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Abstract

This dissertation consists of three papers contributing to the theory of estimation

and inference of high-frequency financial data.

In the second chapter, a general framework is introduced for optimal nonpara-

metric spot volatility estimation based on intraday range data, comprised of the first,

highest, lowest, and last prices over a given time interval. Employing a decision-

theoretic approach together with a coupling-type argument, the form of the nonpara-

metric estimator is directly tailored to the specific volatility measure of interest and

the relevant loss function. The resulting new optimal estimators offer substantial

efficiency gains compared to existing commonly used range-based procedures.

The third chapter extends the previous chapter to handle multiple candlesticks,

proposing a computationally more efficient algorithm for spot volatility estimation.

Additionally, an exact simulation scheme is introduced to address biases in Euler

discretization, enabling precise risk comparison and further analysis involving ex-

treme values of Brownian motions.

The fourth chapter addresses the uniform inference problem for high-frequency

data that includes prices, volumes, and trading flows. Such data is modeled within a

general state-space framework, where the latent state process is corresponding risk

indicators, e.g., volatility, price jump, average order size, and arrival of events. The

functional estimators are formed as a collection of localized estimates across differ-

ent time points. Although the proposed estimators do not admit a functional central

limit theorem, a Gaussian strong approximation, or coupling, is established under

in-fill asymptotics to facilitate feasible inference. The proposed methodology is ap-

plied to distinguish the informative part from the Federal Open Market Committee

speeches, and to analyze the impact of social media activities on cryptocurrency

markets.
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Chapter 1

Introduction

Over the past two decades, the analysis of high-frequency data has emerged as

one of the most dynamic and popular fields in financial econometrics, driven by

the growing availability of data from high-frequency trading. Such data offers a

detailed depiction of price movements over narrow time windows, which naturally

enables doing localized analysis. With a growing number of observations within a

fixed time window, we gain more precise insights into underlying processes, without

restrictions on their stationarity. Consequently, estimation and inference can be

carried out in a nonparametric fashion. With more and more observation within a

fixed time window, we can have a more precise information of unerlying process

regardless whether they are stationary or not. In contrast to the long-span (large T )

asymptotics, this limiting notion is referred to as infill asymptotics. Analysis under

infill asymptotics and corresponding data is made possible by the development of

new mathematical methods and econometric tools.

One of the most central topics in high-frequency financial econometrics is volatil-

ity estimation and inference, a focus of the first two chapters. Unlike commonly

used estimates in the literature, which rely solely on high-frequency returns, we

make use of the information embedded in high-low ranges and so-called “candle-

stick charts,” which encompass open, high, low, and close prices over each observa-

tion interval. Such data is readily available on an intraday basis in many databases.

We rely on ideas from decision theory to exploit the full information inherent in

such candlesticks for volatility estimation. Specifically, in the second chapter, co-

authored with Professor Tim Bollerslev and Professor Jia Li, we formally define op-
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timality of spot volatiliey estimator under a decision-theoretical framework, through

the use of a “coupling” argument. Based on the definition, we derive closed-form

expressions for optimal spot volatility estimators with a single candlestick. Our

results show the superiority of the proposed estimators compared to conventional

return-based estimators and other existing range-based estimators in the literature.

The third chapter, co-authored with Professor Tim Bollerslev, Professor Jia Li,

and Assistant Professor Yifan Li, extends our analysis to multiple candlesticks.

One of the primary challenges in computing optimal estimates with more than one

candlestick is the absence of closed-form expressions in this scenario. Machine

learning-based method proposed in the previous chapter suffers from the one-sided

bias of the Euler discretization scheme when dealing with the supremum and infi-

mum of a continuous Brownian path, which renders the training procedures com-

putationally costly and less reliable. To address this problem, we introduce an exact

simulation scheme capable of generating samples exactly following the same dis-

tribution of a continuous Brownian path. Additionally, we propose an alternative

algorithm that outperforms the machine learning-based approach in both computa-

tional efficiency and precision.

In the fourth chapter, we turn to uniform inference, aimed at analyzing the global

properties of the entire underlying process. Here, our focus extends beyond high-

frequency price data to encompass other market indicators such as trading volumes

and trading flows. Following the literature, we model these market indicators by

a general state-space framework, where the latent state processes can be volatility,

average order size, and arrival of events. The functional estimators are formed as the

collection of localized estimates across different time points. The major challenge

in conducting uniform inference arises from the fact that the proposed estimator

does not admit a functional central limit theorem. To address this problem, we

adopt a technique borrowed from the high-frequency statistics literature, namely,

the strong approximation. The core concept is to find an alternative sequence with a

known finite-sample distribution yet remains close enough to the original functional

estimator under specific metric. Our results facilitate the construction of uniform

confidence bands, and can be applied to tackle other econometric problems.

Chapter five concludes. Appendix contains all the proofs and additional results.
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Chapter 2

Optimal Nonparametric

Range-Based Volatility Estimation

2.1 Introduction

Most financial and macroeconomic time series exhibit time-varying volatility.

Accurate assessments of said volatilities are important for financial decision mak-

ing and the evaluation of economic policies alike. Accordingly, a large econometrics

literature has emerged over the past several decades dedicated to the development

of ever more reliable volatility estimation procedures. We add to this burgeon lit-

erature by providing new optimal range-based volatility estimators.1 We rely on

a novel decision-theoretic approach together with a coupling-type asymptotic rep-

resentation to explicitly tailor the form of the optimal estimator to the volatility

measure of interest and relevant loss function. In so doing, we demonstrate non-

trivial efficiency gains for the new optimal estimators compared to commonly used

procedures.

Prompted by the increased availability of high-frequency intraday prices for a

variety of financial assets and markets, most of the volatility estimation procedures

proposed in the more recent literature have been nonparametric, built on the notion

1Following the existing literature, we will refer to any estimator that exploits not only the infor-
mation in the high and low prices over a given time interval, but also the first and last prices over the
interval, as a “range-based” estimator. When there is no ambiguity, we will also frequently use the
word “volatility” as a catchall for any scale measure, the variance included.
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of ever finer sampled returns and corresponding infill asymptotic arguments (see,

e.g., the introductory discussion in Andersen and Bollerslev (2018)). In a stylized

theoretical setting, the use of finely sampled intraday returns naturally affords more

accurate volatility estimates than the use of coarser, say daily, returns. Empirically,

however, the presence of market microstructure “noise” presents formidable chal-

lenges to the direct use of ultra high-frequency returns, necessitating more advanced

robust inference procedures and/or the use of “not-too-finely” sampled intraday re-

turns (see, e.g., the discussion in Jacod et al. (2017) and Li and Linton (2022), along

with the many additional references therein).

Meanwhile, pioneering work by Parkinson (1980) and Garman and Klass (1980),

dating back almost half-a-century, first demonstrated the increased accuracy for

daily variance estimation afforded by harnessing the richer information embedded

in the daily high-low range and so-called “candlestick charts,” comprised of the

open, high, low, and close prices over the day.2 This type of daily data has long

been freely available for a vast array of financial assets. It is now also readily

available on an intraday basis.3 Importantly, and in parallel to the common use

of “not-too-finely” sampled high-frequency intraday returns, intraday candlesticks

sampled at “not-too-fine” a frequency offer a similar built-in robustness to market

microstructure noise, and as such holds the promise of easy-to-implement improved

volatility estimation.4 Yet, it remains an open question how to optimally exploit the

full information inherent in such candlesticks for said estimation.

We rely on ideas from decision theory to provide a definitive answer to this

question. Classical decision theory generally invokes specific parametric distribu-

tional assumptions to determine the optimal estimator that minimizes the specific

risk. By contrast, our high-frequency framework adopts a nonparametric approach.

2Candlestick charts are also routinely used by finance practitioners in the formulation of tech-
nical trading strategies. The first such documented use of candlestick charting dates back to the
18th century and the Japanese rice trader Munehisa Homma; see, for example, Nison (2001) for an
introduction to the main ideas.

3High-frequency candlestick data is provided by various online trading platforms (e.g. E-Trade,
Robinhood), publicly available databases (e.g., Yahoo Finance), and commercial databases (e.g.,
Bloomberg, Tick Data, TAQ).

4Extending our ideas to range-based estimation with even finer sampled intraday candlesticks
for which the noise cannot be ignored would be an interesting direction for future research. How-
ever, as discussed further below, the requisite task of pinning down the fine structure of the noise
and the underlying economic mechanisms presents formidable challenges beyond our main research
question.
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We leverage the infill asymptotic “coupling” method recently developed by Boller-

slev et al. (2021) to bridge the gap between our setting and the classical decision-

theoretic approach. This enables us to derive unique optimal high-frequency range-

based spot volatility estimators corresponding to particular loss functions (e.g.,

Quadratic or Stein) and volatility measures (e.g., �t , �2t , �4t , or ��1
t ). For spot

estimation based on a single candlestick, we derive closed-form analytical expres-

sions for the optimal estimators. These estimators are non-standard, but straightfor-

ward to implement in practice. In cases involving multiple candlesticks, we provide

semi-closed form solutions for the optimal estimators and illustrate how to employ

machine learning tools to numerically compute the optimal estimation functions.

Our results are most closely related to the recent work of Li et al. (2022). Ex-

tending the original analysis in Garman and Klass (1980) based on the assump-

tion of a continuous-time price process with constant volatility to a high-frequency

nonparametric infill asymptotic setting, Li et al. (2022) propose a range-based esti-

mator for the spot volatility that achieves the minimum asymptotic variance within

the class of unbiased linear estimators. Their proposal may be regarded as the best

linear unbiased estimator (BLUE) for spot volatility. While that analysis is informa-

tive, it is also incomplete, and by design much simpler than the present analysis. In

particular, a priori restricting the functional form of the estimator to be linear simpli-

fies the search for the “optimal” estimator to a search for the optimal set of weights,

as opposed to a search for the risk-minimizing estimator in an infinite-dimensional

functional space. Importantly, restricting the functional form also does not guaran-

tee that the resulting “shape-constrained” optimal estimator is actually the optimal

estimator.5 Indeed, as we demonstrate below, the “unconstrained” optimal nonpara-

metric range-based spot volatility estimators derived here often provide nontrivial

efficiency gains compared to existing procedures hitherto derived in the literature

under various simplifying assumptions, the classical Garman–Klass estimator and

the BLUE estimator of Li et al. (2022) included.
5Of course, seemingly ad hoc functional-form restrictions do not necessarily result in efficiency

loss. For example, in Gaussian linear regression models, the ordinary least-squares estimator is also
the uniformly minimum-variance unbiased estimator by the Lehmann–Scheffé theorem (see, e.g.,
Shaffer (1991)). That is, the BLUE estimator is also the best unbiased estimator (BUE); see also the
related recent discussion pertaining to possibly non-Gaussian linear regression models in Hansen
(2022) and Pötscher and Preinerstorfer (2022).
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Further relating our work to the existing high-frequency literature on nonpara-

metric volatility estimation, most of the prior theoretical work on optimal estimation

of spot volatility (see, e.g., Foster and Nelson (1996), Comte and Renault (1998),

Kristensen (2010), and Chapter 13 in Jacod and Protter (2012)) has primarily been

concerned with rate optimality. However, that optimality criterion sheds little light

on the estimators’ actual finite-sample performance.6 Another strand of the liter-

ature has instead been concerned with the semiparametric efficient estimation of

integrated volatility functionals (see, e.g., Mykland and Zhang (2009), Jacod and

Rosenbaum (2013), Renault et al. (2017), and Li and Liu (2021)). The optimality

concept typically adopted in that literature has been built on the convolution theo-

rem and the related local asymptotic minimaxity results for locally asymptotically

mixed normal (LAMN) models (see, e.g., Le Cam (1960), Hájek (1972), Jeganathan

(1982, 1983)). By contrast, our coupling theory directly links the nonparametric

range-based spot volatility estimation/decision problem with a non-Gaussian limit

experiment. As a result, the functional form of our new optimal estimators generally

depend on the loss function and are quite nonstandard, although straightforward to

implement in practice.

The remainder of this paper is organized as follows. In Section 2, we start

by outlining our nonparametric high-frequency setting and basic assumptions, fol-

lowed by a discussion of our key coupling arguments. We then introduce the new

optimal range-based spot volatility estimators and provide a characterization of their

asymptotic properties. Section 2.3 illustrates the practical applicability of the new

estimators, and shows the intraday candlestick-based spot volatility estimates for

a market portfolio for each of the eight 2022 prescheduled Federal Open Market

Committee (FOMC) announcement days. We conclude with a few suggestions for

future research. All proofs are included in Appendix A.1, while additional theoreti-

cal and numerical results can be found in Appendix A.2.

6Kristensen (2010) does seek to characterize the optimal choice of the smoothing kernel. How-
ever, the underlying assumption that the volatility process has differentiable sample paths rules out
all Brownian stochastic volatility models, as well as any model featuring volatility jumps.
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2.2 Nonparametric Range-Based Volatility Estimation

2.2.1 Theoretical Setting and Decision-Theoretic Framework

The (log) price process P is assumed to follow an Itô semimartingale defined

on a filtered probability space
�
�;F ; .Ft/t�0;P

�
of the form

Pt D P0C

Z t

0

bsdsC

Z t

0

�sdWsCJt ; 0� t � T; (2.1)

where the drift process b and the volatility process � are both càdlàg adapted, W

is a standard Brownian motion, and J is a pure-jump process driven by a Poisson

random measure. We are interested in the optimal nonparametric estimation of

the pth power of the spot volatility, �pt , at some fixed time t under a standard infill

asymptotic setting with the sampling interval�n! 0. We will focus our discussion

in the main text on cases with p D 2 (variance) and p D 1 (volatility). The same

ideas may similarly be applied in the construction of optimal estimators for other

powers p.7

The baseline Itô semimartingale in (2.1) is directly motivated by no-arbitrage

arguments. However, it is well-known that the process is misspecified empirically

at ultra high, or tick level, frequencies. In addition to a host of market microstruc-

ture frictions that “contaminate” the actually observed prices (see, e.g., Diebold and

Strasser (2013) for a discussion of the underlying economic mechanisms), prices

are also not truly recorded on a continuous-time scale. The most commonly used

approach to circumvent these difficulties for the purpose of volatility estimation

is to “down-sample” the available data, and rely on returns at “not-too-high” a fre-

quency 1=�n. The practical choice of�n has typically been guided by the so-called

volatility signature plot introduced by Andersen et al. (2000) (see also the discus-

sion in Hansen and Lunde (2006), and the recent formalization of that approach in

Aït-Sahalia and Xiu (2019)). The new estimation method proposed here is similarly

intended to be used with “not-too-finely” sampled data. Put differently, acknowl-

edging that the workhorse Itô semimartingale model is only meant as a plausible

approximation over “coarser” time scales, effectively allows us to follow the com-

mon approach in the literature and remain agnostic about the fine structure of the

7Analogous results for p D 4 (quarticity) and p D �1 (precision) are presented in the Supple-
mental Appendix A.2.
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market microstructure noise.8

The existing high-frequency econometrics literature on nonparametric volatility

estimation has primarily been focused on estimators formed using high-frequency

returns; i.e., Pi�n
�P.i�1/�n

. We augment the information in the high-frequency

return by “looking inside” the �n time-interval through the lens of high-frequency

candlesticks. More specifically, denote the i th sampling interval by Ti D Œ.i �

1/�n; i�n�. The corresponding candlestick then provides information on the open,

high, low, and close prices, formally defined by P.i�1/�n
, supt2Ti

Pt , inft2Ti
Pt , and

Pi�n
, respectively. This information may be summarized in the form of the three

(normalized) returns

ri �
Pi�n

�P.i�1/�n
p
�n

; ui �
supt2Ti

Pt �P.i�1/�n
p
�n

; li �
inft2Ti

Pt �P.i�1/�n
p
�n

;

(2.2)

where ri denotes the usual open-close return traditionally used for high-frequency-

based volatility estimation, and ui (resp. li ) refers to the high (resp. low) return

brought by the candlestick (to help fix ideas, see Figure 2.1). All range-based esti-

mators may be expressed as functions of .ri ;ui ; li/. To facilitate our representation

and subsequent discussion of the optimal estimators, it is convenient to also define

the scaled range wi � ui � li (as also indicated in Figure 2.1), and a measure of

asymmetry ai � jui C li � ri j. The asymmetry measure quantifies the absolute dif-

ference between the lengths of the “wicks” above and below the rectangular box of

the candlestick. The candlestick is symmetric if and only if ai D 0.

To more clearly highlight the key novelty of our approach, we first focus on

8Alternatively, one could impose more explicit assumptions about the form of the noise, and the
way in which the prices observed at ultra high frequencies differ from the efficient prices. However,
it is far from obvious how the noise component should be modeled, plus the “right” choice is invari-
ably asset and/or market specific. For instance, are the conditional moments of the noise constant
or time-varying; does the noise exhibit conditional and/or unconditional serial dependence; should
the noise be treated as “small” (i.e., local-to-zero) or “large;” is the noise correlated with the latent
efficient price (see, e.g., Kalnina and Linton (2008), Zhang et al. (2005), Jacod et al. (2017), and
Li and Linton (2022)). Further complicating matters, the broader econometrics literature on non-
classical measurement errors (see, e.g., Schennach (2020)) also calls into question the “classical”
additive separability and mean independence assumptions routinely invoked in the high-frequency
econometrics literature, and instead suggests that the noise may be better accounted for using non-
classical models (as in, e.g., Berkson (1950) and Hyslop and Imbens (2001)). Hence, while it is
conceivable that the new approach developed here could be extended to allow for the use of ultra
high-frequency data by explicating the “fine structure” of the noise, any associated theoretical effi-
ciency claims would come with the perhaps even more challenging task of justifying the additional
requisite assumptions.

8
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Figure 2.1: The figure shows two prototypical candlesticks, bearish and bullish, comprised
of the open, high, low, and close prices. The corresponding return ri , range wi , high return
ui , and low return li , as defined in equation (2.2), are explicitly highlighted.

estimators based on a single high-frequency candlestick “neighboring” t in the sense

that ji�n� t j D o.1/.9 Optimal estimation with multiple adjacent candlesticks is

discussed in Section 2.2.4. Accordingly, we will express our estimators for �pt

generically as

S D f .ri ;ui ; li/; (2.3)

for some function f .�/. Since spot volatility is fundamentally a “scale parameter,”

we will restrict our attention to scale-equivariant estimators, requiring the function

f .�/ to be homogeneous of degree p, that is, f .�x/ D �pf .x/ for any � > 0.

We will further refer to the estimator as regular if f .�/ is continuous (Lebesgue)

almost everywhere. This regularity requirement seems rather innocuous. However,

it ensures that any candidate estimator has a limit distribution that is also scale-

equivariant.10 As shown in Theorem 2.1 below, it also proves sufficient to “couple”

the original nonparametric estimation problem with a much simpler limit decision

problem.

9Note, the index i generally also depends on n. We purposely suppress this dependence in our
notation so as to avoid nested subscripts.

10This mirrors the notion of regularity in Gaussian shift limit experiments that requires the esti-
mator to be asymptotically location-equivariant (see, e.g., Van der Vaart (1998)).
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In the analysis of scale estimation problems, it is also standard to gauge the

estimator’s performance by a scale-invariant loss function. For any non-negative

loss function L.�/ this is readily achieved by considering the scaled loss L.S=�pt /.

Correspondingly, the risk of the estimator S may be succinctly expressed as

R.S IL/� EŒL.S=�pt /�: (2.4)

It is impossible to obtain an optimal estimator that minimizes R.S IL/ under the

general nonparametric model in (2.1). Intuitively, as the joint distribution of the

data vector .ri ;ui ; li/ is determined by the unknown joint law of the .b;�;W;J /

process this would essentially amount to an optimization problem with an infinite-

dimensional nuisance parameter. Importantly, however, under mild regularity con-

ditions on the price process, the multiplicative estimation error S=�pt may be shown

to be asymptotically pivotal for any regular scale-equivariant estimator. Conse-

quently, the asymptotic loss and risk are both nuisance-free, simplifying the opti-

mality analysis.

The following regularity condition, which is standard in the literature on non-

parametric volatility estimation (see, e.g., Jacod and Protter (2012), Jacod et al.

(2021), Bollerslev et al. (2021), and Li et al. (2022)) suffices for this pivotalization

scheme to obtain.

Assumption 1. Suppose that the price process P has the form in (2.1) and that

there exists a sequence .Tm/m�1 of stopping times increasing to infinity and a se-

quence .Km/m�1 of finite constants such that the following conditions hold for each

m � 1: (i) for all t 2 Œ0;Tm�, jbt j C j�t j C j�t j�1CFt.R n f0g/ � Km, where Ft

denotes the spot Lévy measure of J ; (ii) for some constant � > 0, EŒj�t^Tm
�

�s^Tm
j2��Kmjt � sj

2� for all s; t 2 Œ0;T �.

Assumption 1 necessitates that various processes are bounded by a finite con-

stant Km up to a stopping time Tm, without requiring the bound to hold over the

entire sample span. This setup is commonly employed when applying localization,

a standard technique in stochastic calculus used for extending limit theorems under

weaker conditions. For a comprehensive discussion on its application in the anal-

ysis of high-frequency data, see, e.g., Section 4.4.1 in Jacod and Protter (2012).

The parameter �, defined as the Hölder continuity index for the volatility process �

10



under the L2 norm, pertains to the smoothness of � . If the volatility is driven by

a Brownian motion, � is at most 1=2, and the volatility path is non-differentiable

everywhere. This setting differs from typical nonparametric problems, where un-

known functions are often assumed to be differentiable of higher order. Values

of � < 1=2 also permits the volatility to exhibit “rough” paths, as emphasized by

Gatheral et al. (2018) among others.

The following theorem stipulates a general asymptotic representation for any

regular scale-equivariant estimator S D f .ri ;ui ; li/ allowed under these mild con-

ditions. By linking the nonparametric estimation problem with that in a limit non-

Gaussian experiment, the result differs notably from the Gaussian shift experiment

commonly used in the analysis of semiparametric efficiency, the estimation of inte-

grated volatility functionals included.

Theorem 2.1. Under Assumption 1, any regular scale-equivariant estimator S D

f .ri ;ui ; li/ with ji�n� t j ! 0 may be expressed as

S

�
p
t

D f .�i/Cop.1/; (2.5)

where �i � .�i;r ; �i;u; �i;l/ and

�i;r �
Wi�n

�W.i�1/�n
p
�n

;

�i;u �
sups2Ti

.Ws�W.i�1/�n
/

p
�n

;

�i;l �
infs2Ti

.Ws�W.i�1/�n
/

p
�n

:

The theorem shows that the multiplicative estimation error in S may be decom-

posed into a nondegenerate leading term f .�i/ and an asymptotically negligible

op.1/ term. The op.1/ term absorbs various nonparametric biases stemming from

the drift, time-variation of volatility, and jumps. If the price was simply a scaled

Brownian motion, this term would be identically equal to zero. Importantly, the dis-

tribution of the �i random variable that determines the leading f .�i/ term is known

in finite samples. To appreciate this point, let B denote a generic copy of the stan-

dard Brownian motion on the unit interval Œ0;1� with B0 D 0. It then follows that

�i
d
D Q� �

�
B1; sup

t2Œ0;1�

Bt ; inf
t2Œ0;1�

Bt

�
: (2.6)
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Since this distribution, and by implication the f .�i/ term in (2.5), are both nuisance-

free, the multiplicative estimation error S=�pt is therefore also asymptotically piv-

otal.11

If the loss functionL.�/ is continuous, Theorem 2.1 further implies an analogous

coupling result for the estimation loss

L.S=�
p
t /D L

�
f .�i/

�
Cop.1/: (2.7)

Following the literature (e.g., Le Cam (1986b) and Van der Vaart (1998)), this natu-

rally suggests defining the asymptotic risk of any regular scale-equivariant estimator

as the expected value of the limit loss L
�
f .�i/

�
. By (2.6) the asymptotic risk may

thus be expressed as eR.S IL/� E
�
L
�
f . Q�/

��
: (2.8)

The distribution of Q� is known in finite sample and so eR.S IL/ can be readily eval-

uated for any loss function L.�/ and estimator f .�/. We will refer to a regular scale-

equivariant estimator S as optimal, or more precisely as an Asymptotic Minimum-

Risk scale-Equivariant (AMRE) estimator, if it minimizes eR.S IL/. Since this

asymptotic risk does not depend on any unknown quantities in the nonparamet-

ric model in (2.1), this optimality concept is valid in a uniform sense. As such, it

also implies asymptotic admissibility and minimaxity (within the class of regular

scale-equivariant estimators). Consequently, any suboptimal estimator is necessar-

ily asymptotically inadmissible.

Theorem 2.1 is based on the Itô semimartingale model (2.1), which as previously

noted does not explicitly incorporate microstructure noise. However, the same result

remains valid if the observed prices are affected by “small” noise. Specifically, if the

magnitude of the noise is of order op.�
1=2
n /, the “noisy” observation of .ri ;ui ; li/

deviates from their true value by op.1/, which, according to the continuous mapping

theorem, implies that (2.5) also holds for the “noisy” estimator. Intuitively, the

op.�
1=2
n / rate requirement for the noise is more plausible when �n is not “too-

11This nuisance-free limit distribution also permits the construction of asymptotically valid confi-
dence intervals for �pt . For any ˛ 2 .0;1/, let L and U be constants such that P

�
L� 1=f . Q�/�U

�
D

1�˛. Then ŒLS;US� is a confidence interval for �pt at asymptotic level 1�˛. The length of the
interval is minimized by taking ŒL;U � as the 1�˛ level highest density interval of the distribution
of 1=f . Q�/.
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small,” consistent with the idea of not using “too-finely” sampled data, or coarse

sampling.12

In order to construct an AMRE estimator, it is helpful to recognize that the

asymptotic risk of a regular estimation function f .�/ can be equivalently represented

in terms of its finite-sample risk in a limit parametric model, where the (log) price

process P is a simple scaled Brownian motion (i.e., Pt D �Wt ). This, in turn,

facilitates the use of classical finite-sample theory for optimal equivariant estimation

in determining the optimal estimation function and the AMRE estimator.13 The

AMRE estimators presented in Section 2.2.2 and Section 2.2.4 below, as well as the

additional estimators discussed in the Supplemental Appendix A.2, are developed

using this approach.

2.2.2 Optimal Estimation for Spot Variance and Volatility

To streamline the presentation and more clearly highlight our main theoretical

contributions, we will focus our discussion on the optimal estimation of the spot

variance �2t and the spot volatility �t .14 We will restrict our attention to optimal

estimators based on Stein’s loss and the standardized quadratic loss,

LStein.x/� x� log.x/�1; LQuad.x/� jx�1j
2: (2.9)

These specific loss functions arguably constitute the two most commonly used

losses in practice. AMRE estimators for other, possibly case-specific, loss func-

tions could be derived similarly.

To facilitate the representation of the optimal estimators, it is helpful to define

the functions Gq.�/ and Hq.�/ for any integer q � 0 as,

Gq.x/ �  q

�1�x
2

�
C q

�1Cx
2

�
�

x

qC1

�
 qC1

�1�x
2

�
� qC1

�1Cx
2

��
12In line with the existing empirical literature on high-frequency-based volatility estimation, we

recommend adopting a �n D 5-minute sampling scheme as the default choice in practice. Simu-
lation results in the Supplemental Appendix A.2 also demonstrate that the noise, when calibrated
to empirically realistic levels, has a negligible effect on the resulting 5-minute estimators. As the
noise level becomes higher, the noise leads to larger positive bias in the volatility estimates, and the
shrinkage estimator derived from minimizing the quadratic loss tends to outperform other estimators.

13According to Corollary 3.3.4 in Lehmann and Casella (1998), the solution to the functional
minimization problem minf E

�
L
�
f . Q�/

��
exists and is unique, provided that an equivariant estimator

with finite risk exists and the function x 7! L.ex/ is strictly convex and not monotone.
14Analogous derivations for the spot quarticity �4t and spot precision ��1

t are provided in the
Supplemental Appendix A.2.
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�
1�x2

4.qC1/.qC2/

�
 qC2

�1�x
2

�
C qC2

�1Cx
2

��
; (2.10)

Hq.x/ �  q

�
1�

x

2

�
C q

�x
2

�
�

x

qC1

�
 qC1

�
1�

x

2

�
� qC1

�x
2

��
C

x2

4.qC1/.qC2/

�
 qC2

�
1�

x

2

�
C qC2

�x
2

��
; (2.11)

where q.x/ denotes the polygamma function of order q, that is, the .qC1/th-order

derivative of the logarithm of the Gamma function. The Gq.�/ and Hq.�/ functions

are both continuous almost everywhere, making them suitable for constructing reg-

ular estimators.15 Using these definitions, the subsequent theorem offers explicit an-

alytical expressions for the AMRE estimators of the spot variance and spot volatility

under each of the two loss functions.

Theorem 2.2. Under the same setting as Theorem 2.1, we have

(a) the AMRE range-based estimator for �2t under Stein’s loss is asymptotically

unbiased and given by

O�2Stein �
4w2i
3
�
G0.ai=wi/�H0.jri j=wi/

G2.ai=wi/�H2.jri j=wi/
;

while the AMRE range-based estimator for �2t under standardized quadratic loss

equals

O�2Quad �
32w2i
5
�
G2.ai=wi/�H2.jri j=wi/

G4.ai=wi/�H4.jri j=wi/
I

(b) the AMRE range-based estimator for �t under Stein’s loss is asymptotically

unbiased and given by

O�Stein �

p
2�

3
wi �

G0.ai=wi/�H0.jri j=wi/

H1.jri j=wi/�G1.ai=wi/
;

while the AMRE range-based estimator for �t under standardized quadratic loss

equals

O�Quad � 2

r
2

�
wi �

H1.jri j=wi/�G1.ai=wi/

G2.ai=wi/�H2.jri j=wi/
:

COMMENT 1. The asymptotic unbiasedness of the O�2Stein and O�Stein estimators is

reminiscent of the classical finite-sample result that minimum-risk estimators un-

der Stein’s loss are guaranteed to be unbiased. As demonstrated by Brown (1968),

Stein’s loss is also the unique loss function (up to affine transformations) that sat-
15The almost everywhere continuity of the Gq.�/ and Hq.�/ functions follows from the fact that

polygamma functions are formally meromorphic, meaning that they are analytic except for a discrete
set of points.
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isfies this property. Consequently, AMRE estimators under other loss functions are

necessarily asymptotically biased.

COMMENT 2. The AMRE estimators depend solely on the shape of the candlestick,

as summarized by the scaled range wi � ui � li , the scaled absolute return jri j, and

the ai asymmetry measure. These shape-related features remain unaffected by a

“color change” or an “upside-down flip” of the candlestick.16 Consequently, the op-

timal volatility estimators are also invariant to these “directional” transformations.

This feature reduction is due to a sufficiency argument, as formalized by Lemma

A.1 in the Appendix, which shows that the shape features .wi ; jri j;ai/ are indeed

sufficient statistics for � in the limit model Pt D �Wt . Recall that according to the

Rao–Blackwell theorem, optimal estimators depend on data only through sufficient

statistics.

The AMRE estimation functions defined in Theorem 2.2 are relatively com-

plex. Clearly, it would have been challenging to accurately “intuit” these specific

functional forms when searching for optimal estimators within a restricted class of

functions. Since the AMRE estimators are uniquely determined (Corollary 3.3.4

in Lehmann and Casella (1998)), any ad hoc restrictions on the functional form

used in the derivation of “shape-constrained” optimal estimators would therefore

also generally result in suboptimal and, as previously mentioned, asymptotically

inadmissible estimators.

For a more direct comparison, recall that Garman and Klass’s (1980) minimum-

variance unbiased quadratic estimator for spot variance is given by17

O�2GK � 0:511.ui � li/
2
�0:019

�
ri.uiC li/�2ui li

�
�0:383r2i

D 0:5015w2i C0:0095a
2
i �0:3925r

2
i ;

while the BLUE for spot volatility proposed by Li et al. (2022) is given by

O�BLUE � 0:811wi �0:369jri j:

Meanwhile, approximating the functional forms of the AMRE estimators described

16More precisely, the color change corresponds to changing the sign of ri and the upside-down
flip amounts to swapping the upper and lower shadows of the candlestick.

17A simplified “practical” version of the Garman–Klass estimator, defined by 0:5w2i �
�
2 log.2/�

1
�
r2i � 0:5w

2
i �0:386r

2
i , has also sometimes been used in empirical applications.

15



in Theorem 2.2 by cubic polynomials of the (maximal invariant) ratio statistics,

jri j=wi and ai=wi , the spot variance estimator may be expressed as18

O�2Stein � 0:5921w2i �0:2066jri jwi �0:1289a
2
i �0:5874r

2
i �0:0001

a3i
wi

C0:0382
jri ja

2
i

wi
�0:0001

r2i ai

wi
C0:3872

jri j
3

wi
;

O�2Quad � 0:4936w2i �0:0002aiwi �0:2436jri jwi �0:1003a
2
i C0:0001jri jai

�0:4316r2i �0:0006
a3i
wi
C0:0883

jri ja
2
i

wi
�0:0005

r2i ai

wi
C0:3282

jri j
3

wi
;

while the analogous approximations for the AMRE spot volatility estimators take

the form

O�Stein � 0:7859wi �0:1010jri j�0:0888
a2i
wi
�0:4798

r2i
wi
�0:0178

a2i jri j

w2i

C0:2341
jri j

3

w2i
;

O�Quad � 0:7526wi �0:1366jri j�0:0846
a2i
wi
�0:0001

ai jri j

wi
�0:4345

r2i
wi

C0:0181
a2i jri j

w2i
�0:0001

air
2
i

w2i
C0:2284

jri j
3

w2i
:

While not exact, these cubic expansions formally highlight the differences between

the AMRE estimators and the shape-constrained estimators, by explicating the for-

mer’s dependence on additional higher-order nonlinear features.

To help more clearly visualize these differences, Figure 2.2 present the estima-

tion functions for the three spot variance estimators: O�2Stein, O�2Quad, and O�2GK. As the

estimators are all scale-equivariant, we compare them without loss of generality

under the scale normalization wi D 1 (i.e., jri j and ai are interpreted in a rela-

tive sense). In the left panel of Figure 2.2, we further fix the asymmetry factor at

ai D 0, and plot the spot variance estimators as functions of the absolute return jri j.

Looking at the two asymptotically unbiased estimators, O�2Stein and O�2GK, the former

is higher when jri j is close to 0 or 1, and lower when jri j takes medium values.19

Meanwhile, the estimation function associated with O�2Quad is systematically below

18The approximation for O�2Stein is constructed by projecting
�
G0.ai=wi / �

H0.jri j=wi /
�
=
�
G2.ai=wi / � H2.jri j=wi /

�
onto a cubic polynomial of the maximal invariant

.jri j=wi ;ai=wi / under the L2 distance. The approximations for the other AMRE estimators are
obtained similarly.

19As a point of reference, in the Brownian limit model, the interquartile range of jri j=wi spans
0:243 to 0:676, while the interdecile range covers 0:099 to 0:817.
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Figure 2.2: Alternative Range-Based Variance Estimators. The figure plots the AMRE
estimators for the variance under Stein’s loss (Stein) and quadratic loss (Quadratic), together
with the Garman–Klass estimator. The range wi is normalized to unity. The left panel plots
the spot variance estimator as a function of the absolute return jri j, with the asymmetry
factor fixed at ai D 0. The right panel plots the spot variance estimator as a function of the
asymmetry factor ai , with the absolute return fixed at jri j D 0:3.
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Figure 2.3: Alternative Range-Based Volatility Estimators. The figure plots the AMRE
estimators for the volatility under Stein’s loss (Stein) and quadratic loss (Quadratic), to-
gether with the BLUE estimator proposed by Li et al. (2022). The range wi is normalized
to unity. The left panel plots the spot volatility estimator as a function of the absolute return
jri j, with the asymmetry factor fixed at ai D 0. The right panel plots the spot volatility esti-
mator as a function of the asymmetry factor ai , with the absolute return fixed at jri j D 0:3.
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the estimation functions for the two unbiased estimators, indicating that the AMRE

estimator under quadratic loss exhibits a certain “shrinkage” and therefore also is

downward biased.

In the right panel of Figure 2.2, we fix jri j D 0:3 and plot the estimators as

functions of the asymmetry factor ai .20 While O�2GK displays a slightly positive de-

pendence on the asymmetry factor, the two AMRE estimators evidence a more pro-

nounced negative dependence. Comparing the left and right panels further reveals

that the absolute return has a greater impact on variance estimation than the asym-

metry factor.

A similar comparison for the three spot volatility estimators, O�Stein, O�Quad, and

O�BLUE, is provided in Figure 2.3. The overall patterns generally mirror those of

Figure 2.2. Underscoring the difference between the two AMRE and the BLUE

estimator of Li et al. (2022), which does not depend on ai , the right panel clearly

shows that the two optimal estimators both depend negatively, and nontrivially, on

the asymmetry factor.

We turn next to a more direct assessment of how these differences in the func-

tional forms of the estimators translate into asymptotic biases, variances, and differ-

ences in Stein and quadratic risks.

2.2.3 Risk Comparisons

We will focus our comparisons of the risks of the different estimators by con-

sidering the relative efficiency, defined as the ratio between the risk of the relevant

AMRE estimator and the estimator under consideration. Table 2.1 reports the re-

sults for the three spot variance estimators: O�2Stein, O�2Quad, and O�2GK. Since O�BLUE is the

BLUE for spot volatility, we also include . O�BLUE/
2 as a fourth contender for esti-

mating the spot variance. Table 2.2 presents the analogous results for the three spot

volatility estimators: O�Stein, O�Quad, and O�BLUE. For comparison, we also include the

transformed . O�2GK/
1=2 spot volatility estimator.21

20Since ai measures the absolute difference between the lengths of the upper and lower shadows
of the candlestick, it takes values in Œ0;wi �jri j�.

21All of the numbers are computed numerically based on ten million Monte Carlo draws of a
standard Brownian motion .Bt /t2Œ0;1� (recall (2.6)) as the simulated sample averages corresponding
to EŒf . Q�/��1, Var

�
f . Q�/

�
, and E

�
L
�
f . Q�/

��
, respectively.
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Table 2.1: Asymptotic Properties of Spot Variance Estimators

Relative Efficiency

Estimator Bias Variance Stein Quadratic

O�2Stein 0.000 0.259 1.000 0.803

O�2Quad �0:205 0.165 0.813 1.000

O�2GK 0.000 0.270 0.968 0.770

. O�BLUE/
2 0.062 0.295 0.976 0.698

Note: The table reports the asymptotic biases, variances, and relative effi-
ciency under Stein’s and quadratic risks for each of the spot variance esti-
mators indicated in the first column.

Table 2.2: Asymptotic Properties of Spot Volatility Estimators

Relative Efficiency

Estimator Bias Variance Stein Quadratic

O�Stein 0.000 0.061 1.000 0.967

O�Quad �0:058 0.055 0.909 1.000

. O�2GK/
1=2 �0:030 0.060 0.938 0.952

O�BLUE 0.000 0.063 0.968 0.937

Note: The table reports the asymptotic biases, variances, and relative effi-
ciency under Stein’s and quadratic risks for each of the spot volatility esti-
mators indicated in the first column.
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Looking first at Table 2.1, the optimal O�2Quad estimator exhibits substantial down-

ward asymptotic bias. This “shrinkage” feature is attributable to the fact that the

quadratic loss assigns a heavier penalty to overestimation than underestimation,

and as such the corresponding optimal estimator naturally sacrifices some down-

ward bias in order to further reduce the variance. Indeed, the asymptotic variance

of the O�2Quad estimator is notably lower than the corresponding numbers for all of

the other estimators. Compared to the optimal estimator O�2Quad, the relative efficien-

cies of the shape-constrained O�2GK and . O�BLUE/
2 estimators equal 77.0% and 69.8%

respectively.22

Although the shape-constrained estimators clearly demonstrate suboptimal per-

formance under quadratic loss, they exhibit “near-optimal” behavior under Stein’s

loss. Specifically, the relative efficiencies of O�2GK and . O�BLUE/
2 are 96.8% and 97.6%,

respectively, when compared to the AMRE O�2Stein. In other words, in scenarios

where an economic agent’s loss function closely resembles Stein’s loss, the classical

Garman–Klass and the BLUE estimators are both reasonable practical choices. Of

course, since the AMRE estimator can also easily be calculated in practice using our

explicit closed form solution, there is really no need to suffer any efficiency loss,

however small it might be.

Turning to Table 2.2 and spot volatility estimation, the results again evidence

notable bias for the O�Quad estimator. In general, the efficiency gaps between the

shape-constrained volatility estimators and the optimal estimator are smaller than

for variance estimation. Intuitively, the optimal estimation of �t is “easier” than

the optimal estimation of its nonlinear transform �2t .23 As such, the Garman–Klass

estimator and the simple linear estimator proposed by Li et al. (2022) turn out to

perform quite well for spot volatility estimation under both quadratic and Stein’s

loss functions, although both estimators, strictly speaking, are inadmissible.

22Interestingly, O�2Stein exhibits lower quadratic risk than O�2GK. Since both of these two estimators
are asymptotically unbiased, this suggests that under quadratic loss the Garman–Klass estimator is
asymptotically inadmissible, not only within the class of regular scale-equivariant estimators, but
also within the subclass of asymptotically unbiased estimators.

