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Abstract

Cyber-physical systems and applications have fundamentally changed people and

processes in the way they interact with the physical world, ushering in the fourth

industrial revolution. Supported by a variety of sensors, hardware platforms, artificial

intelligence and machine learning models, and systems frameworks, CPS applica-

tions aim to automate and ease the burden of repetitive, laborious, or unsafe tasks

borne by humans. Machine visual perception, encompassing tasks such as object

detection, object tracking and activity analysis, is a key technical enabler of such

CPS applications. Efficient execution of such machine vision perception tasks on

resource-constrained edge devices, especially in terms of ensuring both high fidelity

and processing throughput, remains a formidable challenge. This is due to the con-

tinuing increase in resolution of sensor streams (e.g., video input streams generated

by 4K/8K cameras and high-volume event streams generated by emerging neuromor-

phic event cameras) and the computational complexity of the Deep Neural Network

(DNN) models that underpin such perception capabilities, which overwhelms edge

platforms, adversely impacting machine perception efficiency. This challenge is

even more severe when a perception pipeline operating on a single edge device must

process multiple concurrent video streams for accurate sense-making of the physical

world. Given the insufficiency of the available computation resources, a question

then arises on whether parts of the perception task can be prioritized (and executed

preferentially) to achieve highest task fidelity while adhering to the resource budget.

This thesis introduces the paradigm of Canvas-based Processing and Criticality

Awareness to tackle the challenge of multi-sensor machine perception pipelines on

resource-constrained platforms. The proposed paradigm guides perception pipelines

and systems on “what” to pay attention to in the sensing field and “when”, across

multiple camera streams, to significantly increase both perception fidelity under

computational constraints and achievable system throughput on a single edge de-

vice. By creating spatial and temporal degrees of freedom for stimuli/regions of



interest from their original video streams, such a perception pipeline can “pick and

choose” which stimuli to ascribe more priority for preferential DNN inference over

time, thereby reducing the total computational load. The thesis explores how such

prioritized and selective processing, across multiple RGB and event sensor streams,

needs to be designed to support both non-streaming and streaming perception tasks.

With multiple strategies for fine-tuning such a perception pipeline for real-world de-

ployment characteristics such as bandwidth constrained wireless networks, variable

workloads at the edge, spatial overlap between cameras, this thesis demonstrates that

it is possible to achieve multiplicative gains in processing throughput with no cost to

DNN task accuracy, across multiple concurrent RGB and event camera streams at

the resource-constrained edge. The proposed techniques are especially applicable for

real-time multi-sensor machine perception tasks such as drone-based surveillance

and multi-camera traffic analysis.
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Chapter 1

Introduction

1.1 Multi-Sensor Visual Perception at the Edge

Visual machine perception is a fundamental enabler of cyber-physical systems that

enables applications such as augmented reality (AR/VR), autonomous cars or drones,

and assistive robots. Real-time sensing and accurate sense-making is crucial for

these applications to execute sub-tasks such as object detection, localization, and

mapping, yielding the ability to perceive, navigate, and interact with their physical

environment. State of the art visual perception pipelines rely on the processing

of video streams from commodity cameras, and often leverage multiple cameras

concurrently to achieve fine-grained, multi-perspective, or wide-range visual per-

ception [53]. In parallel, advances in edge computing have enabled Deep Neural

Network (DNN) based models on resource constrained pervasive edge devices to

consume such camera streams and distill the perception of physical phenomena into

actionable knowledge [53]. However, simultaneous advancements in (i) newer and

more complex visual Deep Learning Networks (DNNs) that impose higher memory-

latency complexity, and (ii) higher resolution cameras (i.e. 4k/8k cameras [12] and

neuromorphic event cameras capable of 1 billion events/second [4]) that generate

data at higher rates and resolutions, make it challenging to guarantee real-time and

accurate visual perception over multiple concurrent camera streams using a single
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resource-constrained edge device.

In this thesis, I introduce the paradigm of Criticality Aware Canvas-based Pro-

cessing and explore multi-sensor visual perception pipelines on resource constrained

edge platforms, with a focus on improving end-to-end system efficiency. Inspired by

the concept of attention from human psychology, I consider criticality-awareness

as the selective concentration of limited computation resources on a smaller subset

of stimuli among multiple perceivable stimuli [81]. While the concept of attention

has been adapted by the deep learning community to make DNNs dynamically fo-

cus on relevant parts of the input data, I make a key distinction between attention

mechanisms and criticality-awareness in that the focus is on fine-tuning the entire

edge system and application across multiple inputs, not the structure of the DNN

itself. Canvas-based Processing involves the extraction of critical stimuli or Regions

of Interest (RoI) from multiple concurrent camera streams, to create a spatially and

temporally differentiated curation of each stimuli from its original video source. This

allows the system to spatiotemporally multiplex the selected stimuli onto a shared,

resource-limited computational resource for DNN-based inference. In general, a

Canvas is defined as the maximum size of an input frame that a DNN operating

on an edge GPU device can consume to yield an inference throughput above the

desired real-time processing threshold. This blank canvas frame essentially serves

to define a spatial budget within which the perception pipeline must curate and

construct a composite image, constructed of extracted prioritised critical stimuli via

2D bin-packing for downstream DNN inference such as object detection, illustrated

in Figure 1.1. In this thesis, I discuss various aspects of fine-tuning such a system

which cater to considerations such as: (i) what subset of stimuli the system selects

for fine-grained perception of downstream DNN task execution (ii) when the sys-

tem re-selects already perceived objects to monitor changes in relative criticality to

the perception task, (iii) how the resource-constrained edge GPU schedules critical

stimuli for downstream DNN inference, and (iv) how stimuli from multiple other

sensors might inform the criticality of different objects/events in the sensing field
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relative to the perception task. I hypothesize that, in general, continuous recognition

is not strictly necessary for machine perception; this is based on the observation

of how human perception follows similar principles of prioritization and selective

attention [81] to maximize human neural efficiency. Finally, I conclude that by fine-

tuning the system’s understanding of the different stimuli across multiple sensors,

visual perception tasks operating on a single edge device may achieve multiplicative

gains in system capacity/throughput (i.e. number of cameras that a single edge GPU

can concurrently process) while maintaining DNN task accuracy.

Figure 1.1: Conceptual overview of Criticality Aware Canvas-based Processing over
multiple input streams at a single edge GPU

1.2 Key Challenges & Opportunities

Advances in computer vision and edge computing have pushed the state of the art in

visual perception on resource constrained edge devices to consume multiple sensor

streams and distill the perception of physical phenomena into actionable knowledge.

This trend fundamentally hinges on advancements in three distinct areas - (i) new

and continuously improving deep learning network architectures (ii) innovative ways

to gather, clean, and consume the visual sensing data and (iii) hardware infrastructure

that supports the communication and computation of the available data. The interplay

between these three pillars of advancement, each important and significant in their

own right, creates significant challenges to machine perception on edge devices.
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Deep learning models today are getting deeper and more complex with hundreds

of computational layers, with ever increasing space-time complexity and cost to

trainability. On the other hand, perception data is characterised by high volumes

of data being generated at different velocities and resolutions. For example, latest

neuromorphic event cameras can generate 12 Million events/second [3] to 1 billion

events/second [4] when capturing dynamic, fast-moving scenes, amounting to several

GB/sec of raw data to be transmitted and processed by the perception pipeline.

Such volumes of data makes efficient and accurate machine perception a challenge.

An exponential growth in the number and variety of sensors required for a single

perception task adds another layer of complexity to designing edge-based perception

pipelines. Lastly, innovations in chip and processor designs such as the Jetson AGX

Orin based on the NVIDIA Ampere GPU architecture[1], and the Dolphin Raptor

on the Tiny RAPTOR processor [2], bring more powerful computation capabilities

to edge devices. However, modern deep learning models, designed predominantly

for the cloud, are out-pacing Moore’s law [118] and prohibitively intensive in their

computational load, significantly overwhelming edge platforms, and incurring high

processing and computation latencies for perception tasks [5]. Machine perception

tasks however, need to be accurate with high processing throughput to proactively

respond to dynamically changing environments.

The prevailing wisdom to overcoming these three distinct challenges is to adopt

a combination of the following strategies:

• Deploy Smaller Edge-Scale DNNs: Deploying smaller, less accurate, and

computationally cheaper DNN models on edge scale devices incurs lesser

processing latency at the cost of perception task accuracy. For example, in the

latest iteration of the YOLO family of object detection models - YOLOv8 [139],

the smallest edge-scale model YOLOv8-nano or YOLOv8n featuring 3.2

million parameters and 8.7 billion FLOPs achieves real-time inference of

32 FPS on a Jetson AGX Orin Nano [1] with a mean average precision of
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37.3% [139] on the COCO dataset [92]. On the other hand, YOLOv8-large or

YOLOv8l featuring 43.7 million parameters and 165.2 billion FLOPs incurs

significant processing latency to yield a processing throughput of only 6 FPS

but with a significantly higher mean average precision of 52.9% [139] on

the COCO dataset [92]. Edge-based applications often prefer throughput

(YOLOv8n) to accuracy (YOLOv8l), to tackle cost/complexity-vs-accuracy

tradeoffs. Approaches for static and dynamic DNN model optimization (such

as pruning [91], knowledge distillation [58] or sparsification [140]) help to

reduce, but cannot completely eliminate, the accuracy gap resulting from such

smaller, edge-friendly models.

• Downsample Input Resolutions: Edge-scale DNNs incur lower processing

latency over smaller, downsampled input image sizes with pipelines typically

downsampling the inputs to ≤ 640 × 640 for DNN inference. Such down-

sampling sacrifices the high-definition sensing capabilities embedded within

the onboard sensors, adopting instead low-resolution images that promote

throughput over accuracy. Recent works have shown the efficacy of selective

downsampling to generate multi-resolution images [146, 32, 74], retaining

higher resolutions for regions of interest in the input video, which could prove

useful in the context of multi-sensor visual pipelines.

• Deploy More Powerful Edge GPUs: Larger, more capable edge GPU devices

such as the production-class Jetson AGX Orin 32/64GB [1] alleviate some of

the challenges to deployment by offering greater resources promoting both

throughput and accuracy albeit with high infrastructure costs (∼USD 2000 per

unit).

• Selective Computation and Offload: Recent works have proposed either (a)

Criticality-aware processing techniques which process selected Regions of

Interest (RoI) with higher fidelity by masking[56, 97], batching [96], patch-

ing [74], tiling [154], or offloading processing to the cloud or a more powerful
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edge device [161] and (b) Selective computation approaches, where certain

DNN layers are simplified [26] or skipped [142] with imprecise computa-

tions [24, 80]. Current approaches, however, do not consider scenarios where

multiple sensor streams, with dynamically varying scene characteristics share

the same computational resources on an edge device and must be processed

concurrently.

Although not exhaustive, these strategies indicate that there is an opportunity to

explore the development of content-aware and criticality-aware mechanisms across

multiple sensor data streams that are processed by a single perception pipeline at the

resource constrained edge. By introducing Canvas-based Processing and the concept

of spatiotemporal dissociation of the perceived stimuli/objects from the camera

input stream itself, the pipeline can gain significant degrees of freedom to “pick

and choose” which stimuli to ascribe more priority to for preferential processing,

creating multiplicative gains in processing throughput with no loss of perception task

accuracy. Such prioritized processing also helps to tackle the challenge of priority

inversion [61] that has been observed in the real-time stream processing literature,

where low-priority regions of the sensing field (such as the background/sky) are given

higher priority for processing over high-priority regions of the critical stimuli/RoI.

To understand the practical opportunities and challenges of such criticality-aware

canvas-based machine perception, I explore three key scenarios.

Scenario 1: Drone-based Factory/Retail Floor Monitoring

Consider a factory floor that is surveilled by a fleet of M drones which monitor

worker and equipment safety; each drone observing discrete sections of the site, while

wirelessly transmitting the camera streams to an edge node for application-specific

inference, illustrated in Figure 1.2. Alternatively, envision a retail shopping floor

with a fleet of drones providing personalised service to customers by helping them

navigate to aisles that stack items they are looking for, or picking up items that they
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might have forgotten. Each drone covers a distinct, non-overlapping physical section

of the factory/retail floor and perceives unique object size/appearance distributions

per-camera. Such deployments require that all drone camera feeds be simultaneously

transmitted to and inferred upon by a single edge GPU for real-time processing (i.e.

quality of service) to each drone.

Figure 1.2: Scenario 1: Multiple discrete autonomous drone camera streams trans-
ferred wirelessly to, and processed by a single edge node

To answer this challenge, an edge node must spatially channel limited computa-

tional resources to selected stimuli from M concurrent drone camera feeds. Such a

perception pipeline must be able to:

1. Optimize the transmission of camera frames from the drone to the edge over

the wireless network to (i) adapt to available bandwidth and latency in real-

world wireless networks, and (ii) preserve resolutions of the regions of the

frame that might contain objects of interest to the perception pipeline.

2. Detect critical stimuli or Regions of Interest (RoI) across all camera streams

using a computationally lightweight mechanism.

3. Extract regions of interest from the individual camera feeds to create a spatial

degree of freedom for the detected RoI.
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4. Filter RoI representations to ensure the most appropriate instance of each

unique RoI (i.e. appropriately extracted or not unduly cropped) is considered/s-

elected for inference.

5. Construct a canvas frame by bin-packing selected RoI on a blank canvas

frame for DNN inference within the DNN processing deadline. Such canvas

construction spatially channels the GPU resources to the selected RoI from

multiple input camera streams.

This thesis accomplishes objectives 2-5 to explore the introduction of a spatial

degree of freedom for canvas-based processing at the edge, and presents the design

trade-offs which determine the operating bounds of such a perception pipeline

in Chapter 2. Chapter 3 extends the pipelines across the drones and the edge

to adapt to the available wireless network bandwidth (i.e. objective 1) and the

available workload as perceived across the multiple camera streams to adaptively

and opportunistically facilitate gains in both throughput and accuracy.

Scenario 2: Multi-Camera Surveillance Systems

Consider a city traffic monitoring application where an edge node deployed on a

road-side unit must process M stationary traffic-light camera feeds with groups of

cameras covering the same physical space from different perspectives or viewing

angles, illustrated in Figure 1.3. One could make two significant observations for real-

time video analysis across cameras in such a deployment. First, these deployments

generally feature distinct pre-determined spatial overlaps between cameras to prevent

surveillance blind spots. Second, each camera observes unique traffic volumes at

different times of the day, with a significant amount of slow-moving/stationary traffic

during peak hours. Both phenomena compel the DNN to repeat temporally redundant

inference over multiple instances of the same object/RoI as perceived by two or

more spatially overlapped cameras in the sensing field, yielding under-optimized and

wasteful DNN computation at the edge.
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Figure 1.3: Scenario 2: Edge-based traffic surveillance with multiple spatially-
overlapped cameras

To improve DNN inference for such deployments, a perception pipeline featuring

canvas-based spatiotemporal multiplexing must introduce a temporal degree of

freedom in addition to the existing spatial degree of freedom. This allows the

perception pipelines to not only fine-tune (i) “which” instance of a unique stimuli as

observed from multiple spatially overlapped cameras must be chosen for inference,

but also (ii) “when” already perceived stimuli/objects/RoI must be re-selected for

DNN inference. Such a pipeline must achieve the following:

1. Maintain a form of “temporal admission control” of RoI across cameras over

time for inclusion on the canvas frame and subsequent DNN inference. RoIs

observed from multiple camera sensors should be pre-processed to not only

share the pixels within a single canvas frame, but also be differentially inter-

leaved in time (and even dropped) to optimally utilize pixels across multiple

consecutive canvas frames. Intuitively, RoIs corresponding to faster moving

objects likely need to be processed more frequently than slower-moving or

quasi-stationary objects.

2. Explicitly account for the reality that multi-camera urban deployments often

exhibit non-trivial spatial overlap between cameras. Such overlap implies that

multiple cameras sometimes monitor the same object from different perspec-

tives and thus possess a level of information redundancy. The pipeline must

autonomously monitor and exploit such object-level redundancy to reduce the
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number of RoI across the M camera streams that must be evaluated.

3. Balance between an accurate perception of the state of the physical world and

delay induced by the “temporal admission control” of RoI in the processing

pipeline by optimizing the perception pipeline for localisation latency in

addition to object detection accuracy.

4. Account for real-world bandwidth and latency constraints in a wireless network

to create intelligent camera stream ingest pipelines for evaluation of per-camera

spatial overlap and spatiotemporal filtering of RoI.

5. Construct a canvas frame by bin-packing RoI that are filtered over time and

across spatially-overlapped cameras for DNN inference.

This thesis focuses on these objectives to offer techniques and insights on the

bounds of operation for a perception pipeline executing spatiotemporal multiplexing

over multiple concurrent spatially-overlapped cameras at a single edge device in

Chapter 4. Additionally, discussions are presented on how the resource-constrained

edge GPU must schedule critical stimuli for downstream DNN inference derived with

spatiotemporal schedulability bounds and Earliest Deadline First based bin-packing

algorithms.

Scenario 3: Low-power Visual Occupancy Detection in Poor Lighting

Consider dimly-lit warehouses or indoor retail spaces dedicated to inventory or stor-

age where traditional RGB cameras may struggle to capture clear images. Multiple

cameras may also be required on each storage aisle to detect worker occupancy,

intruders, and/or safety concerns, resulting in high infrastructure costs, particularly

energy demands. This need is complicated by the reality that recent advancements

in RGB camera quality or resolution pose increased energy consumption during

operation, creating a bottleneck to low-power efficient sensing on edge devices. In

comparison, biologically-inspired neuromorphic event cameras mimic the human
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retina to capture a continuous temporal stream of events that indicate changes in

light intensity in the sensing field, illustrated in Figure 1.4. Event cameras operate

with extremely low power consumption(10− 30mW ), have highly reactive O(µs)

sensing capabilities, support higher dynamic range up to 140dB, and are capable

of capturing events even in poor or dimly lit scenarios. “Images” can be synthe-

sized from this continuous temporal stream of events, resulting in low-dimension

“framed representations” that capture the sensing field with limited to no information

on nuanced features like colour and texture. While some event cameras produce

only a continuous stream of events [4], latest advancements have introduced hybrid

sensors such as Inivation’s DVS 346 [3] which is capable of both low spatial res-

olution gray-scale frames and high temporal resolution event streams, illustrated

in Figure 1.5. Low-dimension event representations captured at O(µs) latency and

feature-rich high-dimension standard/grayscale images captured at ≤ 30 FPS repre-

sent two extremes in sensing fidelity, creating an intriguing opportunity where both

sensor streams can be intelligently fused to jointly contribute to low-power low-light

visual perception. A canvas-based perception pipeline can then concurrently process

multiple such Frame+Event fused representations, providing multiplicative gains in

processing throughput with negligible loss in DNN task accuracy.

To evaluate this opportunity, canvas-based perception pipelines must leverage

neuromorphic event streams to supplement traditional video streams, triggering

either sensor stream on demand per the perception pipeline’s needs and optimization

goals. To achieve this vision, the perception pipeline must be able to:

1. Ingest high-volume event streams and feature-rich standard camera streams

with intelligent mechanisms to trigger feature-rich RGB streams on demand

to thread the balance between energy consumption, accuracy, and achievable

processing throughput.

2. Fuse both event+RGB streams asynchronously into a common representation

of the sensing field.
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Figure 1.4: Scenario 3: Low-power Visual Occupancy Detection in Poor Lighting:
(a) Visualizing the Differences in Sensor Stream Outputs between an RGB Camera
and an Event-based Neuromorphic Camera [104] (b) Visualising the DAVIS camera
output: Events at each pixel fired asynchronously constitutes a sensed 2D image [105]

3. Extract critical stimuli/regions of interest from the fused event+RGB represen-

tation for spatially multiplexed canvas construction.

This thesis addresses the above objectives, first principle studies, design trade-

offs, and pipeline designs to leverage both low-latency event streams and feature-rich

RGB streams in tandem to achieve canvas-based processing in challenging low-light

scenarios with low-power consumption for execution, described in Chapter 5. This

thesis also discusses event cameras as inherent criticality estimators and presents

insights on distilling event streams to guide spatiotemporal multiplexing of RGB

streams at the edge, similar to techniques discussed in Chapter 4.
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Figure 1.5: Scenario 3: Low-power Visual Occupancy Detection in Poor Lighting:
DVS346 [3] observing a retail/warehouse floor with asynchronous (i) grayscale
output of dimensions 346× 260 at 30 FPS, and (ii) event stream of spatial resolution
346× 260 captured at 100 FPS for visualization

1.2.1 Challenges & Learnings

I now present some of the pertinent challenges experienced and learnings gained

during the design of criticality-based canvas-based processing pipelines.

1. Lightweight Criticality Estimation: Understanding what stimuli are consid-

ered critical by the perception pipeline can vary from application to application.

For example, a drone might prioritize fast-moving nearby objects as more crit-

ical whereas a perimeter surveillance application might prioritize occluded or

distant objects as more critical for early detection and tracking of potential

intruders. Stimuli might be deemed critical based on the presence/absence

of motion/velocity, size, and object distance from the camera, among other

considerations, and can be modelled with depth perception models, physical

motion models, and traditional computer vision techniques for edge detection,

among many other methods. This estimation is not trivial across all notions of

criticality. As criticality estimation is a pre-processing technique designed to
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guide the operation of the rest of the perception pipeline, it is imperative that

the adopted criticality estimation mechanism be computationally lightweight

to facilitate non-blocking real-time processing of the camera streams. More

specifically, the latency incurred in such criticality estimation must be low

enough to not negate any benefits that accrue from downstream canvas-based

spatially multiplexed DNN inference. In this thesis, I consider objects in mo-

tion as critical stimuli and leverage lightweight background subtraction based

classical vision techniques to detect such stimuli across multiple concurrent

camera streams.

2. Spatial Degree of Freedom and Loss of Object Context: The spatial degree

of freedom borne out of extracting stimuli/RoI from its original frame (and

therefore its background context), challenges the belief that accurate object

detection requires sufficient background scene information. In this thesis, I

leverage the findings of Barnea et. al. [21] to believe that background context

provides only marginal benefits for object detection/localization tasks [155,

145, 158]. I show that extraction of stimuli/RoI from its context purely for

detection purposes is justified, improving achievable throughput and detection

accuracy without any loss of generalizability. Lastly, I recover all capabilities

relying on background context of the detected object by post-processing the

detections to the original input frame, thus treating object detection as a pre-

processing pipeline that may be used for additional downstream functionality

such as action recognition [90] or semantic scene labeling [93].

3. Temporal Degree of Freedom and Keeping up with the Physical World:

Introducing a temporal admission control allows the pipeline to choose when

to re-evaluate an RoI/stimulus but such mechanisms might risk a “lag” between

perception of an object and physical reality. To counter such a risk, the admis-

sion control mechanism must keep up with physical reality by optimizing for

localization latency in addition to detection accuracy. In this thesis, I leverage
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the novel streaming accuracy metric [86] which compares the predictions of an

object with the most recent groundtruth to evaluate the latency induced during

scheduling and computation/inference of the object. I show that temporal

admission control designed to incorporate such a streaming accuracy metric

ensures that the pipeline keeps abreast of real-world object kinematics.

4. Bandwidth and Latency Requirements: Transmission of multiple camera

streams over a wireless network for simultaneous inference on an edge device

faces two key challenges in real-world wireless deployments. First, bandwidth

and latency issues in the wireless network may force cameras to reduce their

sampling frame-rate of their resolution for transmission, reducing achievable

accuracy via perception of low-quality images. Second, any pipeline that

evaluates spatial overlap between cameras must receive time-synchronised

camera streams or incorporate intelligent ingest mechanisms that synchronizes

camera frames on receipt at the edge to detect common/unique stimuli/RoI

across multiple spatially overlapped cameras. In this thesis, I show that (i)

bandwidth adaptive mechanisms deployed at the camera can alleviate wireless

network challenges by creating multi-resolution images optimised for the

available bandwidth, retaining high pixel fidelity for areas of interest and

downstream DNN task accuracy, and (ii) intelligent ingest mechanisms at the

edge can deal with natural network jitter and still align received camera frames

in a best-effort manner for canvas construction to recover detection of common

objects across spatially overlapped cameras.

5. Detecting Spatial Overlap over Cameras in Motion: In this thesis, I limit the

analysis of spatial overlap across multiple cameras to stationary cameras that

have pre-determined camera poses and fixed spatial overlap in the sensing field.

I conduct the analysis of spatial overlap as a one-time offline bootstrapping

process before the deployment of the real-time perception pipeline at the edge.

Detecting dynamic spatial overlap over cameras in motion such as cameras
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mounted on drones is extremely challenging. The perception pipeline will

have to evaluate (i) the physical location of the camera in a 3D geometric

space, (ii) potential cameras in the physical vicinity of each camera that might

share spatial overlap, (iii) the pose of each camera, and (iv) actual spatial

overlap between cameras, all as a pre-processing step within milliseconds

over transient camera feeds. I leave this as an open research problem on

resource-constrained edge devices.

6. Costs of Pre-processing and Post-processing: Canvas construction over mul-

tiple RGB and event sensors involves a non-trivial amount of pre-processing

in the form of (i) Criticality estimation of detected stimuli (ii) Ingest of high

volumes of event streams and processing thereof into framed representations

for canvas construction and DNN inference (iii) Evaluation of common objects

observed from spatially overlapped cameras. The post-processing of object

detections from the DNN and mapping of the predictions back to the original

camera frames is also a sizeable component of the perception pipeline as it

must include mappings for those RoI that were excluded from the canvas frame

due to spatial overlap between multiple cameras. Both classes of processing

require fine-tuned mechanisms designed for accuracy and speed so as to al-

low non-blocking canvas construction and reduce GPU idle time as much as

possible. I show how such mechanisms designed for nuanced pre-processing

and fast post-processing can contribute to the end-to-end optimisation of the

perception pipeline.

7. System Scalability: The goal of canvas-based perception pipelines is to push

the envelope on the number of cameras that can be processed at a single edge

device, thereby increasing processing throughput, without impacting DNN task

accuracy. Through my work, I shall detail multiple spatial, temporal, and adap-

tive optimisations of the perception pipeline that enable this vision. However,

devising intelligent system strategies for scalability of support for multiple
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cameras using a multi-device edge infrastructure (thereby affecting achievable

system throughput) is an independent challenge. Especially considering a

network of cameras and multiple supporting edge devices, such scalability

challenges may be addressed by classical distributed systems optimisation

techniques such as offloading, workload sharing, and workload stealing with

appropriate measures in place to ensure that spatially overlapped cameras are

serviced by a single edge node. In this thesis, I address system scalability with

on-demand activation of additional edge nodes with intelligent camera cluster

offload. I leave the exploration of more nuanced mechanisms for distributed

workload processing for future work.

1.3 Thesis Statement

Previous sections highlight the opportunities and challenges that arise from criticality-

aware canvas-based processing at the edge. In this dissertation:

I show that it is feasible to significantly enhance the accuracy and throughput of real-

time machine perception tasks involving multiple visual sensing streams processed

concurrently by a computationally-constrained edge device by applying the concept

of criticality to (i) determine the priority of different regions of the sensing field and

constituent objects with both spatial and temporal sensitivity, and then (ii) perform

criticality-driven differentiated processing of such regions/objects spanning multiple

video streams, from both conventional RGB cameras and emerging neuromorphic

vision sensors.

This dissertation establishes the thesis through the following steps:

1. Introducing a Spatial Degree of Freedom: It first addresses the notion of

what subset of stimuli the system must select for fine-grained perception by

introducing a spatial degree of freedom to the stimuli or critical RoI, evaluated
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by the perception pipeline MOSAIC, detailed in Chapter 2. MOSAIC identi-

fies critical stimuli/RoI in the sensing field using motion-based background

subtraction and decomposes each input frame from M concurrent camera

streams into “a bag of tiles” or regions of the frame, capturing the detected

RoI at different camera-specific scales or “levels of zoom”. As multiple tiles

at different scales may capture the same object, MOSAIC filters and selects

only those tiles that completely capture all the RoI at their appropriate scale,

ultimately spatially multiplexing these filtered tiles via Inverse 2D Bin Packing

onto the limited volume of the canvas frame for DNN inference.

2. Adapting to Real-World Dynamics: Next, it addresses (i) real-world wireless

bandwidth and latency constraints, and (ii) the reality that individual cameras

have varying workloads over time, to introduce the Resource Adaptive MO-

SAIC (RA-MOSAIC) pipeline in Chapter 3. RA-MOSAIC extends the notion of

criticality aware spatial multiplexing of limited GPU resources introduced in

Chapter 2 to accommodate real-world sensing dynamics. First, at the camera

sensor, a bandwidth-adaptive method applies differential down-sampling to

create mixed-resolution individual frames that preferentially preserve resolu-

tion for critical ROIs, before being transmitted to the edge node. Second, at

the edge, multi-resolution video streams received from multiple cameras are

decomposed into multi-scale “bags of tiles” and spatially packed using a novel

workload-adaptive bin-packing strategy into a single ‘canvas frame’. Notably,

the canvas frame itself is dynamically sized such that the edge device can op-

portunistically provide higher processing throughput for selected high-priority

tiles during periods of lower aggregate workloads.

3. Exploring a Temporal Degree of Freedom: Next, it addresses the notion of

when the system re-selects already perceived objects to monitor changes in

its physical environment to introduce the JIGSAW pipeline Chapter 4. JIG-

SAW introduces a temporal degree of freedom using a novel age utility-based
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weighted scheduler to preferentially deprioritize recently seen unique objects

for inclusion on a canvas frame constructed over multiple spatially-overlapped

cameras. To balance between accurate perception of the state of the physical

world and delay induced by the age metric in the processing pipeline, JIGSAW

selectively discards multiple instances of RoI over time to optimize the novel

streaming accuracy metric [86] which accounts for localisation latency in

addition to object detection accuracy. Additional discussions are presented

on spatiotemporal schedulability bounds and Earliest Deadline First based

bin-packing algorithms.

4. Leveraging Event Cameras for Low-Power Sensing: Finally, it evaluates

the adoption of newer classes of sensors such as neuromorphic event cameras

to extend the notion of canvas-based processing to high-volume event streams,

enable low-power sensing, and recover sensing capabilities in low or poorly

lit areas. Chapter 5 introduces TANDEM, a canvas-based perception pipeline

at the edge that intelligently orchestrates and fuses {feature-rich, O(ms) la-

tency, O(W ) power consumption} standard camera streams in gray-scale

with {low-dimension, O(µs) latency , O(mW ) power consumption} event

camera streams to compensate each other on demand. Multiple such pairs of

Frame+Event streams thread the gap between energy efficiency and sensing

fidelity to jointly provide feature-rich sensing perception with high spatial gray-

scale image resolution and high temporal event resolution. TANDEM leverages

insights from MOSAIC in Chapter 2 to spatially multiplex stimuli/RoI from

fused Frame+Event representations for DNN inference, providing multiplica-

tive increase in throughput with no cost to DNN task accuracy. Additional

discussions are presented on how event cameras can act as native motion-

based criticality estimators to inform spatiotemporal multiplexing strategies

introduced by JIGSAW in Chapter 4.
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Chapter 2

Introducing a Spatial Degree of

Freedom: MOSAIC

In this chapter I discuss the introduction of a spatial degree of freedom in the

perception pipeline as a cornerstone of this thesis and describe the components of

the Canvas-based Processing paradigm over multiple camera input streams at the

resource constrained edge. I evaluate spatially-multiplexed canvas based processing

against two applications: (i) drone-based person detection and (ii) moving vehicle-

based automatic license plate detection which relies on Optical Character Recognition

to read license plates. I show that extracting objects out of their context for canvas-

based object detection and optical character recognition retains achievable DNN

task accuracy while simultaneously facilitating multiplicative gains in processing

throughput (i.e. camera capacity) at the edge.

2.1 Extracting Critical Stimuli/RoI for Canvas-based

Processing

A growing number of real-time applications of machine perception (e.g., drone-based

worker safety detection and vehicular tracking by street-mounted cameras) involves

the execution of DNN-based inference over multiple, concurrent, high-resolution
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multimedia sensor data streams on a resource-constrained edge device. Real-time

edge-based execution of such perception tasks remains challenging, given the rapid

increase in both DNN model complexity and data size/resolution (e.g., 4K image

frames). For example, an NVIDIA Jetson TX2 [109] device can process a maximum

of only ∼2 frames per second (FPS) when executing the YOLOv5L6 (191 layers,

47M parameters) object detector at FP16 precision on a 1280× 1280 image frame.

Conventional approaches for overcoming this throughput/latency challenge include

either (a) the use of smaller, less accurate DNN models executing on lower resolution

data (e.g., a less complex 300 × 300 SSD model[98] can achieve a processing

throughput of 10-15 FPS on the TX2 with TensorRT optimizations) or (b) the use of

more expensive, higher-resourced edge devices (e.g., the Jetson Xavier[109]). Such

approaches impose an unfavorable cost/complexity vs. accuracy tradeoff.

To reduce this computational overhead, recent works have proposed either (a)

criticality-aware processing approaches, where only selective high-value portions of

individual image frames are processed with higher attention or fidelity [48, 156, 150]

or offloaded for DNN task inference [161] or (b) selective computation approaches,

where certain DNN layers are simplified [26] or skipped [142]. These approaches,

however, do not consider scenarios where multiple sensor streams, with dynamically

varying scene characteristics (e.g., object sizes and speeds) share the same compu-

tational resources on an edge device and must be processed concurrently. Liu et.

al. [96] introduce a multi-camera system design which extracts regions of interest

from camera frames for batched DNN inference, but force all extracted regions to be

downsampled to a {uniform, smaller} spatial dimension irrespective of criticality or

appearance to take advantage of GPU speed-up, facilitating higher throughput at the

cost of DNN task accuracy.

To address this gap, I introduce MOSAIC, a criticality-driven perception pipeline

that optimizes the edge-based execution of DNN-based inferencing tasks over multi-

ple image streams. Through this optimization, MOSAIC provides a multiplicative

increase in the per-stream throughput that an edge device can sustain without
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sacrificing task accuracy. MOSAIC can benefit a wide variety of applications

including, but not limited to, (i) city traffic monitoring, where multiple camera

streams monitoring an intersection are processed on a single edge node, and (ii)

urban event monitoring, where multiple drones’ camera streams are processed by a

single handheld edge control unit, as illustrated in Figure 1.2 in Chapter 1.

