

action taken at time step t for arm i, and ait = 1(ait = 0) is called active (passive)

and indicates the arm i being pulled (not pulled). Due to limited resources,

at each decision epoch, the decision-maker can activate (or intervene on) at

most k out of N arms and receive reward accrued from all arms determined by

their states.
∑N

i=1 a
i
t = k describes this limited resource constraint. Figure 2.2

provides an example of an arm in RMAB.
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Figure 2.2: a and p denote the active and passive actions on arm i respectively.
P i,a
s,s′ and P i,p

s,s′ are the transition probabilities from state s to state s′ under action
a and p respectively for arm i.

The state of arm i evolves according to the transition matrix P i,a
s,s′ for the

active action and P i,p
s,s′ for the passive action 1. We follow the setting in Mate

et al. [56], when the arm i is activated, the latent state of arm i will be fully

observed by the decision-maker. The states of passive arms are unobserved by

the decision-maker.

When considering such a partially observable problem, it is sufficient to

let the MDP state be the belief state: the probability that the arm is in the

“good” state. We need to keep track of the belief state on the current state of

the unobserved arm. This can be derived from the decision-maker’s partial

information which is encompassed by the last observed state and the number

of decision time steps since the last activation of the arm. Let ωi
s(u) denote the

belief state, i.e., the probability that the state of arm i is 1 when it was activated

u time steps ago with the observed state s. The belief state in the next time step

can be obtained by solving the following recursive equations:

ωi
s(u+ 1) =


ωi
s(u)P

i,p
1,1 + (1− ωi

s(u))P
i,p
0,1 passive

P i,a
s′,1 active

(2.1)

Where s′ is the new state observed for arm iwhen the active action was taken. The

belief state can be calculated in closed form with the given transition probabilities.

We let ω = ωi
s(u+ 1) for ease of explanation when there is no ambiguity.

A policy π maps the belief state vector Ωt = {ω1
t , · · · , ωN

t } at each time

1Note that we use P i,a
s,s′ and P i,1

s,s′ (P i,p
s,s′ and P i,0

s,s′ ) interchangeably in this thesis
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step t for all arms to the action vector, at = {0, 1}N . Here ωi
t is the belief state

for arm i at time step t. We want to design an optimal policy to maximize the

cumulative long-term reward over all the arms. One widely used performance

measure is the expected discounted reward over the horizon T :

Eπ[
T∑
t=1

βt−1Rt(Ωt, π(Ωt))|Ω0]

Here Rt(Ωt, π(Ωt)) is the reward obtained in slot t under action at = π(Ωt)

determined by policy π, β is the discount factor. As we discussed in the introduc-

tion, in addition to maximizing the cumulative reward, ensuring fairness among

the arms is also a key design concern for many real-world applications. In order

to model the fairness requirement, we introduce constraints that ensure that any

arm (or kind of arms) is activated at least η times during any decision interval

of length L. The overall optimization problem corresponding to the problem at

hand is thus given by:

maximize
π

Eπ[
T∑
t=1

βt−1Rt(Ωt, π(Ωt))|Ω0]

subject to
N∑
i

ait = k,∀t ∈ {1, . . . , T}

u+L∑
t=u

ait ≥ η ∀u ∈ {1, . . . , T − L},∀i ∈ {1, . . . , N}.

(2.2)

η is the minimum number of times an arm should be activated in a decision

period of length L. The strength of fairness constraints is thus governed by the

combination of L and η. Obviously, this requires k × L > N × (η − 1) as the

fairness constraint should meet the resource constraint. This fairness problem

can be formulated at the level of regions/communities by also summing over all

the arms, i in a region in the second constraint, i.e.,

∑
i∈r

u+L∑
t=u

ait ≥ η
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Our approaches with a simple modification are also applicable to this fairness

constraint at the level of regions/communities.

2.3.2 Background: Whittle Index

In this section, we describe the Whittle Index algorithm [103] to solve RMAB.

This algorithm at every time step, computes index values (Whittle Index values)

for every arm and then activates the arms that have the top “k” index values.

Whittle index quantifies how appealing it is to activate a certain arm. This

algorithm provides optimal solutions if the underlying RMAB satisfies the

indexability property, defined in Definition 1.

Formally2, the Whittle index of an arm in a belief state ω (i.e., the probability

of good state 1) is the minimum subsidy λ such that it is optimal to make the

arm passive in that belief state. Let Vλ,T (ω) denote the value function for the

belief state ω over a horizon T . Then it could be written as

Vλ,T (ω) = max{Vλ,T (ω; a = 0), Vλ,T (ω; a = 1)}, (2.3)

where Vλ,T (ω; a = 0) and Vλ,T (ω; a = 1) denote the value function when taking

passive and active actions respectively at the first decision epoch followed by

optimal policy in the future time steps. Because the expected immediate reward

is ω and subsidy for a passive action is λ, we have the value function for passive

action as:

Vλ,T (ω, a = 0) = λ+ ω + βVλ,T−1(τ
1(ω)), (2.4)

where τ 1(ω) is the 1-step belief state update of ω when the passive arm is

unobserved for another 1 consecutive slot (see the update rule in Eq. 2.1). Note

that ω is also the expected reward associated with that belief state. For an active

action, the immediate reward is ω and there is no subsidy. However, the actual
2Since we will only be talking about one arm at a time step, we will abuse the notation by

not indexing belief, action and value function with arm id or time index.
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state will be known and then evolve according to the transition matrix for the

next step:

Vλ,T (ω, a = 1) = ω + β(ωVλ,T−1(P
a
1,1) + (1− ω)Vλ,T−1(P

a
0,1)). (2.5)

Definition 1 An arm is indexable if the passive set under the subsidy λ given as

Pλ = {ω : Vλ,T (ω, a = 0) ≥ Vλ,T (ω, a = 1)} monotonically increases from ∅

to the entire state space as λ increases from −∞ to∞. The RMAB is indexable

if every arm is indexable.

Intuitively, this means that if an arm takes passive action with subsidy λ, it

will also take passive action if λ′ > λ. Given the indexability, WT (ω) is the least

subsidy, λ that makes it equally desirable to take active and passive actions.

WT (ω) = inf
λ
{λ : Vλ,T (ω; a = 1) ≤ Vλ,T (ω; a = 0)} (2.6)

Definition 2 A policy is a threshold policy if there exists a threshold λth such

that the action is passive a = 0 if λ > λth and a = 1 otherwise.

Existing efficient methods for solving RMABs derive these threshold policies.

We here provide a detailed description of the Fast Whittle Index Computation

algorithm introduced in Mate et al. [56], since our method to solve the determin-

istic fairness constraint is based on it. Mate et al. [56] derived a closed form

for computing the Whittle index for both average reward and discounted reward

criterion, where the objective could also be written as R̄π
λ = E

∑
ω f

π(ω)Raπ(ω),

where fπ(ω) is defined as the fraction of time spent in each belief state ω induced

by policy π and fπ(ω) ∈ [0, 1]. Their proposed Whittle index computation algo-

rithm can achieve a 3-order-of-magnitude speedup compared to Qian et al. [74].

In the two-states setting (s ∈ {0, 1}), they use a tuple (Bωth
0 , Bωth

1 ) to denote the

belief threshold, where ωth ∈ [0, 1], and Bωth
0 , Bωth

1 ∈ 1, . . . , L are the index of

the first belief state in each chain where it is optimal to act (i.e., the belief is less
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than or equal to ωth). The length is at most L long due to our fairness constraints.

This is defined as the forward threshold policy, and Mate et al. [56] used the

Markov chain structure to derive the occupancy frequencies for each belief state

ωs(t), which is as follows,

f (B
ωth
0 ,B

ωth
1 )(ωs(t)) =


a if s = 0, t ≤ B0

b if s = 1, t ≤ B1

0 otherwise

(2.7)

a =
(

B1ω0(B0)
1−ω1(B1)

+B0

)−1

, b =
(

B1ω0(B0)
1−ω1(B1)

+B0

)−1
ω0(B0)

1−ω1(B1)
(2.8)

These occupancy frequencies do not depend on the subsidy λ. For the forward

threshold policy (Bωth
0 , Bωth

1 ), they use the RB
ωth
0 ,B

ωth
1

λ to denote the average

reward, then can decompose the average reward into the contribution of the state

reward and the subsidy λ

R
(B

ωth
0 ,B

ωth
1 )

λ =
∑
ω∈B

ωf (B
ωth
0 ,B

ωth
1 )(ω)

+ ω
(
1− f (B

ωth
0 ,B

ωth
1 )(ω1(B1))− f (B

ωth
0 ,B

ωth
1 )(ω0(B0))

) (2.9)

Given the definition of the Whittle index λ, this could be interpreted to two

corresponding threshold policies being equally optimal. More specifically, for

a belief state ω0(B0), the two adjacent threshold polices {(Bωth
0 , Bωth

1 ), (Bωth
0 +

1, Bωth
1 )} would be optimal to be active and passive respectively. recall that the

Whittle index is the smallest λ for which the active and the passive actions are

both optimal. Thus the subsidy which makes the average reward of those two

adjacent polices equal in value must be the Whittle index for the belief state

ω0(B0). Formally, this could be calculated through RB
ωth
0 ,B

ωth
1 )

(λ = R
B

ωth
0 ,B

ωth
1 +1)

(λ .

Similarly, we can obtain the Whittle index for the belief state ω1(B1) through

R
(B

ωth
0 ,B

ωth
1 )

λ = R
(B

ωth
0 ,B

ωth
1 +1)

λ . These computations are repeated for every belief

states to find the minimum subsidy value while Bωth
s ≤ L. The main idea of

their approach is shown in Fig 2.3.
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Figure 2.3: The forward and reverse policy

2.3.3 Algorithm for Different Settings

The key advantage of a Whittle index-based approach is scalability without

sacrificing solution quality. In this section, we provide Whittle index-based

approaches to handle fairness constraints under known transition models in the

different settings. We specifically consider partially observable settings.

When we need to consider the partial observability of the state of the RMAB

problem, it is sufficient to let the MDP state be the belief state: the probability

that the arm is in the “good” state [38]. As a result, the partially observable

RMAB has a large number of belief states [56].

Recall that the definition of the Whittle index WT (ω) of belief state ω is the

smallest λ s.t. it is optimal to make the arm passive in the current state. We can

compute the Whittle index value for each arm, and then rank the index value

of all N arms and select top k arms at each time step to activate. With fairness

constraints, the change to the approach is minimal and intuitive. The optimal

policy is to choose the arms with the top “k” index values until a fairness

constraint is violated for an arm. In that time step, we replace the last arm in

top-k with the arm for which fairness constraint is violated. We show that this

simple change works across the board for the infinite and finite horizon, fully and

partially observable settings. We provide the detailed algorithm in Algorithm 1

and also provide sufficient conditions under which the Algorithm 1 is optimal.

We give a visualization of our proposed Whittle index-based approach to
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solve the fairness constraint in Figure 2.4. The belief state MDP works as follows:

initially, after an action, the state s ∈ {0, 1} of the selected arm is observed.

Then the belief state changes to P a
s,1 one slot later, which is represented as the

blue node at the head of the chain. Subsequent passive actions cause the belief

state to evolve according to the initial observation in the same chain. Then if the

arm is activated again under the proposed algorithm, it will transit to the head of

one of the chains with the probability according to its belief state as shown in

the black arrow. If the arm’s fairness constraint is not met, i.e., it has not been

chosen in the last L− 1 time slots, it will be activated at the time slot L, and go

to the head of one of the chains (as shown by the red dashed arrow).

𝜔0(1) 𝜔0(2) 𝜔0(4) 𝜔0(𝐿)𝜔0(3)

𝜔1(1) 𝜔1(2) 𝜔1(4) 𝜔1(𝐿)𝜔1(3)

1 −𝜔0(𝐿)1 − 𝜔0(3)

𝜔0(𝐿)

1 − 𝜔1(𝐿)

𝜔1(𝐿)𝜔1(4)

1 − 𝜔1(4)

𝜔0(3)

Figure 2.4: Visualization of Whittle index approach with fairness constraints.

Infinite time horizon

We first focus on the infinite time horizon and provide the expression for λ.

Vλ,∞(ω) denotes the value that can be accrued from a single-armed bandit

process with subsidy λ over an infinite time horizon (T →∞) if the belief state

is ω. Therefore, we have:

Vλ,∞(ω) = max


λ+ ω + βVλ,∞(τ 1(ω)) passive

ω + β
(
ωVλ,∞(P a

1,1) + (1− ω)Vλ,∞(P a
0,1)
)

active
(2.10)

For any belief state ω, the u-steps belief update τu(ω) will converge to ω∗ as
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u → ∞, where ω∗ =
P p
0,1

1+P p
0,1−P p

1,1
. It should be noted that this convergence can

happen in two ways depending on the state transition patterns:

• Case 1: Positively correlated channel (P p
1,1 ≥ P p

0,1).

The belief update process is shown in Figure 2.5. We can see that for the

positively correlated case, they have a monotonous belief update process.

𝜔

𝜏𝑢(𝜔)

𝜔∗

𝑢

𝜔

𝜏𝑢(𝜔)

𝜔∗

𝑢

Figure 2.5: The u-step belief update of an unobserved arm (P p
1,1 ≥ P p

0,1)

We first consider the non-increasing belief process as indicated in the

right graph. Formally, for ∀u ∈ N+, we have ω(u) ≥ ω(u + 1) if the

initial belief state ω is above the convergence value. Similarly, for the

increasing belief process shown in the left graph, we have the initial belief

state ω < ω∗.

• Case 2: Negatively correlated channel (P p
1,1 < P p

0,1).

𝜔

𝜔0(𝑢)

𝜔∗

𝑢

𝜔

𝜔1(𝑢)

𝜔∗

𝑢0 1 2 3 0 1 2 3

Figure 2.6: The u-step belief update of an unobserved arm (P p
1,1 < P p

0,1)

The belief state converges to ω∗ from the opposite direction as shown in

Figure 2.6. This case has similar properties and is less common in the real

world because it is more likely to remain in a good state than to move from

a bad state to a good state. Therefore, we omit the lengthy discussion.
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The belief state transition patterns are of particular importance because in

proving optimality of Algorithm 1, the belief evolution pattern for the arm

(whose fairness constraint will be violated) plays a crucial role.

Algorithm 1: Fair Whittle Thresholding (FaWT)
Input: Transition matrix P , fairness constraint, η and L, set of belief

states {ω1, . . . , ωN}, k
1 for time step t from 1 to T do
2 for each arm i in 1 to N do
3 Compute the corresponding Whittle index TW (ωi) under the

infinite horizon using the Forward and Reverse Threshold
policy;

4 if the activation frequency η for arm i will not be satisfied at the
end of the period of length L then

5 Add arm i to the action set ϕ;
6 k = k − 1;
7 Add arms with top k highest TW (·) (for infinite horizon case) or

WT (·) (for finite horizon case) values to the action set ϕ Decrease
the residual time horizon by T = T − 1;

Output: Action set ϕ

Theorem 1 For infinite time horizon (T →∞) RMAB with Fairness Constraints

governed by parameters η and L, Algorithm 1 ( i.e., activating arm i at the end

of the time period when its fairness constraint is violated) is optimal:

1. For ωi ≤ ω∗ (increasing belief process), if

(P i,p
1,1 − P

i,p
0,1)

(
1 +

β∆3

1− β

)(
1− β(P i,a

1,1 − P
i,a
0,1)
)
≤ (P i,a

1,1 − P
i,a
0,1) (2.11)

∆3 = min{(P i,p
1,1 − P

i,p
0,1), (P

i,a
1,1 − P

i,a
0,1)}.

2. For ωi ≥ ω∗ (non-increasing belief process), if:

(P i,p
1,1 − P

i,p
0,1)(1− β)∆1 ≥ (P i,a

1,1 − P
i,a
0,1)
(
1− β(P i,a

1,1 − P
i,a
0,1)
)

(2.12)

∆1 = min{1, 1 + β(P i,p
1,1 − P

i,p
0,1)− β(P

i,a
1,1 − P

i,a
0,1)}
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Proof Sketch. Consider an arm i that has not been activated for L − 1 time

slots. In such a case, Algorithm 1 will select arm i to activate in the next time

step t = L. Define the intervention effect of activating arm i as

Vλ,∞(ω, a = 1)− Vλ,∞(ω, a = 0)

Following standard practice and for notational convenience, we do not index the

intervention effect and value functions with i. Due to independent evolution of

arms, moving active action of arm i does not result in a greater value function

for other arms according to the Whittle index algorithm, thus it suffices to only

consider arm i. Here is the proof flow:

(1) Algorithm 1 optimality requires that the intervention effect at time step

t = L − 1 is smaller than intervention effect at t = L. Optimality can be

established by requiring the partial derivative of the intervention effect w.r.t. time

step t is greater than 0.

(2) However, computing this partial derivative ∂(Vλ,∞(ω,a=1)−Vλ,∞(ω,a=0))

∂t
is diffi-

cult because value function expression is complex. We use chain rule to get:

∂(Vλ,∞(ω, a = 1)− Vλ,∞(ω, a = 0))

∂ω
· ∂(ω)
∂(t)

(3) The sign of second term, ∂ω
∂t

is based on the belief state transition pattern

described before this theorem. We then need to consider the sign of the first term,
∂(Vλ,∞(ω,a=1)−Vλ,∞(ω,a=0))

∂ω
.

(4) We can compute this by deriving the bound on Vλ,∞(ω1)−Vλ,∞(ω2),∀ω1, ω2

as well as bounds on ∂Vλ,∞(ω)

∂ω
. See the appendix 6.1 for detailed proof. □

Finite time horizon

Mechanisms developed to handle fairness in infinite-horizon settings can also

be applied to finite-horizon settings. Because the algorithm remains unchanged:
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Figure 2.7: The action vector for RMAB is at at time step t. Then we move the
action ai that satisfies fairness constraint to earlier slot and replace k-th ranked
action aj . Action al is then added according to the index value at the end.

The strategy is to select the arm with the top “k” index value until the arm’s

fairness constraint is violated. Therefore we omit it in this dissertation.

Uncertainty in Transition Matrix

In most real-world applications [10], there may not be adequate information

about all the state transitions. In such cases, we don’t know how likely a

transition is and thus, we won’t be able to use the Whittle index approach

directly. We provide a mechanism to apply the Thompson sampling-based

learning mechanism for solving RMAB problems without prior knowledge and

where it is feasible to get learning experiences. Thompson sampling [92] is

an algorithm for online decision problems, and can be applied in MDP [28] as

well as Partially Observable MDP [59]. In Thompson sampling, we initially

assume that the arm has a prior Beta distribution in the transition probability

according to the prior knowledge (if there is no prior knowledge available, we

assume a prior Beta(1, 1) as this is the uniform distribution on (0, 1)). We

choose Beta distribution because it is a convenient and useful prior option for

Bernoulli rewards [1].

In our algorithm, referred to as FaWT-U and provided in Algorithm 2, at each

time step, we sample the posterior distribution over the parameters, and then use

the Whittle index algorithm to select the arm with the highest index value to play
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if the fairness constraint is not violated. We can utilize our observations to update

our posterior distribution, because playing the selected arms will reveal their

current state. Then, the algorithm takes samples from the posterior distribution

and repeats the procedure again.

Algorithm 2: Fair Whittle Thresholding with Uncertainty in transition
matrix(FaWT-U)

Input: Posterior Beta distribution over the transition matrix P , fairness
constraint, η and L, set of belief states {ω1, . . . , ωN}, budget k

1 for each arm i in 1 to N do
2 Sample the transition probability parameters independently from

posterior;
3 Compute Whittle indices based on the transition matrix and belief

state;
4 if the activation frequency η for arm i is not satisfied at the end of the

period of length L then
5 Add arm i to the action set ϕ;
6 k = k − 1;
7 Add the arms with top k index value into ϕ;
8 Play the selected arms and receive the observations;
9 Update the posterior distribution;

Output: Action set ϕ and updated posterior distribution over parameters

We employ the sampled transition probabilities and belief states

{ω1, . . . , ωN}, as well as the residual time horizon T as the input to the Whittle

index computation (Line 3 in Algorithm 2).

Unknown Transition Matrix

We now tackle the second challenge, in which the transition matrix is completely

unknown. In this case, we can take advantage of the model-free learning method

to avoid directly using the whittling index policy.

Q-Learning is most commonly used to solve the sequential decision learning

problem, which was first introduced by Watkins and Dayan [100] as an early

breakthrough in reinforcement learning. It is widely studied for social good [63,

49], and it has also been extensively used in RMAB problems [27, 6, 10] to

estimate the expected Q-value, Q∗(s, a, l), of taking action a ∈ {0, 1} after
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l ∈ {1, . . . , L} time slots since last observation s ∈ {0, 1}. The off-policy TD

control algorithm is defined as

Qt+1(st, at, lt)← Qt(st, at, lt)+

αt(st, at, lt)
[
Rt+1 + γmax

a

(
Qt(st+1, a, lt+1)−Qt(st, at, lt)

)](2.13)

Where γ is the discount rate, αt(st, at, lt) ∈ [0, 1] is the learning rate parameter,

i.e., a small αt(st, at, lt) will result in a slow learning process and no update

when αt(st, at, lt) = 0. While a large αt(st, at, lt) may cause the estimated

Q-value to rely heavily on the most recent return, when αt(st, at, lt) = 1, the

Q-value will always be the most recent return.

We now describe how to use the Whittle index-based Q-Learning mechanism

to solve the RMAB problem with fairness constraints. We build on the work

by Biswas et al. [10] for fully observable settings. In addition to considering

fairness constraints, our model can be viewed as an extension to the partially

observable setting. Due to fairness constraints, l can be a maximum of L time

steps. Therefore, belief space is also limited. We are able to use the Q-Learning

based approach to effectively compute the Whittle index value and this approach

is summarized in Algorithm 3,

One typical form of αt(st, at, lt) could be 1/z(st, at, lt), where z(st, at, lt) =(∑t
u=0 I{su = s, au = a, lu = l}

)
+ 1 for each initial observed state s ∈ {0, 1},

action a ∈ {0, 1} and time length since last activation l ∈ {1, . . . , L} at the time

slot u from the beginning. With such mild form of αt(st, at, lt), we now are able

to build the theoretical support for the Q-Learning based Whittle index approach.

Theorem 2 Selecting the highest-ranking arms according to the Q∗
i (s, a =

1, l)−Q∗
i (s, a = 0, l) till the budget constraint is met is equivalent to maximizing{∑N

i=1Q
∗
i (s, a, l)

}
over all possible action set {0, 1}N such that

∑N
i=1 ai = k.

Proof Sketch. A proof based on work by [10] is given in Appendix 6.1.3. □

Theorem 3 Stability and convergence: The proposed approach converges to the

optimal with probability 1 under the following conditions:
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Algorithm 3: Fair Whittle Thresholding based Q-Learning(FaWT-Q)
Input: parameter ϵ and k, and αt(st, at, lt), initial observed state set

{s}N ,
1 for each arm i in 1 to N do
2 Initialize the Qi(s, a, l)← 0 for each state s ∈ {0, 1}, and each

action a ∈ {0, 1} and time length l ∈ {1, . . . , L};
3 For each s ∈ {0, 1} and l ∈ {1, . . . , L} initialize the Whittle index

value set λi(s, l)← 0;
4 for t from 1 to T do
5 for arm i in 1 to N do
6 if the fairness constraint is violated then
7 Add arm i to the action set ϕ;
8 k = k − 1;
9 With prob ϵ add random k arms to ϕ and with prob 1− ϵ add arms

with top k λi(s, l) value ;
10 Activate the selected arms and receive rewards and observations;
11 for each arm i in 1 to N do
12 Update the Qt+1

i (s, a, l) according to Eq. 2.13;
13 if i ∈ ϕ then
14 Set l = 1 and update si according to the received observation;
15 else
16 Set l = l + 1;
17 Update the new Q-Learning based Whittle index by

λt+1
i (s, l) = Qi(s, a = 1, l)−Qi(s, a = 0, l)

Output: Action set ϕ

1. The state space and action space are finite;

2.
∑∞

t=1 αt(st, at, lt) =∞
∑∞

t=1 α
2
t (ωi(t)) <∞

Proof Sketch. The key to the convergence is contingent on a particular se-

quence of episodes observed in the real process [100]. Detailed proof is given in

Appendix 6.1.4. □

2.3.4 Experiment

To the best of our knowledge, we are the first to explore fairness constraints in

RMAB, hence the goal of the experiment section is to evaluate the performance

of our approach in comparison to existing baselines:

Random: At each round, decision-maker randomly select k arms to activate.

Myopic: Select k arms that maximize the expected reward at the immediate next
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round. A myopic policy ignores the impact of present actions on future rewards

and instead focuses entirely on predicted immediate returns. Formally, this could

be described as choosing the k arms with the largest gap ∆ωt = (ωt+1|at =

1)− (ωt+1|at = 0) at time t.

Constraint Myopic: It is the same as the Myopic when there is no conflict with

fairness constraints, but if the fairness constraint is violated, it will choose the

arm that satisfies the fairness constraint to play.

Oracle: Algorithm by Qian et al. [74] under the assumption that the states of

all arms are fully observable and the transition probabilities are known without

considering fairness constraints.

To demonstrate the performance of our proposed methods, we test our algorithms

on synthetic domains [56] and provide numerical results averaged over 50 runs.

Average reward value with penalty: In Figure 2.8, we show the average

reward R̄ at each time step received by an arm over the time interval T = 1000

forN = 50, 100, 200, 500 and k = 10%×N with the fairness constraint L = 20,

and η = 2. We will receive a reward of 1 if the state of an arm is s = 1, and no

reward otherwise. We impose a small penalty of −0.01 if the fairness constraint

of an arm is not satisfied. The graph on the left shows the performance of FaWT

method when assuming the transition matrix is known. The middle graph is the

average reward obtained using the FaWT-U approach when the transition model

is not fully available. The right graph illustrates the result of FaWT-Q method

when the transition model is unknown. As shown in the figure, our approaches

consistently outperform the Random and Myopic baselines, and in addition to

satisfying the fairness constraints, they have a near-optimal performance with

a small difference gap when compared to the Oracle baseline. Note that the

Myopic approach may fail in some cases(shown in [56]), it performs worse than

the Random approach.

32



0

0.15

0.3

0.45

0.6

0.75

N=50 N=100 N=200 N=500

Random Myopic Constraint Myopic FaWT Oracle

N=50 N=100 N=200 N=500

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

N=50 N=100N=200N=500

FaWT-U FaWT-Q Oracle2

N=50 N=100N=200N=500

Figure 2.8: Comparison of performance of our approach and baseline approaches
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Figure 2.9: Intervention benefit ratio of our approach and baseline approaches
without penalty for the violation of the fairness constraint. We set N = 100,
k = 10, T = 1000, η = 2 and L = {15, 30, 50}.