23Consistent with this intuition, Tables A.1 in the Supplemental Appendix A.2 shows that the
efficiency gap between the AMRE estimators and the shape-constrained estimators is also larger
for the quarticity �4t , an even “more nonlinear” transform of the volatility than the variance. For
example, under quadratic loss, the relative efficiencies of . O�2GK/

2 and . O�BLUE/
4 are only 31.2% and

25.5%, respectively, in comparison with the AMRE estimator for �4t .
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More broadly, these numerical comparisons also demonstrate that the relative

asymptotic risks of alternative estimators, and in turn the design of optimal estima-

tors, can depend quite strongly on the underlying loss function. This reflects the

finite-sample nature of our coupling-based asymptotic analysis in a non-Gaussian

limit experiment. By contrast, in the conventional “large sample” asymptotic setting

with Gaussian shift limit experiments, different loss functions (as long as they are

bowl-shaped) result in the same optimal estimators (see, e.g., Chapter 8 in Van der

Vaart (1998)).

Acknowledging the practical challenge of precising the loss function in some

applications, we observe an intriguing pattern for the risk comparisons in Tables

2.1 and 2.2. In both tables, the AMRE estimators derived under Stein’s loss ex-

hibit lower risks than the shape-constrained estimators, not only under Stein’s loss

(which holds by construction), but also under quadratic loss.24 Hence, for users who

are uncertain about their specific loss function, we recommend employing O�2Stein and

O�Stein as “general purpose” estimators for spot variance and spot volatility estima-

tion, respectively.

2.2.4 Optimal Estimators with Multiple Candlesticks

The estimators discussed above rely on a single candlestick for optimally esti-

mating the spot volatility, or the spot variance. In this section we describe how to

combine multiple adjacent candlesticks (over asymptotically shrinking time inter-

vals) for optimally estimating �pt .

To set out the notation, given a fixed integer k � 1, let

ci D .riCj�1;uiCj�1; liCj�1/1�j�k;

collect the observed features of k successive candlesticks starting at the i th obser-

vation. Denote the corresponding estimator for �pt that utilizes the k candlesticks

by f .ci/. A direct extension of Theorem 2.1 produces the following analogous

coupling result for the k-candlestick setting.

Corollary 2.1. Under Assumption 1, given any fixed integer k � 1, any regular

24Additional results reported in the Supplemental Appendix A.2 show that this phenomenon re-
mains true for estimating the spot quarticity, �4t , and the spot precision, ��1

t .
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scale-equivariant estimator S D f .ci/ with ji�n� t j ! 0 may be expressed as

S

�
p
t

D f .�i ; �iC1; : : : ; �iCk�1/Cop.1/;

where the variables �iCj , j D 1; : : : ;k, are defined as in Theorem 2.1.

Building on the same reasoning outlined in Section 2.2.2, we may therefore

couple the original estimation problem with that in the Brownian limit experiment.

Moreover, by a direct extension of the proof of Theorem 2.2, we can also derive

semi-closed form expressions for the AMRE estimators that utilize k successive

candlesticks. Concretely, the AMRE estimators under Stein’s loss and standardized

quadratic loss may be expressed as

O�
p
Stein.k/D w

p
i �

1

Fk;p

�
jri j

wi
; ai

wi
;
wiC1

wi
;

jriC1j

wi
;
aiC1

wi
; � � � ;

wiCk�1

wi
;

jriCk�1j

wi
;
aiCk�1

wi

� ;

O�
p
Quad.k/D w

p
i �

Fk;p

�
jri j

wi
;

ai
wi
;

wiC1
wi

;
jriC1j

wi
;

aiC1
wi

;��� ;
wiCk�1

wi
;

jriCk�1j

wi
;

aiCk�1
wi

�
Fk;2p

�
jri j

wi
;

ai
wi
;

wiC1
wi

;
jriC1j

wi
;

aiC1
wi

;��� ;
wiCk�1

wi
;

jriCk�1j

wi
;

aiCk�1
wi

� :
(2.12)

The function Fk;q W R3k�1 ! R that enters these expressions for q 2 fp;2pg is

formally defined as a conditional expectation function:

Fk;q

�
jri j

wi
;
ai

wi
;
wiC1

wi
;
jriC1j

wi
;
aiC1

wi
; � � � ;

wiCk�1

wi
;
jriCk�1j

wi
;
aiCk�1

wi

�

� E
�
�
q
w;1

ˇ̌̌ �w;j
�w;1
D
wiCj�1

wi
;
�r;j

�w;1
D
jriCj�1j

wi
;
�a;j

�w;1
D
aiCj�1

wi

for all 1� j � k
�
; (2.13)

where .�w;j ; �r;j ; �a;j /, j D 1;2; : : : ;k, are independent copies of�
sup
t2Œ0;1�

Bt � inf
t2Œ0;1�

Bt ; jB1j;
ˇ̌̌

sup
t2Œ0;1�

BtC inf
t2Œ0;1�

Bt �B1

ˇ̌̌�
: (2.14)

In parallel to the optimal estimators that rely on a single candlestick, the two

AMRE estimators defined in (2.12) are also structurally similar. The wpi compo-

nent, in particular, acts as a generic scale-equivariant estimator for �pt , while the

Fk;q.�/ function depends on candlestick observations solely through the maximal

invariant statistics, defined as the shape features .wiCj�1; jriCj�1j;aiCj�1/1�j�k

normalized by wi . The earlier closed form solutions for the single-candlestick case,
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or k D 1, detailed in Theorem 2.2 were obtained by explicitly deriving the func-

tional form of F1;q.�/. Regrettably, analytical solutions for Fk;q.�/ for k � 2 are

currently unattainable.

Nonetheless, the semi-closed form solutions in (2.12) still suggest a strategy for

numerically computing the optimal estimation functions. In particular, since Fk;q.�/

is defined as the conditional expectation ofwqi given the maximal invariant statistics

under the limit experiment, one may simulate the .�w;j ; �r;j ; �a;j /1�j�k variables as

i.i.d. copies of the Brownian functionals defined in (2.14) and then calculate the

requisite conditional expectation function in (2.13) via Monte Carlo integration.

This calculation, which formally entails the formation of a predictor that minimizes

the mean squared error, may be conveniently implemented using popular machine

learning tools such as neural networks, or random forests. We stress that for a given

k and q, the function Fk;q.�/ only needs to be computed once.

To illustrate the idea, consider the case with two candlesticks, or k D 2. Em-

ploying a neural network to compute the conditional expectation functions F2;p.�/

and F2;2p.�/ numerically, Tables 2.3 and 2.4 report the resulting asymptotic bias,

variance, and relative efficiency for the AMRE estimators for estimating the spot

variance and volatility, respectively, obtained by using these numerical approxima-

tions in place of the true unknown functions in (2.12).25 The k D 2 versions of

the shape-constrained O�2GK and O�BLUE estimators, also included in the tables, are

constructed as simple averages of their respective single-candlestick estimates, fol-

lowing the suggestion of Li et al. (2022).

The general results are qualitatively very similar to the ones for the single-

candlestick estimators previously reported in Tables 2.1 and 2.2. The optimal es-

timators are notably more accurate, especially for estimating the spot variance un-

der quadratic loss. At the same time, the “near optimality” property of the shape-

constrained estimators under Stein’s loss observed for the single-candlestick case

25More specifically, we rely on a logistic sigmoid activation function, and an architecture com-
prised of an input layer with 32 neurons, followed by two hidden layers with 16 and 8 neurons, re-
spectively. We train the model based on five million random draws of .�w;j ; �r;j ; �a;j /jD1;2, where
the Brownian motion .Bt /t2Œ0;1� is generated using an Euler scheme with a mesh size of 10�7. Un-
derscoring the accuracy of the approach, using the same procedures to calculate the functions for
k D 1 results in numerical solutions that are practically indistinguishable from the closed form solu-
tions detailed in Theorem 2.2.
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Table 2.3: Asymptotic Properties of Spot Variance Estimators Based on Two Candlesticks

Relative Efficiency

Estimator Bias Variance Stein Quadratic

O�2Stein.2/ 0.000 0.128 1.000 0.891

O�2Quad.2/ �0:103 0.103 0.833 1.000

O�2GK 0.000 0.135 0.923 0.844

. O�BLUE/
2 0.062 0.147 0.923 0.755

Note: The table reports the asymptotic biases, variances, and relative effi-
ciency under Stein’s and quadratic risks for each of the spot variance esti-
mators indicated in the first column.

Table 2.4: Asymptotic Properties of Spot Volatility Estimators Based on Two Candlesticks

Relative Efficiency

Estimator Bias Variance Stein Quadratic

O�Stein.2/ 0.000 0.030 1.000 0.966

O�Quad.2/ �0:025 0.029 0.939 1.000

. O�2GK/
1=2 �0:030 0.030 0.940 0.935

O�BLUE 0.000 0.031 0.942 0.935

Note: The table reports the asymptotic biases, variances, and relative effi-
ciency under Stein’s and quadratic risks for each of the spot volatility esti-
mators indicated in the first column.
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does not appear to hold as well. For instance, the relative efficiency of the Garman–

Klass variance estimator drops from 96.8% in the k D 1 case to 92.3% in the

kD 2 case, while the relative efficiency of the BLUE volatility estimator drops from

96.8% to 94.2%. These findings further motivate the use of the AMRE estimators

in practice.

Putting the results in Tables 2.3 and 2.4 further into perspective, it is, of course,

not surprising that the spot estimators constructed by combining two candlesticks

exhibit smaller theoretical asymptotic variances than their single-candlestick coun-

terparts. At the same time, the temporal aggregation of multiple candlesticks can

easily be harmful in practice, especially when the volatility fluctuates rapidly. In

such situations, the limit experiment with constant volatility that formally underlies

the theoretical asymptotic comparisons will likely not provide a good finite-sample

guide either. Of course, this type of empirical scenario is precisely when spot esti-

mation can be most useful and informative. The empirical application discussed in

the next section further highlights these issues.

2.3 An Empirical Illustration

To demonstrate the practical applicability and insights afforded by the new op-

timal estimators, we present spot volatility estimates for a market portfolio on the

eight 2022 prescheduled FOMC announcement days. Putting the results into per-

spective, at the start of the year U.S. inflation had already soared to its highest level

since the 1980s. In response to this, the Federal Reserve indicated at its January

2022 meeting that it would soon be appropriate to raise the target range for the fed-

eral funds rate. Subsequently, the target rate was indeed increased by 25 basis points

(bps) in March, followed by a more substantial 50 bps hike in May. The pace of rate

increases further accelerated to 75 bps for the next four meetings, before moderating

to a 50 bps rise at the final 2022 meeting in December. Each of these rate increases

were detailed in a short formal release by the FOMC at exactly 14:00 EST, followed

by additional comments and a press conference led by Federal Reserve Chairman

Jerome Powell starting half-an-hour later.

It is well established that financial markets often reacts quite strongly to the
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initial 14:00 FOMC announcement.26 It is much less clear, however, what happens

to market volatility at the exact time of the FOMC announcement, let alone in its

immediate aftermath and during the subsequent press conference. We shed new

light on this issue by utilizing intraday candlestick data for the S&P 500 index, in the

form of the VOO exchange-traded fund (ETF) managed by the Vanguard Group, to

estimate high-frequency spot volatilities. Guided by the simulation results discussed

above, to mitigate the impact of microstructure noise, we employ 5-minute VOO

candlesticks, sourced directly from Bloomberg. We focus our analyses on the 5-

minute O�Stein AMRE spot volatility estimator; comparisons with the other estimators

discussed above are presented in the Supplemental Appendix A.2.27

Figure 2.4 displays the resulting estimates, together with 90% level pointwise

confidence intervals. To facilitate comparison across the different days, all of the

plots are presented on a uniform percentage daily scale. As the figure shows,

the market volatility generally spikes immediately following the initial FOMC an-

nouncement at 14:00.28 The volatility then generally reverts towards a more “nor-

mal” level in the half-hour window between the initial release and the start of the

press conference. By comparison, the volatility patterns observed during the press

conference appear less systematic. In addition to reiterating key policy decisions,

also summarized in the initial release, the press conference and the subsequent inter-

action with the media often provide additional forward guidance about future Fed

policies, interspersed with comments about the general economic outlook as per-

ceived by the Fed. The staggered information flow delivery throughout this process

naturally manifest in event specific volatility spikes linked to the exact timing of the

new information.
26Andersen et al. (2007), Lee and Mykland (2008), Lee (2012), and Bollerslev et al. (2018),

among others, have previously associated high-frequency jumps in asset prices with FOMC an-
nouncements. FOMC announcements have also been used as a powerful tool for the high-frequency
identification of monetary policy shocks, as exemplified by Cochrane and Piazzesi (2002), Rigobon
and Sack (2004), Bernanke and Kuttner (2005), and Nakamura and Steinsson (2018a), while Savor
and Wilson (2014), Lucca and Moench (2015), Cieslak et al. (2019), and Ai and Bansal (2018) have
emphasized the significance of an FOMC announcement risk premium and pre-announcement drifts.

27The Supplemental Appendix A.2 also reports analogous results for the Dollar/Yen exchange
rate.

28Interestingly, for some of the days, most notably March 16, May 4, and June 15, the volatility
actually increased slightly in advance of the official 14:00 announcement. Whether these “abnormal”
pre-announcement increases can be attributed to information leaks during the Fed’s official blackout
period may warrant further scrutiny.
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Figure 2.4: Spot Volatility Estimates for the VOO ETF on FOMC Announcement
Days. The figure plots the O�Stein spot volatility estimates based on 5-minute VOO ETF
candlesticks, expressed in daily percentage units. Pointwise confidence intervals at the 90%
level is calculated as detailed in footnote 11. The vertical lines included in each of the pan-
els indicate the official 14:00 FOMC announcement times.
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The November 2 announcement provides an interesting case in point. In line

with the general pattern noted above, the spot volatility shows an initial burst at

14:00, followed by a gradual decline to a lower, albeit still elevated, level at 14:30.

Then, concurrent with the start of Chairman Powell’s speech, the 14:30-14:35 volatil-

ity estimate increased moderately, reflecting the limited new information presented

in the opening, relatively structured, portion of the speech. This modest uptick is

then followed by a dramatic volatility spike, of even greater magnitude than the

initial surge that accompanied the 14:00 announcement. This volatility spike co-

incided with the time at which Powell concluded his opening remarks and began

the press conference by mentioning that the ultimate level of interest rates would

be “higher than previously expected.”29 Powell’s brief interaction with the media

shortly thereafter further underscored the looming uncertainty surrounding the cen-

tral bank’s monetary tightening agenda.30 These comments on the likely trajectory

of monetary policy offered crucial forward guidance, and their unexpected nature in

effect amounted to a “policy shock” resulting in a sharp increase in market volatility

at the time.

In sum, asset price volatilities often experience large changes over short time

windows in response to the release of important new economic information. The

new optimal high-frequency candlestick estimators developed here allows for mean-

ingful estimation of such changes, which would otherwise be obscured by the use of

longer estimation windows, in turn affording a more nuanced depiction and better

understanding of the economic mechanisms at work.

2.4 Concluding Remarks

We develop a new class of optimal range-based nonparametric volatility esti-

mators. The new optimal estimators are explicitly geared to the volatility object

of interest and relevant loss function. They involve complex, yet closed-form and

easy-to-evaluate, nonlinear functions of the range, the absolute return, and a mea-

29A complete transcript of Powell’s statement is availabale at: https://www.federalreserve.
gov/monetarypolicy/fomcpresconf20221102.htm.

30The first two questions from the media, posed by Colby Smith of the Financial Times and
Howard Schneider of Reuters, respectively, also both concerned the potential slowdown of future
rate increases.
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sure of asymmetry. The efficiency gains provided by the new estimators compared

to currently used suboptimal range-based estimators rooted in ad hoc functional-

form assumptions can be substantial.

Looking ahead, the same infill asymptotic decision-theoretic framework devel-

oped here, based on coupling the nonparametric volatility estimation problem with

a finite-sample optimal estimation problem, could possibly be adapted to study other

outstanding optimal nonparametric inference problems. High-frequency range-based

estimators have also previously been used for the estimation of integrated volatility

over non-trivial time intervals (e.g., Christensen and Podolskij (2007)). The new

optimal estimators developed here could similarly be employed for that purpose, as

well as the estimation of other volatility functionals. The integrated quarticity, in

particular, has proven notoriously difficult to accurately estimate in practice, yet it

plays a crucial role in assessing the estimation error of traditional realized volatil-

ity type estimators (e.g., Barndorff-Nielsen and Shephard (2002) and Bollerslev

et al. (2016)). Prior empirical uses of range-based volatility estimators for mod-

eling and forecasting time-varying volatility abounds (early contributions include

Gallant et al. (1999) and Alizadeh et al. (2002)). The range-based estimators devel-

oped here may naturally be used in that context as well for obtaining more accurate

inference. They could also help sharpen the inference in the recent and growing lit-

erature that relies on high-frequency identification through heteroskedasticity (fol-

lowing Rigobon (2003)), and volatilities being higher over short “treatment” win-

dows following news events (e.g., Nakamura and Steinsson (2018a) and Bollerslev

et al. (2018)). We leave further work on all of these theoretical and more empirically

oriented issues for future research.
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Chapter 3

Optimal Spot Volatility Estimation

Based on Multiple Candlesticks

3.1 Nonparametric Range-Based Volatility Estimation

3.1.1 Theoretical Setting and Background

We begin by revisiting some established results in Bollerslev et al. (2024). We

assume that the log-price process P is an Itô semimartingale defined on a filtered

probability space
�
�;F ; .Ft/t�0;P

�
expressed as follows:

Pt D P0C

Z t

0

bsdsC

Z t

0

�sdWsCJt ; 0� t � T:

where the drift b and the volatility � are optional processes, W is a standard Brow-

nian motion, and Jt is a pure jump process driven by a Poission random measure.

The focus of this paper is on the pth power transformation of spot volatility at some

fixed time t , namely �pt . Empirically relevant choices for p include p D 1 (spot

volatility), p D 2 (the spot variance), and p D�1 (spot precision), etc.

We construct an estimator of �pt based on k consecutive blocks of the form

In � Œs; sCk�n� such that t 2 In, and we consider in-fill asymptotics where �n!

0. On each block I .i/n � ŒsC .i � 1/�n; sC i�n�, we observe the high-frequency

candlestick data comprised of the open, high, low, and close prices, defined as

PsC.i�1/�n
, sup

t2I
.i/
n
Pt , inf

t2I
.i/
n
Pt , and PsCi�n

, respectively. Denoting P .i/t �

Pt �PsC.i�1/�n
, this information concisely summarized by three normalized re-
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turns:

ri �
P
.i/
sCi�n
p
�n

; hi �
sup

t2I
.i/
n
P
.i/
t

p
�n

; li �
inf

t2I
.i/
n
P
.i/
t

p
�n

:

Based on the k candlestick observations Ck D .ri ;hi ; li/1�i�k , the estimator of �pt

takes the form:

O�
p
t D fp.Ck/;

where fp.�/ W R3k ! RC is a regular and scale-equivariant function, in the sense

that it is Lebesgue almost everywhere continuous and satisfies fp.�x/D �pfp.x/

for any constant � > 0 and any vector x 2 R3k . As discussed in Bollerslev et al.

(2024), the scale-equivariance restriction is natural since �t essentially represents a

scale parameter. The regularity condition of fp.�/ further ensures that O�pt can be

“coupled” with a limiting distribution that is also scale-equivariant. We shall call

O�
p
t a regular scale-equivariant estimator if fp.�/ meets these criteria.

To derive the limiting distribution for O�pt , we require the following mild techni-

cal assumption:

Assumption 2. We assume that there exists an increasing and diverging sequence

of stopping times .Tm/m�1 and a sequence of constants .Km/m�1 such that the

following hold for each m � 1: (1) jbt jC j�t jC j�t j�1CFt.R n f0g/ � Km for all

t 2 Œ0;Tm�, where Ft is the spot Lévy measure of J ; (2) for some constant � > 0,

EŒj�t^Tm
��s^Tm

j2��Kmjt � sj
2� .

Under Assumption 2, we have the following coupling result for any fixed k � 1:

Theorem 3.1 (Bollerslev et al. (2024), Corollary 1). Suppose Assumption 2 holds

true. For any k � 1 and any regular scale-equivariant estimator O�pt , it holds as

�n! 0 that
O�
p
t

�
p
t

D fp.�k/Cop.1/; (3.1)

where �k � .�i;r ; �i;h; �i;l/1�i�k , in which

�i;r �
W
.i/
sCi�n
p
�n

; �i;h �
sup

t2I
.i/
n
W
.i/
t

p
�n

; �i;l �
inf

t2I
.i/
n
W
.i/
t

p
�n

; (3.2)

with W .i/
t �Wt �WsC.i�1/�n

.
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By the Brownian scaling law, we have �k
d
D Q�k � .

Q�i;r ; Q�i;h; Q�i;l/1�i�k, where

Q�i;r � eW .i/
1 ;

Q�i;h � sup
t2Œ0;1�

eW .i/
t ;

Q�i;l � inf
t2Œ0;1�

eW .i/
t ;

and .eW .i//1�i�k are k mutually independent standard Brownian motions. There-

fore, Theorem 3.1 shows that for any regular scale-equivariant estimator O�pt , the

ratio O�pt =�
p
t is coupled with the pivotal quantity fp.�k/ which does not depend on

any nuisance parameters. In a decision-theoretic framework, this pivotal quantity

allows us to evaluate the asymptotic estimation risk of O�pt . Specifically, let L.�/

be a strictly convex loss function, the asymptotic estimation risk is defined as the

expected asymptotic loss, i.e.,

R. O�
p
t ;L/� E

h
lim
�n!0

L
�
O�
p
t

�
p
t

�i
D E

�
L
�
fp.�k/

��
; (3.3)

where the equality follows from Theorem 3.1. As the distribution of Q�k , and hence

�k, is well-established in the literature (see, e.g., Feller (1951), Bollerslev et al.

(2024)), the value of R. O�pt ;L/ only depends on the choice of loss function L.�/

and functional form of estimator fp.�/. Following the literature, we shall focus

on Stein’s loss (Ls.�/) and the scaled quadratic loss (Lq.�/) which are commonly

employed for scale parameter estimation:

Ls.x/� x� logx�1; Lq.x/� .x�1/
2:

In the k D 1 case, Bollerslev et al. (2024) derive an analytical Asymptotic Min-

imum Risk Equivariant (AMRE) estimator of �pt that minimizes R. O�pt ;Ls/ and

R. O�
p
t ;Lq/. They also provide implicit forms for the AMRE estimator when k > 1

in (2.13)-(2.14), which, however, are nearly infeasible to implement in practice.1

3.1.2 AMRE Estimator with Multiple Candlesticks

In this section, we derive an explicit form for the AMRE estimator of �pt for

any fixed k � 1 which is feasible to implement in practice. To this end, by a suffi-

cient statistic argument, we transform the original candlestick data by .ri ;hi ; li/ 7!

.jri j;wi ;ai/, where wi � hi � li is the range of the i th candlestick, and ai � jhi C

1For the k D 2 case, Bollerslev et al. (2024) propose to approximate the AMRE estimator by
machine learning with extensive simulation. Nevertheless, we show in Section 3.1.3 that their sim-
ulation scheme introduces a discretization bias, failing to yield the exact estimator. Moreover, this
method does not easily generalize to the k > 2 case due to the curse of dimensionality, and it does
not exploit the symmetric form across different candlesticks in the functional form.
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li � ri j measures the degree of asymmetry of the candlestick. We rewrite Ck �

.jri j;wi ;ai/1�i�k and define the function Mk;p.Ck/ as

Mk;p.Ck/�
Z 1

0

v3kCp�1

kY
iD1

Qg.vjri j;vwi ;vai/dv;

where

Qg.r;w;a/�

1X
mD�1

m2� 00.2mwC r/�m.mC1/� 00
�
.2mC1/w�a

�
; (3.4)

and � 00.x/ � .x2 � 1/�.x/ is the second-order derivative of the standard Gaus-

sian density �.x/� .2�/�1=2e�x2=2. We are now prepared to present our feasible

AMRE estimator in the theorem below:

Theorem 3.2. Under Assumption 2, for any fixed k � .1�2p/=3_1, the following

estimators are AMRE under Ls.�/ and Lq.�/, respectively:

O�p;�s .k/�
Mk;0.Ck/
Mk;p.Ck/

; O�p;�q .k/�
Mk;p.Ck/
Mk;2p.Ck/

:

COMMENT. In essence, O�p;�s .k/ and O�p;�q .k/ are Pitman estimators of �pt based

on the observations Ck (see, e.g., equation (3.19) in Lehmann and Casella (1998)),

and the requirement k � .1�2p/=3 is necessary for Mk;2p.Ck/ to converge when

p < 0. To compute O�p;�s .k/ and O�p;�q .k/, one needs to evaluate Mk;p.Ck/ twice

with different choices of p, which mounts to the calculation of two improper in-

tegrals involving a finite product of the Qg.�/ function. Initially, this integral may

seem impossible to compute, as it entails integrating a product of k infinite sums

over the entire positive real line. However, with a closer inspection of the Qg.�/ func-

tion, its summands converge to zero rapidly as jmj ! 1 and v!1 at a rate of

e�.mv/2=2. Therefore, one can safely truncate the order of the infinite sums and the

integral limit to some large value with virtually no loss of working numerical preci-

sion. Consequently, the univariate integral can be computed numerically to machine

precision in principle. MATLAB codes to compute the estimators are provided in

the supplement of this paper.

Since the expressions for O�p;�s .k/ and O�p;�q .k/ can, in principle, be numerically

computed for each k, they provide a numerical method to compute the analytical

estimators in Bollerslev et al. (2024) with k D 1. This enables us to directly verify

the performance of our numerical algorithm. Below, we denote the estimators com-
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puted using analytical form of Bollerslev et al. (2024) as O�p;As .1/ � O�
p;�
s .1/ and

O�
p;A
q .1/� O�

p;�
q .1/, respectively. For completeness, we present the general expres-

sions for O�p;As .1/ and O�p;Aq .1/ here, which are numerically more stable than those

in Bollerslev et al. (2024). Let s � jr j=w and d � 1� a=w denote the two max-

imal invariants computed from the candlestick data .jr j;w;a/. Then, O�p;As .1/ and

O�
p;A
q .1/ take the form

O�p;As .1/DKs.p/w
p G0.d/�H0.s/

Gp.d/�Hp.s/
; O�p;Aq .1/DKq.p/w

p Gp.d/�Hp.s/

G2p.d/�H2p.s/
;

where Ks.p/ and Ks.q/ are two constants depending on p, and

Gm.x/ D ‰C
m.x/C

.1�x/‰�
mC1.x/

mC1
�
x.2�x/‰C

mC2.x/

4.mC1/.mC2/
;

Hm.x/ D ‰C
m.x/�

x‰�
mC1.x/

mC1
C

x2‰C
mC2.x/

4.mC1/.mC2/
; (3.5)

here‰˙
m.x/� m.1�x=2/˙ m.1Cx=2/, where m.x/ is themth order Polygamma

function. The main difference between the above expressions and those in Boller-

slev et al. (2024) lies in the functional form of Gm.�/ and Hm.�/. Specifically, leteGm.�/ and eHm.�/ denote the original functions in equation (2.10)-(2.11) of Boller-

slev et al. (2024), then one can show that, by properties of the Polygamma function,

Gm.x/� eGm.1�x/; Hm.x/� eHm.x/:

However, despite the above analytical equivalence, note that eGm.1� x/ contains

the term  m.x=2/, which diverges as x! 0, leading to numerical instability and

potential generation of negative volatility estimates. This issue is resolved by using

the definitions in equation (3.5), as ‰˙
m.x/ remains finite for all x 2 Œ0;1�.

3.1.3 Unbiased Evaluation of Estimation Risk

For any regular scale-equivariant estimator O�pt , its asymptotic risk under the

loss function L.�/ is given by R. O�pt ;L/. It is of crucial importance to compute

R. O�
p
t ;L/, as it allows us to compare the relative performance amongst different

estimators. From equation 3.3, we need to evaluate the expectation E
�
L
�
fp.�k/

��
,

which is unlikely to be in closed form due to the complex density of the Brownian

functional �k . Therefore, existing literature typically evaluates E
�
L
�
fp.�k/

��
by

simulation. Note that Q�i;h and Q�i;l are extreme functionals of the continuous path of

a Brownian motion, these random variables are typically drawn based on an Euler
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discretization scheme. Specifically, consider the discretely observed i th Brownian

motion .W .i/
t /t2f0;1=M;2=M;:::;1g where 1=M is the size of the discretization grid, an

approximated random draw of Q�i;h and Q�i;l can be computed as

Q�i;h;M � max
t2f0;1=M;2=M;:::;1g

W
.i/
t ; Q�i;l;M � min

t2f0;1=M;2=M;:::;1g
W
.i/
t :

Let Q�
.j /

k;M � .
Q�
.j /
i;r ;
Q�
.j /

i;h;M
; Q�
.j /

i;h;M
/1�i�k denote the j th random draw of k candlesticks

data, E
�
L
�
fp. Q�k/

��
is typically approximated by the Monte Carlo average of N

random draws

R
N

M . O�
p
t ;L/�

1

N

NX
jD1

L
�
fp. Q�

.j /

k;M /
�
:

For any fixedM , we have the standard estimateR
N

M . O�
p
t ;L/�E

�
L
�
fp. Q�k;M /

��
D

Op.N
�1=2/ assuming a bounded variance ofL

�
fp. Q�

.j /

k;M /
�
, so increasingN reduces

the variance of the Monte Carlo average. Nevertheless, E
�
L
�
fp. Q�k;M /

��
is not ex-

actly the estimation risk of O�pt , as it still contains the discretization error. In detail,

Q�i;h;M (resp. Q�i;l;M ) are strictly smaller (resp. larger) than the true value Q�i;h (resp.

Q�i;l ) due to the fact that the supremum (resp. infimum) are taken over a discrete

instead of a continuous grid. Proposition 3 in Asmussen et al. (1995) shows that,

for any function g.�/with a bounded second-order derivative, it holds independently

for every i that

EŒg. Q�i;h;M /� D EŒg. Q�i;h/��KM�1=2EŒg0. Q�i;h/�Co.M
�1=2/;

EŒg. Q�i;l;M /� D EŒg. Q�i;l/�CKM�1=2EŒg0. Q�i;l/�Co.M
�1=2/; (3.6)

where K � 0:5826. Therefore, the discretization error persists even if N !1,

since it only diminishes at the rate O.M�1=2/ independent of N . This implies that

both N and M need to diverge to improve the precision of R
N

M . O�
p
t ;L/. For exam-

ple, Li et al. (2022) usesN D 108 together withM D 107 to evaluate the asymptotic

variance of the OK estimator, which mounts to 1015 total draw of random numbers

hence is computationally very costly.

In light of equation (3.6), a bias correction method similar to Wang et al. (2011)

is possible in this case to obtain a true asymptotic risk for a correct functional form

of O�pt D fp.Ck/. However, not only does the discretization bias prevent us from

investigating the true asymptotic risk of an estimator, it can also interfere with
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the functional bias in approximating fp.�/ through the machine learning method

suggested in Bollerslev et al. (2024). To overcome this problem and improve the

computational efficiency of evaluating R. O�pt ;L/, we develop an exact simulation

scheme to numerically draw �k from its analytical density. The sampling scheme is

detailed in the following theorem.

Theorem 3.3. Let r denote a random draw from N .0;1/. Draw u and v indepen-

dently from U.Œ0;1�/ and set hD
�
rC

p
r �2 log.1�u/

�
=2. Given r and h, set l

as the solution to v D F.l j r;h/ where

F.l j r;h/D 1�

1X
mD�1

m
� 0
�
c�2m.h� l/

�
� 0.2h� c/

� .mC1/
� 0
�
c�2m.h� l/�2l

�
� 0.2h� c/

;

in which l � .r ^0/ and � 0.x/D�x�.x/. It holds that .r;h; l/ dD . Q�i;r ; Q�i;h; Q�i;l/.

COMMENT. To the best of our knowledge, we are among the first to propose an

exact simulation scheme for the joint law of the terminal value, the supremum, and

the infimum of a Brownian motion. In essence, we draw sequentially from the cor-

responding conditional distributions given the previously drawn random variables,

guaranteeing exact simulation from the target joint distribution. The only compli-

cation here arises from numerically solving the nonlinear equation v D F.l j r;h/,

which involves an infinite sum. Similar to Qg.�/ in equation (3.4), the summands

in F.l j r;h/ decay rapidly to zero, allowing us to truncate the sum at some large

number. Furthermore, since F.l j r;h/ is a conditional cumulative distribution func-

tion, it monotonically increases in l 2 .�1; r ^ 0� from 0 to 1. This ensures that

the solution to v D F.l j r;h/ must be unique and thus can be efficiently solved to

machine precision. MATLAB codes are provided in the supplement to perform the

exact simulation.

As a direct consequence of Theorem 3.3, we can easily simulate N copies of Q�k

and evaluate E
�
L
�
fp. Q�k/

��
using

R
N
. O�
p
t ;L/�

1

N

NX
jD1

L
�
fp. Q�

.j /

k /
�
; (3.7)

which is an unbiased risk estimate that converges to E
�
L
�
fp. Q�k/

��
at the rate of

N�1=2. As R
N
. O�
p
t ;L/ is free from the discretization bias, it dominates R

N

M . O�
p
t ;L/

for anyM and should always be preferred. Henceforth, we shall use R
N
. O�
p
t ;L/ for
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the risk comparison exercise in the next section.

3.1.4 Risk Comparisons

We proceed to investigate the asymptotical risks of the AMRE estimators across

different choices k and compare their performances to some existing candlestick-

based methods. To maintain brevity, we shall focus on the performances of spot

volatility (p D 1) and spot variance (p D 2) estimators, which are the most com-

monly used choices.

We first characterize the properties of O�p;�s .k/ and O�p;�q .k/, namely, their asymp-

totic bias, variance, and the risks under both Ls.�/ and Lq.�/, where the asymptotic

bias and variance of a generic estimator O�pt D fp.Ck/ are defined as

ABias� EŒfp. Q�k/��1; AVarD Var
�
fp. Q�k/

�
; (3.8)

respectively. These quantities are simulated based on 106 random draws of Q�k using

the exact sampling scheme of Theorem 3.3. To verify the reliability of our numerical

scheme, we also report the same quantities computed using analytical expressions

O�
p;A
s .1/ and O�p;Aq .1/. These results are summarized in Table 3.1.

Several interesting findings can be drawn from Table 3.1. First, the properties

of the analytical estimators are numerically indistinguishable from its numerical

implementations up to at least four decimal places. This alignment validates the

theoretical statements in Theorem 3.2 and underlies the reliability of our numerical

algorithm. Second, the asymptotic bias and variance reported in Table 3.1 exhibit

slight differences from those in Bollerslev et al. (2024), particularly noticeable when

k D 2. For example, in Table 3 of Bollerslev et al. (2024), the asymptotic bias and

variance of O�2;�q .2/ are listed as �0:103 and 0:103, respectively, contrasting with

our results of �0:1113 and 0:0995. These differences can be attributed to both the

bias introduced by Euler discretization scheme, as well as the approximation error

inherent in the machine learning approximation step for k D 2.

Analyzing the properties of AMRE estimators across different k, we observe

that: (i) the biases of O�1;�s .k/ and O�2;�s .k/ are almost zero, which is in line with

the fact that the AMRE estimator under Stein’s loss is unbiased (see, e.g., Brown

(1968)). Conversely, the biases of O�1;�q .k/ and O�2;�q .k/ are negative, as anticipated,
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Table 3.1: Asymptotic Properties of AMRE Estimators Based on Multiple Candlesticks

O�
p
t ABias AVar R. O�

p
t ;Ls/ R. O�

p
t ;Lq/ O�

p
t ABias AVar R. O�

p
t ;Ls/ R. O�

p
t ;Lq/

O�
1;A
s .1/ -0.0002 0.0622 0.0309 0.0622 O�

1;A
q .1/ -0.0586 0.0551 0.0327 0.0585

O�
1;�
s .1/ -0.0002 0.0622 0.0309 0.0622 O�

1;�
q .1/ -0.0586 0.0551 0.0327 0.0585

O�
1;�
s .2/ 0.0001 0.0307 0.0153 0.0307 O�

1;�
q .2/ -0.0296 0.0289 0.0157 0.0298

O�
1;�
s .3/ 0.0001 0.0203 0.0101 0.0203 O�

1;�
q .3/ -0.0197 0.0195 0.0103 0.0198

O�
1;�
s .4/ 0.0001 0.0151 0.0075 0.0151 O�

1;�
q .4/ -0.0148 0.0147 0.0076 0.0149

O�
1;�
s .5/ 0.0001 0.0120 0.0060 0.0120 O�

1;�
q .5/ -0.0118 0.0118 0.0061 0.0119

O�
1;�
s .6/ 0.0000 0.0100 0.0050 0.0100 O�

1;�
q .6/ -0.0099 0.0098 0.0050 0.0099

O�
1;�
s .7/ 0.0000 0.0086 0.0043 0.0086 O�

1;�
q .7/ -0.0085 0.0084 0.0043 0.0085

O�
1;�
s .8/ 0.0000 0.0075 0.0037 0.0075 O�

1;�
q .8/ -0.0074 0.0074 0.0038 0.0074

O�
1;�
s .9/ -0.0001 0.0066 0.0033 0.0066 O�

1;�
q .9/ -0.0066 0.0065 0.0033 0.0066

O�
1;�
s .10/ -0.0001 0.0060 0.0030 0.0060 O�

1;�
q .10/ -0.0060 0.0059 0.0030 0.0059

O�
1;�
s .11/ 0.0000 0.0054 0.0027 0.0054 O�

1;�
q .11/ -0.0054 0.0054 0.0027 0.0054

O�
1;�
s .12/ 0.0000 0.0050 0.0025 0.0050 O�

1;�
q .12/ -0.0050 0.0049 0.0025 0.0049

O�
1;�
s .13/ 0.0000 0.0046 0.0023 0.0046 O�

1;�
q .13/ -0.0046 0.0045 0.0023 0.0046

O�
1;�
s .14/ 0.0000 0.0042 0.0021 0.0042 O�

1;�
q .14/ -0.0042 0.0042 0.0021 0.0042

O�
1;�
s .15/ 0.0000 0.0040 0.0020 0.0040 O�

1;�
q .15/ -0.0039 0.0039 0.0020 0.0039

O�
1;�
s .16/ 0.0000 0.0037 0.0019 0.0037 O�

1;�
q .16/ -0.0037 0.0037 0.0019 0.0037

O�
1;�
s .17/ 0.0000 0.0035 0.0017 0.0035 O�

1;�
q .17/ -0.0035 0.0035 0.0018 0.0035

O�
1;�
s .18/ 0.0000 0.0033 0.0016 0.0033 O�

1;�
q .18/ -0.0032 0.0033 0.0017 0.0033

O�
1;�
s .19/ 0.0001 0.0031 0.0016 0.0031 O�

1;�
q .19/ -0.0031 0.0031 0.0016 0.0031

O�
1;�
s .20/ 0.0001 0.0030 0.0015 0.0030 O�

1;�
q .20/ -0.0029 0.0030 0.0015 0.0030

O�
p
t ABias AVar R. O�

p
t ;Ls/ R. O�

p
t ;Lq/ O�

p
t ABias AVar R. O�

p
t ;Ls/ R. O�

p
t ;Lq/

O�
2;A
s .1/ -0.0003 0.2596 0.1221 0.2596 O�

2;A
q .1/ -0.2055 0.1634 0.1471 0.2056

O�
2;�
s .1/ -0.0003 0.2596 0.1221 0.2596 O�

2;�
q .1/ -0.2055 0.1634 0.1471 0.2056

O�
2;�
s .2/ 0.0002 0.1263 0.0608 0.1263 O�

2;�
q .2/ -0.1113 0.0995 0.0676 0.1119

O�
2;�
s .3/ 0.0003 0.0827 0.0402 0.0827 O�

2;�
q .3/ -0.0758 0.0705 0.0433 0.0762

O�
2;�
s .4/ 0.0001 0.0613 0.0300 0.0613 O�

2;�
q .4/ -0.0576 0.0544 0.0318 0.0577

O�
2;�
s .5/ 0.0001 0.0488 0.0240 0.0488 O�

2;�
q .5/ -0.0463 0.0443 0.0251 0.0465

O�
2;�
s .6/ 0.0001 0.0404 0.0199 0.0404 O�

2;�
q .6/ -0.0388 0.0373 0.0207 0.0388

O�
2;�
s .7/ 0.0000 0.0345 0.0171 0.0345 O�

2;�
q .7/ -0.0333 0.0323 0.0176 0.0334

O�
2;�
s .8/ 0.0000 0.0301 0.0149 0.0301 O�

2;�
q .8/ -0.0293 0.0284 0.0154 0.0293

O�
2;�
s .9/ -0.0001 0.0267 0.0132 0.0267 O�

2;�
q .9/ -0.0261 0.0253 0.0136 0.0260

O�
2;�
s .10/ -0.0001 0.0240 0.0119 0.0240 O�

2;�
q .10/ -0.0236 0.0229 0.0122 0.0234

O�
2;�
s .11/ -0.0001 0.0218 0.0108 0.0218 O�

2;�
q .11/ -0.0214 0.0209 0.0110 0.0213

O�
2;�
s .12/ -0.0001 0.0199 0.0099 0.0199 O�

2;�
q .12/ -0.0196 0.0192 0.0101 0.0195

O�
2;�
s .13/ -0.0001 0.0184 0.0091 0.0184 O�

2;�
q .13/ -0.0181 0.0177 0.0093 0.0180

O�
2;�
s .14/ 0.0000 0.0171 0.0085 0.0171 O�

2;�
q .14/ -0.0168 0.0165 0.0086 0.0168

O�
2;�
s .15/ 0.0000 0.0159 0.0079 0.0159 O�

2;�
q .15/ -0.0157 0.0154 0.0080 0.0157

O�
2;�
s .16/ 0.0000 0.0149 0.0074 0.0149 O�

2;�
q .16/ -0.0147 0.0145 0.0075 0.0147

O�
2;�
s .17/ 0.0000 0.0140 0.0070 0.0140 O�

2;�
q .17/ -0.0138 0.0137 0.0071 0.0138

O�
2;�
s .18/ 0.0001 0.0133 0.0066 0.0133 O�

2;�
q .18/ -0.0130 0.0129 0.0067 0.0131

O�
2;�
s .19/ 0.0001 0.0125 0.0062 0.0125 O�

2;�
q .19/ -0.0123 0.0122 0.0063 0.0124

O�
2;�
s .20/ 0.0001 0.0119 0.0059 0.0119 O�

2;�
q .20/ -0.0117 0.0116 0.0060 0.0118

Note: For each estimator, the table presents the asymptotic bias (ABias) and the
asymptotic variance (AVar) defined in equation (3.8), and the asymptotic risks under
both Stein’s lossR. O�pt ;Ls/ and the quadratic lossR. O�pt ;Lq/. Each number is com-
puted from 106 simulated candlestick datasets using the exact simulation scheme in
Theorem 3.3.
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given the quadratic loss’s inclination to penalize overestimation more severely than

underestimation. (ii) The biases of O�1;�q .k/ and O�2;�q .k/, along with the variances

and estimation risks of all estimators, diminish as k increases, , approximately at

a rate of k�1. This is not surprising, since both estimators have the same limiting

distribution as MLE estimator when k goes to infinity, as corroborated in the dis-

cussion below Theorem 8.3 in Lehmann and Casella (1998). (iii) For each k, the

risk of O�p;�s .k/ is superior to that of O�p;�q .k/ under Ls.�/, while the inverse holds

true when assessing risk under Lq.�/. This is consistent with the design that the

AMRE estimator under a given loss function stands as the unique choice achieves

the smallest asymptotic risk, see Corollary 3.3.4 of Lehmann and Casella (1998).