MOSAIC’s central concept involves the notion of a Canvas, defined intuitively

as the maximum size of an input frame (say C) that a DNN, executing on a GPU-

equipped edge device, can consume while ensuring that the processing throughput

remains above a minimal FPS threshold. I call these reduced-resolution frames,

which the GPU can keep up with, canvas frames. The challenge of concurrently

processing multiple (say M ) camera streams can then be framed as one of spatially

packing or fitting high-priority regions from M independent image frames into

a C-sized canvas frame. Conceptually, MOSAIC replaces the baseline mode of

independent, sequential DNN execution on each individual frame with a spatially-

multiplexed paradigm, where M frames (one from each camera sensor) are processed

concurrently.

MOSAIC’s design addresses two key challenges with this paradigm: (a) identi-

fying and extracting critical regions from frames with very low overhead, so as to

sustain high throughput, and (b) allocating the shared canvas space equitably across

critical regions with dynamically varying object characteristics. To pack the canvas

frame appropriately, MOSAIC efficiently creates a spatial degree of freedom and

decomposes an input frame into multiple tiles (sub-regions), defined at different

scales or “levels of zoom” that collectively represent objects/RoI of different sizes.

The selected tiles that contain faithful representations of the objects or Regions

of Interest (RoI) are then inverse-2D bin packed [35] onto a canvas frame, thereby

providing an M−fold boost in processing throughput as illustrated in Figure 2.1(b)).

MOSAIC’s packing is carefully designed to ensure that (a) tiles are proportionally

resized based on their criticality while ensuring that the underlying object sizes

conform to application-defined spatial bounds, and (b) the tiling process, invoked
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Figure 2.1: MOSAIC Overall Functionality: (a) Input frames captured by cameras (b)
Packing tiles from multiple images onto a single canvas frame (image not to scale).

intermittently, is very low-overhead.

Via benchmark datasets for two distinct applications - Okutama-Action [20] for

drone-based pedestrian detection and UFPR-ALPR [83] for license plate recognition

(LPR), I demonstrate MOSAIC’s ability to significantly improve the throughput-

vs.-accuracy tradeoff for diverse machine perception tasks across diverse camera

settings.

2.1.1 MOSAIC: Key Contributions

In this chapter, I make the following key contributions:

• Criticality-Preserving Canvas-Based Processing: I develop a 3-stage innovative

pipeline, called Mosaic Across Scales (MoS), to dynamically fit a variable num-

ber of critical regions, from multiple camera input images, into a single canvas

frame: (i) a multi-scale tiling mechanism that uses a Min-Cost Min Set Cover

algorithm [7] to select an appropriate minimal subset of all possible tiles, for any
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given camera input image, that both capture all likely objects of interest while

assuring such objects the largest area possible in the eventual canvas frame, (ii) a

Min-Max optimization technique to differentially resize such individual selected

tiles based on their computed criticality values, and (iii) a Differential Evolution

Algorithm [101] with geometric constraints for 2D Inverse Bin Packing [35] all

selected tiles (across M distinct images) onto a canvas frame. For pedestrian

detection, MoS suffers a negligible (≤ 1%) accuracy loss when compared to the

low-throughput, sequential FCFS processing of images; it also achieves an 8%

increase in accuracy when compared to a strategy of uniformly downsampling and

packing all M = 6 images onto a single canvas frame. For LPR, MOSAIC can

pack tiles containing vehicles differentially from M = 3 images to achieve Optical

Character Recognition (OCR) Character Error Rate (CER) of ≤ 33%, far superior

to a baseline uniform resizing approach, that results in 100% CER (complete loss

of readability) even when frames are processed individually (M = 1) i.e. FCFS

processing of each input frame at the same DNN inference image size (or canvas

frame size) as MOSAIC.

• Real-time MOSAIC Implementation and Performance Gains: I implement MO-

SAIC using the NVIDIA Jetson TX2 as the edge device. The developed MOSAIC

system uses a combination of intermittent full-frame object localization and contin-

uous motion tracking to support low-overhead, approximate extraction of critical

regions. Table 2.1 details the throughput for packing images from M =6 cameras

for pedestrian detection, and M = 3 images for LPR. For both the pedestrian detec-

tion and LPR applications, MOSAIC achieves 5x (batch size=1, 18 FPS per camera)

and 4.75x (batch size=4, 23 FPS per camera) increase in processing throughput,

compared to an FCFS baseline that processes each input frame sequentially.
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MOSAIC on
Jetson TX2

Batch Size = 1 Batch Size = 4
FPS Per
Camera CFPS

FPS Per
Camera CFPS

Pedestrian
Detection
6 Cameras

18 FPS 108 FPS 23 FPS 138 FPS

License Plate
Recognition
3 Cameras

18 FPS 54 FPS 23 FPS 69 FPS

Table 2.1: MOSAIC System Performance on Jetson TX2

2.2 Motivating MOSAIC

MOSAIC’s primary objective is to pack high-priority or critical regions from M

discrete camera streams onto a single canvas-frame to increase frame processing

throughput for each stream, without sacrificing inference task accuracy. To this end,

I first explore the target applications and basic principles that underpin MOSAIC’s

key design decisions.

2.2.1 Target Applications

I envision that a wide variety of applications could benefit from the increased

throughput afforded by canvas-based processing–examples include surveillance,

counting or detection scenarios where both the camera sensor and the edge node

could be stationary or in motion. Consider an edge node deployed on a mobile

robot or handheld control unit that processes autonomous drone camera feeds for

aerial monitoring in factory/retail worker safety monitoring, search-and-rescue,

wildlife poaching or urban crowd control applications. For all of these scenarios,

infrastructure costs can be reduced with shorter response times without compromising

perception fidelity by allocating computing resources non-uniformly and selectively,

to only relevant portions of the captured image frames. I assume that each camera

sensor monitors a distinct, non-overlapping physical region, although MOSAIC can

likely be further optimized to take advantage of any spatial overlaps, discussed in
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Section 2.6.

Figure 2.2: MOSAIC First Principles:
Evaluating Accuracy vs. Grid Size ( Uni-
formly Packing)

Figure 2.3: MOSAIC First Principles:
Object Detection Accuracy vs. {Object
size, Resolution}

2.2.2 First Principles

Increasing Throughput by Packing Multiple Images

I first study the implications of spatially packing multiple input image frames uni-

formly (without any criticality awareness) into an image grid, as a means of increasing

processing throughput. Figure 2.2 plots the object detection accuracy (computed as

mAP or mean average precision), as a function of the number of such image frames

packed, for frames from the Okutama-Action[20] that have a native resolution of

3840× 2160. For all studies in this work, canvas size is set as 640× 640, adopted

from reported benchmarks for YOLOv5 [138], the model of choice in this work.

As seen in Figure 2.2, the higher the number of elements (distinct frames) in the

grid, the smaller the resulting region (pixels) allotted to each input frame, and the

lower the object detection accuracy. Intuitively, due to uniform downsizing, smaller

objects become progressively smaller and less distinguishable, to the point of loss of

detect-ability. There is therefore an opportunity for the system to increase inference

accuracy by providing high-priority regions of the original frame a larger spatial
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share of the canvas.

Factors Impacting Object Detection Confidence

To further delve into why packing an image into a smaller sized grid (i.e., reducing

its overall pixel count) results in lower detection accuracy, I additionally analyze the

variation in object detection accuracy over different object sizes. I experimentally

observe that object detection accuracy values degrade either due to a reduction in an

object’s size (a natural consequence of downsizing an image frame to fit into a smaller

grid) or a loss in object resolution (greater pixelation). As shown in Figure 2.3, as

image sizes increase, object detectability increases leading to an increase in average

object object detection accuracy. However, an excessive increase in the object size to

the point of greater super-resolution images can also result in a saturation or loss of

detectability, due to artifacts such as excessive pixelation, implying that there is a

limit beyond which scaling up an object does not help. Overall, image downsizing

has a variable impact: small and medium sized objects stand to receive the largest

confidence boost from the increase in resolution and size, while the detectability of

large objects remains relatively robust to resolution loss.

2.2.3 MOSAIC’s Design Choices

At the edge, MOSAIC dispenses with the straightforward approach of using uniform

downsizing to pack multiple image frames into a single canvas frame. Instead, MO-

SAIC seeks a differential downsizing strategy, which seeks to reduce the disparity in

pixel areas corresponding to likely objects (varying in size and spanning multiple

input images) embedded in the canvas frame prior to DNN inference. To reduce such

disparity (which improves the accuracy for smaller objects without disproportion-

ately penalized larger objects), MOSAIC first uses variable-sized tiles to optimally

capture pixel regions with likely objects, and then spatially resizes such tiles within

acceptable bounds to fit within the target canvas frame.
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2.3 MOSAIC Design Overview

I now describe the criticality-aware adaptive processing performed by MOSAIC

at the edge, as illustrated in Figure 2.4. MOSAIC alternates between two modes

of operation (1) Mosaic Across Scales (MoS) and (2) Periodic Stabilization (PS),

both of which interact with the Memory Function to support MOSAIC objectives:

(i) extraction of critical regions from an input frame and (ii) bin-packing of these

critical regions into a canvas frame for DNN inference. The Periodic Stabilization

(PS) operation initialises and intermittently refreshes MOSAIC pipeline by running

full-frame batched DNN inference on all camera streams to detect class-specific

critical objects. For each camera, PS localises the newly detected objects, identifies

stationary objects, and updates the object tracker maintained in MOSAIC’s Memory

Function to correct all tracker uncertainties accumulated from the previous round of

MoS operation. PS also prompts MOSAIC to examine the recently observed RoI and

object size distributions per camera to compute a set of camera-specific RoI scales.

These RoI scales are updated in the Memory Function and are used to instruct the

next round of MoS operation on the sizes of expected RoI in each camera stream. For

each camera stream, the MoS operation first estimates the locations of critical RoI

with motion-based background subtraction and updates the camera-specific object

tracker. MoS extends the philosophy of criticality by tiling the input image at each

identified RoI scale, identifying the tiles that contain all the RoIs maintained by the

tracker, and resizing the tiles (and by extension the RoI contained within the tile)

to larger dimensions as much as possible to boost object detection accuracy. This

approach effectively “spatially channels” the limited computation resources available

at the edge to the critical regions. Of course, such resizing is a zero-sum game overall

that should preferentially enlarge smaller, distant RoI; this objective is complicated

by the reality that a single tile in an input frame can contain RoI of different sizes

(e.g., a mix of nearer and distant objects).

At a high-level, the MoS process must balance two conflicting objectives: (a) the
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Figure 2.4: MOSAIC Block Diagram of Sub-Components Operating at the Edge

RoI should ideally consume a large-enough fraction of a tile such that tile resizing

does not eventually result in a dramatically smaller object–this criterion favors

smaller tiles, and (b) the total number of tiles to be fitted into a canvas should ideally

be minimized, so as to allow each tile a larger share of the canvas–this criterion

favors larger tile sizes. MoS creates a canvas frame through a number of innovative

sequential steps, described next, that collectively balance these two objectives by:

• First, extracting a minimal set of tiles (at each of the camera specific RoI scales

maintained in the Memory Function) within each image frame to encompass the

likely ROI maintained by the tracker

• Then, 2-D bin “inverse” packing such multi-scale tiles (i.e., ensuring all relevant

tiles are packed) to construct a canvas frame as a composite image of such tiles;

this canvas frame is then sent to the DNN model for inference.

2.3.1 Periodic Stabilization (PS) Mode

The PS operation initializes and refreshes the entire MOSAIC pipeline with class-

specific objects, their locations, and object size distributions evaluated through

batched full-frame DNN inference on all the incoming camera streams for the entire

PS duration. The objective of the PS operation is to address two significant challenges

faced during MoS operation. First, cameras may observe a variety of object size

distributions based on the physical installation of the camera and the observer-object

distance. For example, a camera mounted on a lamp-post may observe a mix of large

foreground and smaller background objects of interest, whereas a camera mounted on
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a drone may observe uniformly small object distributions. Object size distributions

may also be dynamic over time, for example, a camera mounted on a drone may

observe varying object sizes as it increases/decreases its flying altitude. To best

capture critical RoI of different sizes, MoS tiles the input frame at different scales

and evaluates which subset of tiles contain critical RoI from the input frame. MoS

relies on the object size distribution evaluated during the PS operation to understand

how many scales to use for such a tiling step and what tiling dimensions each

scale must adopt. Second, the MoS pipeline estimates critical RoI by performing

background subtraction, which captures the RoI where objects are likely in motion

and may miss stationary, halted, or occluded objects of interest. MoS similarly

relies on the detected object locations obtained by the PS operation to update a

camera-specific object tracker with the locations of objects that might be missed

by the background subtraction based estimation of critical RoI in the input frame.

The periodicity and duration of PS is a configurable parameter and describes the

expected average rate of change in the observed object size distribution. However,

the PS periodicity parameter and overall MOSAIC achievable throughput is inversely

related: a shorter PS and longer MoS period provides larger throughput gain, as

the PS period effectively processes frames at full resolution (without any spatial

multiplexing gain). After completing the full frame detections for the PS duration

across all camera streams, MOSAIC is triggered to refresh the per-camera RoI scales

and object tracker, described next.

(1a) Calculate Per-Camera RoI Scales: To determine the camera-specific RoI

scales and their dimensions, this function first collects the object size distribution

observed during the PS operation and assesses if any of the detected objects are

overlapping with each other or are in close proximity. Such objects may be detected

as a single RoI during the MoS operation so this function adds the minimum enclosing

rectangle for such overlapping/nearby objects to the observed object distribution.

The resulting object size distribution is then clustered using a KNN clustering model,

with an elbow-detection method to determine the appropriate value of k (the number
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Figure 2.5: MOSAIC Calculating Per-Camera Scales: Object Size Distribution &
Clusters in Okutama-Action Drone Sequence 1.1.8

of distinct clusters). This k value then determines the number of scales that MoS

will employ for that specific camera, with the centroid of each of these k clusters

determining the size of the corresponding tile. MoS takes the larger value between

each centroid’s x and y coordinate for each scale i.e. max(xcentroid, ycentroid) as the

tiling dimension for that scale, rounded to the nearest multiple of 32 for computational

efficiency, to best represent objects whose size falls within this cluster.

Figure 2.5 illustrates this process by plotting the object distribution observed over

all frames by Camera 1 from the Okutama-Action dataset; clustering identifies 3

clusters with centroids (24, 26), (33, 36) and (54, 29) respectively. MoS consequently

determines the 2 scales of tiles to be 32 × 32 and 64 × 64 respectively. MoS also

introduces a catch-all tile, ∼ 1.5x larger than the largest determined tile (in this

example, this results in an additional 96× 96 tile), to accommodate the possibility of

subsequently observing objects/RoI larger than anything seen during the preceding

PS operation.

(1b) Identify Stationary Objects and Update Per-Camera Tracker in Mem-

ory Function: This function initializes and refreshes a per-camera Kalman Filter

Centroid-based tracker which maintains the most recently observed location and

state for all objects in the camera FoV. This state refers to whether the object is

“active” (i.e. in motion) or “stationary” and is computed by observing the distance

travelled by each centroid during the entire PS duration.
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2.3.2 Mosaic Across Scales (MoS) Mode

MoS begins operation on the camera frames ingested immediately after the PS

operation completes. As seen in Figure 2.4, Steps 1 through to 4 in the MoS

operation are carried out on each camera stream in parallel until the relevant tiles

containing critical RoI from input frames across all camera streams are determined.

These relevant tiles are then bin-packed into a canvas frame for DNN inference and

post-processing.

(1) Determining Critical Regions of the Input Image: This MoS sub-component

assembles a list of mask bounding boxes where critical RoI are estimated to be

present in the input frame. To achieve this, the ingested input frame is compared

to the previous frame for background subtraction which detects critical RoI that

might contain objects in motion. MoS updates the mask bounding boxes and the

camera object tracker with these detected RoI locations for matching with known

RoI tracks and assigns the status of the updated tracks as “active”. This method is

robust to new objects that enter or existing objects that move in the camera Field of

View (FoV). Among the tracks not updated by the RoI from the current input frame,

MoS assesses the status of each track. For tracks marked “stationary” and missed

by the background subtraction-based motion estimation, MoS retrieves their last

known locations from the tracker memory to add to the mask bounding boxes. For

the remaining unmatched tracks, MoS assumes that the object that was previously

in motion has either come to rest, crossed paths and jumped tracks with another

object, or occluded by another object and therefore merged with the other RoI. In all

these cases, MoS assigns the status of the track as “last-seen” and includes all the

unmatched track locations to the list of mask bounding boxes for the current input

frame. Such “last-seen” objects are maintained in memory until they are reactivated

or until the end of the MoS operation period. This is done to avoid missing objects

that might have come to a halt at its last known location for the remaining duration

of MoS operation. Lastly, in the event of detected camera ego-motion (e.g., for a
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Figure 2.6: MOSAIC Determining High-Priority Tiles: Tiles at different scales,
capturing objects with different “goodness”

camera mounted on a moving drone), this sub-component also performs camera

motion compensation which detects frame keypoints, matches the descriptors of the

current and previous input frame, and calculates the new location of all known tracks

in the current input frame by modelling the camera motion as a partial 2D affine

transformation.

(2) Tiling an Input Image: MoS then generates a bag of tiles, at each scale di-

mension maintained by MOSAIC Memory Function with a configurable overlap

parameter that determines the tile strides.

(3) Determining High-Priority Tiles: The generated bag of tiles at k different

scales may have no objects/RoIs, partial views of objects, or completely contained

objects. MoS next determines the subset of such tiles that adequately capture the

critical regions, while balancing the two conflicting objectives mentioned earlier.

MoS constructs a spatial quadtree from all the generated tiles in the bag of tiles and

then uses the assembled mask bounding boxes from Step 1 to perform an intersecting

bounding box search. All tiles that intersect with each of the masks are then evaluated

for “goodness of fit of the mask” in the individual tile. Figure 2.6 illustrates such a

selection, where MoS chooses tile (A) over tile (B), as tile B only partially captures

the human object.

More formally, MoS assigns a mask to a tile if it satisfies two distinct “goodness”

criteria. First, the tile must capture a significant portion (≥ 95%) of the mask,
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both in width and height; this ensures that the object is sufficiently visible (and not

unduly cropped) to be successfully detected by the downstream object detector DNN.

Second, the mask:tile height ratio must lie in the range (0.5, 0.9)–i.e., the object

must not encompass either too small or too large a fraction of the tile’s area. The

lower bound increases the probability that the object will retain larger dimensions

after being resized and 2D bin-packed onto the canvas; masks smaller than half

the tile’s dimensions are effectively assigned to tiles of smaller scales. Conversely,

the upper bound (0.9) ensures that relatively large-sized objects are preferentially

assigned to tiles of larger scale (which can likely accommodate additional objects),

while also minimizing the risk of undue cropping due to an inaccurate mask. Via this

process, MoS curates a filtered bag of tiles, each containing faithful representations

of estimated objects at the appropriate scale, thereby assuring that such objects will

remain reasonably sized (with higher likelihood of successful DNN detection) when

the canvas frame is composed.

(4) Selecting The Best Subset of Tiles: A number of different combinations of tiles

might “cover” (in a set-theoretic sense) all masks/objects that need to be included

onto the canvas for inference. However, to promote efficient (less-redundant) packing

onto the canvas frame, it is imperative to select only those tiles that are not only likely

to preserve object dimensions in the canvas but also that minimize ‘wasted pixels’

(intuitively, the total number of pixels representing the background or other irrelevant

objects, as well as objects captured in multiple tiles). This dual optimization process

can be conceptualized as bin-in-a-bin packing problem, where MoS must not only

ensure that all objects are ‘covered’ by the chosen tiles, but also that the chosen tiles

generate the lowest count of ‘wasted pixels’ possible. I perform such selection by

using a greedy approximation (due to the problem being intrinsically NP-Hard) of

the Min-Cost Min-Set Cover (MCMSC) Algorithm summarized in Algorithm 2.

Intuitively, the MCMSC algorithm selects those tiles that together minimize the

cost of wasted background/non-object pixels appearing in the tile while ensuring that

each object of interest is part of at least one tile that satisfies the goodness criteria
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Algorithm 1 Greedy Min Cost Min Set Cover Algorithm
Subset of chosen tiles S Universe = m1,m2, ...mm Set of M masks Tiles = t1, t2, ...tn
Set of N tiles that may contain one or more assigned masks Costs = c1, c2, ...cn Set of
costs for N tiles S ← ∅
while S! = Universe do

if | ti − S |≥ 0 & (ci/ | ti − S |) > 0 then Subset← min(ci/ | ti − S |) minimize
the number of tiles containing the same mask and minimize the additional cost to the canvas
associated with adding an additional tile
S ← S ∪ Subset

mentioned earlier. To achieve this goal, MoS assembles two distinct views of the

mask-to-tile relationships in the filtered bag of tiles. In the first view, for each mask,

MoS assembles a set of acceptable tiles that best capture that mask. To calculate

the the cost of including the tile into the canvas, the second view concurrently

consolidates all the masks assigned to an individual tile. A Min Set Cover over the

first view ensures that all masks (possible object-related pixels) are included in the

canvas, while a Min Cost over the second view selects the minimal subset of tiles

that the canvas must accommodate.

This unique formulation has several advantages. First, objects that can feasibly

be mapped to multiple tiles typically appear in only one (or at most two) tiles in

the eventual canvas, reducing the likelihood of false positives in the post-DNN non-

maximal suppression (NMS) based inference step. Second, multiple objects that

occur in close spatial proximity are usually represented by a single larger-scale tile

(with reduced wasted pixels), instead of being represented by multiple individual

smaller-scale tiles. In particular, the min set cover step (line 7) in the optimization

chooses the tile containing the most number of masks not already present in the

canvas, while the min cost step (also in line 7) takes into account the cardinality or

the unique number of masks added to the canvas by a single tile and the associated

cost of including the tile in the canvas. At the end of this step, MoS computes the

final, optimal subset of tiles for each individual camera sensor frame. For each tile in

the chosen subset, MoS also computes a spatial sizing bound and an elasticity factor

(based on the combination of object/tile’s scale and application requirements), as the
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range and amount of resize that can be tolerated during canvas frame construction. I

empirically observe that this size bound is scale-dependent: tiles of different scales

can tolerate different ranges of resizing, outside of which objects either become

intolerably small or suffer from excessive pixellation on enlargement, severely

impacting DNN inference accuracy. Small objects are, in fact, especially sensitive to

drastic differences in spatial resizing.

(5) Constructing a Canvas Frame: After the previous step, MoS has effectively

curated a set of tiles, their spatial sizing bounds, and elasticity factor, say ST i, with

heterogeneous dimensions for each input image frame (Fi). To now pack sensor

data from multiple image sensors onto a canvas frame of a given dimension, MoS

needs to determine the modified dimensions of all tiles across all of these M subsets–

i.e., ∀ tile t : such that t ∈
⋃M

k=1 ST k such that they can be packed onto a single

canvas frame with defined dimensions. This can be generalised as an Inverse Bin

Packing Problem [35] where given a defined set of items and bins, the algorithm

must converge on the minimum perturbation to the item-size vector such that all the

items can be packed into the prescribed number of bins.

MoS approximates such an optimization by using a computationally-fast Dif-

ferential Evolution Algorithm [101] (a form of meta-heuristic optimization) with

a Min-Max Optimization objective function that minimises the largest dimensions

obtainable within its defined bounds such that the combined area of all included tiles

is less than the canvas frame area. The optimizer also takes in the elasticity factor

as the tile weight, and spatial sizing bounds limiting the size of each individual tile.

The Differential Evolution Algorithm also takes an Equality Penalty function which

monitors if the number of packed tiles is lower than the number selected for packing

by MoS. If so, the next generation of tiles is required to monotonically decrease or

“squeeze” the size of each tile (based on the elasticity factor) to pack all the tiles onto

the canvas frame, while ensuring that the amount of “squeeze” does not violate the

tile’s defined lower spatial bounds. In essence, the solver maximises each tile’s size

within its acceptable bound, while attempting to 2D bin pack all the tiles onto the
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canvas frame. In the event that all tiles are “squeezed” to their individual minimum

permissible size, MoS relaxes the lower bound and notifies the user of a possible loss

of accuracy with the advice to assign fewer camera streams to the edge node (a form

of “admission control”). Upon solver convergence, MoS obtains not only the resized

dimensions for each tile, but also the canvas position where it must be packed for

optimal fit.

(6) Postprocessing: As mentioned earlier, the DNN then executes the inference

task on the resulting canvas frame, consisting of the re-packed, re-positioned tiles.

Finally, MoS also maintains the tile→bin spatial mapping for each input image

included in the canvas, and uses this to perform post-inference coordinate translation

of all detected objects (and their locations) back to the original input frame. After

translation, MoS also executes a general Non-Maximal Suppression (NMS) step on

the translated boxes for each original input frame to remove any double-counting for

objects that might have appeared more than once (inside tiles of different scales) on

the canvas. Any other downstream vision processing pipeline is applied thereafter on

the post-processed objects.

2.4 System Design

The PS and MoS pipelines are deployed at the edge, as visualised in Figure 2.4.

During the PS operation, input frames from M cameras are batched and directly

sent for DNN inference. By default, MOSAIC executes the PS operation over 10

frames, with a a periodicity of 30 seconds. This setting (see Section 2.5.2 for a deeper

analysis) adequately balances the need for sufficient frames to detect and classify

stationary vs. moving objects with the desire to minimally impact MOSAIC’s overall

achievable throughput. During the MoS operation, input frames from M cameras

are received and concurrently evaluated by the MoS pipeline to construct a canvas

frame, as visualised in Figure 2.7. MoS receives the ith input frames, f i
m∀m ∈ M

cameras, and constructs a canvas frame Ci from the chosen subset of tiles across
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all M frames. The DNN inference task is configured for a batch size of b which

allows the pipelined canvas construction of the next b frames (fi, . . . , fi+b) onto

canvas frames (CI , . . . , Ci+b) during DNN inference on the previous batch. The

achievable throughput on MOSAIC is thus a function of both the PS and MoS modes

of operation. I empirically establish that on a Jetson TX2, a TensorRT-optimised

YOLOv5s model achieves reasonable accuracy and inference latency of ∼ 170msec

on 640× 640-sized canvas frames with batch size=4 (thereby achieving ≈ 6FPS per

camera or cumulatively 24 FPS). MOSAIC adopts this configuration and determines

the maximum value of M or the maximum number of cameras that can be supported

at a single edge device for a chosen application and set of camera streams for the

MoS operation. This value of M is constrained by two key factors: (i) the canvas

construction time for b canvas frames from M camera input frames must not exceed

the DNN inference time (∼≤ 170ms) to allow seamless pipelined execution, and (ii)

all chosen tiles from M cameras must not violate their application-dependent and

scale-dependent spatial sizing bounds when packed onto the canvas frame. MOSAIC

adheres to both constraints to choose the most appropriate value to M for the

application to ensure that MOSAIC always achieves 24 FPS for all M camera input

streams during the MoS phase. However, MOSAIC’s overall achievable throughput is

reduced due to the periodic PS operation that processes all incoming camera frames

sequentially and without modification. With a batch size b = 4, the PS operation

adds a delay of 10×M/24 seconds for processing 10 stabilization frames across M

camera input frames under these default settings. For example, for M = 6 camera

streams, batch size b = 4, the PS operation adds an overall processing latency of

∼2.5 seconds, resulting in an overall achievable MOSAIC throughput of 23 FPS

across both PS and MoS phases.

Evaluation Platform: I evaluate MOSAIC on the NVIDIA Jetson TX2 [108], a

representative edge device equipped with a 256 CUDA-core PASCAL GPU, and an

ARMv8 multi-processor architecture supporting both a dual-core NVIDIA Denver 2

CPU and a quad-core ARM Cortex A57 MPCore CPU.
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Figure 2.7: Conceptual design of MOSAIC’s MoS pipeline at the Jetson TX2 Edge
Node

Benchmark Datasets: I evaluate MOSAIC using two benchmark datasets for two

distinct applications - Okutama-Action [20] for drone-based pedestrian detection

and UFPR-ALPR [83] for license plate recognition. The Okutama-Action dataset

comprises 43 drone sequences at 4K (3840 × 2160) resolution encoded at 30FPS,

yielding 54664 and 14210 images for training and testing respectively. The UFPR-

ALPR dataset similarly comprises 90 video sequences at 1920 × 1080 resolution

encoded at 30FPS, yielding 3600 and 1800 frames for training and testing respec-

tively. I consider each video sequence as a distinct camera and use combinations

of M cameras without duplication of camera input streams for fair comparisons.

MOSAIC constructs canvas frames with “person” objects for the Okutama-Action

dataset and vehicle objects of classes {car, motorcycle, bus} for the UFPR-ALPR

dataset; for UFPR-ALPR, the downstream OCR pipeline then performs LPR on the

detected license plate bounding boxes.

Evaluation Model: For object detection on the canvas frames, I employ a TensorRT-

optimised YOLOv5s model, an edge-compatible pretrained model with 7.2M pa-

rameters and 16.5 GFLOPs. It is pre-trained using the MS COCO dataset [92] and

fine-tuned on the selected datasets for greater sensitivity to occluded, unseen, and

small-sized low-resolution objects.
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Evaluation Metrics: To evaluate possible gains in perception accuracy in the

pedestrian detection application, I report the mean average precision of the model at

an IoU threshold of 0.5 –i.e. mAP@0.5, and report the inference latency i.e. FPSC

and Cumulative-FPS CFPS = M × FPSC × b, where FPSC is the throughput

achieved for canvas frames of size C, with batch size b, and M cameras per canvas

frame. For the license plate detection application, I evaluate the downstream Optical

Character Recognition (OCR) quality through Character Error Rate (CER) metric.

CER employs the Levenshtein distance metric to calculate the minimum number

of single-character changes (i.e. insertions, deletions, or substitutions) required

to change the predicted string of characters to the groundtruth, averaged by the

number of characters in the groundtruth. The lower the CER rate, the better the OCR

performance, with 0 indicating perfect recognition.

Evaluation Baselines: I compare MOSAIC’s performance against three baselines:

1. FCFS: Received frames resized to the canvas frame dimensions and sent for

batch DNN inference without any spatial modification–in effect, this is identical to

MOSAIC’s behavior during the PS phase.

2. Uniform-M : Denoted as Uni-M where M signifies the number of images packed

onto a single canvas frame. Uniform-M divides a canvas into equal number of

grid rows and columns and assigns each input image to a single cell in the grid.

Uniform-M also determines which methodology among grid, horizontal, or vertical

stacking of M input images creates the best grid structure such that each cell affords

its corresponding input frame the lowest possible downsize ratio when compared to

its original dimensions.

3. Batched Inference of Extracted RoI: I compare MOSAIC’s performance against

prior literature on edge-based multi-camera systems which include a notion of

criticality in their evaluation [94, 61, 95]. These works extract regions of interest

from the camera frame (similar to MOSAIC) but resize all regions to a uniform

spatial dimension to leverage GPU acceleration yielded by batched inference.
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2.5 MOSAIC System Evaluation

I first evaluate the validity of the fundamental hypotheses, that criticality-aware

processing of multiple input frames with the MoS methodology helps improve the

throughput vs. accuracy tradeoff for diverse object distributions, camera settings,

and applications. Next, I compare canvas-based processing employed by MoS with

batched inferencing methods employed by recent works. For deeper insights into the

benefits of MoS, I also conduct ablation studies on how MOSAIC performs varies

with different parameter settings.

2.5.1 MOSAIC System Performance

In general, I expect throughput and accuracy to be inversely related: increasing

M (the number of camera frames being packed into a single canvas frame) should

provide an M -fold increase in throughput but result in lower mean object detection

accuracy. Figures 2.8 & 2.9 plot this accuracy vs. throughput, for different MO-

SAIC configurations and baseline approaches, for M varying between {1,. . .,6} for

Okutama-Action and {1,. . .,3} for UPFR-ALPR, respectively on a canvas frame

size C of 640 × 640; the throughput is plotted per camera by dividing the overall

processing throughput (i.e. CFPS) by M . As detailed in Section 2.4, the maximum

number of cameras M that can be packed onto a canvas frame depends on the canvas

construction time, object sizes/scales, and spatial sizing bounds of the resulting sub-

set of tiles. As the objective in UFPR is to eventually perform OCR on the detected

license plate objects, it imposes stricter spatial sizing bounds for each tile which

limits the number of cameras for this dataset to M = 3. This is unlike the pedestrian

detection application of Okutama-Action which permits more relaxed spatial sizing

bounds (even though it contains smaller (∼ 64× 64) person class objects), allowing

M = 6 cameras to be successfully packed onto a canvas frame. For batch size b = 1,

MOSAIC takes on average ∼ 9ms and ∼ 13ms (∼ 36ms and ∼ 52ms for batch

size b = 4) to build a canvas frame from M = 3 and M = 6 cameras respectively,
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well within the inference deadline of 170ms. Both constraints on M thus satisfied, I

compare Uniform-M for each application accordingly.

Pedestrian Detection Application: In Figure 2.8, for batch size b = 1, FCFS (where

each image is processed independently and sequentially–i.e., M = 1) offers the

highest accuracy ∼0.79 but suffers from very low throughput ≤3FPS per camera

in a 6-camera setting. On the other end of the spectrum, Uniform-6 (where M = 6

images are uniformly compacted into the canvas frame) offers the highest throughput

(∼ 19 FPS) per camera, but suffers a significant 8% loss in accuracy to ∼ 0.71.

In contrast, MOSAIC offers a significantly more favorable tradeoff as M is varied.

With M = 6: (a) compared to FCFS, MOSAIC-6 experiences only a negligible

∼< 1% accuracy loss but achieves over 500% (5x) higher throughput; (b) compared

to Uniform-6, MOSAIC-6 achieves significantly higher accuracy +7.8% with minor

0.04% reduction in throughput (Uniform-6 = 19 FPS; MOSAIC-6 = 18 FPS). This

slight reduction is due to the PS operation running for 10 frames every 30 seconds.

Similar throughput-vs.-accuracy tradeoffs can be observed with batch size b = 4

with the exception that the Uniform-6 and MOSAIC-6 methods both achieve 24

FPS and 23 FPS per camera respectively across 6 cameras (144 and 138 Cumulative

FPS), with MOSAIC’s method achieving significantly higher accuracy by +8% over

Uniform-6.

License Plate Recognition Application: In Figure 2.9, for batch size b = 1,

Uniform-1 suffers CER=100% (complete OCR failure) which indicates that uni-

formly downsizing a single image to fit onto a 640 × 640 canvas causes severe,

catastrophic pixelation of the license plate. On the other hand, MOS-1 retains

the pixel resolution of the high-priority vehicle object to completely recover OCR

capabilities downstream within a reasonable OCR CER value of 15%. MOSAIC

further pushes the envelope on OCR quality downstream by also packing tiles likely

containing vehicle RoIs from M = 2 and M = 3 images onto a canvas frame to

similarly recover OCR ability downstream within reasonable OCR CER bounds

(29% and 33% respectively), while also achieving a much higher system throughput
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Figure 2.8: MOSAIC’s Performance for Pedestrian Detection on the Okutama-Action
dataset

of 23 FPS per camera for the 3-camera system (Cumulative FPS=69).