No penalty for the violation of the fairness constraint: We also investi-

gate the intervention benefit ratio defined as R̄method−R̄No intervention
R̄Oracle−R̄No intervention

× 100%, where

R̄No intervention denotes the average reward without any intervention involved. Here,

we do not employ penalties when the fairness constraint is not satisfied, as we

want to evaluate the benefit provided by interventions with our fair policy and

policies of other approaches. We provide the intervention benefit ratio for differ-

ent values of L for all approaches in Figure 2.9. Again, the left graph shows the

result of FaWT approach, the middle graph is the result of FaWT-U approach, and

the right graph shows the result of FaWT-Q method. Our proposed approaches

can achieve a better intervention benefit ratio compared with the baseline when

L is 30 and above. However, for L = 15, where there is a strict fairness con-

straint (i.e., k×L
(η−1)×N

is close to 1), it has a significant impact on solution quality.

The performances of all our approaches improve when the fairness constraint’s

strength decreases (L increases). Overall, our proposed methods can handle

various levels of fairness constraint strength without sacrificing significantly on

solution quality. We provide additional experiments in Appendix 6.1.5 to study

how the strength of fairness constraints and the intervention level affect average

33



rewards.

2.4 RMAB with probabilistic fairness constraint

2.4.1 Problem Description

In this section, we delve into RMABs with probabilistic fairness constraints,

which is called soft fairness constraint. This constraint ensures that the algorithm

does not probabilistically favor one arm over another if the latter arm’s long-term

cumulative reward is higher. We focus on the finite time horizon setting, which

represents a more general scenario. Because algorithms developed within finite

time horizon settings can be readily adapted to infinite time horizon settings.

Furthermore, we consider a fully observable setting for ease of explanation.

We formally introduce the finite horizon RMAB model, where the new

objective of computing policies is to balance the trade-off between maximizing

cumulative rewards while giving a reasonable chance for each arm (proportional

to their value) to get selected for intervention (The infinite horizon is a simpler

case of the finite horizon, so we only discuss the finite-horizon setting here). As

indicated earlier, this is a property that is of critical importance in public health

settings. RMAB is defined using the following tuple:

⟨N, {Mi}i∈N , T, k⟩

There are N independent arms3 and each arm i evolves according to an

associated Markov Decision Process (MDP),Mi is characterized by the tuple

{Si,Ai,Pi, Ri, γ}:

• Si represents the state space. Typically, in public health settings, Si = {0, 1}.

1 represents patient in the “good” state (patient adheres to the health program),

and 0 represents patient in the “bad” state (patient not adhering).
3in public health settings, the patients or beneficiaries will be the arms
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• Ai represents the action space. Ai = {0, 1} with 1 corresponding to activating

or intervening on the arm and 0 action corresponding to not activating the arm

or staying passive.

• Pi represents the action dependent transition dynamics of arm i. Specifically,

P ai
si,s′i

refers to the probability of transitioning from state si to s′i when the arm

i is taking action ai ∈ {0, 1}.

• Ri provides the independent rewards obtained by arm i. We assume a range

for these rewards, given by [Rmin, Rmax]. We use a simple reward function:

Ri(si, ai) = s′i ∈ {0, 1} determined by the next state s′i obtained by taking

action ai when the observed state is si for any arm i ∈ [N ]. 4 Note that the

expected immediate reward will be E[Ri(si, ai)] = P ai
si,1

.

• γ is the discount factor.

T is the time horizon. k is the resource capacity constraint that limits the number

of arms that can be selected at each time step t ∈ [T ], i.e.,:

N∑
i=1

ati = k (2.14)

Policy, π for the overall RMAB is a mapping from joint states, s = [s1, . . . , sN ]

of all arms to joint actions, a = [a1, . . . , aN ]. π(s, a) ∈ [0, 1] denotes the

probability of selecting the joint action a when the joint state of RMAB is s.

Particularly, πi(si, ai) ∈ [0, 1] denotes the probability of selecting action ai, with∑
ai
πi(si, ai) = 1. We denote the state-action value function for a policy π by

Qπ(s, a) = Eπ[
T∑
t=1

γt−1Rt(st, at)] = Eπ[
T∑
t=1

γt−1

N∑
i=1

Rt
i(s

t
i, a

t
i)]

Qπ(s, a) is the expected cumulative discounted long-term reward over all arms

when taking action a in the joint state s. The objective is to find an optimal

4The reward function over RMAB can be written as R(s,a) =
∑N

i=1 Ri(si, ai)
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policy π∗ that can satisfy

Qπ∗
(s, a) = max

π
Qπ(s, a) = Q∗(s, a),

where Q∗(s, a) is the optimal state-action value function:

Q∗(s, a) = R(s, a) + γ
∑
s′

Pr(s′|s, a)max
a′
Q∗(s′, a′) (2.15)

Similar to Jabbari et al. [34], we define the fairness using the state-action

value function Q∗(s, a) as follows:

Definition 3 (Fairness) A stochastic policy, π is fair if for any time step t ∈ [T ],

any joint state s and actions a, a′, where a ̸= a′:

πt(s, a) ≥ πt(s, a′) only if Q∗(s, a) ≥ Q∗(s, a′) (2.16)

In summary, the objective is to efficiently approximate the maximum cumulative

long-term reward while satisfying resource constraints and fairness constraints.

Towards this end, the reward maximization problem can be formulated as

maximize
π

Eπ[
T∑
t=1

γt−1Rt(st, at)]

such that Equation. 2.14, and Equation. 2.16 are satisfied

(2.17)

We show in Proposition 1 that this fairness notion at the level of joint actions is

equivalent to selecting arms with higher probability if their relative importance

is higher. The notations that are frequently used in this Chapter are summarized

in Table 2.1.

2.4.2 SoftFair Approach

In this section, we design a probabilistically fair (as defined in Definition 3) arm

selection algorithm, referred to as SoftFair. SoftFair builds on softmax value

iteration [111, 96] in conjunction with Whittle index. Softmax value iteration
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Notation Description
k, n, T n:number of all competing arms in RMAB, k:number of arms can be selected each round, T : time horizon.

η, L η is the minimum number of times an arm should be activated in a decision period of length L.

c c: multiplier parameter.

λ λ: minimum subsidy such that it is optimal to make the arm passive in current state

si, ai, s, a si, ai: state and action of arm i, s, a: state vector and action vector of RMAB.

ωi
s ωi

s denote the belief state, i.e., the probability that the state of arm i is 1 with the observed state s.

[n], [T ] We use [n] to represent the set of integers {0, . . . , n} for n ∈ N, so as [T].

Qm,t(s, a),
Vm,t(s)

Qm,t(s, a): A state-action value function for the subsidy m and state s when taking action a start at time step t
followed by optimal policy using Whittle index based approach in the future time steps;
Vm,t(s): Value function for the subsidy m and state s start at time step t using Whittle index based approach

Qt(s, a),
Vt(s)

Qt(s, a): The state-action value function when taking action a at time step t with state s
Vt(s): The value function at the time step t with state s.

Table 2.1: Notations

is one of the simplest dynamic programming algorithms, which recursively

computes the value function through a point-wise update rule [77].

In order to implement the softmax value iteration method in the RMAB

setting, we need to compute the relative value of activating an arm (in comparison

to not activating the arm) and compute the probability distribution of selecting an

arm using a softmax function over the relative value. More specifically, during

the ep-th iteration, SoftFair identifies the estimated value function of the state

of each arm i ∈ [N ] at the time step t ∈ [T ], and calculate the difference of

state-action value function between the active and passive action.

Qt;ep
i (sti, a

t
i) = Rt

i(s
t
i, a

t
i) + γ

∑
st+1
i

Pr(st+1
i |sti, ati)V

t+1;ep
i (st+1

i )

ζt;epi (sti, a
t
i) = eQ

t;ep
i (sti,a

t
i)−V t;ep

i (sti)

λt;epi = log ζt;epi (sti, a
t
i = 1)− log ζt;epi (sti, a

t
i = 0)

(2.18)

Here V t;ep
i (·) is the value function of arm i from time step t till the end of horizon

after being updated ep times. Similarly, Qt;ep
i (sti, a

t
i) is the state-action value

function of arm i from time step t till the end of horizon during ep-th iteration.

Then SoftFair maps each arm i’s state to a state-specific probability distribution

over actions using the following softmax expression in the k = 1 case.

πt;ep(st, at = I{i}) =
exp(c · λt;epi )∑N
q=1 exp(c · λ

t;ep
q )

(2.19)
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where at = I{i} denotes the joint action 5 to select the arm i while keeping

other arms passive, and πt;ep(st, at = I{i}) denotes the probability that arm i

will be selected under the joint state st during the ep-th iteration. c ∈ (0,∞) is

the multiplier parameter 6 that can adjust the gap between the probabilities of

choosing an arm. If c = ∞, SoftFair becomes the standard optimal Bellman

operations [5] (Refer to Equation 2.26). When c = 0, each arm has the same

probability of being selected, and SoftFair can make the resources uniformly

distributed. Equation 2.19 shows the probability of selecting an joint action at

each time step when k = 1.

Unfortunately, this expression does not hold when selecting a subset of arms,

i.e., k > 1. This is because when the resource constraint k > 1, the probability

of an arm being selected will also rely on the probability of other arms being

selected, henceforth affecting the recursive update of the value function. Let

at = I{ϕ} denote the action to select arms in the set ϕ. Then, ϕ− is the set that

includes all of the arms except those in set ϕ. After getting the action probability

of selecting a single arm, which is the multinomial distribution, formulated as

[πt;ep(st, at = I{1}), πt;ep(st, at = I{2}), . . . , πt;ep(st, at = I{N})]. We can then

sample from this multinomial distribution without replacement to obtain k arms

to activate, which ensures that we meet the resource constraint as well as the

fairness constraint. More specifically, we can derive the probability that the

arm i is among the k selected arms (active set ϕ), denoted as Pr(ati = 1|st) 7.

Consider the multinomial distribution, the results of k draws made at random

without replacement is a random permutation of all the elements, and this can be

computed through the permutation tool. Consequently, we have:

πt;ep(st, at = I{ϕ}) = Πi∈ϕ Pr(a
t
i = 1|st)Πj∈ϕ−

(
1− Pr(atj = 1|st)

)
(2.20)

5I{i} is the indicator with value 1 at the ith item and value 0 at other places. Equivalently,
this means activating arm i while keeping the other arms passive

6The updation process of our Softfair algorithm will converge to the Bellman Equation 2.26
with an exponential rate in terms of c [88], and c controls the asymptotic performance [45].

7Note that Pr(ai = 1|s) = πep(st,at = I{i}) = softmaxc(c · λi) if k = 1
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For arm i, the value function V t;ep
i (·) at time step t during the ep-th iteration can

be written as

V t;ep
i (sti) =

∑
ati∈{0,1}

Pr(ati|st)Q
t;ep
i (sti, a

t
i)

Please note that Pr(ati|st) is computed based on the sample estimate. The update

of value function V t;ep
i (·) during the ep-th iteration for any t ∈ [T ] is:

• For the current state, sti of arm i, the value function is updated in the

following way:

V t;ep+1
i (sti) =

∑
ati∈{0,1}

Pr(ati|st)
∑

st+1
i ∈{0,1}

Pr(st+1
i |sti, ati)

·
(
R(sti, a

t
i) + γV t+1;ep

i (st+1
i )

)
(2.21)

• For all other states, st of arm i we have

V t;ep+1
i (st) = V t;ep

i (st) (2.22)

Similarly, we can also write the equation to update the state-action value

function, and we provide it in the Appendix 6.2.1. The overall process of

SoftFair is summarized in Algorithm 4 and is guaranteed to ensure that an

arm is selected in proportion with its λ value, thereby guaranteeing fairness

while approximately maximizing the overall value. This guarantee is possible

because we can decouple the fairness constraint defined on the joint action to

each individual arm. We have the following proposition, which is equivalent to

the definition 3.

Proposition 1 Fairness of a stochastic policy defined in Equation 2.16 can also

be stated in terms of arm selection as follows:

Pr(ati = 1|st) ≥ Pr(atj = 1|st) only if λti ≥ λtj (2.23)
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Algorithm 4: Soft-Fair Value Iteration (SoftFair)
Input: Transition matrix P , time horizon T , set of observed states s,

resource constraint k, episodes K
1 Q(s)← 0,∀s;
2 for iteration ep = 1, . . . , I do
3 Initialize s0 = {s01, . . . , s0N};
4 for step t = 0, . . . , T do
5 for arm i = 1, . . . , n do
6 Compute Qt;ep

i (sti, a
t
i) and λt;epi (sti, a

t
i) using Equation. 2.18;

7 Compute πt;ep(st, at = I{i}) using Equation. 2.19;
8 Sample k arms and add them into action set;
9 for arm i = 1, . . . , n do

10 Compute Pr(ati = 1|st);
11 Update V t;ep

i (s) using Equation. 2.21 and Equation. 2.22
12 Play the arm in the action set, and observe next state st+1

Output: The value function Vi(s) for arm i ∈ [n]

Intuitively, this implies an arm, i will not be selected with lower probability

than that of arm j if λ value of arm i is higher than that of arm j. The proof

showing that the proposition is equivalent to the definition 3 is provided in the

appendix 6.2.

2.4.3 Analysis of SoftFair

In this section, we formally analyze the properties of the SoftFair algorithm.

We begin by comparing SoftFair with the well-known Whittle index algorithm

and show why the Whittle index approach is not suitable for our case (Fairness

constraint and Finite time horizon), and then provide the performance bound of

SoftFair.

SoftFair vs. Whittle index based methods

Whittle index policy is known to be the asymptotically optimal solution to

RMAB for the infinite time horizon. It independently assigns an index value

for each arm to measure how attractive it is to activate an arm at a particular

state. The index is computed using the concept of a “subsidy” m, which can
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be viewed as the opportunity cost of remaining passive, and is rewarded to the

arm that is passive, in addition to the usual reward. The Whittle index for an

arm i is defined as the infimum value of the subsidy, m that must be offered

to the algorithm to make the algorithm indifferent between selecting and not

selecting the arm. Consider a single arm i ∈ [n] where the state is sti at time

step t ∈ [T ], let Qt
m;i(s

t
i, a

t
i = 0) and Qt

m;i(s
t
i, a

t
i = 1) denote its active and

passive state-action value functions under a subsidy m, respectively. For ease

of explanation, we drop the subscript i when there is no ambiguity. The value

function of an arm in the state s is

V t
m(s

t) = max{Qt
m(s

t, at = 0), Qt
m(s

t, at = 1)}.

The Whittle index W (st) for the state st can be formally written as:

W (st) = inf
m

{
mt : Qt

m(s
t, at = 0) = Qt

m(s
t, at = 1)

}
. (2.24)

After computing the Whittle index for each arm, a policy π will activate those k

arms whose current states have the highest indices. In order to use the Whittle

index approach, it needs to satisfy a technical condition called indexability

introduced by Weber and Weiss [102]. The indexability can be expressed in a

simple way: Consider an arm with subsidy m, the optimal action is passive, then

∀m′ > m, the optimal action should remain passive. The RMAB is indexable if

every arm is indexable.

However, traditional Whittle index based approaches rely on the assumption

of an infinite time horizon, and the performance deteriorates severely when time

horizons are finite. Figure 2.10 shows an illustrative example where Whittle

index values are low when an arm’s residual time horizon is short, and there is

a bias in approximating the Whittle index value under the finite time horizon

setting using methods proposed in [74, 57]. Often, real-world phenomena are

formalized in a finite time horizon setting, which precludes the direct use of

Whittle index based methods. We now demonstrate that a phenomenon called
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Figure 2.10: Whittle index value as a function of the residual time horizon.
Figure taken from Mate et al. [57]. The grey line is the whittle index value in
an infinite time horizon setting, and the others are approximated Whittle index
values under a finite time horizon to capture the index decay phenomenon.

Whittle index decay [57, 48] exists in our problem. All detailed proofs can be

found in the Appendix 6.2.

Theorem 4 At any time step t ∈ [T ], the Whittle index mt for arm i under

the observed state sti is the value that satisfies the equation Qt
m(s

t
i, a

t
i = 0) =

Qt
m(s

t
i, a

t
i = 1). The Whittle index will decay as the value of current time step t

increases: ∀t < T : mt > mt+1 ≥ mT = P 1
s,1 − P 0

s,1.

Proof Sketch. Consider the discount reward criterion with the discount factor

γ, we can simply compute mT and mT−1 by solving equations QT
m(s

T
i , a

T
i =

0) = QT
m(s

T
i , a

T
i = 1) and QT−1

m (sT−1
i , aT−1

i = 0) = QT−1
m (sT−1

i , aT−1
i = 1).

We can find that mT−1 ≥ mT = P 1
s,1 − P 0

s,1. Then in order to show mt > mt+1,

we first prove a lemma to show value function V t
m(s

t
i) > V t+1

m (sti) ≥ 0, and

then we can combine this with the definition of mt to complete the proof. The

detailed proof can be found in the appendix 6.2. □

The Whittle index based approach needs to solve the costly finite horizon

problem because the index value varies according to the residual time horizon

even in the same state, and computing the index value under the finite horizon

setting is (O(|S|kT ) time and space complexity [32]. However, as an alternative

42



method, our SoftFair can naturally approximate the optimal value function at

arbitrary time steps while requiring less memory space than model-free learning

methods such as Q-learning. In addition, the optimal condition for approximating

the Whittle index value is difficult to satisfy. For example, Mate et al. [57]

demonstrate that their proposed approach is optimal under the condition:

P 1
1,1 − P 1

0,1 ≤
(
P 0
1,1 − P 0

0,1

) (
1 + γ(P 1

1,1 − P 1
0,1)
)
(1− γ)

Intuitively, consider the case where P 0
0,1 = P 1

0,1 and P 0
1,1 = P 1

1,1 (also considered

by Liu and Zhao [53]), this makes such a condition always not satisfied. Fur-

thermore, we will show that the Whittle index based approach fails to address

the problem of fair distribution of interventions (the distribution of resources is

lopsided). In contrast, our proposed method, SoftFair becomes the optimal algo-

rithm when c→∞ and can control the trade-off between optimal performance

and uniform distribution of resources.

Due to the finite time horizon setting in many practical applications, the

Whittle index based method can not effectively approximate the whittle index

value, and it only concentrates on beneficiaries who can mostly improve the

objective in the case of initiatives related to public health. This can result in

some beneficiaries never having the opportunity to receive intervention from

public health professionals, which may lead to a poor adherence behavior and

henceforth a bad state from which improvements may only be marginal even

with intervention, preventing them from ever being chosen by the index policy.

Refer to Figure 2.1 to get a better picture of the difference between the Whittle

index approach and SoftFair. We can see that when using the Threshold Whittle

index based method proposed by Mate et al. [57], the activation frequency

of the arm is extremely unbalanced, with nearly half of the arms never being

selected. Such starvation of interventions may escalate to communities. To

avoid such cycle between bad outcomes, the RMAB needs to consider fairness
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in addition to maximizing cumulative long-term reward when picking arms. We

now demonstrate why SoftFair can satisfy our proposed fairness constraint while

effectively approximating our cumulative reward maximization objective. We

begin by providing a theorem showing that SoftFair is guaranteed to be optimal

when the multiplier parameter c→∞.

Theorem 5 Choosing the top k arms according to the λ value in Equation 2.19

(c→∞) is equivalent to maximizing the cumulative long-term reward.

Proof Sketch. Because when c approaches infinity, SoftFair becomes deter-

ministically choosing the arm with the highest λ value. Let ϕ∗ to be the set of

actions containing the k arms with the highest-ranking of λ value, we need to

show Q(s, a = I{ϕ}) ≥ Q(s, a′ = I{ϕ′}) for ∀ϕ′, where ϕ′ is the set of any k

selected arms, and ϕ′ ̸= ϕ∗. We first get the expression of
∑

i∈ϕ λi. Combining

the definition of λ in Equation 2.18 with the fact that
∑

i∈ϕ∗ λi ≥
∑

j∈ϕ′ λj ,

we add
∑

z /∈ϕ∗∧z /∈ϕ′
Q(sz, az = 0) on both sides of the inequality function to show

Q(s, a = I{ϕ}) ≥ Q(s, a′ = I{ϕ′}). □

When c approaches infinity, SoftFair becomes the optimal policy, but it will

suffer from the starvation phenomena. As c gets closer to 0, SoftFair can ensure

that every arm/beneficiary has roughly the same probability of receiving the

intervention, which leads to a uniform distribution of resources. Given these facts,

c can control the trade-off between ensuring the fair distribution of resources and

the objective of maximizing cumulative rewards. In the subsequent theorem, we

demonstrate that SoftFair satisfies our proposed fairness constraint.

Theorem 6 SoftFair is fair under our proposed fairness constraint, and c con-

trols the trade-off between fairness and optimal performance.

Proof Sketch. Similar to the proof of the Theorem 5, we can see that the

value of λ is proportional to the state-action value function. According to the

Equation 2.19, the probability of selecting an arm is the softmax function on λ,
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and it can be guaranteed that the higher the value of λ, the higher the probability

of selecting that arm. Therefore SoftFair remains fair under our proposed fairness

constraints. The trade-off between ensuring a fair distribution of resources and

the objective of maximizing cumulative rewards is governed by c, where a larger

c means SoftFair prefers arms with a higher value of λ, while a small c means

that SoftFair tends to ensure that resources are uniformly distributed among the

arms.

□

In the next section, we will show how the value of c controls the performance

bounds of the SoftFair algorithm.

Performance bound of SoftFair

For ease of explanation, we investigate the case of k = 1 at each time step, and

the multi-selection (k > 1) can be viewed as the iteration of the case k = 1. Let

Ψsoft denote our Soft operator at time step t ∈ [T ], we ignore the subscript t

here, which is

Qep+1(s, a) = ΨsoftQ
ep(s, a)

=
∑
s′

Pr(s′|s, a)(R(s, a) + γ
∑
a′

Pr(a′|s′)Qep(s′, a′))

= R(s, a) + γ
∑
s′

Pr(s′|s, a)
∑
a′

Pr(a′|s′)Qep(s′, a′).

(2.25)

Before we derive the performance bound for SoftFair, We first bound the state-

action value function in the following lemma.

Lemma 1 The state-action value function Q(s, a) is bounded within [0, n
1−γ

].

Proof Sketch. The upper bound can be obtained by showing that ∀(s, a),

state-action value during the ep−th iteration are bounded through induction. □

Corollary 1 As we have Rmax = n and Rmin = 0 of RMAB, we can easily

derive that |Q(s, a)−Q(s, a′)| ≤ n
1−γ

, for ∀Q and ∀(s, a).
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Following Song et al. [88], we let δ(s) = supQmaxa,a′ |Q(s, a)−Q(s, a′)|

denote the largest distance between state-action value functions. Then we have

the following lemma showing the bound on the difference between two state-

action value functions.

Lemma 2 ∀Q and ∀s, Let Pr(·|s) = [Pr(a = I{1}|s), . . . ,Pr(a = I{n}|s)]⊤ and

Q(s, ·) = [Q(s, a = I{1}), . . . , Q(s, a = I{n})]⊤, here the superscript ⊤ denotes

the vector transpose. We have δ(s)
n exp[c·δ(s)] ≤ max

a
Q(s, a)− (Pr(·|s))⊤Q(s, ·) ≤

n−1
2+c

.

Proof Sketch. We first sort Q(s, a = I{i}) in the ascending order according to

the λ value and replace Pr(·|s) with Q(s, ·). We take advantage of the fact that

for any two non-negative sequences {xi} and {yi},
∑

i xi

1+
∑

i yi
≤
∑

i
xi

1+yi
, combine

this fact with the difference between state-action value functions for different

actions. Through using Taylor series, we can derive the upper and lower bounds.

□

Different from Soft Operator Ψsoft in Eq. 2.25 ,let Ψ denote the Bellman

optimality operator, which we have

Qep+1(s, a) = ΨQep(s, a)

= R(s, a) + γ
∑
s′

Pr(s′|s, a)max
a′
Qep(s′, a′)

(2.26)

For the optimal state-action value function, we have ΨQ∗(s, a) = Q∗(s, a).

We have the following theorem showing the performance bound of SoftFair

compared to the optimal value.

Theorem 7 Our SoftFair method can achieve the performance bound as

lim sup
ep→∞

V ep(s) ≤ V ∗(s), where V ∗(s) is the optimal value function. More

specifically, we have

lim sup
ep→∞

Qep(s, a) ≤ Q∗(s, a) and

lim inf
ep→∞

Qep(s, a) ≥ Q∗(s, a)− n− 1

(2 + c)(1− γ)
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Figure 2.11: Intervention benefit of SoftFair is consistently greater than other
baselines. (a) We fix T = 50, and k = 10% ∗ n, and let n = {10, 100, 1000}.
(b) We fix T = 50, and n = 100, and let k = {5, 10, 20}. (c) We fix n = 100,
and k = 10, and let T = {20, 50, 100}.

Proof. We derive the performance bound through induction based on Lemma 1

and 2. □

Conjecture 1 For the cause when multiple arms can be pulled at each time step,

i.e., k > 1, Our SoftFair method can achieve the bound as lim sup
ep→∞

ΨepV 0(s) ≤

V ∗(s). More specifically, we have

lim sup
ep→∞

Qep(s, a) = lim sup
ep→∞

ΨepQ0(s, a) ≤ Q∗(s, a) and

lim inf
ep→∞

Qep(s, a) ≥ Q∗(s, a)− n− k
(2 + c)(1− γ)

Given that Lemma 1 and Corollary 1 hold true for k > 1, but Lemma 2 changes,

and we predict the upper bound will change from n−1
(2+c)(1−γ)

to n−k
(2+c)(1−γ)

. This

leads us to conjecture a new performance bound. Furthermore, when k = n,

all arms are selected simultaneously, resulting in lim inf
ep→∞

Qep(s, a) = Q∗(s, a).

Therefore, this observation aligns with our conjecture.

2.4.4 Experiments

In this section, we empirically compare our proposed method SoftFair to the

baselines on both (a) a realistic patient adherence behavior dataset [40] and

(b) a synthetic dataset to represent more general settings enforced by struc-

tural constraints on transition matrix (more details about the dataset can be

found in Appendix 6.2.5). We consider the finite time horizon where reward
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Figure 2.12: (a) The intervention benefit of different multiplier c. Here c =∞
refers to deterministically selecting the top k arm with the highest cumulative
rewards. (b) The action entropy of a single process. We investigate the action
entropy for different value of P 1

0,1 range from 0.4 to 0.9 (at 0.45, 0.55, 0.65, 0.75,
0.85, respectively), and c = 1.

is the undiscounted sum of arms/beneficiaries in the good state over all time

steps and set the following scenario for the simulation: n = {10, 100, 1000},

k = {5%n, 10%n, 20%n}, T = {20, 50, 100}. All results are averaged over

50 simulations. In particular, We compare our method against the following

baselines:

• Random: At each time step, algorithm randomly select k arms to play. This

will ensure that each arm has the same probability of being selected.