We proceed to examine the finite sample distributions of the AMRE estimators.

For k 2 f1;10;20g, we plot the histogram of the AMRE estimators along side with

a normal fit in Figure 3.1. The figure shows that the finite sample distributions of

the AMRE estimators are generally skewed to the right for small k, where those

under Lq.�/ tend to exhibit thinner right tails compared to those under Ls.�/, due to

the heavier penalty of overestimation under the quadratic loss. As anticipated, the

finite-sample distributions of all estimators become approximately normal when k

increases. This provides an empirically convenient way to construct confidence

intervals for the AMRE estimators using a large k (say, e.g., k � 20).

We conclude this section by comparing the AMRE estimators with some com-

monly used candlestick-based estimators in the literature, including the Best Linear

Unbiased Estimator (BLUE) proposed in Li et al. (2022), and the Garman–Klass

(GK) best quadratic unbiased estimator proposed in Garman and Klass (1980).

As the GK estimator is not designed to use multiple candlesticks, we shall com-

bine these estimator in a simple average fashion when k candlesticks are available.

Specifically:

O�1BLUE.k/ �
1

k

kX
iD1

O�BLUE;i ; O�BLUE;i � 0:811wi �0:369jri j;

O�2GK.k/ �
1

k

kX
iD1

O�2GK;i ; O�2GK;i � 0:5015w
2
i C0:0095a

2
i �0:3925r

2
i :

Using the same construction, we can also consider a simple linear combination of
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Panel I: AMRE estimators under the Stein’s loss

0 1 2 0.8 1 1.2 1.4 0.8 0.9 1 1.1 1.2

-1 0 1 2 3 0.5 1 1.5 2 0.6 0.8 1 1.2 1.4 1.6

Panel II: AMRE estimators under the quadratic loss

0 1 2 0.8 1 1.2 1.4 0.8 0.9 1 1.1 1.2

-1 0 1 2 3 0.5 1 1.5 0.6 0.8 1 1.2 1.4 1.6

Figure 3.1: Finite sample distributions with fitted normal density curves for the AMRE
estimators based on multiple candlesticks. The figure shows histograms of the estimators
along with normal density plots generated using the sample mean and variance of the esti-
mators. These distributions are based on 106 simulated candlestick datasets using the exact
simulation scheme in Theorem 3.3.
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the optimal estimator proposed in Bollerslev et al. (2024):

O�p;As .k/�
1

k

kX
iD1

O�
p;A
s;i ; O�p;Aq .k/�

1

k

kX
iD1

O�
p;A
q;i ;

where O�p;As;i and O�p;Aq;i are the AMRE estimators under Ls.�/ and Lq.�/ based on

single candlestick .ri ;wi ;ai/, respectively. To estimate power transforms of spot

volatility/variance using a spot variance/volatility estimator, it is natural to apply

the inverse transform to the estimators. For instance, we can use
�
O�1BLUE.k/

�2 and�
O�1;As .k/

�2 to estimate �2t , or
q
O�2GK.k/ and

q
O�
2;A
s .k/ to estimate �t .

To sum up, for each k and p, we consider ten different estimators, where the

first five are intended to estimate the target power of volatility without additional

transforms:

O�1t 2
n
O�1;�s .k/; O�1;�q .k/; O�1;As .k/; O�1;Aq .k/; O�1BLUE.k/;q

O�
2;�
s .k/;

q
O�
2;�
q .k/;

q
O�
2;A
s .k/;

q
O�
2;A
q .k/;

q
O�2GK.k/

o
;

O�2t 2
n
O�2;�s .k/; O�2;�q .k/; O�2;As .k/; O�2;Aq .k/; O�2GK.k/;�
O�1;�s .k/

�2
;
�
O�2;�q .k/

�2
;
�
O�1;As .k/

�2
;
�
O�1;Aq .k/

�2
;
�
O�1BLUE.k/

�2o
:

For each choice of k, we compute the relative efficiency of the above estima-

tors under both Ls.�/ and Lq.�/ w.r.t. the AMRE estimators. For example, for the

estimation of �pt under Ls.�/, the relative efficiency of O�pt is

R
�
O�p;�s .k/;Ls

�
=R. O�

p
t ;Ls/; (3.9)

which is less or equal to unity by construction. We present these results in Table 3.2

and 3.3.

The results in Table 3.2 and 3.3 carry several significant implications regarding

the selection of estimators when multiple candlesticks are available. First, for es-

timators under the Stein’s loss, one naturally expects that the unbiased estimators,

such as O�p;As .k/, O�1BLUE.k/, and O�2GK.k/, should exhibit higher relative efficiency

than those biased estimators. However, aside from k D 1, it appears that the power-

transformed AMRE estimator
q
O�
2;�
s .k/ is nearly as efficient as the AMRE esti-

mator for p D 1. Similarly,
�
O�1;�s .k/

�2 is nearly as efficient as O�2;�s .k/ for p D 2.

The simple averaged minimum variance optimal estimators O�1BLUE.k/ and O�2GK.k/

are dominated by the average of AMRE estimates of single candlesticks O�1;As .k/
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Table 3.2: Relative Efficiency of Candlestick-based Estimators of Spot Volatility

k O�
1;�
q .k/ O�

1;A
s .k/ O�

1;A
q .k/ O�1

BLUE.k/

q
O�

2;�
s .k/

q
O�

2;�
q .k/

q
O�

2;A
s .k/

q
O�

2;A
q .k/

q
O�2

GK.k/

Panel I: Relative efficiency under the Stein’s loss

1 0.9440 1.0000 0.9440 0.9908 0.9851 0.7509 0.9851 0.7509 0.9613

2 0.9708 0.9827 0.8819 0.9755 0.9925 0.8479 0.9542 0.6349 0.9274

3 0.9805 0.9743 0.8322 0.9677 0.9951 0.8915 0.9415 0.5546 0.9131

4 0.9852 0.9691 0.7892 0.9627 0.9963 0.9157 0.9342 0.4935 0.9054

5 0.9882 0.9659 0.7517 0.9596 0.9970 0.9313 0.9301 0.4454 0.9009

6 0.9901 0.9634 0.7177 0.9574 0.9975 0.9419 0.9268 0.4057 0.8976

7 0.9915 0.9615 0.6869 0.9557 0.9979 0.9497 0.9245 0.3727 0.8949

8 0.9925 0.9600 0.6589 0.9542 0.9981 0.9556 0.9227 0.3448 0.8928

9 0.9933 0.9589 0.6329 0.9532 0.9983 0.9602 0.9215 0.3205 0.8912

10 0.9939 0.9580 0.6090 0.9523 0.9984 0.9639 0.9201 0.2996 0.8896

11 0.9945 0.9571 0.5872 0.9514 0.9986 0.9671 0.9190 0.2813 0.8884

12 0.9950 0.9565 0.5670 0.9508 0.9987 0.9699 0.9182 0.2652 0.8877

13 0.9954 0.9559 0.5481 0.9501 0.9988 0.9721 0.9175 0.2508 0.8868

14 0.9957 0.9554 0.5305 0.9497 0.9989 0.9741 0.9170 0.2379 0.8863

15 0.9960 0.9550 0.5143 0.9493 0.9990 0.9759 0.9166 0.2265 0.8857

16 0.9963 0.9549 0.4989 0.9491 0.9991 0.9774 0.9163 0.2160 0.8856

17 0.9965 0.9543 0.4844 0.9486 0.9991 0.9788 0.9158 0.2065 0.8850

18 0.9968 0.9540 0.4707 0.9482 0.9992 0.9800 0.9154 0.1977 0.8845

19 0.9970 0.9536 0.4577 0.9478 0.9993 0.9811 0.9150 0.1896 0.8841

20 0.9971 0.9535 0.4454 0.9478 0.9993 0.9821 0.9148 0.1822 0.8838

k O�
2;�
s .k/ O�

2;A
s .k/ O�

2;A
q .k/ O�2

GK.k/
�
O�

1;�
s .k/

�2 �
O�

1;�
q .k/

�2 �
O�

1;A
s .k/

�2 �
O�

1;A
q .k/

�2 �
O�1

BLUE.k/
�2

Panel II: Relative efficiency under the quadratic loss

1 0.9408 0.9408 1.0000 0.9357 0.9851 0.9024 0.9851 0.9024 0.9593

2 0.9695 0.9551 0.9601 0.9503 0.9923 0.9423 0.9580 0.7550 0.9298

3 0.9796 0.9567 0.9116 0.9519 0.9948 0.9594 0.9453 0.6521 0.9158

4 0.9848 0.9564 0.8657 0.9515 0.9962 0.9687 0.9376 0.5749 0.9080

5 0.9878 0.9560 0.8243 0.9510 0.9969 0.9747 0.9332 0.5149 0.9033

6 0.9899 0.9553 0.7863 0.9504 0.9975 0.9786 0.9296 0.4661 0.8998

7 0.9914 0.9547 0.7517 0.9500 0.9978 0.9815 0.9270 0.4260 0.8969

8 0.9926 0.9542 0.7200 0.9494 0.9982 0.9837 0.9251 0.3924 0.8947

9 0.9935 0.9538 0.6906 0.9490 0.9984 0.9854 0.9237 0.3634 0.8930

10 0.9942 0.9535 0.6637 0.9487 0.9986 0.9867 0.9223 0.3386 0.8914

11 0.9947 0.9530 0.6390 0.9482 0.9987 0.9879 0.9210 0.3170 0.8900

12 0.9951 0.9528 0.6162 0.9479 0.9988 0.9890 0.9200 0.2981 0.8892

13 0.9955 0.9525 0.5949 0.9475 0.9989 0.9898 0.9191 0.2812 0.8882

14 0.9958 0.9523 0.5751 0.9473 0.9990 0.9905 0.9186 0.2663 0.8876

15 0.9960 0.9521 0.5568 0.9471 0.9990 0.9912 0.9180 0.2530 0.8868

16 0.9963 0.9521 0.5396 0.9471 0.9991 0.9918 0.9176 0.2409 0.8866

17 0.9965 0.9517 0.5234 0.9466 0.9991 0.9923 0.9170 0.2300 0.8860

18 0.9966 0.9514 0.5081 0.9463 0.9991 0.9928 0.9165 0.2199 0.8854

19 0.9968 0.9512 0.4935 0.9461 0.9992 0.9932 0.9160 0.2106 0.8849

20 0.9969 0.9512 0.4799 0.9462 0.9992 0.9936 0.9158 0.2022 0.8845

Note: For both the Stein’s loss and the quadratic loss, the numbers in the table
reports the relative efficiency of each estimator computed based on equation (3.9)
using 106 simulated candlestick data using the exact simulation scheme in Theorem
3.3.
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Table 3.3: Relative Efficiency of Candlestick-based Estimators of Spot Variance

k O�
2;�
q .k/ O�

2;A
s .k/ O�

2;A
q .k/ O�2

GK.k/
�
O�

1;�
s .k/

�2 �
O�

1;�
q .k/

�2 �
O�

1;A
s .k/

�2 �
O�

1;A
q .k/

�2 �
O�1

BLUE.k/
�2

Panel I: Relative efficiency under the Stein’s loss

1 0.8301 1.0000 0.8301 0.9749 0.9850 0.9851 0.9850 0.9851 0.9778

2 0.8989 0.9634 0.6943 0.9357 0.9922 0.9926 0.9763 0.9259 0.9703

3 0.9286 0.9482 0.6021 0.9191 0.9948 0.9951 0.9704 0.8742 0.9647

4 0.9449 0.9395 0.5329 0.9102 0.9961 0.9963 0.9664 0.8286 0.9608

5 0.9553 0.9344 0.4789 0.9048 0.9969 0.9971 0.9638 0.7885 0.9582

6 0.9623 0.9305 0.4347 0.9009 0.9975 0.9975 0.9617 0.7521 0.9563

7 0.9674 0.9277 0.3984 0.8978 0.9978 0.9979 0.9602 0.7193 0.9549

8 0.9712 0.9256 0.3677 0.8955 0.9981 0.9981 0.9589 0.6893 0.9536

9 0.9742 0.9241 0.3412 0.8936 0.9984 0.9983 0.9579 0.6615 0.9527

10 0.9766 0.9226 0.3183 0.8918 0.9986 0.9984 0.9572 0.6361 0.9519

11 0.9787 0.9213 0.2985 0.8904 0.9987 0.9986 0.9563 0.6128 0.9510

12 0.9805 0.9203 0.2810 0.8895 0.9988 0.9987 0.9558 0.5913 0.9505

13 0.9820 0.9194 0.2654 0.8885 0.9989 0.9988 0.9553 0.5712 0.9499

14 0.9833 0.9188 0.2515 0.8879 0.9990 0.9989 0.9549 0.5524 0.9495

15 0.9845 0.9182 0.2392 0.8871 0.9990 0.9990 0.9545 0.5352 0.9492

16 0.9854 0.9178 0.2280 0.8869 0.9991 0.9991 0.9544 0.5189 0.9490

17 0.9863 0.9172 0.2178 0.8863 0.9991 0.9991 0.9538 0.5036 0.9484

18 0.9872 0.9167 0.2084 0.8857 0.9991 0.9992 0.9535 0.4891 0.9480

19 0.9879 0.9162 0.1997 0.8852 0.9992 0.9993 0.9531 0.4753 0.9477

20 0.9885 0.9160 0.1918 0.8848 0.9992 0.9993 0.9531 0.4623 0.9477

k O�
2;�
s .k/ O�

2;A
s .k/ O�

2;A
q .k/ O�2

GK.k/
�
O�

1;�
s .k/

�2 �
O�

1;�
q .k/

�2 �
O�

1;A
s .k/

�2 �
O�

1;A
q .k/

�2 �
O�1

BLUE.k/
�2

Panel II: Relative efficiency under the quadratic loss

1 0.7920 0.7920 1.0000 0.7650 0.6912 0.8818 0.6912 0.8818 0.6909

2 0.8856 0.8586 0.9018 0.8293 0.8267 0.9349 0.8169 0.9823 0.8153

3 0.9220 0.8794 0.7892 0.8492 0.8807 0.9557 0.8624 0.9778 0.8601

4 0.9412 0.8888 0.6959 0.8585 0.9096 0.9667 0.8854 0.9484 0.8825

5 0.9527 0.8945 0.6213 0.8639 0.9271 0.9732 0.8990 0.9128 0.8958

6 0.9606 0.8976 0.5600 0.8672 0.9391 0.9777 0.9077 0.8756 0.9045

7 0.9663 0.8998 0.5097 0.8692 0.9478 0.9809 0.9140 0.8397 0.9108

8 0.9706 0.9015 0.4676 0.8707 0.9543 0.9834 0.9186 0.8055 0.9152

9 0.9740 0.9028 0.4315 0.8718 0.9595 0.9854 0.9223 0.7732 0.9188

10 0.9767 0.9037 0.4007 0.8725 0.9637 0.9869 0.9253 0.7432 0.9218

11 0.9787 0.9042 0.3739 0.8729 0.9669 0.9880 0.9274 0.7152 0.9237

12 0.9805 0.9047 0.3506 0.8735 0.9696 0.9890 0.9293 0.6892 0.9255

13 0.9820 0.9049 0.3299 0.8736 0.9719 0.9899 0.9307 0.6648 0.9269

14 0.9832 0.9054 0.3116 0.8741 0.9739 0.9906 0.9321 0.6421 0.9282

15 0.9843 0.9056 0.2955 0.8741 0.9755 0.9911 0.9331 0.6212 0.9292

16 0.9852 0.9060 0.2809 0.8747 0.9770 0.9917 0.9343 0.6014 0.9304

17 0.9860 0.9060 0.2676 0.8748 0.9783 0.9921 0.9349 0.5828 0.9309

18 0.9867 0.9061 0.2555 0.8748 0.9794 0.9925 0.9356 0.5651 0.9315

19 0.9874 0.9061 0.2443 0.8748 0.9804 0.9928 0.9361 0.5484 0.9320

20 0.9880 0.9064 0.2342 0.8749 0.9813 0.9932 0.9369 0.5328 0.9329

Note: For both the Stein’s loss and the quadratic loss, the numbers in the table
reports the relative efficiency of each estimator computed based on equation (3.9)
using 106 simulated candlestick data using the exact simulation scheme in Theorem
3.3.
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and O�2;As .k/ due to the functional form restriction of the former estimators.

3.1.5 Understanding the AMRE Estimators

Given the rather obscure forms of the AMRE estimators given in Theorem 3.2,

in this section, we attempt to elucidate the expressions of AMRE estimators with

the observed candlestick features, which provides a more transparent interpretation

of the AMRE estimators through the lens of traditional technical analysis. Specifi-

cally, we delve into various features of the candlestick data Ck that might elucidate

the behavior of the AMRE estimators. Since the AMRE estimators in Theorem 3.2

remain indifferent to the ordering of the candlesticks, it must depend symmetrically

on all individual candlestick features, or equivalently, the average features among

all candlesticks. As shown in the analysis below, in the presence of multiple can-

dlesticks, the AMRE estimator is also expected to depend on the heterogeneity of

the features.

Based on the above discussion, we propose to summarize the average size and

heterogeneity of features by the power transformation of their sample means and

standard deviations. This transformation aims to capture some nonlinear depen-

dence structure that might exist. In detail, the features are

.xj /1�j�6 � f Nw; jr j; Na;�.w/;�.jr j/;�.a/g;

where for a random sample z we define Nz� k�1
Pk
iD1 zi , and �.z/�

q
k�1

Pk
iD1.zi � Nz/

2.

Following the polynomial design of the BLUE estimator and the Garman–Klass

estimator, we propose to approximate the AMRE estimator as a polynomial of the

observed candlestick features2

X.p/�

� 6Y
jD1

x
˛j

j W ˛j 2 f0; : : : ;pg such that
6X
jD1

˛j D p

�
;

which sheds light on the source of precision loss for the polynomial-based estima-

tors. To select the q most important features from a pool of possible features, we

2We use these polynomial-type features for the following reasons. Firstly, for estimating vari-
ance, the setting nests those features such as the sample average of squared range by noting that
w2 D Nw2C �.w/2. Additionally, as per Theorem 3.2, note that O�p;�s .k/ O�

p;�
q .k/ � O�

2p;�
s .k/, im-

plying that the product of the AMRE estimator of �pt under Stein’s and quadratic loss equals to
the AMRE estimator of �2pt under Stein’s loss. Using polynomial-type features preserves a similar
structure for approximated estimators.
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employ the best subset regression approach. Specifically, given a vector yN�1 of

N simulated AMRE estimators and a matrix of simulated features XN�jX.p/j, the q

most important features out of jX.p/j total features can be selected by solving the

following best subset regression problem:

min
ˇ2RjX.p/j

ky�Xˇk22; subject to kˇk0 � q;

where ˇ is the jX.p/j-by-1 vector of coefficients for the jX.p/j features, k�kp is the

`p-norm of a vector, and when p D 0, k � k0 simply counts the number of non-zero

elements of the vector. Although the best subset regression is known to be an NP-

hard problem due to the discrete and vast dimension of the space of possible subsets

Welch (1982), recent advances in mixed-integer optimization enable efficient solu-

tions to such problems, following procedures proposed in Bertsimas et al. (2016).

Below, we focus on the results of approximating optimal volatility estimators, with

the approximation of optimal variance estimators provided in the online appendix.

Table 3.4 shows how different features are sequentially selected in the best sub-

set regression of optimal volatility estimators. Notably, the selected features remain

consistent across different loss functions. Additionally, the standard error of the

range v.w/ emerges as the third most important feature and even outweighs the

asymmetry level Na. For instance, consider the case when k D 5. The approximation

using two features is close to the BLUE estimator proposed in Li et al. (2022):

O�
1;�

.s/
.5/� 0:809 Nw�0:365jr j:

However, upon increasing the number of features to three, the approximation in-

cludes an additional term not considered in the BLUE estimator:

O�
1;�

.s/
.5/� 0:824 Nw�0:346jr j�0:089v.w/:

This additional inclusion arises due to the absence of a dimension-reduced complete

sufficient statistic for the joint distribution of multiple candlesticks. Consequently,

the dispersion among different candlesticks contributes to optimal estimation, which

has not been taken into account by the approach of averaging single candlestick

estimations as in Garman and Klass (1980) and Li et al. (2022). As a result, the

relative efficiency of those estimators decreases as k grows, given that this part of

information is continuously discarded in their construction.
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Table 3.4: Best Subset Regression Result of O�1;�
.�/
.k/

q Nw Na jr j �.w/ �.a/ �.jr j/ R.Eff.

Panel I: AMRE under Stein’s loss

1 19 0 0 0 0 0 67.7%

2 19 0 19 0 0 0 95.4%

3 19 0 19 19 0 0 96.8%

4 19 19 19 19 0 0 97.1%

5 19 19 19 19 0 19 97.2%

6 19 19 19 19 19 19 97.2%

Panel II: AMRE under Quadratic loss

1 19 0 0 0 0 0 67.6%

2 19 0 19 0 0 0 95.6%

3 19 0 19 19 0 0 96.9%

4 19 19 19 19 0 0 97.2%

5 19 19 19 19 0 19 97.2%

6 19 19 19 19 19 19 97.2%

Note: The table reports the total number of selections for
k 2 f2; : : : ;20g of each feature, along with the average relative
efficiency w.r.t. the exact AMRE estimators for q 2 f1; : : : ;6g.
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Figure 3.2: Relative efficiency of polynomial-based approximation for optimal volatility
estimators under Stein’s loss (left) and quadratic loss (right), with q 2 f2; : : : ;6g and k 2
f2; : : : ;20g. The selection of features and determination of corresponding coefficients are
computed using best subset regression.
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Figure 3.2 shows the pattern of relative efficiency of polynomial-based approx-

imation for optimal volatility estimators. With a fixed number of features q, in-

creases, the relative efficiency decreases. As mentioned previously, this is due to

the absence of a dimension-reduced complete sufficient statistic. Therefore, larger

k naturally implies a greater loss of information, resulting in an estimator further

from the optimal ones that utilize all available information. However, this decrease

become gradual in the case of large k, suggesting that one may trade some effi-

ciency for faster computation and easier-to-understand estimators. Moreover, the

figure indicates that the marginal improvement of adding an additional feature be-

comes nearly negligible as q becomes larger, say, greater than 3. For instance, for

the optimal estimator under Stein’s loss with k D 5, the relative efficiency levels of

approximation using q D 1;2;3;4 features are 53.08%, 95.70%, 97.31%, 97.61%,

respectively. Based on this observation, a three-feature polynomial-based approxi-

mation seems to strike a balance, preserving a reasonable level of efficiency while

remaining practically useful and computationally convenient.

3.2 An Empirical Illustration

Consumer Price Index (CPI), Producer Price Index (PPI), and Personal Con-

sumption Expenditures (PCE) are fundamental economic indicators used to mea-

sure inflation in an economy. CPI measures the average change over time in the

prices paid by urban consumers for a predetermined basket of consumer goods and

services. In contrast, PPI monitors changes in selling prices received by domestic

producers. PCE, on the other hand, has a broader perspective, including not only

goods and services bought by households but also those purchased by nonprofits,

governments, and businesses. The primary distinction among them lies in their

scope and intended audience.

These indicators are announced regularly by U.S. government agencies such as

the Bureau of Labor Statistics and the Bureau of Economic Analysis.3 The Fed-

eral Reserve closely monitors price indices as part of its mandate to maintain stable

prices and maximum employment. If inflation appears to be above the target level,

3Detailed schedules and release can be found on, e.g., https://www.bls.gov/bls/
newsrels.htm.
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the Fed may decide to increase interest rates to cool down the economy and pre-

vent out-of-control inflation. Conversely, if inflation falls significantly below the

target level, the economy shows signs of sluggishness, the Fed may reduce interest

rates to stimulate borrowing and spending. Therefore, these inflation measures play

a pivotal role in shaping the Fed’s monetary policy decisions, including changes

in interest rates and government purchases, hence can be used to predict potential

monetary shocks (Romer and Romer (2004), Rigobon and Sack (2008), Miranda-

Agrippino and Ricco (2021)). Consequently, the release of these price indices often

triggers significant market reactions owing to their implications for future monetary

policy decisions.

Normally, CPI is released first, followed by PPI, while PCE is released several

days later due to its more comprehensive measurements. These releases occur at

8:30 a.m., one hour before the market opens. To analyze how the market reacts

to these releases, we use the high-frequency price data of E-mini S&P500 future

continuous contract obtained from Tick Data.4 We estimate spot volatility using

five 1-minute data points within a window of 1.5 hours before and after the release,

the prices right after the release are excluded to mitigate the effects of potential price

jumps.

Figure 3.3 shows the estimated volatility for the last four releases of price in-

dices in 2023. The left columns are the AMRE estimates under Stein’s loss, where

the right columns are the conventional return-based estimates. As shown in the left

column, there is a consistent pattern of volatility for all releases. Firstly, volatility

increases after the release, then slowly reverts back within 60 minutes. Then, an-

other increase occurs due to the market opens. Meanwhile, the impact of the CPI

release is larger than that of the other two indices, despite PCE being the Fed’s

choice for target inflation rate and should be the direct source for predicting mone-

tary shocks. This is because CPI is released first, and these price indices are highly

correlated. Therefore, the new CPI level can be used to update the prediction of PPI

and PCE. Such a regular pattern, however, is hard to discern from the conventional

return-based estimates by looking at the right column, as the estimation appears

to be too noisy. This comparison illustrates the added precision afforded by the

4See https://www.tickdata.com/product/historical-futures-data/.
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Figure 3.3: Spot volatility estimation of E-mini S&P500 future within a 1.5 hours win-
dow before and after price indices releases. The estimation is based on five consecutive
observation intervals sampled at a 1-minute frequency. The left (resp. right) column are
AMRE estimates under Stein’s loss (resp. conventional return-based estimates). Prices
immediately following the releases are excluded to mitigate the effects of potential price
jumps.
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candlestick estimator vis-à-vis the traditional return-based volatility estimator, and

highlights the superiority of using candlesticks in identifying high-frequency mar-

ket activities over short windows (Nakamura and Steinsson (2018a) and Bollerslev

et al. (2018)).

3.3 Concluding Remarks

We study optimal spot volatility estimators based on multiple candlesticks. In

contrast to the machine learning-based method proposed in Bollerslev et al. (2024),

we first propose an alternative computational algorithm that is both less computa-

tionally intensive and more accurate. Additionally, we introduce an exact simula-

tion scheme that overcomes the one-sided bias issue inherent in Euler discretization

schemes when dealing with supremum and infimum. This exact simulation scheme

enables more precise risk comparison and facilitates further analysis involving ex-

treme values of Brownian motions. Using these tools, the comparison of optimal

estimators with existing ones like those in Garman and Klass (1980) and Li et al.

(2022) reveals that the relative relationship between different candlesticks plays a

crucial role in delivering more efficient estimations. This aspect has not been ade-

quately considered in existing estimators. These findings could also provide insights

into deriving more accurate estimations of candlestick-based integrated volatility

functionals, a topic we leave for future research.

50



Chapter 4

Uniform Inference for

High-Frequency Data

4.1 Introduction

As high-frequency financial data becomes increasingly accessible, development

of inference methods tailored for such data emerges as a trending topic. In partic-

ular, inference for volatility or jumps using high-frequency prices has been exten-

sively studied (see, e.g., Jacod and Protter (2012), Aït-Sahalia and Jacod (2014)).

However, the workhorse model for price data used by most researchers, an Itô semi-

martingale plus noise, is evidently unsuitable for other market indicators, such as

volumes and trading flows.1;2 To accommodate a broader range of high-frequency

data, Li and Xiu (2016) proposed a continuous-time state-space model, in which the

observed data approximately equals a general transformation of the state process

and some random disturbance. Special cases include price, volume, and trading

1In contrast to prices, volumes and trading flows are discrete-valued and may not exhibit long-
memory properties. Consequently, they cannot be accommodated within the conventional Itô semi-
martingale model.

2Other market indicators deserve their own analysis. It is widely acknowledged that price and
volumes may carry different aspects of information. For example, Kandel and Pearson (1995) ar-
gued that certain news may not significantly alter investors’ average opinion, resulting in small price
movement. However, it can lead to a substantial divergence of opinions among investors, prompting
disagreements and subsequent trading activity between these disagreeing investors. Consequently,
a surge in volume is observed but no significant change in price. Conversely, Kyle (1985) demon-
strated that in the presence of asymmetric information, even a small trade can trigger a notable price
change if the market impact is significant. In a nutshell, price reflects the average opinion (first
moment), while trading activity also reflects the dispersion of opinion (second moment).
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flow, with the corresponding states being volatility, average order size, and trading

intensity. Without specific restrictions on the state dynamics and the functional form

of transformations, this framework exhibits great versatility to accommodate vari-

ous model specifications, such as the Poisson volume-volatility model (Andersen

(1996)) and Cox trading flow model (Christensen and Kolokolov (2023)).

In this paper, we adopt the general state-space framework proposed by Li and

Xiu (2016). Our emphasis lies in the uniform inference, which speaks to global

properties of the entire state process. Specifically, we develop functional estimators

and associated inference procedures for distributional features of the transformed

state process. These functional estimators are constructed by collecting all localized

estimates across different time points. The major challenge in uniform inference

stems from the asymptotic independence of estimation errors between distinct time

points. Consequently, the functional estimators do not admit a functional central

limit theorem. Recent literature shed light on such non-Donsker problems, high-

lighting the use of strong approximation, or coupling (see, e.g., Chernozhukov et al.

(2013), Belloni et al. (2015), and Li and Liao (2020)). Building on this insight, our

contribution in this paper is to establish a Gaussian coupling theory for functional

estimators of both the conditional mean process (Theorem 4.1) and the conditional

quantile process (Theorem 4.2). These results are formulated within the general

state-space model aligned with various high-frequency data, accommodating de-

pendencies and nonstationarity in both state processes and observations.

A large body of literature has evolved around estimations of volatility using

high-frequency returns, a specific case of our general state-space model. In particu-

lar, the nonparametric estimation of the stochastic volatility at some fixed time point,

referred to as spot estimation (see, e.g., Foster and Nelson (1996) and Comte and

Renault (1998)), and the semiparametric estimation of integrated volatility function-

als (see, e.g., Andersen et al. (2003), Barndorff-Nielsen and Shephard (2004), Myk-

land and Zhang (2009)) have been extensively explored.3;4 However, the uniform

3These problems are closely related to each other, in the sense that nonparametric spot volatility
estimators can be used to construct semiparametrically efficient estimators of integrated volatility
functionals (see, e.g., Jacod and Rosenbaum (2013), Li et al. (2017), and Renault et al. (2017)).

4Another problem, which is orthogonal to the nonparametric setting, involves estimating param-
eters within specified volatility dynamics. Such models are suggested by Nelson (1990) and Heston
(1993), with associated estimation methods proposed in Harvey et al. (1994), Andersen and Sørensen
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inference for the entire volatility process is an emerging concern, as recently ex-

plored by Jacod et al. (2021) and Bollerslev et al. (2021). In line with this literature,

spot estimation for the state process under general state-space model is developed in

Bollerslev et al. (2018). Setting against this background, the strong approximation

result regarding conditional mean process in this paper can be contextualized as an

extension of Jacod et al. (2021) to a more general state-space setting.5

Meanwhile, inference concerning quantiles is relatively underexplored in high-

frequency literature. In a recent paper, Shephard (2022) introduced an estimator of

integrated variance based on in-fill medians. The use of quantiles becomes notably

significant when returns display heavy tails, a common feature observed in cryp-

tocurrency markets (see, e.g., Kolokolov (2022)). Our Gaussian strong approxima-

tion for conditional quantile process is derived, in part, by a novel uniform Bahadur

representation for all in-fill quantiles (Lemma C.1). While such representation has

been established for i.i.d. data (Bahadur (1966), Ghosh (1971)) and weakly depen-

dent stationary data (Hesse (1990), Wu (2005)), our observations are nonstationary

and may exhibit strong dependencies due to the persistence within the state process.

Notably, as a special case, our results can be applied to capture volatile level of

Lévy-driven price. To the best of our knowledge, this is the first paper that con-

tributes to the uniform inference of these processes.

The established strong approximation results have broader applications in tack-

ling other econometric problems. As a byproduct, we provide an application in-

volving constructing confidence sets for ranks of spot values of the studied process,

which is typically useful in determining arrivals of certain events. Specifically, we

leverage insights from Mogstad et al. (2023), reframing the construction as a mul-

tiple hypotheses testing problem. Notably, our strong approximation results aid in

determining the valid critical value required for this purpose. The paper is also

related to prior studies in Gaussian coupling, such as Chernozhukov et al. (2013),

Belloni et al. (2015), Li and Liao (2020), our work stands out due to its emphasis on

a nonstationary time series setting, a departure from the high-dimensional context

typically explored in previous studies.

(1996), Durbin and Koopman (1997), and Knight and Yu (2002), among others.
5An extension under fixed-k framework akin to Bollerslev et al. (2021) is feasible with additional

information about the transformation and the distribution of random disturbances.
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As a concrete empirical illustration of the proposed methodology, we conduct a

sentence-by-sentence study to discern the informative part of the Federal Open Mar-

ket Committee (FOMC) press conference speeches. In light of the more accurate

volatility estimations, recent observations by Bollerslev et al. (2024) highlight that

press conferences sometimes trigger more pronounced market impact than the initial

release of FOMC statements. We employ the uniform inference procedure to ana-

lyze trading intensity processes, aiming to identify additional information arrivals

during these press conferences. Our comparison of results to stand-alone textual

analysis reveals that the latter tends to inappropriately smooth out information flow.

In view of the growing attention towards generative AI tools and large language

models, primarily leveraging in-context learning for tasks, our method serves as a

complement, enabling the deployment of supervised learning for higher accuracy.

Additionally, we provide another empirical application to highlight the importance

of employing quantiles in addressing specific problems. Due to the heavy-tailedness

of Bitcoin returns, realized variances computed in the usual way become diverging,

rendering the detection of abnormal returns invalid. Comparing to the outcomes

of mean-based t -test in Ante (2023), results using quantile-based measurements of

volatile levels indicate more substantial price impact over an extended time window

following social media activities.

The rest of the paper is organized as the following. We present the theory

in Section 4.2. In Section 4.3, a Monte-Carlo experiment analysis is conducted.

Two empirical studies are presented in Section 4.4, where the proposed inference

methodology is applied to discern information flows during the FOMC press con-

ference speeches, and to analyze the price impact of Elon Musk’s twitter on Bitcoin.

Section 4.5 concludes. The appendix contains all the proofs.

Notation. We use j � j to denote the absolute value of a real scalar or the cardinality of

a set, k �k to denote the vector `2-norm. For any p � 1, k �kLp
denotes the Lp-norm

for random variables. We use L.�/ to denote the law of random objects, use 1f�g to

denote the indicator function. For two real numbers a and b, we write minfa;bg as

a^b and maxfa;bg as a_b. For two real sequences an and bn, we write an � bn

if an=C � bn � Can for some finite constant C � 1.
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4.2 Theory

In Section 4.2.1, we introduce the state-space model employed in our research.

In Section 4.2.2, three running examples are provided to illustrate adaptability of

our framework for modeling different market indicators. Sections 4.2.3 and 4.2.4

present constructions and strong approximation results for the functional estimators

of both conditional mean processes and conditional quantile processes, respectively.

Section 4.2.5 provides an application in constructing confidence sets for ranks of

spot values of the investigated process.

4.2.1 State-space Model for High-Frequency Data

We observe a data sequence .Yi�n
/ at some regular sampled times where 1 �

i � n� bT=�nc, within a fixed time span Œ0;T �. In what follows, we consider in-

fill asymptotics, i.e., �n! 0. It is assumed that the data is generated based on the

following state-space model

Yi�n
D Y .�i�n

; "n;i/CRn;i ; for 1� i � n; (4.1)

where .�t/t2Œ0;T � is a càdlàg state process which takes value in an open set Z and is

defined on some filtered probability space satisfying the usual conditions, denoted

as
�
�.0/;F .0/; .F .0/

t /t�0;P.0/
�
. The function Y .�; �/ represents a deterministic noisy

transform of the current state �i�n
through a random disturbance "n;i which takes

value in some Polish space D. Additionally, Rn;i denotes a residual term, which is

defined on an extended probability space that will be elaborated upon later.6 This

residual term can be considered uniformly negligible in comparison with the domi-

nant term, as per the requirement provided in subsequent sections.

We will make the assumption that the random disturbance ."n;i/1�i�n is a F .0/-

conditionally independently and identically distributed (i.i.d.) sequence.7 This is

not a necessary condition, as the framework presented here can be extended to ac-

commodate conditionally stationary and weakly dependent disturbances by employ-

6The incorporation of residual term is first proposed in Bugni et al. (2023), and is assumed to be
zero in Li and Xiu (2016) and Bollerslev et al. (2018).

7There is no loss of generality to impose independence between disturbances and state processes
here. One can always select an appropriate normalization of the representation to let Y .�; �/ account
for the dependence structure such that "n;i is independent from �i�n

.
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ing methodologies developed in Zhang and Cheng (2014), Li and Liao (2020), and

Cattaneo et al. (2022). However, it is worth mentioning that, in many empirical sce-

narios illustrated in the examples provided in Section 4.2.2, the disturbance exhibits

conditional independence. Hence, in order to avoid unnecessary technical com-

plexities, our primary focus lies on conditional independent disturbances, whereas

the extension to dependent case will be discussed in the Appendix. In order to

formally describe the framework, we introduce another probability space denoted

as .�.1/;F .1/;P.1// endowed with an i.i.d. sequence ."n;i/1�i�n with its marginal

distribution denoted by P". Additionally, we denote

���.0/��.1/; F �F .0/
˝F .1/; Ft �

\
s>t

F .0/
s ˝�."s W s� t/; P�P.0/˝P.1/:

In this context, processes defined in each individual space, whether �.0/ or �.1/,

can be extended in the usual way to product space
�
�;F ; .Ft/t�0;P

�
, which serves

as the probability space underlying our analysis.

We highlight that the seeming Markovian assumption that observation Yt solely

relies on current state �t through the function Y .�; �/ is not overly restrictive owing

to the inclusion of additional residual term Rn;i . Although, from an intuitive stand-

point, Yt could potentially depend on historical states. Given that state processes

exhibit sufficient smoothness, information encapsulated in the difference between

past state and current state could be effectively captured within the residual term.

For example, when the observation Yt depends on a local window of historical states

.�s/s2Œt�h;t� through some noisy functional, this approximation holds when (i) the

functional has a bounded partial Fréchet derivative with respect to .�s/s2Œt�h;t�; (ii)

the state process � is smooth enough in a proper sense, e.g., sups;r2Œt�h;t� k�s��rkD

Op.h/; and (iii) window size is shrinking, i.e., h D o.1/. In the meantime, this

additional residual term can also absorb the dependence of observations on some

nuisance process when its effect is negligible. Consequently, the incorporation of

residual Rn;i renders our framework to an essentially “approximately Markovian”

setting, which is more general comparing with simpler Markov state-space models

employed in Li and Xiu (2016) and Bollerslev et al. (2018).
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4.2.2 Motivating Examples

To facilitate a better understanding of broad implications of the general model

(4.1), it is beneficial to outline a discussion using some empirically relevant running

examples. In this section, we provide three motivating examples, showing how

commonly used financial econometric models align with our state-space framework.