Comparative Study with Batched Processing of Individual Objects: I compare

MOSAIC’s performance against recent priority-aware processing works [94, 61, 95]

which extract high-priority regions of interest from a camera frame and perform

batched inference on the selected regions. Compared with sequential frame inference,

batched inference processes multiple inputs at one time to improve parallelism and

better utilize the computing capacity of the GPU. However, unlike MOSAIC’s canvas-

based execution where tiles of different sizes can be packed into one canvas frame,

batched inference requires all input tile images to be the same size. I therefore

compare the mean accuracy from the pedestrian detection application to illustrate

the benefits of MOSAIC’s differential tile resizing strategy in the MoS pipeline at

the edge. I first obtain the average execution times of a 640× 640 canvas frame and

batched tile images at different batch size/image size combinations through system

profiling of the Jetson TX2. The best tile image size for batching-based execution

is then determined online as the largest tile image size to run all input tiles and

finish no slower than executing one canvas frame. The curated subset of tiles from

MoS are resized with padding to this input image size for batched inference. This
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Figure 2.9: MOSAIC’s Performance Automatic License Plate Recognition on the
UFPR-ALPR dataset

way, batched inference achieves the same throughput as MOSAIC’s canvas-based

inference for batch size b = 1.

Figure 2.10: MOSAIC vs. Tile Batching: mAP vs Number of Cameras Processed for
Tile Processing Techniques at the Edge

Figure 2.10 visualizes the mAP score of processing B={1, 2, 4, 6} input frames

at the same time, using the Okutama-Action dataset. I note that both canvas-based

execution and batching-based execution achieve good accuracy when the number of

input frames is 1. As M increases, the accuracy achieved by batched inference drops,

with MOSAIC’s canvas-based method significantly outperforming (a 3-fold higher
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accuracy when processing 4 or 6 frames concurrently) the batching-based method as

B increases. The accuracy for batching-based execution drops much faster due to the

requirement that all images must be the same size, which leads to a dramatic loss of

accuracy especially for the small objects. On the other hand, the non-uniform sizing

supported by the canvas-based method is able better to preserve the accuracy of

smaller objects. Compared with batching-based execution, canvas-based execution

achieves a dramatic 3-fold accuracy improvement when evaluating M = 4 and

M = 6 concurrent camera input frames.

2.5.2 Ablation Studies

Figure 2.11: Chosen Canvas Size vs
Cumulative FPS × mAP@0.5

Figure 2.12: MOSAIC’s Performance
Gains vs. PS Periodicity

MOSAIC’s Performance Gains on Different Canvas Sizes

Given that the maximum number of cameras, M , that can be packed onto a canvas

frame is limited by the object distribution observed by the cameras and their spatial

sizing bounds, it stands to reason that increasing the canvas frame size C could

allow for a higher value of M (thereby increasing throughput) and arguably, higher

accuracy if all tiles assume the maximum dimension within their sizing bound.

However, larger canvas frame sizes C ≥ 640 × 640 impose greater computation

loads and incur higher inference latencies per canvas frame. This increase in canvas

frame inference latency reflects in a lower reduced cumulative inference throughput,
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i.e. CFPS = M × FPSC × b, where FPSC is the throughput achieved for canvas

frames of size C with batch size b. Figure 2.11 illustrates such a throughput-accuracy

tradeoff by plotting a joint ”throughput-accuracy” metric (defined as Cumulative FPS

× mAP@0.5) vs. canvas frame size for the Okutama-Action dataset. I conclude that

MOSAIC consistently outperforms the uniform resizing and packing or Uniform-M

baseline, regardless of the canvas frame size C. I also note that the preferred canvas

frame size of 640 × 640 provides the highest throughput-accuracy gains (15.4%),

compared to all other canvas frame sizes.

MOSAIC’s Performance Gains vs. PS Periodicity

I have established that the PS operation periodicity impacts the achievable MOSAIC

throughput due to the processing latency incurred by the FCFS-based DNN inference

on all camera input frames from M cameras. A shorter PS periodicity would

yield higher number of FCFS processed frames and therefore more accurate class-

specific object detections, while negatively impacting MOSAIC’s overall achievable

throughput. A longer PS periodicity might, conversely, incur higher tracker failure for

“last-seen” and lost or unmatched tracks, in turn creating additional tiles (which may

or may not contain objects) that MoS will need to spatially pack, thereby reducing

task accuracy. Figure 2.12 plots the resulting relationship between PS periodicity,

MOSAIC throughput, and mAP@0.5 for the Okutama-Action dataset. I show that a

PS period=30 secs appropriately balances the dual requirements of high throughput

(23 FPS) and high object detection accuracy (78.5%), while a PS period=60 secs

increases throughput by only 1 FPS while suffering a steep (∼ 10%) mAP drop.

2.6 Discussion

Canvas Construction under Network Bandwidth Constraints: In a real-world

wireless network with bandwidth constraints, a compute-capable camera platform

can choose to downsample the camera streams to a lower resolution for transmission.

46



This enables the payload of the camera stream to be right-sized for the available

bandwidth, thereby allowing the camera stream to be delivered to the edge within the

expected latency. Such camera operation would be beneficial to the overall camera-

to-edge system efficiency, especially if the edge will use MOSAIC’s pipelines to

downsize frames during processing. However, uniformly downsampling the camera

streams to lower resolutions before transmission will have a disproportionate impact

on the achievable DNN task accuracy due to image quality degradation. Figure 2.13,

shows two scenarios of bandwidth constrained frame transmission from the camera

to the edge modelled by downsampling video streams for person detection (on the

Okutama action dataset): (i) downsampling images to fit in canvas frame dimensions

640 × 480 and (ii) downsampling frames to 320 × 227 i.e. to half the canvas size

640× 640. The second case suffers DNN task accuracy degradation of 14% when

evaluating frames on a First Come First Serve basis. With MOSAIC’s pipelines,

packing M = 6 such downsampled camera frames yields a DNN task accuracy

degradation of 15.6%. This indicates that more nuanced down-sampling techniques

which focuses available bandwidth/pixels onto regions of interest will preserve

object resolutions for efficient canvas-based processing. Prior work has shown how

criticality-aware techniques for differential downsampling of input frames (e.g.,

MRIM [146]), can outperform uniform downsampling by helping preserve object

details for edge-based vision inferencing tasks. Such cameras can also implement

lightweight multi-object detectors and trackers, such as FastMoT [153], to identify

class-specific objects of interest even in challenging environmental conditions such

as low-lighting and fog. MOSAIC’s MoS operation can not only co-exist with such

criticality-aware transmission, but in fact can benefit from such on-camera processing

by effectively eliminating the intermittent PS phase. I address such design changes

in Chapter 3.

Canvas Construction under Network Latency Constraints: Real-world wireless

deployments also result in variable network transfer latency, arising out of various

factors such as interference from other wireless devices, physical distances, and

47



Figure 2.13: Impact of Bandwidth Constraints on MOSAIC’s Performance for Pedes-
trian Detection on the Okutama-Action dataset (batch size 1)

outdated hardware. To understand how possible differences in network latency

impact the dynamics and efficacy of canvas construction, consider a deployment

where three cameras transmitting frames to an edge node suffer variable latency

resulting in frames being delivered at the edge every (84 ms, 71 ms and 40 ms),

illustrated in Figure 2.14. For simplicity, I limit the analysis of this study to a batch

size b = 1, where a single canvas frame is constructed from received frames. As

soon as camera frames are received at the edge, MOSAIC proceeds to construct

canvas frames and schedule its DNN inference to prevent GPU idle time as shown

in Figure 2.7 and discussed in Section 2.5.1. By the time the second canvas frame

is ready to be built, camera frames from all three cameras have been received at

the edge. However, this is not ideal as this canvas processed the first frames from

Camera 1 and 2 and the second frame from Camera 3 on the same canvas frame.

While this does not impact achievable object detection accuracy, I note that not only

is there is a delay in the perception of the physical world, but such processing also

cannot guarantee a uniform perception across cameras. This could be challenging in

scenarios where the system needs to synchronise frames across cameras for canvas

construction, such as in spatially overlapped camera deployments. Another outcome

observed here is that consecutive frames from the same camera (Camera 3) are
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mapped to the same canvas frame C5 (indicated with red arrows in Figure 2.14).

Such a pipeline design introduces significant lag between the physical world and

the perception pipeline and is wasteful of DNN computation when multiple frames

from the same camera are processed onto the same canvas frame. This indicates that

(i) there may be value in introducing a mechanism to introduce a temporal degree

of freedom in the system which allows it to pick just the latest instance of the same

object if more than one instance available at the edge has not yet been inferred upon

(ii) intelligent ingest pipelines are required at the edge to ensure that the perception

pipeline is always keeping up with the physical world. I discuss the adoption of such

mechanisms in Chapter 4.

Figure 2.14: Impact of Wireless Latency on Canvas Construction - Scenario 1:
Consecutive Frames from a Camera are Mapped to the Same Canvas

Need for Camera-Specific Tiling Scales: I have earlier described (Section 2.3)

MOSAIC’s mechanism of determining custom scales for objects observed by each

camera. Such custom scales clearly introduce additional complexity, and one may

indeed question if an alternative approach, of using pre-defined scales across all

cameras, may not be preferable. To address this question, I conducted additional

studies where MOSAIC applied one of 3 fixed scales across all cameras in the

Okutama-Action dataset. The resulting accuracy (for M = 6), however, exhibited a

sharp impairment, dropping from 78% (using camera-specific scales) to 32%. Manual

inspection of cameras in both Okutama-Action and UFPR-ALPR indeed reveal

significant variations in object sizes, based on camera positioning and perspective,
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and explain the importance of choosing the correct custom scales for MoS tiling.

Supporting Heterogeneity in DNN Model and Execution Platforms: The MO-

SAIC pipelines utilize an unmodified YOLOv5 model for the task of object detection,

an underlying primitive in many vision-based applications. This conscious design

decision enables MOSAIC to adopt different and/or better DNN models such as

YOLOv8 [139] in future iterations. A similar design decision was employed for the

choice of the Jetson TX2 [108] as the evaluation platform, more capable GPUs can

offer lower DNN inference latency and thereby higher system processing throughput.

I assert however, that the multiplicative increase in throughput of MOSAIC will

remain valid so long as the DNN inference time of a single canvas frame containing

tiles from M input frames is less than the inference time of M camera full input

frames in parallel.

Adapting to Multi-camera Systems with Established Spatial Arrangements:

The MOSAIC pipelines make no apriori assumptions on the physical arrangement

of the cameras and expect each camera stream to be processed independently for

canvas construction. However, most modern multi-camera systems have established

spatial arrangements with pre-determined spatial overlap between cameras to prevent

blind spots in the sensing field. This presents an opportunity to further optimize

the system to reduce the computational load at the edge by (i) recognizing object

representations that are common to multiple camera streams, and (ii) filtering or

picking a representation for each unique object for inclusion onto the canvas frame.

Such nuanced processing would intuitively boost DNN task accuracy due to (i)

inclusion of larger or more well-defined unique object representations on the canvas

frame, and (ii) reduced volume of tiles included on the canvas frame, allowing each

tile to maximize its spatial sizing bound. I discuss system design adaptations for

such multi-camera deployments in Chapter 4.

50



Chapter 3

Adapting to Real-World Dynamics:

RA-MOSAIC

In Chapter 2 I introduced MOSAIC presented Canvas-based Processing as a mecha-

nism to spatially multiplex RoI from multiple cameras onto a single frame of smaller

volume for fast DNN inference using a single GPU task, illustrated in Figure 3.1 (c).

MOSAIC exploits a spatial degree of freedom by (i) decomposing RoI or objects

from multiple camera frames into independent tiles or patches, and (ii) resizing (or

squeezing) the tiles, by 2D Inverse Bin Packing, onto a fixed-size canvas frame.

This composite constructed “canvas frame” is sized to maintain a sufficiently high

throughput on the resource constrained edge device. While MOSAIC was shown to

provide impressive gains (≥ 4.75×) in throughput, the work has a few key limitations

in terms of adaptability to varying network and workload conditions. First, MOSAIC

did not directly address network-level issues, such as variable transmission latency

(jitter) or bandwidth limitations between a pervasive sensing device and the edge

node. Second, MOSAIC assumes steady workloads (i.e. object/RoI volume) received

from each camera at the edge, and does not address real-world temporal variability

in object volume distributions, which could have a significant impact on the canvas

construction process.

In this chapter, I further enhance MOSAIC’s Canvas-based processing paradigm
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Figure 3.1: RA-MOSAIC’s Overall Functionality (Best Viewed in Colour): (a) Input
frames captured by the camera with High-Priority Object Proposals (red boxes) (b)
Criticality-aware Mixed-Resolution Camera Transfer (BACT) (preserving resolution
in yellow boxes) (c) Packing RoI tiles from multiple images onto a single canvas
frame that adapts to the ROI workload (image not to scale).

to introduce Resource Adaptive MOSAIC (RA-MOSAIC), which enables network

bandwidth-aware and workload-specific adaptations to further improve the accuracy-

vs-throughput tradeoff. First, RA-MOSAIC symbiotically extends the notion of

criticality to optimize the camera→edge wireless data transmission overhead while

remaining compatible with the downstream Canvas-based processing paradigm. The

key idea is for each camera sensor to first perform fast but approximate determination

of ROI in a captured image (see Figure 3.1(a)) and then differentially preserve pixel

count (resolution) while transmitting areas of higher criticality and reducing the

resolution for less critical regions (illustrated in Figure 3.1(b)) within a bandwidth-

determined pixel budget. Second, RA-MOSAIC dispenses with MOSAIC’s implicit

assumption of steady object detection workloads (from each camera stream) and

incorporates the reality of possible temporal variations, even over shorter timescales,

in object {size, appearance, volume} distributions/workloads within each camera’s

image stream. Multi-resolution frames and ROI bounding boxes received from

multiple camera streams are processed in parallel to decompose the camera frame

into a bag of tiles that capture the RoI at different scales or “levels of zoom”. Selected

tiles that represent each RoI at its appropriate scale are assembled for canvas frame
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construction. I propose a novel Bloom2Squeeze variant of the 2D Inverse Bin Packing

algorithm [35] that relaxes the fixed size constraint of the canvas frame. Instead,

the canvas frame is allowed to “bloom” (or conversely “squeeze”) depending on the

workload (i.e. the number of tiles selected for canvas construction), (illustrated in

Figure 3.1(c)). RA-MOSAIC retains an upper bound constraint of the original canvas

dimension i.e. 640×640 to ensure that it maintains the minimum required throughput

in the worst case. This variation of canvas-based processing enables RA-MOSAIC to

adjust its target throughput rate to fluctuations in workload (a capability missing in

MOSAIC). For example, during periods of low ROI in several cameras, RA-MOSAIC

can reduce the canvas frame size to process image streams faster without adversely

affecting the vision task accuracy.

By using two benchmark datasets for two distinct applications - Okutama-

Action [20] for drone-based pedestrian detection and UFPR-ALPR [83] for license

plate recognition (LPR), I demonstrate how RA-MOSAIC’s bandwidth-aware opera-

tion and workload-aware operation can further improve the throughput-vs.-accuracy

tradeoff for machine perception.

3.0.1 RA-MOSAIC: Key Contributions

In this chapter, I make the following key contributions:

1. Bandwidth-Adaptive Criticality-Preserving Optimized Sensor→Edge Frame

Transfer: At each camera, I propose a lightweight, fast Bandwidth Adaptive

Camera Transmission (BACT) approach that preserves higher resolution (pixel

count) for likely critical portions of the input frame and downsamples those areas

deemed less critical. BACT effectively transmits a mixed-resolution image, much

smaller in size than the original raw frame, while ensuring that crucial details

are preserved for the subsequent RA-MOSAIC stages of tiling and bin packing at

the edge. I show that BACT accuracy is fairly robust and ∼40% higher than a

baseline approach of uniform downsampling for pedestrian detection, even when
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the transmitted frame size is restricted to only 30% of the original captured frame.

2. Workload-Adaptive Canvas-based Processing: By adapting the canvas-based

processing paradigm according to the available workload, the Workload Adaptive

Canvas Construction (WACC) pipeline of RA-MOSAIC can opportunistically

adopt smaller canvas frame sizes to incur lesser computation latency and thus

provide a higher processing throughput at no cost to task accuracy. RA-MOSAIC’s

novel Bloom2Squeeze variant of 2D Inverse Bin Packing allows a 22.2% gain

in processing throughput with lower workloads (during the “bloom” operation)

presented by M = 3 cameras when compared to MOSAIC’s naive fixed-size

canvas construction technique. Even at higher workloads presented by M = 6

cameras (during the “squeeze” operation), RA-MOSAIC presents a 11.11% gain

in processing throughput when compared to MOSAIC’s baseline performance,

due to the elimination of MOSAIC’s Periodic Stabilisation phase at the edge.

3. RA-MOSAIC Implementation and Performance: I describe how both resource-

adaptive mechanisms in RA-MOSAIC design work in tandem to further im-

prove the system performance for both throughput and accuracy in bandwidth-

constrained wireless deployments. I show that the joint operation of RA-

MOSAIC’s BACT and WACC pipelines provide a 22.2% gain in throughput

and a simultaneous 15% gain in accuracy in bandwidth-constrained environments

which support lower workloads from M = 3 cameras. At higher workloads with

M = 6 cameras, RA-MOSAIC provides a simultaneous 11.11% gain in throughput

and 14.3% gain in accuracy over the naive MOSAIC baseline. Compared to prior

state of the art methods for “batched inference” over extracted RoI [94, 61, 95],

RA-MOSAIC achieves a 26.9% gain in accuracy even when processing RoI tiles

extracted from a single M = 1 camera stream in a bandwidth-constrained envi-

ronment. As the number of cameras M ≥ 4 increases, RA-MOSAIC outperforms

batched inference by improving mean accuracy by ≥ 60%.
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3.1 Motivating Dynamic Adaptations in Canvas-

based Processing

RA-MOSAIC’s primary objectives are to (i) facilitate Bandwidth-Adaptive wireless

transmission of criticality preserving multi-resolution images from the camera to the

edge node within a pre-determined pixel budget, and (ii) enable Workload-Adaptive

construction of canvas frames that temporally adapts the canvas frame dimensions to

the object distributions perceived across all M cameras to opportunistically reduce

processing latency. I hypothesize that extending the concept of criticality to the

camera→edge transmission phase can help preserve higher resolutions and pixel

nuances for RoIs, especially when operating over bandwidth-constrained wireless

networks. Such differentiated resolution can in turn boost object detection accuracy

that enables finer-grained tasks such as Optical Character Recognition to achieve

lower character error rates. Further, I also hypothesize that enabling opportunistic

adoption of smaller canvas frame sizes would increase the achievable processing

throughput on average, thus providing gains over MOSAIC in both accuracy and

throughput. I first present the target applications and basic principles that support

these hypotheses.

3.1.1 Target Applications

I envision a variety of camera-based edge-deployed applications that could bene-

fit from RA-MOSAIC’s resource adaptive canvas-based processing. For example,

consider a construction site that is monitored by a fleet of drones which predict

equipment safety and supply chain efficiency; each drone observing discrete sections

of the site, while wirelessly transmitting the camera streams to an edge node for

application-specific inference, illustrated in Figure 1.2 in Chapter 1. Alternatively,

envision a retail shopping floor with a fleet of drones providing personalised service

to customers by helping them navigate to aisles that stack items they are looking for,
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or picking up items that they might have forgotten. In these cases, RA-MOSAIC can

reduce infrastructure costs and deliver faster response times by adapting to the avail-

able bandwidth on the factory or shopping floor, while also dynamically adapting to

the workload to reduce processing latency. It is assumed that each camera sensor

monitors a distinct region of the physical world which does not overlap spatially

with regions observed by other cameras, though further optimization of RA-MOSAIC

could potentially exploit any spatial overlaps (see Section 3.5).

Figure 3.2: RA-MOSAIC: Evaluating
mean accuracy over grids of uniformly
packed images

Figure 3.3: RA-MOSAIC: Increasing
object detection confidence by increas-
ing object resolutions

3.1.2 Bandwidth Constraints and Naive Packing of M Frames

In a real-world system with bandwidth constraints, camera sensors should ideally

avoid high transmission overheads by downgrading an image’s resolution before

transmitting, especially if the edge will downsize frames during processing. I model

such constraints through a pixel budget, which is a represented as a ratio r between

image resolution/size during frame transfer and image resolution used for DNN

inference. As discussed in Chapter 2, a naive method to achieve higher throughput

across all M cameras is to downsample M frames uniformly into a canvas frame grid

without any notion of criticality. To understand the impact of bandwidth constraints

on a naive uniform packing baseline, I fix the canvas frame size to 640× 640 as it
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is the largest empirically determined canvas frame size that can be inferred upon

by a YOLOv5s (a representative edge-scale model) on a Jetson TX2 edge device

with latency low enough to meet the minimum throughput requirement of 20 FPS.

Figure 3.2 plots mean average precision (mAP) of object detection accuracy, as

a function of M , for frames from the Okutama-Action[20] dataset. These drone-

captured frames have a native resolution of 3840× 2160 which would benefit from

downsampling to the canvas frame size 640 × (640/aspect) (where maintaining

aspect = Imagewidth/Imageheight prevents image warping) before transmission to

save on bandwidth overheads. As seen in Figure 3.2, for M ∈ (1, 4, 9, 16) cameras

distributed into i×i; i ∈ (1, 2, 3, 4) grids, as i increases, smaller regions of the canvas

frame are allotted to each of the M images, yielding lower object detection accuracy.

Intuitively, as i increases, uniform downsampling of images to smaller dimensions

force small objects to become progressively smaller and less distinguishable, until

a point where the DNN model is unable to detect the objects. Crucially, Figure

3.2 shows the comparative loss of object detection accuracy between r = 1 (when

the captured image is transferred at full permissible resolution 640× (640/aspect)

under no pixel budget constraints) and r = 0.5 (where the image is downsampled to

320× (320/aspect) to fit the pixel budget). I show that the mAP loss is worse for

downsampled images that adhere to a lower pixel budget r = 0.5. This demonstrates

that RA-MOSAIC design must ensure that individual cameras apply something

more sophisticated than uniform down-sampling to the available pixel budget when

determining how the camera frames should be transmitted to the edge for processing.

3.1.3 Resolution Sensitivity in Camera Transmission

I next analyze the impact of down-sampling camera frames to fit the pre-determined

pixel budget (or equivalently, the loss of image resolution) on the downstream object

detection task accuracy by object size. Figure 3.3 shows that resolution loss exhibits

a harsher impact on small and medium objects as the pixel budget reduces r → 0.1,
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Figure 3.4: Under-utilization of fixed size 640× 640 canvas with fixed throughput
of 19 FPS

to the point of loss of object detection capability. Conversely when the pixel budget

increases with r → 1, the resulting increase in object resolution has a variable impact

on objects’ detection accuracy: small objects receive a relatively larger gain in object

detection accuracy, whereas medium and large objects have marginal gains. This

indicates that variable, object-size aware resolution adjustment of camera frames,

optimized such that higher proportions of the pixel budget are concentrated on

regions of the camera frame containing smaller objects, will boost the accuracy of a

downstream object detection task.

3.1.4 Optimizing Canvas Utilization

Canvas-based processing primarily focuses on extracting and packing RoI from M

cameras into a single canvas frame of fixed size. However, real-world camera streams

may have temporal variations in (i) the perceived number of objects/RoI within each

camera stream (e.g., a camera monitoring vehicular traffic at an intersection will see

a larger number of vehicles during rush hour), and/or (ii) dynamic M number of

cameras requiring edge processing at any given time (e.g., if cameras are activated
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only on demand [123]), with both conditions resulting in dynamic workloads at the

edge. Packing extracted RoI into a canvas frame of fixed size enforces a uniform

processing capacity at the edge which leads to both lower canvas frame utilization (in

the event of smaller number of RoI or M ) with a fixed/lower processing throughput.

Figure 3.4 illustrates the canvas utilisation rate for M ∈ (1, ..., 6) cameras from

the Okutama Action dataset [20] when packed onto a fixed canvas frame size of

640 × 640, which yields a fixed processing throughput of 19 FPS on an NVIDIA

Jetson TX2, regardless of the workload/object volume being processed from M

cameras. Lower volume of objects accumulated at the edge from a smaller number

of cameras (M ≤ 4) shows a significant portion ≥ 50% of the canvas frame being

under-utilized while incurring constant/higher processing throughput of 19 FPS,

indicating some wastage of DNN computational resources over “blank” areas of

the fixed size canvas frame. Intuitively, this creates an optimization opportunity for

RA-MOSAIC to adapt to the incoming workload at the edge by dynamically sizing the

canvas frame appropriately (while always staying within the throughput-mandated

maximum bound), based on (i) the number of camera streams M received at the edge

and (ii) the number of RoI contained therein. RA-MOSAIC can then opportunistically

incur lower DNN inference latency (and conversely, faster processing throughput)

over smaller canvas frame sizes when workloads are low.

3.2 RA-MOSAIC Design Overview

I now present RA-MOSAIC’s end-to-end solution that (i) extends the concept of criti-

cality estimation to the camera for optimized, bandwidth adaptive multi-resolution

frame transfer, and (ii) performs workload adaptive canvas-based processing over M

camera streams at the edge, illustrated in Figure 3.5.

At each camera, the multi-resolution Bandwidth Aware Camera Transmission

(BACT) pipeline first estimates potential Regions of Interest (RoI) in the camera

frame by alternating between two modes of operation: (i) periodic full frame detec-
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Figure 3.5: RA-MOSAIC Conceptual Block Diagram with Bandwidth Adaptive
Camera Transmission (BACT) operating at the camera and Workload-Adaptive
Canvas Construction (WACC) operating at the edge (Note: Best viewed in color).

tion using a lightweight object detection model yielding object bounding boxes and

confidence values–this is performed every T seconds (T is a user-defined valued,

with default= 30 seconds), and (ii) motion-based RoI detection using background

subtraction, with Random Forest Regression (RFR) of confidence values based on

RoI size and aspect ratio; both modes of operation yield a calculated/estimated

object detection confidence value. The detected object bounding boxes yielded by

YOLOv5n (an ultra-light model with only 1.9M parameters, suitable for execution

on camera processor boards) and RFR, provide a rough and ready estimate of the

spatial distribution, size, and detection confidence for relevant objects of interest,

described in detail in Section 3.2.1. With these estimates, BACT then determines the

criticality associated with the corresponding regions (assumed to be square tiles for

computational efficiency) of the frame. Finally, given an overall pixel budget as a

constraint and a set of criticality weights, BACT seeks to determine the resolution

(pixel count) of each such tile so as to optimally utilize the pixel budget.

In addition to the BACT pipeline, RA-MOSAIC’s camera operation integrates

two background tasks. First, a Kalman Filter based object tracker keeps account of

the detected objects’ estimated positions during the background subtraction based

RoI estimation phase. The object tracker resolves the drawbacks of motion-based

RoI detection by maintaining in memory stationary objects and/or objects that

might have come to a halt (and subsequently missed by the background subtraction

estimation) before the next round of full frame detection. Second, a K-Means

clustering algorithm periodically observes RoI size distributions to determine the
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number and dimensions of camera-specific tiling scales that will best capture the

RoI for canvas-based construction at the edge–details of this clustering algorithm

are available in Chapter 2 Section 2.3. Periodic (re)calculation at the camera allows

RA-MOSAIC to remain current with object distribution patterns, thereby reducing

the risk of incorrect canvas construction downstream that reduces achievable object

detection task accuracy.

The camera finally transmits the multi-resolution BACT frame, the detected

bounding boxes, and if necessary the updated/changed camera tiling scales to the

edge for further processing. The BACT pipeline is reliant on fast and lightweight esti-

mation of criticality to create multi-resolution images in real-time for RA-MOSAIC’s

optimal performance.

At the edge, the Workload Adaptive Canvas Construction (WACC) pipeline

processes each camera in parallel over the received tuples of {multi-resolution frames,

estimated RoI bounding boxes, (optional, updated camera tiling scales)}. The multi-

resolution frame is decomposed into a “bag of tiles” at each of the determined

per-camera tiling scales and evaluated for presence of RoI bounding boxes at each

scale, similar to mechanisms introduced in Chapter 2. Spatial sizing bounds are

calculated for each of the selected high priority tiles which constrain the elasticity of

each tile during canvas construction. Diverging from the canvas construction process

introduced by MOSAIC, the novel Bloom2Squeeze 2D bin packing algorithm allows

the canvas frame to “bloom” with additional tiles that are added to the canvas frame

at its maximum spatial dimension, until the canvas frame reaches the size limit of

640×640, after which the tiles are squeezed within their spatial sizing bounds for bin

packing and subsequent DNN inference. Such workload adaptive canvas construction

allows RA-MOSAIC to opportunistically adopt smaller canvas frame sizes that incur

lesser processing latency, thereby achieving faster processing throughput.
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3.2.1 Bandwidth Adaptive Camera Transmission

The Bandwidth Adaptive Camera Transmission (BACT) pipeline marks the first stage

of bandwidth-aware adaptation in the overall RA-MOSAIC system, as illustrated

in Figure 3.5. BACT takes advantage of the growing adoption of AI cameras

with onboard GPU support to perform lightweight computation to detect objects

of interest “approximately”, and assign application-dependent criticality values to

different regions of the frame. BACT is a lightweight, fast technique executed on

the camera to non-uniformly downsize an image so that high priority regions of the

frame retain higher resolution–i.e., preserve details. A secondary goal of BACT is to

ensure that the resulting mixed-resolution frame fits into the reduced pixel budget

allocated for transmission, thereby conserving the camera’s bandwidth.

Initialization Phase

BACT begins operation with an Initialization Phase wherein it conducts full frame

YOLOv5n DNN inference on the first user-defined C camera frames (default, C =

50). These full frame detection results initialize both the RFR used for criticality

estimation and the K-means clustering algorithm that determines the per-camera

tiling scales.

RFR Initialization: The RFR is trained with class-agnostic input variables of {object

width, object height, object width:height aspect ratio, ratio of object width to image

width, ratio of object height to image height}, with ‘object detection confidence’

being the target/dependent variable. The R most recent (default, R = 100) periodic

full frame detection results are also stored locally as inputs for optional retraining of

the RFR, if the average estimated confidence falls below a user-defined threshold

(default, 0.3).

Per-Camera Tiling Scales: Camera-specific tiling scales are essential to RA-

MOSAIC’s decomposition of each camera frame into a bag of tiles for canvas

construction during RA-MOSAIC’s downstream edge operation. Appropriate tiling
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scales ensure that all RoI detected in the camera stream can be adequately captured

at their appropriate scale, ensuring that the bloom/squeeze operation during canvas

construction has the appropriate resizing impact on the RoI (i.e., the RoI consumes a

large enough fraction of the tile where resizing the tile does not yield a dramatically

smaller RoI). The detected object size distributions from the full frame results are

first evaluated for any overlaps between objects and assigned a minimum enclosing

rectangle, as motion-based background subtraction may detect such overlapped/oc-

cluded objects as a single RoI. The detections and processed boxes for overlapping

objects are then clustered using a K-Means algorithm, as illustrated in Chapter 2,

with an elbow detection method to determine the most suitable k, or equivalently, the

number of tiling scales. Briefly, the centroid (xcentroid, ycentroid) of each determined

cluster yields the tiling dimension for each of the k scales, with the larger value

(max(xcentroid, ycentroid)) adopted to get “square” tiling dimensions, rounded up to

the nearest multiple of 32 for computational efficiency. Additionally, RA-MOSAIC

introduces a catch-all tile, approximately 1.5× larger than the largest determined

tile to accommodate the potential observation of objects or RoI larger than those

encountered in the initialization phase. RA-MOSAIC monitors the periodic full frame

detection results for drift in object size distributions, utilizing the most recent R

(default R = 100) periodic full frame detection results to re-evaluate the per-camera

tiling scales.

Bandwidth Adaptive Camera Transmission (BACT)

Once initialized, BACT begins run-time operations in three stages, as illustrated in

Figure 3.5.

(1) RoI Proposals: To optimize the processing latency incurred during detection of

RoI in the camera frame, BACT alternates between the periodic full frame detec-

tion phase (which incurs higher frame latency) and lightweight motion-based RoI

estimation. With a user-defined periodicity T (default, T = 30 seconds), BACT

infers on the camera frame with a YOLOv5n DNN model to yield a list of objects
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and their detection confidence. These objects positions are updated in the Object

Tracker maintained by the camera, to ensure continued detection of stationary/halted

objects that might be missed in the next stage of motion-based estimation. BACT

then compensates for the induced latency from running full frame detection by (i)

estimating RoI positions/sizes using background subtraction and updating the Object

Tracker memory, (ii) recovering potentially halted/stationary RoI from the Object

Tracker memory that have not been updated, and (iii) estimating the confidence of

the determined RoI using the initialized RFR model. Both modes of operation yield

a set of RoI bounding boxes and an estimated/calculated confidence value confest,

contributing to the metric of criticality to determine which regions of the camera

frame must retain higher resolutions or criticality weights.

(2A) Region Creation: To assess which regions of the frame must be assigned

higher criticality weights, the input frame is first divided into smaller contiguous

regions (i.e. with no overlap between the regions), with each region’s dimensions

tw = th derived from the input frame dimensions in Equation 3.1:

tw =


gcd (Iw, Ih), if gcd (Iw, Ih) < Ih

gcd (Iw, Ih)/d, otherwise, downscale by d = 4 default
(3.1)

where Iw and Ih are the input frame’s width and height respectively. Intuitively,

the region size is chosen so that an integral number of regions together cover the

entire original image. For example, an input frame of 640× 360 can be divided into

equal regions of dimension 40 × 40 (i.e., gcd(640, 360)), producing a total of 144

contiguous square regions of the input image.

(2B) Region→Object Association and Region Criticality Estimation: BACT

next constructs a spatial quadtree with the contiguous regions and conducts an

intersecting bounding box search using each RoI bounding box (identified in (1)) as

a query. An RoI bounding box is mapped to a specific region if either (i) the RoI

bounding box is contained entirely within the region, with the regions’ dimensions

implicitly being larger than the object, or (ii) the object partially intersects with the
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region (i.e., it straddles multiple regions) and its fractional presence in this region is

larger compared to neighboring regions. This association handles occluded objects

including instances where objects of different scales might be occluding each other

(for e.g. a car occluding a person).