• Myopic: A myopic policy ignores the impact of present actions on future

rewards and instead focuses entirely on the predicted immediate returns. It

select k arms that maximize the expected reward at the immediate next time

step. Formally, this could be described as choosing the k arms with the largest

gap ∆t = P 1
s,1 − P 0

s,1 at time step t under the observed state s.

• FairMyopic: After computing ∆t for each arm, instead of deterministically

selecting the arm with the highest immediate reward, we use the softmax

function over ∆t to get the probability of each arm being selected. Then we

sample the k arms according to the probability.

• FaWT: Algorithm proposed by Li and Varakantham [48]. They ensure that

each arm will be selected at least η times during any intervention interval of

length L. Since this algorithm requires two predefined and extra parameters,
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the intervention interval length L and the minimum selection times during

each interval η, it is not feasible to create a fair comparison against other

approaches across all settings. However, for one of the settings we are able to

provide a direct comparison with SoftFair by doing a brute force search for

fair parameter values for FaWT.

• SOTA: Algorithm proposed by Mate et al. [57] under the assumption that

the states of all arms are fully observable and the transition probabilities are

known. We use a sigmoid function to approximate the Whittle index value and

select arms deterministically for the finite time horizon setting.

We examine policy performance from two perspectives: (a) Intervention ben-

efit (essentially the solution quality): The intervention benefit is defined as

R̄method−R̄No intervention
R̄SOTA−R̄No intervention

× 100%. It calculates the difference between one algorithm’s

expected cumulative reward and the cumulative reward when no intervention is

involved, then normalized by the difference between the asymptotically optimal

but fairness-agnostic SOTA algorithm in baselines (100% intervention benefit)

and the reward obtained without intervention (0% intervention benefit) and. (b)

Action distribution entropy (representative of the fairness): We calculate the se-

lection frequency distribution across all time steps, and then compute its entropy

after normalization through: Entropy = −
∑

i∈[n] P (i) logP (i), where P (i)

refers to the normalization of the number of times arm i is selected (i.e., the num-

ber of times that arm i has been selected divided by k ·T ), and P (i) logP (i) = 0

if an arm is never selected.

Realistic dataset : Obstructive sleep apnea is one of the most prevalent sleep

disorder among adults, and continuous positive airway pressure therapy (CPAP)

is a highly effective treatment when it is used consistently for the duration of each

sleep bout. But non-adherence to CPAP in patients hinders effective treatment

for this type of sleep disorder. Similar to [29], we adapt the Markov model
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Policy Intervention benefit Action entropy

Random 79± 13 4.56± 0.0056
Myopic 98± 3.3 2.67± 0.0
FairMyopic 83± 11 4.5± 0.0089
SoftFair 93± 7.6 4.27± 0.019

Table 2.2: Resutls for CAPA Adherence dataset with n = 100, k = 10, T = 80.
The Myopic policy provides the highest and most stable intervention benefit but
with low action diversity (has a severe intervention starvation). In contrast, the
Random policy has high action diversity but lower and more variable benefits.
FairMyopic and SoftFair strike a balance, with SoftFair showing a relatively
high and stable benefit along with high action diversity.

of CPAP adherence behavior in [40] to a two-state system with the clinical

adherence criteria. We add a small noise to each transition matrix so that the

dynamics of each individual arm is different (See more details about the dataset

in Appendix 6.2.5).

In table 2.2, we report average results for each algorithm. Myopic method

has the best performance, which is caused by the specific structure of the un-

derlying transition matrices, since there is not too much difference between n

Markovian models, and in this case the Myopic approach is indeed close to

optimal. However, the myopic approach has significantly lower action entropy,

which is indicative of overall fairness. Meanwhile, our SoftFair provides the

right trade-off between intervention benefit and having a varied selection of arms

(high action entropy) at each time step.

Synthetic dataset (a) We first test the performance when the number of

patients (arms) varies. Figure 2.11a compares the intervention benefit for

n = {10, 100, 1000} patients and k = 10% of n. As shown in Figure 2.11a, in

addition to satisfying the fairness constraints, our SoftFair consistently outper-

forms the Random, Myopic and FairMyopic baselines. (b) We next compare the

intervention benefit when the number of arms n is fixed and the resource con-

straint k is varied. Specifically, we fix n = 100 patients, and let k = {5, 10, 20}.

Figure 2.11b shows that there has been a gradual increase in the intervention
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benefit as the k increases. One possible reason is that a larger resource budget k

can make the arms with higher cumulative rewards more likely to be selected,

thereby reducing the performance gap with the SOTA method. (c) The perfor-

mance of our method is slightly influenced by the time horizon T . As shown in

Figure 2.11c, the common trend is that a smaller T leads to better performance.

This means that our method can efficiently solve the RMAB in a finite time

horizon, while a larger horizon T will make the convergence slower. Overall, all

results demonstrate the our method provides a good trade-off between providing

high intervention benefit and preventing starvation for arms (through high action

entropy).

Intervention benefit when c changes We investigate the effect of the mul-

tiplier parameter c on performance. Formally, a larger c will widen the gap

between the probabilities of choosing an arm, leading to better performance as it

prefers selecting an arm with a higher cumulative reward. Figure 2.12 (a) reveals

that SoftFair performs well empirically as c increases, and if we deterministically

choose the top k arms based on the value of λ, it achieves the optimal result.

Action entropy comparison We also compare the entropy of the action of

a process in the synthetic dataset when P 1
0,1 ranges from 0.4 to 0.9. As shown

in Figure 2.12, the Random policy has the highest value as it requires uniform

selection of all arms. Our proposed method, SoftFair consistently has a higher

action entropy than the SOTA method because we enforce fairness constraints.

FairMyopic has a high action entropy value, but it is indeed unfair under our

proposed fairness constraints, as it relies on immediate rewards.

SoftFair vs. FaWT We perform a search in the value space of parameters

η and L of FaWT and the value space of multiplier c of SoftFair, and we use

the value of these parameters which makes the values of the action distribution

entropy of these two methods close to each other and compare their performance.
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Figure 2.13: Comparison of performance of FaWT and SoftFair when their
action distribution entropy values are close.

We present the result in Figure 2.13. As shown in the figure, SoftFair can better

balance the trade-off between the goal of uniform resource distribution and

maximizing cumulative rewards. This may be due to the difficulty in satisfying

the conditions for optimal performance of FaWT.

Discussion In some real-world applications, state transitions may not be fully

available. In this case, we can learn the transition probabilities online using

a learning method based on Thompson Sampling. We initially assumed that

each arm had a prior beta distribution in transition probabilities based on prior

knowledge. If no prior knowledge is available, we assume the prior Beta(1, 1),

since this is a uniform distribution over (0, 1). The Beta distribution was chosen

because it is a convenient and useful choice for Bernoulli rewards. At each time

step, we sample the posterior distribution of the parameters and then use the

SoftFair algorithm to choose which arm to play. We can use our observations to

update our posterior distribution. The algorithm then draws samples from the

posterior distribution and repeats the process again. Table 2.3 shows the result

for the CAPA Adherence dataset when the transition probability is not available.
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Policy Intervention benefit Action entropy

Random 79± 13 4.56± 0.0056

Myopic 94± 5.0 3.07± 0.0009

FairMyopic 84± 10.5 4.49± 0.0083

SoftFair 92± 8.1 4.21± 0.023

Table 2.3: Resutls for CAPA Adherence dataset with n = 100, k = 10, T = 80.
The Myopic policy provides a high and stable intervention benefit but with low
action diversity. The Random policy shows high action diversity but lower and
more variable benefits. FairMyopic offers moderate benefits with high diversity,
while SoftFair strikes a balance with high benefits and relatively high action
diversity.

2.5 Conclusion

In this chapter, we initiate the study of fairness constraints in the context of the

Restless Multi-Arm Bandits model, which is of critical importance for adherence

problems in public health (e.g., monitoring the adherence of preventive medicine

for Tuberculosis, monitoring the engagement of mothers during calls on good

practices during pregnancy). We define a fairness metric that encapsulates and

generalizes existing fairness definitions employed for both Multi-Arm Bandit

and reinforcement learning problems. To tackle the challenges introduced by

the objective, we design different computationally efficient algorithms for the

proposed different types of fairness constraints. Specifically, contrary to expecta-

tions, we are able to provide minor modifications to the existing algorithm for

RMAB problems in order to handle the deterministic fairness constraint. For the

probabilistic fairness constraint, we integrate the advances in RMAB research

and softmax value iteration technique to effectively approximate the optimal

value function within the proven conditions while having fairness guarantees. We

provide theoretical results on how our methods provide the best way to handle

fairness without sacrificing solution quality. Our approaches are demonstrated

empirically as well on benchmark problems from the literature.

To summarize, addressing fairness constraints within the Restless Multi-
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Armed Bandit framework is crucial for ensuring equitable decision learning

processes. As we move on to subsequent chapters in the context of reinforce-

ment learning (RL), our focus will expand to the overarching theme of this

dissertation: sequential decision learning for social good. Our exploration is

dedicated not only to deepening our understanding of optimizing reinforcement

learning strategies to benefit social good, but also to improving the sample effi-

ciency of algorithms in real-world applications with limited resources. Through

this effort, we strive to provide valuable insights and methods that effectively

connect theoretical advances to practical implementations, thereby facilitating

the deployment of artificial intelligence systems in the real world.
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Chapter 3

Influence Maximization in

Unknown Social Networks

In Chapter 2, we presented sequential decision learning within the Restless

Multi-Armed Bandit (RMAB) framework. RMAB is a powerful framework for

budget-constrained resource allocation tasks in which a decision-maker must

select a subset of arms for interventions in each round. We delved into dif-

ferent types of fairness constraints to develop practical solutions for RMAB,

particularly in the critical domain of health interventions with the presence of

severe resource limitations. In the upcoming two chapters, we shift our focus to

sequential decision learning within the Reinforcement Learning (RL) framework.

The agent in RL employs the principle of trial and error to investigate the optimal

consequences of actions in a given state, guided by the feedback from scalar

signals associated with each action. Yet, in many real-world applications, the

interaction between the environment and RL agents incurs significant costs,

thereby restricting our capacity for data collection and underscoring the need for

sample-efficient algorithms. This dissertation investigates two distinct sequential

decision learning problems aimed at promoting social good under resource con-

straints. For both problems, we apply curriculum-based approaches to enhance

sample efficiency and minimize costly interactions.
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In this chapter, we consider a specific practical problem in the reinforcement

learning setting. We focus on the challenge of identifying a small subset of

nodes in a network that can maximize the diffusion of information. Recently,

it has also found application in HIV prevention, substance abuse prevention,

micro-finance adoption, etc., where the goal is to find the set of peer leaders

in a real-world physical social network who can disseminate information to

a large group of people. Unlike online social networks, real-world networks

are not completely known, and collecting information about the network is

costly as it involves surveying multiple people. In this work, we focus on

the problem of network discovery for influence maximization. The existing

work in this direction proposes a reinforcement learning framework. As the

environment interactions in real-world settings are costly, so it is important for

the reinforcement learning algorithms to have minimum possible environment

interactions, i.e, to be sample efficient. In this Chapter, we propose CLAIM -

Curriculum LeArning Policy for Influence Maximization to improve the sample

efficiency of RL methods. We conduct experiments on real-world datasets and

show that our approach can outperform the current best approach. This work is

presented in:

• Li, Dexun, Meghna Lowalekar, and Pradeep Varakantham. “CLAIM:

Curriculum learning policy for influence maximization in unknown social

networks.” Uncertainty in Artificial Intelligence. PMLR, 2021.

3.1 Introduction

Social interactions between people play an important role in spreading informa-

tion and behavioral changes. The problem of identifying a small set of influential

nodes in a social network that can help in spreading information to a large group

is termed as influence maximization (IM) [43]. It was widely used in applica-

tions such as viral marketing [43], rumor control [13], etc, which use the online
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social networks. In addition to these, IM has also found useful applications in

domains involving real world physical social networks. Some of these appli-

cations include identifying peer leaders in homeless youth networks to spread

awareness about HIV [105, 109], identifying student leaders in school networks

to disseminate information on substance abuse [95], identifying users who can

increase participation in micro-finance [7], etc. In the case of real world social

networks, the network information is not readily available and it is generally

gathered by individually surveying different people who are part of the network.

As conducting such surveys is a time-intensive process requiring substantial

efforts from a dedicated team of social work researchers, it is not practically

possible to have access to a complete network structure. Therefore, the influence

maximization problem in the real world is coupled with the uncertain problem of

discovering a network using a limited survey budget (i.e., the number of people

who can be queried).

Most of the existing work [105, 104, 109] which addresses real-world influ-

ence maximization problems perform network discovery by surveying nodes

while exploiting a specific network property such as community structure.

CHANGE algorithm [105] is based on the principle of friendship paradox

and performs network discovery by surveying a random node and one of its

neighbour. Each node reveals the information about its neighbors upon querying.

The subgraph obtained after querying a limited set of nodes is used to pick a set

of influential nodes using an influence maximization algorithm. A recent work

by Kamarthi et al. [39] provides a reinforcement learning based approach to

automatically train an agent for network discovery. They developed an extension

to DQN referred to as Geometric-DQN to learn policies for network discovery by

extracting relevant graph properties, which achieves better performance than the

existing approaches. As any other reinforcement learning approach, the work by

Kamarthi et al. [39] needs to perform multiple interactions with the environment

to perform exploration. As in the real world settings, the environment interac-
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tions are costly, the approach can be improved by reducing the environment

interactions, i.e., by increasing the sample efficiency. This approach employs a

myopic heuristic (new nodes discovered) to guide exploration and we employ

goal directed learning to provide a forward looking (non-myopic) heuristic.

In this chapter, we propose to model the network discovery problem as

a goal-directed reinforcement learning problem. We take the advantage of

the Hindsight Experience Replay [4] framework which suggests learning from

failed trajectories of agent by replaying each episode with a different goal

(e.g. the state visited by agent at the end of its failed trajectory) than the

one agent was trying to achieve. This helps in increasing sample efficiency

as agents can get multiple experiences for learning in a single environment

interaction. To further improve the performance, we use the curriculum guided

selection scheme proposed by Fang et al. [24] to select the set of episodes

for experience replay. While there have been some other works that focus on

improving the sample-efficiency [89, 14, 19], most of them are designed for

domain-specific applications and unlike our curriculum-guided selection scheme

which adaptively controls the exploration-exploitation trade-off by gradually

changing the preference on goal-proximity and diversity-based curiosity, they

only perform curiosity-driven learning.

Contributions: In summary, following are the main contributions of the this

chapter along different dimensions:

• Problem: We convert the whole process of network discovery and influence

maximization into a goal directed learning problem. Unlike standard goal

directed learning problems where the goal state is known, in this problem, the

goal state is not given. We provide a novel heuristic to generate goals for our

problem setting.

• Algorithm: We propose a new approach CLAIM - Curriculum LeArning

Policy for Influence Maximization in unknown social networks which by using
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Curriculum guided hindsight experience replay and goal directed Geometric-

DQN architecture can learn sample efficient policies for discovering network

structure.

• Experiments: We perform experiments in social networks from three different

domains and show that by using our approach, the total number of influenced

nodes can be improved by up to 7.51% over the existing approach.

Notation Description
G∗ = (V ∗, E∗) Entire Unknown Graph
S Set of nodes known initially
Gt = (Vt, Et) Subgraph of G∗ discovered after t queries
NG∗(u) Neighbors of vertex u in graph G∗

E(X, Y ) All direct edges that connect a node in set X and a node in set Y
O(G) Set of nodes from graph G selected by influence maximization

algorithm O
IG∗(A) Expected Number of nodes influenced in graphG∗ on choosing

A as the set of nodes to activate

Table 3.1: Notations

3.2 Problem Description

The problem considered in this work involves discovering a subgraph of the

unknown network such that the set of peer leaders chosen from the discovered

subgraph maximizes the number of people influenced by peer leaders. We

now describe both the components of the problem, i.e., network discovery and

influence maximization in detail. The notations used in the problem description

are defined in Table 3.1.

• Network Discovery Problem: The network discovery problem can be

described as a sequential decision-making problem where at each step,

the agent queries a node from the discovered subgraph. The queried node

reveals its neighbors, expanding the discovered subgraph. The process
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goes on for a fixed number of steps, determined by the budget constraint.

Formally, initially we are given a set of nodes S and the agent can observe

all the neighbors of nodes in set S. Therefore, V0 = S ∪ NG∗(S). The

agent has a budget of T queries to gather additional information. For

(t+ 1)th query, the agent can choose a node ut from Gt and observe Gt+1.

Gt+1 = (Vt ∪NG∗(ut), E(Gt) ∪ E(NG∗(ut), {ut})).

At the end of network discovery process, i.e., after T queries, we get the final

discovered subgraph GT . This graph is provided as an input to an IM algorithm.

• Influence Maximization (IM) : IM is the problem of choosing a set of

influential nodes in a social network who can propagate information to

maximum nodes. In this chapter, the information propagation over the

network is modeled using the Independent Cascade Model (ICM ) [43],

which is the most commonly used model in the literature. In the ICM, at

the start of the process, only the nodes in the set of chosen initial nodes

are active. The process unfolds over a series of discrete time steps, where

at every step, each newly activated node attempts to activate each of its

inactive neighbors and succeeds with some probability p. The process

ends when there are no newly activated nodes at the final step. After

discovering the subgraph GT using the network discovery process, we can

use any standard influence maximization algorithm to find out the best set

of nodes to activate based on the available information. Lowalekar et al.

[54] showed the robustness of the well-known greedy approach [43] on

medium scale social network instances, which is also served as the oracle

in our work.

Overall, given a set of initial nodes S and its observed connections NG∗(S),

our task is to find sequence of queries (u0, u1, . . . , uT−1) such thatGT maximizes
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Figure 3.1: Network discovery and influence maximization. Grey: Set of Queried
Nodes; Orange: Set of unqueried nodes (In the initial subgraph G0, grey nodes will
represent the set S and orange nodes will represent the set NG∗(S)), Yellow: node
picked by the agent to query (ut); Red: nodes selected by influence maximization
algorithm in the final discovered subgraph (O(GT )); Blue: other nodes in the final
discovered subgraph GT

IG∗(O(GT )). Figure 3.1 shows the visual representation of the problem.

3.3 Background

In this section, we describe the relevant research, the MDP formulation and the

Geometric-DQN architecture used by Kamarthi et al. [39] to solve the network

discovery and influence maximization problem.

3.3.1 MDP Formulation

The social network discovery and influence maximization problem can be for-

mally modelled as an MDP.

• State: The current discovered graph Gt is the state.

• Actions: The nodes yet to be queried in network Gt constitute the

action space. So, set of possible actions is Vt \ {S ∪i≤t ui} ∀t >

0 and NG∗(S) when t = 0.

• Rewards: Reward is only obtained at the end of episode, i.e,, after T steps.

It is the number of nodes influenced in the entire graph G∗ using GT , i.e.,
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IG∗(O(GT )). The episode reward is denoted by RT , where T is the length

of the episode (budget on the number of queries available to discover the

network).

Training: To train the agent in the MDP environment, DQN algorithm is used

but the original DQN architecture which takes only the state representation as

an input and outputs the action values can not be used as the action set is not

constant and depends on the current graph. Therefore, both state and action are

provided as an input to DQN and it predicts the state action value. The DQN

model can be trained using a single or multiple graphs. If we train simultaneously

on multiple graphs, then the MDP problem turns out to be Partially observable

MDP, as the next state is determined by both the current state and current action

as well as the graph we are using. The range of reward values also depends on

the size and structure of the graph, therefore, the reward value is normalized

when multiple graphs are used for training.

RT =
IG∗(O(GT ))

OPT (G∗)
(3.1)

3.3.2 Geometric-DQN

As described in the previous section, the state is the current discovered graph

Gt and actions are the unqueried nodes in the current discovered graph. So, a

good vector representation of the current discovered graph is required. It is also

important to represent nodes such that it encodes the structural information of

the node in the context of the current discovered graph. Figure 3.2 shows the

Geometric-DQN architecture which takes the state and action representation

as input and outputs the Q(s, a) values. The details about state and action

representation are provided below.

• State representation: The state is the current graph. and the Geometric-DQN

architecture uses Graph Convolutional Networks to generate graph embeddings.
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Figure 3.2: Geometric-DQN Architecture. Figure taken from Kamarthi et al. [39].
FC1/FC2 - fully connected layers.

The graph Gt is represented with the adjacency matrix At ∈ R|Vt|×|Vt| and a

node feature matrix F (k−1)
t ∈ R|Vt|×d in layer k − 1 where d is the number of

features. The node features in the input layer of graph convolution network,

i.e., F 0
t are generated by using random-walk based Deepwalk embeddings1

[73].

Now, a Graph Convolutional layer derives node features using a transformation

function F k =M(A,F k−1;W k), where W k represent the weights of the kth

layer. Using the formulation in Ying et al. [110], the transformation function

is given by

F
(k)
t = ReLU(D− 1

2 ÃD− 1
2F

(k−1)
t W (k))

where Ã means adjacency matrix At with added self-connections, i.e., Ã =

At+ In (In is the identity matrix). D =
∑

j Ãij . To better represent the global

representation of graph, differential pooling is used which learns hierarchical

representations of the graph in an end-to-end differentiable manner by iter-

atively coarsening the graph, using graph convolutional layer as a building

block. The output of graph convolutional network is provided as an input to a

1Deepwalk learns node representations that are similar to other nodes that lie within a fixed
proximity on multiple random walks.
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pooling layer.

• Actions representation: DeepWalk node embeddings are also utilized for

representing actions. We use ϕ to denote the deepwalk embeddings.

Therefore, if Gt is the current graph (state) and ut is the current node to be

queried (action), we represent state as St = (F 0
t , At) and action as ϕ(ut) which

are input to the network as shown in the Figure 3.2.

3.4 Our Approach - CLAIM

In this section, we present our approach CLAIM - Curriculum LeArning Policy

for Influence Maximization in unknown social networks. We first explain how

the problem can be translated into a Goal directed learning problem. The

advantage of translating the problem into goal directed learning problem is that it

allows us to increase sample efficiency by using the Curriculum guided Hindsight

experience replay (CHER) [24]. CHER involves replaying each episode with

pseudo goals, so the agent can get multiple experiences in a single environment

interaction which results in increasing the sample efficiency.

To use goal directed learning in our setting, we first present our novel heuristic

to generate goals and the modifications to the MDP formulation for goal directed

learning. After that, we present our algorithm to generate a curriculum learning

policy using Hindsight experience replay.

3.4.1 Goal Directed Reinforcement Learning

In the Goal Directed or Goal Conditioned Reinforcement Learning [4, 64], an

agent interacts within an environment to learn an optimal policy for reaching a

certain goal state or a goal defined by a function on the state space in an initially

unknown or only partially known state space. If the agent reaches the goal, then
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the reinforcement learning method is terminated, and it solves the goal-directed

exploration problem.

In these settings, the reward that the agent gets from the environment is also

dependent on the goal that the agent is trying to achieve. A goal-conditioned

Q-function Q(s, a, g) [80] learns the expected return for the goal g starting from

state s and taking action a. Given a state s, action a, next state s′ , goal g and

corresponding reward r, one can train an approximate Q-function parameterized

by θ by minimizing the following Bellman error:

1

2
||Qθ(s, a, g)− (r + γ ·max

a′
Qθ′(s

′, a′, g)||2

This loss can be optimized using any standard off-policy reinforcement learning

method [64].

Generally, in these goal-directed reinforcement learning problems, a set of

goal states or goals defined by a function on the state space is given and the

agent needs to reach one of the goal states (goals). But in our setting, we do not

have an explicit goal state given. To convert the network discovery and influence

maximization problem to a goal directed learning problem, we introduce the

notion of goals for our problem. We define the goal as the expected long-term

reward, i.e., the expected value of the number of nodes that can be influenced

in the network, intuitively, the state which can achieve this goal value serves

as our goal state. As we have a limited query budget to discover the network,

the goal value will be highly dependent on the initial sub-graph. If we use the

same value of goal for each start state, for some start states this common goal

value will turn out to be a very loose upper bound (or very loose lower bound).

Experimentally, we found that if the goal value is too far from the actual value

that can be achieved, it negatively affects the speed of learning. So, we design a

heuristic to compute a different goal for each start state.
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Figure 3.3: Process to generate the goal for each start state

Goal Generation Heuristic

As we need to generate a goal at the start of each episode (i.e., before the agent

starts interacting with the environment), we need to compute the goal value

without making any queries to the environment. We assume that based on the

domain knowledge, agent can get an estimate about the number of nodes (|Ṽ ∗|)

and edges (|Ẽ∗| in the network and also an estimate about average number of

nodes which can be influenced in the network (irrespective of the start state) (Ĩ∗).

We now describe how we use these estimates to design our heuristic to compute

the goal value for each start state.

Figure 3.3 represents the steps for our heuristic. As the network is unknown

to the algorithm, we assume a network structure and compute the diffusion

probability based on the assumed network structure, and estimate the number of

nodes, edges, and average influence. By using the computed diffusion probability,

given estimates, and assumed network structure, we generate a goal value for a

given initial subgraph.

We assume that the network is undirected and uniformly distributed, i.e, each

node is connected to 2∗|Ẽ∗|
|Ṽ ∗| nodes. We also assume a local tree structure as shown
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in Figure 3.3 2 to approximate the actual expected influence within the social

network [16, 97]. The root of the tree can be any of the |S| nodes (initially

given nodes) and each node will be part of only one of such trees. The influence

propagation probability is assumed to be p′ and is considered the same for all

edges. We now show how the value of p′ can be computed based on the network

structure assumption and available information.

1. Computing p’: We find a value of p′ such that the expected influence in

our tree-structured network is similar to the estimate on the average value

of influence Ĩ∗. To compute the expected influence or expected number of

nodes activated in the network, we need to know the number of layers in

the tree structure. Therefore, we first compute the number of layers in our

assumed tree structure. Let K1 = |S| ∗ 2 ∗ |E∗|
|V ∗| , which is the number of

nodes at first layer. For subsequent layers, each node will be connected to

2 ∗ |Ẽ∗|
|Ṽ ∗| − 1 nodes at the layer below it (one edge will be to the node at the

above layer). We use r to denote the quantity 2 ∗ |Ẽ∗|
|Ṽ ∗| − 1 . As the total

number of nodes in the graph is |Ṽ ∗|, the sum of the number of nodes at all

layers should be equal to |Ṽ |∗. Let L denote the number of layers. Then,

|Ṽ |∗ = |S|+K1 +K1 ∗ r +K1 ∗ r2 + ..+K1 ∗ rL−1 (3.2)

=⇒ (|Ṽ |∗ − |S|)
K1

=
rL − 1

r − 1
(3.3)

Solving for L gives L = logr(1 +
|Ṽ |∗−|S|)∗(r−1)

K1
). Now, we compute the

expected number of nodes activated (influenced) in our assumed network

with the propagation probability p′. Let J denote the expected number of

2These simplified assumptions work well to approximate the influence propagation. We also
observe in our experiments that our heuristic outputs a value that is closer to the actual value.
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nodes influenced in the network. Then,

J = |S|+K1 ∗ p′ +K1 ∗ r ∗ p′2 +K1 ∗ r2 ∗ p′3 (3.4)

+ ..+K1 ∗ rL−1 ∗ p′L

=⇒ (J − |S|)
K1

=
p′ ∗ ((p′ ∗ r)L − 1)

p′ ∗ r − 1
(3.5)

If our assumed network is similar to the actual network, the value of J

should be close to Ĩ∗, i.e., the average number of nodes influenced in the

network. Therefore, to find the value of p′, we perform a search in the

probability space and use the value of p′ which makes J closest to ˜|I|
∗
.

