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Abstract

This dissertation presents a comprehensive examination of inference techniques for weak

instrumental variable (IV) models, crucial in addressing endogeneity and bias in econo-

metric analyses. Comprising two interconnected chapters, the research explores innovative

methodologies to enhance the reliability and robustness of IV regression estimations. Chap-

ter 1 is concerned with maximizing the power of tests in the many weak IVs setting. This

is done by introducing a novel approach that considers a linear combination of jackknife

Anderson-Rubin (AR), jackknife Lagrangian multiplier (LM), and orthogonalized jackknife

LM tests for inference in IV regressions with many weak instruments and heteroskedasticity.

Following I. Andrews (2016), weights are adaptively chosen in a linear fashion based on a

decision-theoretic rule, ensuring control of asymptotic size under weak and strong identifi-

cations. The proposed test exhibits optimal power against local alternatives, confirmed by

simulations and empirical applications to Angrist and Krueger’s (1991) dataset. Chapter

2 deals with inference under both fixed and diverging weak IVs simultaneously. In partic-

ular, conventional and jackknife Anderson-Rubin (AR) Tests are developed separately to

conduct weak-identification-robust inference when the number of IVs is fixed or diverging to

infinity with the sample size, respectively. These two tests compare distinct test statistics

with distinct critical values. To implement them, researchers first need to take a stance

on the asymptotic behaviour of the number of IVs, which is ambiguous when this number

is just moderate. Instead, in this paper, two analytical and two bootstrap-based weak-

identification-robust AR tests are introduced, all of which control asymptotic size whether

the number of IVs is fixed or diverging - in particular, the number of instruments is allowed

but not required to be greater than the sample size. Power properties of these uniformly

valid AR tests under both fixed and diverging number of IVs are analysed.
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Chapter 1

A Conditional Linear Combination

Test with Many Weak Instruments

1.1 Introduction

Various recent surveys in leading economics journals suggest that weak instruments remain

important concerns for empirical practice. For instance, I.Andrews, Stock, and Sun (2019)

survey 230 instrumental variable (IV) regressions from 17 papers published in the American

Economic Review (AER). They find that many of the first-stage F-statistics (and non-

homoskedastic generalizations) are in a range that raises such concerns, and virtually all of

these papers report at least one first-stage F with a value smaller than 10. Similarly, in

Lee, McCrary, Moreira, and Porter’s (2022) survey of 123 AER articles involving IV regres-

sions, 105 out of 847 specifications have first-stage Fs smaller than 10. Moreover, many IV

applications involve a large number of instruments. For example, in their seminal paper,

Angrist and Krueger (1991) study the effect of schooling on wages by interacting three base

instruments (dummies for the quarter of birth) with state and year of birth, resulting in

180 instruments. Hansen, Hausman, and Newey (2008) show that using the 180 instruments

gives tighter confidence intervals than using the base instruments even after adjusting for

the effect of many instruments. In addition, as pointed out by Mikusheva and Sun (2022),

in empirical papers that employ the “judge design” (e.g., see Maestas, Mullen, and Strand

(2013), Sampat and Williams (2019), and Dobbie, Goldin, and Yang (2018)), the number
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of instruments (the number of judges) is typically proportional to the sample size, and the

famous Fama-MacBeth two-pass regression in empirical asset pricing (e.g., see Fama and

MacBeth (1973), Shanken (1992), and Anatolyev and Mikusheva (2022)) is equivalent to IV

estimation with the number of instruments proportional to the number of assets. Similarly,

Belloni, Chen, Chernozhukov, and Hansen (2012) consider an IV application involving more

than one hundred instruments for the study of the effect of judicial eminent domain deci-

sions on economic outcomes. Carrasco and Tchuente (2015) used many instruments in the

estimation of the elasticity of intertemporal substitution in consumption. Furthermore, as

pointed out by Goldsmith-Pinkham, Sorkin, and Swift (2020), the shift-share or Bartik in-

strument (e.g., see Bartik (1991) and Blanchard, Katz, Hall, and Eichengreen (1992)), which

has been widely applied in many fields such as labor, public, development, macroeconomics,

international trade, and finance, can be considered as a particular way of combining many

instruments. For example, in the canonical setting of estimating the labor supply elasticity,

the corresponding number of instruments is equal to the number of industries, which is also

typically proportional to the sample size.

In this paper, following the seminal study by I.Andrews (2016), we propose a jackknife

conditional linear combination (CLC) test that is robust to weak identification, many in-

struments, and heteroskedasticity. The proposed test also achieves efficiency under strong

identification against local alternatives. The starting point of our analysis is the observation

that, under strong identification, an orthogonalized jackknife Lagrangian multiplier (LM)

test is the uniformly most powerful (UMP) test against local alternatives among the class of

tests that are constructed based on jackknife LM and Anderson-Rubin (AR) tests and are

either unbiased or invariant to sign changes. However, the orthogonalized LM test may not

have good power under weak identification or against certain fixed alternatives. Therefore,

we consider a linear combination of jackknife AR, jackknife LM, and orthogonalized LM

tests. Specifically, we follow I.Andrews (2016) and determine the linear combination weights

by minimizing the maximum power loss, which can be viewed as a maximum regret and is

further calibrated based on the limit experiment of interest and a sufficient statistic for the

identification strength under many instruments. Then, similar to I.Andrews (2016), we show

such a jackknife CLC test is adaptive to the identification strength in the sense that (1) it

achieves correct asymptotic size, (2) it is asymptotically and conditionally admissible under

weak identification among certain class of tests, (3) it converges to the UMP test mentioned

12



above under strong identification against local alternatives,1 and (4) it has asymptotic power

equal to 1 under strong identification against fixed alternatives. The properties of jackknife

AR, jackknife LM, orthogonalized LM, and our CLC tests are summarized in Table 1.1.

Simulations based on the limit experiment as well as calibrated data confirm the good power

properties of our test. Then, we apply the new jackknife CLC test to Angrist and Krueger’s

(1991) dataset with the specifications of 180 and 1,530 instruments. We find that, in both

specifications, our confidence intervals (CIs) are the shortest among those constructed by

weak identification robust tests, namely, the jackknife AR, LM, and CLC tests, and the

two-step procedure. Furthermore, our CIs are found to be even shorter than the non-robust

Wald test CIs based on the jackknife IV estimator (JIVE) proposed by Angrist, Imbens, and

Krueger (1999), which is in line with the theoretical result that the jackknife CLC test is

adaptive to the identification strength and is efficient under strong identification.

Weak ID, fixed alternative Strong ID, local alternative Strong ID, fixed alternative

Jackknife AR Admissible Not UMP Power 1

Jackknife LM Admissible Not UMP Power 1

Orthogonalized LM Admissible UMP Non-monotonic power

CLC Admissible UMP Power 1

Table 1.1: Power Comparison of the Tests

Relation to the literature. The contributions in the present paper relate to two strands

of literature. First, it is related to the literature on many instruments; see, for example,

Kunitomo (1980), Morimune (1983), Bekker (1994), Donald and Newey (2001), Chamberlain

and Imbens (2004), Chao and Swanson (2005), Stock and Yogo (2005a), Han and Phillips

(2006), D.Andrews and Stock (2007), Hansen et al. (2008), Newey and Windmeijer (2009),

Anderson, Kunitomo, and Matsushita (2010), Kuersteiner and Okui (2010), Anatolyev and

Gospodinov (2011), Belloni, Chernozhukov, and Hansen (2011), Okui (2011), Belloni et al.

(2012), Carrasco (2012), Chao, Swanson, Hausman, Newey, and Woutersen (2012), Hausman

et al. (2012), Hansen and Kozbur (2014), Carrasco and Tchuente (2015), Wang and Kaffo

(2016), Kolesár (2018), Matsushita and Otsu (2020), Sølvsten (2020), Crudu, Mellace, and

1We emphasize that the UMP property of our CLC test under strong identification holds within
the class of sign-invariant or unbiased tests that are constructed based on jackknife AR and LM
tests only. It may be possible to construct more efficient tests using test statistics besides the
jackknife AR and LM. How to construct a globally optimal test under strong identification with
many IVs and heteroskedastic errors is a topic that remains to be explored in future research.
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Sándor (2021), and Mikusheva and Sun (2022), among others. In the context of many

instruments and heteroskedasticity, Chao et al. (2012) and Hausman et al. (2012) provide

standard errors for Wald-type inferences that are based on JIVE and jackknifed versions of

the limited information maximum likelihood (LIML) and Fuller’s (1977) estimators (HLIM

and HFUL). These estimators are more robust to many instruments than the commonly used

two-stage least squares (TSLS) estimator because they can correct the bias caused by the

high dimension of IVs.2 In simulations derived from the data in Angrist and Krueger (1991),

which is representative of empirical labor studies with many instrument concerns, Angrist

and Frandsen (2022, Section IV) show that such bias-corrected estimators outperform the

TSLS that is based on the instruments selected by the least absolute shrinkage and selection

operator (LASSO) introduced in Belloni et al. (2012) or the random forest-fitted first stage

introduced in Athey, Tibshirani, and Wager (2019). Furthermore, under many weak moment

asymptotics, Newey and Windmeijer (2009) provide new variance estimators for the jackknife

GMM and the class of generalized empirical likelihood (GEL) estimators, which includes the

continuous updating estimator (CUE) and EL estimator as special cases. In the linear

heteroskedastic IV model, consistency and asymptotic normality of CUE require m2/n→ 0

and m3/n → 0, respectively, where m and n denote the number of moment conditions and

the sample size (e.g., see p.689 of Newey and Windmeijer (2009)). Such conditions are needed

to simultaneously control the estimation error for all the elements of the heteroskedasticity

consistent weighting matrix. Somewhat stronger rate conditions are required for other GEL

estimators.

However, the Wald-type inference methods are invalid under weak identification, which

occurs when the concentration parameter remains bounded as the sample size increases to

infinity. In this case, all the estimators mentioned earlier become inconsistent, and there is

no consistent test for the structural parameter of interest (see Section 3 of Mikusheva and

Sun (2022)). For weak identification robust inference under many instruments, D.Andrews

and Stock (2007) consider the AR test, the score test introduced in Kleibergen (2002),

2Specifically, the rate of growth of the concentration parameter, which measure the overall instru-
ment strength, is denoted as µ2

n. JIVE, HLIM, and HFUL remain consistent with heteroskedastic
errors even when instrument weakness is such that µ2

n is slower than the number of instruments K,
provided that µ2

n/
√
K → ∞ as the number of observations n → ∞ (Chao et al., 2012; Hausman

et al., 2012). In contrast, TSLS is less robust to instrument weakness as it is shown to be consistent
only under homoskedasticity if µ2

n/K → ∞ (Chao and Swanson, 2005).
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and the conditional likelihood ratio test introduced in Moreira (2003). Their IV model is

homoskedastic and requires the number of instruments to diverge slower than the cube root

of the sample size (K3/n→ 0, where K denotes the number of instruments). Anatolyev and

Gospodinov (2011) propose a modified AR test that allows for the number of instruments to

be proportional to the sample size but still require homoskedastic errors. Recently, Crudu

et al. (2021) and Mikusheva and Sun (2022) propose jackknifed versions of the AR test

in a model with many instruments and heteroskedasticity. Both tests are robust to weak

identification, but Mikusheva and Sun’s (2022) jackknife AR test has better power properties

due to the use of a cross-fit variance estimator. However, the jackknife AR tests may be

inefficient under strong identification. To address this issue, Mikusheva and Sun (2022) also

propose a new pre-test for weak identification under many instruments and apply it to form

a two-stage testing procedure with a Wald test based on the JIVE introduced in Angrist

et al. (1999). The JIVE-Wald test is more efficient than the jackknife AR under strong

identification. Therefore, an empirical researcher can employ the jackknife AR if the pre-test

suggests weak identification and the JIVE-Wald if the pre-test suggests strong identification.

In addition to the jackknife AR, Matsushita and Otsu (2020) propose a jackknife LM test,

which is also robust to weak identification, many instruments, and heteroskedastic errors.

However, the jackknife CLC test introduced in our paper is more efficient than the jackknife

AR, the jackknife LM, and the two-step test under strong identification and local alternatives,

while still being robust to weak identification.

Second, our paper is related to the literature on weak identification under the framework

of a fixed number of instruments or moment conditions, in which various robust inference

methods are available for non-homoskedastic errors; see, for example, Stock and Wright

(2000), Kleibergen (2005), D.Andrews and Cheng (2012), I.Andrews (2016), I.Andrews and

Mikusheva (2016), I.Andrews (2018), Moreira and Moreira (2019), D.Andrews and Guggen-

berger (2019), and Lee et al. (2022). In particular, our jackknife CLC test extends the work

of I.Andrews (2016) to the framework with many weak instruments. I.Andrews (2016) con-

siders the convex combination between the generalized AR statistic (S statistic) introduced

by Stock and Wright (2000) and the score statistic (K statistic) introduced by Kleibergen

(2005). We find that under many weak instruments, the orthogonalized jackknife LM statis-

tic plays a role similar to the K statistic. However, the trade-off between the jackknife AR

and orthogonalized LM statistics turns out to be rather different from that between the S
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and K statistics. As pointed out by I.Andrews (2016), in the case with a fixed number of

weak instruments (or moment conditions), the K statistic picks out a particular (random)

direction corresponding to the span of a conditioning statistic that measures the identifica-

tion strength and restricts attention to deviations from the null along this specific direction.

In contrast to the K statistic, the S statistic treats all deviations from the null equally.

Therefore, the trade-off between the K and S statistics is mainly from the difference in at-

tention to deviation directions. We find that with many weak instruments, the jackknife AR

and orthogonalized LM tests do not have such difference in deviation directions. Instead,

their trade-off is mostly between local and non-local alternatives. Furthermore, although

the standard LM test (without orthogonalization) is not weak identification robust under

I.Andrews (2016)’s framework, the jackknife LM test is under many instruments. Therefore,

we consider a linear combination of jackknife AR, jackknife LM, and orthogonalized jack-

knife LM tests and find that the resulting CLC test has good power properties in a variety

of scenarios.

Notation: We denote Z(µ) as the normal random variable with unit variance and expec-

tation µ and [n] = {1, 2, · · · , n}. We further simplify Z(0) as Z, which is just a standard

normal random variable. We denote zα as the (1−α) quantile of a standard normal random

variable and Cα(a1, a2; ρ) as the (1− α) quantile of random variable a1Z2
1 + a2(ρZ1 + (1−

ρ2)1/2Z2)
2+(1−a1−a2)Z2

2 where Z1 and Z2 are two independent standard normal random

variables, α is the significance level, ρ is a constant in (−1, 1), and a1 and a2 are the weights

of the first and second components in the random variable. We further simplify C0,0;ρ as Cα,

which is just the 1− α quantile of Z2. We let Cα,max(ρ) = sup(a1,a2)∈A0
Cα(a1, a2; ρ), where

A0 = {(a1, a2) ∈ [0, 1]× [0, 1], a1 + a2 ≤ a} for some a < 1. We suppress the dependence of

Cα,max(ρ) on a for simplicity of notation. The operators E∗ and P∗ are expectation and prob-

ability taken conditionally on data, respectively. For example, E∗1{Z2(µ̂) ≥ Cα}, in which

µ̂ is some estimator of the expectation µ based on data, means the expectation is taken over

the normal random variable by treating µ̂ as deterministic. We use⇝ to denote convergence

in distribution, U
d
= V to denote that U and V share the same distribution, and maxeig(V)

and mineig(V) to denote maximum and minimum eigenvalues of a positive semidefinite ma-

trix V . For two sequences of random variables Un and Vn, we write Un
d
= Vn+ oP (1) if there

exist Ũn
d
= Un and Ṽn

d
= Vn such that Ũn − Ṽn = oP (1).
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1.2 Setup and Limit Problems

We consider the linear IV regression with a scalar outcome Yi, a scalar endogenous variable

Xi, and a K × 1 vector of instruments Zi such that

Yi = Xiβ + ei, Xi = Πi + Vi, ∀i ∈ [n], (1.2.1)

where Πi = EXi and {Zi}i∈[n] is treated as fixed, following the many-instrument literature.

We let K diverge with sample size n, allowing for the case that K is of the same order of

magnitude as n. We further have EVi = 0 by construction, and Eei = 0 by IV exogeneity.

We allow (ei, Vi) to be heteroskedastic across i. Also, following the literature on many

instruments (e.g., Mikusheva and Sun (2022)), we assume that there are no controls included

in our model as they can be partialled out from (Yi, Xi, Zi). We provide more discussions

about the effect of partialling out the covariates after Assumption 1 below.

We are interested in testing β = β0. Let ei(β0) = Yi−Xiβ0 = ei+Xi∆, where ∆ = β−β0.
We collect the transpose of Zi in each row of Z, an n×K matrix of instruments, and denote

P = Z(Z⊤Z)−1Z⊤. In addition, Let Qa,b =
∑

i∈[n]

∑
j ̸=i aiPijbj√
K

and C = QΠ,Π. Then, as

pointed out by Mikusheva and Sun (2022), the rescaled C is the concentration parameter

that measures the strength of identification in the heteroskedastic IV model with many

instruments. Specifically, the parameter β is weakly identified if C is bounded and strongly

identified if |C| → ∞. We consider drifting sequence asymptotics so that all quantities are

implicitly indexed by the sample size n except specified otherwise. We omit such dependence

for notation simplicity.

Throughout the paper, we consider three scenarios: (1) weak identification and fixed

alternatives in which C → C̃ for some fixed constant C̃ ∈ ℜ and ∆ is fixed and bounded,

(2) strong identification and local alternatives in which C = C̃/dn, ∆ = ∆̃dn, C̃ and ∆̃ are

bounded constants independent of n, and dn → 0 is a deterministic sequence, and (3) strong

identification and fixed alternatives in which C = C̃/dn for the same C̃ and dn defined in case

(2) and ∆ is fixed and bounded.3 Many weak identification robust tests proposed in the

3If we follow the setup in Chao et al. (2012) and Hausman et al. (2012) and assume Πi =
µnπi/

√
n so that ∞ > C ≥

∑
i∈[n]

∑
j ̸=i πiPijπj/n ≥ c > 0 for some constants c, C, then C =

µ2
n√
K

∑
i∈[n]

∑
j ̸=i πiPijπj

n , implying that dn =
√
K/µ2

n. Then, our definition of strong identification

(dn → 0) is equivalent to that defined in Chao et al. (2012) and Hausman et al. (2012) (µ2
n/

√
K →
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literature (namely, the jackknife AR tests proposed by Crudu et al. (2021) and Mikusheva

and Sun (2022) and the jackknife LM test proposed by Matsushita and Otsu (2020)) depend

on a subset of the following three quantities: (Qe(β0),e(β0), QX,e(β0), QX,X). Throughout the

paper, we maintain the following high-level assumption.

Assumption 1. Under both weak and strong identification, the following weak convergence

holds:  Qe,e

QX,e

QX,X − C

⇝ N


0

0

0

 ,

Φ1 Φ12 Φ13

Φ12 Ψ τ

Φ13 τ Υ


 , (1.2.2)

for some (Φ1,Φ12,Φ13,Ψ, τ,Υ).

Although there are no controls in the model (1.2.1), we further verify Assumption 1 in

Section A.1 of the Appendix for a proper linear IV regression that includes a fixed dimension

of exogenous control variables, which are then partialled out from the original outcome

variable, endogenous variable, and instruments.4

Assumption 1 implies that,5 under both strong and weak identification, Qe(β0),e(β0) −∆2C
QX,e(β0) −∆C
QX,X − C

 d
= N


0

0

0

 ,

Φ1(β0) Φ12(β0) Φ13(β0)

Φ12(β0) Ψ(β0) τ(β0)

Φ13(β0) τ(β0) Υ


+ op(1), (1.2.3)

where

Φ1(β0) = ∆4Υ+ 4∆3τ +∆2(4Ψ + 2Φ13) + 4∆Φ12 + Φ1,

∞).
4Here, we focus on the case where the number of exogenous control variables is treated as fixed.

In the case where the dimension of the exogenous variables is also large and assumed to diverge
to infinity with the sample size, Chao, Swanson, and Woutersen (2023a) propose new versions of
various jackknife IV estimators and show they are consistent and asymptotically normal under
strong identification. We conjecture that it is possible to replace our jackknife construct (i.e. Qa,b)
by the new version and consider weak identification robust tests and their linear combinations in
the same manner as studied in this paper. This is left as a topic for future research.

5Note that

Qe(β0),e(β0)

QX,e(β0)

QX,X

 =

1 2∆ ∆2

0 1 ∆
0 0 1

 Qe,e

QX,e

QX,X

 .
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Φ12(β0) = ∆3Υ+ 3∆2τ +∆(2Ψ + Φ13) + Φ12,

Φ13(β0) = ∆2Υ+ 2∆τ + Φ13,

Ψ(β0) = ∆2Υ+ 2∆τ +Ψ,

τ(β0) = ∆Υ+ τ. (1.2.4)

In particular, under strong identification, we have QX,Xdn
p−→ C̃, which has a degenerate

distribution. Also, under local alternatives, we have ∆ = o(1) so that

(Φ1(β0),Φ12(β0),Φ13(β0),Ψ(β0), τ(β0)) → (Φ1,Φ12,Φ13,Ψ, τ).

To describe a feasible version of the test, we assume we have consistent estimates for all

the variance components.

Assumption 2. Let ρ(β0) =
Φ12(β0)√

Φ1(β0)Ψ(β0)
, γ̂(β0) = (Φ̂1(β0), Φ̂12(β0), Φ̂13(β0), Ψ̂(β0), τ̂(β0), Υ̂, ρ̂(β0))

be an estimator, and B ∈ ℜ be a compact parameter space. Then, we have infβ0∈B Φ1(β0) > 0,

infβ0∈B Ψ(β0) > 0, Υ > 0, and for β0 ∈ B,

||γ̂(β0)− γ(β0)||2 = op(1),

where γ(β0) ≡ (Φ1(β0),Φ12(β0),Φ13(β0),Ψ(β0), τ(β0),Υ, ρ(β0)).

Several remarks on Assumption 2 are in order. First, Chao et al. (2012) propose a

consistent estimator for Ψ where there is strong identification and many instruments. It is

possible to compute γ̂(β0) based on Chao et al.’s (2012) estimator with their JIVE-based

residuals êi from the structural equation replaced by ei(β0). Under weak identification and

β0 = β, Crudu et al. (2021) and Matsushita and Otsu (2021) establish the consistency of

such estimators for Φ1(β0) and Ψ(β0), respectively. Similar arguments can be used to show

the consistency of the rest of the elements in γ̂(β0) under both weak and strong identification.

In addition, the consistency can be established under both local and fixed alternatives. We

provide more details in Section A.2.1 in the Appendix. Second, motivated by Kline, Saggio,

and Sølvsten (2020), Mikusheva and Sun (2022) propose cross-fit estimators Φ̂1(β0) and Υ̂,

which are consistent under both weak and strong identification and lead to better power

properties. Following their lead, one can write down the cross-fit estimators for the rest of
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the elements in γ(β0) and show they are consistent.6 We provide more details in Section

A.2.2 in the Appendix. Note that both Crudu et al.’s (2021) and Mikusheva and Sun’s

(2022) estimators are consistent under heteroskedasticity and allow for K to be of the same

order of n. Third, the consistency of γ̂(β0) over the entire parameter space under both

strong and weak identifications is more than necessary and maintained mainly for simplicity

of presentation. In fact, for our jackknife CLC test proposed below to control size, it suffices

that γ̂(β0) and (Φ̂1(β0), Φ̂12(β0), Ψ̂(β0)) are consistent under the null for weak and strong

identifications, respectively. Furthermore, the power analyses under strong identification

in Lemma 1.2.1, and subsequently, Theorems 1.4.2 and 1.4.4, only require consistency of

(Φ̂1(β0), Φ̂12(β0), Ψ̂(β0)) under local alternatives and γ̂(β0) = OP (1) under both local and

fixed alternatives.