Each region is then assigned a criticality weight wi, determined as the com-

plement of the average confidence of the r RoIs assigned to that region, i.e.

wi = 1− (confest) where confest =
1
r

∑r
i=1 confest. As the estimated confidence

confest of each RoI is a factor of its size and detection confidence, such a critical-

ity weight ensures that higher criticality is assigned to regions with lower average

confidence.

3. Multi-Resolution Optimization: The set of tiles, together with their criticality

weights, then serve as an input to a Max-Min optimizer that adjusts the resolution

of each tile relative to its weight to the input frame, while adhering to an overall

pixel budget for image transfer to the edge. Equation 3.2 captures the optimization

objective and constraints: for each of n tiles, the objective function takes in a term xi

which computes the ratio of the ti tile’s weight wi relative to the tile’s computed final

resolution (tw × th), where tw and th denote the tile’s width and height respectively,

and wi is scaled by the quadratic factor k = 2. The solver minimizes xi, standardized

by the mean and standard deviation of all such xi terms for n tiles, and scaled by

an empirically determined term α = 0.9 for each objective term xi. Intuitively, the

optimization seeks to maintain each tile’s size to be relatively proportional to its

weight (by seeking to minimize the standard deviation of the normalized tile size),

while also ensuring that each tile does not deviate from its original aspect ratio.

The first constraint in Equation 3.2 ensures that the sum of all the tile areas do not

exceed the predefined pixel budget Pb, while the second constraint seeks to maintain

the aspect ratio of each tile, post resizing, to be as close to the original square

tile so as to avoid egregious scaling distortions of the original image. In practice,

this optimization problem is tackled using a Sequential Quadratic Programming

solver [130], which upon convergence yields as output the optimised tile resolutions
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(tw, th) for each tile. BACT resizes each tile, using fast bilinear interpolation, to this

optimized dimension through either upsampling or downsampling.

min
n∑

i=1

α× xi + (1− α)× xi − µ

σ

where xi =
wk
i

tw × th
,wherewi = 1− 1

r

r∑
i=1

confest∀r ∈ ti

µ =
1

n

n∑
i=1

xi, σ =

√∑
(xi − µ)2

n

s.t.
∑

tw × th ≤ Pb with 0.95 ≤ tw
th
≤ 1.1 k = 2, α = 0.9

(3.2)

The resulting tiles, with varying sizes and resolutions, are then JPEG encoded

and transmitted to the edge for further processing along with metadata representing

the detected ROI bounding boxes and their estimated/detected confidence values.

Figure 3.6 visualises the BACT output for two different pixel budget constraints

of 640 × 360, (R = 1) and 320 × 180, R = 0.5 and illustrates the efficacy of the

BACT methodology in preserving resolutions for critical regions of the frame. I note

that BACT’s tiling-based resizing technique differs from other recently-described

multi-resolution spatial sampling strategies [150, 146, 161], as it is intentionally

designed to enable efficient spatial packing by the subsequent WACC mechanism at

the edge.

Figure 3.6: BACT under bandwidth conditions yielding pixel budget ratios r = 1
and r = 0.5 (note the ‘blockiness’ of the background for r = 0.5)
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3.2.2 Workload Adaptive Canvas Construction

The Workload Aware Canvas Construction (WACC) pipeline deployed at the edge

marks the second stage of RA-MOSAIC’s overall design, illustrated in Figure 3.5.

The WACC pipeline ingests mixed-resolution BACT frames, estimated/detected ROI

bounding boxes, their estimated/detected confidence values, and the per-camera

tiling scales on a per-camera basis. At its core, the WACC pipeline decomposes the

BACT frames from each of the M camera streams into a bag of tiles, which faithfully

represents the RoIs from each camera, for joint evaluation and inclusion onto a canvas

frame for subsequent DNN inference. The WACC pipeline adopts the canvas-based

processing fundamentals described in Chapter 2 with the additional optimizations

of workload-aware dynamic canvas sizing deployed in the novel Bloom2Squeeze

canvas construction algorithm. WACC balances the following conflicting objectives:

1. For RoI tile evaluation: An RoI bounding box received from the camera-

based BACT pipeline must be ideally encompassed in an extracted tile at its

appropriate RoI-specific scale (i.e. consume a large enough fraction of the

tile without cropping the RoI). This a condition which preferentially selects

smaller tiles, which are likely to minimize ‘wasted’ background pixels.

2. For RoI tile evaluation: The total number of tiles selected for inclusion on the

canvas frame must be minimised while ensuring all RoI bounding boxes are

included. This is a condition which naturally prefers larger tiles, which may

individually encompass more RoI bounding boxes.

3. For canvas construction: The dynamically selected canvas size must allow for

each selected RoI tile to attain the maximum possible spatial dimensions within

its application-determined spatial sizing bound. This favours “blooming” the

tiles to larger dimensions that might yield more confident/accurate detections.

4. For canvas construction: The dynamically selected canvas size must be min-

imized as much as possible so as to incur lower processing latency and con-
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versely higher processing throughput. This favours squeezing the tiles to

smaller tile dimensions within their spatial sizing bound at the cost of task

accuracy.

I now describe the four stages of the WACC pipeline that together provide an

appropriate balance between the throughput-accuracy trade-off by adapting canvas-

based processing to the available workload from the t selected tiles across M cameras.

The first three stages occur in parallel per-camera, culminating in canvas construction,

a global final stage.

(1) Generating the Bag of Tiles: As described earlier in Section 3.2.1, the BACT

pipeline evaluates incoming object size distributions to determine (i) the number of

camera specific tiling scales k, and (ii) the tiling dimensions to be adopted by each

of the k scales. The first stage of the WACC utilizes these pre-computed per-camera

tiling scales to extract tiles at each of the k scales from the BACT frame with a

user-configurable amount of overlap (i.e. stride s, default s = 0.5) between two

consecutive tiles.

(2) Determining High-Priority Tiles: The previous stage of WACC tiles the input

BACT frame with no adherence to the estimated RoI bounding boxes, yielding a bag

of tiles wherein some tiles may completely/partially encompass RoI bounding boxes

or not at all. WACC next determines the tiles that completely encompass the RoI

bounding boxes while balancing the conflicting objectives for RoI tile evaluation

described earlier. WACC leverages a spatial quadtree data structure to perform an

intersecting bounding box search for the tiles that completely intersect with each of

the RoI bounding boxes, favouring tiles that completely encompass the RoI bounding

box. For example, WACC prefers tile A over tile B as illustrated in Figure 3.7. At

this stage, WACC also computes a “goodness of fit” criteria for each of the ROI:tile

pairs used in the next stage of processing. This “goodness of fit” criteria refines the

selected RoI:tile pairings by filtering only those tiles whose contained RoI consume

between (50%, 90%) of the tile height (for vertical rectangular RoI boxes) or width

68



(for horizontal rectangular ROI boxes). RoI boxes that consume a smaller ≤ 50%

proportion of the tile height or width are better serviced by smaller scale tiles while

RoI boxes that consume a very large ≥ 90% of the tile height/width might suffer

undue cropping and thus be better serviced by a larger-scale tile.

Figure 3.7: WACC evaluating tiles A and B with differing “goodness of fit”; WACC
prefers Tile A for the enclosed RoI

(3) Selecting The Best Subset of Tiles: From a set-theoretic perspective, many

combinations of tiles might feature or spatially “cover” all RoI bounding boxes

captured at different scales or in adjacent tiles extracted at the same scale. To enable

efficient canvas construction, WACC has to contend with the following conditions:

(i) all RoI bounding boxes must be included/featured at least once in the canvas frame

to yield accurate object detection capability, this condition assembles the smallest

set/cardinal number of tiles that “cover” all RoI boxes, and (ii) only those tiles must

be included on the canvas that are likely to retain the best possible object dimensions

after resizing (i.e. the object must take a large enough proportion of the enclosing

tile) while also minimizing cost of including that tile on the canvas frame or the

number of “wasted pixels” (i.e. background pixels or non-RoI pixels), this conditions

the set generation to select tiles that minimize the presence of non-RoI pixels. This

dual optimization is achieved by a greedy approximation of the NP-Hard Min Cost

Min Set Algorithm (MCMSA), described in Algorithm 2. The MCMSA algorithm

essentially ensures that only those tiles that satisfy both the conditions above are

selected for canvas construction.

This greedy approximation has two key advantages: (i) RoI are limited to appear-

ing in at least one or at most two unique tiles of different scales in the constructed
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Algorithm 2 Greedy Min Cost Min Set Cover Algorithm
1: Universe = {m1,m2, . . . ,mm} ▷ Set of M masks
2: Tiles = {t1, t2, . . . , tn} ▷ Set of N tiles that may contain one or more assigned

masks
3: Costs = {c1, c2, . . . , cn} ▷ Set of costs/wasted pixels for N tiles
4: S ← ∅
5: while S ̸= Universe do
6: if | ti − S |≥ 0 & (ci/ | ti − S |) > 0 then
7: Subset← min(ci/ | ti − S |) ▷ minimize the number of

tiles containing the same mask and minimize the additional cost to the canvas
associated with adding an additional tile

8: S ← S ∪ Subset
9: end if

10: end while
=0

canvas frame, reducing the need for Non Maxmum Suppression post-processing for

each RoI across multiple tiles, and (ii) multiple RoI detected in close proximity are

usually encompassed in a single large tile, rather than multiple small tiles, reducing

the overall number of wasted pixels on the canvas frame.

Finally, for each selected tile in this subset, WACC computes two parameters used

for canvas construction. The first parameter is a spatial sizing bound within which the

tile (and encompassed RoI) can either bloom or squeeze during canvas construction.

This bound is empirically determined offline as the minimum and maximum resizing

ratios for each RoI (for example (0.7x, 1.2x) for large RoI tiles) subject to which

the achievable object detection confidence is not adversely impacted more than a

pre-determined threshold, (default, threshold 3%). This follows the intuition that this

sizing bound is RoI/scale dependent where large RoI are more resilient to resizing

and can still be detected with reasonable confidence even when reduced to 70% of

their original size. Regions containing smaller RoI adopt tighter bounds due to the

RoI’s sensitivity to detection confidence capability where the RoI become impossibly

small/undetectable when down-sized or excessively pixellated when up-sized, both

conditions impeding accurate object detection. The second parameter is an elasticity

factor that determines how much a tile should be squeezed within this determined

spatial sizing bound at every iteration/attempt at canvas construction, if the tiles need
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to be squeezed onto the canvas frame to admit all selected t tiles across M cameras.

A higher elasticity factor potentially allows for faster convergence of the constructed

canvas frame but unduly squeezes each tile towards its lower sizing bound to achieve

convergence. A smaller elasticity factor, on the other hand, might yield more optimal

resizing at the cost of longer convergence times, impeding WACC’s asynchronous

canvas construction and DNN inference abilities. I profile the convergence times

for a variety of {tile size, canvas size} combinations in an offline setting (i.e. no

convergence deadline) and average (i) the squeeze/elasticity suffered by each tiling

scale at every iteration to achieve the desired convergence time, and (ii) the achieved

detection confidence. I select the elasticity factor for each tile online using both

bounds; first, the desired convergence time before the DNN inference cycle of the

previous canvas frame finishes (to maintain asynchronous processing), and (ii) the

amount of squeeze that protects the object from being detected with confidence no

lower than the estimation received from the BACT pipeline.

(4) Constructing a Canvas Frame: The WACC converges all per-camera pipelines

to yield a set of t tiles filtered and selected for canvas construction across M cam-

eras. The Bloom2Squeeze algorithm, described in Algorithm 3, describes the final

cross-camera stage of the WACC pipeline that yields a constructed canvas frame,

comprising tiles across the M cameras, that is sent for DNN inference.

The algorithm begins by initializing the canvas frame size as the square-root of

the total pixel demand presented across all t tiles, rounded to the nearest multiple of

32 for ease of DNN inference. Such initialization avoids the sequential tile-by-tile

expansion of the canvas frame and forms the first optimization to promote faster

convergence time of the algorithm. If the total pixel demand from all t tiles is greater

than 640× 640, the algorithm proceeds to the Inverse 2D “Squeeze” Bin Packing

step immediately as detailed in Chapter 2, where minimal perturbations in the input

tile dimensions allow for their successful packing into a fixed size canvas frame.

This formulation allows RA-MOSAIC to perform no worse than MOSAIC. If the

pixel demand is less than 640× 640, the Bloom2Squeeze algorithm methodically

71



Algorithm 3 Bloom2Squeeze Algorithm
1: function BLOOM2SQUEEZE(tiles)
2: totalPixels← calculateTotalArea(tiles)
3: initialCanvasSize← roundToNearestMultipleOf32(squareRoot(totalPixels))
4: sortedTiles← sortTilesByHeightDescending(tiles)
5: if initialCanvasSize ≥ 640 then
6: canvas← initializeCanvas(640, 640)
7: inverse2DBinPackAllTiles()
8: else
9: initializeCanvas(initialCanvasSize)

10: while not all tiles are packed do
11: tile← popLargestTile(sortedTiles)
12: while cell not found and packing not successful do
13: packingSuccess← packTileInCell(tile, cell)
14: if not packingSuccess then
15: if insufficientVerticalSpaceInCell() and

nextCellInColumnAvailable() then
16: cell← nextCellInColumn()
17: else if insufficientHorizontalSpaceInCell() then
18: if cellOnRightIsAvailable() then
19: cell←MergeCells()
20: else
21: cell← topMostAvailableCellInNextColumn()
22: end if
23: end if
24: else if packingSuccess then
25: splitCanvasRowAndColumnAtCell(cell)
26: end if
27: end while
28: if not packingSuccess then
29: if numPackedTiles ≤ 0.9×totalTiles and canvasWidth ≤ 640

then
30: bloomCanvas()
31: else if numPackedTiles > 0.9× totalTiles or canvasWidth = 640

then
32: inverse2DBinPackAllTiles()
33: end if
34: end if
35: end while
36: end if
37: return canvas
38: end function
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attempts packing all available tiles by adopting spatial division techniques such as

“grid splitting” typically employed by CSS-sprite equipped websites to optimize

space utilization on a dynamically sized webpage [119, 76]. First, the available

tiles are sorted by size with the largest tile available for packing taking precedence.

Placement of the largest tile at the top-left-most position (i.e. at pixel position

(0, 0)) of the canvas frame splits the remaining canvas frame along the tile width

and height, resulting in 4 cells, out of which the top-left cell is occupied by the

placed tile. Bloom2Squeeze repeats this process by scanning the canvas frame for

available cells from top to bottom and left to right, preferring to move to another

cell in case of insufficient cell:tile height, merge adjacent available cells in case

of insufficient cell:tile width, and finally performing a grid split along the height

and width of each placed tile. In case the initial canvas frame size is evaluated

to be insufficient with more than 10% of t tiles yet to be packed, Bloom2Squeeze

“blooms” the canvas size to the next multiple of 32, removes the last placed i tiles

(user-defined, default = i = 5) to allow for better packing decisions, and continues

the process for the remaining tiles. If however, only a smaller proportion ≤ 10%

of the t tiles are yet to be packed, or if the canvas size has already boomed to the

maximum permissible dimension of 640× 640, Bloom2Squeeze initiates Inverse 2D

Bin Packing by squeezing all remaining tiles onto the canvas frame.

The Inverse 2D Bin Packing problem [35] contends with a fixed-size bin (or in this

case the maximum permissible canvas size 640× 640) and dynamically sized items

or tiles, where the algorithm must converge on the minimum resizing/perturbation to

the size of the items such that they can be packed into the fixed size bin. MOSAIC

and by extension RA-MOSAIC employ a Differential Evolution Algorithm (DEA)

for Min-Max Optimization of the given set of t tiles, their individual elasticity

factors and spatial sizing bounds. At each iteration until convergence, the DEA

algorithm attempts to pack all t tiles while allowing each tile to obtain the maximum

possible squeezed spatial dimensions within its bounds. The resulting canvas after

convergence details the dimension and location of each of the packed t tiles. WACC
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concludes by mapping each of the tiles spatially to its designated location and

dimension, before DNN inference.

Upon DNN inference, WACC performs post-processing of the detected bounding

boxes, translating the boxes to the original BACT frame and performing NMS on

RoI/object boxes that might have appeared in more than one tile (of different scales)

on the canvas frame.

3.3 RA-MOSAIC System Design

The BACT pipeline is deployed at the camera and the WACC pipeline at the edge.

Each camera independently and concurrently evaluates its own video stream for

regions of interest (RoI) and transmits both the RoI bounding boxes and the optimized

multi-resolution image in accordance with the available pixel budget (described

earlier in Section 3.2.1). With a user-defined periodicity of T seconds (default,

T = 30 seconds), the BACT pipeline runs a full frame detection on the camera

frame to locate stationary objects, and collect data on the continued suitability of

the Random Forest Regressor (RFR) model and the evaluated tiling scales for that

camera. Using a Tensor-RT optimized YOLOv5n model on the NVIDIA Jetson

Nano, a representative compute-enabled camera, this incurs an additional processing

latency of 48ms for every full frame detection. This additional latency reduces the

average BACT video stream frame-rate to from the original camera frame-rate of

30 FPS to 29.95 FPS, a negligible cost to the entire end-to-end processing pipeline.

At the edge, the WACC pipeline receives a stream of BACT frames from each of

the M cameras. M BACT images are decomposed into a bag of tiles in parallel and

subsequently jointly evaluated for inclusion onto a dynamically-sized canvas frame

to balance the need for both high throughput and high task fidelity (illustrated in

Figure 3.8). Deviating from the system design described by MOSAIC, I restrict the

batch size to 1, b = 1, to allow RA-MOSAIC to right size the canvas frame size to the

current workload without any apriori assumption on future workload. The achieved
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processing throughput is thus a function of the number of tiles across N cameras that

are selected for inclusion on the dynamically sized canvas frame and their spatial

size bounds within which the canvas frame size blooms or conversely squeezes.

I establish through empirical studies that with a batch size b = 1, the NVIDIA

Jetson TX2 incurs a processing latency of 52ms (or equivalently a throughput of

19 FPS) over a 640 × 640-sized canvas frame. I adopt this configuration as the

maximum permissible processing latency in the worst case, with RA-MOSAIC

preferentially adopting smaller canvas frame sizes to opportunistically boost the

throughput. In evaluating the M or the maximum number of cameras that can

be supported, RA-MOSAIC ensures that (i) the selection of critical tiles across M

cameras and subsequent canvas construction does not take longer than the DNN

inference deadline of 52ms to enable streamlined asynchronous inference, and (ii)

the chosen tiles from M cameras are appropriately sized within their spatial sizing

bounds during the RA-MOSAIC’s Bloom2Squeeze canvas construction operation.

To adher to both conditions, RA-MOSAIC adopts the maximum camera processing

capacity M so as to guarantee 19 FPS processing throughput in the worst case.

RA-MOSAIC adopts M = 6 for the pedestrian detection application and M = 3

for the license plate recognition tasks. The lower number of cameras supported

i.e. M = 3 for the license plate recognition task is due to the stricter spatial sizing

bounds enforced by the OCR pipeline downstream.

Figure 3.8: RA-MOSAIC System operation of the WACC pipeline at the edge
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Evaluation Platform: I evaluate RA-MOSAIC on the NVIDIA Jetson TX2 [108],

an edge-scale device featuring a 256 CUDA-core PASCAL GPU, and an ARMv8

multi-processor architecture supporting both a quad-core ARM Cortex A57 MPCore

and a dual-core NVIDIA Denver 2 CPU. On the other hand, I deploy the NVIDIA

Jetson Nano [111] as a representative compute-enabled camera with a Quad-core

ARM A57 CPU. The Jetson Nano transmits the images to the edge TX2 device over

WiFi.

Evaluation Model: At the camera, RA-MOSAIC’s BACT pipeline uses a pre-trained

YOLOv5n model for periodic full frame detection. At the edge, RA-MOSAIC’s

WACC pipeline adopts a TensorRT-optimised YOLOv5s model, a representative edge-

scale model with 7.2M parameters and 16.5 GFLOPs. I fine-tune a pre-trained model

(pre-trained on MS COCO [92]) on the Okutama-Action and UFPR-ALPR datasets

to achieve higher sensitivity to objects at different perspectives/occlusion/sizes.

Benchmark Datasets: To maintain a fair comparison with MOSAIC, I adopt the

same benchmarks tasks of (i) drone-based pedestrian detection using the Okutama-

Action dataset [20], and (ii) automatic license plate recognition using the UFPR-

ALPR dataset [83]. Both tasks feature object detection as a fundamental step in the

processing pipelines with distinct application-level requirements for image/resizing

fidelity for downstream processing. This is reflected in the spatial-sizing bound that is

selected for the vehicle objects in the UFPR-ALPR benchmark that ensures adequate

pixel fidelity of license plates to enable accurate downstream Optical Character

Recognition. 43 drone sequences from the Okutama-Action dataset, captured at 4K

(3840×2160) image resolution at 30 FPS, are processed into 54664 and 14210 frames

for training and testing the YOLOv5s edge model respectively. On the other hand,

the UFPR-ALPR dataset features 90 sequences captured from a car-mounted camera

at 1920× 1080 resolution at 30 FPS, providing 3600 and 1800 frames for training

and testing the YOLOv5s edge model respectively. Each sequence is considered as

an independent camera stream, with RA-MOSAIC utilizing M sequences without

duplication for canvas construction.
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Evaluation Metrics: To monitor gains in perception/detection accuracy, I evaluate

the Mean Average Precision metric at an IoU threshold of 0.5 i.e. mAP@0.5, and

also report the processing throughput i.e., inference frames per second FPS as well as

Cumulative FPS (C-FPS) across all M cameras. For the license plate recognition task,

I evaluate the impact of RA-MOSAIC’s operations on Optical Character Recognition

capabilities by monitoring the Character Error Rate Metric (CER). CER computes

the Levenshtein distance metric that counts the minimum number of single-character

changes that are required for the predicted string to converge with the ground truth,

averaged by the number of characters included in the groundtruth. Perfect character

recognition capabilities are achieved with lower CER→ 0 rates.

Evaluation Baselines: I compare MOSAIC with batch size restricted to b = 1

(MOS-M ) and RA-MOSAIC (RA-MOS-M ) against each other, using four distinct

baselines, described below.

1. Naive FCFS: Frames are processed in a naive First come First Served basis on a

canvas frame of size 640× 640 without any modifications.

2. Naive Uniform-M (Uni-M ): This baseline divides a canvas frame of size

640× 640 into a grid structure with each cell naively assigned to a single frame from

each of the M cameras. Uni-M also determines the best choice between horizontal

and vertical stacking variations during the creation of the grid structure, such that

each cell affords each assigned input frame the best/lowest possible resizing ratio in

comparison to the frame’s original spatial dimensions.

3. Bandwidth Adaptive FCFS (BA-FCFS): Multi-resolution frames generated by

BACT deployed at the camera processed in a FCFS manner at the edge for DNN

inference.

4. Bandwidth Adaptive Uniform-M (BA-Uni-M ): Multi-resolution frames gen-

erated by BACT deployed at the camera packed into uniform grids at the edge for

DNN inference.
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3.4 Evaluation

I first describe how the bandwidth and resource adaptive mechanisms of RA-MOSAIC

impact the throughput-accuracy tradeoff for dynamic workloads featuring a variety

of object sizes and camera perspectives, for both drone-based pedestrian detection

and automatic license plate recognition tasks. I also conduct ablation studies to

isolate and understand the impact of each of the dynamic adaptations to RA-MOSAIC

processing pipeline.

3.4.1 Pedestrian Detection Application

I vary (i) M , the number of cameras deployed in each experiment and (ii) r, the

bandwidth-determined pixel budget ratio describing the amount of resolution down-

sampling applied to the camera frame before transmission, to observe RA-MOSAIC’s

resource adaptations described in Sections 3.2.1 and 3.2.2, and their impact on the

throughput-accuracy tradeoff. I select three scenarios to showcase RA-MOSAIC’s

system performance and gains over a variety of real-world scenarios. First, an ideal

scenario featuring high workloads at the edge from M = 6 cameras with each camera

transmitting camera frames under no bandwidth restrictions, represented by a pixel

budget r = 1. Second, a less ideal scenario with similarly high workloads from

M = 6 cameras, with each camera transmitting frames in a bandwidth-constrained

environment, represented by a pixel budget r = 0.5. Third, a similarly bandwidth-

constrained scenario (pixel budget r = 0.5) but with the edge processing a lower

workload represented by M = 3 cameras. I show how RA-MOSAIC always out-

performs competitive baselines, across this diversity of workloads and bandwidth

conditions.

High Workload and No Bandwidth Restriction: I first evaluate the Pedestrian

Detection baseline in an ideal setting with M = 6 cameras, the maximum supported

workload on a single edge-device for this dataset, described earlier. Figure 3.9

plots the throughput-accuracy tradeoff where (i) all M = 6 cameras are active,
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(ii) adequate bandwidth is available for transmission across all M = 6 cameras

(i.e. a pixel budget ratio of r = 1), and (iii) DNN inference is conducted with a

batch size of b = 1. Processing each of the BACT frames from M = 6 cameras

sequentially, the bandwidth adaptive FCFS (BA-FCFS) baseline achieves the highest

accuracy of 79.9% as each BACT frame is resized to fit into a 640 × 640 canvas

frame for inference, but suffers a lower throughput of 3FPS per camera. RA-MOSAIC

on the other hand achieves comparable accuracy with ≤ 1% loss while achieving

5.6× or 566.67% higher throughput for M = 6 cameras, achieving 20 FPS on

average per-camera (cumulatively, an impressive 120 FPS!). Uniform-M for M = 6

cameras (depicted as Uni-6) and bandwidth adaptive Uniform-M (BA-Uni-6) suffer

a throughput loss of 5% with 19 FPS achieved per-camera while sacrificing 8.1%

and 7.7% accuracy, respectively, compared to RA-MOSAIC. Compared to MOSAIC,

RA-MOSAIC achieves (i) an 11.11% higher throughput of 20 FPS on average for each

camera (cumulatively 120 FPS across M = 6 cameras) due to workload adaptations

and (ii) a ∼1% higher task accuracy due to the bandwidth adaptations even when no

throughput restrictions are applied. This goes to show the value of the resolution

preservation capabilities of the BACT pipeline operating at the camera, even while

operating in the best possible transmission environment.

Figure 3.9: RA-MOSAIC Throughput-vs-Accuracy for pedestrian detection, high
workload from M = 6 cameras with no bandwidth restriction
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High Workload with Bandwidth Restriction: In a bandwidth-constrained envi-

ronment with an operating pixel budget ratio r = 0.5, I start to observe diverging

system behaviours between MOSAIC and RA-MOSAIC even when processing high

workloads from M = 6 cameras, illustrated in Figure 3.10. Due to the bandwidth-

adaptive pixel preservation techniques of the BACT pipeline, RA-MOSAIC achieves

a 14.3% and 17% gain in accuracy while also maintaining an average throughput

gain of 11.11% and 5% over MOSAIC and BA-Uniform-6 respectively. In effect,

RA-MOSAIC appears to push the Pareto frontier for both accuracy and throughput

objectives.

Figure 3.10: RA-MOSAIC Throughput-vs-Accuracy for pedestrian detection, high
workload from M = 6 cameras with bandwidth restriction (r = 0.5)

Low Workload with Bandwidth Restriction: Lower workloads from M = 3

cameras would allow the WACC pipeline at the edge to adaptively choose smaller

canvas sizes on average so as to reduce the incurred processing latency and in-

crease throughput. This can be seen in Figure 3.11 where RA-MOSAIC significantly

outperforms MOSAIC with a (i) 22.22% gain in throughput to 22 FPS per-camera

(cumulatively 66 FPS) and a simultaneous (ii) 15% gain in accuracy, showcasing how

the bandwidth and workload adaptations from the BACT and WACC pipelines work

in tandem to provide the best possible gains in the throughput-accuracy trade-off

continuum.
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Figure 3.11: RA-MOSAIC Throughput-vs-Accuracy for pedestrian detection, low
workload from M = 3 cameras with bandwidth restriction (r = 0.5)

3.4.2 License Plate Recognition Application

Significant gains in OCR capability are also observed in the License Plate Recog-

nition application, with the resolution adjustments of the BACT pipeline reducing

the character error rate (CER) by 9% in bandwidth unconstrained environments

r = 1 (Figure 3.12), and by 26% in bandwidth-constrained environments r = 0.5

(Figure 3.13) when compared to MOSAIC for M = 3 and M = 2 respectively.

RA-MOSAIC also showcases on average a 11.11% gain in throughput (20 FPS per

camera) across both high and low workloads from M = 3 and M = 2 cameras

respectively, illustrated in Figures 3.12 and 3.13 respectively.

3.4.3 Comparative Study with Batched Processing of RoI Tiles

A widely used alternative to canvas-based processing is criticality-aware batched

processing of extracted RoI tiles/patches [94, 61, 95]. Batched processing allows a

single DNN inference cycle to be simultaneously used for multiple inputs, facilitating

parallelism and more efficient use of the available GPU resources. However, one key

limitation of such batched processing is that all input images within a single DNN

cycle must be of the same spatial dimensions for DNN inference. This requirement
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Figure 3.12: RA-MOSAIC Throughput-vs-CER for license plate recognition, high
workload from M = 3 cameras with no bandwidth restriction

stands in contrast to the dynamic RoI tile resizing strategy (within each tile’s indi-

vidual spatial sizing bound) adopted by canvas-based processing exhibited by both

MOSAIC and RA-MOSAIC. I now explore the impact of this difference in terms of

the achievable mean task accuracy for pedestrian detection. I first profile the DNN

inference times offline for various {RoI tile size, batch size} combinations as well as

average inference time for a fixed size 640× 640-sized canvas frame on the Jetson

TX2 edge device [108]. Subsequently, in the online evaluation of batched inference,

I select the appropriate combination of {tile size, batch size} for the available t tiles

that are selected across M cameras for batched DNN inference so that the DNN

execution cycle at the edge ends no later than the DNN inference over one 640× 640

fixed-size canvas frame. By relaxing RA-MOSAIC’s workload-aware adaptations, I

allow for fair comparisons over batched inference, MOSAIC with batch size b = 1,

and RA-MOSAIC (natively b = 1), highlighting the value of bandwidth-aware multi-

resolution adaptations exercised by RA-MOSAIC in its BACT processing pipeline.

I conduct this evaluation in a bandwidth constrained environment by limiting the

available pixel budget to r = 0.5.

Figure 3.14 plots the achievable mean accuracy (i.e. mAP@0.5) from batched

processing, MOSAIC processing, and RA-MOSAIC processing over M ∈ (1, 2, 4, 6)
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Figure 3.13: RA-MOSAIC Throughput-vs-CER for license plate recognition, low
workload from M = 2 cameras with bandwidth restrictions (r = 0.5)

Figure 3.14: RA-MOSAIC:Accuracy vs number of cameras processed for different
RoI processing methods under bandwidth constraints

camera simultaneous camera streams. I see that the bandwidth adaptations utilized

by RA-MOSAIC enables a 26.9% gain in accuracy over batched inference even when

processing a single M = 1 camera stream in a bandwidth-constrained environment.

As the number of cameras supported (i.e. M ) increases, I see a significant ≥ 60%

degradation in the achievable accuracy from batched inference of M = 4 and M = 6

camera streams due to the dual challenges from (i) uniform down-sampling of images

to fit the required pixel budget, and (ii) the requirement that all RoI tiles be of the

same input dimension for batched DNN inference. In contrast, RA-MOSAIC’s object
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detection capability remains effectively unchanged, demonstrating its resilience to

object/tile resizing for DNN inference due to the resolution preservation from the

BACT pipeline and the non-uniform tile resizing strategy during canvas construction.

3.4.4 Ablation Studies

Impact of Bandwidth Adaptive Camera Transmission on Task Accuracy

BACT redistributes pixels from less critical regions of the frame to more critical

regions which might contain high-priority objects while adhering to a pre-determined

pixel budget. To more carefully observe the impact of criticality-awareness at the

camera on mean accuracy, I therefore evaluate BACT-resizing vs. uniform resizing,

for varying values of pixel budget ratio r. As seen in Figure 3.15, criticality-aware

BACT resizing preserves pixel resolution for the more critical regions of the frame,

thereby boosting object detection accuracy by ∼ 2% (compared to uniform resizing)

even when r = 1. I conclude that BACT is always superior to uniform resizing due

to the redistribution of pixels to more critical areas of the frame, with objects gaining

pixel density and resolution. Moreover, as r decreases up to 0.3 (tighter pixel budget),

BACT accuracy is relatively stable and can exceed the mAP of uniform resizing by

as much as 40%. For low-power, low-bandwidth deployments, RA-MOSAIC can

thus allow the camera node to reduce the data transfer overhead by up to ∼70%,

without sacrificing DNN task accuracy.

Impact of Workload Adaptive Canvas Construction on Throughput

I observe RA-MOSAIC’s dynamic and instantaneous adaptation to varying workloads

by observing the canvas size that is selected by the WACC pipeline for the t available

tiles. Such workload variation is generated, for the Okutama-Action dataset, by

dynamically introducing an additional camera for processing at the edge, increasing

from M = 2 camera streams to M = 3 camera streams. Illustrated in Figure 3.16, I

see the how the canvas size chosen varies even with M = 2 camera streams, arising
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Figure 3.15: Pixel budget ratios vs
mAP@0.5 for naive and bandwidth
adaptive resizing methods at the cam-
era

Figure 3.16: Workload Adaptations in
RA-MOSAIC WACC pipeline when a
camera is added for edge processing

out of fluctuations in the observed workload from the perceived number of objects

and resulting RoI tiles across both cameras. I observe that the corresponding WACC

processing throughput achieved over the M = 2 camera streams also fluctuates

depending on the canvas size selected for inference, varying between 24 to 23 FPS

for canvas sizes between 288×288 and 416×416. I can better observe RA-MOSAIC’s

workload adaptations from the WACC pipeline when a new camera is added for

processing at the edge as the resulting canvas sizes selected for the new and increased

workload “blooms” between 480× 480 and 544× 544, resulting in a slightly lower

21.23 to 20.82 FPS average throughput.

3.5 Discussion

Alternative Strategies to Tackle Variable Workloads: In this chapter I showed

how a canvas-based perception pipeline can adapt to lower workloads by opportunis-

tically adopting smaller canvas sizes to yield faster processing throughput. Another

strategy to deal with lower workloads is to allow the ingest of more camera streams

to consistently maximize the canvas volume and GPU resource. Such a strategy

would yield similar performance trade-offs as shown by the MOSAIC pipeline in

Chapter 2. However, to realise such a strategy, the perception pipeline would need to
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be supplemented by a fog-level multi-edge application logic which monitors work-

loads across multiple such edge nodes to redirect camera streams to an edge node

processing lower workloads. While out of the scope of this thesis, I hypothesize that

classical distributed systems mechanisms for workload stealing or sharing similar to

the latency-aware mechanisms shown by Yi et. al. [157] could address this need.