2. Computing goal value g for a given initial subgraph: Now, to compute

the goal value for a given initial subgraph, we use the p′ value computed

above. The subgraph is known, i.e., the neighbors of nodes in set S

(NG∗(S)) are known. Therefore, the number of nodes at the first layer is

equal to NG∗(S), i.e., K1 = |NG∗(S)|. For the next layer onwards, we

assume a similar tree structure as before with each node connected to

2 ∗ |Ẽ|
|Ṽ | − 1 node at the layer below it. Therefore, to compute the goal

value, we substitute K1 as |NG∗(S)| in equations 3.3 and 3.5 to compute

the number of layers and influence value. We use the value of p′ computed

above and solve for J . The J value obtained is the influence value we can

achieve for the given subgraph based on the assumptions and available

information. We use the value of J as our goal g for the subgraph.

Modifications to the MDP formulation:

The state and action remain the same as before but due to the introduction of

goals, the reward function is now parameterized by the goal. Let Rt,g denote the

reward obtained at timestep t when the goal is g. As we only get episode reward,
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therefore 3,

RT−1,g =
IG∗(O(GT ))− g

g
and Rt,g = 0,∀t ̸= T − 1 (3.6)

3.4.2 Algorithm

In this section, we describe the algorithm used to train the reinforcement learning

agent. We use the DQN algorithm and use Curriculum Guided Hindsight

Experience Replay to improve the sample efficiency. Algorithm 5 describes the

detailed steps. Figure 3.4 provides a visual representation.

We train using multiple training graphs. In each episode, we sample a training

graph and then sample an initial set of nodes S. We generate the input state

by computing the deepwalk embeddings at each timestep and use ϵ−greedy

policy to select the action, i.e., the node to be queried. In step 13, we store the

transitions according to standard experience replay where we add the goal as

well in the experience buffer.

Steps 14-16 are the first set of crucial steps to improve the sample effi-

ciency, where as per the Hindsight Experience Replay technique proposed by

Andrychowicz et al. [4], we sample pseudo goals and in addition to storing the

sample with the actual goal for the episode, we also store each sample by modi-

fying the desired goal (which the agent could not achieve in the failed trajectory)

with a pseudo goal g′. The reward with the pseudo goal g′ is recomputed as per

3Normalizing the reward using the goal stabilizes the learning.
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Algorithm 5: Train Network
Input: Train graphs G = {G1, G2, ..., Gk}, number of episodes N .

Query budget T
1 Initialize DQN Qθ and target DQN Qθ′ with θ = θ′ and the Replay

Buffer B;
2 for episode = 1 to N do
3 G = sample(G), S = sample(G);
4 Initialize the subgraph G0 = (S ∪NG∗(S), E(S,NG∗(S))) and

corresponding desired goal g;
5 F 0

0 = DeepWalk(G0) and S0 = (F 0
0 , A0) ;

6 Get the possible action set X = NG(S);
7 for t = 0 to T − 1 do
8 With probability ϵ select a random node ut from X and with

probability 1-ϵ select ut ← maxu∈X Qθ(St, ϕ(u), g) ;
9 Query node ut and observe new graph Gt+1;

10 Update the state F 0
t+1 = DeepWalk(Gt+1) and

St+1 = (F 0
t+1, At+1);

11 Update the possible action set X which is the set of nodes not yet
queried in Gt+1;

12 for t = 0 to T − 1 do
13 Store the transition (St, ϕ(ut), Rt, g, St+1, g) in B ;
14 Sample the additional goals G for replay ;
15 for g′ ∈ G do
16 Add the transition (St, ϕ(ut), Rt,g′ , St+1, g

′) to replay buffer
B;

17 for t = 0 to T − 1 do
18 Sample a minibatch A from the replay buffer B(according to the

proximity and diversity scores) ;
19 Update the proximity-diversity trade-off parameter λ← γ × λ ;
20 Update Qθ using the minibatch A;
21 Update target network Qθ′ with parameters of Qθ at regular intervals;
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the Equation 3.6.

While there are multiple possible strategies to generate the set of pseudo

goals [4], the most common strategy to generate the pseudo goals is to use the

goal achieved at the end of the episode. Therefore, in this work, we use g′ as

IG∗(O(GT )).

Step 18 is the second crucial step towards improving the sample efficiency

where for sampling experiences from the replay buffer, we use a curriculum

guided selection process which relies on the goal-proximity and diversity based

curiosity [24]. Instead of sampling experiences uniformly, we select a subset of

experiences based on the trade-off between goal-proximity and diversity-based

curiosity. This plays an important role in guiding the learning process. A large

proximity value enforces the training to proceed toward the desired goals, while

a large diversity value ensures the exploration of different states and regions in

the environment. To sample a subset A of size k for replay from the experience

buffer B, the following optimization needs to be solved:

max
A⊆B,|A|≤k

F (A) = max
A⊆B,|A|≤k

(Fprox(A) + λFdiv(A)) (3.7)

where B is the uniformly sampled subset of size mk from the buffer B. Let

m = 3 as Fang et al. [24] does. Fprox(A) measures the proximity of the achieved

goals g′ in A to its desired goal g. The second term Fdiv(A) denotes the diversity

of states and regions of the environment in A. The weight λ is used to balance

the trade-off between the proximity and the diversity. The trade-off between

the two values is balanced such that it enforces a human-like learning strategy,

where there is more curiosity in exploration in the earlier stages and later the

weight is shifted to the goal-proximity.

In our work, we define proximity as the similarity between goal values and

diversity based on the distance between visited states. This is because even

though goal values (influence achieved) can be different, the states visited can

still be very similar to each other. Formally, to define proximity, we use the
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difference between achieved goal g′i and the desired goal gi as distance and

subtract it from a large constant to get the similarity, i.e.,

Fprox(A) =
∑
i∈A

(c− |(g′i − gi)|) (3.8)

where c is a large number to guarantee (c−|(g′i−gi)|) ≥ 0 for all possible gi, and

gi is the goal corresponding to experience i in set A. For defining diversity, we

need to compute similarity between states, and the Geometric DQN architecture

allows us to easily compute this value. Diversity is defined as follows

Fdiv(A) =
∑
j∈B

max
i∈A
{0, sim(semb

i , semb
j )} (3.9)

where we use semb
i to denote the embedding vector of the state (representation

of the graph in the embedding space) corresponding to the experience i. The

embedding vector of the state is the output of the graph convolution and pooling

layer (input to FC1) in Figure 3.2. sim(semb
i , semb

j ) denotes the similarity score

between the vector representations and is computed by taking the dot product of

the vectors.

This definition of diversity is inspired by the facility location function [20,

52] which was also used by Fang et al. [24]. Intuitively, this diversity term

is measuring how well the selected experiences in set A can represent the

experiences fromB. A large diversity score Fdiv(A) indicates that every achieved

state in B can find a sufficiently similar state in A. A diverse subset is more

informative and thus helps in improving learning.

It has been shown that F (A) defined in equation 3.7 is a monotone non-

decreasing submodular function 4 Therefore, even though exactly solving equa-

tion 3.7 is NP-hard, due to the submodularity property, a greedy algorithm can

provide a solution with an approximation factor 1− 1
e

[65]. The greedy algorithm

picks top k experiences from the buffered experiences B. It will start by taking
4It is a weighted sum of a non-negative modular function (Fprox(A)) and a submodular

function (Fdiv(A)). Please refer to the paper by Fang et al. [24] for details.
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A as an empty set and at each step, it will add the experience i which maximizes

the marginal gain. We denote the marginal gain for experience i by F (i|A) and

it is given by

F (i|A) = F (i ∪ A)− F (A) (3.10)

Therefore, by using equations 3.7-3.9, we get

F (i|A) = (c− (|g′i − gi|)) + λ
∑
j∈B

max{0, (sim(semb
i , semb

j )

−max
l∈A

(sim(semb
l , semb

j )))}
(3.11)

At the end of each episode, the trade-off coefficient λ is multiplied by a

discount rate γ, which produces the continuous shifting of weights from diversity

to proximity score. Then effect of Fdiv(A) will go to zero when λ→ 0.

3.5 Experiments

The goal of the experiment section is to evaluate the performance of our approach

CLAIM in comparison to the following state-of-the-art approaches:

• Random - At each step, it randomly queries a node from available unqueried

nodes.

• CHANGE Algorithm by Wilder et al. [105]

• Geometric-DQN (Baseline) Algorithm by Kamarthi et al. [39]

Category Train networks Test networks
Retweet copen, occupy israel, damascus,

obama, assad
Animal plj, rob bhp, kcs
FSW zone 1 zone 2, zone 3

Table 3.2: Train and test networks

Dataset: The first network is the Retweet Network from twitter [78]. The second

network is Animal Interaction networks which are a set of contact networks

of field voles (Microtus agrestis) inferred from mark-recapture data collected
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Network category Retweet networks Animals networks FSW networks

Test networks israel damascus∗∗ obama∗∗ assad∗ bhp∗ ∗ ∗ kcs∗∗ zone 2∗ zone 3
OPT value 113.9 195.8 154.7 134.2 111.9 113.4 20.98 16.40

Random value 31.17 84.71 40.81 69.44 36.80 54.39 13.26 12.31
CHANGE value 32.42 92.41 48.61 69.77 35.87 54.52 12.60 10.51
Geometric DQN 37.33 105.2 52.01 75.12 40.12 60.81 13.65 12.35

CLAIM approach 38.55 113.1 54.67 77.49 42.25 64.58 13.94 12.48

Improve percent 3.27% 7.51% 5.11% 3.15% 5.31% 6.20% 2.12% 1.05%

Table 3.3: Comparison of influence score of our proposed approach and existing
approaches for each test network. For each network, a paired t-test is performed
and ∗ indicates statistical significance of better performance at α = 0.05 level,
∗∗ at α = 0.01 level, and ∗ ∗ ∗ at α = 0.001 level.
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Figure 3.5: Comparison of performance of our approach and baseline approach
in dense and sparse network environment.

over 7 years and from four sites [21]. The third network is a real-world physical

network between Female Sex Workers (FSW) in a large Asian city divided into

multiple zones. This is a confidential dataset physically collected by a non-profit

by surveying different female sex workers recently. The goal in FSW networks is

to discover the network and select a subset of FSW from the discovered network

to be enrolled in the HIV prevention programs. The enrolled FSWs should be

such that they can pass on the information (influence) maximum FSWs in the

complete network. For each family of networks, we divide them into train and

test data as shown in Table 3.2.

Experimental Settings: Our experimental settings are similar to the settings

used in Kamarthi et al. [39]. There are 5 nodes in the set S. All nodes in S and

their neighbors are known. We have further budget of T = 5 queries to discover

the network. After getting the final subgraph GT , we pick 10 nodes to activate

using greedy influence maximization algorithm. We use p = 0.1 as the diffusion

probability for all the edges.
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3.5.1 Results

To demonstrate sample efficiency, we measure the performance of our approach

against past approaches by the average number of nodes influenced over 100

runs under a fixed number of queries. Here are the key observations:

• Average influence value: Table 3.3 shows the comparison of the number

of nodes influenced by different algorithms. Each algorithm selects the set

of nodes to activate from the discovered graph. As shown in the table, our

approach consistently outperforms all existing approaches across different

networks. CLAIM learns a better policy in the same number of episodes

and hence more sample-efficient. We would like to highlight here that

even a small consistent improvement in these settings is very important as

it can ensure more life safety (as an example by educating people about

HIV prevention).

• Effect of density of the initial subgraph: The number of nodes that

can be influenced in the graph is highly dependent on the position of the

initial subgraph in the whole social network. Therefore, we also test the

performance of CLAIM against the baseline approach on the dense and

sparse initial subgraphs (we identify the initial subgraph as dense or sparse

based on the ratio of |S∪NG∗ (S)|
|S| ). We compare the average influence values

as shown in Figure 3.5. CLAIM outperforms the baseline in most of the

cases, except the sparse case in the damascus network. The reason for this

may be that the damascus network is an extremely sparse network, and it

has some specific structure property that leads to this result.

• Ablation Study: We also present the detailed results for our ablation

study over all datasets in Table 3.4. We observe the effect of adding

each additional component in CLAIM one by one. First, we add only

the goal as a feature to the baseline model. Next, we add the Hindsight
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Network category Retweet Animals FSW
Networks israel damascus obama assad bhp kcs zone 2 zone 3
Baseline 37.33 105.2 52.01 75.12 40.12 60.81 13.65 12.35

Geometric DQN 36.24 110.5 51.61 73.68 41.59 62.80 13.79 12.32
HER 37.79 109.4 53.51 76.32 42.00 64.64 13.81 12.48

CLAIM 38.55 113.1 54.67 77.49 42.25 64.58 13.94 12.48

Table 3.4: Ablation study for each test network

Networks\Method Geometric DQN CLAIM
israel 37.11± 0.42 38.32± 0.32

damascus 104.2± 5.22 112.8± 4.01
obama 52.15± 1.05 54.78± 0.78
assad 74.53± 1.71 77.45± 1.02
bhp 40.24± 1.25 42.37± 0.81
kcs 59.67± 1.91 63.21± 1.43

zone 2 13.62± 0.01 13.94± 0.00
zone 3 12.23± 0.01 12.45± 0.00

Table 3.5: Stability of our approach compared to the baseline on different sets of
100 runs

Experience Replay and finally, we add the curriculum-guided selection

of experiences for replay. These results indicate that a single component

can not guarantee a better result for all networks, and we need all three

components to improve the performance across multiple datasets.

• Stability check: We check the stability of CLAIM by comparing the

performance of models trained using different random seeds. We train

three models for both baseline and CLAIM. Table 3.5 shows the mean

and deviation of influence value for different networks. CLAIM not only

achieves a high mean it also provides a low deviation reflecting the stability

of the approach.

• Property insight: We also explore the properties of the selected nodes

to further investigate why CLAIM performs better. We look at degree

centrality measures, closeness centrality measures, and betweenness cen-

trality measures of the nodes queried in the underlying graph. In particular,

we conduct experiment using assad, a retweet network with sparsely in-

terconnected star-graph. As we can see in Figure 3.6, compared to the
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Figure 3.6: Top Graph - Average degree, closeness and betweenness centrality of nodes
queried in the full graph by CLAIM and baseline. Bottom Graph - Variation of these
properties across timesteps.

baseline approach, on average, CLAIM can recognize nodes with a higher

degree, closeness, and betweenness centrality. As a result, CLAIM is

able to discover a bigger network. The higher degree centrality, higher

closeness centrality, and higher betweenness also show that CLAIM can

explore nodes that play an important role in the influence maximization

problem. Besides, these values are large at the beginning which means

that CLAIM tends to explore a bigger graph first, and then leverage the

available information with the learned graph to find complex higher-order

patterns in the graphs that enable it to find key nodes during the inter-

mediate timesteps, and finally utilize all the information to expand the

discovered graph at the end.

3.6 Discussion

We provide a justification for the choices made in the work.

• Network structure assumption for goal generation: As we have no prior
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information about the networks except the initial nodes, we need to make

some assumptions to compute the goal value. We make the assumption

of the network being uniformly distributed and use a tree structure to

approximate the information propagation as most networks observed for

these problems have similar structures or can be converted in these forms

with minimal loss of information.

• Goodness of heuristic used for goal generation: Experimentally, we

observe that the goal value computed by our heuristic is closer to the actual

value. For example, for the training network copen, the achieved influence

value by the model after training is at most within 20% of the goal value

computed using a heuristic. In addition, most of the achieved influence

values are much closer and are smaller than the computed goal. In the

future, we will investigate different ways to generate a goal with a proven

upper bound.

3.7 Conclusion

In this chapter, we propose a sample efficient reinforcement learning approach

for network discovery and influence maximization problems with limited budget.

Through detailed experiments, we show that our approach outperforms existing

approaches on real world datasets. In the next chapter we discuss how to train a

generally capable agent that can perform well in complex environments. This

can be applied in the real world by designing the most suitable tasks to train non-

expert humans so that they can achieve the best zero-shot transfer performance

under a limited training horizon and resources.
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Chapter 4

Training Robuts Agent with Limited

Resources

The use of reinforcement learning (RL) in training agents to possess general

capabilities represents an emerging research area with potential applications for

training human learners. A promising approach within this field is Unsupervised

Environment Design (UED), which automatically generates a curriculum of

training environments. This method optimizes the learning process by identify-

ing environments that strike an ideal balance between challenge and the agent’s

or human learner’s current capabilities. Agents trained in these environments

are able to develop general capabilities, i.e., achieving good zero-shot transfer

performance. However, existing UED approaches focus primarily on the ran-

dom generation of environments for open-ended agent training. The notion of

open-ended training requires training an agent across hundreds of thousands of

randomly generated environments for hundreds of millions of time steps. This

is impractical in real-world scenarios where resources are limited, such as the

number of environments that can be generated.

In this chapter, we introduce a novel hierarchical MDP framework for envi-

ronment design under resource constraints. It features an upper-level RL teacher

agent tasked with generating suitable training environments for a lower-level
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student agent. The RL teacher can leverage previously discovered environment

structures and generate environments at the frontier of the student’s capabilities

by observing the student policy’s representation. We incorporate a fairness

reward to ensure the generated environments are suitable and equitable. More-

over, to reduce the time-consuming collection of experiences for the upper-level

teacher, we utilize recent advances in generative modeling to synthesize a tra-

jectory dataset to train the teacher agent. Our proposed method significantly

reduces the resource-intensive interactions between agents and environments

and empirical experiments across various domains demonstrate the effectiveness

of our approach. Furthermore, our framework has the potential to benefit the

training of non-professional humans by facilitating their learning process within

suitably generated environments. This work is presented in:

• Li, Dexun, and Pradeep Varakantham. ”A Hierarchical Approach to

Environment Design with Generative Trajectory Modeling.” arXiv e-prints

(2023): arXiv-2310.

4.1 Introduction

The advances of reinforcement learning (RL [90]) have promoted research into

the problem of training autonomous agents that are capable of accomplishing

complex tasks. One interesting, yet underexplored, area is training agents to

perform well in unseen environments, a concept referred to as zero-shot transfer

performance. To this end, Unsupervised Environment Design (UED [22, 93]) has

emerged as a promising paradigm to address this problem. The objective of UED

is to automatically generate environments in a curriculum-based manner, and

training agents in these sequentially generated environments can equip agents

with general capabilities, enabling agents to learn robust and adaptive behaviors

that can be transferred to new scenarios without explicit exposure during training.

Existing approaches in UED primarily focus on building an adaptive cur-
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riculum for the environment generation process to train the generally capable

agent. Dennis et al. [22] formalize the problem of finding adaptive curricula

through a game involving an adversarial environment generator (teacher agent),

an antagonist agent (expert agent), and the protagonist agent (student agent). The

RL-based teacher is designed to generate environments that maximize regret,

defined as the difference between the protagonist and antagonist agent’s expected

rewards. They show that these agents will reach a Nash Equilibrium where the

student agent learns the minimax regret policy. However, since the teacher agent

adapts solely based on the regret feedback, it is inherently difficult to adapt to

student policy changes. Meanwhile, training such an RL-based teacher remains a

challenge because of the high computational cost of training an expert antagonist

agent for each environment.

In contrast, domain randomization [94] based approaches circumvent the

overhead of developing an RL teacher by training the agent in randomly gen-

erated environments, resulting in good empirical performances. Building upon

this, Jiang et al. [36] introduce an emergent curriculum by sampling randomly

generated environments with high regret value 1 to train the agent. Parker-Holder

et al. [70] then propose the adaptive curricula by manually designing a principled,

regret-based curriculum, which involves generating random environments with

increasing complexity. Li et al. [51] incorporate diversity measurement into the

environment generation process to ensure that the agent is exposed to diverse

environments. While these domain randomization-based algorithms have demon-

strated good zero-shot transfer performance, they face limitations in efficiently

exploring large environment design spaces and exploiting the inherent structure

of previously discovered environments. Moreover, existing UED approaches

typically rely on open-ended learning, necessitating a long training horizon,

which is unrealistic in the real world due to resource constraints. Our goal is to

develop a teacher policy capable of generating environments that are perfectly

1They approximate the regret value by the Generalized Advantage Estimate [81].
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matched to the current skill levels of student agents, thereby allowing students

to achieve optimal general capability within a strict budget for the number of

environments generated and within a shorter training time horizon.

In this chapter, we address these challenges by introducing a novel, adaptive

environment design framework. The core idea involves using a hierarchical

Markov Decision Process (MDP) to simultaneously formulate the evolution of

an upper-level MDP teacher agent, tasked with generating suitable environments

to train the lower-level MDP student agent to achieve general capabilities. To

accurately guide the generation of environments at the frontier of the student

agent’s current capabilities, we propose approximating the student agent’s poli-

cy/capability by its performances across a set of diverse evaluation environments,

which are used as the observations for the teacher agent. These transitions in the

teacher’s observations represent the trajectories of the student agent’s capability

after a complete training cycle in the generated environment. However, collecting

experience for the upper-level teacher agent is slow and resource-intensive, since

each upper-level MDP transition evolves a complete training cycle of the student

agent on the generated environment. To accelerate the collection of upper-level

MDP experiences, we utilize advances in diffusion models that can generate

new data points capturing complex distribution properties, such as skewness

and multi-modality, exhibited in the collected dataset [79]. Specifically, we

employ diffusion probabilistic model [86, 31] to learn the evolution trajectory of

student policy/capability and generate synthetic experiences to enhance the train-

ing efficiency of the teacher agent. Our method, called Synthetically-enhanced

Hierarchical Environment Design (SHED), automatically generates increasingly

complex environments suited to the current capabilities of student agents.

In summary, we make the following contributions:

• We develop a novel hierarchical MDP framework for UED that introduces a

straightforward method to represent the current capability level of the student
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agent.

• We introduce SHED, which utilizes diffusion-based techniques to generate

synthetic experiences. This method can accelerate the training of the off-policy

teacher agent.

• We demonstrate that our method outperforms existing UED approaches (i.e.,

achieving a better general capability under resource constraints) in different

task domains.

4.2 Preliminaries

In this section, we provide an overview of two main research areas upon which

our work is based.

4.2.1 Unsupervised Environment Design

The objective of UED is to generate a sequence of environments that effectively

train the student agent to achieve a general capability. Dennis et al. [22] first

model UED with an Underspecified Partially Observable Markov Decision

Process (UPOMDP), which is a tuple

M =< A,O,Θ, SM,PM, IM,RM, γ >

The UPOMDP has a set Θ representing the free parameters of the environments,

which are determined by the teacher agent and can be distinct to generate the

next new environment. Further, these parameters are incorporated into the

environment-dependent transition function PM : S × A × Θ → S. Here A

represents the set of actions, S is the set of states. Similarly, IM : S → O is

the environment-dependent observation function, RM is the reward function,

and γ is the discount factor. Specifically, given the environment parameters
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θ⃗ ∈ Θ, we denote the corresponding environment instance asMθ⃗. The student

policy π is trained to maximize the cumulative rewards VM
θ⃗(π) =

∑T
t=0 γ

trt

in the given environmentMθ⃗ under a time horizon T , and rt are the collected

rewards inMθ⃗. Existing works on UED consist of two main strands: the RL-

based environment generation approach and the domain randomization-based

environment generation approach.

The RL-based generation approach was first formalized by Dennis et al. [22]

as a self-supervised RL paradigm for generating environments. This approach

involves co-evolving an environment generator policy (teacher) with an agent

policy π (student), where the teacher’s role is to generate environment instances

that best support the student agent’s continual learning. The teacher is trained to

produce challenging yet solvable environments that maximize the regret measure,

which is defined as the performance difference between the current student agent

and a well-trained expert agent π∗ within the current environment.

RegretMθ⃗(π, π∗) = VM
θ⃗(π∗)− VM

θ⃗(π)

The domain randomization-based generation approach, on the other hand,

involves randomly generating environments. Jiang et al. [36] propose to collect

encountered environments with high learning potentials, which are approximated

by the Generalized Advantage Estimation (GAE) [81], and then the student

agent can selectively train in these environments, resulting in an emergent

curriculum of increasing difficulty. Additionally, Parker-Holder et al. [70] adopt

a different strategy by using predetermined starting points for the environment

generation process and gradually increasing complexity. They manually divide

the environment design space into different difficulty levels and employ human-

defined edits to generate similar environments with high learning potentials.

Their algorithm, ACCEL, is currently the state-of-the-art (SOTA) in the field,

and we use an edited version of ACCEL as a baseline in our experiments.
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4.2.2 Diffusion Probabilistic Models

Diffusion models [86, 31] are a specific type of generative model that learns the

data distribution. Recent advances in diffusion-based models, including Langevin

dynamics and score-based generative models, have shown promising results in

various applications, such as time series forecasting [91], robust learning [68],

anomaly detection [106] as well as synthesizing high-quality images from text

descriptions [67, 79]. These models can be trained using standard optimization

techniques, such as stochastic gradient descent, making them highly scalable

and easy to implement.

In a diffusion probabilistic model, we assume a d-dimensional random vari-

able x0 ∈ Rd with an unknown distribution q(x0). Diffusion Probabilistic model

involves two Markov chains: a predefined forward chain q(xk|xk−1) that perturbs

data to noise, and a trainable reverse chain pϕ(xk−1|xk) that converts noise back

to data. The forward chain is typically designed to transform any data distribution

into a simple prior distribution (e.g., standard Gaussian) by considering perturb

data with Gaussian noise of zero mean and a fixed variance schedule {βk}Kk=1

for K steps:

q(xk|xk−1) = N (xk;
√

1− βkxk−1, βtI)

q(x1:K |x0) = ΠK
k=1q(xk|xk−1),

(4.1)

where k ∈ {1, . . . , K}, and 0 < β1:K < 1 denote the noise scale scheduling.

As K → ∞, xK will converge to isometric Gaussian noise: xK → N (0, I).

According to the rule of the sum of normally distributed random variables, the

choice of Gaussian noise provides a closed-form solution to generate arbitrary

time-step xk through:

xk =
√
ᾱkx0 +

√
1− ᾱkϵ, where ϵ ∼ N (0, I). (4.2)

Here αk = 1− βk and ᾱk =
∏k

s=1 αs. The reverse chain pϕ(xk−1|xk) reverses

the forward process by learning transition kernels parameterized by deep neu-
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ral networks. Specifically, considering the Markov chain parameterized by ϕ,

denoising arbitrary Gaussian noise into clean data samples can be written as:

pϕ(xk−1|xk) = N (xk−1;µϕ(xk, k),Σϕ(xk, k)) (4.3)

It uses the Gaussian form pϕ(xk−1|xk) because the reverse process has the

identical function form as the forward process when βt is small [86]. Ho et al.