Under this framework, Crudu et al. (2021) and Mikusheva and Sun (2022) consider the

jackknife AR test

1{AR(β0) ≥ zα}, AR(β0) =
Qe(β0),e(β0)

Φ̂
1/2
1 (β0)

, (1.2.5)

and Matsushita and Otsu (2020) consider the jackknife LM test

1{LM2(β0) ≥ Cα}, LM(β0) =
QX,e(β0)

Ψ̂1/2(β0)
. (1.2.6)

Both tests are robust to weak identification, many instruments, and heteroskedasticity.

Lemma 1.2.1 below characterizes the joint limit distribution of (AR(β0), LM(β0))
⊤ under

strong identification and local alternatives.

Lemma 1.2.1. Suppose Assumptions 1 and 2 hold and we are under strong identification

with local alternatives, that is, there exists a deterministic sequence dn → 0 such that C =

6For example, Mikusheva and Sun (2022, p.22) establish the limit of their cross-fit estimator Ψ̂
under weak identification and many instruments when the residual êi from the structural equation
is computed based on the JIVE estimator. We can construct Ψ̂(β0) by replacing êi by ei(β0). Then,

the argument, as theirs with QX,e/QX,X replaced by ∆, establishes that Ψ̂(β0)
p−→ Ψ(β0).
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C̃/dn and ∆ = ∆̃dn, where C̃ and ∆̃ are bounded constants independent of n. Then, we have(
AR(β0)

LM(β0)

)
⇝

(
N1

N2

)
d
= N

((
0
∆̃C̃
Ψ1/2

)
,

(
1 ρ

ρ 1

))

where ρ = Φ12/
√
Φ1Ψ.

Two remarks are in order. First, under strong identification, we consider local alternatives

so that β − β0 → 0. This is why we have (Ψ(β0),Φ1(β0),Φ12(β0)) converge to (Ψ,Φ1,Φ12),

which are just the counterparts of (Ψ(β0),Φ1(β0),Φ12(β0)) when β0 is replaced by β. Second,

although AR(β0) has zero mean, and hence, no power in this case, it is correlated with

LM(β0). It is therefore possible to use AR(β0) to reduce the variance of LM(β0) and obtain

a test that is more powerful than the LM test.

Lemma 1.2.2. Consider the limit experiment in which researchers observe (N1,N2) with(
N1

N2

)
d
= N

((
0

θ

)
,

(
1 ρ

ρ 1

))
,

know the value of ρ and that EN1 = 0, and want to test for θ = 0 versus the two-sided

alternative. In this case, 1{N ∗2
2 ≥ Cα} is UMP among level-α tests that are either invariant

to sign changes or unbiased, where

N ∗
2 = (1− ρ2)−1/2(N2 − ρN1)

is the normalized residual from the projection of N2 on N1.

Let the orthogonalized jackknife LM statistic be LM∗(β0) = (1− ρ̂(β0)
2)−1/2(LM(β0)−

ρ̂(β0)AR(β0)). Then, Lemma 1.2.1 implies, under strong identification and local alternatives,(
AR(β0)

LM∗(β0)

)
⇝

(
N1

N ∗
2

)
d
= N

((
0
∆̃C̃

[(1−ρ2)Ψ]1/2

)
,

(
1 0

0 1

))
. (1.2.7)

Lemma 1.2.2 with θ = ∆̃C̃Ψ−1/2 implies, in this case, that the test 1{LM∗2(β0) ≥ Cα} is

asymptotically strictly more powerful than the jackknife AR and LM tests based on AR(β0)
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and LM(β0) against local alternatives as long as ρ ̸= 0. In addition, under strong identifi-

cation and local alternatives, Mikusheva and Sun’s (2022) two-step test statistic is asymp-

totically equivalent to LM(β0), and thus, is less powerful than LM∗(β0) too.

Next, we compare the behaviors of AR(β0), LM(β0), and LM
∗(β0) under strong identi-

fication and fixed alternatives.

Lemma 1.2.3. Suppose Assumption 2 holds, (Qe(β0),e(β0)−∆2C, QX,e(β0)−∆C, QX,X−C)⊤ =

Op(1), and we are under strong identification so that dnC → C̃ for some dn → 0. Then, we

have, for any fixed ∆ ̸= 0,

d2n

 AR2(β0)

LM2(β0)

LM∗2(β0)

 p−→

 Φ−1
1 (β0)∆

4C̃2

Ψ−1(β0)∆
2C̃2

(1− ρ2(β0))
−1(Ψ−1/2(β0)− ρ(β0)Φ

−1/2
1 (β0)∆)2∆2C̃2

 .

Given dn → 0 and both Φ−1
1 (β0)∆

4C̃2 > 0 and Φ−1
1 (β0)∆

2C̃2 > 0, AR2(β0) and LM
2(β0)

have power 1 against fixed alternatives asymptotically. By contrast, LM∗2(β0) may not have

power if ∆ = ∆∗(β0) ≡ Φ
1/2
1 (β0)Ψ

−1/2(β0)ρ
−1(β0).

Next, we compare the performance of AR(β0) and LM∗(β0) under weak identification

and fixed alternatives.

Lemma 1.2.4. Suppose Assumptions 1 and 2 hold and we are under weak identification so

that C → C̃ ∈ ℜ. Then, we have, for any fixed ∆ ̸= 0,(
AR(β0)

LM∗(β0)

)
⇝

(
N1

N ∗
2

)
d
= N

((
m1(∆)

m2(∆)

)
,

(
1 0

0 1

))
, (1.2.8)

where ρ(β0) =
Φ12(β0)√

Ψ(β0)Φ1(β0)
and

(
m1(∆)

m2(∆)

)
=

(
Φ
−1/2
1 (β0)∆

2C̃
(1− ρ2(β0))

−1/2Ψ−1/2(β0)∆C̃ − ρ(β0)(1− ρ2(β0))
−1/2Φ

−1/2
1 (β0)∆

2C̃

)
.
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In particular, as ∆ → ∞, we have

m1(∆) → C̃
Υ1/2

and m2(∆) → C̃
Υ1/2

ρ23

(1− ρ223)
1/2

,

where ρ23 =
τ

(ΨΥ)1/2
is the correlation between QX,e and QX,X .7

By comparing the means of the normal limit distribution in (1.2.8), we notice that

under weak identification and fixed alternatives, neither LM∗(β0) dominates AR(β0) or

vice versa. We also notice from Lemma 1.2.4 that for testing distant alternatives, the

power of LM∗(β0) is different from AR(β0) by a factor of ρ23/
√

1− ρ223, so that it will

be lower when |ρ23| ≤ 1/
√
2. Under weak identification and homoskedasticity,8 we have

ρ23 = ρ = Φ12/
√
ΨΦ1. Therefore, although the test 1{LM∗2(β0) ≥ Cα} has a power ad-

vantage under strong identification against local alternatives, it may lack power under weak

identification against distant alternatives if the degree of endogeneity is low. Furthermore,

LM∗(β0) may not have power if ∆ = ∆∗(β0).

In the current setting with many instruments, AR(β0) and LM∗(β0) play roles similar

to that of Stock and Wright’s (2000) S and Kleibergen’s (2005) K statistics in I.Andrews’s

(2016) setting, respectively. In the fixed number of IVs case, the power trade-off between

S and K statistics is based on the direction of deviations from the null. However, as shown

in Lemma 1.2.4 (the case with weak identification and fixed alternatives), the deviations of

AR(β0) and LM∗(β0) from the null do not have such a difference in direction under the

many-instrument setting because C̃ is just a scalar. Instead, their power trade-off is between

local and non-local alternatives. This is in stark contrast to the setting in I.Andrews (2016).

To achieve the advantages of AR(β0), LM(β0), and LM
∗(β0) in all three scenarios above,

we need to combine them in a way that is adaptive to the identification strength. Following

I.Andrews (2016), we consider the linear combination of AR2(β0), LM
2(β0), and LM

∗2(β0).

Recall that (N1,N ∗
2 ) are the limits of (AR(β0), LM

∗(β0)) in either strong or weak identifi-

cation. See (1.2.7) and (1.2.8) for their expressions in these two cases. Then, in the limit

7We suppress the dependence of m1(∆) and m2(∆) on γ(β0) and C̃ for notation simplicity.
8Specifically, we say the data are homoskedastic if the covariance matrices of (ei, Vi) are constant

across i.
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experiment, the linear combination test can be written as

ϕa1,a2,∞ = 1{a1N 2
1 + a2(ρ̃N1 + (1− ρ̃2)1/2N ∗

2 )
2 + (1− a1 − a2)N ∗2

2 ≥ Cα(a1, a2; ρ̃)},
(1.2.9)

where (a1, a2) ∈ A0 are the combination weights, N1 ∼ Z(θ1), and N ∗
2 ∼ Z(θ2); the mean

parameters θ1 and θ2 are defined in Lemmas 1.2.1 and 1.2.4 for strong and weak identification,

respectively; and ρ̃ is the limit of ρ̂(β0).
9 Let the eigenvalue decomposition of the matrix(

a1 + a2ρ̃
2 a2ρ̃(1− ρ̃2)1/2

a2ρ̃(1− ρ̃2)1/2 1− a1 − a2ρ̃
2

)
be

(
a1 + a2ρ̃

2 a2ρ̃(1− ρ̃2)1/2

a2ρ̃(1− ρ̃2)1/2 1− a1 − a2ρ̃
2

)
= U

(
ν1(a1, a2) 0

0 ν2(a1, a2)

)
U⊤ (1.2.10)

where, by construction, ν1(a1, a2) ≥ ν2(a1, a2) ≥ 0 and U is a 2 × 2 unitary matrix. We

highlight the dependence of eigenvalues (ν1, ν2) on the weights (a1, a2). The dependence of

U on (a1, a2) is suppressed for notation simplicity. Then, we have

a1N 2
1 + a2(ρ̃N1 + (1− ρ̃2)1/2N ∗

2 )
2 + (1− a1 − a2)N ∗2

2 = ν1(a1, a2)Ñ 2
1 + ν2(a1, a2)Ñ 2

2

and ϕa1,a2,∞ = 1{ν1(a1, a2)Ñ 2
1 + ν2(a1, a2)Ñ 2

2 ≥ Cα(a1, a2; ρ̃)}, where(
Ñ1

Ñ2

)
= U⊤

(
N1

N ∗
2

)
(1.2.11)

and Ñ1 and Ñ2 are independent normal random variables with unit variance. This implies

that ϕa1,a2,∞ can be viewed as a linear combination test of two independent chi-squared

random variables with one degree of freedom, and those two chi-squared random variables

are obtained by properly rotating N1 and N ∗
2 (i.e., the limits of AR(β0) and LM

∗(β0)).

Theorem 1.2.1 states the key properties of ϕa1,a2,∞ under the limit experiment.

Theorem 1.2.1. (i) Suppose we are under weak identification and fixed alternatives and

let N1 ∼ Z(θ1), N ∗
2 ∼ Z(θ2), and they are independent, where θ1 = m1(∆) and

9Under fixed alternatives, ρ̃ = ρ(β0); under local alternatives, ρ̃ = ρ.
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θ2 = m2(∆) as in (1.2.8). We consider the test of H0 : θ1 = θ2 = 0 against H1 : θ1 ̸= 0

or θ2 ̸= 0. Let Φα denote the class of size-α tests for H0 : θ1 = θ2 = 0 constructed

based on (Ñ 2
1 , Ñ 2

2 ) defined in (1.2.11). Then, for any (a1, a2) ∈ A0, ϕa1,a2,∞ defined

in (1.2.9) is an admissible test within Φα. In addition, let (θ̃1, θ̃2) = (θ1, θ2)U . If

(θ̃21, θ̃
2
2) = b·(ν1(a1, a2), ν2(a1, a2)) for some positive constant b, then for any test ϕ ∈ Φα,

there exists some b > 0 such that for any 0 < b < b, we have Eϕ ≤ Eϕa1,a2,∞.

(ii) Suppose we are under strong identification and local alternatives and(
N1

N2

)
d
= N

((
0

θ

)
,

(
1 ρ

ρ 1

))
,

where θ = ∆̃C̃
Ψ1/2 . We consider the test of H0 : θ = 0 against H1 : θ ̸= 0. Then, ϕa1,a2,∞

defined in (1.2.9) is UMP among the class of level-α tests that are constructed based on

(N1,N2) and invariant to the sign change if and only if a1 = 0 and a2ρ = 0. In this

case, this test is also UMP among the class of unbiased level-α tests that are constructed

based on (N1,N2).

(iii) Suppose Assumption 2 holds, (Qe(β0),e(β0)−∆2C, QX,e(β0)−∆C, QX,X−C)⊤ = Op(1), and

we are under strong identification with fixed alternatives. If 1 ≥ a1,n ≥ q̃Φ1(β0)
C2∆4

∗(β0)
for some

constant q̃ > Cα,max(ρ(β0)) and (a1,n, a2,n) ∈ A0, where ∆∗(β0) = Φ
1/2
1 (β0)Ψ

−1/2(β0)ρ
−1(β0),

then

1{a1,nAR2(β0) + a2,nLM
2(β0) + (1− a1,n − a2,n)LM

∗2(β0) ≥ Cα(a1,n, a2,n; ρ̂(β0))}
p−→ 1.

Several remarks are in order. First, unlike the one-sided jackknife AR test proposed by

Mikusheva and Sun (2022), we construct the jackknife CLC test based on AR2(β0) for several

reasons. First, under weak identification, when the concentration parameter C, and thus,

m1(∆) defined in Lemma 1.2.4 is nonnegative, the one-sided test has good power. However,

even in this case, the power curves simulation in Section 1.5.1 shows that our jackknife CLC

test is more powerful than the one-sided AR test in most scenarios. Second, our jackknife

CLC test will have good power even when C is negative.10 Third, we show below that under

10We note that C =
∑

i∈[n]

∑
j ̸=i ΠiPijΠj√
K

=
∑

i∈[n](1−Pii)Π2
i−Π⊤MΠ

√
K

, where M = I −P . If Π⊤MΠ and
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strong identification and local alternatives, our jackknife CLC test converges to the UMP

test 1{N ∗2
2 > Cα} whereas both the one- and two-sided tests based on AR(β0) have no

power, as shown in Lemma 1.2.1. Fourth, under strong identification and fixed alternatives,

our jackknife CLC test has asymptotic power equal to 1, as shown in Lemma 1.2.3 and

Theorem 1.4.4 below. In this case, using the one-sided jackknife AR test cannot further

improve the power. Fifth, combining LM∗2(β0) with AR
2(β0) (and LM

2(β0)), rather than

AR(β0), can substantially mitigate the impact of power loss of LM∗(β0) at ∆∗(β0), as shown

in the numerical investigation in Section 1.5.

Second, Theorem 1.2.1(i) implies that ϕa1,a2,∞ is admissible among tests that are also

quadratic functions of N1 and N ∗
2 with the same rotation U but different eigenvalues (ν̃1, ν̃2);

that is,

(N1,N ∗
2 )U

(
ν̃1 0

0 ν̃2

)
U⊤

(
N1

N ∗
2

)
.

Specifically, in the special case with a2 = 0 (i.e., we put zero weight on LM2(β0)), the

rotation matrix U = I2 and ϕa1,0,∞ is admissible among level-α tests based on the test

statistics of the form a1N 2
1 + (1 − a1)N ∗2

2 for a1 ∈ [0, 1], which is similar to the result for

the linear combination of S and K statistics in I.Andrews (2016).

Third, similar to I.Andrews (2016, Theorem 2.1), Theorem 1.2.1(i) also shows that our

linear combination test is optimal against certain alternatives under weak identification.

Additionally, in the case with a2 = 0, the power optimality result in 1.2.1(i) also carries over

to ϕa1,0,∞ among level-α tests of the form a1N 2
1 + (1− a1)N ∗2

2 for a1 ∈ [0, 1].

Fourth, when a1 = 0 and a2ρ = 0 and under strong identification and local alternatives,

we have ϕa1,a2,∞ = 1{N ∗2
2 ≥ Cα}, which is both the UMP invariant and unbiased test.

When ρ = 0 and under local alternatives, a2N ∗2
2 in the second and third terms of ϕa1,a2,∞

cancels out, implying that ϕa1,a2,∞ = 1{N ∗2
2 ≥ Cα} as long as a1 = 0.

Fifth, we note that both the rotation matrix U and the eigenvalues ν1 and ν2 in (1.2.10)

are functions of (a1, a2). We choose this specific parametrization so that ϕa1,a2,∞ can be

written as a linear combination of AR2(β0), LM
2(β0), and LM

∗2(β0). It is possible to use

∑
i∈[n] PiiΠ

2
i are sufficiently large, C can be negative. Mikusheva and Sun (2022) further assume

that Π⊤MΠ ≤ CΠ⊤Π
K for some constant C > 0, which implies that C > 0.
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alternative parametrizations to combine AR(β0) and LM
∗(β0). For example, let

O(ζ) =

(
cos(ζ) − sin(ζ)

sin(ζ) cos(ζ)

)

be a rotation matrix with angle ζ and

(
AR†(β0, ζ)

LM †(β0, ζ)

)
= O(ζ)

(
AR(β0)

LM∗(β0)

)
. Then, in the

limit experiment, the linear combination test statistic can be written as

aN †2
1 + (1− a)N †2

2 , (1.2.12)

where (N †
1 ,N

†
2 ) are the limits of (AR†(β0, ζ), LM

†(β0, ζ)) under either weak or strong identi-

fication. In the following, we will use a minimax procedure to determine the optimal weights

(a1, a2) for our jackknife CLC test ϕa1,a2,∞. Similarly, we can use this procedure to select

the value of a and ζ for the new parametrization in (1.2.12). Under strong identification

and local alternatives, Lemma 1.2.2 shows that the test 1{LM∗2(β0) ≥ Cα} is the most

powerful test against local alternatives. This is achieved by our jackknife CLC test ϕa1,a2,∞

with a1 = 0 and a2ρ = 0. In this case, the alternative parametrization does not bring any

additional power.

1.3 A Conditional Linear Combination Test

In this section, we determine the weights (a1, a2) in the jackknife CLC test via a minimax

procedure. Under weak identification, the limit test statistic of the jackknife CLC test with

weights (a1, a2) is

ϕa1,a2,∞ = 1

{
a1Z2

1 (m1(∆)) + a2(ρ(β0)Z1(m1(∆)) + (1− ρ2(β0))
1/2Z2(m2(∆)))2

+(1− a1 − a2)Z2
2 (m2(∆)) ≥ Cα(a1, a2; ρ(β0))

}
,

(1.3.1)

where m1(∆) and m2(∆) are defined in Lemma 1.2.4, and Z1(·) and Z2(·) are independent.
In this case, we can be explicit and write ϕa1,a2,∞ = ϕa1,a2,∞(∆). However, the limit power

of the jackknife CLC test will typically remain unknown as the true parameter β (and hence
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∆) is unknown. To overcome this issue, we follow I.Andrews (2016) and calibrate the power,

i.e, Eϕa1,a2,∞(δ), where δ ranges over all possible values that ∆ can potentially take; we

define ϕa1,a2,∞(δ) as well as the range of potential values of ∆ below.

Let D̂ = QX,X−(Qe(β0),e(β0), QX,e(β0))

(
Φ̂1(β0) Φ̂12(β0)

Φ̂12(β0) Ψ̂(β0)

)−1(
Φ̂13(β0)

τ̂(β0)

)
be the residual

from the projection of QX,X on (Qe(β0),e(β0), QX,e(β0)). By (1.2.3), under weak identification,

D̂ = D + op(1), D
d
= N (µD, σ

2
D),

where

µD = C̃

1− (∆2,∆)

(Φ1(β0) Φ12(β0)

Φ12(β0) Ψ(β0)

)−1(
Φ13(β0)

τ(β0)

) and

σ2D = Υ−

(Φ13(β0), τ(β0))

(
Φ1(β0) Φ12(β0)

Φ12(β0) Ψ(β0)

)−1(
Φ13(β0)

τ(β0)

) .

We note that D̂ is a sufficient statistic for µD, which contains information about the con-

centration parameter C and is asymptotically independent of AR(β0), LM(β0), and hence

LM∗(β0).

Under weak identification, we observe that m1(∆) and m2(∆) in Lemma 1.2.4 can be

written as (
m1(∆)

m2(∆)

)
=

(
C1(∆)

C2(∆)

)
µD, (1.3.2)

where (
C1(∆)

C2(∆)

)
≡

(
Φ
−1/2
1 (β0)∆

2

(1− ρ2(β0))
−1/2(Ψ−1/2(β0)∆− ρ(β0)Φ

−1/2
1 (β0)∆

2)

)

×

1− (∆2,∆)

(Φ1(β0) Φ12(β0)

Φ12(β0) Ψ(β0)

)−1(
Φ13(β0)

τ(β0)

)−1

. (1.3.3)
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By (1.3.2), we see that ϕa1,a2,∞ = ϕa1,a2,∞(∆) defined in (1.2.9) can be written as

1

{
a1Z2

1 (C1(∆)µD) + a2(ρ(β0)Z1(C1(∆)µD) + (1− ρ2(β0))
1/2Z2(C2(∆)µD))

2

+(1− a1 − a2)Z2
2 (C2(∆)µD) ≥ Cα(a1, a2; ρ(β0))

}
.

This motivates the definition that

ϕa1,a2,∞(δ) = 1

{
a1Z2

1 (C1(δ)µD) + a2(ρ(β0)Z1(C1(δ)µD) + (1− ρ2(β0))
1/2Z2(C2(δ)µD))

2

+(1− a1 − a2)Z2
2 (C2(δ)µD) ≥ Cα(a1, a2; ρ(β0))

}
.

(1.3.4)

To emphasize the dependence of ϕa1,a2,∞(δ) on µD and γ(β0), we further write ϕa1,a2,∞(δ)

as ϕa1,a2,∞(δ, µD, γ(β0)).

The range of values that ∆ can take is defined as D(β0) = {δ : δ + β0 ∈ B}, where B
is the parameter space. For instance, in their empirical application of returns to education,

Mikusheva and Sun (2022) assume that β (i.e., the return to education) ranges from -0.5

to 0.5, with B = [−0.5, 0.5]. We adopt the same practice in our simulations based on

calibrated data in Section 1.5.2 and empirical application in Section 1.6. Specifying the

parameter space is almost inevitable for any weak-identification-robust inference method,

but additional simulation results in Section A.21 of the Appendix show that our method is

insensitive to the choice of parameter space.

Following the lead of I.Andrews (2016), we define the highest attainable power for each

δ ∈ D(β0) as Pδ,µD
= sup(a1,a2)∈A(µD,γ(β0)) Eϕa1,a2,∞(δ, µD, γ(β0)), which means that

Pδ,µD
− Eϕa1,a2,∞(δ, µD, γ(β0))

is the power loss when the weights are set as (a1, a2). Here we denote the domain of (a1, a2)

as A(µD, γ(β0)) and define it as A(µD, γ(β0)) = {(a1, a2) ∈ A0, a1 ∈ [a(µD, γ(β0)), 1]} where

A0 = {(a1, a2) ∈ [0, 1]× [0, 1], a1 + a2 ≤ a} for some a < 1,

a(µD, γ(β0)) = min

(
p1,

p2Cα,max(ρ(β0))Φ1(β0)cB(β0)

∆4
∗(β0)µ

2
D

)
, (1.3.5)

the two tuning parameters (p1, p2) = (0.01, 1.1), ∆∗(β0) = Φ
1/2
1 (β0)Ψ

−1/2(β0)ρ
−1(β0) as
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defined after Lemma 1.2.3, and

cB(β0) = sup
δ∈D(β0)

1− (δ2, δ)

(Φ1(β0) Φ12(β0)

Φ12(β0) Ψ(β0)

)−1(
Φ13(β0)

τ(β0)

)2

.

The maximum power loss over δ ∈ D(β0) can be viewed as a maximum regret. Then, we

choose (a1, a2) that minimizes the maximum regret; that is,

(a1(µD, γ(β0)), a2(µD, γ(β0))) ∈ argmin
(a1,a2)∈A(µD,γ(β0))

sup
δ∈D(β0)

(Pδ,µD
− Eϕa1,a2,∞(δ, µD, γ(β0))).