Canvas-based Processing of Spatiotemporally Correlated Multi-Camera

Streams: In the case of multi-camera systems with established spatial overlap

between cameras, multiple objects may be visible from different camera streams

at different observer-object distances, angles, and perspectives. With respect to the

MOSAIC pipeline at the edge (shown in Figure 3.5), there arises the opportunity to

further fine-tune the spatial sizing bounds used for canvas construction based on (i)

appearance of object across multiple intra-camera and inter-camera frames (ii) need

for shorter or longer detection periodicity (i.e. how often an object is included on the

canvas frame for inspection). Such modifications to the criticality and application de-

pendant spatial sizing bound can certainly expand the functionality of RA-MOSAIC’s

system to a more diverse range of applications. I describe changes to the pipeline to

accommodate such camera deployment characteristics in Chapter 4.

Considering Object/RoI Arrival Patterns: Different objects may arrive and tra-

verse the sensing field at different physical velocities resulting in variable pixel

displacements between successive frames that contain the object. Modelling object

arrivals could help further fine-tune the selection of critical tiles across all objects

sensed from M cameras. Such estimation is dependent on variables like object class,

object-camera distance, camera extrinsic calibration, and might benefit from the

integration of physical models to model object motion. However, to preserve high

DNN inference throughput, any such sophisticated modeling will need to remain

computationally lightweight. This thesis does not explicitly model object arrival

times into the perception pipeline, leaving such modelling of object arrival times as

an open problem.

Real-time Adjustment to Available Wireless Bandwidth: In the Bandwidth-Aware
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Camera Transmission (BACT) pipeline, I introduce the pixel budget as a meta-

variable representing available network bandwidth. I show how the BACT pipeline

takes this pixel budget as a constraint to create appropriate multi-resolution images

which focus available bandwidth on regions of the frame that contain potential

regions of interest, and also show in Section 3.4 how this optimization improves

achievable DNN task accuracy even in bandwidth restricted environments. However,

in the construction of the BACT pipeline, I make an important assumption that this

pixel budget meta-variable is determined in real-time by a lightweight mechanism

operating at the camera, which estimates image transmission latency from heartbeat

pings to the edge device to determine available up-link bandwidth, similar to prior

works such as Chameleon [73] by Jiang et. al.

Variations in System Design: I also expect that the following variations in system

design could be built into RA-MOSAIC: (i) Accuracy-Aware Canvas Construction,

where tiles are prioritized and mapped to canvas frames inferred upon by a zoo of

models, chosen from a throughput-accuracy tradeoff continuum, and (ii) Hetero-

geneity of Compute where canvas frames are built and mapped to an available mix

of CPU/GPU/VPU/TPU hardware for differentiated quality of service to different

tiles/cameras. I leave these for future work.

Canvas-construction for Other Applications: In addition to DNN-based inference

over composite canvas frames constructed from multiple input camera streams,

another intriguing application for canvas construction could be in long-term storage

of surveillance videos. Currently, videos are either stored in high resolution or

compressed for long term archival purposes, amounting to significant volumes

of stored data. Canvas frames featuring key objects of interest constructed from

multiple cameras could achieve multiplicative savings in storage needs over time. I

hypothesize that generative vision models could be trained to fuse objects recovered

from canvas frames with a static frame from the original camera stream to reconstruct

object {appearance, motion} over time to recreate in a sense, the original camera

stream. While such reconstruction is intuitively feasible for static cameras, more
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exploration would be required on the feasibility of reconstruction of similar videos

from cameras in motion (such as those mounted on autonomous cars, robots, and

drones). Such a research direction is out of scope of this thesis but presents interesting

paradigm shifts for applications outside the domain of real-time processing.
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Chapter 4

Exploring a Temporal Degree of

Freedom: JIGSAW

In this chapter, I introduce a temporal degree of freedom in the Canvas-based

Processing paradigm to provide further flexibility to schedule “when” the perception

pipelines (re)selects critical stimuli or regions of interest for (re)inspection. However,

such a scheduler stands the risk of artificially introducing a temporal lag between

when a critical stimuli is captured by the camera and when it is inferred upon by

the DNN, which can cause a significant time lag between the state of the physical

world and that estimated by the perception pipeline. To this end, I utilize the concept

of streaming latency, which explicitly accounts for object localization latency and

object localization accuracy, to develop techniques that allow the perception pipeline

to stay abreast of real world kinematics.

4.0.1 Streaming Perception and Canvas Construction

Fast and accurate machine perception is a cornerstone for many real-time “streaming”

urban applications, such as camera based vehicular tracking and real-time collision

avoidance [5, 61]. While modern DNN-based vision models offer high accuracy, their

high computation demands are less favorable to ‘fast’, real-time perception [5, 86],

especially on resource-constrained edge devices. This generates a tension between
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edge computing and streaming perception: while edge-based processing is critical to

reduce the transmission latency and bandwidth for high-volume data streams, the

higher processing latency on edge devices can lead to a dissonance between the

state of the physical world and that perceived by DNN-based inference algorithms.

More specifically, considering a vision-based object localization task, streaming

perception frameworks need to optimize both the accuracy and latency of machine

perception. The recently proposed streaming perception paradigm [86] explicitly

considers this need to balance object localization accuracy and latency, selectively

discarding frames to maximize a novel streaming accuracy metric, illustrated in

Figure 4.1. As the Figure shows, if the frame capturing the location of the vehicle

at ϕ(ti) is processed by the perception pipeline with a latency δ = ti − ϕ(ti), the

inference is available only at time ti. At that time, the state (location) of the vehicle

may have evolved significantly since the time instantϕ(ti); as a consequence, even if

the object detection accuracy is 100%, the streaming accuracy is degraded due to the

difference between the inferred location and the actual ground truth location at time

ti.

State-of-the-art techniques for reducing the inference latency for vision percep-

tion tasks adopt one of the following approaches: a) Utilize lightweight, smaller DNN

models, typically with lower input resolution, that have lower processing latency

but suffer from reduced task accuracy; (b) Adopt an imprecise computing paradigm,

aborting DNN execution at intermediate layers (often with reduced accuracy) to

meet a processing deadline [80, 24]; (c) Employ system designs, such as intelligently

reducing the resolution or frame rate of input camera streams [146, 32]. These

approaches, however, all tackle individual sensor streams in isolation, without con-

sidering multi-camera deployments and potential spatiotemporal correlations across

sensors, and do not aim to directly maximize “streaming accuracy”.

This mismatch between edge resources and streaming perception needs is further

amplified in multi-tenancy deployments, where a single GPU-equipped edge device

(e.g., a Jetson TX2) concurrently executes DNN-based perception over video streams
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Figure 4.1: Streaming Perception: When DNN inference completes with tinf latency,
the car has moved (green box) from its predicted location (magenta box). Stream-
ing perception queries the state of the predicted world at time ti and matches the
groundtruth yti with the latest available prediction i.e. ŷϕ(ti).

from multiple N ≥2 vision sensors. To mediate the contention for shared GPU

resources across such N streams, exemplar approaches such as MOSAIC introduced

in Chapter 2 and TETRIS [132], utilize the concept of spatial multiplexing, effectively

arbitrating among multiple spatial regions across N distinct frames generated by

the vision sensors. The MOSAIC system in Chapter 2 introduces the concept of

canvas frames, a unit of shared 2D pixel space that is sized to ensure sufficiently

high DNN processing throughput. However, pure spatial multiplexing approaches

are unsuitable for streaming perception across multiple camera feeds, as they do not

directly consider the latency impacts of stream processing.

In this chapter, I build on the canvas-based spatial multiplexing paradigm, exem-

plified by MOSAIC and RA-MOSAIC, to develop JIGSAW, a technique that explicitly

optimizes edge DNN-based inference for multi-camera streaming applications,

such as traffic surveillance. While JIGSAW builds upon the conceptual model of can-

vas frames, it possesses two key novel features. (a) First, it significantly extends the

notion of canvas-based spatial multiplexing to support spatiotemporal multiplexing.
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Figure 4.2: JIGSAW Overall Functionality: (a) Multiple spatially overlapped cam-
eras deployed at a traffic intersection are processed by a single edge device (b) At
DNN inference time Ti, estimated regions of interest (tiles) are extracted at their
appropriate scale from the source camera frames and (c) evaluated for their utility to
the streaming perception task before being packed onto a canvas frame.

In this new paradigm, sequences of frames arriving from multiple camera sensors

are pre-processed to not only share the pixels within a single canvas frame, but are

also differentially interleaved in time (and even dropped) to optimally utilize pixels

across multiple consecutive canvas frames. (b) Second, it explicitly accounts for the

reality that multi-camera urban deployments often exhibit non-trivial spatial overlap

between cameras. Such overlap implies that multiple cameras sometimes monitor

the same object from different perspectives and thus possess a level of information

redundancy. JIGSAW monitors and exploits such object-level redundancy to reduce

the number of regions of interest, across the N camera streams, that must be squeezed

within individual canvas frames, thereby improving the system’s maximum camera

capacity.

JIGSAW fundamentally utilizes the spatiotemporal redundancy in a multi-camera

setting to both (a) increase the admissible camera capacity, and (b) improve the

edge device’s throughput vs. accuracy trade-off. Figure 4.2 illustrates the high-level

operation of JIGSAW. Frames from different camera sensors are processed, using

very lightweight techniques, to create a set of tiles (Figure 4.2(b)), indexed by each

unique object in the sensing field, that capture an object at multiple spatial scales and

possibly from multiple perspectives. A subset of such tiles, corresponding to multiple
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different objects, are then packed into a sequence of canvas frames (Figure 4.2(c))

after suitable curation (including potentially discarding all tiles for some objects)

and resizing, with DNN inferencing then executed on this sequence of composite

canvas frames. Conceptually, while MOSAIC previously addressed the question

of how to spatially apportion a shared canvas frame across multiple object-specific

tiles, JIGSAW additionally determines (a) when and (b) what regions of interest

from different camera sensor streams should be multiplexed on to a shared canvas.

Using the benchmark CityflowV2 multi-view traffic surveillance dataset [134], I shall

show how JIGSAW effectively creates a unified, autonomous system for streaming

intelligence that can simultaneously handle (i) real-world variations in object density

and kinematics, (ii) varying degrees of spatial overlap between different camera

views, and (iii) heterogeneity in camera frame rates and resolution.

4.0.2 JIGSAW: Key Contributions

In this chapter, I make the following key contributions:

• Judiciously exploit multi-camera spatial overlap: I show how JIGSAW identifies

the distinct set of tiles (sub-regions), across multiple camera sensor streams with

partial spatial overlap, associated with an individual object and then judiciously se-

lects what subset will best balance computational overhead and perception accuracy.

By developing a utility maximizing formalism for such subset selection, JIGSAW

offers a superior accuracy-vs.-overhead calculus compared to prior extremes that

either (a) effectively partition the sensing field across cameras (e.g., [56]), selecting

only one tile and discarding others to save computation, or (b) include all tiles

across cameras (e.g.,MOSAIC), to maximize perception accuracy while ignoring

computational cost. Empirical results on the CityflowV2 [134] dataset shows

that (i) compared to (b), JIGSAW effectively reduces the number of tiles/pixels

contending for DNN inferencing by 32% with a 4.3% gain in accuracy, and (ii)

compared to (a), JIGSAW offers 9.55% improvement in task accuracy with only
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2.3 ms higher tile processing overhead on average.

• Develop a spatiotemporal pipeline for maximizing multi-camera streaming ac-

curacy: I show how JIGSAW uses a multi-stage, computationally lightweight

pipeline to both compute when object specific tiles should be scheduled for DNN

inferencing and how such tiles should be spatially combined/squeezed into in-

dividual shared canvas frames. Using a lightweight per-object tracker, JIGSAW

dispenses with the paradigm of scheduling every incoming frame (object tile) for

DNN inferencing and instead adopts a priority-based scheduler technique to sched-

ule object-level inference intermittently. To subsequently fit selected candidate

multi-view tiles, across multiple objects, into a single canvas frame, JIGSAW uses

an enhanced inverse-bin packing algorithm that explicitly differentiates between

mandatory and optional multi-view tiles. By providing greater flexibility in tile

selection, JIGSAW avoids the small-object problem (especially when N is large)

where too many tiles are packed onto the canvas frame leading to loss of object

distinguishability and detectability. Experimental studies on CityflowV2 show that,

for N = 25 cameras, JIGSAW’s bin-packing achieves 28.7% greater streaming

object recall (sAR) when compared to MOSAIC which naively packs all tiles from

all cameras into a canvas frame.

• Quantify JIGSAW’s performance gains and flexibility: I use an Nvidia Jetson

TX2-based [108] implementation of JIGSAW to quantify its superior performance.

Using CityflowV2, I show that, in contrast to a baseline FCFS processing (where

each incoming camera frame is processed separately), JIGSAW can simultaneously

process 25 cameras on a single GPU with a 66.6% increase in accuracy and a

simultaneous 18x gain in throughput to 19 FPS per camera (cumulatively 475 FPS)

on a single TX2. Likewise, in contrast to MOSAIC (where all incoming frames are

spatially multiplexed into a canvas frame, but without consideration of multi-view

redundancy), JIGSAW achieves 42.3% increase in streaming perception accuracy

without any loss in throughput.
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• Demonstrate Adaptation to Dynamic Workloads & Network Conditions: I show

how JIGSAW adapts to real-world variability of the underlying wireless network,

providing 65.1% increase in accuracy and a simultaneous 14x gain in throughput

to 15 FPS per camera (cumulatively 375 FPS) across 25 cameras on a single GPU.

In addition, JIGSAW can seamlessly handle heterogeneity in camera frame rates:

in a simulated bandwidth constrained wireless environment for CityflowV2 with

N = 25 cameras, where 12 cameras operate only at half their original frame rate,

JIGSAW achieves ∼54.9% gain in streaming perception accuracy compared to

FCFS.

4.1 JIGSAW Design Overview

I now describe JIGSAW’s edge-based, spatiotemporally aware streaming perception

pipeline. Figure 4.3 (best viewed in colour) illustrates the components. At a high

level, JIGSAW is guided by a Dynamic Scheduler (DS) that orchestrates between

the different pipeline components. A per-camera object tracker OTi, executing

independently for each i ∈ {1, . . . , N} camera, processes all frames from the ith

stream to maintain an updated time-stamped estimation of the sensed physical world.

If DS determines that the ongoing DNN inference cycle is nearing completion, DS

signals each “Per-Camera Operation” to (a) decompose its most recent camera frame

into a set of tiles that extract objects of interest (OoI) at their appropriate scale,

and (b) evaluate each tile’s utility to the streaming perception accuracy metric. The

“Cross-Camera Operation” then consolidates objects/tiles across all cameras using a

Cross-Camera Tile Mapping database and classifies such tiles as either {Mandatory,

Optional}. These set of tiles are then prioritized and down-selected, before being

Inverse Bin Packed [35] onto the canvas frame for inference, with the resulting

detected bounding boxes then post-processed for translation to the coordinates of

the original camera frame(s). Lastly, the per-camera trackers update all associated

objects with the detection confidence and inference timestamp before the next cycle
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Figure 4.3: JIGSAW’s system block diagram (Best viewed in colour). JIGSAW pro-
cesses spatially overlapped multi-camera streams (such as from a traffic intersection)
with Per-Camera (in orange) and Cross-Camera (in green) run-time operations, with
assistance from databases (in blue) built offline prior to deployment

of canvas construction is initiated.

4.1.1 Design Choices

To achieve its goal of maximizing the streaming accuracy metric under diverse real-

world artifacts, JIGSAW dispenses with the common practice of using object-specific

deadlines, which typically are not generalizable and depend heavily on dataset distri-

butions, observer-object distance, physical velocity, and camera angle/perspective.

Instead, JIGSAW evaluates the state of the observed world just prior to canvas con-

struction to determine the marginal utility of including specific objects in the canvas

frame. Such a design is accommodating of hardware or network heterogeneity, which

can require JIGSAW to support camera streams with varying frame rates. Finally,

JIGSAW makes no a-priori assumption on either the presence or absence of overlap

between cameras and can operate seamlessly under different deployment conditions.

4.1.2 Dynamic Scheduler

The Dynamic Scheduler (DS) orchestrates the execution of other sub-components

to support canvas-based streaming perception across the N cameras. DS is based
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Figure 4.4: Conceptual schedule of JIGSAW’s edge-based streaming perception
components

on the key observation [86] that the physical world changes dynamically during

DNN inference, and that streaming perception is thus often enhanced by skipping

prior, stale frames and instead running timely inference on more recent frames.

Accordingly, to minimize processing latency, DS occasionally performs idle-wait,

preserving GPU cycles for anticipated fresher frames (instead of processing stale

frames). Figure 4.4 illustrates the non-work conserving DS operation where it uses

estimated DNN inference latency to decide whether or not to (a) stitch a new canvas

frame from N cameras, (b) discard stale frames after the initial processing described

in Section 4.1.3, or (c) idly wait for the imminent arrival of fresher frames.

4.1.3 Per Camera Operation

JIGSAW uses a per-camera frame ingest pipeline (orange components in Figure 4.3)

to pre-process frames from N cameras in parallel. The ith ingest pipeline receives

the latest frame transmitted from camera Ci and prepares it for downstream canvas-

based inferencing, while also maintaining a per-frame representation of the perceived

state of the physical world. Objects in motion are estimated using a background

subtraction mechanism and the resulting bounding boxes are updated using a Kalman

Filter-based Centroid tracker. The tracker maintains a memory function over the

last N time-stamps (N is a user-defined variable, default=5) and retains objects in

memory even if are missed by the background subtraction mechanism (for example,

if they are stationary for brief periods).

Tiling Scales per Camera: JIGSAW adopts MOSAIC’s mechanism of decomposing
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each frame into a bag of tiles (at multiple spatial scales), each of which may contain

objects of interest (OoI). This tiling operation is performed on-demand, once DS

decides to proceed with canvas construction, using the freshest (most recent) camera

frames.

The number of tiles and their scale dimensions are first computed offline and then

asynchronously updated during a periodic profiling phase executed every T minutes

(depicted in blue in Figure 4.3). Full frame detection, on a subset of frames from

camera Ci, is used to profile the observed OoI size (i.e. {height, width}) distribution.

This OoI size distribution is clustered by a K-Means algorithm with an elbow detector

to determine a suitable value of k or the number of tiling scales required by camera Ci,

similar to the mechanism detailed in Chapter 2. Such profiling-based choice of tiles

ensures that JIGSAW generates tiles that can encapsulate OoI at their appropriate

scale. It is important to note that an OoI–tile mapping can be many-to-many: a single

OoI may be contained in multiple tiles, at different scales, while a single tile can

contain multiple objects.

Evaluating Tile Utility: After creating such per-object, OoI-tile mappings, JIGSAW

next evaluates the marginal utility of each tile for each contained object. Given the

desire to both maximize accuracy and minimize the latency impacts of executing

inference on the set of selected tiles, I split the calculation of such a marginal utility

into two sub-operations. Within the the per-camera pipeline, the first-half of the

utility function estimates the object detection confidence that can be achieved for

each tile (and its contained OoI(s)) from camera Ci if it were to be included onto

the canvas frame, without being squeezed. I define the tile utility as the ratio of this

estimated confidence of the OoI-tile pair to the area consumed by the tile without any

squeeze on a canvas frame. This enables JIGSAW to prioritize those tiles that provide

the highest detection confidence for an encapsulated object while also moderating

the object’s canvas utilization, allowing fair space allocation across all selected

tiles during canvas frame construction. JIGSAW also estimates the tile-specific

spatial sizing bound (min & max), violating which would drastically reduce the
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detection accuracy. This sizing bound is empirically evaluated to (1x, 1.1x) for the

smallest-scale tile, (0.7x, 1.2x) for the next/medium scales of tiles and (0.5x, 1x)

for the largest-scale tile. Intuitively, smaller tiles would suffer the largest drop in

accuracy if they are squeezed to smaller dimensions during canvas construction;

conversely, excessive upscaling would lead to excessive pixellation. In contrast, the

detection accuracy for medium and large tiles is much more robust to resizing. The

second-half of the utility function seeks to minimize per-object processing latency

by prioritizing “older” objects (for which DNN inference has not been executed

recently) for inclusion on the canvas frame. However, this latency-based utility must

be evaluated over all unique objects across all N cameras, as described later in

Section 4.1.4.

Predicting OoI-Tile Detection Confidence: To estimate the detection confidence

for every OoI-tile pair, I utilize a Random Forest Regressor (RFR) [129] trained

offline using ground-truth features from all cameras views of the CityflowV2 dataset.

The RFR estimates an object’s detection confidence obtained for the object, when

inference is performed using YOLOv5s model, the default model in the JIGSAW

implementation. The RFR predictor, is trained using training and testing samples

of 110,730 and 36,910 unique object-tile pairs, respectively and uses the following

covariates: (i) OoI width & height (ii) ratio of OoI width to OoI height (iii) OoI

area (iv) tile width & height, (v) tile area (vi) ratio of object width—height—area to

tile width—height—area, respectively (vii) tile coordinates in the original camera

frame (i.e. tilexmin & tileymin), and (viii) object class. The RFR model achieves

an accuracy of 91.46% and a Mean Absolute Error (MAE) of 5% for the predicted

detection confidence per object-tile pair. Feature analysis shows that object aspect

ratio (OoI width to height ratio) has the highest feature importance=15%, whereas

11% for tilexmin (which effectively serves as a proxy for the vertical position of the

object relative to the camera’s pose) has the second highest feature importance=11%.

I empirically observe that the detection confidence of the object not only relies

on the object and tile characteristics, but also on macro-characteristics such as
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object orientation and perspective which cannot be estimated using background

subtraction at runtime. However, I generalize that certain regions in a camera frame

might consistently observe object features that are better predictors of the detection

confidence. For example, a camera mounted on a traffic light may observe the

features of the bonnets or side-views of cars which are better predictors of vehicle

class objects when compared to the rear-ends or fish-eye perspectives of the cars.

The position of the object-tile pair in the camera frame, represented by tilexmin

and tileymin features, are a good approximation of such phenomena, with a feature

importance of 11% for tilexmin to the criterion. This is second only to object aspect

ratio (OoI width to height ratio) with feature importance of 15% representing another

approximation for the observed perspective/angle of the object in that camera field

of view (FoV).

At runtime, JIGSAW evaluates the OoI-tile mappings from camera Ci to estimate

the detection confidence per OoI-tile pair, the resulting tile utility relative to canvas

frame utilization, and the spatial sizing bounds of the tile. Every camera then Ci

opportunistically submits the per-object top-k (user-defined, default k = 1) tiles of

the highest utility to JIGSAW for canvas construction, representing its best possible

estimation of the physical world in its FoV.

4.1.4 Cross Camera Operation

Cross-Camera Tile Mapping Database: Once the per-camera pipelines have

culminated, JIGSAW collates the OoI-tile mappings across all N cameras. Due to

the possible spatial overlap among camera views, certain objects may be visible in

frames generated by multiple cameras, and thus captured via OoI-tile mappings of

varying utility. A Cross-Camera Tile Mapping database therefore assists JIGSAW in

matching such tiles, corresponding to the same object, across all N cameras. This

database (depicted in blue in Figure 4.3) is pre-computed prior to system deployment

by applying object-ReID algorithms over time-synchronized frames across each of
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(
N
2

)
camera pairs. However, at run time, trying to match objects across N − 1

cameras would incur high latency. To alleviate this issue, I divide each camera

frame into 120 × 120 (= gcd(imgwidth, imgheight)) non-overlapping super-regions

and register the matched pairs of objects to a single super-region in their respective

camera frames. The database then stores a record of super-region tuples that are

observed to share views of at least one physical object.

At runtime (depicted in green in Figure 4.3), JIGSAW assembles the cross-camera

mapping for each object with pairwise evaluation of cameras that have valid super-

region tuples. For the ‘source’ camera, JIGSAW constructs a spatial quadtree index

of super-regions and performs an intersecting box search, for each OoI, with its

constituent tiles. The super-region that intersects with the object tile is used as a key

in the database to retrieve the corresponding super-region in the ‘destination’ camera.

A similar quadtree based intersecting search, using this retrieved super-region, is

used to identify the tiles that intersect with this super-region. As a single tile may

contain multiple OoIs, JIGSAW then uses a SIFT feature descriptor to find the closest

matching unique object in such tiles. At the end of this computationally-efficient

matching process, JIGSAW computes, for each unique OoI, a collection of tiles

(across multiple camera views) containing the object.

Tile Prioritization: For every unique OoI, JIGSAW classifies the tile providing the

highest utility (out of all the OoI-tile mappings collected across N cameras) as the

mandatory tile, with the other tiles being labeled as optional. The resulting elements

of the set of mandatory tiles (with cardinality equal to the set of unique objects) are

then prioritized in decreasing order of the “object age” metric maintained by the

object tracker. This age is computed as the difference between the timestamp of

the last DNN inference performed on any instance of the OoI and the timestamp at

which the object’s location was last approximated using background subtraction.

Canvas Frame Construction: JIGSAW then uses a meta-heuristic approximation

of an Inverse Bin Packing algorithm [35] to squeeze as many tiles, across the N

cameras, onto the canvas frame of fixed volume. JIGSAW aims to balance two
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conflicting requirements: (i) the need to process all high-priority objects observed

across all cameras to ensure high streaming accuracy, while (ii) ensuring that each

bin-packed tile (and the contained object instance) is not squeezed dramatically to a

level where the object detector confidence is dramatically reduced.

When bin-packing tiles, JIGSAW operates by prioritizing mandatory tiles with

higher age. The age utility metric therefore acts as an implicit mechanism of

admission control that prioritizes the tiles belong to ‘older’ objects, thereby assuring

that the tracking latency does not degrade dramatically. As described in Section 4.1.1,

such a system design adapts automatically to varying class-specific processing

deadlines, while also being tolerant of differences in frame rates between cameras.

JIGSAW attempts to pack all mandatory tiles, and as many additional optional tiles

as feasible, into a canvas frame. This reflects the balance between the two conflicting

determinants of object detection accuracy: while accuracy is likely enhanced from

multiple tiles/perspectives, it is likely to be diminished if one attempts to pack

too many tiles, by squeezing individual tile dimensions, onto a fixed canvas size.

Additionally, if JIGSAW is unable to pack all mandatory tiles (e.g., when the total

number of objects is very high), the age metric will be updated for all the ‘starved’

objects so as to ensure that those objects are prioritized in the subsequent round of

canvas construction and DNN inference.

DNN Inference and Post Processing: The constructed canvas frame is then submit-

ted to the edge device’s GPU for DNN-based inference. JIGSAW then asynchronously

translates the detections (output of the DNN) to their original camera frame coordi-

nates and performs per-camera Non Maximum Suppression on the bounding boxes

to handle cases where a single OoI was included in multiple tiles from the same

camera frame. The cross-camera database is also used to additionally create ’virtual

bounding boxes’ on the frames of other overlapping cameras that may not have been

included in the canvas frames with the maximum detection confidence available

per-object across the included tiles. Finally, JIGSAW also updates all associated

per-camera trackers with these post-processed detections and the DNN inference
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timestamp (thus, updating their ‘age’ metric).

4.2 System Design

I now describe the prototype JIGSAW implementation and the process for evaluating

its effectiveness for a multi-camera streaming perception task.

Evaluation Platform and Model: I implemented JIGSAW on the NVIDIA Jetson

TX2 device, an edge computing platform that features a 256-core NVIDIA Pascal

GPU architecture with 256 NVIDIA CUDA cores and a dual CPU unit comprising of

one Dual-Core NVIDIA Denver 2 64-Bit CPU and one Quad-Core ARM Cortex-A57

MPCore module. I employ another TX2 device as a secondary edge node to enable

scalability of the system, by performing on-demand offloading of camera streams

if the total object density (across all camera streams) exceeds a predefined capacity

threshold. The secondary edge device takes ∼140-150ms to initialize and switch to

a ready-state to receive camera streams. The two TX2 devices are connected to a

desktop transmitting the camera streams using both wired and wireless connections,

illustrated in Figure 4.5. JIGSAW’s default DNN is a half-precision TensorRT

optimised YOLOv5s model, containing 7.2M parameters operating at 16.5 FLOPs

for an image size of 640x640. I size all canvas frames at 640 × 640 for DNN

inference in a batch size b = 1 (unless specified otherwise); on the TX2, this yields

an inference latency of ∼ 52ms per canvas frame or, equivalently, a throughput of

19 canvas frames per second.

Benchmark Dataset: I evaluate JIGSAW using the CityflowV2 dataset [134]. It

features 3 hours of synchronised video at 10 FPS from 40 cameras installed across 10

intersections. The dataset features a mix of scenarios, with residential and highway

traffic-flow conditions with clusters of cameras exhibiting spatial overlap in their FoV

as illustrated in Figure 4.2. I principally use scenarios ‘S01’, ‘S02’, ‘S03’, and ‘S04’

in the evaluation. Scenario ‘S01’ and ‘S02’ observe higher density and velocity in

the “highway” setting with an observed object density per second of 10.8 and 10.96
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Figure 4.5: JIGSAW’s System Test Bed with 2x NVIDIA Jetson TX2 device (prima-
ry/secondary)

respectively, and new object arrival per second of 0.6 and 1.24 across N = 5 and

N = 4 cameras respectively. On the other hand, scenario ‘S03’ and ‘S04’ observe

lower density and velocity in the “residential” setting with an observed object density

per second of 3.65 and 5.58 respectively, and new object arrival per second of 0.15

and 0.39 across N = 6 and N = 25 cameras respectively. This difference in object

density and kinematics gives an opportunity for a more nuanced understanding of

multi-camera streaming perception accuracy in various real-world settings.

Evaluation Metrics: The streaming perception paradigm introduces the metrics

of streaming average precision (sAP) and streaming object recall (sAR) [86]. Both

these metrics differ from the standard object detection evaluation metrics of Average

Precision (AP) and Average Recall (AR) in that the streaming detections are aligned

for evaluation by the time of DNN inference rather than the input frame index. In

other words, standard evaluation compares (yt, ŷt) for each frame index at time t

while streaming evaluation compares (yt, ˆyϕ(t)) where ϕ(t) is the prediction times-

tamp of the most recent prediction before time t–i.e., argmax
j

sj < t, where sj are

the time-stamps of preceding predictions. Such an evaluation jointly evaluates both

accuracy and latency of object localisation for real-time machine perception. I set

the object capacity threshold as 250 specifically for JIGSAW operation, above which

the system offloads dense camera streams to the secondary edge device.
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Evaluation Baselines: I compare JIGSAW’s performance against the following

baselines:

1. N -GPU Streaming FCFS b = 1: The evaluation baseline represents the maxi-

mum achievable streaming metric value when N cameras are mapped to N GPUs

(an ‘infinite’ GPU setting) to process fresh frames available from the camera Ci in a

First Come First Served (FCFS) fashion.

2. 1-GPU Streaming FCFS – Batching b = N : Fresh frames received from N

cameras are batched together for DNN inference by a single GPU task and evaluated

for streaming accuracy and recall. The batch size b for this baseline is equal to the

number of cameras i.e. b = N . This baseline represents a naive strategy to batch all

N frames for DNN inference and process them in parallel.

3. 1-GPU MOSAIC b = 1: I compare JIGSAW against MOSAIC which packs all

available tiles from fresh frames across N cameras onto a single canvas frame for

processing. For this baseline, I choose the streaming canvas-based evaluation setting

with batch size b = 1.

4. 1-GPU JIGSAW b = 1: JIGSAW attempts to pack onto the canvas frame all

mandatory and as many optional tiles across N cameras, but prioritized by object-

specific cross-camera spatiotemporal utility values tuned to the streaming perception

task. JIGSAW also adopts a batch size b = 1 for evaluation.

4.3 Evaluation

I first evaluate the accuracy vs. throughput trade-off achieved by the streaming per-

ception task for N cameras on a single GPU. I then explore the impact of JIGSAW’s

design decisions on streaming object recall and achieved throughput in wireless and

bandwidth-constrained environments.
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4.3.1 Streaming Accuracy vs. Throughput

Real-time perception pipelines expect that the system ensures both high fidelity

object detection and high perception throughput. JIGSAW’s system design jointly

leverages (i) the canvas-based processing paradigm to maximise the object detection

accuracy across N cameras, and (ii) the streaming perception paradigm to maximise

the perception throughput to consistently sustain 19 FPS per camera (i.e. the expected

canvas processing throughput) across N cameras on the Jetson TX2. Figures 4.6, 4.7,

4.8, and 4.9 show that for all evaluated scenarios ‘S01’, ‘S02’, ‘S03’, and ‘S04’, each

with distinct object density and arrival patterns, JIGSAW consistently outperforms the

1-GPU FCFS Batching baseline by 57.9%, 57.4%, 37.7%, and 66.62% respectively

in streaming AP (sAP) metric within each scenario. The results show that batching

frames from N cameras to support their simultaneous streaming perception on a

single GPU provides almost no benefit. For the 1-GPU FCFS Batching baseline, a

larger N implies higher resource contention due to larger batch sizes (i.e. b = N )

and proportionately higher latency (equivalently lower throughput), which in turn

causes the perception pipeline to lag behind the real world dynamics. Indeed,

the 1-GPU FCFS Batching baseline adapts to such contention by discarding an

increasing number of received frames, thereby avoiding allocating GPU resources

to unacceptably-delayed inferencing tasks. This increases the discrepancy between

the state of objects in the real world and the DNN detections, causing the IoU to

fall below acceptable limits, reducing achievable sAP for 1-GPU FCFS Batching

operation. It is important to note here that there is no linearity in the relationship

between the number of cameras N and sAP (which evaluates how the physical world

has changed during DNN inference), and is instead a function of {N , new object

arrivals rate/kinematics} which is distinct across the evaluated scenarios. In general,

this is reflected in sAP for ‘S01’ and ‘S02’ (faster object arrival rate/kinematics) and

‘S04’ (higher N ), when compared to sAP for ‘S03’ which has a lower object arrival

rate across a smaller N .
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Figure 4.6: sAP@0.5 vs. FPS per
Camera in ‘S01’; N = 5; Density:
10.8 obj/sec; Arrival: 0.58 obj/sec

Figure 4.7: sAP@0.5 vs. FPS per
Camera in ‘S02’; N = 4; Density:
10.9 obj/sec; Arrival: 1.25 obj/sec

Figure 4.8: sAP@0.5 vs. FPS per
Camera in ‘S03’; N = 6; Density:
3.65 obj/sec; Arrival: 0.15 obj/sec

Figure 4.9: sAP@0.5 vs. FPS per
Camera in ‘S04’; N = 25; Density:
5.58 obj/sec; Arrival: 0.39 obj/sec

I note that MOSAIC and JIGSAW have comparable performance when the

number of cameras/objects packed onto the canvas frame is low. Figures 4.6, 4.7, and

4.8 all show that for N = (5, 4, 6) for Scenario ‘S01’, ‘S02’, and ‘S03’ respectively,

JIGSAW and MOSAIC achieve comparable results due to the fact that JIGSAW is able

to squeeze all mandatory and most optional tiles onto the canvas frame within their

spatial sizing bounds. Qualitatively, I observe that JIGSAW packs ∼ 32% less tiles

than MOSAIC due to the cross-camera per-object matching and utility evaluation,

thus allowing each packed tile to acquire slightly larger dimensions in-turn resulting

in a∼ 1−4% accuracy gain over MOSAIC across Scenarios ‘S01’, ‘S02’, and ‘S03’.