[31] consider the following parameterization of pϕ(xk−1|xk):

µϕ(xk, k) =
1

αk

(
xk −

βk√
1− αk

ϵϕ(xk, k)

)

Σϕ(xk, k) = β̃
1/2
k where β̃k =


1−αk−1

1−αk
βk k > 1

β1 k = 1

(4.4)

where ϵϕ is a trainable function to predict the noise vector ϵ from xk. Ho

et al. [31] show that training the reverse chain to maximize the log-likelihood∫
q(x0) log pϕ(x0)dx0 is equivalent to minimizing re-weighted evidence lower

bound (ELBO) that fits the noise. They derive the final simplified optimization

objective:

L(ϕ) = Ex0,k,ϵ

[
∥ϵ− ϵϕ(

√
ᾱkx0 +

√
1− ᾱkϵ, k)∥2

]
. (4.5)

Once the model is trained, new data points can be subsequently generated by

first sampling a random vector from the prior distribution, followed by ancestral

sampling through the reverse Markov chain in Equation 4.3.

4.3 Approach

In this section, we formally describe our method, Synthetically-enhanced

Hierarchical Environment Design (SHED), which is a novel framework for

UED under resource constraints. The SHED incorporates two key components

that differentiate it from existing UED approaches:

• A hierarchical MDP framework to generate suitable environments,
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Figure 4.1: The overall framework of SHED.

• A generative model to generate the synthetic trajectories.

SHED uses a hierarchical MDP framework where an RL teacher leverages

the observed student’s policy representation to generate environments at the

student’s capabilities frontier. Such targeted environment generation process

enhances the student’s general capability by utilizing the underlying structure

of previously discovered environments, rather than relying on the open-ended

random generation. Besides, SHED leverages advances in generative models

to generate synthetic trajectories that can be used to train the off-policy teacher

agent, which significantly reduces the costly interactions between the agents

and the environments. The overall framework is shown in Figure 4.1, and the

pseudo-code is provided in Algorithm 6.

4.3.1 Hierarchical Environment Design

The objective is to generate a limited number of environments that are designed

to enhance the general capability of the student agent. Inspired by the principles

of PAIRED [22], we adopt an RL-based approach for the environment generation

process. To better generate suitable environments tailored to the current student

skill level, SHED uses the hierarchical MDP framework, consisting of an upper-
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Algorithm 6: SHED
Input: real data ratio ψ ∈ [0, 1], evaluate environment set θeval, reward

function R;
1 Initialize: diffusion model D, teacher policy Λ, real and synthetic replay

buffer Breal,Bsyn = ∅;
2 for episode ep = 1, . . . , K do
3 Initialize student policy π;
4 Evaluate π on θeval and get state su = p(π);
5 for Budget t = 1, . . . , T do
6 generate θ⃗ ∼ Λ, and createMθ⃗(π);
7 generate θ⃗ ∼ Λ, and createMθ⃗(π);
8 train π onMθ⃗ to maximize V θ⃗(π);
9 evaluate π on θeval and get next state s′;

10 compute teacher’s reward rt according to R;
11 add experience (sut , θ⃗, r

u
t , s

u,′
t ) to Breal;

12 train D with samples from Breal ;
13 generate synthetic experiences from D and add them to Bsyn;
14 train Λ on samples from Breal

⋃
Bsyn mixed with ratio ψ;

15 set s = s′;
Output: Λ, π, D

level RL teacher policy Λ and a lower-level student policy π. Specifically, the

teacher policy, Λ : Π→ Θ, maps from the space of all potential student policies

Π to the space of environment parameters Θ. Existing RL-based methods

(e.g., PARIED) rely solely on regret feedback and fail to effectively capture

the nuances of the student policy. To address this challenge, SHED enhances

understanding by encoding the student policy π into a vector that serves as the

state abstraction for teacher Λ. Rather than compressing the knowledge in the

student policy network, we approximate the embedding of the student policy

π by assessing performance across a set of diverse evaluation environments.

This performance vector, denoted as p(π), gives us a practical estimate of the

student’s current general capabilities, enabling the teacher to customize the

next training environments accordingly. In our hierarchical framework, the

environment generation process is governed by discrete-time dynamics. We

delve into the specifics below.

Upper-level teacher MDP. The upper-level teacher operates at a coarser layer
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UED Approaches Teacher Policy Decision Rule

Domain Randomization [94] Λ(π) = U(Θ) Randomly sample
PARIED [22] Λ(π) = {θ̄π : cπ

vπ
, D̃π : otherwise} Minimax Regret

SHED (ours) Λ(π) = argmax
θ⃗∈Θ

Qπ(s = π, a = θ⃗) Maximize cumulative reward

Table 4.1: The teacher policies corresponding to the three approaches for UED.
U(Θ) is a uniform distribution over environment parameter space, D̃π is a
baseline distribution, θ̄π is the trajectory which maximizes regret of π, and vπ is
the value above the baseline distribution that π achieves on that trajectory, cπ is
the negative of the worst-case regret of π. Details are described in PAIRED [22].

of student policy abstraction and generates environments to train the lower-level

student agent. This process can be formally modeled as an MDP by the tuple

< Su, Au, P u, Ru, γu >:

• Su represents the upper-level state space. Typically, su = p(π) = [p1, . . . , pm]

denotes the student performance vector across m diverse evaluation environ-

ments. This vector serves as the representation of the student policy π and is

observed by the teacher.

• Au is the upper-level action space. The teacher observes the abstraction of

the student policy, su and produces an upper-level action au which is the

environment parameters θ⃗. θ⃗ (au) is then used to generate specific environment

instances Mθ⃗. Thus the upper-level action space Au is the environment

parameter space Θ.

• P u denotes the action-dependent transition dynamics of the upper-level state.

The general capability of the student policy evolves due to training the student

agent on the generated environments.

• Ru provides the upper-level reward to the teacher at the end of training the

student on the generated environment. The design of Ru will be discussed in

Section 4.3.3.

As shown in Figure 4.2, given the student policy π, the teacher Λ first observes the

representation of the student policy, su = [p1, . . . , pm]. Then teacher produces an

upper-level action au which corresponds to the environment parameters. These

environment parameters are subsequently used to generate specific environment

89



instances. The lower-level student policy π will be trained on the generated

environments for C training steps. The upper-level teacher collects and stores

the student policy evolution transition (su, au, ru, su,′) every C times steps for

off-policy training. The teacher agent is trained to maximize the cumulative

reward giving the budget for the number of generated environments. The choice

of the evaluation environments will be discussed in Section 4.3.3.

Lower-level student MDP. The generated environment is fully specified for

the student, characterized by a Partially Observable Markov Decision Process

(POMDP), which is defined by a tuple Mθ⃗ =< A,O, S θ⃗,P θ⃗, I θ⃗,Rθ⃗, γ >,

where A represents the set of actions, O is the set of observations, S θ⃗ is the

set of states determined by the environment parameters θ⃗, similarly, P θ⃗ is the

environment-dependent transition function, and I θ⃗ : θ⃗ → O is the environment-

dependent observation function,Rθ⃗ is the reward function, and γ is the discount

factor. At each time step t, the environment produces a state observation st ∈ S θ⃗,

the student agent samples the action at ∼ A and interacts with environment θ⃗.

The environment yields a reward rt according to the reward function Rθ⃗. The

student agent is trained to maximize their cumulative reward V θ⃗(π) =
∑C

t=0 γ
trt

for the current environment under a finite time horizon C. The student agent

will learn a good general capability from training on a sequence of generated

environments.

The hierarchical framework enables the teacher agent to systematically mea-

sure and enhance the general capability of the student agent and to adapt the

training process accordingly. However, it’s worth noting that collecting student

policy evolution trajectories (su, au, ru, su,′) to train the teacher agent is notably

slow and resource-intensive, since each transition in the upper-level teacher MDP

encompasses a training horizon of C timesteps for the student in the generated

environment. Thus, it is essential to reduce the need for costly collection of

upper-level teacher experiences.

This hierarchical approach enables the teacher agent to systematically mea-
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sure and enhance the performance of the student agent across various environ-

ments and to adapt the training process accordingly. However, it’s worth noting

that collecting student policy evolution trajectories (su, au, ru, sup,′) to train the

teacher agent is notably slow and resource-intensive, since each transition in

the upper-level teacher MDP encompasses a training horizon of C timesteps for

the student in the generated environment. Figure 4.2 illustrates the environment

generation process. After finishing training the student agent π on the previously

generated environments, the teacher agent will first evaluate π across a set of

diverse evaluation environments set to obtain the performance vector p(π). This

performance vector represents the approximation of the π and serves as the

current state su for the teacher agent. Then the teacher will generate an action au,

representing the parameters for the next environment in which the student agent

will train for C time. Upon completion of these time steps, the teacher agent will

evaluate the updated student agent π′ in the same evaluation environment set to

get the updated performance vector p(π′), which is the next state su,′. Across an

entire episode, given the constraints of limited resources, the teacher agent can

generate T different environments. This translates to the teacher agent gathering

T experiences and the student agent accruing a total of T ×C experiences in one

episode. Overall, the collection of the teacher agent experience is much more

computation-intensive and time-consuming than the collection of the student

agent experience.

In the following section, we will formally introduce a generative model

designed to ease the collection of upper-level MDP experience. This will allow

us to upsample the teacher-agent experiences to alleviate such problems and

train our teacher policy more efficiently.
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Figure 4.2: The overall framework of SHED.

4.3.2 Generative Trajectory Modeling

Here, we describe how to leverage the diffusion model to learn the conditional

data distribution in the collected experiences τ = {(sut , aut , rut , s
up,′
t )} simulta-

neously during training the teacher-student framework. Later we can use the

trainable reverse chain in the diffusion model to generate the synthetic trajec-

tories that can be used to help train the teacher agent, resulting in reducing the

resource-intensive and time-consuming collection of upper-level teacher experi-

ences. Note that the diffusion model does not require external data collection, as

its training data is entirely derived from the trajectories of student agent policies

during training in environments generated by different teachers. Therefore, the

diffusion model can be considered a by-product of training the general capable

student agents. We deal with two different types of timesteps in this section:

one for the diffusion process and the other for the upper-level teacher agent,

respectively. We use subscripts k ∈ 1, . . . , K to represent diffusion timesteps

and subscripts t ∈ 1, . . . , T to represent trajectory timesteps in the teacher’s

experience.

In the image domain, the diffusion process is implemented across all pixel

values of the image. In our setting, we diffuse over the next state su,′ conditioned
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the given state su and action au. We construct our generative model according to

the conditional diffusion process:

q(su,′k |s
u,′
k−1), pϕ(s

u,′
k−1|s

u,′
k , s

u, au)

As usual, q(su,′k |s
u,′
k−1) is the predefined forward noising process while

pϕ(s
u,′
k−1|s

u,′
k , s

u, au) is the trainable reverse denoising process. We begin by

randomly sampling the collected experiences τ = {(sut , aut , rut , s
up,′
t )} from the

real experience buffer Breal. Giving the observed state su and action au, we use

the reverse process pϕ to represent the generation of the next state su,′:

pϕ(s
u,′
0:K |s

u, au) = N (su,′K ; 0, I)
K∏
k=1

pϕ(s
u,′
k−1|s

u,′
k , s

u, au)

At the end of the reverse chain, the sample su,′0 , is the generated next state

su,′. Similar to Ho et al. [31], we parameterize pϕ(s′k−1|s′k, su, au) as a noise

prediction model with the covariance matrix fixed as Σϕ(s
u,′
k , s

u, au, k) = βiI,

and the mean is

µϕ(s
u,′
i , s

u, au, k) =
1
√
αk

(
su,′k −

βk√
1− ᾱk

ϵϕ(s
u,′
k , s

u, au, k)

)

ϵϕ(s
u,′
k , s

u, au, k) is the trainable denoising function, which aims to estimate the

noise ϵ in the noisy input su,′k at step k.

Training objective. We employ a similar simplified objective to train the

conditional ϵ- model:

L(ϕ) = E(su,au,su,′)∼τ,k∼U ,ϵ∼N (0,I)

[
∥ϵ− ϵϕ(su,′k , s

u, au, k)∥2
]

(4.6)

Where su,′k =
√
ᾱks

u,′ +
√
1− ᾱkϵ. The intuition for the loss function L(ϕ)

is to predict the noise ϵ ∼ N (0, I) at the denoising step k, and the diffusion

model is essentially learning the student policy involution trajectories collected
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in the real experience buffer Breals. Note that the reverse process necessitates

a substantial number of steps K [86]. Recent research by Xiao et al. [107]

has demonstrated that enabling denoising with large steps can reduce the total

number of denoising steps K. To expedite the relatively slow reverse sampling

process (as it requires computing ϵϕ networks K times), we use a small value

of K. Similar to Wang et al. [99], while simultaneously setting βmin = 0.1 and

βmax = 10.0, we define:

βk = 1− exp

(
βmin ×

1

K
− 0.5(βmax − βmin)

2k − 1

K2

)

This noise schedule is derived from the variance-preserving Stochastic Differen-

tial Equation by Song et al. [87].

Generate synthetic trajectories. Once the diffusion model has been trained,

it can be used to generate synthetic experience data by starting with a draw

from the prior su,′K ∼ N (0, I) and successively generating denoised next state,

conditioned on the given su and au through the reverse chain pϕ. Note that the

giving condition action a can either be randomly sampled from the action space

or use another diffusion model to learn the action distribution giving the initial

state su. This new diffusion model is essentially a behavior-cloning model that

aims to learn the teacher policy Λ(au|su). This process is similar to the work

of Wang et al. [99]. We discuss this process in detail in the appendix. In this

work, we randomly sample au as it is straightforward and can also increase the

diversity in the generated synthetic experience to help train a more robust teacher

agent.

After obtaining the generated next state su,′ conditioned on su, au, we com-

pute reward ru using teacher’s reward function R(su, au, su,′). The specifics of

how the reward function is chosen are explained in the following section.
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4.3.3 Rewards and Choice of evaluate environments

Selection of evaluation environments. Our upper-level teacher policy gener-

ates environments tailored specifically for the lower-level student policy, aligning

with the most suitable environments to improve the general capability of the

lower-level student policy. Thus it is important to select a set of diverse suitable

evaluation environments as the performance vector reflects the student agent’s

general capabilities and serves as an approximation of the policy’s embedding.

Fontaine and Nikolaidis [26] propose the use of quality diversity (QD) opti-

mization to collect high-quality environments that exhibit diversity for the agent

behaviors. Similarly, Bhatt et al. [8] introduce a QD-based algorithm for dy-

namically designing such evaluation environments based on the current agent’s

behavior. However, it’s worth noting that this QD-based approach can be tedious

and time-consuming, and the collected evaluation environments heavily rely on

the given agent policy.

Given these considerations, it is natural to take advantage of the domain

randomization algorithm, as it has demonstrated compelling results in generating

diverse environments and training generally capable agents. In our approach, we

first discretize the environment parameters into different ranges, then randomly

sample from these ranges, and combine these parameters to generate evaluation

environments. This method can generate environments that may induce a diverse

performance for the same policy, and it shows promising empirical results in the

final experiments.

We assume that there exists a finite evaluation environment set that can

capture the student’s general capabilities and the performance vector [p1, . . . , pm]

is a good representation of the student policy. If this is true, we then can construct

a finite set of environments, and the student performances in those environments

can represent the performances in all potential environments generated within

the certain environment parameters open interval combinations, and the set of
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those open intervals combinations cover the environment parameter space Θ.

Reward design. We define the reward function for the upper-level teacher pol-

icy as a parameterized function based on the improvement in student performance

in the evaluation environments after training in the generated environment:

R(su, au, su,′) =
m∑
i=1

(p′i − pi)

This reward function gives positive rewards to the upper-level teacher for

taking action to create the right environment to improve the overall performance

of students across diverse environments. However, it may encourage the teacher

to obtain higher rewards by sacrificing student performance in one subset of eval-

uation environments to improve student performance in another subset, which

conflicts with our objective to develop a student agent with general capabilities.

Therefore, we need to consider fairness in the reward function to ensure that

the generated environment can improve student’s general capabilities. Similar

to [23], we build our fairness metric on top of the change in student’s perfor-

mance in each evaluation environment, denoted as ωi = p′i − pi, and we have

ω̄ = 1
m

∑m
i=1 ωi. We then measure the fairness of the teacher’s action using the

coefficient of variation of student performances:

cv(su, au, su,′) =

√
1

m− 1

∑
i

(ωi − ω̄)2
ω̄2

(4.7)

A teacher is considered to be fair if and only if the cv is smaller. As a result, our

reward function is:

R(su, au, su,′) =
m∑
i=1

(p′i − pi)− η · cv(su, au, su,′) (4.8)

Here η is the coefficient that balances the weight of fairness in the reward

function (We set a small value to η). This reward function motivates the teacher

to generate training environments that can improve student’s general capability.
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Figure 4.3: Left: The average zero-shot transfer performances on the test en-
vironments in the Lunar lander environment (mean and standard error). Right:
The average zero-shot transfer performances on the test environments in the
BipedalWalker (mean and standard error).

4.4 Experiments

In this section, we conduct experiments to compare SHED to other leading ap-

proaches on three domains: Lunar Lander, maze and a modified BipedalWalker

environment. Experimental details and hyperparameters can be found in the

Appendix. Specifically, our primary comparisons involve SHED and h-MDP

(our proposed hierarchical approach without diffusion model aiding in training)

against four baselines: domain randomization [94], ACCEL, [70], Edited AC-

CEL(with slight modifications that it does not revisit the previously generated

environments), PAIRED [22]. In all cases, we train a student agent via Proximal

Policy Optimization (PPO [82], and train the teacher agent via Deterministic pol-

icy gradient algorithms(DDPG [84]), because DDPG is an off-policy algorithm

and can learn from both real experiences and the synthetic experiences.

Setup. For each domain, we construct a set of evaluation environments

and a set of test environments. The vector of student performances in the

evaluation environments is used as the approximation of the student policy (as

the observation to teacher agent), and the performances in the test environments

are used to represent the student’s zero-shot transfer performances (general

capabilities). Note that in order to obtain a fair comparison of zero-shot transfer

performance, the evaluation environments and test environments do not share
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the same environment and they are not present during training.

Lunar Lander. This is a classic rocket trajectory optimization problem. In this

domain, student agents are tasked with controlling a lander’s engine to safely

land the vehicle. Before the start of each episode, teacher algorithms determine

the environment parameters that are used to generate environments in a given

play-through, which includes gravity, wind power, and turbulence power. These

parameters directly alter the difficulty of landing the vehicle safely. The state is

an 8-dimensional vector, which includes the coordinates of the lander, its linear

velocities, its angle, its angular velocity, and two booleans that represent whether

each leg is in contact with the ground or not.

We train the student agent for 1e6 environment time steps and periodically

test the agent in test environments. The parameters for the test environments

are randomly generated and fixed during training. We report the experiment

results on the left side of Figure 4.3. As we can see, student agents trained under

SHED consistently outperform other baselines and have minimal variance in

transfer performance. During training, the baselines, except h-MDP, show a

performance dip in the middle. This phenomenon could potentially be attributed

to the inherent challenge of designing the appropriate environment instance in the

large environment parameter space. This further demonstrates the effectiveness

of our hierarchical design (SHED and h-MDP), which can successfully create

environments that are appropriate to the current skill level of the students.

Bipedalwalker. We also evaluate SHED in the modified BipedalWalker

from Parker-Holder et al. [70]. In this domain, the student agent is required

to control a bipedal vehicle and navigate across the terrain, and the student

receives a 24-dimensional proprioceptive state with respect to its lidar sensors,

angles, and contacts. The teacher is tasked to select eight variables (including

ground roughness, the number of stairs steps, min/max range of pit gap width,
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min/max range of stump height, and min/max range of stair height) to generate

the corresponding terrain.

We use similar experiment settings in prior UED works, we train all the

algorithms for 1e7 environment time steps, and then evaluate their generaliza-

tion ability on ten distinct test environments in Bipedal-Walker domain. The

parameters for the test environments are randomly generated and fixed during

training. As shown in Figure 4.3, our proposed method SHED surpasses all

other baselines and achieves performance levels nearly on par with the SOTA

(ACCEL). Meanwhile, SHED maintains a slight edge in terms of stability and

overall performance and PAIRED suffers from a considerable degree of variance

in its performance.

Partially observable Maze. Here we study navigation tasks, where an agent

must explore to find a goal while navigating around obstacles. The environment

is partially observable, and the agent’s field of view is limited to a 3 × 3 grid

area. Unlike the previously mentioned domains, maze environments are non-

parametric and cannot be directly represented by compact parameter vectors

due to their high complexity. To solve this challenge, we propose a novel

method to generate maze by leveraging advances in large language models

(e.g., ChatGPT). Specifically, we implement a retrieval-augmented generation

(RAG) process to optimize the ChatGPT’s output such that it can generate

desired maze environments. This process ensures that large language models

reference authoritative knowledge bases to generate feasible mazes. To simplify

the teacher’s action space, we extracted several key factors that constitute the

teacher’s action space (environmental parameters) for maze generation. Details

on maze generation are provided in Appendix 6.7.3, and prompt are included in

Appendix 6.7.4.
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Figure 4.4: Average zero-shot transfer perfor-
mance on the test environments in the maze en-
vironments.

The average zero-shot

transfer performances are re-

ported in Figure 4.4. Notably,

SHED demonstrates the high-

est performance, consistently

improving and achieving the

highest cumulative rewards.

The performance of h-MDP

steadily improves but does

not reach the highest levels, which further highlights the advantages of

incorporating the generated synthetic datasets to train an effective RL teacher

agent. Meanwhile, Accel-Edit and Accel show higher variances in performance,

indicating that random teachers are less stable in finding a suitable environment

to train student agents.

Ablation and additional Experiments In Appendix 6.6, we evaluate the abil-

ity of the diffusion model to generate the synthetic student policy involution

trajectories. We further provide ablation studies to assess the impact of different

design choices in Appendix 6.8.1. Additionally, in Appendix 6.8.2, we conduct

experiments to show how the algorithm performs under different settings, in-

cluding scenarios with a larger budget constraint on the number of generated

environments or a larger weight assigned to CV fairness rewards. Notably, all

results consistently demonstrate the effectiveness of our approach.

4.5 Conclusion

In this chapter, we introduce an adaptive approach for efficiently training a

generally capable agent under resource constraints. Our approach is general,

utilizing an upper-level MDP teacher agent that can guide the training of the
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lower-level MDP student agent. The hierarchical framework can incorporate

techniques from existing UED works, such as prioritized level replay (revisiting

environments with high learning potential). Furthermore, we have described a

method to assist the experience collection for the teacher when it is trained in an

off-policy manner. Our experiment demonstrates that our method outperforms

existing UED methods, highlighting its effectiveness as a curriculum-based

learning approach within the UED framework. We believe that this adaptive

curriculum environment design can help train non-specialists by designing the

most appropriate environment for them to acquire different level of skills quickly.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation, we focused on sequential decision learning for social good

and fairness in both RMAB and RL settings:

• In the first part of the dissertation, we focus on Restless Multi-Armed

Bandits, which is an apt model to represent decision learning problems in

public health interventions (e.g., tuberculosis, maternal, and child care),

anti-poaching planning, sensor monitoring, personalized recommendations

and many more. Existing research in RMAB has contributed mechanisms

and theoretical results to a wide variety of settings, where the focus is on

maximizing expected value. In Chapter 2, we are interested in ensuring

that RMAB decision-making is also fair to different arms while maximiz-

ing expected value. In the context of public health settings, this would

ensure that different people and/or communities are fairly represented

while making public health intervention decisions. To achieve this goal,

we formally define two different types of fairness constraints in RMAB:

deterministic fairness constraints and probabilistic fairness constraints,

and then we provide planning and learning methods to solve RMAB in a

fair manner. We demonstrate key theoretical properties of fair RMAB and
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experimentally demonstrate that our proposed methods handle fairness

constraints without sacrificing significantly on solution quality.

• In the second part of the dissertation, we focus on reinforcement learning

settings. We first consider the problem of influence maximization on

unknown social networks. This has found application in HIV prevention,

substance abuse prevention, micro-finance adoption, etc. In these applica-

tions, the goal is to identify the set of peer leaders in a real-world physical

social network who can disseminate information to a large group of people.

Unlike online social networks, real-world networks are not completely

known, and collecting information about network is costly as it involves

surveying multiple people. Therefore, in these applications, it is important

to efficiently discover a subset of the network within a limited budget such

that selecting peer leaders from this subgraph can help in maximizing the

influence of the complete network. We develop an RL-based approach to

automatically discover network information by using learned representa-

tions of nodes and graphs that encode important structural properties of

the network. Our proposed approach is sample efficient to reduce costly

interactions between RL agents and the environment.

• Lastly, The advances of RL have also promoted research into the problem

of training autonomous agents and humans to execute complex tasks

proficiently. One interesting and yet underexplored area is enabling agents

and humans to perform well in unseen environments, a concept referred

to as zero-shot transfer performance. A promising approach involves

generating a curriculum of training environments, enabling agents to

develop general capabilities through training in these environments. To

this end, we proposed SHED, a novel hierarchical MDP framework for

environment design under resource constraints. Crucially, SHED leverages

the recent advances in generative modeling to reduce the resource-intensive
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interactions between agents and environments, and incorporates a fairness

reward to ensure the teacher agent generates suitable environments. Our

work has the potential to be a valuable tool for developing safer and more

reliable reinforcement learning agents, which can significantly enhance the

training of non-expert humans and facilitate their adaptation to different

real-world situations.

5.2 Future work

This dissertation has presented comprehensive discussions of sequential decision

learning for social good, particularly under the challenge of resource constraints

in real-world scenarios. Such constraints necessitate the incorporation of fairness

considerations and the development of sample-efficient learning algorithms. This

also opens up several important extensions as well as further open-ended research

programs. Specifically, we highlight the following directions:

Considering the interdependence in the RMAB settings: In Chapter 2, we

explore the RMAB, which allows non-active bandits to undergo the Markovian

state transition. In RMAB, there are N independent arms, each of which evolves

according to an associated Markov Decision Process (MDP). Existing works

often assume that each arm evolves independently, neglecting the prevalent

interdependencies among arms in many real-world scenarios. For example, when

using RAMB in the education domain, i.e., developing personalized and adaptive

educational tools that cater to a student’s individual learning progress, RMAB

would be an ideal model that features a teacher agent selecting a subset of arms

(concepts) to teach in each round. However, the inherent assumption in RMAB

that arms are independent of each other proves unrealistic in practical educational

settings. As a motivating example, consider a student engaging with a math

question focused on determining the area of a triangle. Success in this particular
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question may necessitate tapping into the student’s knowledge of basic algebra,

arithmetic, and geometry. Intuitively, practicing this question should contribute

to enhancing the student’s proficiency in all three areas. However, models that

overlook such interdependencies are likely to fall short in predicting knowledge

levels across all three areas, especially if operating under the assumption that a

single exercise exclusively impacts knowledge in a single area. In response to

this challenge, a future direction involves developing an interdependency-aware

RMAB model for education settings. Additionally, designing a sample-efficient

offline RL algorithm capable of learning from historical datasets will be another

key focus.