(1.3.6)

Four remarks on the domain of (a1, a2) (i.e., A(µD, γ(β0))) are in order. First, the lower

bound a(µD, γ(β0)) is motivated by Theorem 1.2.1(iii). Specifically, we require p1 ∈ (0, 1)

and close to 0 and p2 > 1. In the Appendix, we provide a detailed report on the finite

sample performance of our CLC test for both simulation designs analyzed in Section 1.5 and

the empirical application in Section 1.6, where we consider different values of p1 and p2.

The results indicate that our test’s finite sample performance is not affected by the specific

values chosen for (p1, p2), as all the results are very close to those reported in the main

paper. Second, under weak identification, µD is bounded, and
p2Cα,max(ρ(β0))Φ1(β0)cB(β0)

∆4
∗(β0)µ2

D
may

be larger than p1. In this case, we have A(µD, γ(β0)) = {(a1, a2) ∈ A0, a1 ∈ [p1, 1]}. Third,

under strong identification and local alternatives,
p2Cα,max(ρ(β0))Φ1(β0)cB(β0)

∆4
∗(β0)µ2

D
will converge to

zero so that

A(µD, γ(β0)) =

{
(a1, a2) ∈ A0, a1 ∈

[
p2Cα,max(ρ(β0))Φ1(β0)cB(β0)

∆4
∗(β0)µ

2
D

, 1

]}
.

We show in Theorem 1.4.2 below that in this case, the minimax jackknife CLC test con-

verges to 1{N ∗2
2 ≥ Cα} defined in Lemma 1.2.2, which is the UMP invariant and unbi-

ased test. Furthermore, the minimax a1 satisfies the requirement in Theorem 1.2.1(iii) with

q̃ = 1.1Cα,max(ρ(β0)) so that under strong identification, our CLC test has asymptotic power

1 against fixed alternatives, as shown in Theorem 1.4.4. Fourth, we require a < 1 for some

technical reason. In our simulations, we have not observed the minimax a1 + a2 reaching

the upper bound. Therefore, setting the upper bound to a or 1 does not have any numerical
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impact.

Since we cannot observe the values of µD and γ(β0) in practice, we adopt the plug-in

method described in Section 6 of I.Andrews (2016). Specifically, we replace γ(β0) with its

consistent estimator γ̂(β0) as specified in Assumption 2. To obtain a proxy of µD,
11 we

define

σ̂D =

Υ̂− (Φ̂13(β0), τ̂(β0))

(
Φ̂1(β0) Φ̂12(β0)

Φ̂12(β0) Ψ̂(β0)

)−1(
Φ̂13(β0)

τ̂(β0)

)1/2

,

which is a function of γ̂(β0) and a consistent estimator of σD by Assumption 2. Then, under

weak identification, we have D̂2/σ̂2D = D2/σ2D + op(1)
d
= Z2(µD/σD) + op(1) and D2/σ2D

is a sufficient statistic for µ2D. Let r̂ = D̂2/σ̂2D. We consider two estimators for µD as

functions of D̂ and σ̂D, namely, fpp(D̂, γ̂(β0)) = σ̂D
√
r̂pp and fkrs(D̂, γ̂(β0)) = σ̂D

√
r̂krs,

where r̂pp = max(r̂ − 1, 0) and

r̂krs = r̂ − 1 + exp

(
− r̂
2

)( ∞∑
j=0

(
− r̂
2

)j
1

j!(1 + 2j)

)−1

.

Specifically, Kubokawa, Robert, and Saleh (1993) show that r̂krs is positive as long as r̂ > 0

and r̂ ≥ r̂krs ≥ r̂ − 1. It is also possible to consider the MLE based on a single observation

D̂2/σ̂2D. However, such an estimator is harder to use because it does not have a closed-form

expression.

In practice, we estimate Eϕa1,a2,∞(δ, µD, γ(β0)) by E∗ϕa1,a2,s(δ, D̂, γ̂(β0)) for s ∈ {pp, krs},
where

ϕa1,a2,s(δ, D̂, γ̂(β0))

= 1


a1Z2

1 (Ĉ1(δ)fs(D̂, γ̂(β0)))

+a2

[
ρ̂(β0)Z1(Ĉ1(δ)fs(D̂, γ̂(β0))) + (1− ρ̂2(β0))

1/2Z2(Ĉ2(δ)fs(D̂, γ̂(β0)))
]2

+(1− a1 − a2)Z2
2 (Ĉ2(δ)fs(D̂, γ̂(β0)) ≥ Cα(a1, a2; ρ̂(β0))

 ,

(1.3.7)

11In fact, as ϕa1,a2,∞(δ, µD, γ(β0)) only depends on µ2
D, we aim to find a good estimator for µ2

D.
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and (Ĉ1(δ), Ĉ2(δ)) are similarly defined as (C1(δ), C2(δ)) in (1.3.3) with γ(β0) replaced by

γ̂(β0); that is,(
Ĉ1(δ)

Ĉ2(δ)

)
≡

(
Φ̂
−1/2
1 (β0)δ

2

(1− ρ̂2(β0))
−1/2(Ψ̂−1/2(β0)δ − ρ̂(β0)Φ̂

−1/2
1 (β0)δ

2)

)

×

1− (δ2, δ)

( Φ̂1(β0) Φ̂12(β0)

Φ̂12(β0) Ψ̂(β0)

)−1(
Φ̂13(β0)

τ̂(β0)

)−1

.

Let Pδ,s(D̂, γ̂(β0)) = sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0))

E∗ϕa1,a2,s(δ, D̂, γ̂(β0)). Then, for s ∈
{pp, krs}, we can estimate a(µD, γ(β0)) in (1.3.6) byAs(D̂, γ̂(β0)) = (A1,s(D̂, γ̂(β0)),A2,s(D̂, γ̂(β0)))

defined as

As(D̂, γ̂(β0)) ∈ argmin
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0))

sup
δ∈D(β0)

(Pδ,s(D̂, γ̂(β0))− E∗ϕa1,a2,s(δ, D̂, γ̂(β0))),

(1.3.8)

where ϕa1,a2,s(δ, D̂, γ̂(β0)) is defined in (1.3.7),

A(fs(D̂, γ̂(β0)), γ̂(β0)) = {(a1, a2) ∈ A0, a1 ∈ [a(fs(D̂, γ̂(β0)), γ̂(β0)), a]},

a(fs(D̂, γ̂(β0)), γ̂(β0)) = min

(
0.01,

1.1Cα,max(ρ̂(β0))Φ̂1(β0)ĉB(β0)

∆̂4
∗(β0)f

2
s (D̂, γ̂(β0))

)
,

ĉB(β0) = sup
δ∈D(β0)

1− (δ2, δ)

( Φ̂1(β0) Φ̂12(β0)

Φ̂12(β0) Ψ̂(β0)

)−1(
Φ̂13(β0)

τ̂(β0)

)2

,

and ∆̂∗(β0) = Φ̂
1/2
1 (β0)Ψ̂

−1/2(β0)ρ̂
−1(β0). Then, the feasible jackknife CLC test is, for
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s ∈ {pp, krs},

ϕ̂As(D̂,γ̂(β0))
= 1

{
A1,s(D̂, γ̂(β0))AR

2(β0) +A2,s(D̂, γ̂(β0))LM
2(β0)

+(1−A1,s(D̂, γ̂(β0))−A2,s(D̂, γ̂(β0)))LM
∗2(β0) ≥ Cα(As(D̂, γ̂(β0)); ρ̂(β0))

}
.

(1.3.9)

1.4 Asymptotic Properties

We first consider the asymptotic properties of the jackknife CLC test under weak identifica-

tion and fixed alternatives, in which C → C̃ and ∆ is treated as fixed so that we have

D̂⇝ D
d
= N (µD, σ

2
D).

We see from (1.3.6) and (1.3.8) that As(d, r) = (a1(fs(d, r), r), a2(fs(d, r), r)) is a function

of (d, r) ∈ ℜ× Γ, where Γ is the parameter space for γ(β0) and s ∈ {pp, krs}. We make the

following assumption on As(·).

Assumption 3. Let Ss be the set of discontinuities of As(·, γ(β0)) : ℜ 7→ [0, 1] × [0, 1].

Then, we assume As(d, r) is continuous in r for any d ∈ ℜ/Ss, and the Lebesgue measure

of Ss is zero for s ∈ {pp, krs}.

Assumption 3 is a technical condition that allows us to apply the continuous mapping

theorem. It is mild because As(·) is allowed to be discontinuous in its first argument. In

practice, we can approximate As(·) by a step function defined over a grid of d so that there is

a finite number of discontinuities. The continuity ofAs(·) in its second argument is due to the

smoothness of the bivariate normal PDF with respect to the covariance matrix. Therefore,

in this case, Assumption 3 holds automatically.

Theorem 1.4.1. Suppose we are under weak identification and fixed alternatives and that

Assumptions 1–3 hold. Then, for s ∈ {pp, krs},

As(D̂, γ̂(β0))⇝ As(D, γ(β0)) = (a1(fs(D, γ(β0)), γ(β0)), a2(fs(D, γ(β0)), γ(β0)))
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and12

Eϕ̂As(D̂,γ̂(β0))
→ Eϕa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞(∆, µD, γ(β0)),

where ϕa1,a2,∞(δ) is defined in (1.3.4) and al(fs(D, γ(β0)), γ(β0)) is interpreted as al(µD, γ(β0))

defined in (1.3.6) with µD replaced by fs(D, γ(β0)) for l = 1, 2 defined in Section 1.3.

In addition, let BL1 be the class of functions h(·) of D that is bounded and Lipschitz with

Lipschitz constant 1. Then, if the null hypothesis holds such that ∆ = 0, we have

E(ϕ̂As(D̂,γ̂(β0))
− α)h(D̂) → 0, ∀h ∈ BL1.

Several remarks on Theorem 1.4.1 are in order. First, we see that the power of our jack-

knife CLC test is EϕAs(D,γ(β0)),∞(∆, µD, γ(β0)), which does not exactly match the minimax

power

Eϕa1(µD,γ(β0)),a2(µD,γ(β0)),∞(∆, µD, γ(β0))

in the limit problem. This is because under weak identification, it is impossible to con-

sistently estimate µD, or equivalently, the concentration parameter. A similar result holds

under weak identification with a fixed number of moment conditions in I.Andrews (2016).

The best we can do is to approximate µD by reasonable estimators based on D such as

fpp(D, γ(β0)) and fkrs(D, γ(β0)), which are random even asymptotically. Second, Theorem

1.4.1 implies that our jackknife CLC test controls size asymptotically conditionally on D̂,

and thus, unconditionally. Last, according to Theorem 1.4.1, the CLC test’s asymptotic

power, with weights (a1, a2) chosen through the minimax procedure, is equivalent to the

limit experiment’s asymptotic power when the weights are As(D, γ(β0)), which is a function

of D. As D is independent of the normal random variables in ϕa1,a2,∞(δ) in (1.3.4), the two

optimality results stated in Theorem 1.2.1(i) also hold asymptotically, conditional on D̂. To

make this statement precise, we define the eigenvalue decomposition(
A1,s(D̂, γ̂(β0)) +A2,s(D̂, γ̂(β0))ρ̂

2(β0) A2,s(D̂, γ̂(β0))ρ̂(β0)(1− ρ̂2(β0))
1/2

A2,s(D̂, γ̂(β0))ρ̂(β0)(1− ρ̂2(β0))
1/2 1−A1,s(D̂, γ̂(β0))−A2,s(D̂, γ̂(β0))ρ̂

2(β0)

)
12We assume that C

0 = +∞ if C > 0 and min(C,+∞) = C.
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= Us(D̂, γ̂(β0))

(
ν1,s(D̂, γ̂(β0)) 0

0 ν2,s(D̂, γ̂(β0))

)
Us(D̂, γ̂(β0))

⊤. (1.4.1)

Define a class of tests

Φα =


ϕ̃(Z2

1 ,Z2
2 , d, r) : Eϕ̃(Z2

1 ,Z2
2 , d, r) ≤ α, for any (d, r) ∈ ℜ × Γ,

ϕ̃(Z2
1 ,Z2

2 , d, r) is continuous in r,

the discontinuities of ϕ̃(Z2
1 ,Z2

2 , d, r) w.r.t.

the first three arguments have zero Lebesgue measure


,

where (Z1,Z2) are two independent standard normal random variables. Further define, for

s ∈ {pp, krs}, (
ÃRs(β0)

L̃M
∗
s(β0)

)
= Us(D̂, γ̂(β0))

⊤

(
AR(β0)

LM∗(β0)

)
.

Assumption 4. Suppose Us(d, r) is continuous in r and the set of discontinuities of Us(·)
w.r.t. its first argument has zero Lebesgue measure.

Corollary 1.4.1. Suppose we are under weak identification and fixed alternatives and that

Assumptions 1–4 hold. Let ϕ̃(·) ∈ Φα and for any d ∈ ℜ, denote (θ1, θ2) = (m1(∆),m2(∆))Us(d, γ(β0)).

Then, the following two optimality results hold.

(i) If for some d ∈ ℜ and s ∈ {pp, krs}, we have

lim
ε→0

lim
n→∞

Eϕ̃(ÃR
2

s(β0), L̃M
∗2
s (β0), D̂, γ̂(β0))1{|D̂ − d| ≤ ε}

E1{|D̂ − d| ≤ ε}

≥ lim
ε→0

lim
n→∞

Eϕ̂As(D̂,γ̂(β0))
1{|D̂ − d| ≤ ε}

E1{|D̂ − d| ≤ ε}
,

for all (θ1, θ2) ∈ ℜ2, then

lim
ε→0

lim
n→∞

Eϕ̃(ÃR
2

s(β0), L̃M
∗2
s (β0), D̂, γ̂(β0))1{|D̂ − d| ≤ ε}

E1{|D̂ − d| ≤ ε}

= lim
ε→0

lim
n→∞

Eϕ̂As(D̂,γ̂(β0))
1{|D̂ − d| ≤ ε}

E1{|D̂ − d| ≤ ε}
,
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for all (θ1, θ2) ∈ ℜ2.

(ii) If (θ21, θ
2
2) = b · (ν1,s(d, γ(β0)), ν2,s(d, γ(β0))) for some positive constant b, then there

exists b > 0 such that if 0 < b < b, we have

lim
ε→0

lim
n→∞

Eϕ̃(ÃR
2

s(β0), L̃M
∗2
s (β0), D̂, γ̂(β0))1{|D̂ − d| ≤ ε}

E1{|D̂ − d| ≤ ε}

≤ lim
ε→0

lim
n→∞

Eϕ̂As(D̂,γ̂(β0))
1{|D̂ − d| ≤ ε}

E1{|D̂ − d| ≤ ε}
,

Corollary 1.4.1 shows that under weak identification and fixed alternatives, our jackknife

CLC test is asymptotically admissible and optimal against certain alternatives conditional

on D̂.

Next, we consider the performance of ϕ̂As(D̂,γ̂(β0))
defined in (1.3.9) under strong identi-

fication and local alternatives. To precisely state the optimality result, we further consider

the class of level-α tests against θ = 0 v.s. the two-sided alternative that are constructed

based on one observation of (N1,N2), where θ = ∆̃C̃Ψ−1/2 and(
N1

N2

)
d
= N

((
0

θ

)
,

(
1 ρ

ρ 1

))
,

Specifically, denote

ΦI
α =


ϕ(·) : Eϕ(N1,N2) ≤ α under the null,

ϕ(N1,N2) = ϕ(N1,−N2),

the discontinuities of ϕ(·) has zero Lebesgue measure


and

ΦU
α =


ϕ(·) : Eϕ(N1,N2) ≤ α under the null,

Eϕ(N1,N2) ≥ α under the alternative,

the discontinuities of ϕ(·) has zero Lebesgue measure


as the classes of sign-invariant and unbiased tests, respectively.
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Theorem 1.4.2. Suppose that Assumptions 1 and 2 hold. Further suppose that we are

under strong identification and local alternatives as described in Lemma 1.2.1. Then, for

s ∈ {pp, krs}, we have

A1,s(D̂, γ̂(β0))
p−→ 0, A2,s(D̂, γ̂(β0))ρ

p−→ 0, and ϕ̂As(D̂,γ̂(β0))
⇝ 1{N ∗2

2 ≥ Cα},

where N ∗
2

d
= N

(
∆̃C̃

[(1−ρ2)Ψ]1/2
, 1
)
. In addition, suppose ϕ̆n is a generic test such that ϕ̆n =

ϕ(AR(β0), LM(β0)) + oP (1) for some ϕ ∈ ΦI
α ∪ ΦU

α and the sequence {ϕ̆n}n≥1 is uniformly

integrable. Then, we have

lim
n→∞

Eϕ̂As(D̂,γ̂(β0))
= sup

ϕ∈ΦI
α∪ΦU

α

lim
n→∞

Eϕ(AR(β0), LM(β0)) ≥ lim
n→∞

Eϕ̆n.

Five remarks are in order. First, under strong identification, µD, and thus, D approaches

infinity, and so does our estimator D̂. This is how our estimator D̂ can detect the iden-

tification strength. In addition, we show in the proof of Theorem 1.4.2 that under strong

identification, the calibrated power gap Pδ,s(D̂, γ̂(β0))−E∗ϕa1,a2,s(δ, D̂, γ̂(β0)) is maximized

when δ is in the region of local alternatives. However, in this region, as shown by Lemma

1.2.2, the maximum power gap can achieve zero if all the weights are put on LM∗(β0), which

leads to the first result in Theorem 1.4.2. Second, our jackknife CLC test is adaptive to iden-

tification strength. In practice, econometricians do not know whether the true value β is

close to the null β0. Therefore, our jackknife CLC test calibrates power across all possible

values of δ (i.e., δ ∈ D(β0)), which include both local and fixed alternatives. Yet, Theorem

1.4.2 shows that the minimax procedure can produce the most powerful test as if it is known

that β belongs to the region of local alternatives. Third, Theorem 1.4.2 shows that under

strong identification and local alternatives, our jackknife CLC test converges to the UMP

level-α test that is either invariant to the sign change or unbiased and constructed based on

AR(β0) and LM(β0). Therefore, it is more powerful than both the jackknife AR and LM

tests. Fourth, under strong identification and local alternatives, the JIVE-based Wald test

proposed by Chao et al. (2012) is asymptotically equivalent to the jackknife LM test, which

implies that the jackknife AR and JIVE-Wald-based two-step test in Mikusheva and Sun

(2022) is also dominated by the jackknife CLC test. Fifth, consider the HLIM based Wald
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test statistic proposed by Hausman et al. (2012), which is denoted as Wh(β0). In Section

A.20 in the Appendix, we show that, under local alternative and strong identification,

Wh(β0) =
Ψ1/2

Ψ
1/2
h

LM(β0)−
ρ̃Φ

1/2
1

Ψ
1/2
h

AR(β0) + oP (1),

where ρ̃ = plimn→∞X
⊤e(β0)/(e(β0)

⊤e(β0)) and Ψh = Ψ−2ρ̃Φ12+ρ̃
2Φ1 is the corresponding

asymptotic variance. Then, by letting ϕ̆n = 1{W 2
h (β0) ≥ Cα} and

ϕ(AR(β0), LM(β0)) = 1


[
Ψ1/2

Ψ
1/2
h

LM(β0)−
ρ̃Φ

1/2
1

Ψ
1/2
h

AR(β0)

]2
≥ Cα

 ,

Theorem 1.4.2 implies our jackknife CLC test is more powerful than the HLIM based Wald

test under strong identification against local alternatives. In fact, by direct calculation, we

can see that, for θ = ∆̃C̃Ψ−1/2,

Ψ1/2

Ψ
1/2
h

LM(β0)−
ρ̃Φ

1/2
1

Ψ
1/2
h

AR(β0)⇝ Z(θ̃), where θ̃2 =
θ2

1− ρ2 +
(
ρ̃Φ

1/2
1 Ψ−1/2 − ρ

)2 ≤ θ2

(1− ρ2)
.

The noncentrality parameter for the HLIM based Wald test is weakly smaller than that of

the CLC test, which explains the power comparison. The equality holds if ρ̃Φ
1/2
1 Ψ−1/2 = ρ,

which further holds in the special case of many weak IVs and homoskedasticity in the sense

that Π⊤Π/K = o(1) and E(Vi, ei)⊤(Vi, ei) does not vary across i.

Combining Theorems 1.4.1 and 1.4.2, we can show the uniform size control of our jackknife

CLC test no matter the identification is strong or weak. Let λn ∈ Λn be the data generating

process of n observations of (e, V, Z). Under λn, the covariance matrix of (Qe,e, QX,e, QX,X)

is denoted as Vn. We impose the following restriction on the sequence of classes of DGPs
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({Λn}n≥1):
13



{Vi, ei}i∈[n] are independent, Eei = EVi = 0,

maxi Ee4i +maxi EV 4
i ≤ C1 <∞,

Cn = 1√
K

∑
i∈[n]

∑
j ̸=iΠiPijΠj ∈ ℜ,

Pii ≤ C2 < 1,

0 < κ1 ≤ mineig(Vn) ≤ maxeig(Vn) ≤ κ2 <∞,

where C1, C2, κ1, and κ2 are some fixed constants,

and Assumption 2 holds for β0 = β.


(1.4.2)

In Sections A.2.1 and A.2.2 of the Appendix, we further verify that Assumption 2 holds,

respectively, for the standard variance estimators, which follow the construction in Crudu

et al. (2021), and the cross-fit variance estimators, which follow Mikusheva and Sun (2022).

Theorem 1.4.3 shows that our jackknife CLC test has correct asymptotic size, under similar

arguments as those in Andrews, Cheng, and Guggenberger (2020a) and I.Andrews (2016).

Theorem 1.4.3. Suppose Assumption 3 holds, {Λn}n≥1 satisfies (1.4.2), and we are under

the null hypothesis that β0 = β. Then, we have

lim inf
n→∞

inf
λn∈Λn

Eλn
(ϕ̂As(D̂,γ̂(β0))

) = lim sup
n→∞

sup
λn∈Λn

Eλn
(ϕ̂As(D̂,γ̂(β0))

) = α.

Last, we show that, under strong identification, the jackknife CLC test ϕ̂As(D̂,γ̂(β0))
defined

in (1.3.9) has asymptotic power 1 against fixed alternatives.

Theorem 1.4.4. Suppose Assumption 2 holds, and (Qe(β0),e(β0)−∆2C, QX,e(β0)−∆C, QX,X−
C)⊤ = Op(1). Further suppose that we are under strong identification with fixed alternatives

so that ∆ = β − β0 is nonzero and fixed. Then, we have

ϕ̂As(D̂,γ̂(β0))

p−→ 1.

13In (1.4.2), we focus on the model without exogenous control variables. The independence and
moment conditions for (ei, Vi) are sufficient for Assumption 1. We further verify in Section A.1 of
the Appendix that the joint asymptotic normality (Assumption 1) holds in the case with exogenous
controls.
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1.5 Simulation

1.5.1 Power Curve Simulation for the Limit Problem

In this section, we present simulation results to compare the power performance of various

tests under the limit problem described in Section 1.2. We consider the following tests with

a nominal rate of 5%: (i) our jackknife CLC test, where µD is estimated using either pp or

krs method, (ii) the one-sided jackknife AR test defined in (1.2.5), (iii) the jackknife LM

test defined in (1.2.6), and (iv) the test that is based on the orthogonalized jackknife LM

statistic LM∗2(β0) defined in this paper. We conduct 5,000 simulation replications to obtain

stable simulation results.

We set the parameter space for β as B = [−6/C, 6/C], where C = 3 and 6. The choice

of parameter space follows that in I.Andrews (2016, Section 7.2). We set β0 = 0, and

the values of the covariance matrix in (1.2.2) are set as follows: Φ1 = Ψ = Υ = 1, and

Φ12 = Φ13 = τ = ρ, where ρ ∈ {0.2, 0.4, 0.7, 0.9}. We then compute γ(β0) based on (1.2.4) as

β ranges over B and generate AR(β0) and LM(β0) based on (1.2.3). Last, we implement our

CLC test purely based on AR(β0), LM(β0), γ(β0), and B without assuming the knowledge

of (C, β). We have tried to simulate under alternative settings of the covariance matrix, and

the obtained patterns of the power behavior are very similar.