On the other hand, when the number of cameras/objects mapped to a canvas frame is

high (Scenario ‘S04’, where N = 25), Figure 4.9 shows that JIGSAW outperforms
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MOSAIC significantly, achieving 42.3% higher streaming AP, even though both

sustain a high processing throughput of 19 FPS per camera. Qualitatively, I note

that at high workloads from N = 25 cameras, JIGSAW discards a slightly higher

percentage of 48% tiles for inclusion on the canvas frame. This is due to the age

metric of the utility function which when unable to pack all mandatory tiles from

N = 25 cameras prioritises tiles containing older OoI. This forces the Dynamic

Scheduler to evaluate newer representations (when available) for OoI that are yet

to be evaluated for inclusion on the canvas frame, causing further discard of older

representations as each OoI waits for its inclusion on the canvas frame. As anticipated,

MOSAIC’s inability to discriminate and differential schedule/discard tiles causes

it to unfairly squeeze each tile beyond its spatial size bounds, thereby leading to a

significant loss in object detection confidence (and resulting sAP). JIGSAW on the

other hand strikes a fine balance between the need to achieve high detection accuracy

and maintain streaming throughput, taking advantage of cross-camera overlap to

often avoid redundant processing. In effect, JIGSAW is able to achieve accurate

detection/tracking with a far higher camera capacity (at least 4-fold) than any prior

technique employing either FCFS scheduling or spatial multiplexing on a single

edge device, without the need for offloading camera streams to the secondary device.

Finally, I observe that JIGSAW’s performance (using a single GPU) is roughly

comparable to that achieved by the N -GPU FCFS baseline, with a < 0.127 loss in

sAP even for N = 25 cameras. In effect, JIGSAW provides significant resource

savings by multiplexing 25 streams on to a single GPU, compared to N -GPU FCFS

(which requires 25 edge devices).

4.3.2 JIGSAW’s Performance in Wireless Networks

I evaluate JIGSAW’s performance in wireless networks where the edge requests

frames from the cameras when the DS determines that a canvas frame should be

constructed for inference. Employing the Python libraries of imagezmq [23] for
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‘S01’ N = 5 ‘S02’ N = 4 ‘S03’ N = 6 ‘S04’ N = 25
sAP@0.5 FPS sAP@0.5 FPS sAP@0.5 FPS sAP@0.5 FPS

FCFS N -GPU
0.548
(↓ 0.15)

18
(↓1)

0.434
(↓ 0.199)

18
(↓1)

0.861
(↓ 0.045)

18
(↓1)

0.708
(↓ 0.11)

18
(↓1)

FCFS
Batching
1 GPU

0.144 5 0.065 6 0.517 4 0.025 1

MOSAIC
1 GPU

0.532
(↓ 0.148)

16
(↓3)

0.421
(↓ 0.169)

16
(↓3)

0.849
(↓ 0.038)

16
(↓3)

0.197
(↓ 0.071)

15
(↓4)

JIGSAW
1 GPU

0.557
(↓ 0.166)

16
(↓3)

0.436
(↓ 0.203)

16
(↓3)

0.857
(↓ 0.037)

16
(↓3)

0.676
(↓ 0.015)

15
(↓ 4)

Table 4.1: JIGSAW’s wireless system design: achievable streaming accuracy and
throughput - values in brackets indicate differences with wired system results

frame transfer and simplejpeg [46] for frame encoding, the cameras compress the

individual frames for wireless transmission. The DS factors in the additional wireless

Round Trip Time (RTT) (∼ 47− 52ms) and JPEG decoding time (4.05 ms) into its

evaluation for this pull-based system design. At the cameras, if the request from the

edge arrives before half the inter-frame interval, the camera transmits the previous

frame. This enables faster frame availability at the edge, yielding some processing

latency savings and reducing GPU idle time. Conversely, if the camera receives the

request after half the inter-frame interval, the camera waits for the fresher frame to

be captured for transmission. This decision comes at some processing latency cost as

canvas construction may not remain asynchronous (i.e. GPU may be idle for some

time), however, this cost is acceptable as the resulting sAP is not adversely impacted

owing to the receipt of the freshest frame.

With such system modifications for wireless operation, I observe that JIGSAW

continues to outperform baselines in each scenario although the overheads from

(i) wireless RTT and (ii) wait time at the camera for a fresher frame effectively

reduce the achievable throughput at the edge (down to 15-16 FPS per camera) with

minor ≤ 1% reduction in achievable streaming AP, detailed in Table 4.1. Some loss

in streaming AP can also be attributed to the JPEG encoding at the camera, and

I note that additional optimizations at the camera such as multi-resolution image

transfer could recover some of the reduction in sAP [146, 74]. Lastly, I see that the

impact of wireless overheads on sAP are felt more keenly for faster-moving dense

109



highway-based traffic in Scenarios ‘S01’ and ‘S02’, whereas the less dense residential

scenarios ‘S03’ and ‘S04’ which qualitatively feature more intersection/paused traffic

are not impacted.

4.3.3 System Overheads and Scalability

I characterise the system overheads to better understand system behaviour. On aver-

age, transmission of compressed JPEG images takes 47-52 ms, JPEG encode/decode

takes 4.05 ms, and tiling and canvas construction takes 12-19 ms (sub-linear increase

for higher N ).

4.3.4 Ablation Studies

1. JIGSAW’s Impact on Streaming Object Recall: Figure 4.10 describes the

number of canvas frames evaluated during every baseline evaluation and the resulting

streaming average recall for Scenario ‘S04’ with N = 25. In the FCFS baselines, a

single camera frame is placed onto the canvas frame for inference. The N -GPU FCFS

baseline processes all camera streams independently and results in the most number

of assembled canvas frames that require DNN inference. The 1-GPU FCFS-Batching

baseline batches N = 25 cameras but suffers from a high DNN computation latency,

limiting both the number of canvas frames assembled for evaluation and the resulting

sAR. MOSAIC suffers from the “small object problem” due to its canvas construction

methodology which packs all available tiles, also reducing sAR. Finally, JIGSAW

provides the most desirable trade-off between number of constructed canvas frames

from N = 25 cameras and the resulting sAR with a gain of 28.3% and 37.8% over

MOSAIC and 1-GPU FCFS-Batching respectively. JIGSAW endures a ∼ 14.2%

loss in sAR, when compared to the resource-demanding, N -GPU FCFS baseline.

This is due to the cyclical gate-keeping by the tile utility function that prioritises

older and higher detection utility tiles. However, this loss is decidedly modest when

I consider that JIGSAW evaluates only a fraction i.e. 28.5% of the total number of
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Figure 4.10: sAR vs. Number of Can-
vas Frames Sent for DNN Inference in
‘S04’; N = 25

Figure 4.11: sAP@0.5 vs. FPS per
Camera in ‘S04’; N = 25 in a simu-
lated bandwidth constrained wireless
deployment

canvas frames on a single GPU when compared to the N -GPU FCFS baseline (which

processes 100% of all arriving frames)–in other words, JIGSAW has a much higher

computational efficiency.

2. JIGSAW’s Streaming Detection Metrics vs Classical Detection Metrics: I also

perform standard evaluation across all 4 scenarios using the mean average precision

(mAP) and average recall (AR) metrics on the canvas-frames constructed by JIGSAW.

This evaluation matches the post-processed translated predictions and the groundtruth

by the frame index. I observe that JIGSAW results in an mAP value of 0.972 at the

IoU threshold of 0.5 and an AR value of 0.934. A standard FCFS evaluation on all 4

scenarios of CityflowV2 on the other hand yields an mAP value of 0.82 and an AR

value of 0.8. I conclude that JIGSAW’s nuanced tiling and tile utility maximization

contribute strongly to providing better object detection fidelity, along with a high

streaming throughput.

3. System Performance in Heterogeneous Wireless Environments: I simulate a

heterogeneous, bandwidth constrained wireless environment for Scenario ‘S04’ (with

N = 25 cameras, illustrated in Figure 4.11) where half of the cameras drop every

second frame to achieve an input rate of 5 FPS, while the other cameras maintain

the original rate of 10 FPS. I evaluate JIGSAW on this deployment and report 8.1%

loss in sAP over the N = 25 cameras from the N -GPU FCFS baseline. This is
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Tile Selection Overhead sAP@0.5 Tile Selection %
CrossROI – Largest Tile 0 ms 0.627 62.86%
MOSAIC 0 ms 0.68 100%
JIGSAW 2.3 ms 0.723 68.04%

Table 4.2: Comparison of JIGSAW’s tile utility-based selection of mandatory tiles
with alternative paradigms for Scenario ‘S01’

due to the IoU-based evaluation of the sAP metric, which suffers especially for low

FPS streams. However, JIGSAW’s DS and tile utility maximization techniques both

work in tandem to recover 33.9% and 54.9% streaming accuracy, when compared to

MOSAIC and the 1-GPU FCFS Batching baselines respectively, while also gaining

an 14x or 1400% gain in throughput to 15 FPS per camera (cumulatively 375 FPS)

when compared to the 1-GPU FCFS Batching baseline.

4. Largest Tile vs Tile Utility: I evaluate JIGSAW’s selection of mandatory tiles

by order of tile utility to the streaming perception task for canvas construction by

comparing against alternative schemes such as (a) CrossROI [56], which selects

the largest representation of a unique object for inference, and (b) MOSAIC which

selects all available tiles for inclusion into the canvas frame. Detailed in Table 4.2,

compared to (a), JIGSAW offers 9.55% improvement in task accuracy with only

2.3 ms higher tile processing overhead, while compared to (b), JIGSAW effectively

reduces the number of tiles/pixels contending for DNN inferencing by 32% while

achieving an accuracy gain of 4.3%. JIGSAW selects tiles based on their utility to

the streaming perception task in context of the estimated confidence of the object:tile

pair and encompassing tile’s canvas utilisation, thus optimizing which tiles are

“squeezed” onto the canvas frame. I conclude that in JIGSAW’s paradigm, the “best”

representation of a unique object may not always be the “largest” representation.

4.4 Discussion

Camera Workload Offloading Decisions for System Scalability: JIGSAW’s de-

sign allows for system scalability with an on-demand secondary edge device that
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can be triggered when object density across N cameras goes above the threshold

(empirically determined) of 250 on the primary edge device. Offloading decisions

pertaining to “which” camera streams to offload and “when” need to consider the

following. First, clusters of cameras which share spatial overlap between its fields of

view must be considered as a single “unit” to allow the pipeline to achieve throughput

and accuracy gains facilitated by the selection of mandatory tiles across this set of

cameras. Second, these camera clusters must be ranked by a metric that evaluates the

achievable workload reduction (a function of the number of cameras per-cluster, and

number of unique objects per-camera) at the primary edge device and facilitates a

cut-off point to prevent further offload once an acceptable workload remains mapped

to the primary edge device. One approach is to offload by most-dense-first, evaluating

camera clusters with high per-camera and cross-camera workloads for transfer to the

secondary device, with the objective of reaching workload stabilisation in the fastest

manner. However, further offloading decision optimizations can be made based on

the motion of the objects themselves, discussed next.

Considering OoI Motion Patterns: In addition to varying camera workloads over

time, another perspective on temporal variability of sensed objects in a camera FoV

is that different objects may arrive and traverse the sensing field at different physical

velocities resulting in variable pixel displacements between successive frames that

contain the object. Streaming detection accuracy may be higher for slower moving

objects which exhibit lesser pixel displacement between successive frames and

vice-versa for high-velocity objects. Modelling both the arrival and inter-frame

movement pattern of individual objects could help further fine-tune the selection of

high-priority tiles across all objects sensed from N cameras. For example, the system

can determine that a stationary object might not benefit from frequent DNN inference

and de-prioritise (or increase the objects’ age) in favour of higher-velocity objects for

inclusion onto the canvas frame. Over standard RGB camera streams, such velocity

estimation is dependent on variables like object class, object-camera distance, camera

extrinsic calibration, and might benefit from the integration of physical models

113



to model object motion. To preserve high DNN inference throughput, any such

sophisticated modeling will need to remain computationally lightweight. On the

other hand, high-temporal resolution event streams obtained from neuromorphic

event cameras naturally lend themselves to modeling motion through optical flow

estimation over OoI events. I discuss the integration of event cameras to determine

OoI motion criticality in Chapter 5.

Motion modeling can also optimize workload offloading decisions to a secondary

edge device. For example, a camera stream observing largely stationary objects,

such as in a parking lot, can be considered to present low workloads at the edge as

temporal delays in including the object onto the camera frame does not adversely

impact streaming accuracy. On the other hand, a camera stream observing low

density but fast-moving objects, such as vehicles on a highway, can be considered

to present high workloads at the edge, and will have to prioritize all available OoI

consistently for accurate streaming perception. A more nuanced metric considering

both object density and object motion or arrival patterns would then fairly redistribute

workloads between the primary and secondary edge device to not just optimise for

available workload but also achievable streaming perception accuracy.

Bandwidth-Aware Frame Transfer Mechanisms: While the pipelines described

in this chapter focus on a wireless pull-based design to contend with variable net-

work latency, additional modifications could facilitate Bandwidth Adaptive Camera

Transmission (BACT) techniques described in Chapter 3. Such modifications could

operate in tandem with the Dynamic Scheduler-based admission control mechanism

to further optimize transmission in the context of streaming perception. For example,

specific/unique object-level resolutions could be optimized to carry a higher priority/-

fidelity/resolution during camera transmission if the Dynamic Scheduler determines

that it has not been scheduled for canvas construction for a while. I leave further

characterisations for future work.

JIGSAW over Cameras in Motion: Extending the notions of edge-based optimized

stream processing to multiple non-stationary camera sensors, where spatial overlap
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is transient and dynamic, remains an open research problem. Additionally, I believe

that cameras with ego-centric motion, such as those mounted on an autonomous car

or drone, are more likely to exhibit temporal correlation (an object appear in the

FoV of different cameras at different time instants) rather than concurrent spatial

overlap. I hypothesize that JIGSAW’s tile utility function would have to incorporate

such temporal mappings between cameras and their sensed objects to add another

layer of prioritization of tiles from different cameras onto a canvas frame.

Enabling Multi-Target Multi-Camera (MTMC) Tracking: MTMC Tracking

would certainly be a logical extension to JIGSAW’s system design. In the current

design, JIGSAW implements a Kalman Filter-based centroid tracker at the edge for

maintaining the association between matched objects across cameras as advised by

the Cross-Camera Tile Mapping database. MTMC tracking on the other hand, has

been shown to perform better with the use of deep feature embeddings derived from

models such as DeepSort [144]. However, DNN based preprocessing approaches

will incur additional processing latency at the edge, thereby negatively impacting

both the streaming detection accuracy and achievable throughput. I speculate that

future works on JIGSAW’s design could benefit from a more integrated sensor-

edge design of MTMC tracking [134], with Multi-Target Single Camera detection

and tracking performed at a compute-enabled camera, and cross-camera MTMC

evaluation performed at the edge. Future work could also consider cross-camera reID

refinement strategies as described in [50] to extend the matching of objects across

even those cameras that do not share any spatial overlap with the source camera.
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Chapter 5

Exploring Neuromorphic Event

Cameras for Canvas Construction:

TANDEM

In this chapter, I consider the challenge of supporting visual perception on a multi-

tenancy edge device where each sensing stream consists of a combination of a CMOS

camera and a biologically-inspired neuromorphic event camera. This combination

is intrinsically appealing because both types of cameras represent two extremes in

sensing power consumption, sensing throughput, and sensing fidelity in the quality

of images captured, which an intelligent edge device can leverage to moderate the

overall (perception throughput, energy, accuracy) trade-off. To elaborate, recent

advancements in camera quality or resolution pose increased energy consumption

during operation, creating a bottleneck to low-power efficient sensing on edge devices.

For example, Arducam’s latest 64MP camera [12] consumes∼ 2W power to generate

high-resolution images of 1270× 720 resolution at 120 FPS, which a DNN can infer

over with high task accuracy. This could amount to significant power consumption

on the edge device for perception pipelines relying on multiple concurrent CMOS

cameras. In comparison, biologically-inspired neuromorphic event cameras mimic

the human retina to provide extremely low power (10 − 30mW ), highly reactive
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O(µs) sensing capabilities, higher dynamic range up to 140dB, showing competitive

performance in DNN task accuracy against CMOS cameras [120] for tasks such as

object recognition and tracking. In Section 5.1.1, I explain how event cameras move

away from the CMOS sensor and concept of a “frame” to capture delta changes

in light intensity (both positive and negative changes/polarity) incident on every

pixel asynchronously. Further, in Section 5.1.2, I describe how 2D “images” can be

synthesized/aggregated from a continuous stream of events that are reported as a

tuple of (pixelx, pixely, timestamp, polarity). Such “images” unlike a CMOS frame,

capture low-dimension framed representations of the sensing field, encapsulating

only objects/edges that are in motion without defining nuances such as colour or

texture. These “images” or framed representations of the event stream are used as

inputs to an off-the-shelf DNN, leveraging decades of computer vision research on

CMOS frames, but suffer from lower DNN task accuracy due to the absence of

nuances such as texture and defined object edges. Latest advancements in event

cameras have introduced hybrid sensors such as Inivation’s DVS346 [3] that are

capable of producing both low spatial resolution gray-scale frames and high temporal

resolution event streams, illustrated in Figure 1.5. Low-power low-dimension event

representations capturing motion in the sensing field and feature-rich high-dimension

power-consumptive standard/grayscale frames represent two extremes of sensing

fidelity, presenting an opportunity for perception pipeline to leverage these sensing

trade-offs to balance energy-aware optimizations with fast and accurate perception

at the edge.

5.0.1 Employing Fused CMOS+Event Streams at the Edge

I now introduce TANDEM, a novel perception pipeline that leverages both camera

and event sensor streams to jointly contribute to accurate low-power low-latency

visual perception. TANDEM leverages multiple DVS346 CMOS+Event streams to

utilize their complementary feature and energy characteristics for optimised and
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Figure 5.1: Differences in object detection capabilities over (a) Pure CMOS stream
captured at 30 FPS (high accuracy) (b) Pure event stream captured at 100 FPS
(low accuracy from uneven object edges due to occluded/slow-moving objects) (c)
TANDEM’s fused CMOS+Event representations with CMOS streams captured at 30
FPS and Event streams at 100 FPS (recovered object detection capability)

efficient vision perception at the edge, providing multiplicative gains in processing

throughput with negligible loss in DNN task accuracy.

The first aspect of TANDEM’s system design focuses on high fidelity sensing

balanced between the two extremes provided by frame cameras and event cam-

eras. Feature-rich frame cameras, generating frames at 30 FPS, provide crucial

texture/edge information for accurate object detection at the cost of high energy con-

sumption (1− 2W ) for sensor operation, illustrated in Figure 5.1 (a). The low power

consumption and high O(µs) temporal resolution of the asynchronously generated

event camera streams yield fast object understanding with reduced DNN accuracy due

to the lack of defining object features resulting from occlusions and/or partial motion,

illustrated in Figure 5.1 (b). TANDEM intelligently orchestrates and fuses the sensor

streams, illustrated in Figure 5.1 (c) to compensate each other on demand to balance

between power consumption and sensing fidelity, triggering the power-consumptive

high-dimension CMOS camera only when object uncertainty from event streams

increases above a predefined threshold, while simultaneously leveraging the lower

latency of the event stream to push the envelope on perception throughput. Multiple

such pairs of CMOS+Event streams thread the gap between (achievable through-

put, energy efficiency, sensing fidelity) to jointly provide feature-rich multi-sensor

perception. Such high throughput, low power, high accuracy support is critically

needed for certain high kinematic machine perception tasks such as autonomous
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vehicle perception and interaction between humans and assistive robots in high-risk

environments such as handling high-velocity machinery.

The second aspect of TANDEM’s system design focuses on the efficient pro-

cessing of these CMOS+Event pairs of sensor streams. TANDEM leverages the

Canvas-based Processing spatial multiplexing paradigm introduced in Chapter 2

adapted to the sensor fusion across both sensor streams. Traditionally, canvas-based

processing extracts critical Regions-of-Interest (RoI) across multiple CMOS camera

input streams and spatially multiplexes (or equivalently, tiles) these RoI on a “canvas

frame” for dramatic gains in processing efficiency with negligible loss to task accu-

racy. In adopting this computation paradigm, TANDEM addresses two challenges:

(i) many-to-one mapping of event streams to an DNN with RoI CMOS+Event tiles

extracted, compressed, and spatially multiplexed onto a canvas frame for inference,

and (ii) interleaving of two disparate sensing modalities on a single “canvas” for

processing using a single DNN on an edge device.

5.0.2 Key Contributions

I make the following key contributions:

• Optimised Ingest Pipelines: I describe optimized ingest pipelines which

pre-process multiple high volume event data streams (at 100 FPS) intelligently

into framed representations for DNN processing. Event stream volumes are

evaluated upon ingest for suitable Random Downsampling to reduce the vol-

ume of events to ≤ 20000 events within one event window of t = 10ms.

These downsampled events are constructed as 12-channel Voxel Grid framed

representations within 6.35− 7.4ms, well before the next window of events is

ready for ingest at the edge.

• Asynchronous On-Demand Fusion of CMOS Frames and Events: TAN-

DEM leverages the hybrid nature of DVS346 cameras to ingest grayscale

frames at standard frame rate (i.e. ≤ 30FPS) and event streams quantized
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for processing at 100 FPS. While both sensor streams are independent of each

other, TANDEM intelligently fuses both sensor streams asynchronously and

at its received frame rates into a common representation that incorporates

information from both sensor streams for a joint representation of the sensed

world. I describe a simple 3-layer Multi Layer Perceptron network that facil-

itates such fusion at disparate framerates. I also characterise an Uncertainty

Estimator which evaluates the framed representations from the event stream

for its utility to canvas construction and triggers the fusion of a CMOS frame

on-demand when the estimated uncertainty increases above a pre-defined

threshold. In Figure 5.2, I show the trade-offs for DNN inference on (i) pure

event streams captured at 100 FPS (ii) standard CMOS streams captuerd at

30 FPS and (ii) TANDEM operating on event streams at 100 FPS and CMOS

streams at 30 FPS. I note that TANDEM operates between the two extremes

presented by pure-event processing (low DNN task accuracy 43.2%, low power

consumption 0.71W , high perception throughput 89 FPS) and pure-CMOS

processing (high DNN task accuracy 99.1%, high power consumption 0.91W ,

low perception throughput 30 FPS) to provide superior gains in (high DNN

accuracy 90.8%, low power consumption 0.71W , high perception throughput

89 FPS). In Section 5.4, I show that such on-wake design of the more power-

consumptive CMOS sensor yields high perception throughput of 89 FPS and

22.22% power-savings at the cost of 7.2% object detection accuracy over con-

structed canvas frames from M = 1 DVS camera, when compared to canvas

frames constructed over low throughput 30 FPS pure-CMOS streams. Potential

design changes to improve the achievable DNN accuracy by enabling fusion

of “stale” CMOS frames with current event representations are discussed in

Section 5.5. On the other hand, TANDEM yields high throughput of 89 FPS,

higher 48.52% power-savings, at the cost of 8.1% object detection accuracy

over constructed canvas frames from M = 1 DVS camera, when compared

to canvas frames constructed over standard RGB cameras capturing frames

120



Figure 5.2: TANDEM Performance gains over perception throughput, power con-
sumption, and DNN accuracy

at 30 FPS. This indicates that by replacing a standard RGB CMOS camera,

TANDEM enables energy savings of 0.66Wh for every DVS346 camera that

is run at the edge for 1 hour continuously. For a Jetson Orin AGX edge device

receiving M = 10 CMOS+Event sensor streams, TANDEM therefore presents

energy savings of 6.6Wh over an hour of continuous operation and 158.4Wh

for 24 hours of continuous operation.

• Spatial Multiplexing of Multiple CMOS+Event Sensor Streams: TANDEM

decomposes the fused CMOS+Event representations from each DVS346 cam-

era into a “bag of tiles” for canvas-based processing. With a representative

person detection-based surveillance application (described in Section 1.2) us-

ing the CityFlow AI Track 1 dataset [44], I show how canvas-based processing

of fused representations of (intermittent/triggered CMOS frames, periodically

spaced Event representations) from M = 10 DVS346 cameras provides mul-

tiplicative gains of 88× or 888.88% increase in processing throughput on a

single Jetson Orin AGX device at 89 FPS per-camera and 890 FPS cumula-

tively with a minor loss of 1.7% in object detection accuracy.
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5.1 Motivating TANDEM’s Design Decisions

Before I introduce the canvas-based perception pipeline that incorporates event

cameras, I first introduce the nuances in an event camera’s operation, and present

two foundational studies that underpin the design decisions adopted in this work.

5.1.1 Introducing the Event Camera

Biological vision systems operate without the frame-based structure typically seen

in CMOS sensors of RGB cameras. Photoreceptors, specifically rods, present in

the retina instead actively observe the physical environment and produce activations

or spikes when they detect changes in light intensity. This spike generation occurs

continuously and asynchronously, triggered by high spatial or temporal contrasts

in the scene. These spikes are then transmitted via the optic nerve for processing

in the visual cortex. Neuromorphic event cameras mimic the biological retina by

reporting changes in light intensity (both positive and negative) on a per-pixel,

asynchronous basis yielding a “stream” of sparse spikes that correspond best with

moving objects that create changes in contrast/light intensity, illustrated in Figure 5.3.

Each pixel (x, y) measures the log intensity of light incident upon it L = ln(I) until

the brightness changes with positive or negative polarity p ∈ {−1, 1} (also referred

to as “ON” events and “OFF” events respectively) over any delta period of time ∆t

exceed a pre-defined threshold θ as:

L(x, y, t)− L(x, y, t+∆t) = pθ (5.1)

Each pixel independently evaluates and fires a spike every time the brightness

changes over threshold pθ with the data representation of (x, y, t, p), otherwise

known as Address Event Representation. The minimal overheads incurred from

evaluating each pixel and generating such an AER data point allows event cameras

to (i) operate with microWatt power consumption, (ii) avoid the latency induced by a

synchronous sensor that waits for all pixels to accumulate a change, (iii) allows a
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Figure 5.3: Event Cameras: Generation of AER data based on thresholded log
luminescence at each camera pixel (left) with a frame-representation constructed
with events of both polarities over a quantized period of time T (right)

high dynamic range owing to the logarithmic conversion of the intensity values, and

(iv) reduces bandwidth consumption as a relatively stable intensity value (caused by

little or no motion in the receptive field of the pixel) yields fewer events. On the other

hand, highly dynamic or textured scenes might yield a temporal resolution up to

1.06 Geps (giga events per second), resulting in a computational load that can easily

overwhelm desktop GPUs and resource constrained edge devices like the NVIDIA

Jetson class of devices. In addition to this scale of computational load, the main

drawbacks of event cameras lie in (i) the absence of defining edge/colour/texture

features in event streams leading to poor object detection task accuracy, (ii) pixel

noise characteristics, and (iii) the challenge associated with reconstructing precise

intensity representations (similar to RGB frames) from delta-based events. Despite

this limitation, event cameras find practical use in scenarios where capturing the

edges of moving objects is crucial. This is particularly evident in robotics and

navigation applications where rapid response times take precedence over high human

visual quality. Examples of such applications include object detection and tracking,

gesture recognition, and SLAM (Simultaneous Localization and Mapping).
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5.1.2 Processing and Inferring over Event Streams

Recent works which explore the processing of event streams can be largely divided

into two categories with diverging principles.

The first category of works choose to remain true to the biological inspiration

behind the event cameras and consume the event stream as a “spike train” for

processing by a Spiking Neural Network (SNN). SNNs are modelled after the

membrane potential based spike-activation of the human neuron, and have been

shown to effectively process high temporal resolution event streams to surpass RGB-

frame based DNN processing for tasks such as object recognition and tracking [40,

102]. The spiking neurons maintain a memory of input events in a Leaky Integrate

and Fire (LIF) model over a set of timesteps (ranging from 4 - 3000 [133]) and

fire a spike when the membrane potential crosses a predefined threshold. At each

time step, the SNN forward pass yields a set of output spike activations over a

quantized section or chunk of the event stream which yield fast, efficient, and low-

power task inference on custom neuromorphic chips such as Intel Loihi [69] and

IBM NorthPole [67]. While this approach remains true to the low-power and low-

latency biological primitives that underpin the design of the event camera, SNNs

show significant challenges to trainability. SNNs also show poor performance when

compared to classical DNNs for regression-based tasks such as object detection due

to the non-differentiable nature of the spike trains and activations [52]. Although

recent SNN models such as EMS-YOLO [133] have considerably narrowed the

performance gap, showing comparable accuracy with DNNs while consuming 5.83×

less energy, they still rely on the deployment of custom neuromorphic SoCs which

present hardware limitations on the scale, complexity, and processing throughput of

the SNNs, especially at the edge.

The second category of works choose to default to the known medium of 2D

frames or images that are synthesized from a continuous temporal stream of events,

by quantizing the stream into time windows and aggregating all events to generate
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Figure 5.4: Event Camera: Synthesizing 2D representations from event streams [51]

a 2D representation of the sensed physical world as described in Chapter 1 and

illustrated in Figure 5.4. These 2D framed representations depict the sensed physical

world as low-dimension images, devoid of colour or texture, capturing only those

pixels where significant movement or changes in light intensity occurred. Such 2D

frames are then inferred upon by standard off the shelf DNN models deployed on

standard GPU devices, leveraging years of progress in computer vision research.

This approach presents attractive advantages in the reuse of existing perception

pipeline components built for traditional frames/cameras. However, converting event

streams into a 2D frame representation imposes a non-trivial pre-processing overhead.

This overhead is caused by the CPU having to cycle through all available events,

within an inter-frame intervals, for the construction of the 2D framed representation..

Such processing also discards/discounts the high temporal resolution and per-pixel

asynchronicity provided by the raw event stream. However, I believe that this cost

has to be measured against the motion of the objects of interest, whether this motion

needs to be represented at O(µs) latency, and whether quantization into framed

representations at high frame-rates (e.g. 100 FPS or 10 ms latency) can still recover

perception capability for said objects in the context of the deployed application.
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Studies in both approaches have thus far been conducted on server-class or

desktop-class GPU devices, with no consideration for design trade-offs presented by

limited computational resources at the edge. To appropriately ingest high volume

event streams at the edge, I believe that a perception pipeline must choose whether (i)

events should be downsampled and pre-processed into lower volume spike trains for

inference by an SNN, or (ii) events should be downsampled and pre-processed into

2D framed representations to be processed by an off-the-shelf DNN. This choice must

be made depending on the throughput-vs-accuracy tradeoffs incurred by both classes

of event processing pipelines at the edge. I therefore first characterise the processing

overheads presented by both approaches at the Jetson AGX Orin, a representative

edge device to present the trade-offs between processing throughout and achievable

task DNN/SNN accuracy. Lastly, I present the design decisions on how event streams

can be best consumed by a perception pipeline at the edge.

Study 1: Processing Overheads for Raw Event Streams

Frame-space vs Event-space Pre-processing: Although event camera streams are

sparse by nature, responding only to changes in the environment, highly dynamic

scenes that feature considerable movement or changes in contrast might yield 1

Mega events per second [3] up to 1.06 Giga events per second [4]. The objective

of this study is to evaluate (i) whether it is computationally cheaper to pre-process

events into a smaller volume in frame space or in event space on a resource con-

strained edge device, and (ii) if there are any differences introduced by the two

pre-processing methods which impact the achievable task accuracy due to the loss

of temporal resolution or event asynchronicity when condensing events into a 2D

framed representation. I characterise the processing latency-vs-accuracy achieved in

pre-processing raw events into a smaller volume of events in:

1. Event space: Raw AER events are converted into spike tensors and pre-

processed to a lower event volume using spiking Bilinear and Bicubic in-
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terpolation [55]

2. Frame space: Raw AER events are aggregated into frames and downsampled

into a lower spatial volume using standard OpenCV interpolation techniques

such as Bilinear and Bicubic Interpolation [113]

To this end, I employ the NMNIST [115] dataset which is the spiking event

version of the original frame-based MNIST dataset at 34 × 34 spatial resolution.

60000 samples from the dataset are loaded and prepared for processing, with 10000

frames used to evaluate the task accuracy on the Jetson AGX Orin edge device. As

both frame-based and event-based representations can be consumed by an SNN (as

opposed to a DNN that can only consume frame-space representations), I employ a

simple convolutional SNN comprised of Leaky Integrate and Fire neurons to compare

object recognition accuracy using both pre-processing methods. The SNN model,

implemented using the snnTorch library [42] and illustrated in Figure 5.5, comprises

of 2 convolutional layers, 2 max pooling layers, and 2 fully connected layers for

object recognition, and ingests a 34× 34 spatial resolution input over 128 timesteps

to recognize the object. I evaluate the accuracy of the object recognition task by

observing the mean average precision (mAP).

As the original NMNIST resolution and the object recognition SNN are both of

34× 34 spatial resolution, I simulate higher event spatial volumes by upsampling

the event stream to 128 × 128 spatial resolution. For frame-based evaluation, I

construct 2D frames by aggregating all events over both polarities into a single

frame. I then downsample the events to 34× 34 using classical RGB-frame based

Drop, Bilinear, and Bicubic interpolation (from the OpenCV vision library). For

event-space evaluation, I employ the log-luminescence based Linear and Bicubic

Estimation as the event-space downsampling methods described by Gruel et. al. [54].