Considering multiple queries at each timestep for Influence Maximization

Problems: In Chapter 3, we focus on only one query at each timestep during

the network discovery process in the Influence Maximization problems. In the

future, the work can be extended to provide more general approaches that allow

for multiple queries at each timestep. This expansion is particularly relevant in

the context of collecting physical social networks, where querying multiple indi-

viduals simultaneously can be more time-efficient. Additionally, in the future, it

is reasonable to consider uncertainties during the network discovery process. For

instance, challenges arise when selected individuals fail to respond to queries, or

their feedback does not provide detailed information about all their neighbors. To

overcome this, algorithms for predicting potential missing connections between

nodes or individuals should be developed. Furthermore, we consider fairness

constraints in the RMAB problem and in training robust agents, it is important

to note that ensuring equitable selection of nodes through fairness constraints,

such as gender balance, is crucial in influence maximization problems. Taking

these multifaceted considerations into account could substantially improve both

the acceptance and the effectiveness of the algorithm.
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Applying environment design algorithms in human subject experiments:

In Chapter 4 we concentrate on developing an algorithm for training generally

capable agents through environment design. To further advance the practical

utility and impact of our method, future work will explore its application in

human subject experiments. Specifically, we propose a two-stage process when

employing our algorithm to assist the training of the non-expert. During the

first stage, we initialize the RL teacher agent to collect the necessary experience

data on student-environment interactions. This RL teacher is trained to generate

suitable environments that support the student’s learning process. In the second

stage, the trained RL teacher agent is deployed to assist in real human learning

scenarios. The RL teacher assesses the human students’ current capability level

by observing their interactions with the environments and then suggests the next

set of environments for further training. This framework has the potential to be

applied in various fields to assist in training non-specialists. Notably, it could

revolutionize skill acquisition in areas such as healthcare, where tailored and

effective training is crucial.
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Chapter 6

Appendix

6.1 Appendix for Chapter 2.3

6.1.1 Proof for Boundary Lemma
Lemma 3 For the finite time horizon T , VλT ,T (ω1)− VλT ,T (ω2) is bounded, where we
have

(ω1 − ω2)
T−1∑
t=0

βt(P a
1,1 − P a

0,1)
t ≤ VλT ,T (ω1)− VλT ,T (ω2) ≤ (ω1 − ω2)

T−1∑
t=0

βt(6.1)

Proof. We prove the lower bound by induction, and the upper bound can be proven
similarly.

When T = 1, we start from the definition of the value function VλT ,T (ω) to have

• passive actions:

Vλ1,1(ω1, a = 0)− Vλ1,1(ω2, a = 0) = λ1 + ω1 − λ1 − ω2

= ω1 − ω2
(6.2)

• active actions:

Vλ1,1(ω1, a = 1)− Vλ1,1(ω2, a = 1) = ω1 − ω2 (6.3)

We get Vλ1,1(ω1)− Vλ1,1(ω2) = ω1 − ω2. Now we assume VλT ,T (ω1)− VλT ,T (ω2) ≥
(ω1 − ω2)

∑T−1
t=0 βt(P a

1,1 − P a
0,1)

t hold for ∀T > 1, then for time horizon T + 1, we
have

• passive actions:

VλT+1,T+1(ω1, a = 0)− VλT+1,T+1(ω2, a = 0)

= (λ1 + ω1 + βVλT ,T (ω1(1)))− (λ1 + ω2 + βVλT ,T (ω2(1)))

=ω1 − ω2 + β (VλT ,T (ω1(1))− VλT ,T (ω2(1)))

≥ω1 − ω2 + β(ω1 − ω2)

T−1∑
t=0

βt(P a
1,1 − P a

0,1)
t

≥ω1 − ω2 + (ω1 − ω2)
T∑
t=1

βt(P a
1,1 − P a

0,1)
t Line ∗

=(ω1 − ω2)
T∑
t=0

βt(P a
1,1 − P a

0,1)
t

(6.4)

116



Line ∗ is because 0 ≤ P a
1,1 − P a

0,1 < 1.

• active actions:

VλT+1,T+1(ω1, a = 1)− VλT+1,T+1(ω2, a = 1)

=
(
ω1 + β(ω1VλT ,T (P

a
1,1) + (1− ω1)VλT ,T (P

a
0,1))

)
−
(
ω2 + β(ω2VλT ,T (P

a
1,1) + (1− ω2)VλT ,T (P

a
0,1))

)
=ω1 − ω2 + β

(
(ω1 − ω2)(VλT ,T (P

a
1,1)− VλT ,T (P

a
0,1))

)
=ω1 − ω2 + β(VλT ,T (ω1(1))− VλT ,T (ω2(1)))

≥ω1 − ω2 + β(ω1 − ω2)

T−1∑
t=0

βt(P a
1,1 − P a

0,1)
t

≥ω1 − ω2 + (ω1 − ω2)

T∑
t=1

βt(P a
1,1 − P a

0,1)
t Line ∗

=(ω1 − ω2)
T∑
t=0

βt(P a
1,1 − P a

0,1)
t

(6.5)

Line ∗ is because 0 ≤ P a
1,1 − P a

0,1 < 1. Thus we have VλT ,T (ω1) − VλT ,T (ω2) ≥
(ω1 − ω2)

∑T−1
t=0 βt(P a

1,1 − P a
0,1)

t. Similarly, we can prove the lower bound. □

Lemma 4 For the infinite residual time horizon T → ∞, VλT ,T (ω1) − VλT ,T (ω2)is
bounded. Specifically, we have

ω1 − ω2

1− β(P a
1,1 − P a

0,1)
≤ VλT ,T (ω1)− VλT ,T (ω2) ≤

ω1 − ω2

1− β
(6.6)

Proof. This can be viewed as a special case of the finite residual time horizon setting
where T →∞. Thus we can easily derive the lower and upper bound according to the
formula for the geometric series:

lim
T→∞

(ω1 − ω2)
T−1∑
t=0

βt(P a
1,1 − P a

0,1)
t =

ω1 − ω2

1− β(P a
1,1 − P a

0,1)

and

lim
T→∞

(ω1 − ω2)

T−1∑
t=0

βt =
ω1 − ω2

1− β

□
Consider the single-armed bandit process with subsidy λ under the infinite time

horizon T →∞, we have:

Vλ,∞(ω) = max

{
λ+ ω + βVλ,∞(τ1(ω)) passive
ω + β

(
ωVλ,∞(P a

1,1) + (1− ω)Vλ,∞(P a
0,1)
)

active
(6.7)

and we can get

∂Vλ,∞(ω)

∂ω
=

{
1 + β

∂Vλ,∞(τ1(ω))

∂τ1(ω)
∂τ1(ω)
∂ω passive

1 + β
(
Vλ,∞(P a

1,1)− Vλ,∞(P a
0,1)
)

active
(6.8)
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Similarly, for the finite residual time horizon T we have:

∂Vλ,T (ω)

∂ω
=

{
1 + β

∂Vλ,T−1(τ
1(ω))

∂τ1(ω)
∂τ1(ω)
∂ω passive

1 + β
(
Vλ,T−1(P

a
1,1)− Vλ,T−1(P

a
0,1)
)

active
(6.9)

Note that for any belief state ω, τ1(ω) is the 1-step belief state update of ω when the
passive arm is unobserved for another 1 consecutive slot. According to the Eq. 2.1, we
have τ1(ω) = ωP p

1,1 + (1− ω)P p
0,1, thus

0 <
∂τ1(ω)

∂ω
= (P p

1,1 − P p
0,1) < 1 (6.10)

Lemma 5 For the finite residual time horizon T , we have
∂VλT ,T (ω)

∂ω ≥ min{1 +

β(P p
1,1 − P p

0,1)
∑T−2

t=0 [β
t(P a

1,1 − P a
0,1)

t], 1 + β(P a
1,1 − P a

0,1)
∑T−2

t=0 [β
t(P a

1,1 − P a
0,1)

t]}

Proof. According to Eq. 6.9, for the passive action, we have:

1 + β
∂Vλ,T−1(τ

1(ω))

∂τ1(ω)

∂τ1(ω)

∂ω

=1 + β lim
δ→0

Vλ,T−1(τ
1(ω) + δ)− Vλ,T−1(τ

1(ω))

δ
(P p

1,1 − P p
0,1)

(6.11)

According to Lemma 3, let ω1 = τ1(ω) + δ and ω2 = τ1(ω), then we have
Vλ,T−1(τ

1(ω) + δ) − Vλ,T−1(τ
1(ω)) ≥ (ω1 − ω2)

∑T−1
t=0 βt(P a

1,1 − P a
0,1)

t =

δ
∑T−1

t=0 βt(P a
1,1 − P a

0,1)
t. Thus Eq. 6.11 becomes:

1 + β
∂Vλ,T−1(τ

1(ω))

∂τ1(ω)

∂τ1(ω)

∂ω

≥1 + β(P p
1,1 − P p

0,1)
T−2∑
t=0

[βt(P a
1,1 − P a

0,1)
t]

(6.12)

Similarly, for the active action, according to lower bound in Lemma 3, we have:

1 + β
(
Vλ,T−1(P

a
1,1)− Vλ,T−1(P

a
0,1)
)

≥1 + β(P a
1,1 − P a

0,1)
T−2∑
t=0

[βt(P a
1,1 − P a

0,1)
t]

(6.13)

Therefore, we have
∂VλT ,T (ω)

∂ω ≥ min{(P p
1,1−P

p
0,1), (P

a
1,1−P a

0,1)}·β ·
∑T−2

t=0 [β
t(P a

1,1−
P a
0,1)

t] + 1
□

Lemma 6 For the infinite residual time horizon T →∞, we have
∂VλT ,T (ω)

∂ω ≥ min{1+
β(P p

1,1−P p
0,1)

1−(β(Pa
1,1−P0,1)

, 1
1−β(Pa

1,1−Pa
0,1)
}

Proof. The proof is similar to the proof for Lemma 5 of the finite setting. We can get
the result with assuming T →∞. □

Lemma 7 For the finite residual time horizon T , we have
∂VλT ,T (ω)

∂ω ≤ min{1+(P p
1,1−

P p
0,1)

∑T−1
t=1 βt, 1 + (P a

1,1 − P a
0,1)

∑T−1
t=1 βt}
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Proof. The proof is similar to the proof of Lemma 5. According to Eq. 6.9, we have:

• passive actions:

1 + β
∂Vλ,T−1(τ

1(ω))

∂τ1(ω)

∂τ1(ω)

∂ω

=1 + β lim
δ→0

Vλ,T−1(τ
1(ω) + δ)− Vλ,T−1(τ

1(ω))

δ
(P p

1,1 − P p
0,1)

(6.14)

According to Lemma 3, let ω1 = τ1(ω) + δ and ω2 = τ1(ω), then we have
Vλ,T−1(τ

1(ω) + δ) − Vλ,T−1(τ
1(ω)) ≤ (ω1 − ω2)

∑T−1
t=0 βt = δ

∑T−1
t=0 βt. Thus

Eq. 6.14 becomes:

1 + β
∂Vλ,T−1(τ

1(ω))

∂τ1(ω)

∂τ1(ω)

∂ω

≤1 + β(P p
1,1 − P p

0,1)

T−2∑
t=0

[βt]

(6.15)

• active actions, similarly, according to upper bound in Lemma 3, we have:

1 + β
(
Vλ,T−1(P

a
1,1)− Vλ,T−1(P

a
0,1)
)

≤1 + β(P a
1,1 − P a

0,1)
T−2∑
t=0

[βt]
(6.16)

Therefore, we have
∂VλT ,T (ω)

∂ω ≤ min{1 + (P p
1,1 − P p

0,1)
∑T−1

t=1 βt, 1 + (P a
1,1 −

P a
0,1)

∑T−1
t=1 βt}

□

Lemma 8 For the infinite residual time horizon T →∞, we have
∂VλT ,T (ω)

∂ω ≤ min{1+
β(P p

1,1−P p
0,1)

1−β , 1 +
β(Pa

1,1−Pa
0,1)

1−β }

Proof. The proof is similar to the proof for Lemma 7 of the finite setting. We can get
the result with assuming T →∞. □

6.1.2 Condition for the optimality of Algorithm 1 under infi-
nite horizon

We now give the proof for the Theorem 1.
According to the Eq. 2.1, we can compute the belief gap between ω and 1-time step

belief update τ1(ω):

∆ω = τ1(ω)− ω = (P p
1,1 − P p

0,1 − 1)ω + P p
0,1 (6.17)

Remark that we could get a strict condition that depends only on arm A. This is
because change from policy π∗ to π will only lead to a decrease in the value function
for other arms as the optimal actions determined by the Whittle index algorithm will be
influenced, henceforth the value will be decreased. Consider the single-arm A, as we
discussed earlier, the belief state update process is either monotonically increasing or
monotonically decreasing.
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Figure 6.1: The forward and reverse policy

Case 1 : The belief state monotonically increases as the time passed. Formally, this
can be expressed as ∂ωt

∂t > 0, or ∆ω > 0. We now derive the condition for the optimality
of our algorithm for the case 1 under finite time horizon T . Consider first (any) period of
length L, an arm i has not been activated for the past (L− 1) time slots. Thus it needs
to be pulled at time step t = L according to our algorithm. Assume that the residual
time horizon is h at time step t = L, where we have h+ L = T . We move the active
action at time step t = L to one slot earlier, then at time step t = L − 1, the residual
time horizon is h+ 1, and assume that belief state is ω at time step t = L− 1. We here
discuss the finite horizon case because the infinite horizon could be viewed as a special
case of the finite horizon setting as T →∞(h→∞).

Because the belief state will increase as the time passed, thus we define the value
gap ∆Vλ,h(ω) = Vλ,h(ω, a = 1) − Vλ,h(ω, a = 0) will move from left to the right as
the residual time horizon decrease. For the single-arm process, if we can show that
the gap difference ∆Vλ,h(ω) increases from left to the right (i.e.,∆Vλ,h(ω) increases
as belief state increases), then this implies that moving the active action that ensuring
the fairness at time step t = L to one step earlier (i.e., from right to left) will result in
a smaller gap ∆Vλ,h(ω). Thus it is optimal to keep the active action at the end of the
period to ensure the fairness constraint. This requires that

∂Vλ,h(ω, a = 0)

∂ω
≤

∂Vλ,h(ω, a = 1)

∂ω
(6.18)

According to the expression for λ, we have

∂Vλ,h(ω)

∂ω
=

{
1 + β

∂Vλ,h−1(τ
1(ω))

∂τ1(ω)
∂τ1(ω)
∂ω passive

1 + β
(
Vλ,h−1(P

a
1,1)− Vλ,h−1(P

a
0,1)
)

active
(6.19)

As shown in the gray area of the left Fig. 6.1, at time step t = L− 1, we derive the
technical condition for the optimality of our algorithm in the gray area under the infinite
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residual time horizon:

(P p
1,1 − P p

0,1)

(
1 +

β∆3

1− β

)(
1− β(P a

1,1 − P a
0,1)
)
≤ (P a

1,1 − P a
0,1)

→(P p
1,1 − P p

0,1)

(
1 +

β∆3

1− β

)
≤

P a
1,1 − P a

0,1

1− β(P a
1,1 − P a

0,1)
Line 1

→(P p
1,1 − P p

0,1)

(
1 +

β∆3

1− β

)
≤ Vλ,h−1(P

a
1,1)− Vλ,h−1(P

a
0,1) Line 2

→(P p
1,1 − P p

0,1)
∂Vλ,h−1(τ

1(ω))

∂τ1(ω)
≤ Vλ,h−1(P

a
1,1)− Vλ,h−1(P

a
0,1) Line 3

→∂τ1(ω)

∂ω

∂Vλ,h−1(τ
1(ω))

∂τ1(ω)
≤
(
Vλ,h−1(P

a
1,1)− Vλ,h−1(P

a
0,1)
)

Line 4

→1 + β
∂Vλ,h−1(τ

1(ω))

∂τ1(ω)

∂τ1(ω)

∂ω
≤ 1 + β

(
Vλ,h−1(P

a
1,1)− Vλ,h−1(P

a
0,1)
)

Line 5

→
∂Vλ,h(ω, a = 0)

∂ω
≤

∂Vλ,h(ω, a = 1)

∂ω
Line 6

(6.20)

Line 1 is obtained via mathematical transformation. Line 2 is obtained from the lower
bound in Lemma 3. Line 3 is obtained from the Lemma 8 when assuming h→∞. Line
4 is obtained from Eq. 6.10. Line 5 is obtained from the mathematical transformation.
Line 6 is obtained from the Eq. 6.19. And ∆3 = min{(P p

1,1 − P p
0,1), (P

a
1,1 − P a

0,1)}
Similarly, we can derive the technical condition for the finite residual time horizon,

which is

(P p
1,1 − P p

0,1)
(
∆4β

∑h−2
t=0 [β

t] + 1
)
≤ (P a

1,1 − P a
0,1)

∑h−2
t=0 [β

t(P a
1,1 − P a

0,1)
t](6.21)

where ∆4 = min{(P p
1,1 − P p

0,1), (P
a
1,1 − P a

0,1)}.
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Figure 6.2: Proof of Theorem 1.

Case 2 : The belief state monotonically decreases as the time passed. Formally,
this can be expressed as ∂ωt

∂t < 0, or ∆ω < 0. Similarly, we can derive the condition
for the optimality of our algorithm for the case 2 under finite time horizon T . Be-
cause the belief state will decrease as the time passed, thus we define the value gap
∆Vλ,h(ω) = Vλ,h(ω, a = 1) − Vλ,h(ω, a = 0) will move from right to the left as the
residual time horizon decrease. For the single-arm process, if we can show that the
gap difference ∆Vλ,h(ω) decreases from right to the left (i.e., as belief state decrease,
∆Vλ,h(ω) decreases), then this implies that moving the active action that ensuring the
fairness at time step t = L to one step earlier will result in a larger gap ∆Vλ,h(ω). Thus
it is optimal to keep the active action at the end of the period, i.e., at time step t = L.
this requires that

∂Vλ,h(ω, a = 0)

∂ω
≥

∂Vλ,h(ω, a = 1)

∂ω
(6.22)
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As shown in the gray area of the left Fig. 6.1, at time step t = L− 1, we derive the
technical condition for the optimality of our algorithm in the gray area under the infinite
residual time horizon:

(P p
1,1 − P p

0,1)(1− β)∆1 ≥ (P a
1,1 − P a

0,1)
(
1− β(P a

1,1 − P a
0,1)
)

→
(P p

1,1 − P p
0,1)∆1

1− β(P a
1,1 − P a

0,1)
≥

P a
1,1 − P a

0,1

1− β
Line 1

→(P p
1,1 − P p

0,1)∆1 lim
h→∞

h−2∑
t=0

βt(P a
1,1 − P a

0,1)
t ≥

P a
1,1 − P a

0,1

1− β
Line 2

→(P p
1,1 − P p

0,1)∆1 lim
h→∞

h−2∑
t=0

βt(P a
1,1 − P a

0,1)
t ≥ Vλ,h−1(P

a
1,1)− Vλ,h−1(P

a
0,1) Line 3

→(P p
1,1 − P p

0,1)
∂Vλ,h−1(τ

1(ω))

∂τ1(ω)
≥ Vλ,h−1(P

a
1,1)− Vλ,h−1(P

a
0,1) Line 4

→∂τ1(ω)

∂ω

∂Vλ,h−1(τ
1(ω))

∂τ1(ω)
≥
(
Vλ,h−1(P

a
1,1)− Vλ,h−1(P

a
0,1)
)

Line 5

→1 + β
∂Vλ,h−1(τ

1(ω))

∂τ1(ω)

∂τ1(ω)

∂ω
≥ 1 + β

(
Vλ,h−1(P

a
1,1)− Vλ,h−1(P

a
0,1)
)

Line 6

→
∂Vλ,h(ω, a = 0)

∂ω
≥

∂Vλ,h(ω, a = 1)

∂ω
Line 7

(6.23)

Line 1 is obtained via mathematical transformation. Line 2 is obtained from the
formula for the geometric series as β(P a

1,1−P a
0,1) < 1. Line 3 is obtained from the upper

bound in Lemma 3. Line 4 is obtained from the Lemma 5 when assuming h→∞. Line
5 is obtained from Eq. 6.10. Line 6 is obtained from the mathematical transformation.
Line 7 is obtained from the Eq. 6.19.

Similarly, we can derive the technical condition for the finite residual time horizon,
which is

(P p
1,1 − P p

0,1)
(
∆2β

∑h−2
t=0 [β

t(P a
1,1 − P a

0,1)
t] + 1

)
≥ (P a

1,1 − P a
0,1)

∑h−2
t=0 βt(6.24)

where ∆2 = min{(P p
1,1 − P p

0,1), (P
a
1,1 − P a

0,1)}.
When the belief state is in the white area of the passive set. Then we need to consider

arm A and other arms in the active set. We give detailed discussion in Appendix.

6.1.3 Proof of Theorem 2
Proof. We provide our proof which is based on the work by Biswas et al. [10]. Let
set ϕ∗ to be the set of actions containing the k arms with the highest-ranking values
of Qi(s, a = 1, l) − Qi(s, a = 0, l), and any k arms that aren’t among the top k are
included in the set ϕ′. Let ϕ−,∗ and ϕ−,′ denote the set that includes all of the arms
except those in set ϕ∗ and ϕ′, respectively. We add the subscript i here in order to avoid
ambiguity in the Q-values of distinct arms i at a given state. We could have:∑

i∗∈ϕ∗

[Q∗
i∗(si∗ , ai∗ = 1, li∗)−Q∗

i∗(si∗ , ai∗ = 0, li∗)] ≥∑
j∈ϕ′

[
Q∗

j (sj , aj = 1, lj)−Q∗
j (sj , aj = 0, lj)

] (6.25)
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∑
i∗∈ϕ∗

Q∗
i∗(si∗ , ai∗ = 1, li∗) +

∑
j∈ϕ′

Q∗
j (sj , aj = 0, lj) ≥∑

j∈ϕ′

Q∗
j (sj , aj = 1, lj) +

∑
i∗∈ϕ∗

Q∗
i∗(si∗ , ai∗ = 0, li∗)

(6.26)

Adding
∑

i/∈ϕ∗&i/∈ϕ′
Q∗

i (si, ai = 0, li) on both sides,

∑
i∗∈ϕ∗

Q∗
i∗(si∗ , ai∗ = 1, li∗) +

∑
j∈ϕ−,∗

Q∗
j (sj , aj = 0, lj) ≥∑

i∈ϕ′

Q∗
i (si, ai = 1, li) +

∑
j∈ϕ−,′

Q∗
j (sj , aj = 0, lj)

(6.27)

Thus from Equation 6.27, we can see that taking intervention action in the action set As
can be seen from Equation 6.27, adopting intervention action for the arms in the set ϕ∗

would maximizes
{∑N

i=1Q
∗
i (s, a, l)

}
. □

6.1.4 Proof of Theorem 3
Proof. The key to the convergence is contingent on a particular sequence of episodes
observed in the real process [100]. The first condition is easy to be satisfied as to the
presence of the fairness constraint. It is a reasonable assumption under the ϵ-greedy
action selection mechanism, that any state-action pair can be visited an unlimited number
of times as T →∞. The second condition has been well-studied in [30, 100, 33], and
it guarantees that when the condition is met, the Q-value converges to the optimal
Q∗(s, a, l). As a result, Qi(s, a = 1, l) − Qi(s, a = 0, l) converges to Q∗

i (s, a =
1, l) − Q∗

i (s, a = 0, l). Also, Q∗
i (s, a = 1, l) − Q∗

i (s, a = 0, l) is the calculated Q-
Learning based Whittle index, and choosing top-ranked arms based on these values
would lead to an optimal solution.

□

6.1.5 Additional Results
Fairness Constraints Strength In this part, we provide the average reward results
for different fairness constraints, and see how they influence the overall performance.
The strength of fairness restrictions is represented by the combination of L and η. For
instance, η is a parameter to determine the lowest bound of the number of times an
arm should be activated in a decision period of length L. Smaller L, on the other hand,
indicates that a strict fairness constraint should be addressed in a shorter time length.
For ease of explanation, we fix the value of η = 2, which means that an arm will be
activated twice in any given time steps of length L. We can change the value of L to
measure the fairness constraint level. We investigate three different categories of fairness
constraint strength as follows,

• Strong level: The strong fairness constraints impose a strict restrictions on the
action. Here we assume that the strong fairness constraints L satisfy k×L

N = 1.3,
this can translate to at most 30% arms can be engaged twice when before all arms
have been pulled previously.

• Medium level: We define the medium fairness constraints by solving: k×L
N = 2.
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• Low level: The low strength of fairness constraints can be interpreted as a low
fairness restriction on the distribution of the resources, i.e., we have k×L

N = 3,
which means all arms will receive the health intervention before each arm has
been activated three times on average.

We provide the average reward results in Figure 6.3. Again, the left graph shows the
performance of Whittle index approach with fairness constraint when the transition
model is known, the middle graph presents the result of the Thompson sampling-based
approach for Whittle index calculation, the the right graph shows the result for the
Q-Learning based Whittle index approach. Our proposed approach can handle fairness
constraints at different strength level without sacrificing significantly on the solution
quality.
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Figure 6.3: The average reward of each arm over the time length T = 1000 with
a small penalty for the violation of the fairness constraint.
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Figure 6.4: The average reward of each arm over the time length T = 1000 with
a small penalty for the violation of the fairness constraint.

Intervention Level. In Figure 6.4, we present the performance results for various
resource levels where the fairness constraint L is fixed, and we ensure that k × L < N .
Here, we let L = 30, and N = 100, and we’re looking at the performance of the
intervention ratio where k

N = 5%, 10%, 20%, 30% respectively. We can see that our
proposed approach to solve the fairness constraint can consistently outperform the
Random and Myopic baselines regardless of the intervention strength while does not
have significant differences when compared to the optimal value without taking fairness
constraints into account.

6.2 Appendix for Chapter 2.4

6.2.1 More Details about SoftFair
We can also rewrite the update equation for the state-action value function:

Qt,ep
i (s, a) =

R(s, a) +
∑
st+1
i

Pr(st+1
i |s, a)(γ

∑
a′

Pr(a′|st+1)Qt+1,ep−1
i (st+1

i , a′) if (s, a) = (sti, a
t
i)

Qt,ep−1
i (s, a) otherwise

(6.28)
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The probability of choosing an arm is the softmax function on λ. We can write
down the probability of π(s,a = I{i}), where i is the selected arms when k = 1. More
specifically, we have π(s,a = I{i}) = softmaxc(c · λi), and note that Pr(ai = 1|s) =
softmaxc(c · λi) denote that probability that arm i is in the set of selected arms when
k = 1.