Figures 1.1–1.4 plot the power curves for ρ = 0.2, 0.4, 0.7, and 0.9. In each figure, we

report the results under both C = 3 and 6. We observe that overall, the two jackknife CLC

tests have the best power properties in terms of minimizing the maximum regret. Especially

when the identification is relatively strong (C = 6) and/or the degree of endogeneity is

not very low (ρ = 0.4, 0.7, or 0.9), the jackknife CLC tests outperform their AR and LM

counterparts by a large margin. In addition, we notice that when C = 3, for some parameter

values LM∗(β0) can suffer from substantial declines in power relative to the other tests,

which is in line with our theoretical predictions. By contrast, our jackknife CLC tests are

able to guard against such substantial power loss because of the adaptive nature of their

minimax procedure. In Section A.21.1 of the Appendix, we further report power curves for

alternative values of the tuning parameters (p1, p2) in (1.3.5) and of C, and find that the
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overall patterns remain very similar.
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Figure 1.1: Power Curve for ρ = 0.2 with nominal size represented by the horizontal dotted

line.

Note: The orange line with circle represents pp, which is the probability of rejection by

using the test ϕa1,a2,pp(δ, D̂, γ̂(β0)); the green line with upward-pointing triangle represents

krs, which is the probability of rejection by using the test ϕa1,a2,krs(δ, D̂, γ̂(β0)); the brown

dash line with additive sign represents AR test given in (1.2.5); the blue dotted line with

cross represents LM test given in (1.2.6); the dark dash line with downward-pointing

triangle represents LM∗ test defined just above (1.2.7).
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Figure 1.2: Power Curve for ρ = 0.4 with nominal size represented by the horizontal dotted

line.

Note: The lines are explained under Figure 1.1.
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Figure 1.3: Power Curve for ρ = 0.7 with nominal size represented by the horizontal dotted

line.

Note: The lines are explained under Figure 1.1.
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Figure 1.4: Power Curve for ρ = 0.9 with nominal size represented by the horizontal dotted

line.

Note: The lines are explained under Figure 1.1.

1.5.2 Simulation Based on Calibrated Data

We follow the approach of Angrist and Frandsen (2022) and Mikusheva and Sun (2022)

and use a data generating process (DGP) calibrated based on the 1980 census dataset from

Angrist and Krueger (1991). We define the instruments as

Z̃i =
(
(1{Qi = q, Ci = c})q∈{2,3,4},c∈{31,··· ,39}, (1{Qi = q, Pi = p})q∈{2,3,4},p∈{51 states}

)
,
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where Qi, Ci, Pi are individual i’s quarter of birth (QOB), year of birth (YOB) and place

of birth (POB), respectively, so that there are 180 instruments. Note that the dummy with

q = 1 and c = 30 is omitted in Z̃i. We denote Ỹi as income, X̃i as the highest grade

completed, and W̃i as the full set of YOB-POB interactions; that is,

W̃i =
(
1{Ci = c, Pi = p}c∈{30,...,39},p∈{51 states}

)
,

which is a 510× 1 matrix.

As in Angrist and Frandsen (2022), using the full 1980 sample (consisting of 329,509 indi-

viduals), we first obtain the average X̃i for each QOB-YOB-POB cell; we call this s̄(q, c, p).

Next we use LIML to estimate the structural parameters in the following linear IV regression:

Ỹi = X̃iβX + W̃⊤
i βW + ei,

X̃i = Z̃⊤
i ΓZ + W̃⊤

i ΓW + Vi,

where X̃ is endogenous and instrumented by Z̃i and W̃i is the exogenous control variable.

Denote the LIML estimate for βX,W ≡ (β⊤X , β
⊤
W )⊤ as β̂⊤LIML = (β̂⊤LIML,X , β̂

⊤
LIML,W ). We

let ŷ(Ci, Pi) = W̃⊤
i β̂LIML,W and

ω(Qi, Ci, Pi) = Ỹi − X̃iβ̂LIML,X − W̃⊤
i β̂LIML,W .

Based on the LIML estimate and the calibrated ω(Qi, Ci, Pi), we simulate the following

two DGPs:

1. DGP 1:

ỹi = ȳ + βs̃i + ω(Qi, Ci, Pi)(νi + κ2ξi) (1.5.1)

s̃i ∼ Poisson(µi),

where β is the parameter of interest, νi and ξi are independent standard normal, ȳ =
1
n

∑n
i=1 ŷ(Ci, Pi), µi ≡ max{1, γ0 + γ⊤Z Z̃i + κ1νi}, and γ0 + γ⊤Z Z̃i is the projection of

s̄i(q, c, p) onto a constant and Z̃i. We set κ1 = 1.7 and κ2 = 0.1 as in Mikusheva and

Sun (2022).
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2. DGP 2: Same as DGP 1 except that κ1 = 2.7 and

s̃i ∼ ⌊Poisson(2µi)/2⌋

We consider sample sizes of 0.5%, 1%, and 1.5% of the full sample size. Upon obtaining

n observations, we exclude instruments with
∑n

i=1 Z̃ij < 5. This results in three different

sample sizes: small, medium, and large, with 1,648, 3,296, and 4,943 observations, respec-

tively. The number of instruments also varies across sample sizes, with 119, 142, and 150

instruments for small, medium, and large samples, respectively. Our DGP 1 is exactly the

same as that in Mikusheva and Sun (2022), with the correlation parameter of ρ = 0.41. DGP

2 has a higher correlation parameter of ρ = 0.7. The identification strength increases with

the sample size. For DGP 1, the concentration parameters C/Υ1/2 for small, medium, and

large samples are 2.15, 3.62, and 4.85, respectively. For DGP 2, they are 2.38, 3.97, 5.28,

respectively.

We emphasize that following Angrist and Frandsen (2022) and Mikusheva and Sun (2022),

we only use W̃i to compute the LIML estimator and calibrate ω(Qi, Ci, Pi), but do not use

it to generate new data. Therefore, for the simulated data, the outcome variable is ỹi, the

endogenous variable is s̃i, the IV Z̃i is viewed to be fixed, and the exogenous control variable

is just an intercept. We then denote the demeaned versions of ỹi, s̃i, and Z̃i as Yi, Xi,

and Zi, respectively, in (1.2.1) and implement various inference methods described below.

Following Mikusheva and Sun (2022), we test the null hypothesis that β = β0 for β0 = 0.1

while varying the true value β ∈ B. The parameter space is set as B = [−0.5, 0.5], which

is consistent with the choice of parameter space for the empirical application below. The

results below are based on 1,000 simulation repetitions. We provide more details about the

implementation in Section A.3 in the Appendix. We set (p1, p2) = (0.01, 1.1) in (1.3.5).

Additional simulation results using other choices of (p1, p2) and B are reported in Section

A.21.2 in the Appendix. All of them are very close to what we report here.

We compare the following tests with a nominal rate of 5%:

1. pp: our jackknife CLC test when µD is estimated by the method pp.

2. krs: our jackknife CLC test when µD is estimated by the method krs.

3. AR: the one-sided jackknife AR test with the cross-fit variance estimator proposed by
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Mikusheva and Sun (2022).

4. LM CF: Matsushita and Otsu’s (2021) jackknife LM test, but with a cross-fit variance

estimator (details are given in Section A.2.2 in the Appendix).

5. 2-step: Mikusheva and Sun’s (2022) two-step estimator in which the overall size is set

at 5%.

6. LM∗: LM∗ test defined in this paper.

7. LM MO: Matsushita and Otsu’s (2021) original jackknife LM test.
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Figure 1.5: Power Curve for DGP 1 with (p1, p2) = (0.01, 1.1) and nominal size of 5%

represented by the horizontal dotted line

Note: The orange line with circle represents pp test; the green line with upward-pointing

triangle represents krs test; the brown dash line with additive sign represents AR test

given in (1.2.5); the blue dotted line with cross represents LM test with cross-fit variance;

the purple dash line with diamond represents the 2-step test proposed by Mikusheva and

Sun (2022) with overall 5% significance level; dark line with downward-pointing triangle

represents LM∗; the yellow dash line with rectangle represents the LM test proposed by

Matsushita and Otsu (2021).
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Figure 1.6: Power Curve for DGP 2 with (p1, p2) = (0.01, 1.1) and nominal size of 5%

represented by the horizontal dotted line

Note: The lines are explained in Figure 1.5.

Figures 1.5 and 1.6 plot the power curves of the aforementioned tests. We can make four

observations. First, all methods control size well because they are all weak identification

robust. Second, the performance of the jackknife CLC test with krs is slightly better than

that with pp, which is consistent with the power curve simulation in Section 1.5.1. Third, in

DGP 1 with a small sample size, the power of the jackknife AR test is at most about 9.2%

higher than that of the krs test when β is around -0.3. However, for alternatives close to the

null (e.g., when β is around 0), the power of the krs test is 24% higher, which implies that

the power of the krs test is still better than that for the jackknife AR test in the minimax

sense. The power of the jackknife LM tests is similar to that of the krs test in DGP 1 with

a small sample size. Fourth, for the rest of the scenarios, the power of the krs test is the

highest in most regions of the parameter space. The power of the jackknife AR and LM

is at most 0.7% higher than that of the krs test at some point. For DGP 1 with medium

and large sample sizes, the maximum power gaps between our krs test and the jackknife

LM are about 8.6% and 5.6%, and about 43.2% and 50% compared with the jackknife AR.

Furthermore, they are 23.3%, 19.5%, and 18.5% compared with the jackknife LM for DGP

2 with small, medium, and large sample sizes, respectively, and about 41.5%, 55.3%, and

55.85% compared with the jackknife AR.

Figures 1.7 and 1.8 show the average values of (a1, a2), which represents the weights

assigned to AR(β0) and LM(β0) in our CLC tests, under DGPs 1 and 2, respectively. The
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weight assigned to LM∗(β0) is simply 1 − a1 − a2. As shown in Table 1.1, under weak

identification and fixed alternatives, there is no clear winner among AR(β0), LM(β0), and

LM∗(β0), and thus, our CLC test assigns weights to all the three tests. However, under

strong identification and local alternative, LM∗(β0) is the UMP test and should carry all

the weights, which means a1 + a2 should be minimum. On the other hand, under strong

identification and for some fixed alternatives, LM∗(β0) may lack power while both AR(β0)

and LM(β0) have power 1. In this case, as long as we do not assign all weights on LM∗(β0),

our CLC test should also have power 1. We observe that our simulation results are consistent

with these theoretical predictions. First, when β0 is close to the null 0.1, both a1 and a2 are

small, indicating that most of the weights are put on LM∗(β0). Second, we observe from

Figures 1.5 and 1.6 that the power of LM∗(β0) drops rapidly when β is smaller than around

zero. Therefore, our CLC test assigns more weights on AR(β0) and LM(β0). Third, for

distant alternatives, significant weights are assigned to AR(β0) and LM(β0), which ensures

the good power of our CLC test. Additionally, we note that the weights assigned to AR(β0)

(a1) are higher on the left side of the parameter space relative to the right, since AR(β0) is

more powerful on the left.

−0.5 −0.3 −0.1 0.1 0.3 0.5

0.0

0.2

0.4

0.6

0.8

Small

β

Av
era

ge
 va

lue
s o

f a
 fo

r D
GP

1

a1_pp
a2_pp
a1_krs
a2_krs

−0.5 −0.3 −0.1 0.1 0.3 0.5

0.0

0.2

0.4

0.6

0.8

Medium

β

−0.5 −0.3 −0.1 0.1 0.3 0.5

0.0

0.2

0.4

0.6

0.8

Large

β

Figure 1.7: Average Values of a for DGP 1.

Note: The orange line with circle represents the average value of a1 in the pp test; the

green line with upward-pointing triangle represents the average value of a2 in the pp test;

the red dotted line with circle represents the average value of a1 in the krs test; the blue

dotted line with upward-pointing triangle represents the average value of a2 in the krs test.

47



−0.5 −0.3 −0.1 0.1 0.3 0.5

0.0

0.2

0.4

0.6

0.8

Small

β

Av
era

ge
 va

lue
s o

f a
 fo

r D
GP

2

a1_pp
a2_pp
a1_krs
a2_krs

−0.5 −0.3 −0.1 0.1 0.3 0.5

0.0

0.2

0.4

0.6

0.8

Medium

β

−0.5 −0.3 −0.1 0.1 0.3 0.5

0.0

0.2

0.4

0.6

0.8

Large

β

Figure 1.8: Average Values of a for DGP 2

Note: The lines are explained in Figure 1.7.

1.6 Empirical Application

In this section, we consider the linear IV regressions with the specification underlying Angrist

and Krueger (1991, Table VII, column (6)), using the full original dataset.14 The outcome

variable Y and endogenous variable X are log weekly wages and schooling, respectively.

We follow Angrist and Krueger (1991) and focus on two specifications with 180 and 1,530

instruments. The 180 instruments consist of 30 quarter and year of birth interactions (QOB-

YOB) and 150 quarter and place of birth interactions (QOB-POB). The second specification

includes full interactions among QOB-YOB-POB, resulting in 1,530 instruments. The ex-

ogenous control variables have been partialled out from the outcome, endogenous variables,

and IVs. Further details on the empirical application can be found in Section A.4 in the

Appendix. The considered tests are similar to those in the previous section. The jackknife

AR test is defined in (1.2.5) with Φ̂1 being the cross-fit estimator in Mikusheva and Sun

(2022). The jackknife LM test is defined in (1.2.6) with the cross-fit estimator for Ψ(β0).

The pp and krs tests are our jackknife CLC tests. The two-step procedure is given by Miku-

sheva and Sun (2022, Section 5). Specifically, the researcher accepts the null if F̃ > 9.98

14The dataset can be downloaded from MIT Economics, Angrist Data Archive,
https://economics.mit.edu/faculty/angrist/data1/data/angkru1991.
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and Wald(β0) < C0.02
15 or if F̃ ≤ 9.98 and AR(β0) < z0.02. In the case of 180 instruments,

because F̃ = 13.42 > 9.98, the lower and upper bounds of the 95% confidence interval (CI)

for the two-step procedure correspond respectively to the minimum and maximum of the

set {β0 ∈ ℜ : Wald(β0) < C0.02}; similarly, for the 1,530 instruments, as F̃ = 6.32 ≤ 9.98,

the lower and upper bounds of the CI for the two-step procedure correspond respectively

to the minimum and maximum of the set {β0 ∈ ℜ : AR(β0) < z0.02}. We also report

the 95% Wald test CI based on the JIVE estimator, denoted as JIVE-t. Table 1.2 reports

the 95% CIs by inverting the corresponding 5% tests mentioned above for the parameter

space B = [−0.5, 0.5]. Note all CIs except JIVE-t are robust to weak identification. As F̃ ’s

are higher than 4.14 in both cases, the JIVE-t (5%) has the Stock and Yogo (2005b)-type

guarantee with at most a 5% size distortion (i.e., the overall size is less than 10%). We set

(p1, p2) in (1.3.5) as (0.01, 1.1). The empirical results with other choices of (p1, p2) and B
are reported in Section A.22 of the Appendix. All of them are very close to what we report

here.

jackknife AR jackknife LM JIVE-t Two-step pp krs

(5%) (5%) (5%) (5%) (5%) (5%)

180 IVs [0.008,0.201] [0.067,0.135] [0.066,0.132] [0.059,0.139] [0.067,0.128] [0.067,0.128]

1530 IVs [-0.035,0.22] [0.036,0.138] [0.035,0.133] [-0.051,0.242] [0.037,0.133] [0.037,0.133]

Table 1.2: Confidence Intervals
Notes: The F̃ ’s for 180 and 1,530 instruments are 13.42 and 6.32, respectively. The grid-
search used for our confidence interval was over 10,000 equidistant grid-points for β0 ∈
[−0.5, 0.5]. Our jackknife AR confidence interval for 1530 instruments differs from that in
Mikusheva and Sun (2022) because they used year-of-birth 1930-1938 dummies for the QOB-
YOB-POB interactions, whereas we used 1930-1939 dummies. More details are provided in
Section A.4 in the Appendix.

Table 1.2 highlights that the CIs generated by our jackknife CLC tests are the shortest

among all the weak identification robust CIs (i.e., pp, krs, jackknife AR, jackknife LM, and

two-step). Furthermore, the jackknife CLC CIs are 7.6% and 2.0% shorter than the non-

robust JIVE-t CIs with 180 and 1,530 instruments, respectively, which is in line with our

15F̃ = QX,X/Υ̂, where Υ̂ is the cross-fit estimator. Wald(β0) is defined as
(
β̂−β0

V̂

)2
, where β̂

is the JIVE estimator and V̂ is a cross-fit estimator of the asymptotic variance of β̂. We refer
interested readers to Mikusheva and Sun (2022, Section 5) for more details.
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theoretical result that the CLC tests are adaptive to the identification strength and efficient

under strong identification.
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Chapter 2

A Valid Anderson-Rubin Test under

Both Fixed and Diverging Number of

Weak Instruments

2.1 Introduction

Existing literature on hypothesis testing for instrumental variable (IV) models focuses on

either fixed number of instruments asymptotics (e.g. Andrews, Moreira, and Stock (2006),

Kleibergen (2005)) or diverging instruments asymptotics (e.g. Angrist et al. (1999), Chao

and Swanson (2005), Andrews and Stock (2007), Chao et al. (2012), Mikusheva and Sun

(2022)). To fully understand the problem at hand, we first restrict our attention to the

Anderson-Rubin (AR) statistic. The reason for this restriction is as follows: Andrews et al.

(2006)[Lemma 1(d)] showed that Z ′Y is a sufficient statistic for the parameter of interest

β in the general Instrumental Variable IV framework (see (2.2.1)). They considered the

Anderson-Rubin (AR) statistic1, which is a bijective transformation of the sufficient statistic

Z ′Y . Since a statistic is a sufficient statistic if and only if their bijective transformation is

itself a sufficient statistic2, it follows that the AR-statistic is a sufficient statistic for the

1They denoted this statistic as S in equation (2.6) of their paper
2This follows straightforwardly from the Factorization Theorem, see for instance Lehmann and

Romano (2006)[Corollary 2.6.1]
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parameter of interest β. It is therefore reasonable to simply restrict our attention to this

particular statistic and draw out its most salient features.

Going back to the problem, classical IV models assume that the number of instruments

is fixed, and with it, the two-staged-least-square (2SLS) estimation was proposed. However,

Sawa (1969) and Phillips and Hale (1977), among many others, have shown that the usual

2SLS estimation is biased whenever the number of instruments (K) diverge to infinity. To

overcome this, Angrist et al. (1999) proposed running a first-stage regression n times, once

for each observation, leaving out one observation at a time, where n is the number of sample

size. This is commonly referred to as “jackknifing” of a given statistic. In particular, Chao

et al. (2012) derived the asymptotic property of the jackknifed instrumental variable (JIVE)

estimator under the case of K → ∞, showing that the estimator converges to a standard

normal distribution under some appropriate re-scaling. However, when K is moderate, it

is unclear which statistic the researcher should use for weak-identification-robust inference.

On one hand the researcher could use the classical AR test for a fixed number of instruments

(defined as ARclassical in section 2.6.1), which has size control under a fixed number of

instruments but has power deficit when the number of instruments is large (See Lemma

B.2.5). On the other hand, the researcher could instead use the jackknifed AR tests proposed

by Crudu et al. (2021) and Mikusheva and Sun (2022) (defined as ARstandard and ARcf ,

respectively, in section 2.6.1), which provides good size control whenever the number of

instruments is large, but in general has size distortion when the number of instruments is

small (e.g., see the discussions in Section 2.2.2). Since the two types of AR statistics are

important components of many other weak-identification-robust test statistics proposed in

the literature, we expect a similar non-uniformity issue for these statistics as well.

A simple simulation illustrates this issue.3 Figure 2.1 demonstrates the case of a moderate

number of instruments, with the number of instruments K equal to 15 and the sample size

n equal to 200. In this paper, we propose four new tests that are robust to both weak

identification and the number of instruments, two of which are denoted as Qstandard and

3The tests in Figure 2.1 are simulated based on the design of section 2.6.2, except we have
reduced the sample size from 400 to 200. The concentration parameter G ≈ 70. Note that using a
different (higher or lower) concentration parameter does not change the size, shape, power-ranking,
and percentage difference in power among the tests. In fact, G ≈ 70 was a result of πK ≈ 0.25,
which is very small in practice.
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Figure 2.1: Power curve for K = 15 and n = 200
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a colored-circle represents ARstandard; the black dotted line with ‘x’ represents ARclassical;

the orange-line with colored-square represents Jstandard. The first horizontal dotted black

line represents 5%, while the second represents 10%.

Jstandard in Figure 2.1 (see section 2.6.1 for the detailed descriptions of these tests). At the

true parameter β = 0, the null rejection probabilities of ARclassical, ARstandard, Qstandard,

and Jstandard are 3.1%, 8%, 5.3%, and 5.4%, respectively. In addition, we observe that

the power of ARclassical is low throughout, while our tests Qstandard and Jstandard have the

added advantage of mirroring ARstandard’s power while controlling for size. Our proposed

test takes into account this mismatch between fixed and diverging instrument asymptotics,

and provide a critical-value that converges in both cases to the correct asymptotic limit

distribution under the null, regardless of identification strength, so long as the number of

controls grow slower than the fourth root of the number of instruments4. The analytical

4Chao, Swanson, and Woutersen (2023b) showed that when the dimension of controls are large,
partialling these controls out leads to inconsistent estimates under weak identification. They as-

sumed
√
dW

n = o(1), where dW is the dimension of the controls, and showed that this condition
is sufficient for consistent hypothesis testing. We have a similar type of assumption here (see
assumption 6)
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critical value defined in (2.2.8) is related to Anatolyev and Solvsten (2023),5 and we extend

their result to the problem of weak instruments.

Relation to the literature: Tests that allow for both fixed and diverging instruments dates

back to Anatolyev and Gospodinov (2011). They proposed an estimator that is robust to the

number of instruments, but requires errors to be homoskedastic. To improve finite sample

performance Kaffo and Wang (2017) proposes bootstrapping as an alternative, although it

relies on homoskedastic errors once again. Maurice J. G. Bun and Poldermans (2020) relaxes

the assumption of homoskedastic errors but requires Ziei to be identically and independently

distributed (i.i.d.), where Zi is the instrument and ei is the second-stage error. Relaxing the

i.i.d. assumption, Boot and Ligtenberg (2023) proposed an estimator based on a continuous

updating objective function (see their Corollary 2), but their approach relies on an invariance

assumption on the second stage error term. Belloni et al. (2012) relaxes the i.i.d. and

invariance assumption, but require the first-stage IV moment to be sparse. However, Kolesar,

Muller, and Roelsgaard (2023) advised against making sparsity assumption whenever the

number of instruments is less than the sample size. In contrast to the aforementioned

approaches, our test procedure allow for heteroskedastic error but does not rely on invariance

or sparsity assumption.

Structure of the paper: Section 2.2 makes precise the model setup and provides the

testing procedure for our statistic under full-vector inference for both fixed and diverging

instruments. It further motivates and introduces the robust critical-value for our test statis-

tic. Section 2.3 provides a new strong approximation result for any ‘AR-type’ tests. Section

2.4 provides the asymptotic size and power properties of our test. Specifically, this section

demonstrates that our test consistently differentiates the null from the alternative under

strong identification, for both fixed and diverging instruments. Furthermore, that our test

have exact asymptotic size-control for both fixed and diverging instruments is also shown. As

an additional result, we derive in this section the exact distribution of a generic Jackknifed-

AR statistic under fixed K setting. Note that the number of instruments is assumed to be

5In particular, they showed that a weighted chi-bar distribution is able to mirror statistics of
the AR-type - we say that a statistic T is of an AR-type if we can express T = εAε for some
deterministic symmetric matrix A and ε is a random vector with zero mean and well-defined (or
finite) covariance matrix.

54



less than the sample size in sections 2.2–2.4 in order to simplify our discussion. Section 2.5

relaxes this and allow the number of instruments to be possibly larger than the sample-size.