EXAMPLE 1 (LOCATION-SCALE MODEL). First, consider a simple model with an

additive structure

Yi�n
D �i�n

C�i�n
"n;i ; for 1� i � n:

In this model, �t represents the local mean at time t and � captures potential het-

eroskedasticity in time. This additive structure directly fits in model (4.1) by setting

�t D .�t ;�t/; Y
�
.�;�/;"

�
D �C�"; Rn;i D 0:

Note that this elementary model has found applications in various important

contexts, as we do not need to specify dynamics of state processes. For example

if Yi�n
is the observed price of some derivative contract, then �i�n

represents the

efficient price and �i�n
"n;i could be the pricing error. Liu and Tang (2013) employ

this additive state-space model to devise an expectation-maximization algorithm

tailored for estimating integrated volatility matrices, particularly when asset prices

are observed with microstructure noise. In their model, Yi�n
is observed price,

�i�n
is the associated latent efficient price and is assumed to have a VAR dynam-

ics, �i�n
"n;i is a microstructure noise component where �i�n

captures time-varying

heterogeneity in the magnitude of noise. Bugni et al. (2023) also used this additive

state-space model to describe trading volume processes, where �i�n
is the local

mean of volume, and �i�n
captures time-varying heterogeneity in order size. A

particularly fitting application of this additive state-space model emerges when the

observation is, in itself, a spot estimation of state process. This specification aligns

closely with the fixed-k estimation framework introduced in Bollerslev et al. (2021).

Specifically, let log. O�n;i/ be the logarithm of fixed-k estimator for spot variance at

time i�n, and log.�n;i/ be the logarithm of true value. Bollerslev et al. (2021)

proved that log. O�n;i/ D log.�n;i/C "n;i C opu.1/ where "n;i follows a scaled log

chi-square distribution with degree of freedom k. Based on this formulation, such
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additive state-space model is adaptable to various volatility dynamics, for example

Hull–White log-normal short-term stochastic volatility. �

EXAMPLE 2 (LÉVY-DRIVEN ASSET RETURNS). The proposed state-space model

can be applied to characterize a wide range of price dynamics studied in the high-

frequency financial econometrics literature. Consider the log price which has a drift

component and a jump-diffusion component driven by a Lévy martingale L, i.e.,

log price process Pt takes the following form

Pt D

Z t

0

�sdsC

Z t

0

�sdLs; for t 2 Œ0;T �;

where � is the drift process, � is the stochastic volatility process, L is a stable

process with Blumenthal–Getoor index ˇ 2 .0;2� and is assumed to be independent

with � .8;9 The extension to general stable Lévy process is motivated by empirical

evidence that jump index of cryptocurrency prices (see, e.g., Kolokolov (2022)) is

strictly smaller than 2, i.e., price is driven by a pure jump process. We treat the

value of ˇ as known, then the normalized squared return Yi�n
D�

�2=ˇ
n .P.iC1/�n

�

Pi�n
/2 over each observation window .i�n; .iC1/�n� can be written as

Yi�n
D��2=ˇ

n

�Z .iC1/�n

i�n

�sdsC

Z .iC1/�n

i�n

�sdLs

�2
:

In light of the property of stable processes, scaled Lévy increments��1=ˇ
n .L.iC1/�n

�

Li�n
/ are i.i.d. across 1 � i � n and have a non-degenerate distribution. There-

fore, upon expanding above display and collecting dominant terms, the normalized

squared return can be rewritten in the form of model (4.1) by setting

�t D �t ; "n;i D�
�1=ˇ
n .L.iC1/�n

�Li�n
/; Y .�;�/D .�"/2;

Rn;i D�
�2=ˇ
n

�Z .iC1/�n

i�n

�sdsC

Z .iC1/�n

i�n

.�s��i�n
/dLs

�2
8Note that for a stable process, Blumenthal–Getoor index and stability index agree. A general

stable process has a characteristic triple .0;c;F / where F.dx/ D 0 if ˇ D 2, i.e., L is a scaled
Brownian motion

p
cW , or c D 0 and F.dx/D aˇ=jxj1Cˇdx for some positive constant a > 0 if

ˇ 2 .0;2/. In particular, if ˇ D 1, L is a Cauchy process. Also note that for positive constant K,
KL remains a stable process, along with �=K, generates the same price process. Therefore, to avoid
non-identification issues between � and the “scale” of L, we make additional restriction that c D 1
if ˇ D 2 and aD 1=� if ˇ 2 .0;2/.

9The independence assumption between L and � rules out the interaction between price and
volatility, i.e., the so-called “leverage” effect. Note that in this explicit configuration, the transfor-
mation has a multiplicative structure, hence it is easy to separate volatility and Lévy increments. That
being said, the independence requirement can be dropped here, for the case when L is a Brownian
motion, see Jacod et al. (2021).
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C2��2=ˇ
n

�Z .iC1/�n

i�n

�sdsC

Z .iC1/�n

i�n

.�s��i�n
/dLs

�
��i�n

.L.iC1/�n
�Li�n

/:

Distinct with preceding examples, here we encounter the presence of a non-zero

residual term Rn;i . This inclusion stresses the notion that even though Yi�n
may

not adhere strictly to Markovian properties with respect to the filtration engendered

by current volatility �i�n
and remains dependent on the ancillary drift process �, it

may still conform to an “approximate Markovian” characterization involving only

the current volatility. As discussed in subsequent sections 4.2.3 and 4.2.4, the resid-

ual term can be proved to be uniformly negligible providing processes � and �

satisfying some fairly weak regularity conditions. �

EXAMPLE 3 (COX TRADING FLOWS). Consider the number of trades during time

Œ0; t �, as denoted by Nt . It is cogent to model trading flows as a Cox process—

or referred to as doubly stochastic Poisson process—which was originally intro-

duced by Cox (1955) for modeling the neps over fibrous threads, i.e., conditional

on the process �, .Nt/t2Œ0;T � behaves as an inhomogeneous Poisson process with

an intensity function .�t/t2Œ0;T �. Let Yi�n
D N.iC1/�n

�Ni�n
denote number of

transactions during each observation window .i�n; .i C 1/�n�. According to the

sparseness property of Poisson process (see, e.g., Section 5.4.1 in Ross (1995)),

we have (i) P.Yi�n
� 2 j�/D o.�n/ and (ii) P.Yi�n

D 1 j�/D�n�i�n
Co.�n/.

This naturally suggest a compelling approximation of Yi�n
by a mixed Bernoulli

random variable with parameter �n�i�n
.10 Consequently, there exists a sequence

of independent, uniformly distributed variables ."n;i/1�i�n on Œ0;1� which are also

independent of process � such that

Yi�n
D 1f"n;i <�n�i�n

gCRn;i ; for 1� i � n;

where the residual takes value in f�1g[N and satisfies P.Rn;i ¤ 0 j�/ D o.�n/

according to property (i) and (ii).11 Note that increments over disjoint intervals can

10The approximation has been explored from a different direction as well, see, e.g., Section 1.6 of
Karr (1991) where they discuss the optimal approximation of a Bernoulli point process by a Poisson
process.

11In some cases, this approximation holds in a stronger sense. Specifically, let N n
t �Pbt=�nc

iD1 1f"n;i < �n�i�n
g denote the partial sum process of these Bernoulli random variables.

Under some strong regularity conditions on the intensity function, Theorem 2 in Ruzankin (2004)
implies kL.N /�L.N n/kTV �K�n supt2Œ0;T � j�

2
t j, where k �kTV denotes the total variation norm of
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be in general dependent in a Cox process through the �t part, as contrasted with the

postulated independence in conventional Poisson processes. Above display shows

the increment of trading flow process can be expressed in the form of model (4.1)

by setting

�t D�n�t ; Y .�;"/D 1f" < �g; "n;i � Uniform.0;1/:

We stress the importance of analyzing trading flow process for following rea-

sons. In the Trade and Quote (TAQ) database, each trade is recorded with a precision

of nanoseconds (10�9 seconds).12 Consequently, our mixed Bernoulli approxima-

tion exactly matches with empirical data: a binary sequence is observed indicating

whether a trade has transpired within each preceding nanosecond window. Com-

paring with volume processes which are noisier, as they may also oscillate due to

unobserved trader-specific heterogeneity; and price processes which are often con-

taminated by microstructure noises, trading flows allow to be analyzed at a much

higher frequency and are more closely related to information flows. That being said,

as a compliment to the price movement, which contains consensual decisions and

viewpoints of market participants, trading frequency also reflects the speed at which

market participants react to and incorporate new information into their idiosyncratic

trading strategies. As discussed in Du and Zhu (2017), a surge in trading intensity

usually indicates higher level of information flow and potentially reflects real-time

changes in market sentiment or news announcements that influence trading activity.

�

Aforementioned examples show the general state-space model (4.1) can be cast

to model various market indicators such as high-frequency volumes, returns, and

trading flows. In the following sections, we will construct functional estimators

and associated inference procedure for conditional mean process and conditional

quantile process of transformed states, and provide further practical implementation

details of these examples.

measures. This result aligns with the asymptotic equivalence of statistical experiments in Le Cam’s
sense, see, e.g., Le Cam (1986a) and Le Cam and Yang (2000), whereas the statistical equivalence
between estimating Poisson intensity with a Gaussian shift model is of more theoretical importance,
see, e.g., Grama and Nussbaum (1998) and Genon-Catalot et al. (2002).

12Timestamps in TAQ database have evolved over time. For Consolidated Tape Association (CTA)
trade and quote feeds, the accuracy of timestamps is milliseconds (10�3 seconds) since October
2003; microseconds (10�6 seconds) since August 3, 2015; nanoseconds since September 18, 2017.
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4.2.3 Uniform Inference on Conditional Mean Process

Although our primary interest lies in unobservable states, we do not target on

estimating the state process per se, we estimate instead some specific distributional

features of transformed state process. Following Li and Xiu (2016) and Bollerslev

et al. (2018), in this section, we focus on estimating the instantaneous conditional

mean process g.13 Formally, we define

gt �

Z
D

Y .�t ; "/P".d"/; for t 2 Œ0;T �:

Note that conditional mean processes may not always be well-defined, especially

when the disturbance exhibits heavy tails. As a supplementary measure, we discuss

estimation and inference of conditional quantile processes in the next section, which

always exist. The precise implications of these processes, along with the identifica-

tion procedure of state process � from them, intrinsically depend on specific prop-

erties of transformation Y .�; �/ and the distribution P". These aspects should be

analyzed on a meticulous case-by-case basis.

In preparation for a deep dive into the estimation procedure, we first introduce

some additional notations concerning a block sampling scheme which is particu-

larly useful in uniform inference for high-frequency data. This scheme divides the

observation window into distinct, manageable blocks, facilitating the construction

of local estimates, and paving the way for localized analysis. Formally, we di-

vide the sample into mn nonoverlapping blocks by partitioning the whole index set

f1; : : : ;ng D [
mn

jD1In;j , where In;j denote the set of kn;j consecutive indices con-

tained in the j th block. Specifically, we define �.i;j /�minIn;j C i �1 as the i th

index in the j th block, and �.i;j /� �.i;j /�n as the associated time. In particular,

we set �.1;mnC 1/ � T . Consequently, we have In;j � f�.i;j / W 1 � i � kn;j g,

which spans time interval Tn;j � Œ�.1;j /;�.1;j C1// for 1� j �mn.

Given that gt is simply the conditional mean of transformed state �t , it natu-

rally suggests forming an estimator by taking local average within the block which

contains time t , while keeping block size shrinking. To fix ideas, we first consider

conducting spot inference on gt at some given time point t . Then there exists a

13In particular, inference regarding the integrated conditional mean process and spot conditional
mean process has been studied in Li and Xiu (2016) and Bollerslev et al. (2018), respectively.
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block j such that t 2 Tn;j , define Ogt as the local average of observations Yi�n
over

this block Ogn;t � k�1
n;j

P
i2In;j

Yi�n
: Theorem 1 in Bollerslev et al. (2018) shows

that when Rn;i D 0, under fairly weak conditions on the local smoothness of � and

bounded second conditional moments of Y .�; "/, as kn;j !1 and kn;j�n! 0,p
kn;j . Ogn;t �gt/

L-s
�!MN .0;�2t /; (4.2)

where �2t �
R
D Y .�t ; "/

2P".d"/�
�R

D Y .�t ; "/P".d"/
�2 denotes conditional vari-

ance,
L-s
�! denotes stable convergence in law, and MN denotes mixed Gaussian

distribution. The choice of block size corresponds to the trade-off between utilizing

enough data to form an asymptotically Gaussian estimate and ensuring this estimate

not to suffer from the bias due to local dynamics of state process. Consequently, not-

ing that O�2n;t � k
�1
n;j

P
i2In;j

Y 2i�n
�
�
k�1
n;j

P
i2In;j

Yi�n

�2 is a consistent estimator of

conditional variance �2t , we have the feasible central limit theoremp
kn;j . Ogn;t �gt/

O�n;t

L
!N .0;1/:

Therefore, with z1�˛=2 denoting the .1�˛=2/ quantile of a standard Gaussian dis-

tribution, let bC˙
n;t.˛/� Ogn;t˙z1�˛=2�k

�1=2
n;j O�n;t ; (4.3)

then bC n;t.˛/ � ŒbC�
n;t.˛/;

bCC
n;t.˛/� is an asymptotic .1�˛/ confidence interval of

gt , i.e.,

P
�
gt 2 bC n;t.˛/�! 1�˛; for every t 2 Œ0;T �:

Above results can be easily extended to the case whenRn;i ¤ 0 yet remains uni-

formly negligible, and furthermore, joint convergence of Ogn;� on a finite set of time

points ft1; : : : ; t`g � Œ0;T �. By a classic Bonferroni approach, the hyperrectangle

C˙
n;t1
.˛=`/�� � ��C˙

n;t`
.˛=`/ serves as a valid confidence set for vector .gt1; : : : ;gt`/.

However, difficulty arises in extending this to estimation of the entire process g on a

continuum set of indices, which is primarily due to the absence of functional central

limit theorems. To better illustrate this limitation, we define blockwise estimator for

the j th block similar as before

Ogn;j �
1

kn;j

X
i2In;j

Yi�n
D

1

kn;j

kn;jX
iD1

Y�.i;j /; for 1� j �mn:
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Given block size kn;j�n keeps shrinking, the block scheme becomes ever finer.

Therefore, we can form a functional estimator for the entire process .gt/t2Œ0;T � as a

collection of all blockwise estimates . Ogn;j /1�j�mn
. Namely, we set

Ogn;t � Ogn;j ; for t 2 Tn;j and 1� j �mn:

Note that the blocks are non-overlapping, estimation errors within different blocks

are asymptotically independent. Consequently, pointwise central limit theorem

(4.2) shows that process of spot estimators have a path structure similar to a Gaus-

sian white noise, hence is not asymptotically equicontinuous in probability on Œ0;T �

(see, e.g., Section 1.5 in van der Vaart and Wellner (1996)). The uniform inference

problem based on this type of functional estimators is non-Donsker in nature. That

being said, such non-Donsker problems that commonly arise from uniform infer-

ence in nonparametric settings, can be addressed using strong approximation of the

functional estimators by variables with known finite-sample distributions, see, e.g.,

Chernozhukov et al. (2013) for the independent data and Li and Liao (2020) for

generalization to time series data.14 To help fix ideas, we define the sup-t statistic

as

bT �
n� sup

t2Œ0;T �

jbT n;t j; where bT n;t � p
kn;j . Ogn;t �gt/

O�n;t
for t 2 Tn;j and 1� j �mn;

where O�n;t � O�n;j for t 2 Tn;j and 1 � j � mn, and O�2n;j � k
�1
n;j

P
i2In;j

Y 2i�n
��

k�1
n;j

P
i2In;j

Yi�n

�2. Theorem 4.1 below, shows the sup-t statistic can be strongly

approximated, or coupled, by maximum of a growing dimensional folded Gaussian

variables, whose distribution is well-understood in finite sample. First, we introduce

some regularity conditions.

Assumption 3. The observation process .Yi�n
/1�i�n is given by (4.1). There exist

a sequence .Tm/m�1 of stopping times increasing to infinity, a sequence of compact

subsets .Km/m�1 of Z , and a sequence .Km/m�1 of positive constants such that for

each m� 1 such that:

(i) �t^Tm
takes value in Km; for all s; t 2 Tn;j where 1 � j �mn, and for each

p > 0, EŒk�t^Tm
� �s^Tm

kp��Km;pjt � sj
p=2 for some constant Km;p;

(ii) for all z;z0 2Km with z¤ z0, Var
�
Y .z;"/

��1
CkY .z;"/�Y .z0; "/kL2

=kz�

14A Yurinskii-type coupling for the entire t -statistic process does not hold in general case, unless
the state process is very smooth or the transformations take special forms (e.g., Jacod et al. (2021)).
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z0k �Km;

(iii) for all x > 0 and z 2 Km, P"
�
jY .z;"/j � x

�
� Km expf�.x=Km/1=�g for

some � > 0;

(iv) max1�i�n jRn;i j D op.�
r
n/ for some r > 0.

Assumption 3 imposes some regularity conditions on the state process, the trans-

formation of random disturbance, and the residual term, which allow for essentially

unrestricted nonstationary state process and heavy-tailed disturbance. Specifically,

condition (i) requires state process to be locally taken value in compact set. Con-

dition (i) also imposes the smoothness of state process within each block. Namely,

it requires state process to be 1/2-Hölder continuous under the Lp-norm for any

positive p. This condition is stronger than that needed for conducting pointwise in-

ference, see Bollerslev et al. (2018). It holds if the state process is a continuous Itô

semimartingale or long-memory process within each block, and it also allows state

process to have jumps on the boundary time points between blocks. Condition (ii)

requires the variance of Y .z;"/ to be locally bounded away from zero, and the ran-

dom mapping z 7! Y .z;"/ to be Lipschitz on compact set Km under the L2 norm,

which is a minor restriction and can be easily verified for aforementioned examples.

Condition (iii) requires transformed disturbance to have a sub-Weibull tail with

parameter � > 0, which is a generalization of sub-Gaussian and sub-Exponential

families to potentially heavier-tailed distributions including Exponential distribu-

tion and Poisson distribution, see Vladimirova et al. (2020) and Kuchibhotla and

Chakrabortty (2022) for a detailed discussion of sub-Weilbull tails. This condi-

tion holds for any � � 1=2 (resp. � � 1) if Y .z;"/ has sub-Gaussian (resp. sub-

Exponential) tail, and can be verified even for the disturbance arises from machine

learning models, see Hayou et al. (2019) for a proof under deep neural networks.

We highlight that condition (iii) also ensures the existence of conditional mean pro-

cess. Condition (iv) is a high-level condition which requires residual term to be

uniformly negligible in the sense that it shrinks at a polynomial rate uniformly for

all 1� i � n.

Before state the strong approximation result of sup-t statistic, we provide some

additional implementation details by revisiting three examples outlined in the pre-

ceding section. Discussion of implementation details primarily aims to shed light
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on the interplay between conditional mean process and state process, together with

a validation of Assumption 3 (especially condition iv), under those specific models.

EXAMPLE 1 (LOCATION-SCALE MODEL, CONTINUED). In the simple location-

scale model with additive structure, suppose that disturbance is centered. Then

by definition, the conditional mean process inherently translates into local mean

process, i.e., gt D �t for all t 2 Œ0;T �. Consequently, the first state process � can

be directly identified from g. Assumption 3(i) is satisfied if .�t ;�t/t2Tn;j
is a two

dimensional continuous Itô semimartingale or long-memory process within each

block. Suppose in addition that P" has a sub-Weilbull tail, Assumption 3(iii) is

met. This, combined with � maintaining bounded away from zero, leads to the

fulfillment of Assumption 3(ii). Recall that in this example residual terms Rn;i D 0

for all 1� i � n, Assumption 3(iv) trivially holds for any r > 0. �

EXAMPLE 2 (LÉVY-DRIVEN ASSET RETURNS, CONTINUED). Recall the char-

acteristic triple of stable Lévy process described in footnote 8, conditional mean

process is coherently well-defined only when ˇD 2, i.e., L is a Brownian motion.15

Therefore, subsequent discussion in this section is confined to the case where ˇD 2,

scenarios regarding ˇ 2 .0;2/ will be addressed in Section 4.2.4. Assumption 3(i)

is satisfied if the volatility .�t/t2Tn;j
is a continuous Itô semimartingale or long-

memory process within each block, which is congruent with most popular stochastic

volatility models. Note that in this example, the disturbance is a sequence of i.i.d.

standard Gaussian variables, indicating the transformed disturbance .�"/2 follows

a scaled �2.1/ distribution. As a result, the conditional mean process translates into

variance process, i.e., gt D �2t for all t 2 Œ0;T �. Also, Assumption 3(iii) holds for

any � � 1, Assumption 3(ii) is satisfied provided that volatility is bounded away

from zero. Suppose in addition that the drift process � is locally bounded, by a

combined use of the Burkholder–Davis–Gundy inequality, the Hölder inequality,

and a maximal inequality, we can deduce for all p � 1,

E
h

max
1�i�n

jRn;i j
p
i
���1

n E
h

sup
jt�sj��n

j�t ��sj
2p
i
�Kp�

p�1
n ;

confirming that Assumption 3(iv) holds for any 0 < r < 1. �
15The instantaneous conditional mean diverges at a rate of �2=ˇ�1

n by the definition of
Blumenthal–Gatoor index.
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EXAMPLE 3 (COX TRADING FLOWS, CONTINUED). In the context of Cox trad-

ing flow model, recall that state process is �n�t . Assumption 3(i) and (ii) hence

requires the scaled intensity �n�t to be 1/2-Hölder continuous within each block,

and more critically, to be both bounded from above and away from zero,16 which

alludes to the “high traffic” assumption, as introduced in Kingman (1961). As a

complement elaboration, Christensen and Kolokolov (2023) provides an alternative

justification for this assumption by modeling trading flow as a sum of n independent

copies of Cox processes with conditional intensity �n�t . This “heavy traffic” as-

sumption is a natural precursor for econometric analysis of high-frequency financial

data, in the sense that a Cox process endowed with “high traffic” intensity can gener-

ate the class of valid stochastic sampling schemes studied in Hayashi et al. (2011).17

Note that the transformation takes binary values, Assumption 3(iii) is automatically

satisfied for any � > 0. For the residual term, recall P.Rn;i ¤ 0 j�/D o.�n/, by the

law of iterated expectation we have for any r > 0,

P
�

max
1�i�n

jRn;i j>�
r
n

�
�

nX
iD1

P.Rn;i ¤ 0/D no.�n/D o.1/;

confirming that Assumption 3(iv) also holds for any r > 0. �

We are now ready to formally state our strong approximation result for sup-t

statistics.

Theorem 4.1. Suppose that (i) Assumption 3 is satisfied; (ii) kn;j ��
��
n uniformly

for all 1� j �mn such that � 2 .0;2r^1=2/. Let .Z1;Z2; : : : ;Zmn
/> be a standard

Gaussian random vector in Rmn . Then for some positive constant �,

sup
x2R

ˇ̌̌
P.bT �

n � x/�P
�

max
1�j�mn

jZj j � x
�ˇ̌̌
�K��n:

COMMENT 1. Theorem 4.1 shows the sup-t statistic can be strongly approximated

by maximum of a increasing dimensional folded standard Gaussian random vari-

ables, in the sense that their Kolmogorov–Smirnov distance shrinks to zero at a poly-

nomial rate. A similar result holds under the Kantorovich–Monge–Rubinstein met-

16This is not surprising since the intensity of a Poisson process is not consistently estimable over
a fixed time window, not even in the homogeneous case (see, e.g., Brillinger (1975), Karr (1991),
and Helmers and Zitikis (1999)).

17We assume additionally the trading flow process to have refractoriness, see, e.g., Citi et al.
(2014).
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ric.18 In that case, there exist sequences on a common probability space bT 0
n

L
D bT �

n

and Z0
n

L
D max1�j�mn

jZj j such that bT 0
n D Z

0
nC op.1/. However, here it is not

straightforward that convergence under the Kantorovich–Monge–Rubinstein met-

ric implies convergence under the Kolmogorov–Smirnov metric, since the density

of Z0
n is unbounded.19 Consequently, due to the particular usefulness in making

inference, Theorem 4.1 and other strong approximation results in this paper, are

presented under the Kolmogorov–Smirnov distance.

COMMENT 2. We emphasize that distribution of coupling variable max1�j�mn
jZj j

is known in finite sample, which renders Theorem 4.1 particularly useful for in-

ferential purposes. Formally, given any ˛ 2 .0;1=2/, let cvn.˛/ � inffx 2 R W

P.max1�j�mn
jZj j � x/ � 1�˛g denote the .1�˛/ quantile of max1�j�mn

jZj j,

which can be easily computed for any mn.20 Then Theorem 4.1 implies
ˇ̌
P
�bT �

n �

cvn.˛/
�
�P

�
max1�j�mn

jZj j � cvn.˛/
�ˇ̌
�K��n. Consequently, let

bB˙
n;t.˛/� Ogn;t˙ cvn.˛/�k

�1=2
n;j O�n;t ; for all t 2 Tn;j ; and 1� j �mn; (4.4)

then bBn;t.˛/� ŒbB�
n;t.˛/;

bBC
n;t.˛/� constitutes an asymptotic (1�˛) confidence band

for the entire process .gt/t2Œ0;T �, i.e.,

P
�
gt 2 bBn;t.˛/ for all t 2 Œ0;T �

�
D P

�bT �
n � cvn.˛/

�
! 1�˛:

Observing that the uniform confidence band (4.4) is generally wider than point-

wise confidence intervals (4.3), this difference magnifies as the number of blocksmn

becomes larger. To better illustrate the intuition behind this difference, we present a

simple comparative visualization for uniform confidence bands and pointwise con-

fidence intervals under different numbers of blocks in Figure 4.1. Given that total

number of observations is typically fixed in application, the number of blocks is

intrinsically determined by the block size. Consequently, mn stands inversely pro-

18The Kantorovich–Monge–Rubinstein metric between two measures P1 and P2 is defined as
supfj

R
fdP1 �

R
fdP2j W kf kLip � 1g, Theorem 2 in Szulga (1983) shows it is equivalent to the

Wasserstein 1-metric inffEŒkX �Y k� W L.X/D P1;L.Y /D P2g.
19The density of max1�j�mn

jZj j is given by f .x/� 2mn
�
2ˆ.x/�1

�mn�1
�.x/1fx � 0g, where

�.�/ and ˆ.�/ denote the density and distribution functions of standard Gaussian distribution, re-
spectively. Note that the Mills ratio

�
1�ˆ.x/

�
=�.x/ ! 1=x, by verifying a Von Mises type

condition and applying Corollary 1.7 in Resnick (2008), we can show f .x/ ' 4
p

logmn=e as
x!
p
2 logmnC

�
2 log2� log logmn� log.4�/

�
=
p
8 logmn and mn!1.

20For instance, use one-line command fsolve(@(x)(2*normcdf(x)-1).ˆm-(1-alpha),
log(m)) in MATLAB.
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Figure 4.1: Comparison of Confidence Bands under Different Numbers of Blocks. In
each panel, we mark spot estimates in red squares, 90% pointwise confidence interval in
black vertical segments, 90% uniform confidence band in red dashed lines, and the true
process in blue lines. The pointwise confidence band is constructed by connecting each
confidence interval computed using (4.3), the uniform confidence band is computed using
(4.4). Three panels from left to right show results for the case where mn equals 6, 8, and
12, respectively, corresponding to the tuning sequence kn being 40, 30, and 20.

portional to kn. When the number of blocks is small, each block becomes wide,

leading to a large time variation effect which undermines the coverage of pointwise

confidence interval. In contrast, when the number of blocks is large, probability

of committing type I error across distinct blocks accumulates. Such accumulating

errors are not accommodated for in pointwise confidence intervals.

4.2.4 Uniform Inference on Conditional Quantile Process

As we mentioned in the previous section, if the disturbance exhibits exceedingly

heavy tails, instantaneous conditional mean process is not well-defined. This sec-

tion pivots to explore an alternative method of analyzing these heavy-tailed models,

centering on instantaneous conditional quantile of the transformed state as a supple-

mental measure. In contrast to conditional mean process, the conditional quantile

process remains well-defined, regardless of the nature of P".21 To be precise, for

some pre-determined level � 2 .0;1/, we define the conditional quantile process as

a version of càdlàg inverse of conditional distribution function of Y .�t ;x/, i.e.,

qt.�/� inf
˚
x 2 R W P"

�
Y .�t ; "/� x

�
� �

	
; for t 2 Œ0;T �:

The analysis of quantile has developed rapidly since the foundational Koenker and

Bassett Jr (1978). It has been highlighted that quantile is the unique solution of min-

imizing expected loss utilizing the check function u�.y/� y.��1fy < 0g/. Based

on this insight, it is natural to define an estimator through the sample analogue,

which also offers a heuristic method of deriving asymptotic behaviors through the

21Sample quantiles has other applications, see, e.g., Coeurjolly (2008) for estimating the Hurst
parameter of fractional Brownian motion using a convex combination of sample quantiles.
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monotonicity of first order conditions, see, e.g., Section 3.2 in Koenker (2005). Al-

ternatively, although essentially equivalent in most cases, some statisticians opt to

define quantile estimators directly through its corresponding order statistics. Here,

its asymptotic properties and optimalities are extensively explored via the elegant

Bahadur representation. In the pioneered paper, Bahadur (1966) first established

almost sure bound of representing the difference between population quantile and

corresponding order statistics as a sample average of some i.i.d. auxiliary variables.

Ghosh (1971) provided a simple proof for a weaker but sufficiently useful bound.

The result has been extended to nonparametric quantile regression by Chaudhuri

(1991), and to weakly dependent stationary data by Hesse (1990) and Wu (2005).

We adopt the idea from classic statistic methodology to define each spot es-

timator as local “in-fill order statistic” of observations inside the shrinking block,

instead of through the convention of minimization problem. Namely, within each

block, we reindex the sequence .Yi�n
/i2In;j

in the non-decreasing order and de-

noted as Y o1;j � � � � � Y
o
kn;j ;j

. The spot estimator for conditional quantile, in this

scheme, is defined as dkn;j�e-order statistic.22 Analogous to the previous section,

we form a functional estimator as the collection of all blockwise estimates

Oqn;j .�/� Y
o

dkn;j�e;j ; Oqn;t.�/� Oqn;j .�/ for t 2 Tn;j and 1� j �mn:

Although observations from model (4.1) are neither independent nor stationary, in

the appendix we show that a uniform Bahadur representation holds for all blockwise

in-fill �-sample quantiles given some regularity conditions (Lemma C.1), which

forms the bedrock for deriving strong approximation results for the functional con-

ditional quantile process estimator. To the best of our knowledge, this is the first

paper to consider uniform (over time) inference of quantile process under in-fill

setting. We first introduce some regularity conditions.

Assumption 4. The observation process .Yi�n
/1�i�n is given by (4.1). There exists

a sequence .Tm/m�1 of stopping times increasing to infinity, a sequence of compact

subsets .Km/m�1 of Z , and a sequence .Km/m�1 of positive constants such that:

(i) �t^Tm
takes value in Km; for all s; t 2 Tn;j where 1 � j �mn, and for each

22Note that the results presented in this section hold for all `n;j -order statistics with `n;j �kn;j�D
o.k

1=2
n;j logkn;j /. We focus on dkn;j�e-order statistic to avoid unnecessary complexity.
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p > 0, EŒk�t^Tm
� �s^Tm

kp��Km;pjt � sj
p=2 for some constant Km;p;

(ii) for each x 2R, for all z;z0 2Km, jF.z;x/�F.z0;x/j_j@xF.z;x/�@xF.z
0;x/j �

Kmkz�z
0k where F.�;x/� P"

�
Y .�; "/� x

�
;

(iii) for each t 2 Œ0;Tm� and x in some neighborhood of qt.�/, ft.x/Cft.x/�1C

j@xft.x/j<Km where ft.�/� @.�/F.�t ; �/;

(iv) max1�i�n jRn;i j D op.�
r
n/ for some r > 0.

Condition (i) remains the same as in Assumption 3, i.e., it requires state pro-

cess to be locally taken value in compact set and 1/2-Hölder continuous under the

Lp-norm for any positive p. Likewise, it is satisfied if the state process is a con-

tinuous Itô semimartingale or long-memory process within each block and does not

exclude jumps on the boundary time points between blocks. Condition (ii) necessi-

tates that, for a given value of x, the function F.�;x/ and its derivative @xF.�;x/ to

be Lipschitz over the set Km. This condition can be verified if F.�; �/2C 2;1.Km;R/.

Condition (iii) is a local requirement that conditional density function at true state

�t evaluated at a neighborhood of the quantile is positive and not too concentrate

around that point, which holds if ft.�/ is continuous and has no point mass.23 Con-

dition (iv) is the same high-level requirement as in Assumption 3, which requires

residual terms to shrink uniformly at a polynomial rate.

EXAMPLE 2 (LÉVY-DRIVEN ASSET RETURNS, CONTINUED). Recent advances

in high-frequency financial data analysis have accentuated the significance of infer-

ence using sample order statistics.24 Specifically, in a special case when ˇ D 2 and

choosing � D 1=2, Shephard (2022) consider estimating integrated volatility over

Œ0;T � through the normalized sum of “in-fill median” in each block. Asymptotic

properties of this estimator are derived via the monotonicity of first order condition

of minimization problems in the spirit of Koenker and Bassett Jr (1978). Although

integrated volatility estimators constructed using median are asymptotically less ef-

ficient than realized variance in the Brownian motion case, it remains robust to ab-
23Observe that this requirement excludes the case where random disturbances are discretely dis-

tributed. This is not surprising since even the classic Bahadur representation for i.i.d. data requires
absolute continuity of the distribution. Analysis of sample quantiles for discretely distributed data
deserves its own research.

24The use of extreme order statistics, although beyond the scope of this paper as we assume
� 2 .0;1/, has been utilized in estimating volatility even earlier, see, e.g., Garman and Klass (1980),
Parkinson (1980).
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normal returns which often arise when the price contains jumps. As a complement

to Shephard (2022), in this example, our focus is on uniform inference for the entire

volatility process even in the case when ˇ < 2, a setting wherein conditional mean

process becomes not well-defined and Assumption 3(iii) no longer holds. Conse-

quently, return-based estimation procedure becomes invalid. Nevertheless, recall

the state-space formation of Lévy-driven returns, it is evident that for all t 2 Œ0;T �,

qt.�/D �
2
t Q.L;�/;

where Q.L;�/ denote the �-quantile of "n;i D �
�2=ˇ
n .L.iC1/�n

�Li�n
/2, hence

is free of nuisance. This proportional structure between q.�/ and � suggests that

conditional quantile process can serve as a feasible proxy for volatility. Note that

formally defining the volatility process in a heuristic way via quadratic variation of

continuous part is impossible in this case,25 whereas interquantile range effectively

captures the volatile level of price. Although for the cases ˇ ¤ 1. closed-form den-

sities of "n;i is almost never known, we do have explicit closed-form characteristic

functions. This facilitates the numerical computation of Q.L;�/ and validation of

condition (ii) and (iii) in Assumption 4, see, e.g., Zolotarev (1986).26 Moreover, not-

ing that ŒL�t D
P
s�t j�Lsj

2 <1 almost surely for any t > 0, a similar argument

as in the previous section yields that condition (iv) remains valid for all 0 < r < 1.

�

Analogous to Theorem 4.1, we present Theorem 4.2 below, which states the

strong approximation result for our functional quantile estimator using the Kolmogorov–

Smirnov metric.

Theorem 4.2. Suppose that (i) Assumption 4 is satisfied; (ii) kn;j � �
��
n uni-

formly for all 1 � j � mn such that � 2 .0;2r ^ 1=2/. Let .Z1;Z2; : : : ;Zmn
/> �

MN .0;diagf�21 ; : : : ;�
2
mn
g/ be a mixed Gaussian random vector in Rmn such that

�2j � �.1��/=f�.1;j /
�
q�.1;j /.�/

�2. Then for any � 2 .0;1/, for some positive con-

25Namely, the quadratic variation of continuous part of P is zero when ˇ < 2.
26Note that semi-closed-form expressions of densities of stable distributions are available, for

example in the form of an one-dimensional integral or a convergent infinite series. Various numerical
computation procedures and associated error bounds are discussed in Ament and O’Neil (2018).
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stant �,

sup
x2R

ˇ̌̌
P
�

max
1�j�mn

sup
t2Tn;j

p
kn;j j Oqn;t.�/�qt.�/j � x

�
�P

�
max

1�j�mn

jZj j � x
�ˇ̌̌
�K��n:

COMMENT. In contrast to Theorem 4.1, the coupling variable max1�j�mn
jZj j

here is not pivotal as the variance matrix remains unknown, which is not surpris-

ing in quantile-related inference. This problem can be addressed, since the density

function ft.�/ is nonparametrically estimable. Alternatively, a practically more con-

venient choice is to employ the bootstrap method to get an asymptotically valid

critical value, as justified by Zuo (2015) who derived a Bahadur representation for

empirical bootstrap quantiles. We stress that in certain scenarios, the distribution

can indeed be pivotalized. For instance the multiplicative transformation (see Ex-

ample 2) where conditional quantile estimation is extremely useful, we have for all

t 2 Œ0;T � that

ft
�
qt.�/

�
D

1

�2t

Nf

�
qt.�/

�2t

�
D
Q.L;�/2 Nf

�
Q.L;�/

�
qt.�/2

;

where Nf .�/ denotes the density of ��2=ˇ
n .L.iC1/�n

�Li�n
/2 which is free of nui-

sance hence can be computed numerically. Let

O�2n;j �
�.1��/Q.L;�/2 Nf

�
Q.L;�/

�2
Oqn;j .�/2

; for all 1� j �mn:

Given that Nf .�/ is Lipschitz in the neighborhood of Q.L;�/ by Assumption 6(iii),

Theorem 4.2 then implies that

max
1�j�mn

j O�2n;j ��
2
j j DOp

�
��=2n log.��1

n /
1=2
�
:

Consequently, let cvn.˛/ be defined identically as in (4.4), denote

bB 0˙
n;t.˛/�

�
Oqn;t.�/˙cvn.˛/�k

�1=2
n;j O�n;j

�
=Q.L;�/; for all t 2 Tn;j ; and 1� j �mn;

(4.5)

Then bB 0
n;t.˛/ � ŒbB 0�

n;t.˛/;
bB 0C
n;t.˛/� constitutes an asymptotic (1� ˛) confidence

band for the entire variance process .�2t /t2Œ0;T �, i.e.,

P
�
�2t 2

bB 0
n;t.˛/ for all t 2 Œ0;T �

�
! 1�˛:
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4.2.5 Application: Inference for Ranks

The strong approximation results established in this paper can be used to tackle

other econometric problems. As a byproduct, we discuss the problem of doing in-

ference for ranks in this section. Namely, given a path of certain stochastic process,

rankings of the values at a set of time points are often of great interest. Notably,

such interest stems when the process indicates some time-varying signals, while

quantifying these signals is challenging hence we are interested instead in their rel-

ative magnitudes. These rankings illuminate which segments of the process pos-

sess comparatively higher signal level in relation to others. For instance, vigors of

trading intensities can shed light on the real-time information level that affects the

market (see, e.g., Du and Zhu (2017)).

Usually, the realized path is unobservable. Thus, rankings are invariably de-

duced using functional estimators instead of the true process. Such procedure in-

evitably introduces uncertainties, necessitating careful considerations before draw-

ing definitive conclusions regarding rankings of the true process. To illustrate this

inherent uncertainty, consider a simple example where
p
kn. Ogti � gti / � N .0;1/

for i 2 f1;2g, then we have P. Ogt1 > Ogt2 j gt1 < gt2/ D 1�ˆ
�p
kn.gt2 � gt1/=2

�
,

i.e., in finite samples, there is a nonzero probability that estimated rankings do not

coincide with their true rankings. While the probability of such misranking tends

to zero with a increasing number of observations, it conversely accumulates with a

increasing number of candidates under comparison.

In a recent paper, Mogstad et al. (2023) provided a comprehensive framework

for inferring ranks via the introduction of confidence sets for ranks. This methodol-

ogy is congruent with the problem at hand. Given a designated set of inspected time

points, observe that the length of blocks shrinks to zero. Consequently, as �n be-

coming small enough, each time point in that set falls exactly in one distinct block.

Therefore, we may assume without loss of generality that the set of inspected time

points takes the form of ft1; : : : ; tmn
g where tj 2 Tn;j for all 1 � j � mn. To give

a detailed illustration, we focus on the case investigating conditional mean process

.gt/t2Œ0;T �. Analogues results can be formulated for conditional quantile process

via uniform Bahadur representation and Theorem 4.2. To avoid double subscripts,
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with a slight abuse of notation, we denote gn;j � gtj for 1 � j � mn. Following

Mogstad et al. (2023), we define ranks of .gn;j /1�j�mn
and the entire rank vector

as

Rankn.j /� 1C
mnX
j 0D1

1fgn;j 0 >gn;j g and Rankn�
�
Rankn.1/; : : : ;Rankn.mn/

�>
:

Then a joint .1�˛/ confidence set for ranks at all time points is defined as a random

set 1Rankn � Rmn such that

liminf
�n!0

P
�
Rankn 21Rankn

�
� 1�˛:

Let Sall
n � f.j;j

0/ W 1 � j;j 0 �mn and j ¤ j 0g denote the set of all paired indices.

Based on the insight of Theorem 3.4 in Mogstad et al. (2023), the confidence level

of a joint confidence set for all ranks is bounded below by one minus the familywise

error rate, denoted as FWERn, for testing following family of multiple one-sided

hypotheses

Hj;j 0 W gn;j � gn;j 0 against Kj;j 0 W gn;j > gn;j 0; where .j;j 0/ 2 Sall
n : (4.6)

According to which null hypotheses hold true, we can partition all paired indices

into two subsets Sall;�
n �f.j;j 0/2Sall

n W gn;j � gn;j 0g, Sall;C
n �f.j;j 0/2Sall

n W gn;j �

gn;j 0g. We also denote the set of rejected hypotheses as Rej�n .j /� f.j;j
0/ 2 Sall

n W

Hj 0;j is rejectedg and RejCn .j / � f.j;j
0/ 2 Sall

n WHj;j 0 is rejectedg. Moreover, de-

fine Rej˙n �
Smn

jD1Rej˙n .j /. Then the familywise error rate for testing family (4.6)

can be formally expressed as

FWERn � P.reject at least one true hypothesis Hj;j 0/

D P.Sall;�
n \RejCn ¤¿ or Sall;C

n \Rej�n ¤¿/:

Our goal is to find a valid test such that limsup�n!0P.FWERn/ � ˛. We will

describe the detailed testing procedure in the rest of this section. Before presenting

the procedure, we highlight that our setting here differs from that of Mogstad et al.