When k ̸= 1, let the ϕ denote the set of selected arms, and I{ϕ} denote the action
to select arms in set ϕ while keeping other arms passive. We have π(s,a = I{ϕ}) =
Πi∈ϕ Pr(ai = 1|s), where Pr(ai = 1|s) can be obtained through the brute-force
permutation iteration over π(s,a = I{i}) = softmaxc(c · λi).

We rewrite our definition of fairness and the Proposition 1 here again.

Definition 4 (Fairness) Equivalently, a stochastic policy, π is fair if for any time step
t ∈ [T ], any joint state s and any two arms i, j, where i ̸= j, The following two
statements are equal:

πt(s,a) ≥ πt(s,a
′) if and only if Q∗(s,a) ≥ Q∗(s,a′)

λi ≥ λj if and only if
∑

ϕi:ϕi∈Φi

πt(s,a = I{ϕi}) ≥
∑

ϕj :ϕj∈Φj

πt(s,a = I{ϕj})
(6.29)

Here Φi = {ϕi} and Φj = {ϕj} denote any set include arm i as the selected set.

Proposition 2 Fairness of a stochastic policy defined in Equation 2.16 can also be
stated in terms of arm selection as follows:

Pr(ati = 1) ≥ Pr(atj = 1) only if λt
i ≥ λt

j (6.30)

A proof to show this two statements are equivalent is provided in next section (see
Section 6.2.2). In summary, the goal of a solution approach is to generate a stochastic
policy that never prefers one action over another if the cumulative long-term reward
of selecting the latter one is higher.

6.2.2 Proof of Proposition 2
We prove the two statements that are equal:

πt(s,a) ≥ πt(s,a
′) if and only if Q∗(s,a) ≥ Q∗(s,a′)

λi ≥ λj if and only if
∑

ϕi:ϕi∈Φi

πt(s,a = I{ϕi}) ≥
∑

ϕj :ϕj∈Φj

πt(s,a = I{ϕj})
(6.31)

Proof. For any set of selected arms, let ϕi denote a set that always include arm i, and
ϕj denote a set that always include arm j, and ϕi,j denote a set that always include arm
i and arm j. And Φi denote the set of ϕi, formally, we have Φi = {ϕi} and Φj = {ϕj}
and Φi,j = {ϕi,j}. Similarly, let ϕi,−j denote the a that always include arm i and but
not include arm j, and ϕj,i denote a set that always include arm j and but not include
arm i. Thus we have:

ϕi = ϕi,−j + ϕi,j and ϕj = ϕj,−i + ϕj,i

Φi = Φj,−i +Φi,j and Φj = Φj,−i +Φj,i
(6.32)

We divide this into two terms:
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• 1st Term: Φi,−j and Φj,−i. We can instead of consider a subset of k − 1 selected
arms which does not include arm i and arm j, we denote a subset of arms as
ϕ′
−i,−j ∈ Φ′

−i,−j . Thus ϕi,−j and ϕj,−i can be writing as:

ϕi,−j = {i}+ ϕ′
−i,−j and ϕj,−i = {j}+ ϕ′

−i,−j

Φi,−j =
∑

ϕ′
−i,−j∈Φ′

−i,−j

[
{i}+ ϕ′

−i,−j

]
and Φj,−i =

∑
ϕ′
−i,−j∈Φ′

−i,−j

[
{j}+ ϕ′

−i,−j

](6.33)

In this case, if λi ≥ λj , we add
∑

h∈ϕ′
−i,−j

λh on both side, which we get:

λi ≥ λj

λi +
∑

h∈ϕ′
−i,−j

λh ≥ λj +
∑

h∈ϕ′
−i,−j

λh

∑
i∈ϕi,−j

λi ≥
∑

j∈ϕj,−i

λj

(6.34)

According to Theorem 5 and Theorem 6, we can conclude that πt(s,a =
I{ϕi,−j}) ≥ πt(s,a

′ = I{ϕj,−i}). This is equal to the first statement that
πt(s,a) ≥ πt(s,a

′) if and only if Q∗(s,a) ≥ Q∗(s,a′).

Furthermore, because for ∀ϕ′
−i,−j ∈ Φ′

−i,−j , we have λi +
∑

h∈ϕ′
−i,−j

λh ≥
λj +

∑
h∈ϕ′

−i,−j
λh, and by summation over second line of Equation 6.34 like

Equation 6.33, we have:

λi +
∑

h∈ϕ′
−i,−j

λh ≥ λj +
∑

h∈ϕ′
−i,−j

λh

∑
ϕ′
−i,−j∈Φ′

−i,−j

λi +
∑

h∈ϕ−i,−j

λh

 ≥ ∑
ϕ′
−i,−j∈Φ′

−i,−j

λj +
∑

h∈ϕ′
−i,−j

λh


∑

ϕi,−j∈Φi,−j

 ∑
i∈ϕi,−j

λi

 ≥ ∑
ϕj,−i∈Φj,−i

 ∑
j∈ϕj,−i

λj

 (according to Eq. 6.33)

→
∑

ϕi,−j∈Φi,−j

{
πt(s,a = I{ϕi,−j})

}
≥

∑
ϕj,−i∈Φj,−i

{
πt(s,a

′ = I{ϕj,−i})
}

(6.35)

• 2nd Term: Φi,j and Φj,i. Because we can easily see that ϕi,j = ϕj,i and Φi,j =
Φj,i, thus we have:∑

ϕi,j∈Φi,j

πt(s,a = I{ϕi,j}) =
∑

ϕj,i∈Φj,i

πt(s,a = I{ϕj,i}). (6.36)

Overall, according to Equation 6.32, by summing this two terms (Equation 6.35
and Equation 6.36), we have λi ≥ λj if and only if

∑
ϕi:ϕi∈Φi

πt(s,a = I{ϕi}) ≥∑
ϕj :ϕj∈Φj

πt(s,a = I{ϕj}). And this is equal to the first statement that πt(s,a) ≥
πt(s,a

′) if and only if Q∗(s,a) ≥ Q∗(s,a′).
□
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6.2.3 Proofs for Chapter 2.4.3
We begin with a lemma and then prove Theorem 4 based on the lemma.

Lemma 9 Consider the single arm i with a finite horizon T , let V t
m,i(si) denote the

value function start from time step t ∈ [T ] under the state si, we can have V t
m,i,(si) >

V t+1
m,i (si) ≥ 0, for ∀si ∈ {0, 1}.

Proof of Lemma 9 Proof. We drop the subscript i, i.e., V t(s) = V t
i (si). This

is easy to prove. For state s ∈ {0, 1}, we can always find a algorithm that ensures
V t
m(s) > V t+1

m (s). For example, we assume the optimal algorithm for the state s start
from the time step t+ 1 is π, we can always find a algorithm π′: keep the same actions
as the algorithm π until reach the last time step t = T as V t

m(s) will has one more time
slot compared to V t+1

m (s), and then we pick the action for the last time step T according
to the observed state s′. Since the reward is either 0 or 1, thus V T (s) ≥ 0,so we can
have

V t
m;π′(s) = V t+1

m;π (s) + γT−tV T (s′) ≥ V t+1
m;π (s). (6.37)

□
For the ease of explanation, in the remaining appendix section, we use P a

s,s′ = 1
and P a

s,s′ = 0 to represent the probability from state s to s′ under action a = 1 and
a = 0, i.e., P (s, a = 1, s′) and P (s, a = 0, s′), respectively.

Proof of Theorem 4 Proof. Consider the discount reward criterion with discount
factor of γ ∈ [0, 1] (where γ = 1 corresponds to the average criterion). Again, we
drop the subscript i and let: Qt

i(si, ai) = Qt(s, a). Because the state s ∈ {0, 1} is
fully observable, We can easily calculate mT , where it needs to satisfy QT (s, a = 0) =
QT (s, a = 1), i.e., mT + P 0

s,1 = P 1
s,1, thus mT = P 1

s,1 − P 0
s,1. Similarly, mT−1 can be

solved by assuming equation QT−1(s, a = 0) = QT−1(s, a = 1):

P 0
s,1 +mT−1 + γ(P 0

s,1V
T
mT (1) + P 0

s,0V
T
mT (0)) =

P 1
s,1 + γ(P 1

s,1V
T
mT (1) + P 1

s,0V
T
mT (0))

→ mT−1 = (P 1
s,1 − P 0

s,1) + γ(V T
mT (1)(P

1
s,1 − P 0

s,1) + V T
mT (0)(P

1
s,0 − P 0

s,0))

(6.38)

Because P 1
1,1−P 0

1,1 > 0 and P 1
0,1−P 0

0,1 > 0 from the structural constraint we mentioned
before and V T

mT (s) ≥ 0 according to Lemma 9, we have mT−1 > mT = P 1
s,1 − P 0

s,1.
Now we show mt > mt+1. Because the state is fully observable, we first get the close
form of mt.

• Case 1: The state s = 0,

P 0
0,1 +mt + γ(P 0

0,0V
t+1
mt+1(0) + P 0

0,1V
t+1
mt+1(1))

= P 1
0,1 + γ(P 1

0,0V
t+1
mt+1(0) + P 1

0,1V
t+1
mt+1(1))

→ mt = (P 1
0,1 − P 0

0,1) + γ(V t+1
mt+1(0)(P

1
0,0 − P 0

0,0) + V t+1
mt+1(1)(P

1
0,1 − P 0

0,1)).

(6.39)

Similarly, we have

mt+1 = (P 1
0,1−P 0

0,1)+γ(V t+2
mt+2(0)(P

1
0,0−P 0

0,0)+V t+2
mt+2(1)(P

1
0,1−P 0

0,1)).(6.40)

Thus mt − mt+1 = γ((V t+1
mt+1(0) − V t+2

mt+2(0))(P
1
0,0 − P 0

0,0) + (V t+1
mt+1(1) −

V t+2
mt+2(1))(P

1
0,1 − P 0

0,1))
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Intuitively, we can have V t+1
mt+1(0) > V t+2

mt+2(0) (see Lemma 9), and V t+1
mt+1(1) >

V t+2
mt+2(1), Hence, we can get mt > mt+1

• Case 2: For state s = 1, similarly, we can get mt − mt+1 = γ((V t+1
mt+1(0) −

V t+2
mt+2(0))(P

1
1,0 − P 0

1,0) + (V t+1
mt+1(1)− V t+2

mt+2(1))(P
1
1,1 − P 0

1,1))

Thus ∀t < T : mt > mt+1 ≥ mT = P 1
s,1 − P 0

s,1.
□

Proof of Theorem 5 Proof. According to the Equation 2.18, we have

πi(si, ai) = eQi(si,ai)−Vi(si) =
eQi(si,a)

eVi(si)
(6.41)

By replacing this into Equation 2.19, we can get

λi = log πi(si, ai = 1)− log πi(si, ai = 0)

= log

(
eQi(si,ai=1)

eVi(si)

)
− log

(
eQi(si,ai=0)

eVi(si)

)

= log

(
eQi(si,ai=1)

eQi(si,ai=0)

)
= Qi(si, ai = 1)−Qi(si, ai = 0).

(6.42)

Because as c approaches infinity, our algorithm becomes deterministically selecting the
arm with the highest value of λ. Let set ϕ∗ to be the set of actions containing the k
arms with the highest-ranking of λ value, and any k arms that aren’t among the top k
are included in the set ϕ′. Let ϕ−,∗ and ϕ−,′ denote the set that includes all of the arms
except those in set ϕ∗ and ϕ′, respectively. Thus the first action vector can be represented
as a = I{ϕ}, and the latter action vector is a′ = I{ϕ′}. We could have:∑

i∈ϕ∗

λi ≥
∑
j∈ϕ′

λj∑
i∈ϕ∗

[Q(si, ai = 1)−Q(si, ai = 0)] ≥
∑
j∈ϕ′

[Q(sj , ai = 1)−Q(sj , ai = 0)]

∑
i∈ϕ∗

Q(si, ai = 1) +
∑
j∈ϕ′

Q(sj , ai = 0) ≥
∑
j∈ϕ′

Q(sj , ai = 1) +
∑
i∈ϕ∗

Q(si, ai = 0)

(6.43)

Adding
∑

z /∈ϕ∗∧z /∈ϕ′
Q(sz, ai = 0) on both sides, we can have,

∑
i∈ϕ∗

Q(si, ai = 1) +
∑

j∈ϕ−,∗

Q(sj , ai = 0) ≥
∑
i∈ϕ′

Q(si, ai = 1) +
∑

j∈ϕ−,′

Q(sj , ai = 0)

→ Q(s,a = I{ϕ}) ≥ Q(s,a′ = I{ϕ′})

(6.44)

Thus from this we can see that selecting action in the action set ϕ∗ according to the
λ value can maximize the cumulative long-term reward, which lead to the optimal
state-action value function Q∗(s,a) as well as the optimal value function, V ∗(s) □
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Proof of Theorem 6 Proof. According to the Equation. 2.19, the probability
of choosing an arm is the softmax function on λ, which can guarantee that the higher
the value of λ, the higher the probability of selecting that arm. We can write down
the probability of π(s,a = I{ϕ}), where ϕ is the set of selected arms when k ̸= 1.
More specifically, π(s,a = I{ϕ}) = Πi∈ϕ Pr(ai = 1|s). Note that Pr(ai = 1|s) =
softmaxc(c · λi) if k = 1. Intuitively, when k ̸= 1, Pr(ai = 1|s) can be obtained
through the brute-force permutation iteration over π(s,a = I{i}) = softmaxc(c · λi).
It is easy to conclude that when k ̸= 1, the higher the value of λi, the higher probability
Pr(ai = 1|s). Formally, this is equivalent to:

π(s,a = I{ϕ}) ≥ π(s,a = I{ϕ′}) if and only if
∑
i∈ϕ

λi ≥
∑
j∈ϕ′

λj . (6.45)

Similar to the proof of Theorem 6.2.3, we can have:∑
i∈ϕ

λi ≥
∑
j∈ϕ′

λj if and only if Q(s,a = I{ϕ}) ≥ Q(s,a′ = I{ϕ′}). (6.46)

Thus we have π(s,a = I{ϕ}) ≥ π(s,a = I{ϕ′}) if Q(s,a = I{ϕ}) ≥ Q(s,a′ = I{ϕ′}).
Our SoftFair is fair under our proposed fairness constraint.

The trade-off is governed by c, where a larger c means SoftFair tends to choose
arms with higher value, while a small c means SoftFair tends to ensure fairness among
arms. More specifically, we have shown that selecting the top k arms according to the
λ value at each time step t when c approaches infinity is equivalent to maximizing the
cumulative long-term reward (Theorem 5). When c is close to 0, the difference between
c · λ is small and SoftFair tends to uniformly sample k arms. Therefore SoftFair remains
fair under our proposed fairness constraints, and the trade-off between fairness and
optimal value is controlled by the multiplier parameter c. □

6.2.4 Proofs for Chapter 2.4.3
Proof of Lemma 1 Proof. The upper bound can be obtained by showing that
∀(s,a), state-action value at the ep−th iteration are bounded. More specifically,

Qep(s,a) =

n∑
i=1

Qep
i (si, ai) ≤ n · sup

i
Qep

i (si, ai) = n

T∑
t=0

γtRmax (6.47)

We can prove this Equation 6.47 through induction as follows, When t = 1, we start
from the definition of our SoftFair in Equation 2.21 to have

Q1(s,a) = ΨsoftQ
0(s,a)

=
∑
a

Pr(a|s)
∑
s′t+1

Pr(s′t+1|s,a)(R(s,a) + γV 0(s′))

=
∑
a

Pr(a|s)
∑
s′t+1

Pr(s′t+1|s,a)(R(s,a) + γmax
a′

Q0(s′,a′))

≤ Rmax +
∑
s′t+1

Pr(s′t+1|s,a)(γmax
a′

Q0(s′,a′))

≤ Rmax + γ
∑
s′t+1

Pr(s′t+1|s,a)Rmax

= (1 + γ)Rmax

(6.48)
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We then assume that ep = K, where K > 1, QK(s,a) ≤
∑K

t=0 γ
tRmax holds, then we

have

QK+1(s,a) = ΨsoftQ
K(s,a)

=
∑
a

Pr(a|s)
∑
s′t+1

Pr(s′t+1|s,a)(R(s,a) + γV K(s′))

≤
∑
a

Pr(a|s)
∑
s′t+1

Pr(s′t+1|s,a)(Rmax + γmax
a′

QK(s′,a′))

≤ Rmax + γ
∑
s′t+1

Pr(s′t+1|s,a)(max
a′

QK(s′,a′))

≤ Rmax + γ
∑
s′t+1

Pr(s′t+1|s,a)
K∑
t=0

γtRmax

=
K+1∑
t=0

γtRmax

(6.49)

R(s,a) ∈ [Rmin, Rmax] where Rmax = n as we have n arms, and Rmin = 0. Thus the
upper bound is n

1−γ . Similarly, we can prove the lower bound is 0. we can conclude that
the state-action value function is bounded within [0, n

1−γ ]. □

Proof of Lemma 2 Proof. let a{i} denote the action to select the arm i
and remain other arms in passive, which is the shorthand for a = I{i}. We first
sort Q(s,a{i}) in the ascending order according to the λ value. Assume we get
Q(s,a′{1}′) ≥ · · · ≥ Q(s,a′{n}′) after sorting, and corresponding Pr(·|s) becomes
[Pr(a = I{1}′ |s), . . . ,Pr(a = I{n}′ |s)]⊤. According to Equation 2.19, when k = 1, we
have Pr(ai = 1|s) = softmaxc(c · λi)

Then ∀Q and ∀s, we can get

max
a

Q(s,a)− (Pr(·|s))⊤Q(s, ·) = max
a

Q(s,a)− softmax⊤c (c · λi′))Q(s, ·)

=Q(s,a′{1}′))−
∑n

i=1 exp[c · λi′ ] ·Q(s,a′{i}′)∑n
i=1 exp[c · λi′ ]

=

∑n
i=1 exp[c · λi′ ] · [Q(s,a′{1}′)−Q(s,a′{i}′)]∑n

i=1 exp[c · λi′ ]

(6.50)

According to Equation 2.18, we can get λi′ = Q(si′ , ai′ = 1) − Q(si′ , ai′ = 0).
Let K = exp[

∑n
j=1Q(sj , aj = 0)], and we have

K·exp[c·λi′ ] = exp[Q(si′ , ai′ = 1)+
∑

j∈ϕ−.i′

Q(sj , aj = 0)] = exp[Q(s,a′{i}′)].(6.51)

Here ϕ−.i′ denote the set that include all of the arms except arm i′. Thus by applying
Equation 6.51 to Equation 6.50, we have∑n

i=1 exp[c · λi′ ] · [Q(s,a′{1}′)−Q(s,a′{i}′)]∑n
i=1 exp[c · λi′ ]

=
K ·

∑n
i=1 exp[c · λi′ ] · [Q(s,a′{1}′)−Q(s,a′{i}′)]

K ·
∑n

i=1 exp[c · λi′ ]

=

∑n
i=1 exp[c ·Q(s,a′{i}′)] · [Q(s,a′{1}′)−Q(s,a′{i}′)]∑n

i=1 exp[c ·Q(s,a′{i}′)]

(6.52)
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Let δ{i}′(s) = Q(s,a′{1}′)−Q(s,a′{i}′), and we have δ{i}′(s) ≥ 0, and δ{1}′(s) = 0.
Using Equation 6.52, we have∑n

i=1 exp[c ·Q(s,a′{i}′)] · [Q(s,a′{1}′)−Q(s,a′{i}′)]∑n
i=1 exp[c ·Q(s,a′{i}′)]

=

∑n
i=1 exp

[
c ·
(
Q(s,a′{1}′)− δ{i}′(s)

)]
· δ{i}′(s)∑n

i=1 exp
[
c ·
(
Q(s,a′{1}′)− δ{i}′(s)

)]
=

∑n
i=1 exp[−c · δ{i}′(s)] · δ{i}′(s)∑n

i=1 exp[−c · δ{i}′(s)]

=

∑n
i=2 exp[−c · δ{i}′(s)] · δ{i}′(s)
1 +

∑n
i=2 exp[−c · δ{i}′(s)]

(6.53)

Now from equation 6.53, we can derive the upper bound. We follow the work in [88],
we take advantage of the fact that for any two non-negative sequences {xi} and {yi},∑

i xi
1 +

∑
i yi
≤
∑
i

xi
1 + yi

(6.54)

Apply Equation 6.54 to Equation 6.53∑n
i=2 exp[−c · δ{i}′(s)] · δ{i}′(s)
1 +

∑n
i=2 exp[−c · δ{i}′(s)]

≤
n∑

i=2

exp[−c · δ{i}′(s)] · δ{i}′(s)
1 + exp[−c · δ{i}′(s)]

=

n∑
i=2

δ{i}′(s)

1 + exp[c · δ{i}′(s)]

(6.55)

Intuitively, we have 0 ≤ δ{i}′(s) ≤ 1, thus through using Taylor series, we can rewrite
Equation 6.2.4 as

n∑
i=2

δ{i}′(s)

1 + exp[c · δ{i}′(s)]

=
n∑

i=2

δ{i}′(s)

1 + 1 + c · δ{i}′(s) + 0.5c2 · δ{i}′(s)2 + . . .

≤
n∑

i=2

1

2 + c
=

n− 1

2 + c

(6.56)

We can also get the lower bound as∑n
i=2 exp[−c · δ{i}′(s)] · δ{i}′(s)
1 +

∑n
i=2 exp[−c · δ{}′(s)]

≥
∑n

i=2 exp[−c · δ{i}′(s)] · δ{i}′(s)
n

=

∑n
i=2 δ{i}′(s)

n exp[c · δ{i}′(s)]
≥
∑n

i=2 δ{i}′(s)

n exp[c · δ(s)]
≥ δ(s)

n exp[c · δ(s)]

(6.57)

□

Proof of Theorem 7 Proof. The proof is similar to the work by Song et al. [88]
but modified for our RMAB setting.
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Upper bound : We derive the upper bound through induction. We start from the
definition for Ψ and Ψsoft in Equation 2.26 and Equation 2.25. When ep = 1, we have

ΨQ0(s,a)−ΨsoftQ
0(s,a)

=γ
∑
s′

Pr(s′|s,a)[max
a′

Q0(s′,a′)− Pr(a′|s′)Q0(s′,a′)]

≥0

(6.58)

Assume ΨQK(s,a) − ΨsoftQ
K(s,a) ≥ 0 holds for ep = K where K > 1. When

ep = K + 1, we have

ΨQK+1(s,a)−ΨsoftQ
K+1(s,a)

=ΨΨKQ0(s,a)−ΨsoftΨ
K
softQ

0(s,a)

≥ΨΨK
softQ

0(s,a)−ΨsoftΨ
K
softQ

0(s,a)

≥0

(6.59)

Since lim
ep→∞

ΨKQ0(s,a) = Q∗(s,a), where Q∗(s,a) is the optimal state action

value, and thus lim
ep→∞

ΨKV 0(s) = V ∗(s), where V ∗(s) is the optimal value function.

Therefore, we have lim sup
ep→∞

ΨKQ0(s,a) ≤ Q∗(s,a) and lim sup
ep→∞

ΨKV 0(s) ≤ V ∗(s).

Lower bound : Similarly, we derive the lower bound through induction from the
definition for Ψ and Ψsoft in Equation 2.26 and Equation 2.25. When ep = 1, we have

ΨQ0(s,a)−ΨsoftQ
0(s,a)

=γ
∑
s′

Pr(s′|s,a)[max
a′

Q0(s′,a′)− Pr(a′|s′)Q0(s′,a′)]

≤γ
∑
s′

Pr(s′|s,a)η = γη = γ
n− 1

2 + c

(6.60)

where η is the upper bound of max
a′

Q0(s′,a′) − Pr(a′|s′)Q0(s′,a′), can be written

as η = sup
s′

[max
a′

Q0(s′,a′) − Pr(a′|s′)Q0(s′,a′)]. According to Lemma 2, we have

η = n−1
2+c . Then we assume ΨQK(s,a) − ΨsoftQ

K(s,a) ≤
∑K

i=1 γ
i n−1
2+c holds for

ep = K where K > 1. When ep = K + 1, we have

ΨQK+1(s,a)−ΨsoftQ
K+1(s,a)

=ΨΨKQ0(s,a)−ΨsoftΨ
K
softQ

0(s,a)

≤Ψ

(
ΨK

softQ
0(s,a) +

K∑
i=1

γi
n− 1

2 + c

)
−ΨsoftΨ

K
softQ

0(s,a)

=
K+1∑
i=2

γi
n− 1

2 + c
+ (Ψ−Ψsoft)Ψ

K
softQ

0(s,a)

≤
K+1∑
i=2

γi
n− 1

2 + c
+ γi

n− 1

2 + c

=

K+1∑
i=1

γi
n− 1

2 + c

(6.61)
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Thus we have

lim
K→∞

ΨQK(s,a)−ΨsoftQ
K(s,a) ≤ lim

K→∞

K∑
i=1

γi
n− 1

2 + c
=

n− 1

(2 + c)(1− γ)
(6.62)

□

6.2.5 Datasets
Realistic dataset : Obstructive sleep apnea (OSA) is a common disorder, and CPAP
is considered the gold standard of treatment, effectively addressing a range of adverse
outcomes. However, effectiveness is often limited by non-adherence. CPAP adherence
varies substantially across settings; 29% to 83% of patients enrolled in the study reported
using CPAP recommended hours per night [101].

Our CPAP dataset is provided by Kang et al. [40], they define states as the CPAP
usage levels (0: did not adhere, 1: adhere), and estimate transition probabilities between
CPAP usage levels to build a Markov chain. They divide patients into two groups where
patients in the first cluster exhibit ‘adherent’ behavior, they are most likely to transition
to and remain in a good CPAP usage state, while the ‘non-adherent’ patient type we
consider in the second cluster shows a weak trend to transition to good CPAP usage
state.

We consider an intervention effect broadly characterizing supportive interventions
such as text message reminders, telemonitoring and telephone support, which is associ-
ated with a random increase from 5-50% to good CPAP use status per night for both
two groups. We add a small noise to each transition matrix so that the dynamics of each
individual arm in same group is different. The initial state vector s is randomly assigned.

For the ease of explanation, we use P a
s,s′ = 1 and P a

s,s′ = 0 to represent the
probability from state s to s′ under action a = 1 and a = 0, i.e., P (s, a = 1, s′) and
P (s, a = 0, s′), respectively.