In particular, this section discusses the case of instruments being rank-deficient, and includes

high-dimensional instruments as a special case. Section 2.6.2 provides simulation results for

our power-curve based on calibrated data, which lends itself to our theory. Section 2.6.3

provides an application of our theory to empirical data. Proofs of Theorems, Lemmas, and

Corollaries stated in the main text are given in Appendix B.1, while Auxiliary Lemmas are

provided in Appendix B.2. In Appendix B.3 we provide details on the two estimators satis-

fying (2.2.12). In Appendix B.4 we discuss general limit problems under fixed and diverging

instruments. Appendix B.5 provides more detail on the rank-deficiency procedure of Section

2.5.

Notation: We write [n] to mean {1, ..., n} and N := {1, 2, ...}. In this paper, n is generally

taken to be the sample size, unless otherwise stated. For any vector or matrix A, ||A||F :=√
trace(A′A) is taken to be the Frobenius-norm. When there is no room for confusion, we

simply write it as ||A||. The spectral norm is denoted as ||A||S :=
√
λmax(A′A), where

λmin(B) and λmax(B) are defined as the minimum and maximum eigenvalue of a square

matrix B. For any real numbers a, b ∈ R, we write a ≤ Cb to mean that a is less than or

equal b times a constant C that is independent of sample size n. For any index j, integer m

and constant C > 0, we write χ2m,j(C) to mean the jth chi-square random variable with m-

degrees-of-freedom and non-centrality parameter C. At times we do not include the index j,

and write simply as χ2m(C) to mean a generic chi-square random variable with m-degrees-of-

freedom and non-centrality parameter C. We also write χ2m,j to mean χ2m,j(0), i.e. centrality

parameter equal zero, and write WPA1 to mean ‘with probability approaching one’. We

define ιi to be a vector of zeros, with value 1 only on the ith element. For any set S, we

write Sc to mean the complement of the set, and use the symbol ‘⊗’ to denote Kronecker

product. We write ZK(J) to represent a standard Gaussian plus a constant J ∈ RK , i.e.

ZK(J) := N (J, IK). For any statistic T , denote q1−α(T ) to be the (1 − α)-quantile of the

law of T .
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2.2 Setup and Testing Procedure

2.2.1 Setup

Consider the model

Ỹ = X̃β +WΓ + ẽ

X̃ = Π̃ + ṽ (2.2.1)

where X̃ ∈ Rn×dX , W ∈ Rn×dW , Ỹ , ẽ ∈ Rn×1, and Z̃ ∈ Rn×K is a full-rank matrix of

instruments. Π̃i ≡ E(X̃i|Z̃i,Wi) ∈ R1×dX 6 Also, β ∈ RdX and Γ ∈ RdW×1. We observe

(Ỹ , X̃,W, Z̃), and assume that W is a full-ranked matrix of exogenous control variables

with dW ≤ n, implying that its projection matrix PW := W (W ′W )−1W ′ is well defined. Fur-

thermore, the error terms ẽi are assumed to be independent across i. We assume throughout

this paper that dX = 1 in order to highlight the most salient features of our test, but we

remark here that it can be extended to higher dimensions (i.e. dX to be of dimension greater

than one) so that β can be multivariate.7

We are interested in testing

H0 : β = β0 versus H1 : β ̸= β0, (2.2.2)

where dX , the dimension of β, is fixed. We aim to obtain a test that guarantees a correct size

control irrespective of identification strength and asymptotic frameworks with regard to K

and dW . Specifically, our test remains valid no matter the instruments are strong or weak,

and it remains valid no matter the dimensions of the instruments and control variables, K

and dW , are fixed or diverge to infinity as n→ ∞.8 Whenever they do diverge, we allow K

to grow at the same rate as the sample size n, while dW must grow at a slower rate than n.

For now we assume that K < n, but we will relax this assumption in Section 2.5.

6Note that assuming Z̃ is of full rank implies that the number of instruments must be less than
the sample-size

7See Remark 1
8The number of instruments K should be better written as Kn to reflect its dependence on

sample size n, but we drop this notational dependence and simply write K whenever it does not
cause confusion.
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To proceed, we first partial out the exogenous control variables W (we give appropriate

regularity conditions for dW below) and rewrite the model as

Y = Xβ + e

X = Π+ v (2.2.3)

where Y = MW Ỹ , X = MW X̃, Π = MW Π̃, e = MW ẽ, v = MW ṽ, Z = MW Z̃, MW =

In − PW , and PW := W (W ′W )−1W ′. Throughout the text, we denote σ̃2i := Eẽ2i , ς̃
2
i :=

Eṽ2i , σ
2
i := Ee2i , ς

2
i := Ev2i , γ̃i := Cov(ẽi, ṽi), and P := Z(Z ′Z)−1Z ′.9 We define ei(β0) :=

Y − Xβ0 = e + ∆X, where ∆ := β − β0. Similarly, define σ2i (β0) := σ̃2i + 2∆γ̃i + ∆2ς̃2i ,

and ς2i (β0) := ς̃2i + 2∆γ̃i + ∆2σ̃2i . For notational simplicity, we write e := (e1, ..., en)
′

instead of e(β0) whenever β = β0. Furthermore, define U := Z(Z ′Z)−1/2 ∈ Rn×K , and

Qa,b :=
∑

i∈[n]

∑
j ̸=i Pijaibj√
K

for any two vectors a, b ∈ Rn, where Pij is the (i, j)-th element of

P . We make the following assumptions throughout the rest of the paper.

Assumption 5. Suppose that the errors (ẽi, ṽi) are mean zero and independent across i.

Assumption 6 (Moment conditions). Suppose pn
K = o(1) and pn ≤ δ < 1, where pn :=

maxi Pii. Furthermore, assume pWn := maxi P
W
ii = o(1), and dW = O(K(1−η)/4) for any

η > 0. Let the errors and |Πi| be bounded in the eighth moment and bounded away from zero

in the second moment, i.e. maxi(Π
8
i + Eẽ8i + Eṽ8i ) < C < ∞, and (Π′Π)2, σ2i (β0), ς

2
i (β0) ≥

C > 0. Furthermore, suppose that C ≤ λmin(W
′W/n) ≤ λmax(W

′W/n) ≤ C and Z has a

full rank.

We note that for a balanced-instrument design without control variables, pn = K
n . Hence,

for both fixed and diverging K, pn
K = 1

n = o(1). Furthermore, pn ≤ 1 since each element on

the diagonal of a projection matrix is always bounded by one. As mentioned above, we allow

the number of controls dW to diverge to infinity. However, in order for pWn to shrink to zero

in Assumption 6, dW must grow at a slower rate than n, i.e. dW = o(n), since pWn ≥ dW
n

by definition. In particular, we require that dW = O(K(1−η)/4) for any η > 0. Such an

assumption ensures that we can strongly approximate our test statistics (see Theorem 1 and

9This implies that the partialled-out instrument matrix Z is full-ranked. In section 2.5 we
discuss what to do in the event Z is not full-ranked.
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the discussions after it). In the case of fixed K,

pnd
2
W

K1/2
=

p
1/2
n

K1/2
(p

1/2
n ·O(1) ·K−(1−η)/2) =

p
1/2
n

K1/2
O(1) = o(1)O(1) = o(1),

while in the case of diverging K,

pnd
2
W

K1/2
≤

d2W
K1/2

= O(1) ·K−(1−η)/2K1/2 = o(1).

2.2.2 Some Background and Motivations

In this section, we briefly discuss the general difficulties of constructing a weak-identification-

robust test that achieves a simultaneous size control under both fixed and diverging number

of instruments with heteroskedastic errors. First, let us consider the classical case of a fixed

number of instruments and homoskedastic errors. For simplicity, we assume for the moment

that control variables are not present in the model of (2.2.1). Under the null, a consistent

estimator of the error variance σ2 can be given by σ̂2 := 1
n

∑
i∈[n] e

2
i . Then, under standard

regularity conditions, for the classical AR test statistic, we have

e′Pe

Kσ̂2
=

1

Kσ2 + op(1)
(n−1/2Z ′e)′(n−1Z ′Z)−1(n−1/2Z ′e)⇝

1

K
χ2K .

Now, consider the case of a diverging number of instruments. Note that by Chao et al.

(2012)[Lemma A2],
∑

i∈[n]

∑
j ̸=i Pijeiej√

2Kσ̂2
⇝ N (0, 1). Furthermore, WPA1,

∑
i∈[n] Piie

2
i

Kσ̂2 =
∑

i∈[n] Piiσ
2

Kσ2 =∑
i∈[n] Pii

K = 1 (See Lemma B.2.1). Therefore, we have

e′Pe

Kσ̂2
=

1√
K

∑
i∈[n]

∑
j ̸=i Pijeiej

√
Kσ̂2

+

∑
i∈[n] Piie

2
i

Kσ̂2
p→ 1.

We observe that there are two distinct limiting distributions for the same (classical) statistic

under two different scenarios for K. Indeed, for the case with diverging K, e′Pe itself would

diverge to infinity, so that the denominator K acts as a form of normalization. Such normal-

ization has the same order as the diagonal elements. To see this, note that the diagonal ele-

ments
∑

i∈[n] Piie
2
i = O(K), while the non-diagonal elements

∑
i∈[n]

∑
j ̸=i Pijeiej = O(

√
K),

so that the diagonal terms dominate the non-diagonals. Note that the non-diagonals have
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a smaller order due to it being centered. At this stage, we conclude that the statistic e′Pe
Kσ̂2

does not work simultaneously for both cases of instruments, due to the diagonal elements.

This highlights the importance of removing the diagonals under diverging K. Therefore, in

order to consider both cases of fixed and diverging K, a natural idea would be to focus on

the jackknifed statistic, where the diagonals are removed, i.e.,∑
i∈[n]

∑
j ̸=i Pijeiej

√
2Kσ̂2

,

which converges weakly to a χ2
K−K√
2K

-distribution under fixed K. On the other hand, as

K → ∞, we see that χ2
K−K√
2K
⇝ N (0, 1). A researcher would therefore be inclined to use the

following test under homoskedasticity: Reject H0 whenever∑
i∈[n]

∑
j ̸=i Pijeiej

√
2Kσ̂2

> q1−α

(
χ2K −K
√
2K

)
,

which has correct asymptotic size control no matter K is fixed or diverging, under ho-

moskedasticity. However, under general heteroskedasticity, the problem becomes more com-

plicated. To see why, suppose we have certain consistent variance estimator Φ̂1(β0) in the

case with heteroskedastic errors so that under the null,10∑
i∈[n]

∑
j ̸=i Pijeiej√

2KΦ̂1(β0)

⇝ N (0, 1),

when K → ∞. However, when K is fixed, the asymptotic distribution of this statistic is no

longer (χ2K − K)/
√
2K, resulting in size distortions in this case (this is also confirmed by

our simulations in Section 2.6.2). Nevertheless, as we will explain in the next section, even

under heteroskedastic errors, our proposed tests are able to provide a correct asymptotic

size control simultaneously for both fixed and diverging numbers of instruments (and control

variables).

10See section 2.2.5 for more details on this estimator
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2.2.3 Analytical Tests

Our first test statistic is denoted as Q̂(β0) and defined as

Q̂(β0) :=
e(β0)

′Pe(β0)∑
i∈[n] Piie2i (β0)

(2.2.4)

Our analytical test compares the test statistic Q̂(β0) with a robust critical value Cα,df (Φ̂1(β0)),

where α ∈ (0, 1) is the significance level and under the null, Φ̂1(β0) is a consistent estimator

of Φ1(β0) =
2
K

∑
i∈[n]

∑
j ̸=i P

2
ijσ

2
i (β0)σ

2
j (β0), with more details provided in section 2.2.5. We

will reject H0 : β = β0 at the α significance level if

Q̂(β0) > Cα,df (Φ̂1(β0)).

To see the exact formula of the critical value, we need to explain the limit distribution

of our test statistic Q̂(β0) under the null β = β0, in which case ei(β0) has mean zero and

variance equal to σ2i (β0). When K is fixed, under regularity conditions, we can show that

Q̂(β0)⇝ Z ′DnZ =
∑
k∈[K]

wn,iχ
2
1,k, (2.2.5)

where Z ∼ N (0, IK) and Dn := diag(w1,n, ..., wK,n) are the eigenvalues of

Ω(β0) :=
(Z ′Λ(β0)Z)

1/2(Z ′Z)−1(Z ′Λ(β0)Z)
1/2∑

i∈[n] Piiσ2i (β0)
, (2.2.6)

where Λ(β0) = diag(σ21(β0), · · · , σ2n(β0)), and {χ21,k}k∈[K] are K independent chi-squared

random variables with 1 degree of freedom.
∑

i∈[n] Piiσ
2
i (β0), the denominator of Ω(β0), is

chosen so that trace(Ω(β0)) = 1. Also note that Ω(β0) is positive semi-definite, implying

that its eigenvalues (ω1, · · · , ωK) are nonnegative and sum up to 1.

In addition, let Λ̂(β0) = diag(e21(β0), · · · , e2n(β0)). Then, when K is fixed, we can consis-

tently estimate the eigenvalues (w1,n, ..., wK,n) by the eigenvalues of

Ω̂(β0) :=
(Z ′Λ̂(β0)Z)

1/2(Z ′Z)−1(Z ′Λ̂(β0)Z)
1/2∑

i∈[n] Piie2i (β0)
,
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which are denoted as w̃n = (w̃1,n, · · · , w̃K,n)
′. This motivates us to consider the 1−α quantile

of weighted chi-squared random variable with weights w̃n (i.e., Fw̃n
=
∑

i∈[K] w̃i,nχ
2
1,i), which

is denoted as q1−α(Fw̃n
) and can be simulated given w̃. However, the eigenvalue estimators

are not consistent if K is diverging as fast as the sample size n. Fortunately, in this case,

we can show that that

Φ−1/2(β0)

 1√
K

∑
i∈[n]

Piie
2
i (β0)

 (Q̂(β0)− 1)⇝ N (0, 1)

and ∑
k∈[K]

2w̃2
n,k + 1/df

−1

(Fw̃ − 1)⇝ N (0, 1).

where Φ1(β0) =
2
K

∑
i∈[n]

∑
i∈[n]

∑
j ̸=i P

2
ijσ

2
i (β0)σ

2
j (β0) and df is our degree-of-freedom ad-

justment. In particular, df is some deterministic sequence such that11

df−1 = o(K−1/2). (2.2.7)

In fact, we allow df to take the value of∞ so that 1/df can be taken to be zero. For generality

we simply assume df satisfies (2.2.7). This degree-of-freedom correction is asymptotically

negligible, but is included for better finite-sample performance.

Given a consistent estimator Φ̂1(β0) of Φ1(β0), we can adjust the critical value q1−α(Fw̃n
)

as

Cα,df (Φ̂1(β0)) := 1 +

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)

 q1−α(Fw̃n
)− 1√

2
∑

i∈[K] w̃
2
i,n + 1/df

 . (2.2.8)

11In our simulation (section 2.6.2), we let df = (n − K)/2. To see why this holds, note that

by assumption 6, maxi Pii ≤ δ < 1, so that K
n =

∑
i∈[n]Pii

n ≤ δ < 1. Therefore K1/2df−1 =

2
√

1
n/K−1

√
1

n−K ≤ 2
√

1
1/δ−1

√
1

n−K = O(1)
√

1
n−K = o(1), where the last equality follows from

n−K → ∞ since K
n ≤ δ < 1.
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This adjustment guarantees the asymptotic size control of our test under diverging K.

Lastly, we note that the critical value Cα,df (Φ̂1(β0)) can be rearranged as

q1−α(Fw̃n
) + (q1−α(Fw̃n

)− 1)


√

Φ̂1(β0)
1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n + 1/df

− 1

 . (2.2.9)

When K is fixed, we are able to show that, under the null,

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n + 1/df

− 1
p−→ 0,

implying that the second term in (2.2.9) is asymptotically negligible. This guarantees that

our analytical test achieves the correct asymptotic size under fixed K as well.

2.2.4 Bootstrap Tests

The test statistic for our bootstrap tests is defined as

Ĵ(β0, Φ̂1(β0)) :=

∑
i∈[n]

∑
j ̸=i Pijei(β0)ej(β0)√
KΦ̂1(β0)

, (2.2.10)

with Φ̂1(β0) satisfying (2.2.12) and having the additional requirement that it can be con-

structed from using only e(β0) and P . The two variance estimators Φ̂1(β0)
standard and

Φ̂1(β0)
cf discussed in section 2.2.5 satisfy this requirement. We reject H0 : β = β0 at the α

significance level if

Ĵ(β0, Φ̂1(β0)) > CB
α,dfBS

(Φ̂1(β0),L),

where CB
α,dfBS

(Φ̂1(β0),L) is a bootstrap-based critical value that depends on (1) some large

positive integer B, (2) the significance level α, (3) i.i.d. random variables {κi}i∈[n] following
the probability law L with the property that its mean is zero, variance is one, fourth moment

is bounded, and (4) the structure of the variance estimator Φ̂1(β0).
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Specifically, the bootstrap critical value is computed in the following manner: Fix β0, a

large B, and some α ∈ (0, 1). Fix any ℓ ∈ {1, ..., B}, and generate i.i.d. random variables

{κi,ℓ}i∈[n] following the law L. We then multiply each ei(β0) by κi,ℓ, denoting the new

random variable as ηi,ℓ := κi,ℓei(β0). Since Φ̂1(β0) is assumed to be constructed by using only

e(β0) and P , we construct Φ̂BS,ℓ
1 (β0) in exactly the same way that Φ̂1(β0) was constructed,

but replacing (e(β0), P ) with (ηℓ, P ), where ηℓ = (η1,ℓ, ..., ηn,ℓ)
′. Once this is done, we can

construct the bootstrap statistic

ĴBS,ℓ :=

∑
i∈[n]

∑
j ̸=i Pijηi,ℓηj,ℓ√

KΦ̂BS,ℓ
1 (β0)

By repeating this process for every ℓ ∈ [B], we obtain a collection of statistics {ĴBS,ℓ}ℓ∈[B].

Then

CB
α,dfBS

(Φ̂1(β0),L) := inf

z ∈ R : 1− α ≤

∑
ℓ∈[B] 1

{
ĴBS,ℓ ≤ z

}
B

+ 1/dfBS (2.2.11)

where df−1
BS = o(1) is a deterministic sequence that is asymptotically negligible, but is in-

cluded for better finite-sample performance.12

2.2.5 Estimators for Φ1(β0)

In this section, we provide further details of Φ̂1(β0) discussed in the previous section. We

assume that Φ̂1(β0) is some estimator satisfying

Φ̂1(β0) = Φ1(β0) +D(∆) + op(1 +
∑
i∈[4]

∆i) (2.2.12)

12In section 2.6.1 we take df−1
BS = (3 log(n − K))/(n − K) . To see that this is an o(1) term,

simply note that n−K → ∞ by assumption 6, and apply L’Hopital rule. Furthermore, note that
Ĵ(β0, Φ̂1(β0)) has the same form as the jackkinfe AR statistics in Crudu et al. (2021) and Mikusheva
and Sun (2022), which are asymptotically valid with standard normal critical values under diverging

K. In this paper, we propose bootstrap tests for Ĵ(β0, Φ̂1(β0)) and show the bootstrap validity
under both diverging and fixed K.
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where

Φ1(β0) :=
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i (β0)σ

2
j (β0)

and

D(∆) =

O(1) if ∆ ̸= 0 is fixed

o(1) if ∆ = o(1)

We introduce two estimators that satisfy (2.2.12) under both fixed and diverging K (and

dW ) – this is shown in Appendix B.3. The first variance estimator is due to Crudu et al.

(2021), which we denote as

Φ̂standard
1 (β0) :=

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ije

2
i (β0)e

2
j(β0)

In this case, its accompanying function for D(∆) is given as13

Dstandard(∆) =
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(2∆

2Π2
jσ

2
i (β0) + ∆4Π2

iΠ
2
j).

In order to reduce the bias of the variance estimator under the alternative, we further consider

the cross-fit variance estimator due to Mikusheva and Sun (2022), which is defined as

Φ̂cf
1 (β0) :=

2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ij [ei(β0)M

′
ie(β0)][ej(β0)M

′
je(β0)]

where M := In − Z(Z ′Z)−1Z ′ and P̃ 2
ij :=

P 2
ij

MiiMjj+M2
ij
, and we show it also satisfies (2.2.12)

under both fixed and divergingK (and dW ) in Appendix B.3. In particular, its corresponding

asymptotic property as well as the expression of Dcf (∆) is provided in Theorem B.3.0.2.14

To see why the cross-fit estimator works, under the alternative, we can express ei(β0) =

ei + ∆Πi + ∆vi. Consider the case where Π̃ ≡ Z̃θ0. Then Π = MW Π̃ = MW Z̃θ0, so that

MΠ = MMW Z̃θ0 = MZθ0 = 0 as Z = MW Z̃. Hence we can remove the effects of ∆ from

13This is shown in Theorem B.3.0.1
14Note that the cross-fit estimator is more ‘costly’ than the standard estimator in the sense that

the former requires that maxi Pii ≤ δ < 1, while the latter does not have this requirement.
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Πi. The bias of the standard variance estimator Φ̂standard
1 (β0) grows the at fourth power of

∆, so that removing this component leads to higher power. Note that whenever the controls

W are dropped out of the model (2.2.1), the cross-fit estimator is exactly Mikusheva and Sun

(2022)’s cross-fit estimator and EΦ̂cf
1 (β0) = Φ1(β0) under the null. However, when there are

exogenous control variables in the model, EΦ̂cf
1 (β0) ̸= Φ1(β0) due to the effects of partial-ling

out the controls MW from the error terms ẽ, which leads to dependence among the error

terms ei in the reduced-form model (2.2.3). We show that the cross-fit variance estimator

remains consistent under the null with the assumption that pWn = maxi P
W
ii = o(1).

2.3 Strong Approximation

This section is concerned with the conditions for which we can view the error terms (ẽi, ṽi)

as being normally distributed. This is important for understanding the limit distribution of

(2.2.4) under fixed instruments, as well as generic Jackknifed-AR tests under fixed instru-

ments.

Consider a sequence of independent random variables {εi}i∈[n] such that εi ∼ N (0, σ̃2i ),

so that εi mirrors the first and second moment of ẽi. We assume that {εi}i∈[n] is independent
of {(ẽi, ṽn)}i∈[n]. We have the following result which tells us that under the null, whether our

statistic is Jackknifed or of the AR-type, we can always treat our errors as being normally

distributed.

Theorem 1 (Strong approximation). Suppose assumption 5 holds and supi∈N E(ẽi)4 < ∞.

Then we have

1√
K

∑
i∈[n]

∑
j ̸=i

Pijeiej
d
=

1√
K

∑
i∈[n]

∑
j ̸=i

PijEiEj

+Op

[(p1/2n + p
3/2
n (pWn )1/2dW )

K1/2

]1/3
+
pnd

2
W

K1/2


where pn := maxi Pii and E :=MW ε. Furthermore,

1

K
e′Pe

d
=

1

K
E ′PE +Op

(
p
1/2
n

K1/2

)
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The requirement for strong approximation is very weak, namely that pn
K = o(1) and

pnd
2
W

K1/2 = o(1). In the simple case where dW is bounded, i.e. dW ≤ C for some C < ∞, we

only require that pn
K = o(1), since then

dW p
1/2
n

K1/4
≤ Cp

1/4
n

p
1/4
n

K1/4
≤ C

p
1/4
n

K1/4
= o(1)

In view of Theorem 1, we can view errors to be normally distributed under assumption 6.

The requirement for the eighth-moment of errors to be bounded is used only to control the

size of our test statistic under the diverging K case, specifically when K diverges at the same

order as n (see Theorem 2 and Lemma B.2.3, diverging K case).

2.4 Asymptotic Properties

2.4.1 Asymptotic Size

We discuss the size properties of our test in this section. We begin by making the following

assumption, which ensures that we have uniform size-control.