(2023) in two aspects. Firstly, note that Mogstad et al. (2023) focus on the rankings

across different populations, which implies their rankings are deterministic. On the

contrary, we consider ranks that defined for a single realized path of the investigated

process at different time points. Consequently, rankings Rankn hence the partition

Sall;˙
n are both random in nature. Secondly, we allow the number of evaluated time

74



points to diverge as �n! 0 at a rate identical to number of blocks mn, contrasting

with the case in Mogstad et al. (2023) where the total number of populations remains

fixed.

For the sake of notational simplicity, we assume for the moment that kn;j D

kn for 1 � j � mn, i.e., we partition observations into blocks with equal length.

For each elementary null hypothesis Hj;j 0 where .j;j 0/ 2 Sall
n , we construct tests

statistic concerning the difference Ogn;j � Ogn;j 0 . Denote the corresponding variance

estimator as O&n.j;j 0/2� O�2n;jC O�
2
n;j 0 . Then we rejectHj;j 0 whenever the associated

t -statistic

Odn.j;j
0/�

p
kn. Ogn;j � Ogn;j 0/

O&n.j;j 0/
;

is sufficiently large, say, exceeds some carefully selected threshold. To determine

the proper value of critical value that controls FWERn, we define the sup-t statistics

as bDn � max.j;j 0/2Sall
n

Odn.j;j
0/.27 A direct application of Theorem 4.1 indicates a

similar strong approximation result holding for bDn. Nonetheless, additional diffi-

culty arises since the distribution of coupling variable becomes more complicated.

This stems from the fact that covariance matrix becomes non-identity since off-

diagonal components can be non-zero given that Sall
n contains pairs with coinciding

indices. In light of this, we propose an employment of a Gaussian multiplier boot-

strap technique to determine the requisite confidence value. Namely, we generate

i.i.d. standard Gaussian variables .ei/1�i�kn
independent of .Yi�n

/1�i�n. Denote

OgBn;j �
1

kn

knX
iD1

ei.Y�.i;j /� Ogn;j /:

Repeat this step to generate a large number of bootstrap sample of . OgBn;j /1�j�mn
.

Then we can compute the conditional (1�˛) quantile of the maximum of studen-

tized bootstrap statistics via

cvBn .˛;Sall
n /� inf

�
x 2R WP

�
max

.j;j 0/2Sall
n

p
kn. Og

B
n;j � Og

B
n;j 0/

O&n.j;j 0/
� x

ˇ̌̌
.Yi�n

/1�i�n

�
� 1�˛

�
;

(4.7)
27Existing literature offers alternative test statistic formulations. For example Bai et al. (2019)

suggest using bD0
n � max.j;j 0/2Sall

n

Odn.j;j
0/_ 0, which leads to a better power if many elementary

nulls Hj;j 0 are violated simultaneously. On the contrary, our emphasis is on detecting deviations
when at least one Hj;j 0 is violated too much. Observing that Theorem 2.1(i) and 2.2(ii) in Lehmann
et al. (2005) indicate the impossibility of maximizing power across both cases even when total num-
ber of nulls are limited to be 2, we usebDn instead ofbD0

n here.
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The following theorem provides validity of this Gaussian multiplier bootstrap pro-

cedure.

Theorem 4.3. Suppose that (i) Assumption 3 is satisfied; (ii) kn � �
��
n such that

� 2 .0;2r ^1=2/, then for some positive �,

(i) P
�bDn > cv

B
n .˛;Sall

n /
�
� ˛CK��n if max.j;j 0/2Sall

n
.gn;j �gn;j 0/� 0. In addi-

tion,
ˇ̌
P
�bDn > cv

B
n .˛;Sall

n /
�
�˛

ˇ̌
�K��n if gn;j �gn;j 0 D 0 for all .j;j 0/ 2 Sall

n ;

(ii) P
�bDn > cv

B
n .˛;Sall

n /
�
� 1�K��n if max.j;j 0/2Sall

n
.gn;j �gn;j 0/�‡ for some

positive ‡ .

COMMENT 1. Theorem 4.3 ensures the test O�n � 1fbDn > cv
B
n .˛;Sall

n /g achieves

asymptotic size control in detecting whether at least one of alternative Kj;j 0 holds

where .j;j 0/ 2 Sall
n . Based on this result, we can show the test

O�n.j;j
0/� 1f Odn.j;j

0/ > cvBn .˛;Sall
n /g;

provides a strong control of the familywise error rate, in the sense that P.FWERn/�

˛CK��n. Furthermore, the theorem also shows proposed test is consistent against

any (non-local) alternatives. Lemma 5.1 in Chernozhukov et al. (2019) indicates,

under a simplified case where � is constant within each blocks and Rn;i D 0, no test

can be uniformly consistent against all local alternatives with max.j;j 0/2Sall
n
.gn;j �

gn;j 0/D o
�
�
�=2
n log.��1

n /
1=2
�
.

COMMENT 2. The test O�n.j;j 0/ proposed above is a straightforward one-step pro-

cedure that controls the familywise error rate, which could be conservative in appli-

cation with finite sample. In the appendix, we prove that Theorem 4.3 remains valid

even when Sall
n in formulations of bDn and cvBn .˛;Sall

n / are replaced by any arbitrary

subset Sn � Sall
n with jSnj � 3. This stronger result facilitates the incorporation

of a stepdown improvement akin to those provided in Romano and Wolf (2005).

We summarize the ultimate testing procedure in the following steps contained in

Algorithm 1.

The corollary below shows the validity of confidence sets generated by this step-

down procedure.

Corollary 4.1. Under the same setting as Theorem 4.3. For 1� j �mn, let

1Rankn.j /� fjRej�n .j /jC1; : : : ;mn�jRejCn .j /jg;
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Algorithm 1 Stepdown Procedure

Step 1. Set S.0/ D Sall
n and i D 0.

Step 2. Compute the critical value cv.i/n D cvBn .˛;S.i// using (4.7).
Step 3. For all .j;j 0/ 2 S.i/, reject Hj;j 0 according to O�.i/n .j;j 0/ D 1f Odn.j;j 0/ >

cv
.i/
n g. For 1 � j � mn, form Rej.i/;�n .j / and Rej.i/;Cn .j / by the sets

of nulls Hj;� and H�;j rejected in this step, respectively. Let Rej.i/;˙n DSmn

jD1Rej.i/;˙n .j /.

If jRej.i/;�n j D jRej.i/;Cn j D 0, form Rej˙n .j /D
Si
`D0Rej.`/;˙n .j /, then stop.

Else, set S.iC1/ D S.i/ n f.j;j 0/ W .j;j 0/ 2 Rej.i/;�n [Rej.i/;Cn g, i  i C 1,
return to Step 2.

where Rej˙n .j / is computed according to Algorithm 1. Then 1Rankn�
Qmn

jD1
1Rankn.j /

constitutes a joint .1�˛/ confidence set for ranks of process .gt/t2Œ0;T � at all eval-

uated time points.

4.3 Monte Carlo Simulations

4.3.1 Data Generating Processes

We conduct a Monte Carlo experiment to evaluate the performance of proposed

inference procedures. Our simulation is anchored in the setting of motivating ex-

amples mentioned in Section 4.2.2. In each example, parameters used in data gen-

erating processes (DGP) and sampling schemes are selected to closely resemble the

real data encountered in empirical application.

We first consider the location-scale model discussed in Example 1. Specifically,

we focus on the following two data generating processes:

DGP 1 W Yi�n
D �i�n

C "n;i ; where "n;i �i:i:d: N .0;1/;

DGP 2 W Yi�n
D �i�n

C�i�n
"n;i ; where "n;i �i:i:d: t.3/:

DGP 1 and 2 align with the conventional additive state-space model, wherein the

state process of interest is .�t/t2Œ0;T � and will be estimated through conditional

mean process analyzed in Section 4.2.3. Notably, in DGP 1, the random distur-

bance is assumed to follow an i.i.d. standard Gaussian distribution, so that each

spot estimator retains its Gaussianity even when the number of observations in each

block is small. In contrast, DGP 2 introduces both heteroskedasticity in time and

non-Gaussian disturbance. Regarding the Lévy-driven returns discussed in Exam-
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ple 2, we simulate price processes with Blumenthal–Getoor index ˇ 2 f2;1:5;1g,

which correspond to instances of Cauchy process C , a general Lévy process L, and

a Brownian motionW . Specifically, we focus on the following three data generating

processes:

DGP 3 W Yi�n
D��1

n

�Z .iC1/�n

i�n

�sdsC

Z .iC1/�n

i�n

�sdWs

�2
;

DGP 4 W Yi�n
D��4=3

n

�Z .iC1/�n

i�n

�sdsC

Z .iC1/�n

i�n

�sdLs

�2
;

DGP 5 W Yi�n
D��2

n

�Z .iC1/�n

i�n

�sdsC

Z .iC1/�n

i�n

�sdCs

�2
:

In forming these processes, we adopt a truncation technique analogous to the one

employed in Bugni et al. (2023) for stable distributions such that the normalized

increment takes value in Œ�30;30� to avoid unrealistic price paths. The state process

of interest is variance process .�2t /t2Œ0;T �, which is estimated through conditional

mean process for DGP 3, or through conditional median process (i.e. � D 1=2)

analyzed in Section 4.2.4 for DGP 4 and 5. Additionally, we focus on DGP 6

which serves as a representative illustration of Cox trading flow process discussed

in Example 3:

DGP 6 W Yi�n
DN.iC1/�n

�Ni�n
;

where .Nt/t2Œ0;T � is a Cox process with intensity .�t/t2Œ0;T �:

The state process of interest is the normalized intensity .�t/t2Œ0;T �, which will be

estimated through conditional mean process.

Recall that we have two auxiliary processes � and � which serve as state pro-

cesses in our specified DGPs. In alignment with the conventional setting in existing

literature, see, e.g., Jacod et al. (2017) and Li and Linton (2022), we assume � and

c � �2 to follow these Ornstein–Uhlenbeck-type processes

d�t D �. N�t ��t/dtC&dBt ;

dct D �.˛t � ct/dtC

p
ctdB

0
t ;

where B and B 0 are two independent Brownian motions. Following empirical re-

sults calibrated in the literature, we choose two parameter configurations summa-

rized in Table 4.1. Setting .a/ is more conservative comparing with setting .b/,
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Table 4.1: Parameter Specification for the Simulation Study

Setting N�t � & ˛t � 


.a/ 1:2 8=252 1:25=252 0:04=252 5=252 0:05=252

.b/ 1:2h.t/ 4=252 2:5=252 0:04=252h.t/ 4=252 0:1=252

Note: The table displays parameter configurations used in the simulation study. All pa-
rameters are in their daily value as the fixed time span T D 1 has been normalized to one
trading day. Here h.t/ � 1C 0:1cos.2�t/ is a U-shaped function to mimic the diurnal
feature.

in the sense that � is stationary, and c follows a Cox–Ingersoll–Ross (CIR) model

which has been extensively utilized to capture the volatility dynamics, see, e.g., Cox

et al. (1985) and Heston (1993). The parameters are chosen in accordance to Li and

Linton (2022). Setting .b/ differs from the previous configuration in two aspects.

First, the mean processes N� and ˛ are time variant and exhibit systematic moves

in time, which the literature identifies as diurnal features. Namely, a nearly U-

shaped pattern has been documented for both intraday trading volume and volatility

in real data, see Ito (2013), Christensen et al. (2018), and Andersen et al. (2019).28

Moreover, state processes under setting .b/ are more volatile than those under the

previous configuration, attributable to smaller mean reverting parameters and larger

variance magnitude. In summary, we have six types of DGPs in conjunction with

two sets of parameter configurations. The combination yields 6� 2D 12 different

DGPs for examination. For notation clarity, we use DGP 1.a/ to indicate DGP 1

equipped with parameter setting .a/, and similarly for other combinations.

For the observation scheme, we normalize T D 1 trading day, and consider two

sampling frequency, �n 2 f1=390;1=23400g, which correspond to 1-minute and 1-

second data, respectively. We stress that 1-second sampling frequency is not prac-

tically feasible for DGP 3-5 to hold in reality, wherein the observed price in such

high-frequency is contaminated by the so-called microstructure noise, see, e.g., the

discussion in Zhang et al. (2005). Empirical evidence such as a signature plot of

the realized volatility in relation to sampling frequency shows that noise compo-

nent overshadows when sampling scheme is “too fine,” typically less than 1 minute.

28The rationale from economic theory concerning these observed intraday pattern is provided in
Admati and Pfleiderer (1988) and Hong and Wang (2000), among others.
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Therefore, for DGP 3-5 we exclusively consider 1-minute data, in which the effect

of noise is inconsequential with respect to returns of efficient price. Conversely,

given our application of DGP 6 in empirical illustrations wherein trading flow data

is recorded at an ultra-high-frequency and where approximations could falter with

coarser sampling frequency, we exclusively consider 1-second data for DGP 6. The

selection of tuning parameter kn;j is described as follows. We partition observa-

tions into equal-sized blocks, i.e. kn;j D kn for all 1 � j � mn. For 1-minute

data, we adopt kn 2 f20;30;40g, representing blocks of f20;30;40g minutes, re-

spectively. The corresponding number of blocks is mn 2 f19;13;9g. For 1-second

data, we adopt kn 2 f300;600;1200g, representing blocks of f5;10;20g minutes,

respectively. The corresponding number of blocks is mn 2 f78;39;19g. All the

“continuous-time processes” are simulated using a Euler scheme with mesh size

being 10�4 minute. The simulation is based on 10000 Monte Carlo draws. We ex-

amine the coverage rate of 90% confidence bands constructed in accordance with

(4.4) and (4.5) for conditional mean processes and conditional median processes,

respectively.

4.3.2 The Results

Table 4.2 shows the coverage rate of confidence bands (4.4) and (4.5) under our

specified DGPs. In the case where �n D 1=390, i.e. data is observed every one

minute, not surprisingly, proposed confidence bands perform bad when the number

of observation in each block is small, say kn D 20, especially for DGP 2(a) and

2(b). This is particularly due to the poor approximation of Gaussian distribution

for spot estimators in small sample. As kn becomes larger, coverage rates elevate

remarkably. For instance, when kn D 40, coverage rates are above 80% for all

DGPs, with the exception of 2(a) and 2(b). In the meantime, there is a considerable

increment in time-variation effects of state processes within each block as block size

expands. Notably, coverage rates for DGPs equipped with parameter setting (b) are

generally lower than the same DGPs equipped with parameter setting (a) when kn

becomes larger. Intriguingly, coverage rates under DGP 5(a)-5(b) are higher than

those under 3(a) and 4(b), suggesting that the employment of conditional quantile

processes is particularly efficient when driving processes of price markedly deviate
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Table 4.2: Coverage Rate of Uniform Confidence Band

�n D 1=390 �n D 1=23400

DGP kn D 20 kn D 30 kn D 40 kn D 300 kn D 600 kn D 1200

1(a) 0.7253 0.8257 0.8113 0.8907 0.8933 0.8937

1(b) 0.7166 0.8254 0.8058 0.8824 0.8834 0.8841

2(a) 0.6271 0.7339 0.7212 0.8115 0.8654 0.8829

2(b) 0.6223 0.7303 0.7191 0.7996 0.8580 0.8792

3(a) 0.7268 0.8311 0.8308 � � �

3(b) 0.7295 0.8339 0.8290 � � �

4(a) 0.7744 0.8147 0.8304 � � �

4(b) 0.7858 0.8044 0.8282 � � �

5(a) 0.8823 0.8916 0.8949 � � �

5(b) 0.8809 0.8912 0.8915 � � �

6(a) � � � 0.8585 0.8868 0.8905

6(b) � � � 0.8628 0.8782 0.8890

Note: The table reports the coverage rates of a 90%-level confidence band computed
according to (4.4) for DGP 1(a)-4(b), DGP 7(a), and 7(b), according to (4.5) for DGP
5(a)-6(b). Column 2-4 correspond to 1-minute data, column 5-7 correspond to 1-
second data. Note that some results are omitted with dash signs (�), which indicates
the sampling frequency is not practically appropriate for certain models to hold true in
real observed data.
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from Brownian motions. For a higher sampling frequency, �n D 1=23400, where

data is observed every one second, coverage rates are above 85% for all DGPs when

kn � 600. Drawing a parallel between results for DGP 1(a)-1(b) under column

1 and 7, both scenarios have a block length of 20 minutes and same number of

blocks, i.e., time-variation effects are same. There is a substantial improvement in

convergence rate from�nD 1=390 to�nD 1=23400. Recall the Gaussian nature of

disturbance terms, each spot estimator maintains its Gaussianity in finite samples,

hence the only difference lies in sampling frequency. A similar comparison for

2(a)-2(b) indicates pointwise approximation errors and time variation effects can

be controlled simultaneously by adapting a finer sampling scheme.

In summary, above simulation results show that proposed confidence bands

aptly cover true processes across all data generating processes aligned with an ap-

propriate sampling frequency. Although under certain DGPs they appear to have

poor performance when the number of observations in each block is insufficient,

this problem can be effectively addressed by adapting a larger block size with a

finer sampling scheme. These simulation results stress that the proposed inference

method remains robust in contexts analogous to market settings. Moreover, in order

to achieve better performance of proposed inference procedures, one should em-

ploy the highest justifiable sampling frequency and choose block sizes carefully in

a suitable range to mitigate time variation effects in state processes.

4.4 Empirical Illustration

4.4.1 Detecting Information Flows during FOMC Speeches

The Federal Open Market Committee (FOMC) announcement, accompanied by

the subsequent press conference held by chair of the Federal Reserve, currently

Jerome Powell, plays a pivotal role in disseminating Fed decisions and conveying

information pertinent to future financial policy. On each pre-scheduled date and

time, Fed issues an official statement that summarizes the committee’s assessment

of U.S. economy, its policy decisions, and the rationale behind those decisions. In

particular, the statement provides insights into committee’s outlook on inflation,

employment, and other economic indicators. The release of this official document
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usually has a significant market impact, see, e.g., Cochrane and Piazzesi (2002),

Rigobon and Sack (2004), Bernanke and Kuttner (2005), and Nakamura and Steins-

son (2018b). In addition, Savor and Wilson (2014), Lucca and Moench (2015), and

Bollerslev et al. (2021) also found evidence of pre-announcement effects of the ini-

tial release. On the other hand, with more accurate volatility estimation, Bollerslev

et al. (2024) found that announcements of new policy decision may not cause the

most substantial shocks during FOMC days, especially when corresponding policy

changes are well anticipated by the market.29 In that case, information embedded

with forward guidance, which can be used to forecast future financial policies, tends

to have a more pronounced market impact.

In conjunction with FOMC statements, Fed holds a press conference which usu-

ally starts 30 minutes after the initial release and lasts about 60 minutes. The press

conference provides an opportunity for Powell to elaborate on FOMC’s decision-

making process, provide additional context, and address questions from media. It

allows for a more in-depth discussion of committee’s views on the economy and fi-

nancial policy. During press conferences, Powell inevitably reveals some (possibly

subtle) forward guidance, more precisely, information about the expected path of

monetary policy in the future. Such information may include hints about potential

changes in interest rates, the balance sheet, or other policy tools. The aim is to offer

transparency and help market participants anticipate Fed’s future actions.

Pinpointing the exact sentences in press conferences that provide additional in-

formation regarding forward guidance, however, is a challenging task. Since each

sentence in the press conference is typically spoken within a few seconds, this rapid

succession of sentences and limited time span of each sentence makes it difficult

to isolate their individual impact on market volatility. Namely, analyzing volatility

changes at second level requires examining ultra-high-frequency data, such as tick-

by-tick price. That being said, ultra-high-frequency price data is often subject to

microstructure noise, which distorts the identification of precise volatility patterns,

see, e.g., Zhang et al. (2005). To mitigate the impact of noise on volatility analysis,

existing procedures such as Barndorff-Nielsen et al. (2008), Jacod et al. (2009), and

29For instance, market predicted probabilities of changes to the Fed rate and monetary policy
are reported on FedWatch website (https://www.cmegroup.com/markets/interest-rates/
cme-fedwatch-tool.html), which is provided by CME Group and updated at a daily frequency.
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Kristensen (2010) often use increasing number of return observations, hence have

to employ wider estimation windows. This, however, makes it more involved to

detect specific volatility patterns within seconds.

Utilizing textual analysis on the conference scripts is another approach to study-

ing FOMC press conferences. With developing natural language processing (NLP)

methods, textual analysis algorithms have found prevalent application in economics

and finance, as discussed in Gentzkow et al. (2019), Ke et al. (2019), Engle et al.

(2020), Loughran and McDonald (2020), and Cheng et al. (2021). Nonetheless, in

the formal announcing scenario like FOMC meetings, conventional NLP methods

based on experiences might exhibit considerable inaccuracies. To better understand

this possible limitation of stand-alone textual analysis, we deploy an algorithm to

score each sentence by the level of forward guidance it carries. The assessment of

forward guidance levels is based on a combination of factors such as the presence of

specific trigger keywords and phrases that are commonly associated with forward

guidance, the clarity of future policy intentions, and the level of details provided

about future actions. To this end, we use Generative Pre-trained Transformer (Chat-

GPT) 3.5,30 an expansive language model pioneered by OpenAI, to extract features

that could be essential signals indicating a high level of forward guidance.31 Below

is a brief overview of features the algorithm takes into account:

Trigger Keywords and Phrases: Certain keywords and phrases are strong indi-

cators of forward guidance, including words that refer to future actions, intentions,

or plans, such as “expect,” “anticipate,” “will be appropriate,” “likely,” “plan,” and

so on.

Level of Detail: Sentences that provide specific details about future policy ac-

tions are more informative, including the announcement of specific interest rate

changes, plans for balance sheet reduction, or discussions about future meetings.

Clarity and Directness: Sentences that clearly state the course of future mone-

tary policy are given higher scores. The more direct and unambiguous the statement

30ChatGPT 3.5 was trained with data up to September 2021, hence has no knowledge beyond
that cutoff. This ensures that extracted features are intrinsically rooted in the in-context learning
procedure, without “sneak peek” at contemporaneous market activities. Even so, the same analysis
performed with ChatGPT 4 yields a similar result.

31Recently, Hansen and Kazinnik (2023) showed GPT models deliver a considerable improvement
in determining sentences in FOMC statements as “dovish” or “hawkish”, over other commonly used
classification methods.
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is, the more likely it is to be a clear form of forward guidance.

Contextual Analysis: The overall context of each sentence and how it fits

within the whole speech matters. This includes patterns and consistency in the

language used to convey future policy intentions.

Quantitative and Qualitative Aspects: Both quantitative aspects (e.g., specific

percentages or values) and qualitative aspects (e.g., intentions, expectations) are

assessed.

Comparative Analysis: The comparison of each sentence with other sentences

within the speech is considered to obtain a relative ranking of strength in forward

guidance. This takes into account the range of guidance provided throughout the

speech.

For illustrative purposes, we present the following two sentences extracted from

May 4, 2022 speech, offering contrasting levels of forward guidance based on above

features.

Against the backdrop of the rapidly evolving economic environment,

our policy has been adapting, and it will continue to do so.

14:34:15-14:34:23

Assuming that economic and financial conditions evolve in line with

expectations, there is a broad sense on the Committee that additional

50-basis-point increases should be on the table at the next couple of

meetings. 14:34:50-14:35:04

The algorithm then computes a weighted averaged scores of aforementioned as-

pects. Note that this algorithm is designed to identify potential forward guidance

purely based on linguistic patterns and context, where scores are indicative rather

than definitive. The assessment also accounts for variations in language and com-

munication styles, so it may represent a nuanced interpretation of forward guidance

strength in the given context. Based on this algorithm, we can partition each speech

into five groups, indicates the possible level of forward guidance contained in each

sentence:
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Very Low No forward guidance or very limited forward guidance

Low General mention of current economic situation, no clear

future policy intentions

Medium Some specific indications about future policy intentions,

but not very clear

High Clear and specific forward guidance about future policy

intentions

Critical Very strong and specific forward guidance about future

policy intentions

We apply the above textual analysis procedure to eight press conference speeches

on the FOMC announcement days last year. The proportion of sentences marked

as “very low,” “low,” “medium,” “high,” and “critical” information level are 8.4%,

10.3%, 43.7%, 37.4%, 0.2%, respectively. This indicates that there are about 80% of

speeches has been designated to carry medium or high level of information. Draw-

ing on the Mixture of Distribution Hypothesis (MDH), see, e.g., Tauchen and Pitts

(1983), Harris (1987), and Andersen (1996), market indicators can effectively serve

as proxies for corresponding information flows. In particular, as shown in Du and

Zhu (2017), higher trading frequency indicates a higher information level. There-

fore, in order to gain a direct insight on the accuracy of this procedure, we mark

relative information level and estimated trading intensities in the same timeline, to

conduct a visual comparison. For trading flows, we use nanosecond-level data of

S&P 500 ETF (ticker: SPY), downloaded from Trade and Quote (TAQ) database.

We estimate second-level trading intensities during each FOMC press conference

speech, i.e. �n D 1=.2:34� 1013/, kn D 109 so that kn�n D 1sec corresponds

to one-second block. In Figure 4.2, we plot estimated trading intensities during the

press conference speeches, and colored each horizontal line in the gradient spectrum

such that sentences with lowest information level (i.e., labeled “very low”) tend to

be transparent green, where sentences with highest information level (i.e., labeled

“critical”) tend to be red. As Figure 4.2 shows, there are large amount of informa-

tive sentences following by barely no intensity variation, indicating the market has
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Figure 4.2: Trading Intensities and Relative Information Levels during FOMC Press
Conference Speeches. The figure plots one-second trading intensities during eight FOMC
press conference speeches in 2022. The horizontal axis is colored according to the rela-
tive information level embedded in potential forward guidance contained in each sentence,
which is computed using the algorithm described in this section. The color bar is shown
at the bottom, and is determined by RGB˛ D

�
s=5;1� s=5;1� s=5;.s=5/1:25

�
where s de-

notes the information level in the scale of 1 to 5, with 1 being “very low,” 5 being “critical.”
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no reactions to them.

Next, we delve deeper into the textual analysis outcomes, exploring trading in-

tensities across categorized groups. Considering potential reactive latency between

information arrivals and correspondent trading actions, we shift observation win-

dows to the right, spanning lags as f0;1; : : : ;19g seconds. Figure 4.3 illustrates the

dispersion of trading intensities across different groups for various lags, together

with medians and means with each group. We further conduct Welch’s t -tests to

determine if sentences identified with a higher information level truly exhibit an el-

evated trading intensity. The results indicate that, even under the best case (i.e., a

14seconds lag), where the group labeled “critical” has significantly higher intensity

than other groups, we cannot conclusively negate the possibility of no significant

distinctions among all other four groups.

The main inherent challenge of pure textual analysis approaches stems from the

carefully crafted nature of speech scripts and potential overlaps between successive

press conferences. The language used in FOMC press conference scripts is often

meticulously chosen to avoid causing sudden market shocks. Consequently, de-

tecting specific keywords or phrases that could potentially trigger market reactions

may not yield significant insights, given the scripts are designed to convey informa-

tion while maintaining stability and avoiding unnecessary shocks. Moreover, press

conference speeches tend to have recurring themes and structures, resulting in sim-

ilarities between successive scripts, as visually shown in Figure 4.4. Namely, we

characterize the speech at time ti as a set Ati of individual sentences, and gauge

similarities by computing Jaccard similarity coefficients (Jaccard (1912)) between

these sets,32

S.At1; : : : ;Atn/�
j
Tn
iD1Ati j

j
Sn
iD1Ati j

:

The repetition of certain phrases or topics have two-sided effects. Obviously, it will

diminish their impact on market expectations over time. On a flip side, a nuance

in language of these topics could result in a considerable market effect. Textual

analysis techniques that focus solely on keyword detection might identify familiar

32Alternatively, one can use Szymkiewicz–Simpson coefficient S 0.At1 ; : : : ;Atn/ �

j
Tn
iD1Ati j=min1�i�n jAti j, the results are similar given that the lengths of speeches under

consideration do not exhibit significant difference.
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Figure 4.3: Distribution of Intensity with Different Information Levels. The figure
plots the kernel density estimation of trading intensities with different relative information
level embedded in the potential forward guidance contained in each sentence, which is
determined using the algorithm described in this section. In each panel, we shift the window
by several seconds to take account the effect of market reaction time between information
arrivals and tradings. The color of each line follows the same rule as in Figure 4.2, the
median and the mean of each group are marked in � and ı sign, respectively.
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Figure 4.4: Similarity of FOMC Press Conference Speeches. The figure plots the over-
lapping ratio between different speeches. The overlapping ratio is defined as logS type

i;j ,
where type 2 fpw;cmg. In the left panel, Spw

i;j is the pairwise Jaccard similarity index,
defined as the number of pairwise overlapping sentences between speeches at date ti and
tj divided by the total number of sentences. In the right panel, S cm

i;j is the cumulative Jac-
card similarity index, defined as the number of cumulative overlapping sentences between
speeches within fti ; : : : ; tj g divided by the total number of sentences. Exact numbers of
pairwise and cumulative overlapping sentences are displayed in each square.

terms without considering market’s prior knowledge of their significance, hence

tend to overestimate the market impact of those sentences.

To establish a reference for the “true" information level predicated on actual

market reactions, we partition speeches in accordance with estimated trading in-

tensities. Specifically, on each day, we conduct the joint testing procedure pro-

posed in Section 4.2.5, and construct a 90% confidence set for ranks of all second-

level intensities. Based on this results, we can partition each speech into groups

G 2 f1; : : : ;Gg via the following algorithm: First, we permute indices such that

Og�.1/ � Og�.2/ � � � � � Og�.mn/. Starting from �.1/, which initiates the first group

G D 1, if 1Rankn
�
�.j C1/

�
\1Rankn

�
�.1/

�
¤¿, then �.j C1/ belongs to the same

group as �.1/; otherwise, �.j C1/ initiates a new group G GC1. Repeat until

the last second j Dmn. In Figure 4.5, we present a heatbar of speeches according to

the trading intensity and color it in the same way such that groups with lowest inten-

sity tends to be transparent light green, groups with highest intensity tends to be red.

The resulting pieces marked as “very low,” “low,” “medium,” “high,” and “critical”

information level are 51.1%, 34.6%, 11.6%, 2.3%, 0.4%, respectively. Comparing

with the outcomes given by pure textual analysis, around 80% of these speeches

actually impart minimal information, as evidenced by low trading intensities. Most

of them are repeated sentences across consecutive speeches, which theoretically,
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should not disseminate any novel information after their debut. Meanwhile, on the

contrary, we detect more sentences that are markedly informative.

In conclusion, the comparison result suggests stand-alone NLP methods over-

states the information level of individual sentence, and in the meantime fails to

accurately identify the most informative parts, indicating that NLP methods tend to

smooth out true information flows. This is driven by the in-context learning nature

of our task, i.e., no “training sample” is provided. Therefore, the classification is

solely based on ChatGPT’s pre-existing knowledge, hence the intrinsic Bayes clas-

sifier method gives mediocre scores to most sentences based on its inherent prior,

which is improper for analyzing these scripts. On the other hand, our intensity-

based analysis based on proposed uniform inference procedure offers a compliment

to NLP methods. One can refine textual analysis procedures by deploying a su-

pervised learning, i.e., utilize the intensity-level-labeled text as training samples in

order to obtain a more accurate classification.33 The detailed implementation of

this supervised learning procedure is beyond the scope of this paper and deserves

dedicated study.

4.4.2 Case Study

Next, we conduct a case study to better illustrate preceding findings, opting for

specific sentences from these speeches that stand out as high level of information

about forward guidance and followed with considerable intensity spikes. The first

sentence is a shift in tone about longer-term inflation expectations that presents a

double twist, first mentioned in the September conference:

[A] Despite elevated inflation, longer-term inflation expectations ap-

pear to remain well anchored, as reflected in a broad range of surveys

of households, businesses, and forecasters as well as measures from fi-

nancial markets. But that is not grounds for complacency; the longer

the current bout of high inflation continues, the greater the chance that

expectations of higher inflation will become entrenched.

33See, e.g., Table 4 in Hansen and Kazinnik (2023), where the mean-absolute-error of fine-tuned
model (supervised learning) is nearly half of that of zero-shot model (in-context learning) in classi-
fying the policy stances of Fed speeches.
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The first twist offers an optimistic note: even though the prevailing inflation re-

mains not fully controlled, there exists empirical evidence suggesting that longer-

term inflation is effectively anchored. After that, a second twist makes additional

comments that this situation is not yet ripe for complacency, rendering the entire

statement more balanced. Top panel of Figure 4.5 illustrates there are two succeed-

ing trading intensity spikes a few seconds after these twist indications. The second

sentence of interest sounds more assertive and supports the second twist of sentence

[A], which is also first mentioned during the September conference:

[B] The historical record cautions strongly against prematurely loos-

ening policy.

Another intensity spike is observed several seconds after sentence [B]. Interestingly,

aforementioned sentences [A] and [B] recur in both November and December con-

ferences. On the contrary, these repetitions do not elicit similar intensity spikes. In

fact, the bottom panel of Figure 4.5 indicates an overall absence of significant trad-

ing spikes during the December conference. This observation aligns with the result

shown in Figure 4.4 that approximately half of the December speech mirrors exact

content from preceding conferences. This coincides with the intuition that new in-

formation occurs only when it is introduced for the first time. After this immediate

reaction, market quickly accepts it and subsequent repetitions of the same sentence

are lack of novelty.

During the September conference, inquiries emerged concerning Fed’s consid-

eration of variable lags in inflation. This stemmed from the apprehensions that

reported inflation was not accurately reflecting real-time economic conditions, and

that the prevailing interest rate was overly elevated. In response to these concerns,

Fed incorporates specific remarks about such lags in both the official statement and

press conference speech:

[C] That’s why we say in our statement that in determining the pace of

future increases in the target range, we will take into account the cumu-

lative tightening of monetary policy and the lags with which monetary

policy affects economic activity and inflation.
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As shown in the middle panel of Figure 4.5, there is also a considerable intensity

spike shortly after sentence [C]. In the same speech, upon mentioning short-term

appropriateness of decelerating the pace of rate hikes as it is near a level sufficiently

restrictive to realign inflation with the 2 percent target, Powell acknowledged the

uncertainty about that specific interest rate level and concludes with:

[D] Even so, we still have some ways to go, and incoming data since

our last meeting suggest that the ultimate level of interest rates will be

higher than previously expected.

Above sentence [D], although not definitive, is followed by a substantial intensity

shock, as shown in the middle panel of Figure 4.5. Given projections released in

the September meeting, market anticipation was an additional 75bps increase in

November, followed by a deceleration in December. The shock stems from the

revelation that incoming data after September might imply a trajectory towards a

higher level than market initially expects.

4.4.3 Impact of Twitter on Cryptocurrency Markets

We provide another empirical application to highlight the importance of em-

ploying quantiles in addressing specific problems. As an active participant in cryp-

tocurrency market,34 the impact of Elon Musk’s tweets on cryptocurrency market

has been extensively examined, see, e.g., Shen et al. (2019), Tandon et al. (2021),

and Ante (2023). Notably, while these studies reveal substantial effects of tweets

on the trading volumes of various cryptocurrencies, price effects are statistically

significant only in the case of Dogecoin-related tweets, with barely no considerable

impact on Bitcoin. Recent evidence in Kolokolov (2022) shed light on this phe-

nomenon, showing that estimated jump activity index of Bitcoin is strictly less than

2, i.e., Bitcoin price is driven primarily by a pure jump process. Consequently, re-

alized variances computed in the usual way becomes diverging,35 and the detection

of abnormal returns, as well as associated t -tests, would be invalid.36

34Namely, Tesla invested $1.5 billion in Bitcoin during the first quarter of 2021, as indicated in the
annual report of Tesla, Inc., U.S. Securities and Exchange Commission (https://www.sec.gov/
Archives/edgar/data/1318605/000156459021004599/tsla-10k_20201231.htm).

35Recall the second moment of normalized Lévy increments has an order of �2=ˇ�1
n .

36A robust t -test (see, e.g, Ibragimov and Müller (2010)) could be implemented in this case, but
that requires estimating ˇ first, making it a sequential inference procedure.
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Figure 4.5: Trading Intensity during FOMC Press Conference Speeches. The figure
shows the heatbar of estimated trading intensities during FOMC press conference speeches
on September 21, November 2, and December 14 in 2022, arranged from the top panel
to the bottom panel, respectively. On each of these dates, a 90% confidence set of joint
ranks is constructed using Algorithm 1 proposed in section 4.2.5. Further, each speech was
partitioned into groups using the strategy described in this section. The heatbar is colored
according to group structure by the rule RGB˛ D

�
G=G;1�G=G;1�G=G;.G=G/1:25

�
so that the color of each group remains the same as in Figure 4.2. The duration of target
sentences are shaded light gray in each panel, where primes in the label indicate repetitions.
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As discussed in Section 4.2.4, a feasible measurement for price volatile level

can be constructed using quantile. To better illustrate this point further, we conduct

an event study employing the same set of tweets investigated by studied in Ante

(2023). These tweets, posted by Elon Musk between January 2020 and July 2021,

are either directly or indirectly related to Bitcoin. For each event, we estimate the

blockwise level of volatile Vj of (log) BTC/USD prices in the same day. We con-

sider two proxies for this volatile level: Vj;1 � qj .0:5/, representing the median,

and Vj;2 � qj .0:75/�qj .0:25/, representing the interquantile range. To assess the

price impact, we jointly test whether price volatile level in the block immediately

following the tweet significantly deviates from those in other blocks. Formally, the

null hypotheses and associated alternatives are defined as

H
.i/
j W Vj�;i D Vj;i against K

.i/
j W Vj�;i ¤ Vj;i ;

where i 2 f1;2g, 1� j �mn with j ¤ j �, and j � indexes the first block starting at

the time when the tweet is posted. The length of each block was selected to be one

and two hours, corresponding tomnD 24 and 12, receptively. The test is performed

using pairwise t -type statistics similar to the method outlined in Section 4.2, and

the critical value is computed using bootstrap.

Table 4.3 presents the test statistics along with their corresponding significance

levels. Comparing to the results obtained from the conventional mean-based t -test

as presented in Ante (2023), we find evidence that a larger number of events exhibit

a significant impact on the Bitcoin price. Namely, within a 2-hour horizon, twelve

out of the fourteen tweets yield a significant price impact, in contrast to only four

that can be identified using the t -test based on abnormal returns. As mentioned be-

fore, this disparity can be attributed to the potential divergence in return variance,

rendering the conventional t -test invalid. Meanwhile, we stress that the result re-

mains robust when considering different proxies for measuring the volatile level,

highlighting the significance of our quantile-based inference procedure.
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Table 4.3: Event Study Results for BTC/USD Price

1 Hour (mn D 24) 2 Hours (mn D 12)
No. Time & Date Tweet t -stat. Med. IQR t -stat. Med. IQR

1 07:53 Jan 10, 2020 Bitcoin is not my safe word -0:88 1.81 0.01 -0:78 8.82*** 6.02***
2 09:21 Dec 20, 2020 Bitcoin is my safe word -0:46 0.20 1.10 -1:18 1.43 1.49
3 09:22 Jan 29, 2021 In retrospect, it was inevitable (Twitter bio change) 1.94* 1.24 2.98** 1.76 9.87*** 4.68***
4 08:18 Feb 10, 2021 This is true power haha (picture about Bitcoin) -0:51 0.80 1.14 0.36 0.92 1.58
5 00:42 Feb 21, 2021 Cryptocurrency explained (link to a video) 1.62 1.89 1.04 2.16* 6.13*** 2.50*
6 18:50 Mar 02, 2021 Scammers & crypto should get a room 0.43 0.99 2.45 0.56 11.04*** 7.48***
7 19:58 Mar 12, 2021 BTC (Bitcoin) is an anagram of TBC (The Boring Company) -0:95 0.29 0.15 -1:18 6.26*** 11.72***
8 08:02 Mar 24, 2021 You can now buy a Tesla with Bitcoin 1.17 0.46 0.14 1.63 4.55*** 3.07**
9 00:06 May 13, 2021 Tesla & Bitcoin (picture about suspending Bitcoin) -0:91 3.03** 3.11** -1:84* 2.95** 4.14***

10 11:54 May 13, 2021 Energy usage trend over past few months (picture for Bitcoin) -0:12 0.98 3.87*** 0.46 6.45*** 4.30***
11 16:42 May 19, 2021 Tesla has [diamond] [hands] 1.83* 2.12 1.31 2.69** 2.35* 6.90***
12 21:42 May 24, 2021 Spoke with North American Bitcoin miners 0.74 0.97 0.49 0.42 3.23** 3.60***
13 03:07 Jun 04, 2021 #Bitcoin [brokenheart] (picture of a couple’s conversation) -1:50 0.39 1.42 -1:58 3.46*** 5.88***
14 04:10 Jun 25, 2021 How many Bitcoin maxis does it take to screw in a lightbulb? -0:21 0.57 0.96 0.28 4.75*** 3.06**

Note: The table includes mean-based t -statistics of abnormal returns in 1- and 2-hour window after 14 Bitcoin-related tweets by Elon Musk studied in Ante
(2023). For each window, associated statistic of testing whether there is significant change in volatile level of price with the rest windows in the same trading
day, computed using median squared return qj .0:5/ (resp. interquantile range qj .0:75/�qj .0:25/) is reported in the second (resp. third) column, where *,
**, *** indicate significance at 10%, 5% and 1% level.
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4.5 Concluding Remarks

We introduce a valid methodology for conducting inference on a general continuous-

time state-space model over a fixed time span. Through the inclusion of a residual

term, we allow the model to be “approximately Markovian.” Notably, this model

accommodates Lévy-driven returns and Cox trading flow processes. We allow for

undefined dynamics in state processes, and propose uniform inference procedure

for both entire conditional mean processes and entire conditional quantile processes

of transformed states.