To evaluate whether both methods introduce any differences that impact task

accuracy, each recording in the NMNIST dataset is zero-padded to equal duration

of 300ms and divided into bins of time duration t ∈ (2.34, 4.68, 9.37, 18.75) mil-
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Figure 5.5: 4-layer Convolutional Spiking Neural Network (SNN) for Object Recog-
nition on 34× 34 input spike trains from the NMNIST dataset

liseconds respectively, each bin representing a different event spatiotemporal volume

for SNN inference. I hypothesize that recognition accuracy for events may vary for

different segment-lengths of event bins that contain varying amounts of events/infor-

mation over time, which could be impacted by both event pre-processing methods in

different ways.

I now describe the tradeoffs between frame space (FS) and event space (ES) pre-

processing of event streams of different spatiotemporal event volumes. Figures 5.6

and 5.7 describe the impact of both methods of downsampling on object recognition.

I make the following observations:

• Both frame space (FS) and event space (ES) methods have comparable SNN

task accuracy which leads us to believe that event space pre-processing has

(i) no clear benefits of processing in event space even at a temporal resolution

of 18.75ms (or equivalently, no apparent impact on object recognition due to

loss of asynchronicity at this temporal resolution as seen in Figure 5.6).

• Frame-space pre-processing incurs significantly 3 × −13× less overheads

when compared to event-space pre-processing as seen in Figure 5.7.
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Figure 5.6: Comparison of event
space (ES) and frame space (FS) com-
pression methods over bins of time
duration t ∈ (2.34, 4.68, 9.37, 18.75)
on recognition task accuracy.

Figure 5.7: Processing overheads
from event space (ES) and frame
space (FS) Bicubic Compression over
bins of time duration t ∈ (2.34,
4.68, 9.37, 18.75) versus recognition
task accuracy.

• Dividing an event stream recording into 32 bins of time-period ∼ 10ms for

recognition seems to accumulate the “ideal” number of events on average in a

frame, yielding higher recognition accuracy. This seems to suggest that there

exists an ideal number of events that must be aggregated into one event bin

(and by extension one generated frame-representation) for optimal recognition

accuracy, which I believe is task and object velocity specific.

DNN vs SNN Inference: In addition to the clear advantages of pre-processing events

in frame-space over event-space, I also evaluate the inference time for a forward

pass of a standard DNN and of the 4 layer convolutional SNN employed in Study

1. On the Jetson AGX Orin, a YOLOv8n or an off-the-shelf nano-scale version of

the YOLOv8 model takes a mere 11.38ms on average to infer over a 640 × 640

input image. On the other hand, one forward pass over 128 timesteps of the 4 layer

SNN takes ∼ 800ms (although these are numbers obtained by software-based SNN

emulation, due to the absence of neuromorphic hardware). While SNNs could incur

significantly lesser inference latency if deployed on a neuromorphic SoC, the low

processing overheads of frame-space event representations and the low inference

latency of a YOLOv8n model together make DNN inference over frame-space

representations the more attractive processing paradigm. This is especially given the

129



accuracy gains of a DNN (YOLOv3, mAP=0.31) over an SNN (SpikingDenseNet,

mAP=0.18) when evaluated over the challenging pedestrian and vehicle detection

dataset Gen1 by Prophesee [39].

Study 2: Processing Overheads for 2D Framed Representations

While Study 1 focuses on simple spatial interpolation for a naive 2D aggregated

frame-space representation (hereafter referred to as a framed representation for

simplicity), prior literature has in fact introduced a number of techniques to aggregate

event data into a 2D frame, such as Voxel Cubes, Mixxed Density Event Stack, Time

Ordered Surface of Events, and Averaged Time Surface to name a few [106, 82,

17, 36]. However, these works disregard real-time processing latency costs over

high volume event streams and either (i) focus on offline applications which post-

process large volumes of event data for analysis, (ii) assume the deployment of a

server-class GPU, or (iii) characterise event pre-processing as an offline task. This

leaves real-time event processing at the edge an open problem with no clear rationale

on the superiority of one framed representation technique over the other, or design

choices represented by each of the framed representations. In this study, I describe

the design of a profiler and the trade-offs observed between the volume of events

evaluated, pre-processing techniques used to reduce the volume of events, framed

representation variant generated, quality of frame representation, and processing

time incurred, to derive the pareto optimal setting for frame-space event processing

on the NVIDIA Jetson Orin AGX [110] edge device. I present the operation of the

profiler over the CityFlow AI [44] person detection dataset to align this study more

closely with a potential edge-based application that leverages event camera streams.

Profiler Overview and Results: The profiler comprises of 4 stages, described below.

1. Simulating Events: The profiler first synthesizes event streams from RGB videos

using the v2e (video to events) software tool [62], aggregating events at a user-

defined temporal resolution (default, t = 10ms or 100 FPS as derived from Study

1) to evaluate the expected volume of events if an event camera were to replace
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the RGB camera. The profiler’s goal is to identify the best {framed representation,

pre-processing technique} combination for the given dataset which provides the best

quality of framed representation of the events before the next window of events is

aggregated i.e. within t of 10ms. While I use t = 10ms as a basis for this study, the

profiler can also evaluate different configurations for time windows to understand

whether t = 10ms is the ideal event aggregation window for that particular dataset

which best balances object kinematics, the resulting event volume generated, the

quality of the framed representation generated, and the resulting downstream DNN

task accuracy.

2. Applying Pre-processing Techniques: The profiler then evaluates sampling

techniques to reduce the volume of events and the resulting processing time: (i)

No sampling (ii) Spatiotemporal filtering (drop isolated events in a 1 pixel radius

over 1ms window) (iii) Temporal downsampling (drop every 2nd event per-pixel)

(iv) Random sampling (drop events with p = 0.5 probability), and (v) Spatial

interpolation (bilinear interpolation to reduce spatial volume by 25%).

3. Creating Framed Representations: Next, the profiler loads the events in

each time bin into memory to convert the events into one of the following event

representations:

1. VoxelGrid [162]: t = 10ms time window is split into 12 equal, non-

overlapping time windows to create a 12 channel VoxelGrid. Events in each

sub-window are aggregated by summing their polarity on a per-pixel basis

using bilinear voting.

2. Binary Histogram [99]: Events in the t = 10ms time window are split by

polarity and aggregated into 2 channels.

3. Mixed Density Event Stack [106]: To create a 12 channel MDES, each channel

aggregates events at different time scales within a t = 10ms window. For

every channel c, MDES selects the most recent Ne

2c
events and aggregates the

polarity at every pixel for the selected events, where Ne indicates the of events
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in the selected time window.

4. Time Surface [82]: A time surface is a 2D grid that stores the timestamp of the

last event that occurred at each pixel (x, y) location. By storing the timestamp

of the last event, the time surface encodes the temporal history of brightness

changes at each pixel. This allows the rich temporal information of the event

stream to be preserved in a compact, image-like format. This time surface is

then sampled at equally spaced intervals to create 12 channels.

5. Time Ordered Recent Events [17]: TORE stores event timestamps in per-pixel

per-polarity queues and fivides them equally into 12 channels.

6. 12-Channel Learned Representation [163]: The representation is learned using

a trainable kernel operation, optimised for object detection tasks.

4. Calculating Quality of Generated Representation: Lastly, the profiler leverages

the Gromov-Wasserstein Discrepancy (GWD) as a metric for comparing the quality

of event representations efficiently by measuring the distortion arising from the

conversion of raw events to the framed representations. The GWD metric calculates

the similarity between event and feature pairs during the construction of an event

representation, with a lower GWD score indicating lesser distortion (or equivalent,

better representation quality and preservation of events) and better downstream DNN

task accuracy [163]. All representations feature 12 channels except Binary Histogram,

which features 2. This is in line with the findings by Zubic et. al. [163] that suggest

that a higher number of channels allows a learned representation to achieve lower

distortion rates. The VoxelGrid, MDES, TORE, and TimeSurface representations are

similarly constructed as 12 channel representations for fair comparisons.

Profiler Evaluation Results: In this study, I utilize the the CityFlow AI dataset [44]

(1920×1080 resolution videos captured at 30FPS) for a person detection application.

In lieu of comparing multiple datasets that generate different event volumes, I utilize

the same dataset and vary the sensor resolution settings to control the average number

132



Framed
Representation

Processing Time of Event Volume (ms)
10000 20000 30000 40000 50000

Voxel Grid 3.4 6.35 11.36 24.04 38.97
Time Surface [82] 34.82 45.63 52.49 91.15 128.4
Binary Histogram 3.17 4.38 6.81 14.94 21.87
MDES [106] 8.63 16.75 24.11 77.06 99.52
Zubic et a [163]l 28.57 46.23 61.72 152.92 196.67
TORE [17] 99.51 173.2 202.88 573.81 884.01

Table 5.1: Processing time vs event volumes in a 10ms window

of events accumulated in a single time bin, simulating for both (i) sudden/unexpected

bursts of high volume events and (ii) different choices of event camera resolutions.

I simulate events with resolution settings (120 × 90, 346 × 260 (the resolution of

DVS346 [68], a widely deployed event camera), 480× 270, 512× 290, 640× 480)

to generate (10000,..., 50000) events on average in a single time bin of t = 10ms

to understand the processing latency on the Jetson AGX Orin over different event

volumes.

Table 5.1 describes a linear relationship between event volume and processing

time, with Voxel Grids and Binary Histograms processing up to 20000 events within

the processing deadline t of 10ms. This indicates that in general, if we are able to

pre-process high volumes of event data down to ∼20000 events, we can achieve

fast non-blocking event processing (i.e., with processing time ≤ 10 ms) on a Jetson

AGX Orin. Figure 5.8 describes the trade-off between distortion and processing time

with pre-processing techniques applied to an event stream that generates ∼40000

events on average in a 10ms window. Nuanced event representations (e.g. MDES

and TORE) achieve a lower distortion rate ≤ 30% but suffer 30 × −50× higher

processing times than the required 10ms. Random sampling gives the most amount of

control over the volume of events filtered without suffering much distortion compared

to the original event stream. Temporal filtering on the other hand suffers the most

distortion with no relative gains in processing time. Finally, the profiler determines

that for the CityFlow AI dataset for person detection [44], Voxel Grids can achieve

both a lower distortion rate of 0.31% and a fast processing time of 7.89ms when
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Figure 5.8: Study 2: Quality of 2D framed representations measured as distortion
rate (lower, better) vs processing time (lower, better) of ∼40000 events accumulated
in t = 10ms

random sampling is applied to reduce the volume of events to ∼20000 events.

5.1.3 Design Choices for Event Cameras at the Edge

Both studies in Section 5.1.2 yield the following observations about adopting event

cameras for edge-based perception:

1. Frame-space pre-processing is on average faster and more scalable for edge-

scale computing devices as compared to event-space pre-processing.

2. DNNs are the obvious choice for inference over frame-space event representa-

tions given their low inference latency of 11.23ms and high DNN task accuracy

when compared to emulated SNNs, especially in complex regression-based

tasks such as object detection.

3. If an event camera generates event streams over a t = 10ms time window

(equivalently, 100 FPS), an event ingest pipeline at the edge can pre-process

up to ∼ 20000 events into a Voxel Grid representation within this processing

deadline of 10ms i.e. before the events in the next 10ms window is accu-
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mulated. I believe that this setting should be generally applicable to a wide

range of edge-based perception applications. However, if there is a very sparse

event stream that requires smaller event accumulation windows t ≤ 10ms, the

profiler can be run again for the smaller time window to determine the best

{framed representation, pre-processing method} combination which moder-

ates the distortion introduced during framed representation construction and

also finishes pre-processing within the processing deadline.

4. If the event stream yields no more than 20000 events in a single 10ms window,

the event stream need not be sub-sampled for framed representation generation.

On the other hand, for higher volume event streams, random sampling the

event volume down to the desired volume of 20000 events provides the most

amount of control over the generated volume of events and also does not

suffer much distortion in the generated frame representation, thus guaranteeing

comparable downstream DNN task accuracy.

With these observations, I now present the design of TANDEM an edge-based

pipeline which intelligently uses both CMOS and Event sensing modalities in tandem,

incorporating fused CMOS+Event representations from multiple DVS346 cameras

for high-fidelity, low-latency, and low-power canvas-based processing at the edge.

5.2 TANDEM Design Overview

I first describe the proposed system design for TANDEM’s canvas-based processing

over both CMOS and event sensor modalities. I envision TANDEM as an edge-based

system capable of arbitrating between multiple pairs of {CMOS (low frame-rate,

feature-rich, high power overhead), Event (high temporal resolution, low-dimension,

low power overhead)} streams to effectively increase processing throughput and

reduce sensing energy consumption without impacting task accuracy. TANDEM’s

edge deployed design, illustrated in Figure 5.9, triggers the power expensive RGB
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Figure 5.9: TANDEM Block Diagram of Sub-Components Operating at the Edge

camera infrequently i.e. with a reduced frame-rate (≤ 1FPS) and/or only when

object uncertainty over event streams increases above a predefined threshold, thus

reducing the overall sensing energy consumption while intelligently recovering

sensing fidelity. Per-Camera Operations evaluate CMOS and Event streams from

a single DVS346 camera (illustrated in blue in Figure 5.9, while Cross-Camera

Operations for canvas construction, similar to the MOSAIC pipeline described in

Chapter 2, construct the canvas frame across multiple DVS346 cameras for DNN

inference (illustrated in orange in Figure 5.9).

5.2.1 Per-Camera Operation

Optimized Parallel Ingest Pipelines and Pre-processing: TANDEM first processes

each sensor stream in parallel to prepare the inputs for subsequent fusion. In general,

TANDEM expects an event stream to be processed in t = 10ms (equivalently, 100

FPS) time windows, and expects the CMOS stream to be triggered with a longer

t ≥ 33ms (equivalently, ≤ 30 FPS) time window. On the event stream, TANDEM

design incorporates pre-processing of high temporal resolution event streams by

reducing the event stream volume suitably for processing on a resource constrained

edge device, using Random Sampling to reduce the volume of events to ≤ 20000

events if necessary. Subsequently, the event stream is composed into a 12 channel

VoxelGrid framed representation for further processing, illustrated in Figure 5.10. An
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Figure 5.10: TANDEM Ingest Pipelines (a) Grayscale frames with RoI highlighted
for ease of visualization (b) Event Stream framed representation accumulated over
t = 10ms with RoI highlighted for ease of visualization (c) Constructed 12 channel
VoxelGrid

OpenCV-based [114] blob detector then evaluates the VoxelGrid for blobs to detect

the dimensions of the detected Regions of Interest (RoI) for use by the Uncertainty

Estimator, described next. On the CMOS stream, TANDEM ingests grayscale frames

when triggered by the Uncertainty Estimator.

Triggering CMOS Streams On Demand - Uncertainty Estimator: The Uncer-

tainty Estimator evaluates the detected blobs from the VoxelGrid against the Per-

Camera Memory Function to evaluate the quality of the captured RoI for effective

DNN inference downstream. If the Estimator evaluates a degree of uncertainty in the

event stream, it opportunistically triggers the capture of a CMOS frame to recover

some of the uncertainty or lost sensing capability. The following conditions result

in an “Uncertain” state by the estimator, triggering the CMOS stream to capture a

single frame:

• If the number of detected blobs are insufficient (less than 75%) compared to the

number of blobs in the Memory Function. This indicates that the object(s)/RoI

have disappeared, been occluded, or become stationary.
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• If all blobs are present but the RoI height:width ratio is not consistent with the

Memory Function for more than 50% of the detected blobs. This indicates that

a significant number of the RoI might be occluded or in partial motion.

• If a new blob is detected which is not in memory. This indicates the appearance

of a new object/RoI.

Once the CMOS stream is triggered for frame capture, the grayscale frame yielded

is evaluated for blobs using OpenCV SimpleBlobDetector [114] to both (i) update

the Memory Function with the size and location of the RoI, and (ii) contribute to

tiling for canvas construction in the Cross-Camera Operation. The Memory Function

is updated with the location and dimensions of fresh blobs and also employs a

centroid-based Kalman Tracker to maintain and track RoI quality across successive

VoxelGrids and triggered CMOS frames. If the CMOS frame is not triggered, and

the Uncertainty Estimator is fairly certain that the information captured by the event

VoxelGrid is sufficient for DNN inference, the Estimator prepares the detected blob

bounding boxes for downstream Cross-camera tiling for canvas construction. The

Estimator essentially pads the detected RoI whose dimensions do not match with

the Memory Function with the difference detected along both height and width

dimensions to ensure that the potential RoIs are not unduly cropped during tiling,

impacting achievable DNN accuracy.

Asynchronous CMOS+Event Fusion: TANDEM’s design maintains a unified/fused

representation of the physical world that is jointly updated by encoded streams

from both the CMOS and event camera at dramatically different “framerates” for a

cohesive representation of the sensed physical world. When a grayscale CMOS frame

is not available for fusion, the 12-channel VoxelGrid is convolved using a simple

3-layer MLP network into a 3 channel representation which interestingly constructs

polarity as red and green channel information, illustrated in Figure 5.11 (a). When

available, the grayscale single-channel image and the 12-channel VoxelGrid are

concatenated together for the MLP to convolve the 13-channel image into 3 channels.
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Figure 5.11: TANDEM CMOS+Event Fusion: (a) 3-channel representation derived
from VoxelGrid only (b) 3-channel representation derived from the fusion of Voxel-
Grid and grayscale CMOS image.

Such a fusion operation incorporated edges and texture nuances essentially “filling in

the gaps” for the event stream perception, with the VoxelGrid again retaining polarity

information as red and green channel information, illustrated in Figure 5.11 (b).

This fused representation is then sampled by the Cross-Camera operation for canvas

construction. While such on-demand fusion is performed for a single CMOS and

event representation, an alternative mechanism is to allow fusion of “stale” CMOS

frames to sustain fusion for a larger ≥ 1 number of event VoxelGrids over time.

However, such processing requires certain nuances to be explored, discussed in

Section 5.5.

5.2.2 Cross-Camera Operation

Canvas construction across multiple fused DVS346 camera streams follows the basic

principles outlined by MOSAIC in Chapter 2, re-iterated in brief below.

Tiling Across Scales: The fused representations from multiple DVS346 cameras are

sampled by the Cross-Camera Tiling operation to decompose the fused representation

into a “bag of tiles” at different scales. Per-Camera tiling scales are bootstrapped
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offline and maintained in the Memory Function which allows the TANDEM tiling

function to gain an understanding of the estimated object size distributions and the

resulting tiling scales that will effectively capture the expected objects. Expected

object height and width dimensions are clustered offline prior to deployment using

K-Means Clustering with an elbow detection method to ascertain the ideal number

of clusters/tiling scales required for each camera. The centroid of each cluster

is evaluated for the larger dimension (i.e. max(centroidx, centroidy) which is

rounded to the next multiple of 32 for computational efficiency. A larger catch-all tile

1.5× larger than the largest tiling scale detected is also computed and maintained in

memory to account for the possibility of observing objects/RoI larger than anything

seen during the initial offline operation. During TANDEM’s operation, tiling scales

are recomputed periodically (user-defined, default 30 minutes) over the dimensions

of the blobs/RoI that are detected from the CMOS grayscale images. TANDEM

tiles the fused representation at each of the determined per-camera scales with a

user-defined overlap (default 0.5) between two consecutive tiles.

Selecting the Best Subset of Tiles: The TANDEM pipeline evaluates the bag

of tiles for the best subset of tiles that accurately captures the detected blobs/RoI.

Consequently, TANDEM constructs a spatial quadtree from the bag of tiles to conduct

an intersecting bounding box search with the detected RoI/blobs. Each tile that an

RoI/blob intersects with is evaluated for “goodness of fit” to ensure that (i) the RoI is

not unduly cropped by the tile (ii) the RoI consumes a sufficient proportion of the

tile (i.e. the tile captures the RoI at its appropriate scale). This yields a set of tiles

which appropriately capture all the detected RoI at different scales, although many

tiles may encompass the same object captured at multiple scales, requiring another

filtering step to select which of these permissible tiles must be included onto the

canvas frame. A Min Cost Min Set (MCMS) algorithm further filters the selected

tiles to include each RoI on the canvas frame at least once while ensuring minimal

“cost” to the canvas, evaluated as pixel wastage posed by non-RoI/background pixels.

Per-tile spatial sizing bounds are also evaluated for each of the tiles to determine
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the amount of resizing that the tile can suffer during canvas construction without

adversely impacting DNN accuracy.

Constructing the Canvas Frame: A Differential Evolution based genetic algorithm

performs 2D Inverse Bin Packing over the selected subset of tiles derived from

multiple DVS346 fused representations. The constructed canvas frame is then

inferred upon by a standard-off the shelf DNN model for object detection.

Post-processing DNN Predictions: The DNN predictions are mapped back from

the canvas frame to the original fused representation for evaluation. TANDEM also

conducts a final Non Maximum Suppression step to collate detections if the same

object appeared in more than one tile on the canvas frame.

5.3 System Design

I now describe the prototype TANDEM implementation and the process for evaluating

its effectiveness for a multi-camera streaming perception task.

Evaluation Platform: I evaluate TANDEM on the NVIDIA Jetson AGX Orin [1]

which features 2048-core NVIDIA Ampere architecture GPU with 64 Tensor Cores,

and a 12-core Arm Cortex-A78AE 64-bit CPU capable of 275 TOPS.

Benchmark Datasets: I evaluate TANDEM using the Cityflow AI Person Detection

dataset from the 2023 Track 1 Challenge [44]. It features real-world and synthetic

videos of a retail floor amounting to 1,491 minutes of videos from a total of 130

cameras divided into 22 subsets, each subset of cameras demonstrating spatial

overlap between some/all of the cameras. All video streams are in high resolution

(1920x1080), captured at 30 FPS. The dataset is loaded in grayscale and at the

DVS346 CMOS dimensions of 346× 260 before being fed to the v2e [62] software

tool which converts the videos into event streams at the DVS346 resolution, with

event aggregation at time windows of t = 10ms or 100 FPS.

Evaluation Model: For object detection on the canvas frames, I employ a TensorRT-

optimised YOLOv8s model, an edge-compatible pretrained model with 11.2M pa-
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rameters and 28.6 GFLOPs, pre-trained using the MS COCO dataset [92]. I fine-tune

the DNN for the selected dataset with both representations (illustrated in Figure 5.11)

that are distinctive to TANDEM, (i) fused 3-channel CMOS+Event representations

(when a CMOS frame is available), and (ii) 3-channel Event representations (when

a CMOS frame is unavailable). The DNN is fine-tuned with the train-set of the

Cityflow AI Person Detection dataset, featuring 1065602 fused representations from

58 cameras capturing 4375736 RoI, with the CMOS frames generated at 30 FPS,

and event stream simulated at 100 FPS. A single inference cycle of the YOLOv8s

tensorRT model incurs a processing latency of 11.23ms, equivalently 89 FPS over

these fused representations.

Evaluation Metrics: To evaluate possible gains in perception accuracy in the

pedestrian detection application, I report the mean average precision of the model at

an IoU threshold of 0.5 –i.e. mAP@0.5, and report the inference throughput (FPS).

For all experiments, I evaluate TANDEM with a batch size b = 1.

Evaluation Baselines: I compare TANDEM’s performance against three baselines

under different combinations of CMOS and event frame rates to evaluate the power-

vs-accuracy trade-off afforded by TANDEM’s on-wake CMOS sensor design:

1. FCFS: Fused representations are resized to the canvas frame dimensions 640×640

and sent for DNN inference without any spatial modification.

2. Uniform-M : Denoted as Uni-M where M signifies the number of images packed

onto a single canvas frame. Uniform-M divides a canvas into equal number of

grid rows and columns and assigns each input image to a single cell in the grid.

Uniform-M also determines which methodology among grid, horizontal, or vertical

stacking of M input images creates the best grid structure such that each cell affords

its corresponding input frame the lowest possible downsize ratio when compared to

its original dimensions.

3. MOSAIC: Lastly, I evaluate TANDEM against the MOSAIC baseline to evaluate

gains from the CMOS+Event sensor fusion and Uncertainty Estimator unique to

TANDEM.
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5.4 Evaluation

I first evaluate the validity of the fundamental hypotheses, that canvas-based process-

ing of fused CMOS+Event streams from multiple DVS346 cameras helps improve

the energy consumption and throughput vs. accuracy tradeoff for diverse object

distributions and camera settings.

5.4.1 Characterising TANDEM’s Energy Savings

Figure 5.12 describes TANDEM’s performance in reducing the sensing power-

consumption at the camera without significant loss of DNN task accuracy at the

edge. Evaluated for CMOS+Event sensor streams from M = 1 DVS346 cameras

and M = 1 standard RGB cameras [12], I observe the following:

1. RGB Camera Processing: FCFS and MOSAIC-based processing over standard

RGB frames from the CityFlow Person detection dataset yields very high accuracy

of 0.993 at 640× 640 but suffers high sensing power consumption of ∼ 1.36W .

2. Using DVS346 Sensor Streams in Isolation: Simply replacing the RGB camera

with a neuromorphic camera for FCFS and MOSAIC-based processing over only

grayscale CMOS images ingested at 30FPS maintains the accuracy but still consumes

∼ 0.9W of power. For MOSAIC-based processing over just the event VoxelGrids

captured at 100 FPS, I note that extracting RoI into tiles without an understanding

of the (un)certainty of the quality of the RoI incurs heavy losses of 55.2% in ob-

ject detection accuracy due to undue cropping of RoI during the tiling and canvas

construction process. On the other hand, FCFS based processing of only event

VoxelGrids generated at 100 FPS provides the best balance between sensing power

consumption (0.7W ) and accuracy (0.936), but this comes at the cost of achievable

throughput, discussed in Section 5.4.2.

3. TANDEM’s Fused CMOS+Event Sensing: I evaluate TANDEM’s sensing power

consumption and object detection accuracy performance for different CMOS sensor

settings (CMOS FPS ∈ [30, 15, 10, 1, On-Demand]). I note that as the CMOS sensor
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Figure 5.12: TANDEM System Performance: Sensing Power Consumption vs Object
Detection Accuracy for M = 1 camera over different baselines.

is triggered more infrequently at periodic intervals, the sensing power consumption

reduces as expected but the uncertainty evaluated from the event stream is not allevi-

ated appropriately by periodic CMOS fusion, resulting in reduced object detecton

accuracy. On-demand sensing recovers much of the DNN task accuracy (0.908)

while consuming only 0.7W . This presents 22.22% savings in sensing power con-

sumption at the cost of 7.2% decrease in object detection accuracy when compared

to a MOSAIC-based processing baseline operating on CMOS event streams from

the DVS346 captured at 30 FPS. When compared to a standard RGB CMOS camera,

TANDEM presents 48.52% savings in sensing power consumption, albeit with 8.1%

reduction in object detection accuracy when compared to MOSAIC-based processing

baseline operating on RGB CMOS streams captured at 30 FPS.

In effect, by replacing a standard RGB CMOS camera, TANDEM enables energy

savings of 0.66Wh for every DVS346 camera that is run at the edge for 1 hour

continuously. Consequently, for an edge device receiving M = 10 CMOS+Event

DVS346 streams for canvas-based processing, TANDEM presents energy savings

of 6.6Wh over an hour of continuous operation and 158.4Wh for 24 hours of

continuous operation.
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Figure 5.13: TANDEM System Performance: System throughput vs Object Detection
Accuracy for M = 10 cameras.

5.4.2 Throughput-vs-Accuracy over Multiple CMOS+Event

Cameras

When comparing TANDEM’s performance against an FCFS baseline for fused repre-

sentations (i.e. with the CMOS camera triggered on demand) from M = 10 camera

streams operating at the edge, I note that TANDEM suffers a loss minor loss in

object detection accuracy of 1.7% but gains 88× or 888.88% increase in processing

throughput, yielding a processing throughput of 89 FPS per-camera and 890 FPS

cumulatively across M = 10 cameras on a single Jetson Orin AGX device. When

compared to Uniform-10 or uniformly packing fused representations from M = 10

onto a canvas frame, TANDEM suffers no loss in throughput and achieves 65.5%

gains in object detection accuracy, showing the power of canvas-based processing

over fused CMOS+Event streams from hybrid neuromorphic cameras such as the

DVS346.
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5.5 Discussion

Building a Real-Time System: In this chapter, I make some important assumptions:

(i) the canvas frames representing tiles from M = 10 DVS346 fused representations

are constructed within the DNN processing deadline of a single inference cycle of a

tensorRT optimised YOLOv8s model on the Jetson AGX Orin i.e. within 11.23ms

(ii) OpenCV’s blob detection conducted over both CMOS and event streams are

accelerated by the GPU (iii) there exists a scheduling mechanism for the GPU to

interleave DNN inference and pre-processing tasks such as blob detection. These

assumptions lay the foundation for the system design requirements of a real-time

implementation of TANDEM to achieve similar power-throughput-accuracy tradeoffs

as the results presented in this chapter. It is important to note a singular difference

between MOSAIC and TANDEM while designing a real-time system. MOSAIC

was evaluated on the less powerful Jetson TX2 edge GPU [108] which incurred a

significantly high DNN inference latency of 55ms(b = 1) and 172ms(b = 4). This

allowed GPU non-blocking asynchronous canvas construction for the next frame(s)

from M = 6 cameras. When using the more powerful Jetson Orin AGX [1] device,

TANDEM will have to contend with and incorporate canvas construction pipelines

that incur processing latency ≤ 11.23ms required for GPU non-blocking operation.

This is a challenge given significant overheads from CPU-based OpenCV operations

such as blob detection (∼ 6ms) and the time to construct a canvas from M = 10

fused representations∼ 9ms. I also note here that Inivation’s own software library for

the DVS346 includes accelerated algorithms for Blob Detection and Kalman-based

Tracking of selected RoI keypoints, which could yield savings in processing latency,

allowing the realization of a real-time implementation of TANDEM. Preliminary

studies for event-based blob detection show that blobs can be reliably extracted from

the raw event stream with an average IoU of 0.69 over the ground truth. While not a

perfect mechanism, such processing shows speedups of 2.2ms when comparing the

the processing latency of event blob detection (3.5ms) to OpenCV’s blob detection
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(∼ 5.7ms). I leave further characterisations in pursuit of a real-time implementation

for future work.

Event Cameras to Aid Streaming Perception: In Chapter 4, I introduce the

streaming perception paradigm JIGSAW, and the age-based dynamic scheduler that

allows a canvas-based pipeline to adopt a temporal degree of freedom to pick “when”

it would include an RoI on the canvas for DNN inference. I also discussed the value

of modelling object arrival and motion patterns to further fine-tune this dynamic

schedule, allowing the pipeline to deprioritize objects depending on their motion (i.e.

stationary or slow-moving objects) for inclusion on the canvas frame. Such nuanced

control over age-based criticality estimation could yield higher system processing

throughput, allowing more cameras M ≥ 25 (as evaluated in Chapter 4) to be

serviced by a single edge node. I believe that neuromorphic event cameras naturally

lend themselves to object motion and velocity detection. A streaming perception

pipeline could leverage the event stream to simply inform the dynamic scheduler on

the object/RoI’s age and motion related criticality, while limiting the canvas to be

constructed from 30FPS CMOS stream as shown in Chapters 2 and 4. Preliminary

studies of a Kalman-filter based tracker on a raw event stream indicate that the

velocity of displacement of the centroid can be reliably extracted, though further

study is required for modelling motion from this detected velocity with respect to

JIGSAW’s age-based criticality estimation and dynamic schedule. This presents an

alternative paradigm for incorporating event cameras at the edge for canvas-based

processing, wherein the event stream is used to determine the age-related criticality

of an object/RoI and is not explicitly incorporated as a fused representation onto the

canvas frame. While this may negate the energy savings presented in this chapter,

additional studies or changes in system design might be able to constrain the pre-

processing time for motion modelling in addition to Frame+Event fusion. Such

joint optimisation within the required canvas processing deadline of 11.23ms could

facilitate energy savings from a fused representation while also enabling streaming

perception.
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Increasing DNN Accuracy over Fused Frame+Event Representations: In Sec-

tion 5.4.1, I discuss how the on-demand fusion of CMOS+Event representations

by TANDEM shows significant power savings of 22.22% and 48.52% over CMOS

frames from an event camera and RGB camera respectively. However, this comes

at a significant cost of 8.4% and 8.5% reduction in DNN task accuracy over the

FCFS processing baseline. I hypothesize that DNN task accuracy could be increased

if the fusion were allowed to sustain for ≥ 1 frame at a time, thereby allowing

for greater DNN task confidence over a larger volume of fused frames, yielding

higher DNN task accuracy on average. To enable this, an intelligent delay mecha-

nism would have to evaluate (i) whether there are significant per-pixel differences

between two consecutive event Voxel Grids representations, and (ii) whether the

fusion of a stale CMOS frame with the current event VoxelGrid could produce a

distortion in the object pixels that is large enough to lead to a drop in object detection

accuracy. I hypothesize that introducing a “fading” mechanism for CMOS fusion

over time could best balance both needs and yield higher DNN task accuracy while

sustaining the power consumption gains shown by TANDEM. Preliminary studies

on an FCFS baseline for M = 1 cameras evaluating the fusion of CMOS frames

at 30 FPS and event Voxel Cubes generated every 33ms i.e. at 30 FPS, show that

fusion of every frame yields a DNN task accuracy of 0.983. This translates to a

minor 0.9% reduction in DNN task accuracy, a lower DNN processing throughput

of 30 FPS (as compared to 89 FPS per camera), and comparable 0.91W of power

consumption when compared to FCFS processing of CMOS frames captured at 30

FPS. When compared to TANDEM’s on-demand fusion, FCFS processing over every

CMOS+Event fused representation shows a gain of 7.5% in DNN task accuracy with

22.22% higher power consumption. This indicates that higher DNN task accuracy

could be achieved with more frequent fusion of CMOS and Event representations,

though it is imperative that this must be achieved without actually triggering the

power-consumptive CMOS sensor to sustain TANDEM’s power savings.

Use of Temporally-Aware DNN Models: Recurrent Neural Network-based models
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and Transformer-based models naturally incorporate a temporal memory between

subsequent detections which have been shown to outperform CNN-based models

like YOLOv3 [52] for object detection on event camera streams. I note two potential

issues with adopting such models for canvas-based event stream processing at the

edge: (i) Transformer-based models are typically computationally heavier than

standard CNN models, for example, a Recurrent Vision Transformer [52] for object

detection over event streams takes ∼ 770ms for a single inference cycle on the

Jetson AGX Orin, and (ii) As objects traverse the sensing field, their relative spatial

and temporal criticality informs their sizing bounds and inclusion on the canvas

frame; these behaviours may be difficult to reconcile in the model architecture of a

Transformer/RNN-based model which expects an undisturbed degree of continuity

between consecutive frames. To this end, I believe that standard off the shelf DNNs

like the YOLOv8s model used in this chapter, presents the superior option considering

the processing throughput vs complexity tradeoffs.