Assumption 7. Suppose pn ≤ CK
n for some C <∞

Intuitively, Assumption 7 states that the largest value on the diagonal of the projection

matrix P is regular in the sense that the order of pn is equal to the fraction of instruments over

the number of observations, K
n . This follows from the fact that, by definition, K

n ≤ pn. In the

case of balanced instruments, we have that pn = K
n . Furthermore, note that this assumption

automatically implies the first part of Assumption 6, since then pn
K ≤ CK

n
1
K = C

n = o(1).

By the results of the previous sections, we can show uniform size-control of our test under

any identification strength, simultaneously for both fixed and diverging instruments. Let

λn ∈ Λn be the data generating process of n observations for (ẽ, ṽ, Z,W ). We impose the
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following restriction on the sequence of classes of DGPs ({Λn}n≥1):

{ẽi, ṽi}i∈[n] are independent, Eẽi = Eṽi = 0,
pn
K = o(1), pWn = o(1), dW = O(K(1−η)/4) for any η > 0,

maxiΠ
2
i +maxi Eẽ8i +maxi Eṽ8i ≤ C <∞,

Π′Π, σ2i (β0), ζ
2
i (β0) ≥ C under the null,

C ≤ λmin(
W ′W
n ) ≤ λmax(

W ′W
n ) ≤ C,

0 ≤ Pii ≤ δ < 1,

Φ̂1(β0) satisfies (2.2.12) under the null,

where 0 < C,C, δ <∞ are some fixed constants


(2.4.1)

Then our test has size-control uniformly over the set of DGPs that satisfy (2.4.1). We

formalize the statement as follows:

Theorem 2. Suppose {Λn}n≥1 satisfies (2.4.1), (2.2.7), and assumption 7 holds. Then

under the null, for both fixed and diverging instruments, we have exact size-control for the

proposed tests, i.e.

lim inf
n→∞

inf
λn∈Λn

Pλn

(
Q̂(β0) > Cα,df (Φ̂1(β0))

)
= lim sup

n→∞
sup

λn∈Λn

Pλn

(
Q̂(β0) > Cα,df (Φ̂1(β0))

)
= α

and

lim inf
n→∞

inf
λn∈Λn

lim
B→∞

Pλn

(
Ĵ(β0, Φ̂1(β0)) > CB

α,dfBS
(Φ̂1(β0),L)

)
= lim sup

n→∞
sup

λn∈Λn

lim
B→∞

Pλn

(
Ĵ(β0, Φ̂1(β0)) > CB

α,dfBS
(Φ̂1(β0),L)

)
= α

Remark 1. Note that Theorem 2 still holds when β is multivariate (instead of a scalar

in (2.2.1)). This is because under the null, the true error ẽ can be taken as known, with

the remaining computation of our test depending only on the controls W and instrument

Z, both of which are observed. Therefore, repeating the proof under the null yields uniform

size-control for any β ∈ RdX with fixed dX ≥ 1.
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2.4.2 Asymptotic Power

In this section we show that under strong identification, for both fixed and diverging K,

our tests consistently differentiate the null from the alternative, where strong identification

means C := QΠ,Π → ∞. The concentration parameter C was introduced by Mikusheva

and Sun (2022).15 To motivate this concentration parameter, note that under the linear IV

setting where Πi = π′Zi, for K → ∞ it was shown in Mikusheva and Sun (2022)[Theorem

1] that whenever π′Z′Zπ√
K

is bounded, no test can consistently differentiate the null from

the alternative. Furthermore, Chao et al. (2012)’s consistent estimator was based on the

assumption that π′Z′Zπ√
K

→ ∞.16 Taken together, one can expect that the requirement of
π′Z′Zπ√

K
→ ∞ in the linear IV setting is important to ensuring that our test consistently

differentiates the null from the alternative. In fact, this requirement is equal to requiring

that C → ∞, which explains why C should be the right measure of identification strength.

17

The Case with Diverging K

We want to evaluate the power of our test Q̂(β0) and Ĵ(β0, Φ̂1(β0)) under different scenarios.

In particular, we consider three cases for some sequence dn → 0: (1) Strong identification

and local alternative, where dnC = C̃ and ∆ = ∆̃d
1/2
n for some fixed ∆̃, C̃ ∈ R; (2) Strong

identification and fixed alternative, where dnC = C̃ and ∆ = ∆̃; (3) Weak identification and

fixed alternative, where C = C̃ and ∆ = ∆̃.

Theorem 3. Suppose Assumption 5, 6, 7, (2.2.7) and Π′Π
K = O(1) holds. Then for any esti-

mator Φ̂1(β0) that satisfies (2.2.12), we have under strong identification and fixed alternative

lim
n→∞

P
(
Q̂(β0) > Cα,df (Φ̂1(β0))

)
= 1

15Section B.4 provides more detail regarding the concentration parameter C
16See Assumption 2 of their paper
17To see this, note that we can express the concentration parameter as C = π′Z′Zπ√

K
−

∑
i∈[n] Pii(π′Zi)2√

K
,

so that by assumption 6, (1 − δ)π
′Z′Zπ√

K
≤ C ≤ π′Z′Zπ√

K
. We can then see that the order between

π′Z′Zπ√
K

and C are the same.
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and

lim
n→∞

lim
B→∞

P
(
Ĵ(β0, Φ̂1(β0)) > CB

α,dfBS
(Φ̂1(β0),L)

)
= 1

Theorem 3 shows that whenever identification strength diverges to infinity, our test con-

sistently differentiates the null from the alternative. Note that in general, for any fixed

alternative ∆ not necessarily zero, for diverging K we have that18

Fw̃n
− 1√

2
∑

i∈[K] w̃
2
i,n + 1/df

⇝ N (0, 1)

Therefore, under weak identification with fixed alternatives, we have the following result:

Theorem 4. Suppose Assumption 5, 6, 7, (2.2.7) and Π′Π
K = O(1) holds. Then for K → ∞

and any estimator Φ̂1(β0)
p→ Φ1(β0), we have under weak identification and fixed alternative

that

lim
n→∞

P
(
Q̂(β0) > Cα,df (Φ̂1(β0))

)
= 1− F

(
q1−α(N (0, 1))− ∆̃2C̃√

Φ1(β0)

)

and

lim
n→∞

lim
B→∞

P
(
Ĵ(β0, Φ̂1(β0)) > CB

α,dfBS
(Φ̂1(β0),L)

)
= 1− F

(
q1−α(N (0, 1))− ∆̃2C̃√

Φ1(β0)

)

where F (·) denotes the cumulative distribution function (CDF) of a standard normal distri-

bution. In particular, if we further assume Π′MΠ ≤ Π′Π
K → 0, then Φ̂1(β0) can be taken as

Φ̂ℓ
1(β0) for ℓ = {standard, cf} given in section 2.2.5.

The assumption of Π′Π
K → 0 automatically ensures that Φ̂standard

1 (β0)
p→ Φ1(β0), while

the additional requirement of Π′MΠ ≤ Π′Π
K is made to ensure that Φ̂cf

1 (β0)
p→ Φ1(β0) as

well. Next, we have the asymptotic power for our test under strong-identification and local-

alternative, which is similar to the case of weak identification and fixed alternative.

18See the proof of Theorem 3

69



Theorem 5. Suppose Assumption 5, 6, 7, (2.2.7) and Π′Π
K = O(1) holds. Then for K →

∞ and any estimator Φ̂1(β0) that satisfies (2.2.12), under strong identification and local

alternative we have

lim
n→∞

P
(
Q̂(β0) > Cα,df (Φ̂1(β0))

)
= 1− F

(
q1−α(N (0, 1))− ∆̃2C̃√

Φ1(β0)

)

and

lim
n→∞

lim
B→∞

P
(
Ĵ(β0, Φ̂1(β0)) > CB

α,dfBS
(Φ̂1(β0),L)

)
= 1− F

(
q1−α(N (0, 1))− ∆̃2C̃√

Φ1(β0)

)

The Case with Fixed K

We introduce a measure of identification strength for a fixed number of instruments, defined

as

µ̃2n := ||µK,n||2F

where µK,n := n−1/2Z ′Π. For notational simplicity we drop the dependence on n and simply

denote µK,n by µK . Note that there is an intimate relationship between the concentration

parameter defined above for the fixed K case (i.e. µ̃2n) and the concentration parameter C
defined for the diverging K case discussed earlier: µ̃2n and C have the same order. To see

this, note that under the assumption that Z ′Z/n
p→ QZZ , a positive-definite matrix, we have

that with WPA1,

µ̃2n ≤ λmax

(
Z ′Z

n

)
· µ′K

(
Z ′Z

n

)−1

µK = λmax(QZZ)Π
′PΠ ≤ λmax(QZZ)

λmin(QZZ)
µ̃2n

where we note that µ̃2n = µ′KµK . Since 0 < λmin(QZZ) ≤ λmax(QZZ) ≤ C, µ̃2n has the

same order as Π′PΠ; as K is fixed, µ̃2n has the same order as Π′PΠ√
K

. Furthermore, observe∑
i∈[n] PiiΠ

2
i√

K
≤ maxiΠ

2
i

∑
i∈[n] Pii√

K
≤ C

√
K ≤ C under fixed instruments, so that Π′PΠ√

K
=

C +
∑

i∈[n] PiiΠ
2
i√

K
has the same order as C. Combining these facts yield the result that µ̃2n has
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the same order as C.

We say that there is strong identification whenever µ̃2n → ∞. Otherwise we say that

there is weak identification. To be precise we consider three cases for some sequence dn → 0:

(1) Strong identification and local alternative, where ∆ = ∆̃dn for some fixed ∆̃ and µ̃2n =

µ̃2/d2n for some positive and finite constant µ̃2; (2) Strong identification and fixed alternative

whereby µ̃2n = µ̃2/d2n and ∆ = ∆̃; (3) Weak identification and fixed alternative where ∆ = ∆̃

and µ̃2n → µ̃2, where µ̃2 is some finite positive value. Note that weak identification and local

alternative is not discussed since it has no power. Defining Λ0,i(∆) := E(ẽi,∆ṽi)(ẽi,∆ṽi)′,

we make the following assumption:

Assumption 8. For every sequence of ∆n → ∆† ∈ R, suppose 1
n

∑
i∈[n] Λ0,i(∆n)⊗ ZiZ

′
i →

Σ(∆†) and Z′Z
n → QZZ , where Σ(∆†) is positive-semi-definite and QZZ is positive-definite

matrices. Furthermore, assume that supi ||Zi||F <∞.

Under the assumption that the errors in the DGP of (2.2.1) are independent and identi-

cally distributed, the assumption that 1
n

∑
i∈[n] Λ0,i(∆n) ⊗ ZiZ

′
i → Σ(∆†) in assumption 8

can be removed.

Recall from (2.2.9) that the power of our proposed test involves the critical value that

is itself random. This randomness comes from the limit of the eigenvalues from Dw̃n
:=

diag(w̃1,n, ..., w̃K,n). Since this is generally unknown, in order to show that our proposed

tests consistently differentiates the null from the alternative whenever we have strong iden-

tification (under fixed instruments), under minimal assumptions, we begin by showing some

intermediate asymptotic properties pertaining to the critical value (2.2.8).

Lemma 2.4.1. Suppose Assumption 5, 6, 8 holds and we are under fixed K. Assume (2.2.7)

holds and consider any estimator Φ̂1(β0) satisfying (2.2.12). Then for fixed ∆ we have

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n + 1/df

= Op(1)

Under the alternative, for fixedK, the limiting distribution of the critical value Cα,df (Φ̂1(β0))

(see (2.2.8) for its expression) becomes that of a weighted chi-square Fwlimit-distribution.
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Given that the limit wlimit is unknown in practice, in order to discuss the power properties

of our test, one straightforward method is to find the worst-case power property, i.e. we want

to examine the values of wlimit = (wlimit
1 , ..., wlimit

K ) such that ||wlimit||F = 1, wlimit
i ≥ 0 and

q1−α(Fwlimit) is the largest it can be. We have the following result due to Fleiss (1971):

Lemma 2.4.2. For any vector a ∈ RK for some fixed dimension K such that
∑

i∈[K] ai = 1

and each ai ≥ 0, we have

q1−α(χ
2
1) ≥ q1−α

∑
ℓ∈[K]

aℓχ
2
1,ℓ


where the χ21,ℓ are independent chi-squares with one-degree-of-freedom

Note that for fixed K, by expression (B.1.20), Lemma 2.4.1 and 2.4.2, we can obtain an

upper bound for the power of our test under the worst-case scenario’s power

P
(
Q̂(β0) > q1−α(χ

2(1)) +Op(1)
)
≤ P

(
Q̂(β0) > q1−α(Fw̃n

) +Op(1)
)

Combining lemmas 2.4.1 and 2.4.2, we can show that our test consistently differentiates the

null from the alternative. The requirement is that the concentration parameter µ̃2n diverges

to infinity. This requirement is similar to Mikusheva and Sun (2022)[Theorem 1] (this was

established for diverging instruments), which shows that for any set of bounded concentration

parameter, there is no test that can consistently differentiate the null from the alternative.

This result is formally given as:

Theorem 6. Suppose Assumption 5, 6, 8, (2.2.7) holds and we are under fixed K. For

any estimator Φ̂1(β0) that satisfies (2.2.12), our test consistently differentiates the null from

alternative, i.e.

lim
n→∞

P
(
Q̂(β0) > Cα,df (Φ̂1(β0))

)
= 1

and

lim
n→∞

lim
B→∞

P
(
Ĵ(β0, Φ̂1(β0)) > CB

α,dfBS
(Φ̂1(β0),L)

)
= 1
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for any fixed ∆ ̸= 0, whenever µ̃2n → ∞.

To simplify the discussion for the power properties of the remaining cases, we assume

without loss of generality that under weak identification, µK ≡ µ̃,19 while under strong

identification, dnµK ≡ µ̃, where µ̃ ∈ RK is some constant. Denote Ω∗(β0) := limn→∞Ω(β0)

defined in (2.2.6). We have the following result:

Theorem 7. Suppose Assumption 5, 6, 8, (2.2.7) holds and we are under fixed K. Further-

more, let pnΠ
′Π

K = O(1) and suppose Ω∗(β0) is well defined. Then under strong identification

and local alternative, for any estimator Φ̂1(β0) that satisfies (2.2.12),

lim
n→∞

P
(
Q̂(β0) > Cα,df (Φ̂1(β0))

)
= P

(
ZK

(
Σ(0)∆̃µ̃

)′
Ω∗(β0)ZK

(
Σ(0)∆̃µ̃

)
> q1−α(Fw∗)

)
and

lim
n→∞

lim
B→∞

P
(
Ĵ(β0, Φ̂1(β0)) > CB

α,dfBS
(Φ̂1(β0),L)

)
= P

(
ZK

(
Σ(0)∆̃µ̃

)′
Ω∗(β0)ZK

(
Σ(0)∆̃µ̃

)
> q1−α(Fw∗)

)
where w∗ = (w∗

1, ..., w
∗
K) are the eigenvalues of Ω∗(β0).

Note that w∗
i ≥ 0 and

∑
i∈[K]w

∗
i = 1. We can diagonalize Ω∗(β0) = Q∗′D∗Q

∗
such that

Q∗Q∗′ = Q∗′Q∗ = IK , with D∗ = diag(w∗
1, ..., w

∗
K). Then we can express the asymptotic

power under strong identification and local alternative as

P

∑
i∈[K]

w∗
i χ

2
1,i(Mi) > q1−α

∑
i∈[K]

w∗
i χ

2
1,i


where Mi := ∆̃2(ι′iQ

∗Σ(0)µ̃)2 is the non-centrality parameter, by which the power of the test

depends on. Furthermore, we can show that our proposed tests (i.e. analytical and bootstrap-

based tests) have certain desirable properties; in particular, our tests are admissible within

19Under weak identification, µ′
KµK ≡ µ̃2

n → µ̃2 ∈ R. This implies that µK must be bounded.
By Bolzano-Weierstrass, for every sub-sequence of µK , there exists a further sub-sequence µKj

that converges to µ, where µ′µ = µ̃2. Therefore, instead of arguing along sub-sequences, the
simplification that µK ≡ µ̃ allows us to argue along the full sequence.
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some class of tests. Consider the test

ϕα,w∗ := 1

∑
i∈[K]

w∗
i χ

2
1,i(Mi) > q1−α

∑
i∈[K]

w∗
i χ

2
1,K


Then we have the following result due to Marden (1982):

Corollary 2.4.1. Let Φα be the class of size-α tests for H0 : M1 = ... = MK = 0 constructed

based on K independent chi-squares (χ21,i, ..., χ
2
1,K). Then ϕα,w∗ is an admissible test within

Φα.

Corollary 2.4.1 relates back to Theorem 7 in the sense that our proposed tests are ad-

missible over the class of tests that are based on χ21 or some combination of independent

chi-squares (not necessarily a linear combination), under strong identification and local alter-

native. Finally, we can express the asymptotic power of our tests under weak identification

and fixed alternative as follows:

Theorem 8. Suppose Assumption 5, 6, 8, (2.2.7) holds and we are under fixed K. Assume

Ω∗(β0) is well defined and consider any estimator Φ̂1(β0)
p→ Φ1(β0). Then under weak

identification and fixed alternative, if we further assume that Π′Π = O(1), we have

lim
n→∞

P
(
Q̂(β0) > Cα,df (Φ̂1(β0))

)
= P

(
ZK

(
Σ(∆̃)µ̃

)′
Ω∗(β0)ZK

(
Σ(∆̃)µ̃

)
> q1−α(Fw∗)

)
and

lim
n→∞

lim
B→∞

P
(
Ĵ(β0, Φ̂1(β0)) > CB

α,dfBS
(Φ̂1(β0),L)

)
= P

(
ZK

(
Σ(∆̃)µ̃

)′
Ω∗(β0)ZK

(
Σ(∆̃)µ̃

)
> q1−α(Fw∗)

)
where w∗ are the eigenvalues of Ω∗(β0). In particular, if we assume Π′MΠ ≤ Π′Π

K → 0, then

Φ̂1(β0) can be taken as Φ̂ℓ
1(β0) for ℓ = {standard, cf} given in section 2.2.5.

Note that the assumption of Π′Π = O(1) automatically implies weak identification for

fixed K. To see this, observe that WPA1,

µ̃2n = µ′KµK ≤ λmax(QZZ) · µ′K

(
Z ′Z

n

)−1

µK = λmax(QZZ)Π
′PΠ ≤ λmax(QZZ) · Π′Π,
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so that µ̃2n ≤ C for some constant C <∞. As before, we can re-write the asymptotic power

given in Theorem 8 as

P

∑
i∈[K]

w∗
i χ

2
1,i(Mi) > q1−α

∑
i∈[K]

w∗
i χ

2
1,i


where Mi := ∆̃2(ι′iQ

∗Σ(∆̃)µ̃)2 is the non-centrality parameter. This ensures that our tests

have power strictly greater than α. The asymptotic rejection criteria for both our tests can

be written as

ϕα,w∗ := 1

∑
i∈[K]

w∗
i χ

2
1,i(Mi) > q1−α

∑
i∈[K]

w∗
i χ

2
1,i


Analogous to Theorem 7, we have the result that under weak-identification and fixed-

alternative, our tests are admissible within some class of tests. This follows from the following

corollary.

Corollary 2.4.2. Let Φα be the class of size-α tests for H0 : M1 = ... = MK = 0 constructed

based on K independent chi-squares (χ21,i, ..., χ
2
1,K). Then ϕα,w∗ is an admissible test within

Φα.

2.5 Rank-Deficiency and High-Dimensional Instruments

In this section we explore the problem of rank-deficiency in instruments (i.e. Z is not

full-ranked). Under such rank-deficiency, the projection matrix P := Z(Z ′Z)−1Z ′ is not

well-defined. To overcome this, we consider the ridged-projection-matrix defined as

Pγn := Z(Z ′Z + γnIK)−1Z

for some (sequence of) γn ≥ 0. Following Dovi, Kock, and Mavroeidis (2023), we set the

parameter γn to equal

γ∗n := max argmax
γn∈Γn

∑
i∈[n]

∑
j ̸=i

P 2
ij,γn
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where Γn := {γn ∈ R : γn ≥ 0 if r = K and γn ≥ γ− > 0 if r < K} and r := Rank(Z). We

make the additional assumption to ensure that γ∗n exists. In fact, whenever assumption 6

holds, assumption 9 will automatically hold,20 so that assumption 9 is seen as a “generalized”

version of the balanced-design assumption (i.e. pn ≤ δ < 1).

Assumption 9 (Assumption 3 of Dovi et al. (2023)). There exists constants c, γ− > 0 not

depending on n, some h ≥ 1 and some sequence γn ∈ [γ,∞) such that∑
i∈[n]

∑
j ̸=i

P 2
ij,γn ≥ crh

where γ = 0 if r = K and γ = γ− if r < K

Recall from sections 2.2.3–2.2.5 that the estimators involved depend on the number of

instruments K. The reason is that we assumed the instruments have full rank (i.e. r = K).

When instrument rank is deficient, we should focus instead on the rank of the instruments.

In particular, we should replace P and K by Pγn and r respectively in the previous sections.

Note that under these changes, our proposed analytical and bootstrap-based tests will once

again control for size, even if the number of instruments exceed the sample-size. For clarity

of exposition, we provide details of the testing procedure as well as its asymptotic properties

in Appendix B.5

Remark 2. Note that in section 2.2 we assumed that Z̃ is of full-rank. This assumption

implies that the number of instruments must be less than the sample size (i.e. K < n).

Throughout the rest of section 2.5, however, we do not make this assumption. Instead, we

focus on the rank-deficiency of partialled-out instrument Z. This allows for the number of

instruments to be much larger than the sample size (i.e. K >> n), which includes the

high-dimensional case.

2.6 Simulation and Application

In this section, we compare the difference in power and size between existing tests and our

test, under two different data generating processes (DGP). To begin, we explicitly define

20In particular, we simply require pn ≤ δ < 1 from assumption 6. See the proof of Proposition 1
in Dovi et al. (2023)
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these tests and their corresponding critical-values.

2.6.1 Description of Tests

We consider the following tests, letting df = (n−K)/2, dfBS = (n−K)/(3 log(n−K)), law

L following a Rademacher distribution (i.e. equal probability of −1 and 1), and α = 0.05

(i.e. 95% confidence level):

(1) Our proposed test using the standard estimator which rejects whenever

Q̂(β0) > Cα,df (Φ̂
standard
1 (β0))

(2) Our proposed test using the cross-fit estimator, which rejects whenever

Q̂(β0) > Cα,df (Φ̂
cf
1 (β0))

(3) The Jackknifed AR-statistic for diverging K provided by Mikusheva and Sun (2022),

which rejects whenever

1√
Φ̂cf
1 (β0)

√
K

∑
i∈[n]

∑
j ̸=i

Pijei(β0)ej(β0) > q1−α (N (0, 1)) ;

(4) The standard estimator for diverging K by Crudu et al. (2021) which rejects whenever

1√
Φ̂standard
1 (β0)

√
K

∑
i∈[n]

∑
j ̸=i

Pijei(β0)ej(β0) > q1−α (N (0, 1)) ;

(5) The classical AR-statistic for fixed K, i.e. we reject whenever

J ′
nΩ̂

−1
n Jn > q1−α(χ

2
K), where Jn := n−1/2Z ′e(β0) and Ω̂n :=

1

n
Z ′{diag(e21(β0), ..., e2n(β0))}Z

(6) The Jackknifed-AR for fixed K and homoskedastic errors given by Mikusheva and Sun
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(2022)[Supplementary Appendix, Lemma S4.1], which rejects whenever

1√
Φ̂cf
1 (β0)

√
K

∑
i∈[n]

∑
j ̸=i

Pijei(β0)ej(β0) > q1−α

(
χ2K −K
√
2K

)
;

(7) The bootstrapped-based test using Φ̂standard
1 (β0) as variance estimator, which rejects

whenever

Ĵ(β0, Φ̂
standard
1 (β0)) > CB

α,dfBS
(Φ̂BS

1 (β0),L);

(8) The bootstrapped-based test using Φ̂cf
1 (β0) as variance estimator, which rejects whenever

Ĵ(β0, Φ̂
cf
1 (β0)) > CB

α,dfBS
(Φ̂BS

1 (β0),L).