To construct functional estimators for the investigated processes, we gather all

spot estimates with the local block size that shrinks to zero. The challenge of

conducting uniform inference for these functional estimators arises from their non-

Donsker nature. To address this, we establish Gaussian strong approximation, en-

abling valid uniform inference. These results can also be applied to tackle other

econometric problems, such as constructing confidence sets for the ranks of spot

values of studied processes.

We apply the proposed inference procedure to analyze trading flow processes

and detect informative sentences from the FOMC press conference speeches. Our

method allows for a comparison of trading intensity at a one-second level, enabling

precise identification of speech segments containing valuable information. This

inference procedure complements existing methodologies, such as volatility-based

detection mechanisms and traditional textual analysis tools. Additionally, we ap-

ply this procedure to assess the impact of Elon Musk’s tweets on cryptocurrency

markets, a scenario where mean-based tests might falter due to heavy-tailed returns.

Results obtained through quantile-based measurements of volatility levels indicate

a substantial price impact over an extended time window following tweet postings.
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Chapter 5

Conclusion

This study contributes to the estimation and inference theory for high-frequency

financial data. We have explored two types of inference procedures: spot and uni-

form inference. Our proposed methodologies are versatile, applicable not only to

price data but also to other market indicators, rendering them to be practically use-

ful. Extensive Monte Carlo experiments have been conducted to show the efficacy

of the proposed estimators and tests. In empirical applications, these methods have

been employed to address various issues, showing their ability of detecting real-time

market activities and predicting the occurrence of new or information shocks.

In future research, there could be some interesting extension of the current re-

search. Firstly, given the demonstrated superiority of candlestick data over returns

in reflecting price volatility levels, there is potential to explore the use of such can-

dlestick data for analyzing covariance between different assets. While practitioners

commonly employ such tools under the banner of technical analysis, its foundation

remains largely based on empirical observation rather than theoretical justification.

Secondly, armed with established spot estimators proposed in this dissertation, one

can employ them to conduct a uniform inference, and a more efficient inference of

integrated volatility functionals. Finally, note that the conventional limiting experi-

ments theory developed by Le Cam is not tailored for random parameters, whereas

in many financial models, parameters such as volatility are inherently stochastic pro-

cesses. While not directly applicable, statistical decision theory could be invoked

in a different way—through a “coupling” argument, which is feasible for numer-
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ous high-frequency models. Hence, the decision-theoretic approach used in the first

two papers could find application in other contexts within or even beyond financial

econometrics.
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Appendix A

Technical Results for Chapter 2

A.1 Proofs of the Main Results

A.1.1 Proof of Theorem 2.1

In this proof, we focus on a specific time point, denoted as t , and examine in

such that in�n D t C o.1/. To simplify our notation, we write i instead of in. We

employ a generic constant K > 0, which may vary throughout the proof. Relying

on a standard localization technique, we can strengthen Assumption 1 by assuming

that the boundedness conditions hold uniformly over the whole sample. For more

details on the localization method, refer to Section 4.4.1 in Jacod and Protter (2012).

Under Assumption 1(i), the probability of the interval Ti containing at least one

price jump is O.�n/. Consequently, price jumps occur in Ti with asymptotically

negligible probability. As our analysis focuses on this particular interval, we can

assume without loss of generality that there are no jumps.

Denote r 0
i � �.i�1/�n

�i;r , u0
i � �.i�1/�n

�i;u, and l 0i � �.i�1/�n
�i;l . Since there is

no jump within the Ti interval, we can rewrite .ri ;ui ; li/ as

ri D ��1=2
n

�Z i�n

.i�1/�n

bsdsC

Z i�n

.i�1/�n

�sdWs

�
;

ui D ��1=2
n sup

s2Ti

�Z s

.i�1/�n

buduC

Z s

.i�1/�n

�udWu

�
;

li D ��1=2
n inf

s2Ti

�Z s

.i�1/�n

buduC

Z s

.i�1/�n

�udWu

�
:
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Under Assumption 1(i), it is easy to see thatˇ̌̌̌ Z i�n

.i�1/�n

bsds

ˇ̌̌̌
�

Z i�n

.i�1/�n

jbsjds DOp.�n/: (A.1)

Moreover, by the Burkholder–David–Gundy inequality and Assumption 1(ii), we

have

E
�

sup
s2Ti

ˇ̌̌̌ Z s

.i�1/�n

.�u��.i�1/�n
/dWu

ˇ̌̌̌2�
� KE

�Z i�n

.i�1/�n

j�u��.i�1/�n
j
2du

�
� K�1C2�

n ;

and hence,

sup
s2Ti

ˇ̌̌̌ Z s

.i�1/�n

.�u��.i�1/�n
/dWu

ˇ̌̌̌
DOp.�

1=2C�
n /: (A.2)

By the triangle inequality, (A.1), and (A.2),

jri � r
0
i j � ��1=2

n

ˇ̌̌̌ Z i�n

.i�1/�n

bsds

ˇ̌̌̌
C��1=2

n

ˇ̌̌̌ Z i�n

.i�1/�n

.�s��.i�1/�n
/dWs

ˇ̌̌̌
D Op.�

.1=2/^�
n /: (A.3)

In addition, we note that

jui �u
0
i j D ��1=2

n

ˇ̌̌̌
sup
s2Ti

�Z s

.i�1/�n

buduC

Z s

.i�1/�n

�udWu

�
��.i�1/�n

sup
s2Ti

.Ws�W.i�1/�n
/

ˇ̌̌̌
� ��1=2

n

�Z i�n

.i�1/�n

jbujduC sup
s2Ti

ˇ̌̌̌ Z s

.i�1/�n

.�u��.i�1/�n
/dWu

ˇ̌̌̌�
D Op.�

.1=2/^�
n /; (A.4)

where the last line follows from (A.1) and (A.2). Similarly, we can derive

jli � l
0
i j DOp.�

.1=2/^�
n /: (A.5)

Since f .�/ is continuous a.e., the estimates from (A.3)–(A.5) imply that

f .ri ;ui ; li/D f .r
0
i ;u

0
i ; l

0
i/Cop.1/:

Since � is bounded away from zero under Assumption 1(i), we further have

f .ri ;ui ; li/

�
p

.i�1/�n

D
f .r 0

i ;u
0
i ; l

0
i/

�
p

.i�1/�n

Cop.1/D f .�i/Cop.1/; (A.6)

where the second equality follows from the homogeneity of f .�/ and the definition

of �i . By Assumption 1(ii), j�t��.i�1/�n
j DOp.jt�i�nj

�/D op.1/ as ji�n�t j!

0, which together with (A.6) implies the assertion of Theorem 2.1. Q:E:D:
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A.1.2 Proof of Theorem 2.2

To prove Theorem 2.2, we first prove two lemmas. Lemma A.1 shows the

sufficiency of the shape features for volatility estimation under the limit model.

Lemma A.2 derives a closed-form expression for the conditional expectation of cer-

tain Brownian functionals.

Lemma A.1 (Sufficient Statistic of Candlestick Data). Under the limit model

Pt D �Wt , the collection of shape features .jri j;wi ;ai/ is a sufficient statistic for �

given the observation .ri ;ui ; li/.

PROOF OF LEMMA A.1. Recall that .Bt/t2Œ0;1� is a standard Brownian motion with

B0 D 0. Let g.r;u; l/ denote the probability density function of�
B1; sup

0�t�1

Bt ; inf
0�t�1

Bt

�
:

The density of .ri ;ui ; li/ is then given by the function

.r;u; l/ 7!
1

�3
g
� r
�
;
u

�
;
l

�

�
: (A.7)

By equation (1.15.8) in Borodin and Salminen (2002),

P
�
l < inf

0�t�1
Bt ; sup

0�t�1

Bt < u;B1 2 dr
�

D
1
p
2�

1X
kD�1

n
exp

�
�
.2k.u� l/C r/2

2

�
� exp

�
�
.2k.u� l/C r �2l/2

2

�o
dr:

(A.8)

The function g.r;u; l/ is thus proportional to
P1

kD�1

�
Ak.r;u; l/�Bk.r;u; l/

�
,

where

Ak.r;u; l/ � k2f.2k.u� l/C r/2�1gexp
�
�
.2k.u� l/C r/2

2

�
;

Bk.r;u; l/ � k.kC1/f.2k.u� l/C r �2l/2�1gexp
�
�
.2k.u� l/C r �2l/2

2

�
:

By a change of variable via w D u� l and d D uC l � r , we may identify these

functions with

QAk.r;w;d/ � k2f.2kwC r/2�1gexp
�
�
.2kwC r/2

2

�
;

QBk.r;w;d/ � k.kC1/f.2kwCw�d/2�1gexp
�
�
.2kwCw�d/2

2

�
:
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Note that for each k � 0, we can verify that QAk.�r;w;d/ D QA�k.r;w;d/ and

QBk.r;w;�d/ D QB�k�1.r;w;d/. Thus, g.r;u; l/ depends on .r;u; l/ only through

.jr j;w; jd j/. The assertion of the lemma then follows from the Fisher–Neyman fac-

torization theorem. Q:E:D:

Lemma A.2 (Analytical Conditional Expectation). Let B be a standard Brown-

ian motion on the unit interval with B0 D 0 and

�1 � sup
t

Bt � inf
t
Bt ; �2 �

jsupt BtC inft Bt �B1j
supt Bt � inft Bt

; �3 �
jB1j

supt Bt � inft Bt
;

where supt and inft are taken over Œ0;1�. Then for each integer q � 1 we have

EŒ�q1 j�2; �3�D .�1/
q .qC2/
p
2q�qŠ

�
�qC3

2

�Gq.�2/�Hq.�3/

G0.�2/�H0.�3/
;

where Gq.�/ and Hq.�/ are defined as in (2.10) and (2.11).

PROOF OF LEMMA A.2. Let g�.�/ denote the joint density of .�1; �2; �3/. The

conditional expectation of interest can then be written as

EŒ�q1 j �2 D y;�3 D z�D
R1

0
xqg�.x;y;z/dxR1

0
g�.x;y;z/dx

:

The main task is to calculate the numerator
R1

0
xqg�.x;y;z/dx for q � 1 and the

denominator
R1

0
g�.x;y;z/dx. (The calculation for the latter is not a special case

of the former by simply setting pD 0, as it requires a slightly more refined technical

argument due to the lack of convergence of certain series.)

We first calculate
R1

0
xqg�.x;y;z/dx. From (A.8) and the definition of .�1; �2; �3/,

we obtain g�.x;y;z/D 4
p
2=�

P1

kD�1

�
Ck.x;z/�Dk.x;y/

�
, where

Ck.x;z/ � k2x2
�
.2kCz/2x2�1

�
exp

�
�
.2kCz/2x2

2

�
;

Dk.x;y/ � k.1Ck/x2
�
.2kC1�y/2x2�1

�
exp

�
�
.2kC1�y/2x2

2

�
:

Since z 2 Œ0;1�, for q � 1, by a direct integration, we haveZ 1

0

1X
kD�1

xqCk.x;z/dx DMq �

1X
kD�1

k2

j
z
2
CkjqC3

; (A.9)

where we denote Mr � 2
�.rC5/=2.rC2/�

�
.rC3/=2

�
for any r � 0. (Note that the

convergence of the above series requires the integer q � 1.) We now express (A.9)
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using polygamma functions. By (5.15.1) in Olver et al. (2010), for r � 1 we have

 r

�z
2

�
D

1X
kD0

.�1/rC1rŠ

.z
2
Ck/rC1

: (A.10)

Note that when k � 0, the summand in (A.9) may be rewritten in the form of the

summand in (A.10) as

k2

.z
2
Ck/qC3

D .�1/qC1

�
1

qŠ
�
.�1/qC1qŠ

.z
2
Ck/qC1

C
1

.qC1/Š
�z
.�1/qC2.qC1/Š

.z
2
Ck/qC2

C
1

4.qC2/Š
�z2

.�1/qC3.qC2/Š

.z
2
Ck/qC3

�
: (A.11)

Combining (A.9)–(A.11) yields
1X
kD0

Z 1

0

xqCk.x;z/dx

D
.�1/qC1Mq

qŠ

�
 q

�z
2

�
C

1

qC1
z qC1

�z
2

�
C

1

4.qC1/.qC2/
z2 qC2

�z
2

��
:

The summation in (A.9) over k < 0 can be rewritten, with a change of variable

mD�k�1, as
�1X

kD�1

k2

.�z
2
�k/qC3

D

1X
mD0

.mC1/2

.1� z
2
Cm/qC3

:

Using an argument similar to (A.11), we also have
�1X

kD�1

Z 1

0

xqCk.x;z/dx

D
.�1/qC1Mq

qŠ

�
 q

�
1�

z

2

�
�

1

qC1
z qC1

�
1�

z

2

�
C

1

4.qC1/.qC2/
z2 qC2

�
1�

z

2

��
:

Combining the above results for k � 0 and k < 0 and recalling the definition of

Hq.�/, we obtain Z 1

0

1X
kD�1

xqCk.x;z/dx D
.�1/qC1Mq

qŠ
Hq.z/: (A.12)

By a similar argument leading to (A.12), we can also show thatZ 1

0

1X
kD�1

xqDk.x;y/dx D
.�1/qC1Mq

qŠ
Gq.y/:

Hence, for q � 1,Z 1

0

xqg�.x;y;z/dx D 4

r
2

�

.�1/qMq

qŠ

�
Gq.y/�Hq.z/

�
: (A.13)
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For the denominator
R1

0
g�.x;y;z/dx, by a direct integration, we haveZ 1

0

1X
kD�1

�
Ck.x;z/�Dk.x;y/

�
dx D

p
2�

8

1X
kD�1

�
k2

j
z
2
Ckj3

�
k.kC1/

j
1�y

2
Ckj3

�
:

(A.14)

By (5.7.6) in Olver et al. (2010), we obtain

 0

�1�y
2

�
� 0

�z
2

�
D

1X
kD0

�
1

z
2
Ck
�

1
1�y

2
Ck

�
: (A.15)

Note that when k � 0, the summand in (A.14) may be rewritten in the form of the

summand in (A.10) and (A.15) as

k2

.z
2
Ck/3

�
k.kC1/

.1�y

2
Ck/3

D

�
1

z
2
Ck
�

1
1�y

2
Ck

�
�z

1

.z
2
Ck/2

�y
1

.1�y

2
Ck/2

�
1

8
z2

�2

.z
2
Ck/3

�
1

8
.1�y2/

�2

.1�y

2
Ck/3

: (A.16)

Combining (A.10) and (A.14)–(A.16) yields
1X
kD0

Z 1

0

�
Ck.x;z/�Dk.x;z/

�
dx

D

p
2�

8

�
 0

�1�y
2

�
� 0

�z
2

�
�z 1

�z
2

�
�y 1

�1�y
2

�
�
1

8
z2 2

�z
2

�
�
1

8
.1�y2/ 2

�1�y
2

��
:

The summation in (A.14) over k < 0 can be rewritten, with a change of variable

mD�k�1, as
�1X

kD�1

�
k2

.�z
2
�k/3

�
k.kC1/

.�1�y

2
�k/3

�
D

1X
mD0

�
.mC1/2

.1� z
2
Cm/3

�
m.mC1/

.1Cy

2
Cm/3

�
:

Using an argument similar to (A.16), we also have
�1X

kD�1

Z 1

0

�
Ck.x;z/�Dk.x;z/

�
dx

D

p
2�

8

�
 0

�1Cy
2

�
� 0

�
1�

z

2

�
Cz 1

�
1�

z

2

�
Cy 1

�1Cy
2

�
�
1

8
z2 2

�
1�

z

2

�
�
1

8
.1�y2/ 2

�1Cy
2

��
:

Combining the above results for k � 0 and k < 0 and recalling the definition of

G0.�/, H0.�/, and M0, we obtainZ 1

0

g�.x;y;z/dx D 4

r
2

�
M0

�
G0.y/�H0.z/

�
: (A.17)
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The assertion of the lemma then readily follows from (A.13), (A.17), and the fact

that
Mq

M0

D
.qC2/
p
2q�

�
�qC3

2

�
: Q:E:D:

PROOF OF THEOREM 2.2. We first consider the case with Stein’s loss. Recall

that the asymptotic risk E
�
L
�
f . Q�/

��
equals the finite-sample risk of the estimator

f .ri ;ui ; li/ under the limit model Pt D �Wt . Therefore, minimizing the asymptotic

risk is equivalent to finding the minimum-risk scale-equivariant estimator for � un-

der the limit model. By Lemma A.1 and the Rao–Blackwell theorem, this optimal

estimator only depends on the shape features .jri j;wi ;ai/. Note that .wi ;ai=wi ; jri j=wi/

has the same distribution as .�1; �2; �3/ defined in Lemma A.2. With an appeal to

Corollary 3.3.8 in Lehmann and Casella (1998), the minimum-risk scale-equivariant

estimation function under the limit problem is given by

w
p
i =EŒ�

p
1 j �2 D ai=wi ; �3 D jri j=wi �:

For estimating spot variance, taking p D 2 and applying Lemma A.2 with q D 2,

we may rewrite this function in closed form as

4w2i
3
�
G0.ai=wi/�H0.jri j=wi/

G2.ai=wi/�H2.jri j=wi/
:

Recalling the meromorphic property of the polygamma functions, we see that this

estimation function is continuous almost everywhere. This estimator is thus regular,

and so, is also the AMRE estimator under the original nonparametric model as

asserted in Theorem 2.2.

The proof for the quadratic loss is similar, except that we now apply (3.3.18)

in Lehmann and Casella (1998) and Lemma A.2 above with p D 2, q D 2 and 4 to

show that the optimal estimation function of �2 under the limit model is

w2i �
EŒ�21 j �2 D ai=wi ; �3 D jri j=wi �
EŒ�41 j �2 D ai=wi ; �3 D jri j=wi �

D
32w2i
5
�
G2.ai=wi/�H2.jri j=wi/

G4.ai=wi/�H4.jri j=wi/
:

This estimator is also regular and thus is the AMRE estimator under the original

nonparametric model as asserted.

The derivation of AMRE estimators of spot volatility follows the same lines of

arguments, except for taking p D 1, q D 1 and 2. Q:E:D:

106



A.2 Additional Results

A.2.1 Optimal Estimation for Quarticity and Precision

In Theorem A.1 and Theorem A.2, we provide closed-form expressions for the

AMRE estimators of the spot quarticity, denoted as �4t , and the spot precision, de-

noted as ��1
t , respectively. However, due to a technical integrability issue, we have

only derived the closed-form solution for the AMRE spot precision estimator under

Stein’s loss.

Theorem A.1. Under the same setting as Theorem 1, the AMRE range-based esti-

mator for the spot quarticity �4t under Stein’s loss is asymptotically unbiased and is

given by

O�4Stein �
128w4i
15

�
G0.ai=wi/�H0.jri j=wi/

G4.ai=wi/�H4.jri j=wi/
;

while the AMRE range-based estimator for �4t under standardized quadratic loss

equals

O�4Quad � 256w
4
i �
G4.ai=wi/�H4.jri j=wi/

G8.ai=wi/�H8.jri j=wi/
:

Theorem A.2. Under the same setting as Theorem 1, the AMRE range-based esti-

mator for the spot precision ��1
t under Stein’s loss is asymptotically unbiased and

is given by

O��1
Stein �

r
�

2
w�1
i �

G0.ai=wi/�H0.jri j=wi/

G�1.ai=wi/�H�1.jri j=wi/
;

where G0.�/ and H0.�/ are defined in (2.10) and (2.11) in the main text and

G�1.x/ � x

�
 0

�1�x
2

�
� 0

�1Cx
2

��
C
1�x2

4

�
 1

�1�x
2

�
C 1

�1Cx
2

��
;

H�1.x/ � x

�
 0

�
1�

x

2

�
� 0

�x
2

��
�
x2

4

�
 1

�
1�

x

2

�
C 1

�x
2

��
:

In parallel to Tables 1 and 2 for the spot variance and spot volatility estimators

in the main text, Tables A.1 and A.2 below display the asymptotic bias, variance,

and relative efficiency of various estimators for spot quarticity and precision, re-

spectively. The results are qualitatively similar to the ones presented in the main

text.

We once again observe that Stein-AMRE estimators demonstrate lower asymp-

totic risk compared to shape-constrained estimators, not only under Stein’s loss
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but also under the quadratic loss. Interestingly, the relative efficiencies of shape-

constrained estimators are considerably lower when estimating quarticity and pre-

cision as opposed to volatility estimation. For instance, the relative efficiency of

. O�BLUE/
4 as a spot quarticity estimator is a mere 25.5% under the quadratic loss

function. These risk comparisons further emphasize the efficiency advantages of

employing AMRE estimators for a wider variety of volatility estimation tasks.
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Table A.1: Asymptotic Risk Properties of Alternative Estimators for Spot Quarticity

Relative Efficiency

Estimator Bias Variance Stein Quadratic

O�4Stein 0.000 1.305 1.000 0.544

O�4Quad �0:564 0.392 0.535 1.000

. O�2GK/
2 0.271 2.206 0.921 0.312

. O�BLUE/
4 0.423 2.608 0.874 0.255

Note: The table reports the asymptotic biases, variances, and relative effi-
ciency under Stein’s and quadratic risks for each of the regular estimators
indicated in the first column.

Table A.2: Asymptotic Risk Properties of Alternative Estimators for Spot Precision

Relative Efficiency

Estimator Bias Variance Stein Quadratic

O��1
Stein 0.000 0.066 1.000 1.000

. O�2GK/
�1=2 0.099 0.081 0.838 0.725

O��1
BLUE 0.065 0.076 0.912 0.825

Note: The table reports the asymptotic biases, variances, and relative effi-
ciency under Stein’s and quadratic risks for each of the regular estimators
indicated in the first column. Since the quadratic-AMRE estimator is un-
available, the relative efficiencies of the spot precision estimators are cal-
culated with respect to the Stein-AMRE estimator under both Stein’s loss
and the quadratic loss.
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A.2.2 Proof of Theorem A.1

The proof is similar to that of Theorem 2 in the main text, and so, we only

emphasize the main difference. Recall the definition of .�1; �2; �3/ from Lemma

A2 in the main text. The minimum-risk scale-equivariant estimation function for

volatility under the limit problem is given by

w4i �
1

EŒ�41 j �2 D a1=wi ; �3 D jri j=wi �
and w4i �

EŒ�41 j �2 D a1=wi ; �3 D jri j=wi �
EŒ�81 j �2 D a1=wi ; �3 D jri j=wi �

;

for Stein’s loss and quadratic loss, respectively. The asserted closed-form expres-

sions are obtained by applying Lemma A2 with q D 4 and 8. Q.E.D.

A.2.3 Proof of Theorem A.2

Under Stein’s loss, the minimum-risk scale-equivariant estimation function for

the precision in the limit problem is given byw�1
i =EŒ��1

1 j�2D a1=wi ; �3D jri j=wi �.

The remaining task is to derive its closed-form expression, which requires a more

refined argument than those used in the analysis for optimal variance and/or volatil-

ity estimation.

Let g�.�/ denote the joint density of .�1; �2; �3/. Note that

EŒ��1
1 j �2 D y;�3 D z�D

R1

0
x�1g�.x;y;z/dxR1

0
g�.x;y;z/dx

; (A.18)

and the denominator
R1

0
g�.x;y;z/dx DG0.y/�H0.z/ as implied by Lemma A2.

It remains to compute
R1

0
x�1g�.x;y;z/dx. Recall that

g�.x;y;z/D 4

r
2

�

1X
kD�1

�
Ck.x;z/�Dk.x;y/

�
;

where

Ck.x;z/ � k2x2
�
.2kCz/2x2�1

�
exp

�
�
.2kCz/2x2

2

�
;

Dk.x;y/ � k.1Ck/x2
�
.2kC1�y/2x2�1

�
exp

�
�
.2kC1�y/2x2

2

�
:

By a direct integration, we haveZ 1

0

x�1Ck.x;z/dx D
k2

.2kCz/2
;Z 1

0

x�1Dk.x;y/dx D
k.kC1/

.2kC1�y/2
:
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Therefore, the numerator in (A.18) can be rewritten as

4

r
�

2

Z 1

0

x�1

1X
kD�1

�
Ck.x;z/�Dk.x;y/

�
dx

D 4

r
�

2

1X
kD�1

� k2

.2kCz/2
�

k.kC1/

.2kC1�y/2

�
D

r
�

2

1X
kD0

�
k2

.kC z
2
/2
C

.kC1/2

.kC1� z
2
/2
�

k.kC1/

.kC 1�y

2
/2
�

k.kC1/

.kC 1Cy

2
/2

�
:

(A.19)

By (5.7.6) and (5.15.1) in Olver et al. (2010), we have

 0.z1/� 0.z2/ D

1X
kD0

� 1

z2Ck
�

1

z1Ck

�
; (A.20)

 1.z1/C 1.z2/ D

1X
kD0

�
1

.z1Ck/2
C

1

.z2Ck/2

�
: (A.21)

Note that, the summand in (A.19) may be rewritten as

k2

.kC z
2
/2
C

.kC1/2

.kC1� z
2
/2
�

k.kC1/

.kC 1�y

2
/2
�

k.kC1/

.kC 1Cy

2
/2

D y

�
1
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1
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1

4
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:

(A.22)

Combining (A.19)–(A.22) yields

4

r
�

2

Z 1

0

x�1

1X
kD�1

�
Ck.x;z/�Dk.x;y/

�
dx D

r
�

2

�
G�1.y/�H�1.z/

�
:

This completes the derivation of the closed-form expression for (A.18). Since that

function is continuous almost everywhere (recall that polygamma functions are

meromorphic), the estimator is indeed regular, and so, defines the AMRE estimator

under the original nonparametric model as asserted in Theorem A.2. Q.E.D.

A.2.4 Comparisons of Single Versus Multiple Candlesticks

The spot volatility estimates for the VOO ETF plotted in Figure 2.4 in the main

text are formed using the single-candlestick estimator O�Stein described in Theorem

2.2. To illustrate the practical use of the AMRE k-candlestick estimators detailed

in Section 2.2.4, we also compute the AMRE spot volatility estimator O�Stein.k/ for
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k D 2. Figure A.1 visually compares the single-candlestick estimates with the two-

candlestick estimates.

Unsurprisingly, the two-candlestick estimates essentially manifest as “averages”

of the corresponding pair of single-candlestick estimates. As discussed in more

detail in the main text, such aggregation is suitable when the underlying volatil-

ity does not change “too much,” but it can be problematic when volatility moves

rapidly. This, of course, is exactly what happens after many FOMC announcements,

as highlighted, for example, by the November 2, 2022 announcement.

Figure A.2 presents similar results for the Dollar/Yen exchange rate. The com-

parisons between the single and two-candlestick estimators evidence the same gen-

eral features as the comparisons of the k D 1 and k D 2 estimates for the VOO

ETF in Figure A.1. Meanwhile, comparing the estimates across Figure A.1 and

Figure A.2, there are also notable differences between the way in which the spot

volatility of the VOO ETF and the Dollar/Yen exchange rate vary around the time

of the FOMC announcements, reflecting the differential response of the equity and

currency markets to monetary policy shocks.
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Figure A.1: Comparison of Single-Candlestick and Two-Candlestick Estimates. The
figure plots the estimates of the AMRE spot volatility estimator O�Stein constructed using
one candlestick (dot) and two candlesticks (dash), expressed in daily percentage terms and
calculated using individual 5-minute frequency candlesticks of the VOO ETF. Pointwise
confidence intervals at the 90% level for the single-candlestick estimates are also plotted.
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Figure A.2: Comparison of Single-Candlestick and Two-Candlestick Estimates. The
figure plots the estimates of the AMRE spot volatility estimator O�Stein constructed using
one candlestick (dot) and two candlesticks (dash), expressed in daily percentage terms and
calculated using individual 5-minute frequency candlesticks of the Dollar/Yen exchange
rate. Pointwise confidence intervals at the 90% level for the single-candlestick estimates are
also plotted.
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A.2.5 Comparison Among Alternative Estimators

The empirical estimates in the main text, as well as those in Section A.2.4 above,

are based on AMRE estimators for the spot volatility �t derived under Stein’s loss.

The use of alternative estimators would yield different estimates. It is helpful to

understand the magnitude of these differences.

To this end, we report summary statistics for the relative discrepancy between

alternative estimators of �pt for p 2 f1;2;4g. For each �pt , we consider four estima-

tors: the AMRE estimators O�pStein and O�pQuad, a transformed version of the Garman–

Klass variance estimator . O�2GK/
p=2, and a transformed version of Li et al.’s (2022)

volatility estimator . O�BLUE/
p. Table A.3 presents the results for alternative single-

candlestick estimators with respect to the AMRE estimator O�pStein (Panel A) or O�pQuad

(Panel B). Specifically, when comparing . O�2GK/
p=2 with O�pStein in Panel A, we calcu-

late the relative discrepancy measure ass
sample average of

ˇ̌̌̌
. O�2GK/

p=2� O�
p
Stein

O�
p
Stein

ˇ̌̌̌2
;

where the sample average is computed across all spot estimates for the eight FOMC

announcement days in 2022. We do the calculations separately for the VOO ETF

and the Dollar/Yen exchange rate. Similar results for estimators based on two can-

dlesticks are reported in Table A.4.

The main findings may be summarized as follows. Firstly, we note that alterna-

tive estimates for �pt exhibit larger differences when p is larger. For example, for

volatility estimation (i.e., p D 1), the linear O�BLUE estimator differs from the Stein-

AMRE estimator O�Stein by 2.5% and 4.4% for the VOO ETF and the Dollar/Yen,

respectively. The corresponding relative discrepancy measures increase to 8.1%

and 12.2% for variance estimation (i.e., p D 2), and further increase to 44.5% and

53.7% for quarticity estimation (i.e., p D 4).

Secondly, comparing the discrepancy numbers between Panel A and Panel B

shows that the shape-constrained estimators, . O�2GK/
p=2 and . O�BLUE/

p, are more dis-

tinct from O�pQuad than O�pStein. This is also consistent with Figures 2 and 3 in the

main text, which show the alternative estimation functions. This suggests that un-

der the quadratic loss criterion, suboptimal estimators can be quite different from
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the AMRE estimator. For example, O�BLUE differs from O�Quad by 6.6% (resp. 8.1%)

for VOO (resp. Dollar/Yen), while the relative differences increase to more than

30% for variance estimation. For the more extreme case of estimating quarticity �4t ,

the AMRE estimator O�4Quad is generally much smaller (due to shrinkage) than any

of the other estimators, as evidenced by the large discrepancy measures seen in the

p D 4 columns in Panel B.

Finally, we observe that the relative discrepancies between alternative estima-

tors are generally larger in the two-candlestick case than the single-candlestick case.

As a case in point, the O�BLUE and O�Stein volatility estimators based on a single-

candlestick display a high degree of similarity, with discrepancy summary statistics

of 2.5% for the VOO and 4.4% for the Dollar/Yen, respectively, while the two-

candlestick versions exhibit more significant differences, with discrepancy sum-

mary statistics equal to 4.6% for the VOO and 12.1% for the Dollar/Yen.

In summary, the comparisons in Tables A.3 and A.4 highlight potentially large

empirical differences among the different estimators. The extent of the discrepancy

depends, among other factors, on the estimand (i.e., �pt ), the loss function employed

in deriving the AMRE estimator, and the number of candlesticks utilized in the

estimation. It is, of course, also data dependent, as evidenced by the differences in

the summary statistics for the VOO ETF and the Dollar/Yen exchange rate for the

same set of estimators and times.

A.2.6 Monte Carlo Simulations

We evaluate the finite-sample performance of the proposed estimation methods

through a Monte Carlo experiment. The data generating process for the price pro-

cess is defined as follows

dPt D �tdWt ; �2t D V1;tCV2;t ;

dV1;t D 0:0128.0:4068�V1;t/dtC0:0954
p
V1;t.�dWtC

p
1��2dB1;t/;

dV2;t D 0:6930.0:4068�V2;t/dtC0:7023
p
V2;t.�dWtC

p
1��2dB2;t/;

where W , B1, and B2 denote independent standard Brownian motions, � D �0:7,

V1;0 D V2;0 D 0:5, so that �0 D 1. We simulate the “continuous-time processes”

using a Euler scheme with mesh size being 10�4 minute. The candlesticks utilized
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in the calculations are constructed on 5-minute intervals, a common default choice

in applied work, which we also adopt in our empirical study. The estimand �pt with

p 2 f1;2g is sampled at a random point within each 5-minute estimation window.

All numerical results reported below are based on 10,000 Monte Carlo replications.

To evaluate the potential distorting effects of market microstructure noise, we

also consider a “noisy setting,” in which the observed price, denoted by Yt , is gen-

erated as

Yt D PtC "t ;

where the "t noise terms are i.i.d. N .0;&2/. We examine values of & 2 f5;10;20;40;

80;160g�10�4. The value & D 5�10�4 is in line with the empirically realistic sim-

ulation settings of Da and Xiu (2021) and Li and Linton (2022). Hence, in addition

to this “representative” noise level, our experiment also involves much larger noise

levels to help illuminate the effect of sampling “too finely” relative to the magnitude

of the noise.

Tables A.5–A.11 present the finite-sample biases, relative efficiencies under

Stein’s loss and the quadratic loss, and coverage rates of 90% confidence intervals

(as detailed in footnote 11 of the main text) for various estimators. The finite-sample

properties of these estimators under the no-noise scenario, displayed in Table A.5,

align with the asymptotic theory. The AMRE estimators exhibit the lowest risks,

and the coverage rates for all confidence intervals are close to the nominal level.

As evidenced by Table A.6, the results are effectively the same at an empirically

realistic noise level of & D 5�10�4. This observation aligns with the “conventional

wisdom” that in typical applications, microstructure noise has a negligible impact

on volatility estimates based on a 5-minute sampling frequency.

Looking across Tables A.7 to A.11, the noise level is progressively doubled

to highlight the potential distortion effects of noise. As the noise level increases,

all estimators experience a growing upward bias. The quadratic-AMRE estimator,

O�
p
Quad, is the only shrinkage estimator considered, and its inherent downward bias

offers a unique advantage in counteracting the upward bias caused by the noise.

When the noise level is not too high, the bias of the quadratic-AMRE estimator tends

towards zero, and it eventually becomes the least biased estimator at very high noise
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levels. Consequently, O�pQuad achieves the lowest finite-sample quadratic risk across

all the different settings. Furthermore, when the noise level is sufficiently high,

O�
p
Quad surpasses O�pStein and emerges as the minimum risk estimator in finite samples,

even under Stein’s loss.

Looking at the finite-sample coverage rates of the confidence intervals, it is

interesting to note that as the noise level increases, the confidence intervals tend

to cover the true value more frequently than the nominal level. This indicates that

noise-induced distortion does not necessarily result in under-coverage. However,

over-coverage is not consistently observed either. Indeed, at the highest noise level

(Table A.11), the confidence intervals all display severe under-coverage.

In summary, our simulation results support the widely-held belief that for em-

pirically realistically calibrated noise levels, 5-minute coarse sampling effectively

mitigates the detrimental impacts of the noise. Meanwhile, in more extreme sit-

uations with very high noise levels, the quadratic-AMRE estimator demonstrates

superior finite-sample performance, primarily because its shrinkage properties al-

low it to partially counteract the upward bias induced by excessive noise.
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Table A.3: Relative Discrepancies for Alternative One-Candlestick Estimators

VOO Dollar/Yen

p D 1 p D 2 p D 4 p D 1 p D 2 p D 4

Panel A: Comparison versus the Stein-AMRE Estimator

O�
p
Quad 0.058 0.210 0.587 0.057 0.211 0.593

. O�2GK/
p=2 0.059 0.094 0.361 0.089 0.142 0.389

. O�BLUE/
p 0.025 0.081 0.445 0.044 0.122 0.537

Panel B: Comparison versus the Quadratic-AMRE Estimator

O�
p
Stein 0.062 0.268 1.480 0.061 0.270 1.561

. O�2GK/
p=2 0.056 0.297 2.145 0.074 0.399 2.216

. O�BLUE/
p 0.066 0.347 2.558 0.081 0.379 3.032

Note: The table reports summary statistics for the relative differences of alternative
single-candlestick estimators of �pt with respect to the AMRE estimators. In Panel
A and Panel B, the benchmark AMRE estimators are set as O�pStein and O�pQuad, respec-
tively. The reported values are the root mean squared relative differences, calculated
across all spot estimates during the eight FOMC announcement days in 2022.
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Table A.4: Relative Discrepancies for Alternative Two-Candlestick Estimators

VOO Dollar/Yen

p D 1 p D 2 p D 4 p D 1 p D 2 p D 4

Panel A: Comparison versus the Stein-AMRE Estimator

O�
p
Quad 0.034 0.122 3.072 0.043 0.134 3.170

. O�2GK/
p=2 0.081 0.224 1.733 0.177 0.882 1.981

. O�BLUE/
p 0.046 0.130 0.816 0.121 0.534 1.105

Panel B: Comparison versus the Quadratic-AMRE Estimator

O�
p
Stein 0.035 0.151 3.526 0.046 0.177 4.194

. O�2GK/
p=2 0.105 0.479 9.313 0.216 1.542 9.664

. O�BLUE/
p 0.071 0.331 6.853 0.156 0.968 4.995

Note: The table reports summary statistics for the relative differences of alternative
two-candlestick estimators of �pt with respect to the AMRE estimators. In Panel
A and Panel B, the benchmark AMRE estimators are set as O�pStein.2/ and O�pQuad.2/,
respectively. The reported values are the root mean squared relative differences,
calculated across all spot estimates during the eight FOMC announcement days in
2022.

Table A.5: Finite-Sample Properties of Alternative Estimators: No Noise

Spot Variance (p D 2) Spot Volatility (p D 1)

Rel. Eff. Rel. Eff.

Estimator Bias Stein Quad. C.R. Bias Stein Quad. C.R.

O�
p
Stein �0:007 1.000 0.896 0.899 �0:005 1.000 0.975 0.899

O�
p
Quad �0:211 0.824 1.000 0.898 �0:063 0.937 1.000 0.899

. O�BLUE/
p 0.050 0.984 0.841 0.898 �0:007 0.993 0.974 0.898

. O�2GK/
p=2 0.006 0.984 0.872 0.903 �0:029 0.971 0.981 0.902

Note: The table reports the finite-sample relative biases, relative efficiencies under
Stein’s and quadratic loss functions, and coverage rates of 90% confidence intervals
for alternative estimators of the spot variance (left) and spot volatility (right). The
noise level is set as & D 0.
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Table A.6: Finite-Sample Properties of Alternative Estimators: Noise Level & D 5�10�4

Spot Variance (p D 2) Spot Volatility (p D 1)

Rel. Eff. Rel. Eff.

Estimator Bias Stein Quad. C.R. Bias Stein Quad. C.R.

O�
p
Stein �0:004 1.000 0.887 0.903 0.001 1.000 0.969 0.902

O�
p
Quad �0:202 0.836 1.000 0.904 �0:057 0.944 1.000 0.903

. O�BLUE/
p 0.062 0.980 0.832 0.903 �0:001 0.993 0.969 0.902

. O�2GK/
p=2 0.018 0.982 0.862 0.907 �0:023 0.974 0.979 0.906

Note: The table reports the finite-sample relative biases, relative efficiencies under
Stein’s and quadratic loss functions, and coverage rates of 90% confidence intervals
for alternative estimators of the spot variance (left) and spot volatility (right). The
noise level is set as & D 5�10�4.

Table A.7: Finite-Sample Properties of Alternative Estimators: Noise Level & D 1�10�3

Spot Variance (p D 2) Spot Volatility (p D 1)

Rel. Eff. Rel. Eff.

Estimator Bias Stein Quad. C.R. Bias Stein Quad. C.R.

O�
p
Stein 0.028 1.000 0.866 0.911 0.016 1.000 0.955 0.913

O�
p
Quad �0:182 0.864 1.000 0.913 �0:043 0.970 1.000 0.913

. O�BLUE/
p 0.087 0.968 0.810 0.910 0.014 0.990 0.955 0.912

. O�2GK/
p=2 0.043 0.976 0.840 0.914 �0:008 0.983 0.970 0.915

Note: The table reports the finite-sample relative biases, relative efficiencies under
Stein’s and quadratic loss functions, and coverage rates of 90% confidence intervals
for alternative estimators of the spot variance (left) and spot volatility (right). The
noise level is set as & D 1�10�3.
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Table A.8: Finite-Sample Properties of Alternative Estimators: Noise Level & D 2�10�3

Spot Variance (p D 2) Spot Volatility (p D 1)

Rel. Eff. Rel. Eff.

Estimator Bias Stein Quad. C.R. Bias Stein Quad. C.R.