Synthetic dataset : For the synthetic dataset, it is natural to require strict positive
transition matrix entries, and in order to mimic the real-world setting, following [56], we
impose four structural constraints: (i) P 0

0,1 < P 0
1,1, (ii) P 1

0,1 < P 1
1,1, (iii) P 0

0,1 < P 1
0,1

and (iv) P 0
1,1 < P 1

1,1. Those constraints imply that arms are more likely to stay in a
good state when there is positive intervention involved (active action) compared to no
intervention (passive action).

6.3 Appendix for Chapter 4

6.4 Theorem
Theorem 8 There exists a finite evaluation environment set that can capture the stu-
dent’s general capabilities and the performance vector [p1, . . . , pm] is a good represen-
tation of the student policy.

To prove this, we first provide the following Assumption:

Assumption 1 Let p(π, θ⃗) denote the performance of student policy π in an environment
θ⃗. For ∀i-th dimension of the environment parameters, denoted as θi, when changing the
θi to θ′i to get a new environment θ⃗′ while keeping other environment parameters fixed,
there ∃δi > 0, if |θ′i − θi| ≤ δi, we have |p(π, θ⃗′)− p(π, θ⃗)| ≤ ϵi, where ϵi → 0.
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If this is true, we then can construct a finite set of environments, and the student perfor-
mances in those environments can represent the performances in all potential environ-
ments generated within the certain environment parameters open interval combinations,
and the set of those open intervals combinations cover the environment parameter space
Θ.

We begin from the simplest case where we only consider using one environment
parameter to generate environments, denoted as θi. We can construct a finite environment
parameter set for environment parameters, which is {θmin

i + 1/2 ∗ δi, θmin
i + 3/2 ∗

δi, θ
min
i +7/2 ∗ δi, . . . , θmax

i − δi/2}. Assume the set size is Li. We let the set {θ⃗i}Li
i=1

denote the corresponding generated environments. This is served as the representative
environment set. Then the student performances in those environments are denoted
as {p(π, θ⃗i)}Li

i=1, which we call it as representative performance vector set. We
can divide the space for θi into a finite set of open intervals with size Li, which is
{[θmin

i , θmin
i + 3/2 ∗ δi), (θmin

i + 1/2 ∗ δi, θmin
i + 5/2δi), (θ

min
i + 5/2 ∗ δi, θmin

i +
9/2 ∗ δi), . . . , (θmax

i − 3/2 ∗ δi, θmax
i ]}, which we call it as representative parameter

interval set, also denoted as {(θi − δ, θi + δ)}Li
i=1. For any environment generated in

those intervals, denoted as θ⃗′i, the performance p(π, θ⃗′i) can always be represented by the
p(π, θ⃗i) which is in the same interval, as |p(π, θ⃗′i) − p(π, θ⃗i)| ≤ ϵi, where ϵi → 0. In
such cases, the finite set of environmental parameter intervals {θmin

i + 1/2 ∗ δi, θmin
i +

3/2 ∗ δi, θmin
i + 7/2 ∗ δi, . . . , θmax

i − δi/2} fully covers the entire parameter space Θ.
We can find a representative environment set {θ⃗i}Li

i=1 that is capable of approximating
the performance of the student policy within the open parameter intervals combination.
This set effectively characterizes the general performance capabilities of the student
policy π.

Then we extend to two environment parameter design space cases. Let’s assume
that the environment is generated by two-dimension environment parameters. Then, for
each environment parameter, θi ∈ {θ1, θ2}. We can find the same open interval set for
each parameter. Specifically, for each θi, there exists a δi, such that if |θ′i − θi| ≤ δi,
we have |p(π, θ⃗′) − p(π, θ⃗)| ≤ ϵi, where ϵi → 0. Hence, we let δ = min{δ1, δ2} and
ϵ = ϵ1 + ϵ2. Thus the new representative environment set is the set that includes
the any combination of {[θ1, θ2]} where θ1 ∈ {θ⃗i}L1

i=1 and θ2 ∈ {θ⃗j}L2
j=1. We can get

the representative performance vector set as {p(π, [θ⃗i, θ⃗j ])}i∈[1,L1],j∈[1,L2]. We then
can construct the representative parameter interval set as {[(θi − δ, θi + δ), (θj −
δ, θj + δ)]}i∈[1,L1],j∈[1,Lj ]. As a result, for any new environments [θ⃗′i, θ⃗

′
j ], we can find

the representative environment whose environment parameters are in the same parameter
interval [θ⃗i, θ⃗j ], such that their performance difference is smaller than ϵ = ϵ1 + ϵ2 for all
∀i ∈ [1, L1],∀j ∈ [1, L2]:

|p(π, [θ⃗′i, θ⃗′j ])− p(π, [θ⃗i, θ⃗j ])| = |p(π, [θ⃗′i, θ⃗′j ])− p(π, [θ⃗′i, θ⃗j ]) + p(π, [θ⃗′i, θ⃗j ])− p(π, [θ⃗i, θ⃗j ])|

≤ |p(π, [θ⃗′i, θ⃗′j ])− p(π, [θ⃗′i, θ⃗j ])|+ |p(π, [θ⃗′i, θ⃗j ])− p(π, [θ⃗i, θ⃗j ])|
≤ δj + δi

= δ

(6.63)

In such cases, the finite set of environmental parameter intervals {[(θi − δ, θi +
δ), (θj − δ, θj + δ)]}i∈[1,L1],j∈[1,Lj ] fully covers the entire parameter space Θ. We
can find a representative environment set {θ⃗i}Li

i=1 that is capable of approximating the
performance of the student policy within the open parameter intervals combination. This
set effectively characterizes the general performance capabilities of the student policy π.
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Similarly, we can show this still holds when the environment is constructed by a
larger dimension environment parameters, where we set δ = min{δi}, and ϵ =

∑
i ϵi,

and we have δ > 0, ϵ → 0. The overall logic is that we can find a finite set, which
is called representative environment set, and we can use performances in this set
to represent any performances in the environments generated in the representative
parameter interval set, which is called representative performance vector set. Finally,
we can show that representative parameter interval set fully covers the environment
parameter space. Thus there exists a finite evaluation environment set that can capture
the student’s general capabilities and the performance vector, called representative
performance vector set, [p1, . . . , pm] is a good representation of the student policy.

6.5 Details about the Generative model

6.5.1 Generative model to generate synthetic next state
Here, we describe how to leverage the diffusion model to learn the conditional data
distribution in the collected experiences τ = {(sut , aut , rut , s

u,′
t )}. Later we can use the

trainable reverse chain in the diffusion model to generate the synthetic trajectories that
can be used to help train the teacher agent, resulting in reducing the resource-intensive
and time-consuming collection of upper-level teacher experiences. We deal with two
different types of timesteps in this section: one for the diffusion process and the other for
the upper-level teacher agent, respectively. We use subscripts k ∈ 1, . . . ,K to represent
diffusion timesteps and subscripts t ∈ 1, . . . , T to represent trajectory timesteps in the
teacher’s experience.

In the image domain, the diffusion process is implemented across all pixel values
of the image. In our setting, we diffuse over the next state su,′ conditioned the given
state su and action au. We construct our generative model according to the conditional
diffusion process:

q(su,′k |s
u,′
k−1), pϕ(s

u,′
k−1|s

u,′
k , su, au)

As usual, q(su,′k |s
u,′
k−1) is the predefined forward noising process while

pϕ(s
u,′
k−1|s

u,′
k , su, au) is the trainable reverse denoising process. We begin by

randomly sampling the collected experiences τ = {(sut , aut , rut , s
u,′
t )} from the real

experience buffer Breal.
We drop the superscript u here for ease of explanation. Giving the observed state s

and action a, we use the reverse process pϕ to represent the generation of the next state
s′:

pϕ(s
′
0:K |s, a) = N (s′K ; 0, I)

K∏
k=1

pϕ(s
′
k−1|s′k, s, a) (6.64)

At the end of the reverse chain, the sample s′0, is the generated next state s′. As
shown in Section 4.2.2, pϕ(s′k−1|, s′k, s, a) could be modeled as a Gaussian distribution
N (s′k−1;µθ(s

′
k, s, a, k),Σθ(s

′
k, s, a, k)). Similar to Ho et al. [31], we parameterize

pϕ(s
′
k−1|s′k, s, a) as a noise prediction model with the covariance matrix fixed as

Σθ(s
′
k, s, a, k) = βiI

and mean is

µθ(s
′
i, s, a, k) =

1
√
αk

(
s′k −

βk√
1− ᾱk

ϵθ(s
′
k, s, a, k)

)
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Where ϵθ(s
′
k, s, a, k) is the trainable denoising function, which aims to estimate

the noise ϵ in the noisy input s′k at step k. Specifically, giving the sampled experience
(s, a, s′), we begin by sampling s′K ∼ N (0, I) and then proceed with the reverse
diffusion chain pϕ(s

′
k−1|, s′k, s, a) for k = K, . . . , 1. The detailed expression for s′k−1

is as follows:

s′k√
αk
− βk√

αk(1− ᾱk)
ϵθ(s

′
k, s, a, k) +

√
βkϵ, (6.65)

where ϵ ∼ N (0, I). Note that ϵ = 0 when k = 1.

Training objective. We employ a similar simplified objective, as proposed by Ho
et al. [31] to train the conditional ϵ- model through the following process:

L(θ) = E(s,a,s′)∼τ,k∼U ,ϵ∼N (0,I)

[
∥ϵ− ϵϕ(s

′
k, s, a, k)∥2

]
(6.66)

Where s′k =
√
ᾱks

′ +
√
1− ᾱkϵ. U represents a uniform distribution over the

discrete set {1, . . . ,K}. The intuition for the loss function L(θ) tries to predict the noise
ϵ ∼ N (0, I) at the denoising step k, and the diffusion model is essentially learning the
student policy involution trajectories collected in the real experience buffer Breals. Note
that the reverse process necessitates a substantial number of steps K, as the Gaussian
assumption holds true primarily under the condition of the infinitesimally limit of small
denoising steps [86]. Recent research by Xiao et al. [107] has demonstrated that enabling
denoising with large steps can reduce the total number of denoising steps K. To expedite
the relatively slow reverse sampling process outlined in Equation 4.3.2 (as it requires
computing ϵϕ networks K times), we use a small value of K, while simultaneously
setting βmin = 0.1 and βmax = 10.0. Similar to Wang et al. [99], we define:

βk = 1− αk

= 1− exp

(
βmin ×

1

K
− 0.5(βmax − βmin)

2k − 1

K2

)
This noise schedule is derived from the variance-preserving Stochastic Differential
Equation by Song et al. [87].

Generate synthetic trajectories. Once the diffusion model has been trained, it
can be used to generate synthetic experience data by starting with a draw from the
prior s′K ∼ N (0, I) and successively generating denoised next state, conditioned on
the given s and a through the reverse chain pϕ in Equation 4.3.2. Note that the giving
condition action a can either be randomly sampled from the action space (which is also
the environment parameter space) or use another diffusion model to learn the action
distribution giving the initial state s. In such case, this new diffusion model is essentially
a behavior-cloning model that aims to learn the teacher policy Λ(a|s). This process is
similar to the work of Wang et al. [99]. We discuss this process in detail in the appendix.
In this paper, we randomly sample a as it is straightforward and can also increase the
diversity in the generated synthetic experience to help train a more robust teacher agent.

6.5.2 Generative model to generate synthetic action
Once the diffusion model has been trained, it can be used to generate synthetic experience
data by starting with a draw from the prior s′K ∼ N (0, I) and successively generating
denoised next state, conditioned on the given s and a through the reverse chain pϕ in

136



Figure 6.5: The distribution of the real s′ and the synthetic s′ conditioned on
(s, a).

Equation 4.3.2. Note that the giving condition action a can either be randomly sampled
from the action space (which is also the environment parameter space) or we can train
another diffusion model to learn the action distribution giving the initial state s, and
then use the trained new diffusion model to sample the action a giving the state s. This
process is similar to the work of Wang et al. [99].

In particular, We construct another conditional diffusion model as:

q(ak|ak−1), pϕ(ak−1|ak, s)

As usual, q(ak|ak−1) is the predefined forward noising process while pϕ(ak−1|ak, s) is
the trainable reverse denoising process. we represent the action generation process via
the reverse chain of the conditional diffusion model as

pϕ(a0:K |s) = N (aK ; 0, I)

K∏
k=1

pϕ(ak−1|ak, s) (6.67)

At the end of the reverse chain, the sample a0, is the generated action a for the giving
state s. Similarly, we parameterize pϕ(ak−1|ak, s) as a noise prediction model with the
covariance matrix fixed as

Σθ(ak, s, k) = βiI

and mean is

µθ(ai, s, k) =
1
√
αk

(
ak −

βk√
1− ᾱk

ϵθ(ak, s, k)

)
Similarly, the simplified loss function is

La(θ) = E(s,a)∼τ,k∼U ,ϵ∼N (0,I)

[
∥ϵ− ϵϕ(ak, s, k)∥2

]
(6.68)

Where ak =
√
ᾱka +

√
1− ᾱkϵ. U represents a uniform distribution over the

discrete set {1, . . . ,K}. The intuition for the loss function La(θ) tries to predict the
noise ϵ ∼ N (0, I) at the denoising step k, and the diffusion model is essentially a
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behavior cloning model to learn the student policy collected in the real experience buffer
Breals.

Once this new diffusion model is trained, the generation of the synthetic experience
can be formulated as:

• we first randomly sample the state from the collected real trajectories s ∼ τ ;

• we use the new diffusion model discussed above to mimic the teacher’s policy to
generate the actions a;

• giving the state s and action a, we use the first diffusion model presented in the
main paper to generate the next state s′;

• we compute the reward r according to the reward function, and add the final
generated synthetic experience (s, a, r, s′) to the synthetic experience buffer Bsyn
to help train the teacher agent.

6.6 Empirical analysis of generative model

6.6.1 Ability to generate good synthetic trajectories
We begin by investigating SHED’s ability to assist in collecting experiences for the
upper-level MDP teacher. This involves the necessity for SHED to prove its ability to
accurately generate synthetic experiences for teacher agents. To check the quality of
these generated synthetic experiences, we employ a diffusion model to simulate some
data for validation (even though Diffusion models have demonstrated remarkable success
across vision and NLP tasks).

We design the following experiment: given the teacher’s observed state su =
[p1, p2, p3, p4, p5], where pi denotes the student performance on i-th evaluation envi-
ronment. and given the teacher’s action au = [a1, a2, a3], which is the environment
parameters and are used to generate corresponding environment instances. We use a
neural network f(su, au) to mimic the involution trajectories of the student policy π.
That is, with the input of the state su and action au into the neural network, it outputs the
next observed state su,′ = [p′1, p

′
2, p

′
3, p

′
4, p

′
5], indicating the updated student performance

vector on the evaluation environments after training in the environment generated by
au. In particular, we add a noise ε into su,′ to represent the uncertainty in the transition.
We first train our diffusion model on the real dataset (su, au, su,′) generated by neural
network f(su, au). We then set a fixed (su, au) pair and input them into f(su, au) to
generate 200 samples of real su,′. The trained diffusion model is then used to generate
200 synthetic su,′ conditioned on the fixed (su, au) pair.

The results are presented in Figure 6.6, we can see that the generative model can
effectively capture the distribution of real experience even if there is a large uncertainty
in the transition, indicated by the value of ε. This provides evidence that the diffusion
model can generate useful experiences conditioned on (su, au). It is important to note
that the marginal distribution derived from the reverse diffusion chain provides an
implicit, expressive distribution, such distribution has the capability to capture complex
distribution properties, including skewness and multi-modality.

6.6.2 addition experiments on diffusion model
We further provide more results to show the ability of our generative model to generate
synthetic trajectories where the noise is extremely small. In such cases, the actual next
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Figure 6.6: The distribution of the real [s′1, s
′
2, s

′
3](red) and the synthetic

[s′1, s
′
2, s

′
3](blue) giving the fixed (su, au). Specifically, the noise ε in f(su, au) is

(i).left figure: ε = ϵ, (ii).middle figure: ε = 3 ∗ ϵ, (iii).right figure: ε = 10 ∗ ϵ,
where ϵ ∼ N (0, 1).

Figure 6.7: Left: The ablation study in the Lunar lander environment which
investigates the effect of the size of the evaluation environment set. We provide
the average zero-shot transfer performances on the test environments (mean and
standard error). Right: Zero-shot transfer performance on the test environments
under a longer time horizon in Lunar lander environments(mean and standard
error).

state s′ will converge to a certain value, and the synthetic next state ssyn,′ generated by
the diffusion model should also be very close to that value, then the diffusion model
has the ability to sample the next state ssyn,′0 which can accurately represent the next
state. We present the results in Figure 6.5. Specifically, this figure shows when the noise
is very small in the actual next state, which is 0.05 ∗ ϵ, and ϵ ∼ N (0, 1). Giving any
condition (s, a) pair, we selectively report on (si, ai), where x-axis is the ai value, and
y-axis is the si value. The student policy with initial performance vector s is trained on
the environments generated by the teacher’s action a. We report the new performance
s′i of student policy on i-th environments after training in the z-axis. In particular, if
two points s′i and ssyn,′i are close, it indicates that the diffusion model can successfully
generate the actual next state. As we can see, when the noise is extremely small, our
diffusion model can accurately predict the next state of s′i giving any condition (s, a)
pair.
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6.7 Additional Experiment Details

6.7.1 Hyperparameters
We set the learning rate 1e− 3 for actor, and 3e− 3 for critic, we set gamma γ = 0.999,
λ = 0.95, and set coefficient for the entropy bonus (to encourage exploration) as 0.01.
For each environment, we conduct 50 PPO updates for the student agent, and We can
train on up to 50 environments, including replay. For our diffusion model, the diffusion
discount is 0.99, and batch size is 64, τ is 0.005, learning rate is 3e− 4. The synthetic
buffer size is 1000, and the ratio is 0.25.

6.7.2 Experiments Compute Resources
All the models were trained on a single NVIDIA GeForce RTX 3090 GPU and 16 CPUs.

6.7.3 Maze document
Here we provide the document shows the instruction to generate feasible maze environ-
ments.

There are several factors that can affect the difficulty
of a maze. Here are some key factors to consider:
1. Maze Size: Larger mazes generally increase the complexity
and difficulty as the agent has more states to explore.
Typically, the maze size should be larger than 4x4 and
smaller than 15*15.
- If the size is 7*7 or smaller, the maze size is considered
easy.
- If the size is larger than 7*7 but smaller than 10*10,
the maze size is considered medium.
- If the maze size is larger than 10x10 but smaller than
15*15, the maze size is considered hard.
2. Maze Structure: The complexity of the paths, including
the number of twists, turns, and dead-ends, can significantly
impact navigation strategies. The presence of narrow
corridors versus wide-open spaces also plays a role.
- If there are fewer than 2 turns in the feasible path
from the start position to the end position, the maze
structure is considered easy.
- If there are more than 2 turns but fewer than 4 turns
in the path from the start position to the end position,
the maze structure is considered medium.
- If there are 4 or more turns in the path from the start
position to the end position, the maze structure is considered
hard.
3. Goal Location: The distance from the starting position to
the end position also affects difficulty.
- If the path from the start position to the end position
requires fewer than 5 steps, the goal location is
considered easy.
- If the path from the start position to the end position
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requires 5 to 10steps, the goal location is considered medium.
- If the path from the start position to the end position
requires more than 10 steps, the goal location is
considered hard.
4. Start Location: The starting position can also affect the
difficulty of the maze. The starting position is
categorized into five levels:
- If the start position is close to 1, it means it should be
located as close to the top left of the maze.
- If the start position is close to 2, it means it should be
located as close to the top right of the maze.
- If the start position is close to 3, it means it should be
located as close to the bottom left of the maze.
- If the start position is close to 4, it means it should be
located as close to the bottom right of the maze.
- If the start position is close to 5, it means it should be
located as close to the center of the maze.
Please note that the generated maze uses -1 to represent
blocks, 0 to represent the feasible path, 1 to represent
the start position, and 2 to represent the end position.
Must ensure that there is a feasible path in the generated
maze! A feasible path means that 1 and 2 are connected
directly through 0s, or 1 and 2 are connected directly.
For example: Feasible Maze:
Maze = [

[0, -1, -1, 2],
[1, -1, 0, 0],
[0, -1, 0, -1],
[0, 0, 0, -1],

]
Non-Feasible Mazes:
Maze = [

[0, -1, -1, 2],
[1, -1, 0, 0],
[0, -1, -1, 0],
[0, 0, 0, -1],

]
Or
Maze = [

[1, -1],
[-1, 2]

]
These second example does not have any feasible path.

6.7.4 Prompt for RAG
We provide our prompt for the Retrieval Augmented Generation as follows:

Please refer to the document, and generate a maze with a
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feasible path. The difficulty level for the maze size is
{maze_size_level}, and the difficulty level for the maze
structure is {maze_structure_level}, the difficulty level
for the goal location is {goal_location_level}, the difficulty
level for the start location is {start_position_level}.

6.8 Additional experiments

6.8.1 Additional experiments about ablation studies
We also provide ablation analysis to evaluate the impact of different design choices in
Lunar lander domain, including (a) a larger evaluation environment set; (b) a bigger
budget for constraint on the number of generated environments (which incurs a longer
training time horizon). The results are reported in Figure 6.7.

We explore the impact of introducing the diffusion model in collecting synthetic
teacher’s experience and varying the size of the evaluation environment set. Specifically,
as we can see from the right side of Figure 6.7, the SHED consistently outperforms
h-MDP, indicating the effectiveness of introducing the generative model to help train
the upper-level teacher policy. Furthermore, we find that when increasing the size
of the evaluation environment set, we can have a better result in the student transfer
performances. The intuition is that a larger evaluation environment set, encompassing
a more diverse range of environments, provides a better approximation of the student
policy according to the Theorem 8. However, the reason why SHED with 30 evaluation
environments slightly outperforms SHED with 40 evaluation environments is perhaps
attributed to the increase in the dimension of the student performance vector, which
amplifies the challenge of training an effective diffusion model with a limited dataset.

We conduct experiments in Lunar lander under a longer time horizon. The results are
provided on the right side of Figure 6.7. As we can see, our proposed algorithm SHED
can efficiently train the student agent to achieve the general capability in a shorter time
horizon, This observation indicates that our proposed environment generation process
can better generate the suitable environments for the current student policy, thereby
enhancing its general capability, especially when there is a constraint on the number of
generated environments.

6.8.2 Additional experiments on Lunar lander
we also conduct experiments to show how the algorithm performs under different settings,
such as a larger weight of cv fairness rewards (η = 10). The results are provided in
Figure 6.8. We noticed an interesting finding: when fairness reward has a high weightage,
our algorithm tends to generate environments at the onset that lead to a rapid decline
and subsequent improvement in student performance across all test environments. This
is done to avoid acquiring a substantial negative fairness reward and thereby maximize
the teacher’s cumulative reward. Notably, the student’s final performance still surpasses
other baselines at the end of training.

We further show in detail how the performance of different methods changes in each
testing environment during training (see Figure 6.9 and Figure 6.10 ).
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Figure 6.8: Zero-shot transfer performance on the test environments with a larger
cv value coefficient in Lunar lander environments.

6.8.3 Additional experiments on Maze
We selectively report some results of zero-shot transfer performances in maze environ-
ments. The results are provided in Figure

6.9 Discussion

6.9.1 Limitations

The limitation of this work comes from the UED framework, as UED is limited to the use

of parameterized environments. This results in our experimental domain being relatively

simple. However, our work proposes a new hierarchical structure, and our policy

representation is not only of great help for UED, but also has certain inspirations for

hierarchical RL. Additionally, in the world model of UED (Genie [12]), the environment

generator (teacher) focuses on creating video games, a domain that is compatible with

our proposed application of upsampling the teacher agent’s experience using a diffusion

model (since the state is image-based).
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Figure 6.9: Detail how the performance of different methods changes in each
testing environment during training (mean and error)
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Figure 6.10: Detail how the performance of different methods changes in each
testing environment during training (mean and error)

(a) (b) (c) (d) (e)

(f) small maze
(g) medium
maze (h) large maze

(i) four rooms
maze

(j) corridor
maze

Figure 6.11: Zero-shot transfer performance on test environments in maze
environments

145


	Sequential decision learning for social good and fairness
	Citation

	1 Introduction
	1.1 Motivation for RMAB setting-Part II
	1.2 Motivation for RL setting-Part III
	1.3 Contributions and Outline

	2 Restless Multi-Armed Bandits
	2.1 Introduction
	2.2 Related Work
	2.2.1 Whittle Index Policy
	2.2.2 Fairness in Decision-making

	2.3 RMAB with deterministic fairness constraint
	2.3.1 Problem Description
	2.3.2 Background: Whittle Index
	2.3.3 Algorithm for Different Settings
	2.3.4 Experiment

	2.4 RMAB with probabilistic fairness constraint
	2.4.1 Problem Description
	2.4.2  SoftFair Approach
	2.4.3 Analysis of SoftFair
	2.4.4 Experiments

	2.5 Conclusion

	3 Influence Maximization in Unknown Social Networks
	3.1 Introduction
	3.2 Problem Description
	3.3 Background
	3.3.1 MDP Formulation
	3.3.2 Geometric-DQN

	3.4 Our Approach - CLAIM
	3.4.1 Goal Directed Reinforcement Learning
	3.4.2 Algorithm

	3.5 Experiments
	3.5.1 Results

	3.6 Discussion
	3.7 Conclusion

	4 Training Robuts Agent with Limited Resources 
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Unsupervised Environment Design
	4.2.2 Diffusion Probabilistic Models

	4.3 Approach
	4.3.1 Hierarchical Environment Design
	4.3.2 Generative Trajectory Modeling
	4.3.3 Rewards and Choice of evaluate environments

	4.4 Experiments
	4.5 Conclusion

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future work

	6 Appendix
	6.1 Appendix for Chapter 2.3
	6.1.1 Proof for Boundary Lemma
	6.1.2 Condition for the optimality of Algorithm 1 under infinite horizon
	6.1.3 Proof of Theorem 2
	6.1.4 Proof of Theorem 3
	6.1.5 Additional Results

	6.2 Appendix for Chapter 2.4
	6.2.1 More Details about SoftFair
	6.2.2 Proof of Proposition 2
	6.2.3 Proofs for Chapter 2.4.3
	6.2.4 Proofs for Chapter 2.4.3
	6.2.5 Datasets

	6.3 Appendix for Chapter 4
	6.4 Theorem
	6.5 Details about the Generative model
	6.5.1 Generative model to generate synthetic next state
	6.5.2 Generative model to generate synthetic action

	6.6 Empirical analysis of generative model
	6.6.1 Ability to generate good synthetic trajectories
	6.6.2 addition experiments on diffusion model

	6.7 Additional Experiment Details
	6.7.1  Hyperparameters
	6.7.2 Experiments Compute Resources
	6.7.3 Maze document
	6.7.4 Prompt for RAG

	6.8 Additional experiments
	6.8.1 Additional experiments about ablation studies
	6.8.2 Additional experiments on Lunar lander
	6.8.3 Additional experiments on Maze

	6.9 Discussion
	6.9.1 Limitations