We denote the tests (1), (2), (3), (4), (5), (6), (7), (8) byQstandard, Qcf , ARcf , ARstandard, ARclassical,

JARhomo, Jstandard and Jcf respectively.

2.6.2 Simulation Based on Hausman et al. (2012)

We consider the following model based on the DGP given by Hausman et al. (2012), with sam-

ple size n = 400, and vary the number of instrumentsK ∈ {1, 2, 3, 4, 5, 6, 8, 10, 15, 20, 40, 100, 200, 300}.
Let

Y = βX +WΓ +Dz1U1

X = πKz1 + U2

W = (1, ..., 1)′ ∈ Rn

U1 = ρ1U2 +

√
1− ρ21

ϕ2 + 0.864
(ϕv1 + 0.86v2),

zi1 ∼ N (0.5, 1), v1i ∼ z1i(Beta(0.5, 0.5)− 0.5), v2i ∼ N (0, 0.862),

Dz1 := diag(

√
1 + z211,

√
1 + z221, ...,

√
1 + z2n1)

U2i ∼ exponential(0.2)− 5, ϕ = 0.3, ρ1 = 0.3
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We assume that the errors across different i are independent. Furthermore, z1 = (z11, z21, ..., zn1)

are independent from any error terms, and πK ∈ R is chosen to be such that the identifica-

tion strength is small; since the value of K affects identification strength, we have different

values of πK for different instruments. We consider values of πK such that for each K, the

concentration parameter C ≈ 70.21 The diagonal matrix Dz1 allows U1 to be dependent on

z1 but at the same time has variance bounded away from zero, in the event some elements

of z1 are close to zero. We assume β = 0 and Γ = 1 to be the true parameters.

The ith instrument observation for K ≥ 6 is given by

Z ′
i := (z1i, z

2
1i, z

3
1i, z

4
1i, z

5
1i, z1iDi1, ..., z1iDi,K−5),

where Dik ∈ {0, 1} is a dummy variable with P(Dik = 1) = 1/2, so that Zi ∈ RK . For

K ≤ 5, the ith instrument observation is

Z ′
i := zi1 for K = 1,

Z ′
i := (zi1, zi2) for K = 2,

Z ′
i := (zi1, zi2, zi1zi2) for K = 3,

Z ′
i := (zi1, zi2, zi1zi2, z

2
i1) for K = 4,

Z ′
i := (zi1, zi2, zi1zi2, z

2
i1, z

2
i2) for K = 5,

zi2 ∼ N (0.5, 1) independent of zi1

Note that z2 := (z12, z22, ..., zn2)
′ does not affect the DGP, so that in some sense it is a

‘spurious’ instrument. It is added for smaller instruments to ensure that the C in assumption

7 is not too large. We conduct 1, 000 simulation replications to obtain stable results and

detail the probability of rejection under the null of β = β0 in the following table.

Table 2.1 provides the probability of rejection under the null for different values of K;

21We used the command ‘set.seed(1)’ for our simulation in R programming so that Z can be
pinned down without changing. After this was done, we calibrated the value of π so that C :=
(πz1)′P0(πz1)√

K
= 70 for each K, where P0 := P −diag(P ) and P := MWZ(Z ′MWZ)−1(MW )Z ′. Note

that π changes with K. Furthermore, through extensive simulation, the results will not change
much when C changes by a little, say ±20.
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Table 2.1: Rejection Probability under Null

ARstandard Qstandard ARcf Qcf ARclassical JARhomo Jstandard Jcf
(5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%)

K = 1 0.072 0.06 0.072 0.061 0.06 0.062 0.06 0.06

K = 2 0.079 0.054 0.08 0.055 0.046 0.054 0.048 0.049

K = 3 0.066 0.048 0.07 0.053 0.044 0.053 0.047 0.044

K = 4 0.08 0.058 0.086 0.065 0.052 0.068 0.052 0.053

K = 5 0.077 0.05 0.083 0.056 0.059 0.06 0.049 0.048

K = 6 0.08 0.061 0.128 0.099 0.053 0.098 0.059 0.061

K = 8 0.073 0.047 0.106 0.08 0.049 0.082 0.056 0.06

K = 10 0.073 0.05 0.098 0.082 0.047 0.081 0.051 0.055

K = 15 0.083 0.054 0.111 0.089 0.039 0.087 0.057 0.062

K = 20 0.07 0.048 0.10 0.069 0.04 0.079 0.051 0.052

K = 40 0.062 0.041 0.092 0.061 0.023 0.074 0.047 0.048

K = 100 0.048 0.035 0.075 0.058 0.001 0.068 0.046 0.045

K = 200 0.059 0.043 0.103 0.086 0 0.098 0.056 0.061

K = 300 0.066 0.065 0.134 0.131 0 0.125 0.056 0.067

Note: We reject at the 95% confidence-level, i.e. α = 0.05

we make four observations. First, the ARstandard suffers from size issues when the number

of instruments is small-moderate. Our corresponding proposed tests Qstandard and Jstandard

resolves this. Second, severe size distortion also occurs for ARcf under small-moderate

amount of instruments;22 our corresponding analytical test Qcf tries to resolve this, albeit

partially successful. However, notice thatQcf reduces the size distortion by about 20%−30%.

The bootstrap-based cross-fit test Jcf has more success in that size-distortion is mostly

negligible, even when its counterpart ARcf experiences severe size-distortion. Third, the

22The size-distortion of ARcf persists even under large K (say K ≥ 200) due to pn := maxi Pii

being very close to one (it is roughly 0.992 in the simulation when K = 300). Recall from Theorem

B.3.0.2 that one of the key assumptions in assuring Φ̂cf
1 (β0) satisfies (2.2.12) is that pn ≤ δ < 1 for

some δ > 0. Note that even though this assumption was made in Theorem B.3.0.1, it is actually
not needed for the consistency of Φ̂standard

1 (β0), which explains why ARstandard has reasonable size
for larger K.
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classical AR-test for fixed instruments ARclassical generally does not suffer size-distortion

for any number of instruments; however, we will see that it suffers from substantial power

decline when the number of instruments is larger, say K ≥ 6, as seen from Figure 2.4–2.8.

Finally, JARhomo suffers from size-distortion even for small instruments, say K = 3. This is

to be expected since the critical value of JARhomo is based on homoskedastic errors, while

the errors of the DGP are heteroskedastic.

In order to obtain a fair power-comparison between the tests due to size-distortion, for

each given K we compute the (1− α)-quantile of each distribution under the null. We then

reject the tests whenever the test-statistic is greater than this null-computed quantile, i.e.

we compute the size-corrected power.23
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Figure 2.2: Power curve for K = 1, 2

Note: The red-line with downward-pointing triangle represents Qstandard; the yellow-line

with a upward-pointing triangle represents ARcf ; the purple-line with a cross represents Qcf ;

the green line with a colored-circle represents ARstandard; the blue dotted line with diamond

represents JARhomo; the black dotted line with an ‘x’ represents ARclassical; the orange-line

with a colored-square represents Jstandard; the dark-red dotted line with asterisk represents

Jcf . The horizontal dotted black line represents 5%-level.

23Note that these null-computed quantiles are in general infeasible in the sense that they cannot
be constructed without knowing the true DGP and parameters
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Figure 2.3: Power curve for K = 3, 4

Note: The red-line with downward-pointing triangle represents Qstandard; the yellow-line

with a upward-pointing triangle represents ARcf ; the purple-line with a cross represents Qcf ;

the green line with a colored-circle represents ARstandard; the blue dotted line with diamond

represents JARhomo; the black dotted line with an ‘x’ represents ARclassical; the orange-line

with a colored-square represents Jstandard; the dark-red dotted line with asterisk represents

Jcf . The horizontal dotted black line represents 5%-level.
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Figure 2.4: Power curve for K = 5, 6

Note: The red-line with downward-pointing triangle represents Qstandard; the yellow-line

with a upward-pointing triangle represents ARcf ; the purple-line with a cross represents Qcf ;

the green line with a colored-circle represents ARstandard; the blue dotted line with diamond

represents JARhomo; the black dotted line with an ‘x’ represents ARclassical; the orange-line

with a colored-square represents Jstandard; the dark-red dotted line with asterisk represents

Jcf . The horizontal dotted black line represents 5%-level.
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Figure 2.5: Power curve for K = 8, 10

Note: The red-line with downward-pointing triangle represents Qstandard; the yellow-line

with a upward-pointing triangle represents ARcf ; the purple-line with a cross represents Qcf ;

the green line with a colored-circle represents ARstandard; the blue dotted line with diamond

represents JARhomo; the black dotted line with an ‘x’ represents ARclassical; the orange-line

with a colored-square represents Jstandard; the dark-red dotted line with asterisk represents

Jcf . The horizontal dotted black line represents 5%-level.
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Figure 2.6: Power curve for K = 15, 20

Note: The red-line with downward-pointing triangle represents Qstandard; the yellow-line

with a upward-pointing triangle represents ARcf ; the purple-line with a cross represents Qcf ;

the green line with a colored-circle represents ARstandard; the blue dotted line with diamond

represents JARhomo; the black dotted line with an ‘x’ represents ARclassical; the orange-line

with a colored-square represents Jstandard; the dark-red dotted line with asterisk represents

Jcf . The horizontal dotted black line represents 5%-level.
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Figure 2.7: Power curve for K = 40, 100

Note: The red-line with downward-pointing triangle represents Qstandard; the yellow-line

with a upward-pointing triangle represents ARcf ; the purple-line with a cross represents Qcf ;

the green line with a colored-circle represents ARstandard; the blue dotted line with diamond

represents JARhomo; the black dotted line with an ‘x’ represents ARclassical; the orange-line

with a colored-square represents Jstandard; the dark-red dotted line with asterisk represents

Jcf . The horizontal dotted black line represents 5%-level.
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Figure 2.8: Power curve for K = 200, 300

Note: The red-line with downward-pointing triangle represents Qstandard; the yellow-line

with a upward-pointing triangle represents ARcf ; the purple-line with a cross represents Qcf ;

the green line with a colored-circle represents ARstandard; the blue dotted line with diamond

represents JARhomo; the black dotted line with an ‘x’ represents ARclassical; the orange-line

with a colored-square represents Jstandard; the dark-red dotted line with asterisk represents

Jcf . The horizontal dotted black line represents 5%-level.
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Figures 2.2-2.8 plot the size-adjusted power curve for the aforementioned tests; we high-

light five observations. First, our four proposed tests Qstandard, Qcf , Jstandard and Jcf have

generally similar power over different number of instruments, which is expected as their

rejection rate are asymptotically equal under every alternative. Second, the size-adjusted

power of our proposed tests is at least as good as the well-known estimators ARstandard,

ARcf , ARclassical and JARhomo over varying numbers of instruments. Third, for moderate

to large number of instruments (say K ≥ 6), the power of the ARclassical is comparatively

lower than all other tests. Fourth, when the number of instruments is large, the power

curves for ARcf and JARhomo are similar because the two tests differ only in the critical

value used (i.e. q1−α(N (0, 1)) for the former and q1−α(
χ2
K−K√
2K

) for the latter). As K → ∞,

χ2
K−K√
2K
⇝ N (0, 1), so that eventually, for larger instruments, the rejection rate of these two

tests should be equal. Finally, for very large instruments (K = 200, 300), the size-adjusted

power of Qstandard and Qcf are approximately equal, and dominates the other tests. The

power of ARstandard is approximately equal to Jstandard, while the power of ARcf is approx-

imately equal to Jcf .

2.6.3 Empirical Application

In this section, we consider the linear IV regression with underlying specification based on

Angrist and Krueger (1991), using the full original dataset.24 In particular, we consider

the 1980s census of 329,509 men born in 1930-1939 based on Angrist and Krueger’s (1991)

dataset. The model follows Mikusheva and Sun (2022), which can be written explicitly as

ln Wi = Constant+H⊤
i ζ +

38∑
c=30

Y OBi,cξc +
∑
s̸=56

POBi,sηs + βEi + γi (2.6.1)

Ei = Constant+H⊤
i λ+

38∑
c=30

Y OBi,cµc +
∑
s̸=56

POBi,sαs + Zi,K + εi

24The dataset can be downloaded from MIT Economics, Angrist Data Archive,
https://economics.mit.edu/faculty/angrist/data1/data/angkru1991.
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where Wi is the weekly wage, Ei is the education of the i-th individual, Hi is a vector of

covariates,25 Y OBi,c is a dummy variable indicating whether the individual was born in year

c = {30, 31, ..., 39}, while QOBi,j is a dummy variable indicating whether the individual was

born in quarter-of-birth j ∈ {1, 2, 3, 4}. POBi,s is the dummy variable indicating whether

the individual was born in state s ∈ {51 states}.26 Both γi and εi are the error terms. We

consider twenty-one varying numbers of instruments; in particular,

K = {3, 10, 20, 30, 50, 100, 150, 180, 200, 250, 300, 350, 400, 450, 600, 765, 918, 1071, 1224, 1377, 1530},

so that Zi,K varies with K. Specifically, we have

Zi,3 =

3∑
j=1

QOBi,jδj ,

Zi,10 =

1∑
j=1

39∑
c=30

QOBi,jY OBi,cθj,c, ..., Zi,30 =

3∑
j=1

39∑
c=30

QOBi,jY OBi,cθj,c,

Zi,50 =

1∑
j=1

∑
s̸=56

QOBi,jPOBi,sδj,s, ..., Zi,150 =

3∑
j=1

∑
s̸=56

QOBi,jPOBi,sδj,s,

Zi,180 =

3∑
j=1

∑
s̸=56

QOBi,jPOBi,sδj,s +

3∑
j=1

39∑
c=30

QOBi,jY OBi,cθj,c,

Zi,200 =

33∑
c=30

∑
s̸=56

Y OBi,jPOBi,sQOB1,jψc,s, ..., Zi,450 =

38∑
c=30

∑
s̸=56

Y OBi,jPOBi,sQOB1,jψc,s,

Zi,600 =

38∑
c=30

∑
s̸=56

Y OBi,jPOBi,sψc,s +

3∑
j=1

∑
s̸=56

QOBi,jPOBi,sδj,s,

Zi,765 =

34∑
c=30

3∑
j=1

∑
s∈{51 states}

QOBi,jY OBi,cPOBi,sδj,c,s, ...

..., Zi,1071 =

39∑
c=30

3∑
j=1

∑
s∈{51 states}

QOBi,jY OBi,cPOBi,sδj,c,s

25The covariates we consider are: RACE, MARRIED, SMSA, NEWENG, MIDATL, ENOCENT,
WNOCENT, SOATL, ESOCENT, WSOCENT, and MT.

26The state numbers are from 1 to 56, excluding (3,7,14,43,52), corresponding to U.S. state codes.
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The coefficient β is the return to education. We vary this β across 1,000 equidistant grid-

points from -0.5 to 0.5 (i.e., β ∈ {−0.5,−0.499,−0.498, ..., 0, ..., 0.499, 0.5}) and solve for

the range of β where the null hypothesis cannot be rejected, according to section 2.6.1.

Specifically, we can write the above model as

ln Wi = CiΓ + βEi + γi (2.6.2)

Ei = Ciτ + ZiΘ+ εi, (2.6.3)

where Ci is a (329,509×71)-matrix of controls containing the first four terms on the right-

hand of (2.6.1). We can then partial out the controls Ci by multiplying each equation (2.6.2)

and (2.6.3) by the residual matrix I − C(C⊤C)−1C⊤ to obtain a form analogous to that in

the main text:

Yi = Xiβ + ei,

Xi = Πi + vi

Then, at each grid-point we take β0 = β and computeARstandard, Qstandard, ARcf , Qcf , ARclassical

and JARhomo. We reject the chosen value of β0 for if it exceeds the one-sided 5%-quantile

of the corresponding critical-value (i.e. α = 0.05 with the tests and their critical-value

described in Section 2.6.1). Note that the full QOB, Y OB,POB or their interactions are

not used in order to avoid multicollinearity. We report the upper and lower bounds of the

confidence set for which the null cannot be rejected in Table 2.2 below.
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Table 2.2: Confidence Interval

ARstandard Qstandard ARclassical JARhomo Jstandard
(5%) (5%) (5%) (5%) (5%)

K = 3 [0.056,0.147] [0.052,0.151] [0.053,0.151] [0.052,0.151] [0.052,0.15]

K = 10 [-0.007,0.16] [-0.011,0.165] [-0.011,0.166] [-0.011,0.165] [-0.011,0.167]

K = 20 [0.017,0.174] [0.015,0.178] [0.014,0.18] [0.014,0.178] [0.009,0.183]

K = 30 [0,0.169] [-0.002,0.172] [-0.002,0.177] [-0.002,0.172] [-0.004,0.173]

K = 50 [0.005,0.183] [0.002,0.188] [-0.01,0.188] [0.002,0.188] [0.188,0,0.198]

K = 100 [0.018,0.2] [0.017,0.202] [0.009,0.203] [0.017,0.202] [0.013,0.203]

K = 150 [0.023,0.208] [0.022,0.21] [0.022,0.212] [0.022,0.21] [0.021,0.211]

K = 180 [0.008,0.201] [0.007,0.202] [0.007,0.207] [0.007,0.202] [0.005,0.206]

K = 200 [-0.216,0.23] [-0.223,0.233] [-0.214,0.236] [-0.224,0.233] [-0.131,0.252]

K = 250 [-0.118,0.258] [-0.122,0.261] [-0.111,0.256] [-0.122,0.261] [-0.1,0.275]

K = 300 [-0.097,0.24] [-0.1,0.242] [-0.085,0.238] [-0.1,0.242] [-0.092,0.26]

K = 350 [-0.107,0.28] [-0.11,0.283] [-0.092,0.274] [-0.11,0.283] [-0.071,0.273]

K = 400 [-0.078,0.305] [-0.081,0.308] [-0.058,0.298] [-0.081,0.308] [-0.076,0.257]

K = 450 [-0.105,0.29] [-0.107,0.293] [-0.092,0.281] [-0.107,0.293] [-0.047,0.25]

K = 600 [-0.018,0.228] [-0.019,0.229] [-0.013,0.224] [-0.019,0.229] [-0.011,0.231]

K = 765 [-0.09,0.192] [-0.093,0.194] [-0.125,0.163] [-0.092,0.194] [-0.108,0.201]

K = 918 [-0.055,0.182] [-0.058,0.183] [-0.076,0.157] [-0.056,0.183] [-0.064,0.19]

K = 1071 [-0.042,0.19] [-0.044,0.192] [-0.064,0.168] [-0.042,0.191] [-0.05,0.196]

K = 1224 [-0.035,0.209] [-0.036,0.208] [-0.052,0.186] [-0.035,0.209] [-0.042,0.231]

K = 1377 [-0.034,0.207] [-0.036,0.209] [-0.052,0.186] [-0.035,0.208] [-0.042,0.231]

K = 1530 [-0.035,0.219] [-0.036,0.221] [-0.049,0.206] [-0.035,0.22] [-0.038,0.229]

Note: We reject at the 95% confidence-level, i.e. α = 0.05

We have omitted ARcf , Qcf and Jcf from the Table 2.2 because the confidence interval of

these tests are either very similar or exactly the same as ARstandard, Qstandard and Jstandard

respectively. Therefore, we can speak of the confidence interval (C.I) for the aforementioned

tests interchangeably (e.g. when we mention the C.I. of ARcf , we also mean the C.I. of
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ARstandard). We now make a few observations, which we discuss in detail. First of all, recall

from Table 2.1 that the size-control for Qcf was slightly distorted due to pn being extremely

close to one, a requirement for the validity of the cross-fit variance estimator Φ̂cf
1 (β0). In

this empirical application pn is bounded away from one, so that Qstandard and Qcf should be

expected to be close to each other. In fact, we can also expect the C.I. of ARstandard to be

close to ARcf over all values of instruments, which holds true. Second, the C.I. of ARclassical

is quite different from all other statistics for larger instruments, which is to be expected since

ARclassical is meant for testing under fixed instruments. However, notice that the C.I. of

Qstandard (and therefore Qcf ) is close to ARclassical for smaller instruments, while Qstandard

differs from ARstandard (and ARcf ) at these values, which suggests that the C.I. for both

ARstandard and ARcf may not be valid for smaller instruments. For large instruments (say

K ≥ 350), the C.I. of Qstandard (and Qcf ) converges to that of ARstandard (and ARcf ). We

can therefore see that our proposed test ensures that the C.I. we obtain is correct. Third,

JARhomo’s C.I. converges to that of ARcf as the number of instruments increase. This is

expected since the test JARhomo converges to ARcf as K → ∞.

Fourth, comparing Qcf and JARhomo for small instruments, we see that their C.I. are

very similar. We can infer from this that the data seems to be exhibiting homoskedastic

variance. This requires some explanation. Consider a fixed ∆ not necessarily zero. Note

that under some additional assumptions, we can show that under fixed K, WPA1, we have27

||w̃n − wn|| ≈ 0

This implies that WPA1, Fw̃ ⇝ Fw approximately. Under homoskedasticity, wi,n = 1
K , so

that Fw = χ2
K

K . Therefore, WPA1 approximately,

q1−α(Fw̃)− 1√
2||w̃n||F

→ q1−α

 χ2K/K − 1
√
2
√∑

i∈[K]
1
K2

 = q1−α

(
χ2K −K
√
2K

)

27In particular, if we impose the additional assumption that maxi∈[n]
∆2Π2

i∑
i∈[n] Piiσ2

i (β0)
≈ 0, then we

can see that this result follows from Lemma B.2.3
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By rearrangement, the rejection criteria for Qcf becomes: reject whenever

1√
KΦ̂cf

1 (β0)

∑
i∈[n]

Piie
2
i (β0)(Q̂(β0)− 1) > q1−α

(
q1−α(Fw̃)− 1√

2||w̃n||F

)
≈ q1−α

(
χ2K −K
√
2K

)

Furthermore, recall that the rejection criteria for JARhomo is given as

1√
KΦ̂cf

1 (β0)

∑
i∈[n]

Piie
2
i (β0)(Q̂(β0)− 1) > q1−α

(
χ2K −K
√
2K

)

We therefore conclude that under homoskedasticity, for fixed K, the rejection rate of Qcf

and JARhomo should be approximately equal. Since the C.I. of both tests are similar, we can

infer somewhat that the variance is homoskedastic. As a form of robustness check, note that

ARclassical and JARhomo has similar C.I. for small K, where we recall ARclassical is robust to

heteroskedasticity under fixed K. This further confirms our intuition. To summarize point

four, our proposed tests Qstandard and Qcf can serve to check for homoskedastic variance.
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Appendix A

Technical Results for Chapter 1

A.1 Exogenous Control Variables

Suppose we observe {Ỹi, X̃i, Z̃i,Wi}i∈[n], where

Ỹi = X̃iβ +W⊤
i γ + ẽi, X̃i = Π̃i + Ṽi,

X̃i ∈ ℜ, Z̃i ∈ ℜK , Wi ∈ ℜd, Π̃i = EX̃i, and (Z̃i,Wi)i∈[n] are treated as fixed. We allow

K to diverge to infinity with n while d is fixed. We then have Eẽi = EṼi = 0. Denote

PW = W (W⊤W )−1W⊤ and MW = In − PW be the projection and residual matrices based

on W , respectively, where In is the n × n identity matrix and W = (W1,W2, · · · ,Wn)
⊤ ∈

ℜn×d. Further denote Ỹ , X̃, ẽ, Π̃, Ṽ as matrices with their ith row being Ỹi, X̃i, ẽi, Π̃i, Ṽi,

respectively. Then, we have

Yi = Xiβ + ei, Xi = Πi + Vi,

where Y =MW Ỹ , X =MW X̃, V =MW Ṽ , e =MW ẽ, Π =MW Π̃, and Z =MW Z̃. We still

denote P as the projection matrix constructed by Z. The next theorem shows Assumption

1 holds.