O�
p
Stein 0.089 1.000 0.820 0.934 0.043 1.000 0.930 0.926

O�
p
Quad �0:134 0.949 1.000 0.935 �0:017 1.026 1.000 0.925

. O�BLUE/
p 0.148 0.942 0.762 0.933 0.040 0.996 0.932 0.925

. O�2GK/
p=2 0.103 0.969 0.794 0.936 0.018 1.008 0.955 0.927

Note: The table reports the finite-sample relative biases, relative efficiencies under
Stein’s and quadratic loss functions, and coverage rates of 90% confidence intervals
for alternative estimators of the spot variance (left) and spot volatility (right). The
noise level is set as & D 2�10�3.

Table A.9: Finite-Sample Properties of Alternative Estimators: Noise Level & D 4�10�3

Spot Variance (p D 2) Spot Volatility (p D 1)

Rel. Eff. Rel. Eff.

Estimator Bias Stein Quad. C.R. Bias Stein Quad. C.R.

O�
p
Stein 0.244 1.000 0.730 0.962 0.119 1.000 0.873 0.935

O�
p
Quad �0:009 1.260 1.000 0.963 0.055 1.197 1.000 0.933

. O�BLUE/
p 0.306 0.894 0.672 0.962 0.113 1.011 0.881 0.935

. O�2GK/
p=2 0.255 0.962 0.709 0.963 0.090 1.073 0.919 0.935

Note: The table reports the finite-sample relative biases, relative efficiencies under
Stein’s and quadratic loss functions, and coverage rates of 90% confidence intervals
for alternative estimators of the spot variance (left) and spot volatility (right). The
noise level is set as & D 4�10�3.
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Table A.10: Finite-Sample Properties of Alternative Estimators: Noise Level & D 8�10�3

Spot Variance (p D 2) Spot Volatility (p D 1)

Rel. Eff. Rel. Eff.

Estimator Bias Stein Quad. C.R. Bias Stein Quad. C.R.

O�
p
Stein 0.633 1.000 0.660 0.935 0.289 1.000 0.836 0.865

O�
p
Quad 0.302 1.926 1.000 0.936 0.216 1.377 1.000 0.860

. O�BLUE/
p 0.703 0.883 0.612 0.942 0.279 1.041 0.855 0.871

. O�2GK/
p=2 0.631 0.986 0.651 0.937 0.249 1.168 0.909 0.868

Note: The table reports the finite-sample relative biases, relative efficiencies under
Stein’s and quadratic loss functions, and coverage rates of 90% confidence intervals
for alternative estimators of the spot variance (left) and spot volatility (right). The
noise level is set as & D 8�10�3.

Table A.11: Finite-Sample Properties of Alternative Estimators: Noise Level
& D 1:6�10�2

Spot Variance (p D 2) Spot Volatility (p D 1)

Rel. Eff. Rel. Eff.

Estimator Bias Stein Quad. C.R. Bias Stein Quad. C.R.

O�
p
Stein 1.677 1.000 0.708 0.598 0.665 1.000 0.872 0.401

O�
p
Quad 1.146 1.721 1.000 0.590 0.573 1.268 1.000 0.381

. O�BLUE/
p 1.772 0.924 0.673 0.633 0.646 1.046 0.895 0.424

. O�2GK/
p=2 1.612 1.052 0.727 0.653 0.595 1.184 0.959 0.454

Note: The table reports the finite-sample relative biases, relative efficiencies under
Stein’s and quadratic loss functions, and coverage rates of 90% confidence intervals
for alternative estimators of the spot variance (left) and spot volatility (right). The
noise level is set as & D 1:6�10�2.
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Appendix B

Technical Results for Chapter 3

B.1 Proofs of the Main Results

B.1.1 Proof of Theorem 3.2

The proof is based on the following lemma.

Lemma B.1. Let X D .X1; : : : ;Xm/ be nonnegative random variables with density

fX.x1; : : : ;xm/, for 1 � i � m denote Zi D Xi=X1 and let Z � .Zi/1�i�m. Then

we have for p � 1

EŒXp
1 jZ�D x

p
1 �

R1

0
vmCp�1fX.x1v; : : : ;xmv/dvR1

0
vm�1fX.x1v; : : : ;xmv/dv

:

To prove the above result, note that the conditional density of X1 given Z is

fX1 jZ.x1 j z/D
fX1;Z.x1;z/R1

0
fX1;Z.t;z/dt

:

Also note that the Jacobian jdx=d.x;z/j D xm�1
1 , hence

fX1;Z.x1;z/D fX.x1;z2x1; : : : ; zmx1/x
m�1
1 :

Combining above results, the conditional density of X1 is then

fX jZ.x1 jz/D
xm�1
1 fX.x1;z2x1; : : : ; zmx1/R1

0
tm�1fX.t;z2t; : : : ; zmt /dt

:

Therefore, the conditional expectation of Xp
1 can be written as

EŒXp
1 jZ�D

Z 1

0

x
p
1 �

xm�1
1 fX.x1;z2x1; : : : ; zmx1/R1

0
tm�1fX.t;z2t; : : : ; zmt /dt

dx1
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D

R1

0
x
mCp�1
1 fX.x1;z2x1; : : : ; zmx1/dx1R1

0
tm�1fX.t;z2t; : : : ; zmt /dt

D

R1

0
tmCp�1fX.t;z2t; : : : ; zmt/dtR1

0
tm�1fX.t;z2t; : : : ; zmt/dt

D

R1

0
.x1v/

mCp�1fX.x1v;z2x1v; : : : ;zmx1v/x1dvR1

0
.x1v/m�1fX.x1v;z2x1v; : : : ;zmx1v/x1dv

D x
p
1 �

R1

0
vmCp�1fX.x1v;x2v; : : : ;xmv/x1dvR1

0
vm�1fX.x1v;x2v; : : : ;xmv/x1dv

;

which completes the proof.

Taking m D 3k and .X1; : : : ;X3k/ D Ck, the theorem then follows the same

procedure as Theorem 2 in Bollerslev et al. (2024) by applying the above formula

to Equation (2.12) of Bollerslev et al. (2024). Q:E:D:

B.1.2 Proof of Theorem 3.3

To prove .r;h; l/ dD . Q�i;r ; Q�i;h; Q�i;l/, it suffices to show that:

r
d
D Q�i;r ; h j r

d
D Q�i;h j Q�i;r ; l j .h;r/

d
D Q�i;l j . Q�i;r ; Q�i;h/: (B.1)

The first relation is obvious. For the second relation, we start with the joint law of

. Q�i;h; Q�i;r/ which can be found in, e.g., Shepp (1979):

fQ�i;h;Q�i;r
.h;r/D

2.2h� c/
p
2�

exp
n�
�
.2h� c/2

2

�o
D�2� 0.2h� c/;

where h� .c_0/. The density of Q�i;h conditional on Q�i;r is thus

fQ�i;h j Q�i;r
.h j r/D

�� 0.2h� c/

�.c/
D 2.2h� c/expf�2h.h� c/g:

Direct integration reveals that

FQ�i;h j Q�i;r
.h j r/D

Z h

c_0

fQ�i;h j Q�i;r
.s j r/ds D 1� expf2.c�h/hg:

From which one can directly calculate its inverse function

F �1
Q�i;h j Q�i;r

.u j r/D
1

2

�
rC

p
r �2 log.1�u/

�
:

By the probability integral transform, the second relation in Equation (B.1) is then

immediate. For the last relation, we derive the density of Q�i;l j . Q�i;r ; Q�i;h/:

fQ�i;l j .Q�i;r ;Q�i;h/
.l j r;h/
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D
fQ�i;r ;Q�i;h;Q�i;h

.r;h; l/

fQ�i;h;Q�i;r
.h;r/

D�2

1X
mD�1

m2
� 00
�
c�2m.h� l/

�
� 0.2h� c/

�m.mC1/
� 00
�
c�2khC2.k�1/l

�
� 0.2h� c/

;

where l � r ^0 and the analytical form of fQ�i;r ;Q�i;h;Q�i;h
.r;h; l/ can be found in, e.g.,

Feller (1951). It is now straightforward to verify thatF 0.l jr;h/DfQ�i;l j .Q�i;r ;Q�i;h/
.l jr;h/,

and one can also check that F.�1jr;h/D 0 and F.r^0 jr;h/D 1. In other words,

F.l j r;h/ is the cumulative distribution function of Q�i;l conditional on Q�i;r and Q�i;h.

The solution vDF.l jr;h/ is thus an implicit probability integral transform, and the

third relation in Equation (B.1) readily follows, which completes the proof. Q:E:D:

B.2 Additional Results

B.2.1 Best Subset Regression for Spot Variance Estimators

This section contains best subset regression for AMRE spot variance estimators

under Stein’s loss and Quadratic loss. We adopt the polynomial design as discribed

in Section 3.1. Table B.1 shows how different features are sequentially selected

in this analysis. In contrast to the case of spot volatility estimators, the selected

features are slightly different across different loss functions and across different

values of k. Notably, the product of mean and standard error of the range Nwv.w/

emerges as one of the most important features and outweighs the asymmetry level

Na. Similar to the case of spot volatility estimators, the approximation using two

features is in line with to the BQUE estimator proposed in Garman and Klass (1980),

for instance when k D 5, we have

O�
2;�

.s/
.5/� 0:559w2�0:399r2:

Figure B.1 shows the pattern of relative efficiency of polynomial-based approx-

imation for optimal variance estimators. With a fixed number of features q, in-

creases, the relative efficiency decreases. As mentioned previously, this is due to

the absence of a dimension-reduced complete sufficient statistic. Therefore, larger k

naturally implies a greater loss of information, resulting in an estimator further from

the optimal ones that utilize all available information. Similar to the case of spot

volatility estimators, this decrease become gradual in the case of large k, suggesting
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Table B.1: Best Subset Regression Result of O�2;�
.�/
.k/

Panel I: AMRE under Stein’s loss

q Nw2 jr j
2

�.w/2 Nw�.w/ Nw�.a/ Na�.w/ Na�.a/ Na�.jr j/ jr j�.w/jr j�.a/ R.Eff.

1 19 0 0 0 0 0 0 0 0 0 67.2%

2 19 19 0 0 0 0 0 0 0 0 94.8%

3 19 19 0 0 0 15 0 4 0 0 96.3%

4 19 19 1 18 0 0 0 19 0 0 96.7%

5 19 19 16 19 0 0 0 19 3 0 96.8%

6 19 19 4 18 16 0 3 19 0 16 96.9%

Panel II: AMRE under Quadratic loss

q Nw2 Na2 jr j
2

�.w/2 Nw�.w/ Nw�.a/ Nw�.jr j/ Na�.w/ Na�.jr j/ jr j�.a/ R.Eff.

1 19 0 0 0 0 0 0 0 0 0 67.5%

2 19 0 19 0 0 0 0 0 0 0 95.1%

3 19 0 19 0 0 0 0 12 7 0 96.5%

4 19 0 19 1 18 0 0 0 19 0 96.8%

5 19 2 19 15 15 2 0 2 19 2 97.0%

6 19 0 19 1 8 19 10 10 9 19 97.1%

Note: The table reports the total number of selection for k 2 f2; : : : ;20g of each
feature, and the average relative efficiency w.r.t. the analytical AMRE estimators
for q 2 f1; : : : ;6g.
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that one may trade some efficiency for faster computation and easier-to-understand

estimators. Moreover, the figure indicates that the marginal improvement of adding

an additional feature becomes nearly negligible as q becomes larger, say, greater

than 3. For instance, for the optimal estimator under Stein’s loss with k D 5, the

relative efficiency levels of approximation using q D 1;2;3;4 features are 53.92%,

95.44%, 97.12%, 97.66%, respectively.
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Figure B.1: Relative efficiency of polynomial-based approximation for optimal variance
estimators under Stein’s loss (left) and quadratic loss (right), with q 2 f2; : : : ;6g and k 2
f2; : : : ;20g. The selection of features and determination of corresponding coefficients are
computed using best subset regression.

B.2.2 Volatility Estimation during Price Indices Release

Figure B.3 and B.2 show Stein-AMRE spot volatility estimates of E-mini future

continuous contract for price indices releases in the years 2023 and 2022, respec-

tively. Similar patterns can be found in these figures as well: volatility initially

increases after release, gradually reverts within a 60-minute window, and then un-

dergoes another uptick coinciding with market opening. Moreover, upon closer

examination of individual release days, one can find some discernible pre-release

volatility movements (see, e.g., observed in PCE of September 2022, CPI of De-

cember 2022, and PPI of May 2023). Note that in accordance with government

regulations, dissemination of materials related to price index releases is embargoed

until 8:30 a.m. on the scheduled date. The existence of pre-release movements

suggests a potential leakage of information.

128



-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90
0

1

2

3

4

Vo
lat

ilit
y (

%)

×10 2

2023 January
CPI release
PPI release
PCE release

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90
0

2

4

×10 2

2023 February
CPI release
PPI release
PCE release

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90
0

1

2

3

×10 2

2023 March
CPI release
PPI release
PCE release

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

0.5

1.0

Vo
lat

ilit
y (

%)

×10 2

2023 April
CPI release
PPI release
PCE release

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

0.5

1.0

1.5
×10 2

2023 May
CPI release
PPI release
PCE release

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

0.5

1.0

×10 2

2023 June
CPI release
PPI release
PCE release

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

0.5

1.0

Vo
lat

ilit
y (

%)

×10 2

2023 July
CPI release
PPI release
PCE release

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

0.5

1.0

1.5

2.0

×10 2

2023 August
CPI release
PPI release
PCE release

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

0.5

1.0

1.5

2.0 ×10 2

2023 September
CPI release
PPI release
PCE release

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

0.5

1.0

1.5

Vo
lat

ilit
y (

%)

×10 2

2023 October
CPI release
PPI release
PCE release

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

0.5

1.0

1.5

2.0
×10 2

2023 November
CPI release
PPI release
PCE release

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

0.5

1.0

×10 2

2023 December
CPI release
PPI release
PCE release

Figure B.2: Stein-AMRE spot volatility estimates of E-mini S&P500 future within a
1.5 hours window before and after price indices releases in 2023. The estimation is
based on five consecutive observation intervals sampled at a 1-minute frequency. Prices
immediately following the releases are excluded to mitigate the effects of potential price
jumps.
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Figure B.3: Stein-AMRE spot volatility estimates of E-mini S&P500 future within a
1.5 hours window before and after price indices releases in 2022. The estimation is
based on five consecutive observation intervals sampled at a 1-minute frequency. Prices
immediately following the releases are excluded to mitigate the effects of potential price
jumps.
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Appendix C

Technical Results for Chapter 4

C.1 Proofs of the Main Results

Throughout the proofs, we use K and K 0 to denote some positive constants that

may change from line to line, and write Kp to emphasize its dependence on some

parameter p. In order to make a distinction, we useM to denote some positive con-

stant defined in the context which is hold fixed across lines. For notation simplicity,

we denote Ln � log.��1
n /.

C.1.1 Proof of Theorem 4.1

By a standard localization procedure (see, e.g., Section 4.4.1 in Jacod and Prot-

ter (2012) for a detailed discussion of localization procedure), we can strengthen

Assumption 3 by assuming T1D1, KmDK, andKmDK for some fixed compact

set K and constant K > 0. That is, it suffices to prove the results under Assumption

5.

Assumption 5. There exist a positive constant K, and a compact subset K � Z

such that: (i) � takes value in K; for all s; t 2 Tn;j where 1� j �mn, and for each

p > 0, EŒk�t � �skp� � Kpjt � sjp=2 for some constant Kp; (ii) for all z;z0 2 K

with z ¤ z0, Var
�
Y .z;"/

��1
CkY .z;"/�Y .z0; "/kL2

=kz� z0k � K; (iii) for all

x > 0 and z 2 K, P"
�
jY .z;"/j � x

�
� K expf�.x=K/1=�g for some � > 0; (iv)

max1�i�n jRn;i j D op.�
r
n/ for some r > 0.
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Consequently, we have � globally takes values in the compact set K and is

1=2-Hölder continuous under the Lp norm within each block. Denote Gp.�/ �R
D Y .�; "/pP".d"/, we have for all z 2K, Var

�
Y .z;"/

�
DG2.z/�G

2
1.z/ is bounded

away from zero. Note that by Theorem 2.1 in Vladimirova et al. (2020), Assump-

tion 5(iii) implies for all p � 1, Gp.z/ is bounded from above by Kp uniformly

over z 2 K, and by a maximal inequality (see, e.g., Lemma 2.2.2 in van der Vaart

and Wellner (1996)),

sup
z2K




 max
1�j�mn

Y .z;"j /




Lp

�Kp.logmn/� �KpL�n: (C.1)

We prove the validity of the assertion in the theorem for all positive � satisfying

� <
�

6
^

�1
6
�
�

3

�
^

�r
3
�
�

6

�
:

Note that such values of � exist due to the assumption that � 2 .0;2r ^1=2/. Corre-

spondingly, we fix some positive 
 constant satisfying

2" < 
 <
�1
2
��� �

�
^

�
r �

�

2
� �
�
;

which is possible given the requirement of �. To facilitate our analysis, we introduce

some additional notations. For 1� j �mn and 1� i � kn;j , denote

eY i;j � Y .��.i;j /; "n;�.i;j //�g�.i;j /;

�2n;j �
1

kn;j

kn;jX
iD1

�
G2.��.i;j //�g

2
�.i;j /

�
Note that by the above construction, the variables eY i;j are F .0/-conditionally inde-

pendent across different values of i and j , with zero mean and conditional variance

given by G2.��.i;j //�g2�.i;j /. Furthermore, we define the infeasible sup-t statistic

as eT �
n � max

1�j�mn

ˇ̌̌̌
1p
kn;j

kn;jX
iD1

eY i;j
�n;j

ˇ̌̌̌
:

The proof is divided into three parts. In Step 1, we establish that bT �
n can be strongly

approximated by eT �
n in the following sense:

P.jbT �
n�

eT �
nj> ın/�K�

�
n; (C.2)

for some real sequence satisfying ın! 0 and ın
p
Ln � K�

�
n. In Step 2, we con-
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struct .Zj /1�j�mn
and prove the validity of the following inequality for eT �

n:

sup
x2R

ˇ̌̌
P.eT �

n � x/�P
�

max
1�j�mn

jZj j � x
�ˇ̌̌
�K��:n (C.3)

Step 3 concludes the proof by establishing the asserted statement.

STEP 1. Note that we can rewrite

bT �
n D max

1�j�mn

sup
t2Tn;j

ˇ̌̌̌p
kn;j . Ogn;j �gt/

O�n;j

ˇ̌̌̌
:

By simple algebra we can verify that j.a�b/=c�a=d j � jd=c�1j� j.a�b/=d jC

jb=d j. Recall equation (4.1), the proof of this step thus relies on the following

decomposition

jbT �
n�

eT �
nj � max

1�j�mn

ˇ̌̌̌
�n;j

O�n;j
�1

ˇ̌̌̌
� max
1�j�mn

ˇ̌̌̌
1p
kn;j

kn;jX
iD1

eY i;j
�n;j

ˇ̌̌̌
C max
1�j�mn

jAn;j j; (C.4)

where for 1� j �mn, An;j � A.I /n;j CA.II/n;j with

A.I /n;j �
1p
kn;j

kn;jX
iD1

Rn;�.i;j /

�n;j
;

A.II/n;j � sup
t2Tn;j

1p
kn;j

kn;jX
iD1

g�.i;j /�gt

�n;j
:

Note that by Assumption 5(ii) and the definition of �n;j , we have 1=K � �n;j �K

for all 1� j �mn. Then Assumption 5(iv), together with kn;j ��
��
n , implies that

max
1�j�mn

jA.I /n;j j �K�
��=2
n max

1�i�n
jRn;i j D op.�

r��=2
n /D op.�

�C

n /: (C.5)

Note that Assumption 5(ii) implies function G1.�/ is Lipschitz since by the triangle

inequality and the Hölder inequality jG1.z/�G1.z0/j � kY .z;"/�Y .z0; "/kL2
.

Also note that mn ��
��1
n by kn;j ��

��
n , applying a maximal inequality, we have


 max

1�j�mn

A.II/n;j





Lp

�Kpm
1=p
n max

1�j�mn

p
kn;j .kn;j�n/

1=2
�Kp�

.��1/=pC1=2��
n :

(C.6)

Taking p > .1��/=.1=2��� ��
/, the right-hand side becomes o.��C
n /. Then

combining (C.5) and (C.6), it follows the triangle inequality and the Hölder inequal-

ity that

max
1�j�mn

jAn;j j � max
1�j�mn

jA.I /n;j jC max
1�j�mn

jA.II/n;j j D op.�
�C

n /: (C.7)

133



For 1� j �mn and 1� i � kn;j , denote

Q�2n;j �
1

kn;j

kn;jX
iD1

eY 2i;j �� 1

kn;j

kn;jX
iD1

eY i;j�2:
Equation (C.5) and (C.6) also yield max1�j�mn

j O�n;j � Q�n;j j D op.�
�C

n /. Recall

�n;j is bounded below by 1=K uniformly for all 1 � j � mn, by the triangle in-

equality, this implies

max
1�j�mn

ˇ̌̌̌
O�n;j

�n;j
�1

ˇ̌̌̌
� max

1�j�mn

ˇ̌̌̌
Q�n;j

�n;j
�1

ˇ̌̌̌
CK max

1�j�mn

j O�n;j � Q�n;j j

� max
1�j�mn

ˇ̌̌̌
Q�n;j

�n;j
�1

ˇ̌̌̌
Cop.�

�C

n /: (C.8)

Let Nkn � max1�j�mn
kn;j , then Nkn ��

��
n and 1=K � Nkn=kn;j �K uniformly for

all 1� j �mn. For each 1� i � Nkn and 1� j �mn, define eU i;j and vi;j as follows:

eU i;j �

s
Nkn

kn;j

eY i;j
�n;j

1f1� i � kn;j g;

vi;j �
Nkn.G2.��.i;j //�g

2
�.i;j /

/

kn;j�
2
n;j

1f1� i � kn;j g:

By construction the variables eU i;j remain F .0/-conditionally independent across

different values of 1 � i � Nkn and 1 � j � mn with zero mean and conditional

variance vi;j . Note that

Q�2n;j

�2n;j
�1 D

�
1

kn;j

kn;jX
iD1

eY 2i;j
�2n;j
�1

�
�

�
1

kn;j

kn;jX
iD1

eY i;j
�n;j

�2

D

�
1

Nkn

NknX
iD1

eU 2
i;j �1

�
�

�
1

Nkn

NknX
iD1

eU i;j

�2
:

Also note that by simple algebra we can verify that for positive a, j
p
a� 1j D

ja�1j=.
p
aC1/� ja�1j, then we can deduce

P
�

max
1�j�mn

ˇ̌̌̌
Q�n;j

�n;j
�1

ˇ̌̌̌
> x

ˇ̌̌
F .0/

�
� P

�
max

1�j�mn

ˇ̌̌̌
1

Nkn

NknX
iD1

eU 2
i;j �1

ˇ̌̌̌
>
x

2

ˇ̌̌
F .0/

�

CP
�

max
1�j�mn

ˇ̌̌̌
1

Nkn

NknX
iD1

eU i;j

ˇ̌̌̌
>

r
x

2

ˇ̌̌
F .0/

�
:

(C.9)

134



For the first term, noting that by Assumption 5(ii), we have

max
1�j�mn

kn;jX
iD1

EŒeU 4
i;j jF .0/��K max

1�j�mn

kn;jX
iD1

G4.��.i;j //�K�
��
n :

By (C.1), we can further deduce for each 1� i � Nkn,

E
h

max
1�j�mn

eU 4
i;j

ˇ̌
F .0/

i
�K sup

z2K
E
h

max
1�j�mn

Y .z;"n;�.i;j //
4
i
�KL4�n : (C.10)

Then by a maximal inequality, we obtain

E
h

max
1�i� Nkn

max
1�j�mn

eU 4
i;j

ˇ̌
F .0/

i
�K���

n L
4�
n :

Observing that by the definition of vi;j and �n;j , we can verify

1

Nkn

NknX
iD1

EŒeU 2
i;j jF .0/�D

1

Nkn

NknX
iD1

vi;j D
�n;j

�n;j
D 1:

Then by Lemma 8 in Chernozhukov et al. (2015), we obtain

E
�

max
1�j�mn

ˇ̌̌̌
1

Nkn

NknX
iD1

eU 2
i;j �1

ˇ̌̌̌ ˇ̌̌
F .0/

�
�K.��=2n

p
LnC�

�=2
n L1C2�

n /:

Therefore, a Fuk–Nagaev type inequality (see Theorem 4 in Einmahl and Li (2008))

implies that for every x > 0,

P
�

max
1�j�mn

ˇ̌̌̌
1

Nkn

NknX
iD1

eU 2
i;j �1

ˇ̌̌̌
>K��=2n L1C2�

n Cx
ˇ̌̌
F .0/

�
� expf�K 0x2���

n gCK
0x�2��nL

4�
n :

Taking x � ��.1�$/=2
n L

2�
n where 0 < $ < 1, the right-hand side is bounded by

expf�K���$
n L

4�
n gCK�

�$
n �K

0�
�$
n . Consequently, we have

P
�

max
1�j�mn

ˇ̌̌̌
1

Nkn

NknX
iD1

eU 2
i;j �1

ˇ̌̌̌
>K��.1�$/=2

n L1C2�
n

ˇ̌̌
F .0/

�
�K 0��$n : (C.11)

Similarly, noting that Nk�1
n

P Nkn

iD1EŒeU i;j jF .0/� D 0 and by (C.10) together with a

maximal inequality, we have EŒmax1�i�kn
max1�j�mn

eU 2
i;j jF .0/� � K�

��=2
n L

2�
n .

Applying Lemma 8 in Chernozhukov et al. (2015) again, we can obtain

E
�

max
1�j�mn

ˇ̌̌̌
1

Nkn

NknX
iD1

eU i;j

ˇ̌̌̌ ˇ̌̌
F .0/

�
�K.��=2n

p
LnC�

3�=4
n L1C�

n /: (C.12)
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Then the Fuk–Nagaev type inequality implies that for every x > 0,

P
�

max
1�j�mn

ˇ̌̌̌
1

Nkn

NknX
iD1

eU i;j

ˇ̌̌̌
>K.��=2n L1C�

n /Cx
ˇ̌̌
F .0/

�
� expf�K 0x2���

n gCK
0x�4�3�n L

4�
n :

Taking x���=4n L
�
n, the right-hand side is bounded by expf�K���=2

n L
2�
n gCK�

2�
n �

K 0�
2�
n . Consequently, we have

P
�

max
1�j�mn

ˇ̌̌̌
1

Nkn

NknX
iD1

eU i;j

ˇ̌̌̌
>K��=4n L1C�

n

ˇ̌̌
F .0/

�
�K 0�2�n : (C.13)

Combining (C.9), (C.11) and (C.13), noting that �.1�$/=2 < �=2, by the law of

iterated expectation, for all $ � �=�, we obtain

P
�

max
1�j�mn

ˇ̌̌̌
Q�n;j

�n;j
�1

ˇ̌̌̌
>K��.1�$/=2

n L1C2�
n

�
�K 0��n:

Also note that ja� 1j � x=.xC 1/ implies ja�1 � 1j � x, combining the above

inequality with (C.8), we conclude that for $ > .�=�/_ .1�2
=�/,

P
�

max
1�j�mn

ˇ̌̌̌
�n;j

O�n;j
�1

ˇ̌̌̌
>K��.1�$/=2

n L1C2�
n

�
�K 0��n: (C.14)

Moreover, recall (C.12) and the definition of eU i;j , by the law of iterated expectation

and the Markov inequality, for all $ < 1�4�=�, we can show

P
�

max
1�j�mn

ˇ̌̌̌
1p
kn;j

kn;jX
iD1

eY i;j
�n;j

ˇ̌̌̌
>K�p.$�1/=4

n

p
Ln

�
�K 0��n; (C.15)

Combining (C.4), (C.7), (C.14), and (C.15), by the Markov inequality, the desired

inequality (C.2) follows by taking

ın ��
�.1�$/=2
n L1C2�

n ���.$�1/=4
n

p
Ln D�

�.1�$/=4
n L3=2C2�

n ;

where .�=�/_ .1� 2
=�/ < $ < 1� 4�=�, such $ exists since �=� < 1=6 and

2� < 
 . Note that the choice of sequence ın satisfies ın! 0 and ın
p
Ln � K�

�
n.

This completes the proof of Step 1.

STEP 2. For each 1� i � Nkn and 1� j � 2mn, we define eU �
i;j as

eU �
i;j �

eU i;j1f1� j �mng�eU i;j�mn
1fmnC1� j � 2mng:
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Observing that by the definition of eT �
n and eU �

i;j , we can rewrite

eT �
n� max

1�j�mn

ˇ̌̌̌
1p
kn;j

kn;jX
iD1

eY i;j
�n;j

ˇ̌̌̌
D max
1�j�mn

ˇ̌̌̌
1p
Nkn

NknX
iD1

eU i;j

ˇ̌̌̌
D max
1�j�2mn

1p
Nkn

NknX
iD1

eU �
i;j :

Recall that .eU i;j /1�i� Nkn;1�j�mn
are F .0/-conditionally independent, centered ran-

dom variables. Let .eZi;j /1�i� Nkn;1�j�mn
be a sequence of F .0/-conditionally in-

dependent, centered Gaussian random variables with conditional variance given by

EŒeZ2i;j jF .0/�DEŒeU 2
i;j jF .0/�D vi;j . Further, for each 1� i � Nkn and 1� j � 2mn,

let eZ�i;j � eZi;j1f1� j �mng�eZi;j�mn
1fmnC1� j � 2mng;

which implies EŒeZ�i;jeZ�i 0;j jF .0/� D EŒeU �
i;j
eU �
i 0;j jF .0/� for all 1 � i; i 0 � Nkn and

1 � j � 2mn. The proof of this part relies on a conditional version of Gaussian

approximations for maxima of sums, see Chernozhukov et al. (2013).

Generally, the bound in the conditional approximation may depend on �, hence

some specific random variableK.0/ involved in F .0/. In our case, since by Assump-

tion 5(i), � takes value in a compact set, the bound obtained in the approximation

can be universal. This universality property ensures that, after applying the law of

iterated expectation, the bound obtained from the Gaussian approximation remains

the same.

Note that Assumption 5(ii) implies, for p 2 f3;4g, and 1� j � 2mn,

1

Nkn

NknX
iD1

EŒjeU �
i;j j

p
jF .0/��Kp

1

kn;j

kn;jX
iD1

Gp.��.i;j //=�
p
n;j �Kp:

Combining with Assumption 5(iii) and (C.10), by Proposition 2.1 in Chernozhukov

et al. (2017), we obtain for all � < �=6 that

sup
x2R

ˇ̌̌̌
P.eT �

n � x jF .0//�P
�

max
1�j�2mn

1p
Nkn

NknX
iD1

eZ�i;j � x ˇ̌̌F .0/

�ˇ̌̌̌
�K.��=6n L7=6C�=3

n C��=6n L1C2�=3
n /�K��n:

For 1� j �mn, define Zj � Nk
�1=2
n

P Nkn

iD1
eZi;j . Recalling the definition of eZi;j and

�n;j , we conclude

.Z1;Z2; : : : ;Zmn
/> jF .0/

�N .0;Imn
/:

Since the right hand side is a pivot, .Zj /1�j�mn
remains standard Gaussian uncon-
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ditionally, hence satisfies the requirement in the assertion. Note that by construction

we have

max
1�j�2mn

1p
Nkn

NknX
iD1

eZ�i;j D max
1�j�mn

ˇ̌̌̌
1p
Nkn

NknX
iD1

eZi;j ˇ̌̌̌D max
1�j�mn

jZj j:

Equation (C.3) then follows by applying the law of iterated expectation. This com-

pletes the proof of our second step.

STEP 3. We are now ready to prove the assertion of Theorem 4.1. Combining

the results in (C.2) and (C.3), we observe that

sup
x2R

�
P.bT �

n � x/�P
�

max
1�j�mn

jZj j � x
��

� P.jbT �
n�

eT �
nj> ın/C sup

x2R

�
P.eT �

n � xC ın/�P
�

max
1�j�mn

jZj j � xC ın

��
Csup
x2R

P
�
x < max

1�j�mn

jZj j � xC ın

�
�K��n;

where the last term is bounded by K��n using the anti-concentration inequality (see

Corollary 2.1 in Chernozhukov et al. (2015)), together with the fact that

E
h

max
1�j�mn

jZj j
i
�K

p
Ln;

and ın
p
Ln �K�

�
n by construction of ın. Similarly, we can show

sup
x2R

�
P
�

max
1�j�mn

jZj j � x
�
�P.bT �

n � x/

�
�K��n:

This competes the proof of required statement. Q:E:D:

C.1.2 Proof of Theorem 4.2

For notation simplicity, we suppress the dependence on � and write Oqn;j .�/

as Oqn;j and qt.�/ as qt . Further denote qn;j � q�.1;j / and fn;j .x/ � f�.1;j /.x/.

By a standard localization procedure, we can strengthen Assumption 4 by assuming

T1D1, KmDK, andKmDK for some fixed compact set K and positive constant

K > 0. That is, it suffices to prove the results under Assumption 6.

Assumption 6. There exist a positive constant K, and a compact subset K � Z

such that: (i) � takes value in K; for all s; t 2 Tn;j where 1� j �mn, and for each
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p > 0, EŒk�t � �skp� �Kpjt � sjp=2 for some constant Kp; (ii) for each x 2 R, for

all z;z0 2 K, jF.z;x/�F.z0;x/j _ j@xF.z;x/� @xF.z
0;x/j � Kkz� z0k; (iii) for

each t 2 Œ0;T � and x in some neighborhood of qt , ft.x/Cf �1
t .x/Cj@xft.x/j<K;

(iv) max1�i�n jRn;i j D op.�
r
n/ for some r > 0.

The proof of Theorem 4.2 is based on a uniform Bahadur type representation of

infill sample quantiles, where the approximation error can be controlled uniformly,

as shown in the following lemma.

Lemma C.1 (Uniform Bahadur Representation). Suppose Assumption 6 holds.

For 1� j �mn, denote

Qqn;j � qn;j C

p
�.1��/

fn;j .qn;j /

1

kn;j

kn;jX
iD1

F.��.i;j /;qn;j /�1fY .��.i;j /; "n;�.i;j //� qn;j gq
F.��.i;j /;qn;j /

�
1�F.��.i;j /;qn;j /

� :

Then we have for each � 2 .0;1/, and for some positive � and 
 ,

P
�

max
1�j�mn

p
kn;j j Oqn;j � Qqn;j j>K�



n

�
�K 0��n:

PROOF OF LEMMA C.1. We prove the validity of the assertion for all positive � and


 such that

�C
 <
�

4
^

�1
2
��

�
^

�
r �

�

2

�
:

LeteY i;j �Y .��.i;j /; "n;�.i;j //, within each block j reindex the sequence .eY i;j /1�i�kn;j

in the non-decreasing order and denote as eY o1;j � � � � � eY okn;j ;j
. Note that in each

block, there are at least dkn;j�e of eY i;j no larger than Y o
dkn;j�e;j

Cmaxi2In;j
jRn;i j,

which implies eY o
dkn;j�e;j

� Y o
dkn;j�e;j

Cmaxi2In;j
jRn;i j. Similarly, there are at least

kn;j �dkn;j�e of eY i;j no smaller than Y o
dkn;j�e;j

�maxi2In;j
jRn;i j, which implieseY o

dkn;j�e;j
� Y o

dkn;j�e;j
�maxi2In;j

jRi j. Therefore, Assumption 6(iv) implies that

max
1�j�mn

p
kn;j j Ogn;j �eY odkn;j�e;j j �K�

��=2
n max

1�i�n
jRn;i jD op.�

r��=2
n /D op.�

�C

n /:

(C.16)

For each 1� j �mn, let eF n;j .x/� k�1
n;j

Pkn;j

iD1 1feY i;j � xg be the empirical distri-

bution function of .eY i;j /1�i�kn;j
. The rest of the proof is divided into three steps. In

Step 1, we show that the averaged distribution function k�1
n;j

Pkn;j

iD1 F.��.i;j /; �/ can

be well approximated by the empirical distribution function eF n;j .�/ in some small

neighborhood of true quantile qn;j , uniformly over 1� j �mn. In Step 2, we show
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that with large probability, the sample quantile eY o
dkn;j�e;j

falls in the neighborhood

described in Step 1 for all 1� j �mn. Step 3 derives the asserted statement.