Incorporating Multiple, Spatially Overlapped DVS346 Cameras: In this chapter,

I designed TANDEM’s pipelines to process each CMOS+Event camera stream at the

edge independently, similar to the MOSAIC pipelines in Chapter 2. Incorporating

spatial overlap between DVS346 cameras for a multi-camera setup is a challenging

open problem in the context of event streams due to lack of defining features that

facilitate any modicum of object re-identification across multiple camera streams,

even when the camera pose(s) are established ahead of deployment. To facilitate

accurate object re-identification, the CMOS camera would have to be triggered

as often as possible, thus negating the energy savings obtained from TANDEM’s

operation. I leave the design of a system that threads the balance between energy

savings and re-identification accuracy for future work, to facilitate multi-camera

optimizations similar to the JIGSAW pipelines described in Chapter 4.

Event Cameras for Wireless Networks: Recent works incorporating event cam-

eras [36, 120, 52], all assume wired connections between the camera and the edge

processing device due to the volume of events (up to 1 Giga Events per second)
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that could overwhelm any wireless network. While research works look to com-

pressive sensing paradigms [27] to intelligently reduce event volumes, event stream

optimizations for wireless networks continues to be an open problem [13].

150



Chapter 6

Literature Review

In this chapter, I present a variety of research directions which relate to the key con-

tributions of this thesis. I first describe key approaches adopted in early and recent

works that explore fast and efficient live video analytics on resource constrained

devices. I first introduce early approaches such as edge-to-cloud offload which com-

pensated for limited computation capabilities on edge devices by offloading inference

to a more powerful computation device to improve processing latency. Next, I dis-

cuss the concept of criticality awareness in the context of input pre-processing and

modification at the camera for reducing the volume of data for wireless transmission

to the edge, reducing both network load and volume of data received at the edge. I

also explore the concept of attention with respect to modifications to the inference

pipelines and DNN structures at the edge for faster processing. Lastly, I introduce

prior works on neuromorphic event cameras which look at efficient processing and

inference over high volumes of event data and explore the notion of edge computing

in the event camera context.
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6.1 Live Video Analytics at the Edge

6.1.1 Cloud Offload for Faster Inference Throughput

Resource-efficient and accurate visual understanding is key to the success of live

video analytics. At the time of inception of real-time video processing at the edge,

research works focused on tasks such as object detection and tracking and due to

limited available resources, these tasks were supported by offloading DNN feature

maps or weights from a partially executed visual pipeline to the cloud or a co-located

edge computing device [78, 124, 57, 157].

Kang et. al. [78] designed Neurosurgeon, a lightweight scheduler that distributed

the DNN computation pipeline over the camera-adjacent edge and the cloud, complet-

ing initial layers of DNN processing at the edge and offloading intermediate feature

maps to the cloud for further fine-grained inference. Neurosurgeon [78] showed

significant savings in end-to-end latency, mobile energy consumption, and datacen-

ter throughput, showcasing the value of edge-cloud offload paradigms. Similarly,

DeePar [64], JointDNN [43], and Tian et. al. [135] proposed edge-cloud offload

mechanisms, targeting metrics such as bandwidth availability, training time, user mo-

bility and offload energy. Odessa proposed by Ra et. al. [124] introduced dynamism

into edge-cloud, optimising offloading and parallelism choices for mobile interactive

perception. Such mechanisms are more suitable for deployments featuring mobile or

edge devices which had little to no onboard capabilities or embedded devices that

will incur higher computational latency when compared to processing latency from

cloud offload which accounts for both communication and cloud processing latency.

Another perspective to offloading computation is to prefer a “closer” edge device

(in terms of network hops and round trip wireless latency) which might have available

computation resources instead of offloading to the cloud. To this end, Yi et. al.

introduced LAVEA [157] which offloaded computation between collaborating edge

nodes near the camera, with intelligent distributed systems mechanisms for inter-edge
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collaboration over a set of inference tasks. Such collaborative edge intelligence is

shown to provide significant 1.3× to 4× savings in inference latency, when compared

to the camera-cloud offload configuration. Similarly, DiStream by Zeng et. al. [159]

adaptively balances workloads generated by multiple smart cameras over a cluster of

edge devices for improved performance in processing throughput and latency.

In recent years, (i) improvements in edge GPU hardware, (ii) need for ultra-

fast processing latency for camera streams on latency sensitive applications such

as autonomous navigation, and (iii) mounting bottlenecks in cloud-offloaded com-

putation of visual pipelines with respect to requirements in processing latency,

communication latency, and privacy concerns, have motivated recent works to

instead focus on live video processing at the network edge, resulting in a re-

search area rich with interesting solutions to address difference aspects of de-

ployment for domains such as smart homes, traffic surveillance, and health-

care [32, 100, 65, 9, 160, 41, 121, 16, 49, 8, 22, 44, 30]. This thesis does not

explore cloud or edge-offload themes, and instead focuses on optimising the entire

pipeline on the edge device itself.

6.1.2 Content-Aware Pre-processing to Reduce Computational

Volume

A popular approach to enabling faster computation of real-time video at the edge is

pre-processing or modifying the input data or the camera stream. Such processing

has two significant advantages; first, the camera can choose to intelligently reduce

the amount of data that is sent to the DNN/edge for processing. Second, such

mechanisms can optimise data transfer choices for available bandwidth in the wireless

network connecting the camera to the edge device. This body of work assumes the

availability of computational capability at the camera for lightweight pre-processing

before the modified camera stream is transmitted to the edge device for processing and

also assumes the wireless network bandwidth to be the key bottleneck to achieving
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real-time video analytics.

Limiting Camera Frame Transfer

One approach to on-camera content filtering is sampling entire frames at the camera

to only transmit those frames that are relevant to the perception pipeline. Filter-

Forward by Canel et. al. [29] installs lightweight per-application microclassifiers to

evaluate the camera frames for specific types of visual content, allowing backhaul

only for those frames that are considered relevant to the application. Reducto by Li

et. al. [87] similarly uses adaptive filtering decisions according to the time-varying

correlation between desired content filtering and achievable perception accuracy.

Glimpse by Chen et. al. [32] integrates camera frame transmission trigger decisions

with cloud offload, and uses an active cache of recent frames on-camera to track

objects using stale hints received from the cloud device to determine trigger frames.

Focus by Hsieh et. al [60] takes a different approach to frame filtering, and uses an

intermediate edge device positioned between the camera and the cloud to infer on

the camera frames using a lightweight DNN, pruning redundant information from

the camera stream before offloading the reduced content to the cloud for further

processing. These approaches adopt an “all-or-nothing” paradigm when filtering

frames and therefore do not facilitate more fine-grained criticality-aware or RoI-

aware frame transfer to the edge.

RoI-based Frame Transfer

This body of work on RoI-based or content criticality-aware pre-processing for frame

transfer is most pertinent to this thesis. Similar to the BACT pipeline described

in Chapter 3, MRIM proposed by Wu et. al. [146] approaches content-aware pre-

processing by uniformly partitioning the camera frame, identifying critical regions

of interest in each of these partitions, and adjusting the resolutions of these partitions

to maximize the bandwidth available for frame transfer without impacting DNN

task accuracy. The key difference between both approaches is in the identification
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of critical regions of the frame. While the BACT pipeline uses motion-based back-

ground subtraction to remain computationally lightweight, MRIM uses Histograms

of Oriented Gradients, which suffers from slow computation speed and increased

likelihood of false detections. Similar to MRIM’s approach, Jiang et. al. propose

REMIX [74] deployed at the camera which takes in a latency budget as an input

and creates a set of non-uniform partitions for frame transfer, with each partition

downsampled to different resolutions depending on application needs. In a different

vein, VaBUS by Wang et. al. [141] semantically compresses streams from stationary

cameras by maintaining a background image of the scene at the edge and transmitting

only highly confident RoI using adaptive weighting and encoding, allowing the edge

to reconstruct an understanding of the scene for DNN processing.

Given the reality that most camera deployments feature multiple spatially over-

lapped cameras observing the same physical space, recent works have leveraged

spatiotemporal correlations or similarities between cameras to fine-tune the content

and volume of data transferred to the edge for processing. Jiang et. al. propose

Chameleon [73] which dynamically adjusts the resolutions of and framerates from

multiple cameras for frame transfer by leveraging spatiotemporal correlations deter-

mined by a leader camera. Chameleon is shown to reduce computation costs across

cameras without significant loss in DNN inference accuracy. On the other hand,

Guo et. al. introduce CrossROI [56] which removes or masks repeating instances

of the same object as seen from multiple cameras and retains a single instance of

the object to ensure comprehensive coverage of the scene. In contrast, Adamask by

Liu et. al. [97] adaptively masks frames to preserve only regions of interest to the

pipeline, dropping other regions for frame transfer. In a query-based multi-camera

system, Spatula [71] uses cross-camera correlations to reduce communication and

computation costs by reducing the search space given a query object. Another

approach proposed by Liu et. al. [96] shows how spatiotemporal corrections can

support the reduction of DNN execution latency bu eliminating spatially redundant

DNN pipeline executions on objects seen from multiple cameras. BALB introduces a
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fine-grained workload-aware latency balancing approach by extracting and retaining

only critical RoI for evaluation using DNN batching in a distributed edge processing

setting. The JIGSAW pipeline described in Chapter 4 describes the adoption of cross

camera spatiotemporal correlations for the selection of mandatory tiles/instances

of an RoI that must be included on the canvas frame for DNN inference. While

philosophically similar to CrossROI in the identification of repeating instances of

the same object across multiple cameras, the JIGSAW pipeline is distinguished by

the tiling-based canvas construction using these identified mandatory tiles.

6.1.3 DNN Optimizations & Scheduling for Faster Throughput

Recent works on real-time visual perception pipelines deployed on edge devices

are motivated by three simultaneous phenomena – (1) the proliferation of afford-

able and high-quality sensing and computation hardware [14, 107, 126, 11] (2) the

demonstrated need for mission-critical concurrent computation of diverse and high-

resolution sensor streams at the resource constrained edge with respect to available

computation power and network bandwidth [5, 70, 124] and (3) that modern deep

neural networks for vision and perception tasks are not designed to incorporate atten-

tion and scheduling constraints imposed by the resource constrained edge [5, 61].

In this section, I describe three fundamental approaches to optimizing perception

pipelines at the edge to facilitate fast DNN task inference.

End-to-end Optimizations at the Edge

Single Camera Systems: These works do not focus on the structure of the DNN

itself but introduce optimization mechanisms and pre-processing techniques applied

prior to DNN inference. DeepCache [148] proposed by Xu et. al. takes advantage

of temporal locality or redundant information across consecutive frames by caching

input frames and their intermediate feature maps from prior DNN predictions for

reuse in subsequent DNN inference tasks. To accelerate the processing of video
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frames on edge devices, prior Region-of-Interest (ROI) approaches such as REMIX

proposed by Jiang et. al. [74] attempt to selectively execute heavyweight object

detector DNNs only on selected portions of an incoming image frame, thereby

reducing the average inference latency. Selection of such portions is performed using

approaches such as background subtraction [156], the use of a lower-complexity,

‘pre-processor’ DNN [48] and, most recently, in identifying patches [150] of varying

sizes where tracking-based approaches are likely to fail. While these techniques

are conceptually similar to this thesis’ selection of critical regions of a frame, they

focus purely on a single sensor feed as opposed to the approach of spatially packing

multiple sensor streams within a single image canvas.

Multi-Camera Systems: Most similar to the MOSAIC pipeline discussed in Chap-

ter 2 is the TETRIS pipeline proposed by Stone [132] and the recently proposed

MONDRIAN pipeline by Jeon et. al. [72]. Both pipelines extract critical RoI from

multiple cameras for RoI-based canvas construction by decomposing multiple con-

current video streams in parallel with CPU-based tiling of “active regions” or critical

RoI as referred to in this thesis. However, while TETRIS and MONDRIAN extract

each RoI as an individual stimuli, Chapter 2 shows how MOSAIC’s tiling strategy

allows multiple ROI that might be nearby/occluding each other to be extracted in

the same tile. Chapter 3 additionally shows how such a tiling strategy adapts to

bandwidth aware and workload aware canvas construction approaches, an aspect not

addressed by TETRIS and MONDRIAN.

Edge GPU Scheduling

With computation power as the key bottleneck, real-time edge AI has attracted

increased academic interest. From the system perspective, earlier-stage works

focused on analyzing and understanding the intelligent edge platforms with

GPUs [117, 151, 116], CUDA scheduling [112], CPU/GPU co-scheduling [25, 147],

as well as the time variability in representative autonomous driving stacks (e.g.,

Apollo) [6, 122]. Alternatively, from the machine learning model perspective, there
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have been works on optimizing the flexibility in DNN execution [152, 24, 80, 59, 84],

which could further facilitate their deployment in real-time applications. They es-

sentially modify the DNN execution to support various forms of preemption, so

that corresponding real-time scheduling algorithms could be applied. Until recently,

attention scheduling proposed by Liu et. al. [94, 95, 77] was proposed and utilized

as a novel data-level optimization and scheduling strategy to enable real-time edge

AI, where no modification on the DNN model or the underlying operating system is

performed. However, they mostly explored the GPU parallel processing capacity by

using task batching. Another approach to moderating/scheduling input for DNN exe-

cution is represented by the streaming perception paradigm. Li et. al. [86] proposed

a new metric for streaming perception which selectively ignores frames received

from the camera to evaluate localisation latency as well as localisation accuracy to

ensure that DNN computation remains abreast of the kinematics of objects in the

physical world. Models such as StreamYOLO [149] extend the streaming perception

paradigm to evaluate DNN tasks such as object detection.

DNN Modifications for Inference

Within the broader vision and perception community, a large body of work addresses

the computational overhead of DNNs with techniques for early exit and model selec-

tion [28], model compression [33], weights quantization and weights/feature maps

sparsification [140], dynamic pruning [91], weights sharing [58], and model merging

for models designed for different inference tasks [34]. While these strategies reduce

the computation load at the edge, the methodology for canvas-based processing aims

to optimize the twin metrics of bandwidth/energy consumption and edge processing

throughput.
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6.2 Neuromorphic Event Camera Streams at the Edge

In this thesis, I discuss event stream pre-processing on edge devices for canvas-based

processing of two or more event camera streams. I now introduce works related

to pre-processing high volumes of event data, RGB-event fusion, and inference

paradigms for event streams at the edge.

6.2.1 Pre-processing High Volume Event Streams

Although event camera streams are sparse by nature, responding only to changes

in the environment, highly dynamic scenes that feature considerable movement

or changes in contrast might yield up to 1.06 Giga events per second per pixel,

depending on the sensor capability. Processing such volume and velocity of data

require significant processing resources and is therefore challenging on resource

constrained devices. Event compression for processing lends itself to the processing

of such dynamic scenes, with prior works approaching the problem in four distinct

ways.

1. Frame Conversion and Interpolation: The first approach to pre-processing

event streams is to reduce/collate it to the form of a well-studied two-dimensional

form for processing with well researched vision algorithms, DNNs, and techniques

built for RGB frames[63, 128]. This method has the advantage of leveraging decades

long research in computer vision and machine perception but largely quantizes/dis-

cards the asynchronous sparse nature of event data. Popular event representations

include:

• Binary Histograms [19] which represent multiple binary event images as a

single frame of N-bit numbers

• Voxel Grids [162] representing events across pixels accumulated over time

• Time Surface [82] which retains temporal information from events to show

recent temporal activity within a spatial region of the event camera
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• Mixed Density Event Stack (MDES) [106] which constructs frames aggregat-

ing events over different time scales

• Time Ordered Recent Events (TORE) [17] which compactly represent raw

event information by aggregating per-pixel queues into frames

Standard resizing techniques applied to RGB frames, such as Linear and Bicubic

interpolation [113] are then applied to the resulting frames as a compression mecha-

nism. I adopt this approach to pre-process event streams on edge devices due to the

low computational overhead of computing Voxel Grids and Binary Histograms as

discussed in Chapter 5.

2. Spatial Compression: More recently, Gruel et. al. have proposed the idea of

using (i) log-luminescence reconstruction [54] and (ii) activation functions or input

neurons from Spiking Neural Networks [55] as a mechanism for downsampling

event data without conversion or collation of the events into a frame. However,

these methods incur significant processing overheads on edge devices as shown in

Chapter 5.

3. Temporal Compression: Another body of work looks at maintaining the spatial

resolution of event data but reducing the temporal resolution without any loss in

processing or task accuracy. Algorithms such as TALVEN [79] and QuadTree-

based approaches [18] evaluate the 2D spatial priority within the 3D space-time

volume [18]. These methods focus on frame-representations of the event data and

differentially accumulate regions of the frame based on the 2D spatial criticality of

the region. Regions that have more “activity” or objects of interest are accumulated

in smaller bins that maintain the temporal resolution of the events whereas static

areas or regions without activity are collated in larger bins. These bins are then

encoded with lossy entropy encoding techniques similar to HEVC or H26X video

encoding techiniques. VoxelGrids [36] maintains reduces the temporal resolution

without loss in information by encoding polarity in micro time-bins which are also

proven to aid in multiplicative gains in compression without loss in object recognition
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accuracy. Lastly, the recently proposed ADDER framework [47] introduces a per-

pixel temporal compression strategy with each pixel determining its own decimation

factor or threshold which determines how many events must be accumulated before

firing a downsampled event. More active pixels will increase their threshold over time

whereas less active pixels will adopt a lower threshold to enable greater sensitivity to

scene changes.

4. Spatiotemporal Encoding: The fourth paradigm SpikeCoding [27] is in spa-

tiotemporal encoding of event streams, introduced for event video compression. The

event stream is partitioned into quadtree-based cubes based on event frequency, and

each cube is evaluated on an inter-cube and intra-cube basis for (i) impact of the

cube’s compression on the vision task and (ii) optical consistency of the resulting

frame-space video. Such compression methods maintain the information gain from

the high temporal resolution of the event sensors without losing the its asynchronicity

but incur extremely high processing latency on edge devices.

6.2.2 Fusion of RGB and Event Streams

Recent works also look at intelligent fusion of RGB and event sensor streams to

jointly take advantage of the high spatial resolution of feature-rich RGB streams

with the high temporal resolution of event streams. Tomy et. al. [136] proposes a

feature pyramid sensor early-fusion model which extracts features from both RGB

and event streams independently at three different spatial scales. At each scale both

sets of features are concatenated before being fed to a RetinaNet-50 network. Cress

et. al. [37] explore pre-processing techniques to calibrate RGB and event sensors

for effective fusion, especially when both cameras are in motion. Whereas Gehrig

et. al. [38] explore late stage concatenation of event and RGB streams encoded into

feature representations for monocular depth estimation. In Chapter 5, I introduce

early-stage fusion of both event and RGB streams into a common fused frame

representation using a simple MLP-based encoder for canvas construction.

161



6.2.3 Inference & Processing Paradigms

In this section, I present inference paradigms for event streams that have been

explored by recent works, with recent research works broadly falling into one of

three categories: (i) classical DNN inference over framed representations of event

streams (ii) Spiking Neural Network inference over raw event streams, and (iii)

hybrid ANN-SNN models which perform late-stage fusion of ANN inference over

traditional RGB camera streams and SNN inference over event streams.

DNN Inference

Recent works explore Recurrent Neural Networks and Deep Neural Networks to

take advantage of existing inference paradigms, optimization techniques such as

sparsification and neural pruning by inferring on framed representations of event

streams. Iacono et. al. explored a standard Inception+SSD network [66] for standard

off-the-shelf DNN inference over event streams and found reasonable performance,

while RRC-Events proposed by Chen e. al. [31] used intermediate pseudo-labels

as targets for DNN learning over event streams to show superior performance over

DNN inference over RGB cameras in the case of motion blur and low illumination.

Similarly, YOLOv3-Events [75], RED [120], and ASTMNet [85] find reasonable

performance with improved operational metrics in processing latency and deployment

characteristics over standard RGB stream processing. As for attention-based vision

transformers for event streams, while some works explore applications in object

classification and recognition [125, 143], object detection transformer models are

still an evolving area of research with RVT proposed by Gehrig et. al. [52] showing

superior performance over other ANN methods in both detection accuracy and

processing latency. Crucial to note here however, is that most implementations are

designed for the cloud where no memory and computation restrictions are posed on

the pre-processing and inference over event streams, leaving exploration of event

stream processing on edge devices an open research problem.
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To take advantage of the high temporal resolution of event streams, recent works

proposed by Li e. al. [88], Schaefer et. al. [127], Li et. al. [89], Feichtenhofer

et. al. [45], and Mitrokhin et. al. [103] explore the applicability of Graph Neural

Networks to model the spatiotemporal characteristics of events. Events are sub-

sampled and modelled as nodes, and edges are constructed when events occur within

a pre-defined spatiotemporal “distance” of each other. However, more work needs to

be done to explore how such graphs evolve over time, especially when sub-sampling

that is required to accelerate GNN inference on edge devices can lead to significant

information loss over space-time.

SNN Inference

Inspired by the biological neuron and synapse, Spiking Neural Networks (SNNs)

embody an asynchronous form of artificial neural networks. Their design aims to

replicate the dynamics of neural membranes and action potentials over time. SNNs

process information in the form of spike trains, representing a non-monotonous

sequence of activations. The construction of an SNN involves connecting populations

of SNN neurons based on specific rules and a defined architecture, with SNN neurons

emitting spikes when their internal voltage threshold has been reached. SNNs offer

advantages such as improved energy efficiency, robustness to noise, and temporal

coding capabilities, but the spike generation mechanism is not differentiable, leading

to optimisation issues for SNN pipelines and low SNN task accuracy as shown by

Cordone et. al. [36] where SNNs achieves a very low mean accuracy, showing an

accuracy drop of ∼ 28.3% when compared to other DNN models [52].

Hybrid SNN-DNN Inference

State of the art works in hybrid RGB-Event pipelines [143, 10] have primarily lever-

aged event streams as efficient encoders of temporal information. SNN processed

spiking outputs, considered as encoded temporal information, are fused with features

extracted by DNN pipelines inferring on RGB frames. Such late-stage fusion of
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the independent outputs of (i) the SNN inferring on event streams and (ii) DNNs

inferring on RGB streams, relies on methods such as heuristics, temporal filtering,

or accumulation of detections based on the ANN outputs. However, both SNN and

ANN pipelines process their input streams independently without sharing features

between the networks, making this fusion shallow.
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Chapter 7

Conclusions and Future Outlook

I conclude the thesis by summarising the key contributions of each research work

before outlining some key directions for future works.

7.0.1 Summary of Contributions

In this thesis, I show that nuanced processing of multiple concurrent camera streams

across both RGB cameras and neuromorphic event cameras can push the envelope, in

terms of processing capacity and throughput with negligible loss of DNN task accu-

racy, that is achievable on resource-constrained edge devices. I introduce the concept

of “Criticality Awareness” both at the edge and a compute-enabled camera to facili-

tate the novel “Canvas-based Processing” paradigm which spatiotemporally channels

limited computation resources to critical regions from multiple input streams to

enable accurate and efficient live video analytics at the edge. I also demonstrate how

leveraging concepts such as optimised bandwidth-aware camera→edge frame trans-

mission, workload adaptive canvas construction, streaming perception evaluation,

and fusion with event camera streams can provide a perception pipeline with greater

flexibility and control over achievable system performance outcomes.

MOSAIC: In Chapter 2, I introduce MOSAIC, a criticality-aware “spatial multi-

plexing” based approach for DNN-based inferencing on edge devices that extracts

high-priority regions of individual images and then spatially packs them into a com-
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posite canvas frame of smaller size, so as to ensure high processing throughput.

MOSAIC’s key innovation is the introduction of a spatial degree of freedom as the

Mosaic-of-Scales (MoS) pipeline, a multi-scale tiling approach that ensures that

objects of varying sizes are both represented at adequate dimensions, and with min-

imal redundancy on the canvas. Experimental studies with a representative Jetson

TX2 edge device demonstrate how MOSAIC can provide a multiplicative increase

in throughput—e.g., by packing critical regions from 6 distinct camera images into

a single canvas frame, MOSAIC can achieve a cumulative throughput of ∼ 138

FPS while achieving pedestrian detection accuracy of 79% on the Okutama-Action

dataset. In contrast, processing each image frame individually provides a slight

increase (≤ 1%) in accuracy to 80% but with sharply lower throughput (∼ 18FPS),

while simplistically packing 6 image frames uniformly into a canvas frame can

achieve similar throughput (∼144 FPS) but with significantly lower accuracy (71%).

Similar gains are observed for a separate License Plate Recognition application,

thereby demonstrating the generalizability of MOSAIC.

RA-MOSAIC: In Chapter 3, I introduce RA-MOSAIC, an end-to-end resource

adaptive pipeline with bandwidth adaptive camera→edge frame transmission and

workload adaptive canvas construction over M camera streams, providing significant

gains in the achievable throughput-accuracy tradeoff in bandwidth constrained and

dynamic workload environments. Conceptually, RA-MOSAIC extends MOSAIC

by showing how integrating the sensors and edge devices into a joint optimization

of both sensor data transmission and processing can yield superior performance. At

the camera, RA-MOSAIC differentially downsamples critical regions of the camera

frame with higher resolution afforded to those regions that contain regions/objects of

interest. At the edge, RA-MOSAIC tiles and spatially multiplexes multiresolution

frames from M cameras onto a dynamically sized canvas frame, to opportunistically

afford faster processing throughput when workloads from M cameras are low. I

show that in a real-world bandwidth constrained wireless environment, RA-MOSAIC

packs tiles from M = 6 concurrent camera streams to provide a simultaneous (i)
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14.3% gain in accuracy and (ii) 11.11% gain in average throughput over MOSAIC.

Compared to bandwidth adaptive FCFS and naive uniform grid packing baselines,

RA-MOSAIC suffers no loss in accuracy and a 17% gain in accuracy respectively,

while providing a 5.6× or 566.67% gain in throughput and 5% gain in throughput

respectively, up to 20 FPS on average per-camera, cumulatively 120 FPS over M = 6

cameras.

JIGSAW: In Chapter 4, I introduce JIGSAW as a novel system that utilizes

canvas-based processing of multiple sensor input streams to optimize streaming

perception tasks on a single GPU-equipped edge device. Supported by an intelligent

dynamic scheduler, tile utility maximization mechanisms and cross-camera view

mappings, JIGSAW constructs canvas frames representing unique objects sensed

across multiple cameras, some of which might have spatial overlap in their field

of view. JIGSAW utilizes the insight that streaming perception may benefit from

delaying or discarding selected arriving frames (or regions within such frames), and

thus dispenses with MOSAIC’s approach of attempting to process every incoming

frame from each camera. A Jetson TX2 based implementation demonstrates that

JIGSAW is capable of performing accurate streaming perception over 25 concurrent

camera streams with a throughput of 19 FPS per camera–this represents a 316.67%

increase in processing capacity and a 59.1% increase in object detection accuracy

from state-of-the-art baselines.

TANDEM: Lastly, in Chapter 5, I introduce TANDEM, an edge-based system

that intelligently and asynchronously fuses CMOS streams(grayscale, 30 FPS) and

event streams (100 FPS) on demand to balance between the triple of (sensing energy

consumption, processing throughput and perception accuracy). In effect, TANDEM

provides a mechanism to support significantly higher processing frame rates (than

would be achievable with RGB sensors alone) together with low power consumption

and high object detection task accuracy, that can benefit tasks such as autonomous

navigation and mechanical analysis of machinery. I also show how canvas-based pro-

cessing can multiplex multiple pairs of {feature-rich CMOS streams, energy-efficient
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event streams} for many-to-one Canvas-based Processing using a single DNN on a

resource constrained edge device. TANDEM’s intelligent on-demand sensor fusion

recovers the uncertainty that is introduced in the canvas construction pipeline by

low-dimension event frame representations which might lack defining object fea-

tures due to lack of significant object/RoI motion within the pre-determined sensing

window. Implemented on a Jetson AGX Orin device TANDEM simultaneously packs

fused CMOS+Event representations from M = 10 cameras onto a canvas frame for

DNN inference providing a 88× or 888.88% gain in processing throughput at 89

FPS per-camera while suffering a minor loss in object detection accuracy of 1.7%.

7.0.2 Publications

The research work described in this thesis has contributed to the following peer-

reviewed conference publications:

1. Gokarn, I., & Misra, A. (2024). ”Poster: Profiling Event Vision Processing

on Edge Devices”. Proceedings of 22nd ACM International Conference on

Mobile Systems, Applications, and Services (to appear).

2. Gokarn, I. (2024). ”Criticality Aware Canvas-based Visual Perception at

the Edge”. Proceedings of 22nd ACM International Conference on Mobile

Systems, Applications, and Services (to appear).

3. Gokarn, I., Hu, Y., Abdelzaher, T., & Misra, A. (2024). ”JIGSAW: Edge-based

Streaming Perception over Spatially Overlapped Multi-Camera Deployments.”

Proceedings of 2024 IEEE International Conference on Multimedia and Expo

(to appear).

4. Y. Hu, I. Gokarn, S. Liu, A. Misra and T. Abdelzaher, ”Algorithms for Canvas-

Based Attention Scheduling with Resizing,” Proceedings of 30th IEEE Real-

Time and Embedded Technology and Applications Symposium (to appear).

168



5. Gokarn, I., Sabbella, H., Hu, Y., Abdelzaher, T., & Misra, A. (2023, June).

MOSAIC: Spatially-multiplexed edge AI optimization over multiple concurrent

video sensing streams. In Proceedings of the 14th Conference on ACM

Multimedia Systems(pp. 278-288).

6. Y. Hu, I. Gokarn, S. Liu, A. Misra and T. Abdelzaher, ”Underprovisioned

GPUs: On Sufficient Capacity for Real-Time Mission-Critical Perception,”

2023 32nd International Conference on Computer Communications and Net-

works (ICCCN), Honolulu, HI, USA, 2023, pp. 1-10.

7. Y. Hu, I. Gokarn, S. Liu, A. Misra and T. Abdelzaher, ”Work-in-Progress:

Algorithms for Canvas-Based Attention Scheduling with Resizing,” 2023 IEEE

Real-Time Systems Symposium (RTSS), Taipei, Taiwan, 2023.

7.0.3 Future Directions

Canvas-based Processing for Multiple Applications at the Edge: In this thesis, I

have considered a single application deployed at the edge, performing a single object

detection task over multiple spatiotemporally multiplexed camera streams. However,

such a deployment discounts the need for multiple applications to be inferring on

the same camera feeds to achieve different objectives. For example, the stream from

a camera deployed on a traffic light might be consumed by multiple applications

performing traffic congestion monitoring, pedestrian jaywalking violations detection,

as well as vehicular license plate detection. If a single edge device were to run all 3

applications simultaneously, the oversubscribed GPU would not be able to achieve

the throughput-vs-accuracy gains I have demonstrated in this thesis. In addition, the

different applications might have different latency and accuracy requirements, which

result in different operating points on a latency-vs.-accuracy curve. In Chapter 2,

I show how multiple applications may impose different spatial sizing bounds for

resizing each RoI onto the canvas frame to retain different levels of object sensing

fidelity. For instance, the license plate recognition applications prevents the vehicle
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object to be downsampled too harshly to retain Optical Character Recognition (OCR)

capabilities. I intend to build on this intuition to study the impact of packing RoI

extracted from different cameras, with each RoI or multiple instances of the same

RoI contributing to the inference/understanding of multiple applications downstream.

I believe the following mechanisms might be necessary to achieve this vision (i)

many-to-one mappings between RoI and downstream application inferences (ii)

mixed application RoI criticality estimator and spatial sizing bound aggregator

across applications to determine a fair mapping between the size of the included

RoI and the achiveable accuracy for each of the mapped applications (iii) profiler to

automatically determine which applications can rely on the same RoI representation

and which applications might need a much larger RoI representation to be mapped

to the canvas frame, and (iv) a more nuanced scheduler which performs admission

control over these application-mapped RoI to meet task accuracy and latency targets

over all applications on average to best meet the possibly divergent task and latency

requirements of different applications.

Generative AI for Reconstruction of Camera Streams from Canvas Frames:

I believe that constructed canvas frames present a new paradigm for multi-image

compression, with key details from multiple camera feeds represented in a single

canvas frame. However, decompressing these canvas frames into their original

camera streams for reconstruction of the sensed scene on demand can pose some

challenges: (i) cut-mix of the extracted RoI onto a static background image may

not yield realistic images (ii) scene reconstruction with respect to environmental

artifacts such as the weather and ambient lighting could be difficult to model, and (iii)

camera streams from dynamic cameras in motion would be challenging to construct.

I hypothesize that these challenges can be addressed with a generative AI model

that constructs realistic background scenes adjusted for weather, ambient light, and

motion for a particular physical geography, with objects mapped from a canvas frame

onto the scene and visually integrated to reconstruct a reasonable approximation

of the original camera stream. Such a pipeline could present enormous savings in
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storage volume demands for archival video.

Native Edge Detection in Raw Event Streams: During the development of the

TANDEM pipeline described in Chapter 5 I discovered an open research problem in

detecting edges of an object of interest in the raw event stream. Typically, to execute

traditional computer vision algorithms like edge detection, the event stream must

be first transformed into a framed 2D representation, discarding the rich temporal

information that event streams provide. This adds a significant amount of pre-

processing with CPU-deployed OpenCV [113] algorithms incurring high processing

latency. Recently, Hough Transforms [131] have been used to detect straight lines in

raw event streams to detect star illumination patterns [15] and poles/tracks in high

speed rail lines [137]. Seifozzakerini et. al. also show how Hough Transforms can

be generalised for non-linear patterns modelled as a series of linear patterns [131]. I

hypothesize that Graph Neural Networks might be able to capture the adage “neurons

that fire together wire together” in a more generalizable manner, adapting to dynamic

cameras in motion which might observe varying object sizes and event firing patterns

over time. I also believe that such GNN construction will be able to better filter out

noise and create comprehensive notions of rigid objects of interest within the raw

event stream, replacing DNNs for 2D or frame-based object detection.

Multi-Resolution Encoding of Event Streams: Presently, events are captured

and processed at their native sensor latency when evaluating raw event streams,

or quantized uniformly when evaluating framed representations. I hypothesize

that a more nuanced Fast Fourier Transform (FFT) based event encoding method

that adaptively aggregates events in different spatial regions of the event stream

over different temporal lengths/windows could yield a better representation of rigid

objects of interest and filter out noise from the background when evaluating event

streams generated by dynamic event cameras in motion (i.e. onboard autonomous

drones/robots/cars). I hypothesize that the resulting multi-spatiotemporal resolution

event cube can also overcome bandwidth constraints if a event camera is wirelessly

transmitting event streams to an edge device for processing. I believe that such
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a formulation could open the doors to a new class of event camera-based edge

perception pipelines.
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