STEP 1. For 1� j �mn, denote

Sn;j .x/� eF n;j .x/�eF n;j .qn;j /� 1

kn;j

kn;jX
iD1

�
F.��.i;j /;x/��

�
: (C.17)

For any set A � R, denote Sn;j .A/ � supx2A jSn;j .x/j. Let ~1;n � �
�=2
n Ln be a

positive real sequence, and let ~2;n ��
��=4
n be a positive integer sequence, denote

interval I n;j � .qn;j � ~1;n;qn;j C ~1;n/. For any integer `, let  n;j .`/ � qn;j C

~1;n~
�1
2;n`, denote interval In;j .`/ � Œ n;j .`/; n;j .`C 1/�, then we have I n;j �S~2;n�1

`D�~2;n
In;j .`/. Note that both eF n;j .�/ and F.z; �/ are nondecreasing functions,

we have for x 2 In;j .`/,

Sn;j .x/ � eF n;j � n;j .`C1/��eF n;j .qn;j /� 1

kn;j

kn;jX
iD1

�
F.��.i;j /; n;j .`//��

�
� Sn;j

�
 n;j .`C1/

�
C#n;j .`/;

where

#n;j .`/�
1

kn;j

kn;jX
iD1

F
�
��.i;j /; n;j .`C1/

�
�

1

kn;j

kn;jX
iD1

F
�
��.i;j /; n;j .`/

�
:

Similarly, we also have Sn;j .x/� Sn;j
�
 n;j .`/

�
�#n;j .`/. Denote

N#n;j � max
�~2;n�`�~2;n�1

#n;j .`/:

Then it follows the definition of I n;j that

Sn;j .I n;j /� Sn;j

�  2;n�1[
`D� 2;n

In;j .`/

�
� max

�~2;n�`�~2;n

ˇ̌
Sn;j

�
 n;j .`/

�ˇ̌
C N#n;j : (C.18)

For the second term, note that j n;j .`/� qn;j j � ~1;n! 0 for j`j � ~2;n. Then by

Assumption 6(iii) and the mean value theorem, recall that 
 < �=4� �, we have for

n sufficiently large,

max
1�j�mn

p
kn;j N#n;j � K max

1�j�mn

max
�~2;n�`�~2;n�1

p
kn;j j n;j .`C1/� n;j .`/j

D K~1;n~
�1
2;n max

1�j�mn

p
kn;j

� K��=4n Ln �K�
�C

n : (C.19)

For the first term in the right-hand side of (C.18), first consider a fixed 1� j �mn.
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For each �~2;n � `� ~2;n, let
�
�i;j .`/

�
1�i�kn;j

be a sequence of F .0/-conditionally

independent, Bernoulli random variables with parameter�
jF.��.i;j /; n;j .`//�F.��.i;j /;qn;j /j

�
1�i�kn;j

;

respectively. Let „n;j .`/ �
Pkn;j

iD1 �i;j .`/ denote their convolution. Note that by

construction and (C.17),

kn;j
ˇ̌
Sn;j

�
 n;j .`/

�ˇ̌ L jF.0/

D

ˇ̌̌̌
„n;j .`/�

kn;jX
iD1

�
F.��.i;j /; n;j .`//��

�ˇ̌̌̌
:

In view of above equation, by the triangle inequality, we have for all x 2 R,n
max

1�j�mn

max
�~2;n�`�~2;n

p
kn;jSn;j

�
 n;j .`/

�
� x

o
�

�
max

1�j�mn

max
�~2;n�`�~2;n

1p
kn;j

ˇ̌̌̌
„n;j .`/�

kn;jX
iD1

�
F.��.i;j /; n;j .`//

�F.��.i;j /;qn;j /
�ˇ̌̌̌
�
x

2

�

[

�
max

1�j�mn

1p
kn;j

kn;jX
iD1

jF.��.i;j /;qn;j /��j �
x

2

�
D

n
max

1�j�mn

max
�~2;n�`�~2;n

B.I /
n;j .`/�

x

2

o
[

n
max

1�j�mn

B.II/
n;j �

x

2

o
; (C.20)

where for 1� j �mn and �~2;n � `� ~2;n,

B.I /
n;j .`/ �

1p
kn;j

ˇ̌̌̌
„n;j .`/�

kn;jX
iD1

�
F.��.i;j /; n;j .`//�F.��.i;j /;qn;j /

�ˇ̌̌̌
;

B.II/
n;j �

1p
kn;j

kn;jX
iD1

jF.��.i;j /;qn;j /��j:

For the second term, note that Assumption 6(iii) implies for each t 2 Œ0;T �, ft.x/

is Lipschitz in some neighborhood of qt , and F.�t ; �/ has no mass at qt , hence

F.�t ;qt/D � by the definition of qt . Therefore, we deduce

P.jqt �qsj> x/ � P.qt �qs > x/CP.qs�qt > x/

� P
�
F.�t ;qsCx/ < �

�
CP

�
F.�s;qtCx/ < �

�
� P

�
F.�s;qsCx/�Kk�s� �tk< �

�
CP

�
F.�t ;qtCx/�Kk�s� �tk< �

�
� 2P

�
k�s� �tk>Kx

�
; (C.21)
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where the second line is by the fact that F.z;x/ is increasing in x, the third line is by

Assumption 6(ii). Also note that by Fubini’s theorem EŒXp� D
R1

0
pxp�1P.X >

x/dx for nonnegative random variable X . Therefore, it follows Assumption 6(i)

and (C.21) that the instantaneous conditional quantile process q is also 1=2-Hölder

continuous under the Lp-norm. Then by a maximal inequality, we have


 max
1�j�mn

B.II/
n;j





Lp

�Kpm
1=p
n max

1�j�mn

p
kn;j .kn;j�n/

1=2
�Kp�

.��1/=pC1=2��
n :

Taking p > .1��/=.1=2�����
/, the right-hand side becomes o.��C
n /. There-

fore, by the Markov inequality and the law of iterated expectation, we conclude that

P
�

max
1�j�mn

B.II/
n;j �K�



n

�
�K 0��n: (C.22)

For the first term inside the max operator in the right-hand side of (C.20), by the

Bernstein inequality (see, e.g., bound (2.13) under Theorem 3 of Hoeffding (1963)),

we have for all x 2 RC,

P
�p
kn;jB

.I /
n;j .`/� x jF

.0/
�

� 2exp
�
�

x2=2Pkn;j

iD1

ˇ̌
F
�
��.i;j /; n;j .`/

�
�F.��.i;j /;qn;j /

ˇ̌
Cx

�
: (C.23)

According Assumption 6(iv), we can choose and fix a positive constant M1 such

that @xF.�t ;qt/ <M1 for all t 2 Œ0;T �. Then by the definition of  n;j .`/, we have

kn;jX
iD1

ˇ̌
F
�
��.i;j /; n;j .`/

�
�F.��.i;j /;qn;j /

ˇ̌
�M1kn;j~1;n: (C.24)

Note that the right-hand side bound of above equation is deterministic and does note

depend on `. Therefore, combining (C.23) and (C.24), we can conclude that

P
�

max
�~2;n�`�~2;n

B.I /
n;j .`/�M2�

�=4
n Ln

ˇ̌
F .0/

�
�

~2;nX
`D�~2;n

P
�
B.I /
n;j .`/�M2�

�=4
n Ln jF .0/

�
� 4~2;n exp

�
�

M 2
2 kn;j�

�=2
n L2n=2

M1kn;j~1;nCM2

p
kn;j�

�=4
n Ln

�
:

Let On.M1;M2/ denote the right-hand side bound of the above display. Note that

by the definition of ~1;n, as �n! 0 (or equivalently, as n!1), we have

log
�
On.M1;M2/

�
logn

!
�

4
�
M 2
2

2M1

:
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Taking M2 >
p
2M1.1C�=4/, the above limit is less than �1. By the property

of Harmonic p-series, this implies
P1

nD1O.M1;M2/ <1. Then by the Borel–

Cantelli lemma, we conclude that

P
�

limsup
n!1

max
�~2;n�`�~2;n

B.I /
n;j .`/�M2�

�=4
n Ln

ˇ̌
F .0/

�
D 0:

Note that 
 < �=4� �, then by the law of iterated expectation, we have for n suffi-

ciently large

P
�

max
1�j�mn

max
�~2;n�`�~2;n

B.I /
n;j .`/�K�



n

�
�

mnX
jD1

P
�

max
�~2;n�`�~2;n

B.I /
n;j .`/�M2�

�=4
n Ln

�
D 0: (C.25)

Combining (C.18)-(C.22), and (C.25), we conclude that

P
�

max
1�j�mn

p
kn;j Sn;j .I n;j /�K�



n

�
�K 0��n: (C.26)

STEP 2. Recall the definition of eY o
dkn;j�e;j

and eF n;j .�/, for each 1 � j � mn,

we have eY o
dkn;j�e;j

� pn;j � ~1;n if and only if kn;jeF n;j .qn;j � ~1;n/ � dkn;j�e.
Therefore,

f91� j �mn such that eY odkn;j�e;j � pn;j �~1;ng

D

n
max

1�j�mn

�
kn;jeF n;j .qn;j �~1;n/�dkn;j�e�� 0o: (C.27)

Let .� 0
i;j / be a sequence of F .0/-conditionally independent, Bernoulli random vari-

ables with parameter �
F.��.i;j /;qn;j �~1;n/

�
1�i�kn;j

;

respectively. Let „0
n;j �

Pkn;j

iD1 �
0
i;j denote their convolution. By the construction,

we have

kn;jeF n;j .qn;j �~1;n/ L jF.0/

D „0
n;j : (C.28)

Note that Assumption 6(i)-(iii) imply that

max
1�i�kn;j

jF.��.i;j /;qn;j �~1;n/��j �M
�

max
1�i�kn;j

k��.i;j /� ��.1;j /kC~1;n

�
:

Observe that in the right-hand side of above display, by Assumption 6(i), we have


 max
1�j�mn

max
1�i�kn;j

.��.i;j /� ��.1;j //




Lp

� Kpm
1=p
n max

1�j�mn

.kn;j�n/
1=2

� Kp�
.��1/=pC.1��/=2
n : (C.29)
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Taking p > .1��/=.1=2����/, the right-hand side becomes o.~1;n��n/. Let En;1

be the event such that

En;1 �
n

max
1�j�mn

max
1�i�kn;j

k��.i;j /� ��.1;j /k< ~1;n

o
:

Therefore, from (C.29), by the Markov inequality and the law of iterated expecta-

tion, we conclude that P.E{
n;1/�K�

�
n. In view of (C.28), and noting that

max
1�j�mn

.dkn;j�e�kn;j�/ < 1;

we can rewriten
max

1�j�mn

�
kn;jeF n;j .qn;j �~1;n/�dkn;j�e�� 0o\En;1

�

�
max

1�j�mn

�
„0
n;j �

kn;jX
iD1
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�
� 1� .M CK���

n /~1;n

�
\En;1

�

n
max

1�j�mn

�
„0
n;j �

kn;jX
iD1

F.��.i;j /;qn;j �~1;n/

�
� �K���

n ~1;n

o
\En;1:

For the term inside the max operator of above display, it follows the Bernstein in-

equality that

P
��
„0
n;j �

kn;jX
iD1

F.��.i;j /;qn;j �~1;n/� �K�
��
n ~1;n

�
\En;1

ˇ̌̌
F .0/

�
� exp

�
�

.�K�
��
n ~1;n/

2

2
�Pkn;j

iD1 F.��.i;j /;qn;j �~1;n/�K�
��
n ~1;n

�� :
� exp

�
�
K�

�2�
n ~21;n

2kn;j�

�
;

where the last line is by the fact that

ˇ̌kn;jX
iD1

F.��.i;j /;qn;j �~1;n/�kn;j�
ˇ̌
�K���

n ~1;n;

on En;1. Note that the expression inside the exponential operator has an order of

�
�2�
n ~21;n=�

��
n �L

2
n, observing that

R1

0
expf� log.x/2gdx <1, which implies the

right-hand side is summable. Then by the Borel–Cantelli lemma, we conclude that

on the event En;1,

P
�n

limsup
n!1

kn;jeF n;j .qn;j �~1;n/� dkn;j�eo\En;1 ˇ̌F .0/
�
D 0:
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Then by the law of iterated expectation, we have for n sufficiently large

P
�n

max
1�j�mn

�eF n;j .qn;j �~1;n/�dkn;j�e�� 0o\En;1�
�

mnX
jD1

P
�
f.eF n;j .qn;j �~1;n/�dkn;j�e/� 0g\En;1�D 0: (C.30)

Combining (C.27) and (C.30) yields for n sufficiently large,

P.f91� j �mn such that eY odkn;j�e;j � pn;j �~1;ng/

� P
�n

max
1�j�mn

�eF n;j .qn;j �~1;n/�dkn;j�e�� 0o\En;1�CP.E{
n;1/

�K��n: (C.31)

Following a similar argument as driving (C.31), we can also show

P.91� j �mn such that eY odkn;j�e;j � pn;j C~1;n/�K�
�
n: (C.32)

Combining (C.31) and (C.32), recall the definition of I n;j , we conclude that

P.eY odkn;j�e;j 2 I n;j for all 1� j �mn/� 1�K��n: (C.33)

Now, let En;2 be the event such that

En;2 �
n

max
1�j�mn

p
kn;j Sn;j .I n;j /�K�



n

o
\feY odkn;j�e;j 2 I n;j for all 1� j �mng:

Then (C.26) and (C.33) imply P.E{
n;2/ �K

0��n. Recall that Assumption 6(iii) im-

plies @xfn;j .x/ is uniformly bounded over x 2
Smn

jD1 I n;j for n sufficiently large.

On the event En;2, by the second order Taylor expansion, we have

max
1�j�mn

max
1�i�kn;j

p
kn;j

ˇ̌̌
F.��.i;j /;eY odkn;j�e;j /�F.��.i;j /;qn;j /

�.eY odkn;j�e;j �qn;j /f�.i;j /.qn;j /
ˇ̌̌

�K���=2
n ~21;n �K�



n: (C.34)

It follows Assumption 6(ii) and (C.29) that

max
1�j�mn

max
1�i�kn;j

p
kn;j

�
jF.��.i;j /;qn;j /��jC jf�.i;j /.qn;j /�fn;j .qn;j /j

�
D op.�

�C

n /: (C.35)

Combining (C.34) and (C.35) yields

P
�n

max
1�j�mn

max
1�i�kn;j

p
kn;j

ˇ̌̌
F.��.i;j /;eY odkn;j�e;j /�F.��.i;j /;qn;j /
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�.eY odkn;j�e;j �qn;j /fn;j .qn;j /
ˇ̌̌
�K�
n

o
\En;2

�
�K 0��n: (C.36)

On the event En;2, by the definition of Sn;j , we have
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p
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By simple algebra we have
p
kn;j jdkn;j�e=kn;j ��j � k

�1=2
n;j � K�

�=2
n � K�



n.

Combing with (C.35)-(C.37), by the triangle inequality, we conclude that
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�K��n: (C.38)

STEP 3. Combining (C.16) and (C.38), by the triangle inequality and the Markov

inequality, we obtain
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n
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Recall j
p
a� 1j � ja� 1j for positive a, note that by (C.29) and Assumption 6(ii),

we have

max
1�j�mn

max
1�i�kn;j

ˇ̌̌̌s
�.1��/

F.��.i;j /;qn;j /
�
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n /: (C.40)

Combining (C.39) and (C.40) completes the proof of Lemma C.1. Q:E:D:

PROOF OF THEOREM 4.2. We are now ready to prove strong approximation result

for the functional quantile estimator . Oqn;t/t2Œ0;T �. With a sightly stronger restriction

on � than in the proof of Lemma C.1, we prove the validity of the assertion for all

positive � satisfying

� <
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6
^

�1
2
��

�
^

�
r �

�
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�
:

Correspondingly, let 
 be a positive constant satisfying
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��
4
� �
�
^

�1
2
��� �

�
^

�
r �

�

2
� �
�
:

By the triangle inequality, we have
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1�j�mn
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t2Tn;j

p
kn;j j Oqn;t �qn;t j
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p
kn;j jqn;j �qt jC max

1�j�mn

p
kn;j j Oqn;j � Qqn;j j
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j Qqn;j �qn;j j: (C.41)

For the first term, by (C.21) and (C.29), we have
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1�j�mn
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t2Tn;j

p
kn;j jqn;j �qt j D op.�

�C

n /: (C.42)

Let Nkn � max1�j�mn
kn;j , then Nkn ��

��
n and 1=K � Nkn=kn;j �K uniformly for

all 1� j �mn. For each 1� i � Nkn and 1� j �mn, define eU i;j and �i;j as follows:
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s
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kn;j

p
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�
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By construction the variables eU i;j are F .0/-conditionally independent across differ-

ent values of 1 � i � Nkn and 1 � j �mn with mean zero and conditional variance

Q�2i;j . Note that

p
kn;j . Qqn;j �qn;j /D

1p
Nkn

NknX
iD1

eU i;j ; for 1� j �mn:

Therefore, for each 1� i � Nkn and 1� j � 2mn, define eU �
i;j as

eU �
i;j �

eU i;j1f1� j �mng�eU i;j�mn
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We can thus rewrite
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p
kn;j j Oqn;j �qn;j j D max

1�j�2mn

1p
Nkn

NknX
iD1

eU �
i;j :

Let .eZi;j /1�i� Nkn;1�j�mn
be a sequence of centered mixed Gaussian variables with

F .0/-conditional variance EŒeZ2i;j jF .0/� D EŒeU 2
i;j jF .0/� D Q�2i;j . Further, for each

1� i � Nkn and 1� j � 2mn, let

eZ�i;j � eZi;j1f1� j �mng�eZi;j�mn
1fmnC1� i � 2mng;

which implies EŒeZi;jeZi 0;j jF .0/� D EŒeZi;jeZi 0;j jF .0/� for all 1 � i; i 0 � Nkn and

1 � j � 2mn. Recall that the variables eU i;j are bounded, by Proposition 2.1 in

Chernozhukov et al. (2017), we obtain for all � < �=6 that
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ˇ̌̌̌
P
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p
kn;j j Qqn;j �qn;j j � x

ˇ̌
F .0/

�
�P

�
max

1�j�2mn

1p
Nkn

NknX
iD1

eZ�i;j � x ˇ̌̌F .0/
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�K��n: (C.43)

For 1� j �mn, defineZj � Nk
�1=2
n

P Nkn

iD1
eZi;j . Recalling the definition of eZi;j and

Q�i;j , we have EŒZ2j jF .0/�D �.1��/=fn;j .qn;j /
2 � �2j for 1� j �mn, hence

.Z1; : : : ;Zmn
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2
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Also note that by construction we have
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1p
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jZj j: (C.44)

Therefore, it follows (C.41) and the triangle inequality that
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where the first term is bounded by K��n using (C.42) and the Markov inequality,

the second term uses Lemma C.1, the third term is bounded by K��n using (C.43),

(C.44) and the law of iterated expectation, the last term is bounded by K��n using

the anti-concentration inequality (see Corollary 2.1 in Chernozhukov et al. (2015)),

together with the fact that

E
h

max
1�j�mn

jZj j
i
�K

p
Ln:

Similarly, we can show
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�
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t2Tn;j

p
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��
�K��n:

This competes the proof of required statement. Q:E:D:

C.1.3 Proof of Theorem 4.3

As mentioned in the main text, we prove a stronger result that the statement in

Theorem 4.3 holds for all Sn � Sall
n with jSnj � 3. Let Gn � F .0/_ �.Yi�n

W 1 �

i � n/ denote the smallest � -algebra contains F .0/[�.Yi�n
W 1� i � n/. Also, we

strengthen Assumption 3 to Assumption 5 by a using of Localization procedure. We

prove assertions of the theorem for positive � satisfying

� <
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�
:

To facilitate our analysis, we adopt the notations from the proof of Theorem 4.1,

and introduce some additional notations. For 1� i � kn and .j;j 0/ 2 Sn, denote

Vn;i.j;j
0/ � Y�.i;j /�Y�.i;j 0/;
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eV n;i.j;j 0/ � Y .��.i;j /; "n;�.i;j //�Y .��.i;j 0/; "n;�.i;j 0//;

�n;i.j;j
0/ � g�.i;j /�g�.i;j 0/;

N�n.j;j
0/ � gn;j �gn;j 0;
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0/2 � �2n;j C�

2
n;j 0 :

Using above notations, we further define
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1
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�eV n;i.j;j 0/� . Ogn;j � Ogn;j 0/

�
&n.j;j 0/

:

First, we compute the approximation bounds of these variables and their condi-

tional quantiles. Our analysis relies on the following decomposition of jDn�eDnj,

jDn�eDnj

� max
.j;j 0/2Sn

ˇ̌̌̌
&n.j;j

0/

O&n.j;j 0/
�1
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�
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&n.j;j 0/
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.j;j 02Sn/

jCn.j;j
0/j;

where for .j;j 0/ 2 Sn, Cn.j;j 0/� C.I /n .j;j 0/CC.II/n .j;j 0/ with

C.I /n .j;j 0/ �
1
p
kn

knX
iD1

Rn;�.i;j /�Rn;�.i;j 0/

&n.j;j 0/
;

C.II/n .j;j 0/ �
1
p
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knX
iD1

�n;i.j;j
0/� N�n.j;j

0/

&n.j;j 0/
:

By the triangle inequality and (C.6), for p > .1��/=.1=2��� ��
/, we have



 max
.j;j 0/2Sn

1
p
kn

knX
iD1

�
�n;i.j;j

0/� N�n.j;j
0/
�




Lp

�Kpm
1=p
n �1=2��

n D o.��C
n /:

(C.45)
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Then combing (C.5) and (C.45), it follows the triangle inequality again that

max
.j;j 0/2Sn

jCn.j;j
0/j � max

.j;j 0/2Sn

jC.I /n .j;j 0/jC max
.j;j 0/2Sn

jC.II/n .j;j 0/j D op.�
�C

n /:

(C.46)

Note that for positive a;b;c;d , we have a=b � c=d implies a=b � .aC c/=.bC

d/� c=d . Combing with (C.14), we obtain that for �=� �$ < 1�2
=�,

P
�

max
.j;j 0/2Sn

ˇ̌̌̌
&n.j;j

0/

O&n.j;j 0/
�1

ˇ̌̌̌
>K��.1�$/=2

n L2�n log.jSnj/
�
�K 0��n: (C.47)

Combining (C.46) and (C.47), following the similar procedure as deriving (C.2), we

can show that

P.jDn�eDnj>K%n/�K
0��n; (C.48)

for some sequence %n � �
�.1�$/=4
n L

2�
n log.jSnj/3=2 where .�=�/_ .1� 2
=�/ <

$ < 1� 4�=�. Note that jSnj � mn.mn� 1/ by construction. On the other hand,

we have the following decomposition of jbDB
n �

eDB
n j as

jbDB
n �

eDB
n j

� max
.j;j 0/2Sn

ˇ̌̌̌
&n.j;j
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�1
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�
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1
p
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ei
�eV n;i.j;j 0/� . Ogn;j � Ogn;j 0/

�
&n.j;j 0/

�
C max
.j;j 0/2Sn

jDn.j;j
0/j; (C.49)

where for .j;j 0/ 2 Sn, Dn.j;j
0/ � k

�1=2
n

Pkn

iD1 ei.Rn;�.i;j / �Rn;�.i;j 0//=&n.j;j
0/.

Recall that .ei/1�i�kn
follows i.i.d. standard Gaussian distribution, hence

max
1�i�kn

jei j
2
DOp.Ln/;

by the maximal inequality. Applying the Cauchy–Schwartz inequality and combin-

ing with (C.46), we have

max
.j;j 0/2Sn

jDn.j;j
0/j �

r
max
1�i�kn

jei j2� max
.j;j 0/2Sn

jC.I /n .j;j 0/j2 D op.�
�C

n

p
Ln/:

(C.50)

Let En;3 be the event such that

En;3 �

�
max

.j;j 0/2Sn

ˇ̌̌̌
&n.j;j

0/

O&n.j;j 0/
�1

ˇ̌̌̌
���.1�$/=2

n L2�n log.jSnj/
�

\

n
max

.j;j 0/2Sn

jDn.j;j
0/j ��
=2n

o
;

by (C.47), (C.50) and the Markov inequality, we have shown P.En;3/ > 1�K 0��n.
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Note that conditional on Gn, the normalized t -statistics
�
k

�1=2
n

Pkn

iD1 ei.
eV n;i.j;j 0/�

. Ogn;j � Ogn;j 0//=&n.j;j
0/
�
.j;j 0/2Sn

follow a Gaussian distribution with bounded vari-

ance, which implies EŒeDB
n jGn� �K

p
log.jSnj/. Therefore, it follows the Markov

inequality and (C.49) that

P.fjbDB
n �

eDB
n j> %ng\En;3 jGn/

� %�1
n

�
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�
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�
K
p

log.jSnj/C�
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�

K 0�
�.1�$/=4
n L
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n log.jSnj/3=2

�K��.1�$/=4
n :

With K denoting the same constant as in the above display, by the law of iterated

expectation, we can conclude that

P
�
P.jbDB

n �
eDB
n j> %n jGn/ > K��.1�$/=4

n

�
� P.E{

n;3/�K
0��n: (C.51)

Let eXn.j;j
0/ be centered mixed Gaussian variables indexed by .j;j 0/ with F .0/-

conditional covariance matrix such that for all .j;j 0/; .`;`0/ 2 Sn,

EŒeXn.j;j
0/eXn.`;`

0/ jF .0/�

D E
��

1
p
kn

knX
iD1

eV n;i.j;j 0/��n;i.j;j
0/

&n.j;j 0/

�

�

�
1
p
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knX
iD1

eV n;i.`;`0/��n;i.`;`
0/

&n.`;`0/

� ˇ̌̌
F .0/

�
:

Then by Proposition 2.1 in Chernozhukov et al. (2017), we have for all � < �=6,
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P
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�
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�
��=6n L�=3n .LnC log.jSnj//7=6C��=6n L2�=3n .LnC log.jSnj//

�
�K��n: (C.52)

By Corollary 4.2 in Chernozhukov et al. (2017), for all � < �=7, with probability at

least 1�K��n,

sup
x2R

ˇ̌̌
P.eDB

n � x jGn/�P
�
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.j;j 0/2Sn

eXn.j;j
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�
�K 0��n: (C.53)
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Let ecvn.�;Sn/ denote the F .0/-conditional 1� .�/ quantile of max.j;j 0/2Sn
eXn.j;j

0/,

i.e.,

ecvn.�;Sn/� inf
n
C 2 R W P

�
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.j;j 0/2Sn
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0/� C
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F .0/

�
� 1� .�/

o
:

Note that EŒmax.j;j 0/2Sn
eXn.j;j

0/ jF .0/� �K
p

log.jSnj/. Also note that Assump-

tion 5(i) implies the bounds obtained in the previous equation and in the approx-

imation (C.52), (C.53) are universal. Consequently, we can fix a positive uni-

versal constant M satisfying the previous equation. Therefore, for ˛ 2
�
0;1�

M%n
p

log.jSnj/
�
, by the anti-concentration inequality, we have

P
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Let En;4 be the event such that

En;4 � fP.jbDB
n �

eDB
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;

by (C.51) and (C.53), we have shown P.En;4/� 1�K 0��n. Therefore, we have

P
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where the third line uses the fact that �.1�$/=4 > �, and the fourth line is by

(C.54). By the law of iterated expectation and the definition of cvBn .˛;Sn/, we can

conclude that

P
�
cvBn .˛;Sn/ < ecvn.˛CM.��nC%nplog.jSnj//;Sn/
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� P.E{

n;4/�K
0��n:

(C.55)

By the anti-concentration inequality, for ˛ 2
�
M%n

p
log.jSnj/;1

�
, we have
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Similarly, we can show

P
�
cvBn .˛;Sn/ > ecvn.˛�M.��nC%nplog.jSnj//;Sn/

�
� P.E{

n;4/�K
0��n:

(C.56)

We are now ready to prove the asserted statements in the theorem, starting from

assertion (i). Assume that max.j;j 0/2Sn
.gn;j �gn;j 0/ � 0, this implies N�n.j;j 0/ � 0

for all .j;j 0/ 2 Sn. Combing with (C.45) yields
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Therefore, by (C.47) and the Markov inequality, this gives P.bDn�Dn > %n=2/ �

K��n. Hence
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(C.57)

where the second line is by (C.48), and the last line is by (C.55). For the first term,

we have

P
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where the second line is by (C.45), (C.52), and the law of iterated expectation, the

third line is by (C.54), the last line is by the definition of ecvn.�;Sn/ and the fact that

Sn � f1; : : : ;mng�f1; : : : ;mng hence

%n
p

log.jSnj/�K%n
p
Ln �K

0��n:
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Combing (C.57), (C.58), and applying the law of iterated expectation again, we can

conclude that

P
�bDn > cv

B
n .˛;Sn/

�
� ˛CK��n; if max

.j;j 0/2Sn

.gn;j �gn;j 0/� 0; (C.59)

which is the first part of assertion (i). For the second part, assume N�n.j;j 0/ D 0,

then (C.45) yields
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Therefore, by (C.47) and the Markov inequality, this gives P.Dn� bDn > %n=2/ �
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(C.60)

where the second line is by (C.48) and (C.56). For the first term, we have
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where the second line is by (C.45), (C.52), and (C.54). Combing (C.59)-(C.61), and

the law of iterated expectation completes the proof of assertion (i).

For assertion (ii), assume that max.j;j 0/2Sn
N�n.j;j

0/ � ‡ for some positive ‡ .

Combining with (C.45) and (C.47) gives P.Dn� bDnC�
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n.

Therefore, we have
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where the second line is by (C.45), (C.48), (C.52), (C.54), and (C.56). The third line

is by Borell’s concentration inequality (see, e.g., Proposition A.2.1 in van der Vaart

and Wellner (1996)), which gives P
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:

This competes the proof of required statement. Q:E:D:

C.1.4 Proof of Corollary 4.1

The corollary is a direct consequence of Theorem 3.3 in Mogstad et al. (2023)

and Theorem 4.3. Q:E:D:

C.2 Extension to Dependent Disturbance

The strong approximation results derived in this paper can be extended to the

case without assuming disturbances to be conditionally independent. In particu-

lar, we outline the main steps in constructing a similar approximation result of

max1�j�mn
supt2Tn;j

p
kn;j j Ogn;t �gt j for stationary ˇ-mixing disturbance. For any

sub � -fields A;B of F , denote

ˇ.A;B/�
1

2
sup

� IX
iD1

JX
jD1

jP.Ai \Bj /�P.Ai/P.Bj /j
�
;
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where the supremum is taken over all pairs of finite partitions fA1; : : : ;AI g and

fB1; : : : ;BJ g of � such that Ai 2 A for each i and Bj 2 B for each j . Define the

kth ˇ-mixing coefficient of ."n;i/1�i�n as ˇ.k/�max1�`�n�k ˇ.H`
1;Hn

`Ck
/ where

Hi;j � �."n;i ; : : : ; "n;j / for 1� i � j � n. Moreover, for each 1� q � n, and E �Z
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q

qX
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�
:

We follow the notations used in the proof of Theorem 4.1. Note that the derivation

of (C.5) and (C.6) does not depend on conditional independence of ."n;i/1�i�n,

hence we have

P

 ˇ̌̌̌
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p
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s
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�eY i;j�mn
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1�j�mn

ˇ̌̌̌
1p
kn;j

kn;jX
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eY �i;j :
The key step is to reduce the summation on the right hand side of above display into

an independent sum. To establish this, we need the following assumption which

specifies the rate of convergence of ˇ-mixing coefficient and boundedness of long-

run variance.

Assumption 7. There exists a positive constant K such that (i) ˇ.n/ � Kn�� for

some positive �; (ii) 1=K � �2.K;q/� N�2.K;q/�K for all 1� q � n.

The construction is based on the method of “Bernstein sums,” which is widely

used for analyzing dependent processes, see, e.g., Bernstein (1927) and Davidson

(1992). Namely, let q1;n ���2�
n and q2;n ����

n where �=.2C�/ < � < �=2 and

q1;nC q2;n < Nkn=2. Denote Ǹn � b Nkn=.q1;nC q2;n/c � �
2���
n . For 1 � j � 2mn
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and 1� `� Ǹn, define

eS`;j � .`�1/.q1;nCq2;n/Cq1;nX
iD.`�1/.q1;nCq2;n/C1

eY �i;j ; and VS`;j �

`.q1;nCq2;n/X
iD.`�1/.q1;nCq2;n/Cq1;nC1

eY �i;j :
Then we have the following decomposition

1p
Nkn

NknX
iD1

eY �i;j D 1p
Nkn

Ǹ
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(C.62)

Moreover, let .eS 0
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/1�`� Ǹ

n
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n
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projection mapping is continuous, hence the Borel � -algebra of R2mn is equivalent

to the � -algebra generated by the Cartesian product of Borel sets of R. Therefore,

by Assumption 7(i), it follows Corollary 2.7 of Yu (1994) that
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Taking positive constants � and 
 such that �C
 <
�
.2C�/���

�
^ .�=2/^ .�=2�

�/. Combing (C.62)-(C.64) and by the law of iterated expectation, we have
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where for 1� j � 2mn,

E.I /n;j �

ˇ̌̌̌
1p
Nkn

Ǹ
nX

`D1

VS 0
`;j

ˇ̌̌̌
; and E.II/n;j �

ˇ̌̌̌
1p
Nkn

NknX
iD`.q1;nCq2;n/C1

eY �i;j ˇ̌̌̌:
For the second term, by Assumption 5(iii) and Assumption 7(ii), it follows Lemma

8 in Chernozhukov et al. (2015) that

E
h

max
1�j�2mn

E.I /n;j
ˇ̌
F .0/

i
� K

�
q

�1=2
1;n q

1=2
2;n

p
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�1=2
n q2;nL

3=2
n

�
� K�.�=2/^.�=2��/

n L3=2n :

Then by the Markov inequality and the law of iterated expectation, we obtain

P
�

max
1�j�2mn

E.I /n;j �K�


n

�
�K 0��n: (C.66)

For the third term in the right hand side of (C.65), note that Assumption 7(i) implies

˛-mixing and hence, combining with Assumption 5(iii) and 7(ii) yields condition

(1.3) in Rio (1995). Therefore, it follow the law of iterated logarithm for stationary

mixing sequence (see Theorem 2 in Rio (1995)) that for each 1� j � 2mn,

P.E.II/n;j >K�
n jF .0//� P.E.II/n;j >K Nk�1=2
n q

1=2
1;n

p
Ln jF .0//D 0:

Then by the law of iterated expectation, we have

P
�

max
1�j�2mn

E.II/n;j >K�
n

�
�

2mnX
jD1

P.E.II/n;j >K�
n/D 0: (C.67)

Combining (C.65)-(C.67) yields

P
�
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Following a similar argument, we can also show that

P
�

max
1�j�2mn

1p
Nkn

NknX
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eY �i;j < x�� P
�
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Recall for each 1 � j � 2mn, the summand .eS 0
`;j
/1�`� Ǹ

n
is F .0/-conditionally in-

dependent, then a similar strong approximation result can be established following

the same proof as in Theorem 4.1.
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Series A, pages 66–87.

Kalnina, I. and Linton, O. (2008). Estimating quadratic variation consistently in the

presence of endogenous and diurnal measurement error. Journal of Econometrics,

147(1):47–59.

167



Kandel, E. and Pearson, N. D. (1995). Differential interpretation of public signals

and trade in speculative markets. Journal of Political Economy, 103(4):831–872.

Karr, A. (1991). Point Processes and Their Statistical Inference, volume 7. CRC

Press.

Ke, Z. T., Kelly, B. T., and Xiu, D. (2019). Predicting returns with text data. Tech-

nical report, National Bureau of Economic Research.

Kingman, J. F. (1961). The single server queue in heavy traffic. In Mathematical

Proceedings of the Cambridge Philosophical Society, volume 57, pages 902–904.

Cambridge University Press.

Knight, J. L. and Yu, J. (2002). Empirical characteristic function in time series

estimation. Econometric Theory, 18(3):691–721.

Koenker, R. (2005). Quantile regression, volume 38. Cambridge university press.

Koenker, R. and Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal

of the Econometric Society, pages 33–50.

Kolokolov, A. (2022). Estimating jump activity using multipower variation. Journal

of Business & Economic Statistics, 40(1):128–140.

Kristensen, D. (2010). Nonparametric filtering of the realized spot volatility: A

kernel-based approach. Econometric Theory, 26(1):60–93.

Kuchibhotla, A. K. and Chakrabortty, A. (2022). Moving beyond sub-gaussianity

in high-dimensional statistics: Applications in covariance estimation and linear

regression. Information and Inference: A Journal of the IMA, 11(4):1389–1456.

Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica,

53(6):1315–1335.

Le Cam, L. (1960). Locally asymptotically normal families of distributions. Uni-

viversity of California Publications in Statistics, 3:37–98.

Le Cam, L. (1986a). Asymptotic methods in statistical decision theory. Springer

Series in Statistics.

168



Le Cam, L. (1986b). Asymptotic Theory of Statistical Inference. John Wiley &

Sons.

Le Cam, L. and Yang, G. L. (2000). Asymptotics in statistics: some basic concepts.

Springer Science & Business Media.

Lee, S. (2012). Jumps and information flow in financial markets. Review of Finan-

cial Studies, 25(2):439–479.

Lee, S. and Mykland, P. (2008). Jumps in financial markets: A new nonparametric

test and jump dynamics. Review of Financial Studies, 21(6):2535–2563.

Lehmann, E., Romano, J. P., and Popper, J. (2005). On optimality of stepdown and

stepup multiple test procedures. The Annals of Statistics, 33(3):1084–1108.

Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation. Springer Texts

in Statistics.

Li, J. and Liao, Z. (2020). Uniform nonparametric inference for time series. Journal

of Econometrics, 219(1):38–51.

Li, J. and Liu, Y. (2021). Efficient estimation of integrated volatility functionals

under general volatility dynamics. Econometric Theory, 37(4):664–707.

Li, J., Todorov, V., and Tauchen, G. (2017). Adaptive estimation of continuous-

time regression models using high-frequency data. Journal of Econometrics,

200(1):36–47.

Li, J., Wang, D., and Zhang, Q. (2022). Reading the candlesticks: An ok estimator

for volatility. Review of Economics and Statistics, forthcoming.

Li, J. and Xiu, D. (2016). Generalized method of integrated moments for high-

frequency data. Econometrica, 84(4):1613–1633.

Li, Z. M. and Linton, O. (2022). A ReMeDI for microstructure noise. Econometrica,

90(1):367–389.

Liu, C. and Tang, C. Y. (2013). A state space model approach to integrated co-

variance matrix estimation with high frequency data. Statistics and Its Interface,

6(4):463.

169



Loughran, T. and McDonald, B. (2020). Textual analysis in finance. Annual Review

of Financial Economics, 12:357–375.

Lucca, D. O. and Moench, E. (2015). The pre-fomc announcement drift. Journal of

Finance, 70(1):329–371.

Miranda-Agrippino, S. and Ricco, G. (2021). The transmission of monetary policy

shocks. American Economic Journal: Macroeconomics, 13(3):74–107.

Mogstad, M., Romano, J. P., Shaikh, A. M., and Wilhelm, D. (2023). Inference for

ranks with applications to mobility across neighbourhoods and academic achieve-

ment across countries. Review of Economic Studies, pages 00, 01–23.

Mykland, P. A. and Zhang, L. (2009). Inference for continuous semimartingales

observed at high frequency. Econometrica, 77(5):1403–1445.

Nakamura, E. and Steinsson, J. (2018a). High-frequency identification of mone-

tary non-neutrality: the information effect. The Quarterly Journal of Economics,

133(3):1283–1330.

Nakamura, E. and Steinsson, J. (2018b). Identification in macroeconomics. Journal

of Economic Perspectives, 32(3):59–86.

Nelson, D. B. (1990). Arch models as diffusion approximations. Journal of Econo-

metrics, 45(1-2):7–38.

Nison, S. (2001). Japanese Candlestick Charting Teechniques. Prentice Hall Press,

2nd edn.

Olver, F. W., Lozier, D. W., Boisvert, R. F., and Clark, C. W. (2010). NIST Hand-

book of Mathematical Functions. Cambridge University Press.

Parkinson, M. (1980). The extreme value method for estimating the variance of the

rate of return. Journal of Business, 53:61–65.

Pötscher, B. M. and Preinerstorfer, D. (2022). A modern gauss-markov theorem?

really? working paper, University of Vienna, Department of Statistics.

170



Renault, E., Sarisoy, C., and Werker, B. J. (2017). Efficient estimation of integrated

volatility and related processes. Econometric Theory, 33(2):439–478.

Resnick, S. I. (2008). Extreme values, regular variation, and point processes, vol-

ume 4. Springer Science & Business Media.

Rigobon, R. (2003). Identification through heteroskedasticity. Review of Economics

and Statistics, 85(4):777–792.

Rigobon, R. and Sack, B. (2004). The impact of monetary policy on asset prices.

Journal of Monetary Economics, 51(8):1553–1575.

Rigobon, R. and Sack, B. (2008). Noisy macroeconomic announcements, monetary

policy, and asset prices. In Asset prices and monetary policy, pages 335–370.

University of Chicago Press.

Rio, E. (1995). The functional law of the iterated logarithm for stationary strongly

mixing sequences. The Annals of Probability, 23(3):1188–1203.

Romano, J. P. and Wolf, M. (2005). Stepwise multiple testing as formalized data

snooping. Econometrica, 73(4):1237–1282.

Romer, C. D. and Romer, D. H. (2004). A new measure of monetary shocks: Deriva-

tion and implications. American economic review, 94(4):1055–1084.

Ross, S. M. (1995). Stochastic Processes. John Wiley & Sons.

Ruzankin, P. (2004). On the rate of poisson process approximation to a bernoulli

process. Journal of Applied Probability, 41(1):271–276.

Savor, P. and Wilson, M. (2014). Asset pricing: A tale of two days. Journal of

Financial Economics, 113(2):171–201.

Schennach, S. M. (2020). Mismeasured and unobserved variables. In Durlauf,

S. N., Hansen, L. P., Heckman, J. J., and Matzkin, R. L., editors, Handbook of

Econometrics, Volume 7A, chapter 6, pages 487–565. Elsevier.

Shaffer, J. P. (1991). The gauss-markov theorem and random regressors. The Amer-

ican Statistician, 45(4):269–273.

171



Shen, D., Urquhart, A., and Wang, P. (2019). Does twitter predict bitcoin? Eco-

nomics letters, 174:118–122.

Shephard, N. (2022). Some properties of the sample median of an in-fill sequence

of events with an application to high frequency financial econometrics. Working

Paper.

Shepp, L. A. (1979). The joint density of the maximum and its location for a wiener

process with drift. Journal of Applied probability, 16(2):423–427.

Szulga, A. (1983). On minimal metrics in the space of random variables. Theory of

Probability & Its Applications, 27(2):424–430.

Tandon, C., Revankar, S., and Parihar, S. S. (2021). How can we predict the impact

of the social media messages on the value of cryptocurrency? insights from big

data analytics. International Journal of Information Management Data Insights,

1(2):100035.

Tauchen, G. E. and Pitts, M. (1983). The price variability-volume relationship on

speculative markets. Econometrica, pages 485–505.

van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Pro-

cesses: With Applications to Statistics. Springer Science & Business Media.

Van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press.

Vladimirova, M., Girard, S., Nguyen, H., and Arbel, J. (2020). Sub-weibull dis-

tributions: Generalizing sub-gaussian and sub-exponential properties to heavier

tailed distributions. Stat, 9(1):e318.

Wang, X., Phillips, P. C. B., and Yu, J. (2011). Bias in estimating multivariate and

univariate diffusions. Journal of Econometrics, 161(2):228–245.

Welch, W. J. (1982). Algorithmic complexity: three np-hard problems in computa-

tional statistics. Journal of Statistical Computation and Simulation, 15(1):17–25.

Wu, W. B. (2005). On the bahadur representation of sample quantiles for dependent

sequences. The Annals of Statistics, 33(4):1934–1963.

172



Yu, B. (1994). Rates of convergence for empirical processes of stationary mixing

sequences. The Annals of Probability, pages 94–116.

Zhang, L., Mykland, P. A., and Aït-Sahalia, Y. (2005). A tale of two time scales:

Determining integrated volatility with noisy high-frequency data. Journal of the

American Statistical Association, 100(472):1394–1411.

Zhang, X. and Cheng, G. (2014). Bootstrapping high dimensional time series. arXiv

preprint arXiv:1406.1037.

Zolotarev, V. M. (1986). One-dimensional stable distributions, volume 65. Ameri-

can Mathematical Soc.

Zuo, Y. (2015). Bahadur representations for bootstrap quantiles. Metrika: Interna-

tional Journal for Theoretical and Applied Statistics, 78(5):597–610.

173


	Essays on high-frequency financial econometric
	Citation

	Introduction
	Optimal Nonparametric Range-Based Volatility Estimation
	Introduction
	Nonparametric Range-Based Volatility Estimation
	Theoretical Setting and Decision-Theoretic Framework
	Optimal Estimation for Spot Variance and Volatility
	Risk Comparisons
	Optimal Estimators with Multiple Candlesticks

	An Empirical Illustration
	Concluding Remarks

	Optimal Spot Volatility Estimation Based on Multiple Candlesticks
	Nonparametric Range-Based Volatility Estimation
	Theoretical Setting and Background 
	AMRE Estimator with Multiple Candlesticks
	Unbiased Evaluation of Estimation Risk
	Risk Comparisons
	Understanding the AMRE Estimators

	An Empirical Illustration
	Concluding Remarks

	Uniform Inference for High-Frequency Data
	Introduction
	Theory
	State-space Model for High-Frequency Data
	Motivating Examples
	Uniform Inference on Conditional Mean Process
	Uniform Inference on Conditional Quantile Process
	Application: Inference for Ranks

	Monte Carlo Simulations
	Data Generating Processes
	The Results

	Empirical Illustration
	Detecting Information Flows during FOMC Speeches
	Case Study
	Impact of Twitter on Cryptocurrency Markets

	Concluding Remarks

	Conclusion
	Technical Results for Chapter 2
	Proofs of the Main Results
	Proof of Theorem 2.1
	Proof of Theorem 2.2

	Additional Results
	Optimal Estimation for Quarticity and Precision
	Proof of Theorem A.1
	Proof of Theorem A.2
	Comparisons of Single Versus Multiple Candlesticks
	Comparison Among Alternative Estimators
	Monte Carlo Simulations


	Technical Results for Chapter 3
	Proofs of the Main Results
	Proof of Theorem 3.2
	Proof of Theorem 3.3

	Additional Results
	Best Subset Regression for Spot Variance Estimators
	Volatility Estimation during Price Indices Release


	Technical Results for Chapter 4
	Proofs of the Main Results
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Corollary 4.1

	Extension to Dependent Disturbance

	Bibliography