Theorem A.1.1. Suppose {Ṽi, ẽi}i∈[n] are independent, maxi Eẽ4i + maxi EṼ 4
i ≤ C < ∞,

maxi ||Wi||2 ≤ C <∞, Π⊤Π/K = O(1), and 0 < c ≤ mineig(W⊤W/n) ≤ maxeig(W⊤W/n) ≤
C < ∞, for some constants c, C. Then, Assumption 1 holds and Qe,e = Qẽ,ẽ + oP (1). If
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in addition, p2n
Π⊤Π
K = o(1) with pn = maxi Pii, then we have QX,e = QX,ẽ + oP (1) and

QX,X = QX,X + oP (1), where Xi = Πi + Ṽi.

Theorem A.1.1 shows Assumption 1 still holds if (Yi, Xi, Zi) are defined after partialing out

the fixed dimensional control variables Wi. It further provides a sufficient condition under

which the effect of partialling-out on the sampling error is asymptotically negligible, i.e.,

the asymptotic covariance matrix remains the same after partialing out Wi. To interpret

the sufficient condition, we consider the balanced design in which pn is of order K/n. If

K/n = o(1) and Π⊤Π/n = O(1), then the sufficient condition holds because

p2nΠ
⊤Π/K = O

(
Π⊤Π

n

K

n

)
= o(1).

On the other hand, if K ≍ n, the sufficient condition requires Π⊤Π/K = o(1), which

can hold under both weak identification (Π⊤Π/
√
K = O(1)) and strong identification

(Π⊤Π/
√
K → ∞). We further emphasize that, even if K ≍ n and Π⊤Π/K ≍ 1 so that the

sufficient condition does not hold, Assumption 1 still holds. It is just that partialing out the

exogenous control variable will have a non-negligible effect on the asymptotic covariance of

(Qe,e, QX,e, QX,X −QΠ,Π).

A.2 Verifying Assumption 2

A.2.1 Standard Estimators

In this section, we maintain Assumption 10, which is stated below and just Mikusheva and

Sun (2022, Assumption 1).

Assumption 10. Suppose {Vi, ei}i∈[n] are independent and Eei = EVi = 0. Suppose P is

an n×n projection matrix of rank K, K → ∞ as n→ ∞ and there exists a constant δ such

that Pii ≤ δ < 1.

Following the results in Chao et al. (2012) and Mikusheva and Sun (2022), we can show
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that under either weak or strong identification, Assumption 1 in the paper holds: Qe,e

QX,e

QX,X − C

⇝ N


0

0

0

 ,

Φ1 Φ12 Φ13

Φ12 Ψ τ

Φ13 τ Υ


 , (A.2.1)

where σ2i = Ee2i , η
2
i = EV 2

i , γi = EeiVi, ωi =
∑

j ̸=i PijΠj ,

Φ1 = lim
n→∞

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i σ

2
j ,

Φ12 = lim
n→∞

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(γjσ

2
i + γiσ

2
j ),

Φ13 = lim
n→∞

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijγiγj ,

Ψ = lim
n→∞

 1

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(η

2
i σ

2
j + γiγj) +

1

K

∑
i∈[n]

ω2
i σ

2
i

 ,
τ = lim

n→∞

 2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijη

2
i γj +

2

K

∑
i∈[n]

ω2
i γi

 , and

Υ = lim
n→∞

 2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijη

2
i η

2
j +

4

K

∑
i∈[n]

ω2
i η

2
i

 .

We note that the standard estimators of the above variance components proposed by

Crudu et al. (2021) are equal to Chao et al.’s (2012) estimators with their residual êi replaced

by ei(β0). Specifically, let

Φ̂1(β0) =
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ije

2
i (β0)e

2
j(β0),

Φ̂12(β0) =
1

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(Xjej(β0)e

2
i (β0) +Xiei(β0)e

2
j(β0)),

Φ̂13(β0) =
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijXiei(β0)Xjej(β0),
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Ψ̂(β0) =
1

K

∑
i∈[n]

(
∑
j ̸=i

PijXj)
2e2i (β0) +

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijXiei(β0)Xjej(β0),

τ̂(β0) =
1

K

∑
i∈[n]

(
∑
j ̸=i

PijXj)
2Xiei(β0) +

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijX

2
iXjej(β0), and

Υ̂ =
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijX

2
iX

2
j .

Assumption 11. Suppose maxi∈[n] |Πi| ≤ C, Π⊤Π
K = o(1), and maxi Ee6i +maxi EV 6

i <∞.

Two remarks on Assumption 11 are in order. First, maxi∈[n] |Πi| ≤ C is mild because

Πi = EXi. Second, Assumption 11 allows for weak identification when Π⊤Π/
√
K → c for a

constant c. It also allows for strong identification when Π⊤Π/
√
K → ∞ and Π⊤Π/K → 0.

The restriction that Π⊤Π/K → 0 is needed because Assumption 2 includes the case of fixed

alternatives (i.e., fixed ∆ ̸= 0), which is not considered in Crudu et al. (2021) and Chao et al.

(2012). Furthermore, our results include τ̂(β0) and Υ̂, which are not considered in Crudu

et al. (2021) and Chao et al. (2012), and the consistency of these terms require Π⊤Π/K → 0.

Theorem A.2.1. Suppose Assumptions 10 and 11 hold. Then Assumption 2 holds for Crudu

et al.’s (2021) estimators defined above.

A.2.2 Cross-Fit Estimators

LetM = I−P ,Mij be the (i, j) element ofM ,Mi be the ith row ofM , and P̃ 2
ij =

P 2
ij

MiiMjj+M2
ij
.

Then, Mikusheva and Sun (2022) consider the cross-fit estimators for Φ1(β0), Ψ(β0), and Υ

defined as

Φ̂1(β0) =
2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ij [ei(β0)Mie(β0)][ej(β0)Mje(β0)],

Ψ̂(β0) =
1

K

∑
i∈[n]

(
∑
j ̸=i

PijXj)
2 ei(β0)Mie(β0)

Mii
+
∑
i∈[n]

∑
j ̸=i

P̃ 2
ijMiXei(β0)MjXej(β0)

 , and

Υ̂ =
2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ij [Xi(β0)MiX][Xj(β0)MjX],
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where X and e(β0) are the column vectors that collect all Xi and ei(β0), respectively. Fol-

lowing their lead, we can construct the cross-fit estimators for the rest three elements in

γ(β0) as follows:

Φ̂12(β0) =
1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ij(MjXej(β0)ei(β0)Mie(β0) +MiXei(β0)ej(β0)Mje(β0)),

Φ̂13(β0) =
2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijMiXei(β0)MjXej(β0), and

τ̂(β0) =
1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ij(XiMiX)(MjXej(β0)) +

1

K

∑
i∈[n]

(
∑
j ̸=i

PijXj)
2

(
ei(β0)MiX

2Mii
+
XiMie(β0)

2Mii

)
,

Assumption 12. Suppose Assumption 11 holds. Further suppose that Π⊤MΠ ≤ CΠ⊤Π
K for

some constant C > 0.

Compared with the assumptions in Mikusheva and Sun (2022), Assumption 12 further

requires that maxi∈[n] |Πi| ≤ C. However, for all the above cross-fit estimators to be consis-

tent, we only need Π⊤Π/K → 0, which is weaker than that assumed in Mikusheva and Sun

(2022) (e.g., Theorems 5 in their paper require Π⊤Π/K2/3 → 0).

Lemma A.2.1. Suppose Assumptions 10 and 12 hold. Then, Lemmas 2, 3, S3.1, S3.2 in

Mikusheva and Sun (2022) hold.

Theorem A.2.2. Suppose Assumptions 10 and 12 hold. Then, Assumption 2 holds for

Mikusheva and Sun’s (2022) cross-fit estimators defined above.

A.3 Details for Simulations Based on Calibrated Data

The DGP contains only the intercept as the control variable. Therefore, we implement

our jackknife CLC test on the demeaned version of (ỹi, s̃i, Z̃i). The parameter space is

B = [−0.5, 0.5]. We test the null hypothesis that β = β0 for β0 = 0.1 while varying the true

value β over 31 equal-spaced grids over B. The grids for δ is the grid for β minus β0. We

generate grids of (a1, a2) as a1 = sin2(t1) and a2 = cos2(t1) sin
2(t2) with t1 taking values

over 16 equal-spaced grids over [a1/2(fs(D̂, γ̂(β0)), π/2] and t2 taking values over 16 equal-

spaced grids over [0, π/2]. We gauge E∗ϕa1,a2,s(δ, D̂, γ̂(β0)) via a Monte Carlo integration with
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R = 2000 draws of independent standard normal random variables. In practice, it is rare but

possible thatAs(D̂, γ̂(β0)) defined in (1.3.8) is not unique. To increase numerical stability, we

follow I.Andrews (2016) and allow for some slackness in the minimization. Let Ga be the grid

of (a1, a2) mentioned above, Q̂(a1, a2) = supδ∈D(β0)(Pδ,s(D̂, γ̂(β0))− E∗ϕa1,a2,s(δ, D̂, γ̂(β0))),

Q̂min = min(a1,a2)∈Ga
Q̂(a1, a2) + 1/n, where n is the sample size, and

Ξ = {(a1, a2) ∈ Ga : Q̂(a) ≤ Q̂min + (Q̂min(1− Q̂min))
1/2(2 log(log(R)))1/2R−1/2}.

The slackness term in the definition of Ξ is due to the law of the iterated logarithm for sum

of Bernoulli random variables and captures the randomness of the Monte Carlo integration.

Suppose there are L elements in Ξ with an ascending order w.r.t. (t1, t2), which are denoted

as {(a1,l, a2,l)}Ll=1. We then define As(D̂, γ̂(β0)) as (a1,⌊L/2⌋, a2,⌊L/2⌋). We use the cross-fit

estimators defined in Section A.2.2 throughout the simulation.

A.4 Details for Empirical Application

We consider the 1980s census of 329,509 men born in 1930-1939 based on Angrist and

Krueger’s (1991) dataset. The model for 180 instruments follows Mikusheva and Sun

(2022), which can be written explicitly as

ln Wi = Constant+H⊤
i ζ +

38∑
c=30

Y OBi,cξc +
∑
s̸=56

POBi,sηs + βEi + γi

Ei = Constant+H⊤
i λ+

38∑
c=30

Y OBi,cµc +
∑
s̸=56

POBi,sαs

+

3∑
j=1

∑
s̸=56

QOBi,jPOBi,sδc,s +

3∑
j=1

39∑
c=30

QOBi,jY OBi,cθj,c + εi,

where Wi is the weekly wage, Ei is the education of the i-th individual, Hi is a vector of

covariates,1 Y OBi,c is a dummy variable indicating whether the individual was born in year

c = {30, 31, ..., 39}, while QOBi,j is a dummy variable indicating whether the individual was

1The covariates we consider are: RACE, MARRIED, SMSA, NEWENG, MIDATL, ENOCENT,
WNOCENT, SOATL, ESOCENT, WSOCENT, and MT.
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born in quarter-of-birth j ∈ {1, 2, 3, 4}. POBi,s is the dummy variable indicating whether

the individual was born in state s ∈ {51 states}.2 Both γi and εi are the error terms. The

coefficient β is the return to education. We vary this β across 10,000 equidistant grid-points

from -0.5 to 0.5 (i.e., β ∈ {−0.5,−4.9999,−4.9998, ..., 0, ..., 4.9999, 0.5}) and solve for the

range of β where the null hypothesis cannot be rejected. Specifically, we can write the above

model as

ln Wi = CiΓ + βEi + γi

Ei = Ciτ + ZiΘ+ εi,

where Ci is a (329,509×71)-matrix of controls containing the first four terms on the right-

hand of the first equation, while Zi is the (329,509×180)-matrix of instruments containing

the first two terms in the third line. We can then partial out the controls Ci by multiplying

each equation by the residual matrix I − C(C⊤C)−1C⊤ to obtain a form analogous to that

in the main text:

Yi = Xiβ + ei,

Xi = Πi + vi.

Then, at each grid-point we take β0 = β and computeAR(β0), LM(β0), Wald(β0), ϕ̂App(D̂,γ̂(β0))

and ϕ̂Akrs(D̂,γ̂(β0))
. We reject the chosen value of β0 for AR(β0) if it exceeds the one-sided

5%-quantile of the standard normal (i.e., reject if AR(β0) > z0.05). If LM(β0)
2 > C0.05,

we reject the chosen β0 for Jackknife LM. If Wald(β0) > C0.05, we reject for JIVE-t. If

ϕ̂As(D̂,γ̂(β0))
> C0.05(As(D̂, γ̂(β0)); ρ̂(β0)) for s ∈ {pp, krs}, we reject accordingly. The two-

step procedure depends on the value of F̃ . If F̃ > 9.98, we reject if Wald(β0) > C0.02;

otherwise if F̃ ≤ 9.98, we reject if AR(β0) > z0.02.

The model for 1,530 instruments can be written explicitly as

ln Wi = Constant+H⊤
i ζ +

38∑
c=30

Y OBi,cξc +
∑
s̸=56

POBi,sηs + βEi + γi.

2The state numbers are from 1 to 56, excluding (3,7,14,43,52), corresponding to U.S. state codes.
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Ei = Constant+H⊤
i λ+

38∑
c=30

Y OBi,cµc +
∑
s̸=56

POBi,sαs

+

3∑
j=1

39∑
c=30

∑
s∈{51 states}

QOBi,jY OBi,cPOBi,sδj,c,s.

The main difference between this 1,530-instrument specification and the 180-instrument one

is that we now have QOB-YOB-POB interactions as our instruments, compared with QOB-

YOB and QOB-POB interactions in the case of 180 instruments. Note that in both cases,

only quarter-of-birth 1–3 are used; quarter 4 is omitted in order to avoid multicollinearity.

A.5 Proof of Lemma 1.2.1

Under strong identification, by (1.2.3) and Assumption 2, we have1 0 0

0 1 0

0 0 dn


 Qe,e

QX,e

QX,X

⇝ N


0

0

C̃

 ,

Φ1 Φ12 0

Φ12 Ψ 0

0 0 0


 ,

In addition, we note that ei(β0) = ei +Xi∆ with ∆ = dn∆̃ → 0. Therefore, we have

Qe(β0),e(β0) = Qe,e + 2∆QX,e +∆2QX,X = Qe,e + op(1),

QX,e(β0) = QX,e +∆QX,X = QX,e + C̃∆̃ + op(1),

Φ̂
1/2
1 (β0)

p−→ Φ
1/2
1 , and Ψ̂1/2(β0)

p−→ Ψ1/2.

This implies(
AR(β0)

LM(β0)

)
=

(
Qe(β0),e(β0)/Φ̂

1/2
1 (β0)

QX,e(β0)/Ψ̂
1/2(β0)

)
⇝ N

((
0
C̃∆̃
Ψ1/2

)
,

(
1 ρ

ρ 1

))
.
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A.6 Proof of Lemma 1.2.2

Recall N ∗
2 = (1− ρ2)−1/2(N2 − ρN1) and(

N1

N ∗
2

)
d
= N

((
0
θ

(1−ρ2)1/2

)
,

(
1 0

0 1

))
.

Because ρ is known, it suffices to construct the uniformly most powerful invariant test based

on observations (N1,N ∗
2 ). As the null and alternative are invariant to sign changes, the max-

imum invariant is (N1,N ∗2
2 ). Then, Lehmann and Romano (2006, Theorem 6.2.1) implies

the invariant test should be based on the maximum invariant. Note (N1,N ∗2
2 ) are inde-

pendent, N1 follows a standard normal distribution, and N ∗
2 follows a noncentral chi-square

distribution with one degree of freedom and noncentrality parameter λ = θ2

1−ρ2 . Therefore,

by the Neyman-Pearson’s Lemma (Lehmann and Romano (2006, Theorem 3.2.1)), the most

powerful test based on observations (N1,N ∗2
2 ) is the likelihood ratio test where the likelihood

ratio function evaluated at (N1 = ℓ1,N ∗2
2 = ℓ2) depends on ℓ2 only and can be written as

LR (ℓ2;λ) = −λ
2
+ log

(
exp(

√
λℓ2) + exp(−

√
λℓ2)

2

)
In addition, we note that LR (ℓ2;λ) is monotone increasing in ℓ2 for any λ ≥ 0 and ℓ2 ≥ 0.

Therefore, Lehmann and Romano (2006, Theorem 3.4.1) implies the likelihood ratio test is

equivalent to 1{N ∗2
2 ≥ Cα}, which is uniformly most powerful among tests for λ = 0 v.s.

λ > 0 and based on observations (N1,N ∗2
2 ) only. This means it is also the uniformly most

powerful test that is invariant to sign changes.

In addition, the joint density of (N1,N2) is

(2π)−1(1− ρ2)−1/2 exp

(
−1

2

(
N 2

1

1− ρ2
− 2ρN1N2

1− ρ2
+

N 2
2

1− ρ2

))
exp

(
θ
ρN1 −N2

1− ρ2

)
exp

(
θ2

1− ρ2

)
≡ C(θ) exp(θN ∗

2 )h(N1,N2),

where C(θ) = (2π)−1(1−ρ2)−1/2 exp
(

θ2

1−ρ2

)
and h(N1,N2) = exp

(
−1

2

(
N 2

1

1−ρ2 −
2ρN1N2

1−ρ2 + N 2
2

1−ρ2

))
.

Note thatN ∗
2 is symmetric around 0 under the null. By Lehmann and Romano (2006, Section

4.2), 1{N ∗2
2 ≥ Cα} is the UMP unbiased level-α test.
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A.7 Proof of Lemma 1.2.3

Under strong identification and fixed alternatives, because (Qe(β0),e(β0) − ∆2C, QX,e(β0) −
∆C, QX,X − C)⊤ = Op(1), we have

(
dnAR(β0)

dnLM(β0)

)
p−→

 ∆2C̃
Φ

1/2
1 (β0)
∆C̃

Ψ1/2(β0)

 .

This implies

dnLM
∗(β0)

p−→ 1

(1− ρ2(β0))1/2

(
∆C̃

Ψ1/2(β0)
− ρ(β0)∆

2C̃
Φ
1/2
1 (β0)

)
,

which leads to the desired result.

A.8 Proof of Lemma 1.2.4

Under weak identification, (1.2.3) implies(
Qe(β0),e(β0)

QX,e(β0)

)
=

(
Qe,e + 2∆QX,e +∆2QX,X

QX,e +∆QX,X

)
⇝ N

((
∆2C̃
∆C̃

)
,

(
Φ1(β0) Φ12(β0)

Φ12(β0) Ψ(β0)

))
,

which leads to the first result.

For the second result, it is obvious that m1(∆) → C̃Υ−1/2. In addition, we have

m2(∆) =
C̃
(
∆Φ1(β0)−∆2Φ12(β0)

)
(Φ1(β0)(Φ1(β0)Ψ(β0)− Φ2

12(β0)))
1/2

→ τ C̃
(Υ(ΥΨ− τ2))1/2

=
C̃

Υ1/2

ρ23

(1− ρ223)
1/2

,

where we use the fact that

Φ1(β0)/∆
4 → Υ,

(Φ1(β0)Ψ(β0)− Φ2
12(β0))/∆

4 → ΥΨ− τ2,
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Φ1(β0)−∆Φ12(β0)

∆3
→ τ.

A.9 Proof of Theorem 1.2.1

The first statement in Theorem 1.2.1(i) is a direct consequence of Marden (1982, Theorem

2.1) because the acceptance region A = {(A,B) : ν1A
2+ν2B

2 ≤ Cα(a1, a2; ρ(β0))} is closed,

convex, and monotone decreasing in the sense that if (A,B) ∈ A and A′ ≤ A, B′ ≤ B, then

(A′, B′) ∈ A. The second statement in Theorem 1.2.1(i) follows Andrews (2016, Theorem

2.1), which is a direct consequence of results in Monti and Sen (1976) and Koziol and Perlman

(1978).

For Theorem 1.2.1(ii), we note that ρ̃ = ρ under local alternatives and

ϕa1,a2,∞ = 1
{
(a1 + a2ρ

2)N 2
1 + 2a2ρ(1− ρ2)1/2N1N ∗

2 + (1− a1 − a2ρ
2)N ∗2

2 ≥ Cα(a1, a2; ρ)
}
.

The “if” part of Theorem 1.2.1(ii) is a direct consequence of Lemma 1.2.2. The “only if” part

of Theorem 1.2.1(ii) is a direct consequence of the necessary part of Lehmann and Romano

(2006, Theorem 3.2.1). Specifically, given N1 and N ∗
2 are independent, the “only if” part

requires a1 + a2ρ
2 = 0, which implies a1 = 0 and a2ρ = 0.

For Theorem 1.2.1(iii), we consider two cases of fixed alternatives: (1) ∆ ̸= Φ
1/2
1 (β0)Ψ

−1/2(β0)ρ
−1(β0)

and (2) ∆ = Φ
1/2
1 (β0)Ψ

−1/2(β0)ρ
−1(β0). In Case (1), by Lemma 1.2.3, the limits of d2nAR

2(β0),

d2nLM
2(β0), d

2
nLM

∗2(β0) are all positive, which implies that for all (a1,n, a2,n) ∈ A0,

1{a1,nAR2(β0) + a2,nLM
2(β0) + (1− a1,n − a2,n)LM

∗2(β0) ≥ Cα(a1,n, a2,n; ρ̂(β0))}
p−→ 1.

In Case (2), we have

P
(
a1,nAR

2(β0) + a2,nLM
2(β0) + (1− a1,n − a2,n)LM

∗2(β0) ≥ Cα(a1,n, a2,n; ρ̂(β0))
)

≥ P

(
q̃Ψ2(β0)ρ

4(β0)

C̃2Φ1(β0)
d2nAR

2(β0) ≥ Cα(a1,n, a2,n; ρ̂(β0)

)
≥ P (q̃ + op(1) ≥ Cα,max(ρ(β0))) → 1,

where the first inequality follows from the restriction on a1.n and the facts that LM2(β0) ≥ 0
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and LM∗2(β0) ≥ 0, the second inequality follows from d2nAR
2(β0)

p−→ Φ−1
1 (β0)∆

4
∗(β0)C̃2 (by

Lemma 1.2.3) and ρ̂(β0)
p−→ ρ(β0), and the last convergence follows from the fact that

q̃ > Cα,max(ρ(β0)). This concludes the proof.

A.10 Proof of Theorem 1.4.1

We are under weak identification. By Lemma 1.2.4 and Assumption 2, we have AR(β0)

LM∗(β0)

D̂

⇝ N


m1(∆)

m2(∆)

µD

 ,

1 0 0

0 1 0

0 0 σ2D


 .

This implies (AR(β0), LM
∗(β0), D̂) are asymptotically independent. By Assumption 3, we

have

(AR2(β0), LM
∗2(β0),As(D̂, γ̂(β0)))⇝ (Z2(m1(∆)),Z2(m2(∆)),As(D, γ(β0)))

where the two normal random variables are independent and independent of D, and by

definition, As(D, γ(β0))) = (a1(fs(D, γ(β0)), γ(β0)), a2(fs(D, γ(β0)), γ(β0))). In addition,

we have ρ̂(β0)
p−→ ρ(β0). By the bounded convergence theorem, this further implies

Eϕ̂As(D̂,γ̂(β0))
→ Eϕa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞(∆, µD, γ(β0)). (A.10.1)

In addition, suppose the null holds so that ∆ = 0. This implies m1(∆) = m2(∆) = 0.

Then, we have

(ϕ̂As(D̂,γ̂(β0))
− α)f(D̂)⇝ (ϕa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞(0, µD, γ(β0))− α)f(D),

where

ϕa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞(0, µD, γ(β0))
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= 1


a1(fs(D, γ(β0)), γ(β0))Z2

1 + a2(fs(D, γ(β0)), γ(β0))(ρ(β0)Z1 + (1− ρ2(β0))
1/2Z2)

(1− a1(fs(D, γ(β0)), γ(β0))− a2(fs(D, γ(β0)), γ(β0)))Z2
2

≥ Cα(a1(fs(D, γ(β0)), γ(β0)), a2(fs(D, γ(β0)), γ(β0)); ρ(β0))

 ,

Z1 and Z2 are independent standard normals, and they are independent of D. Then, by the

definition of Cα(·), we have

E(ϕ̂As(D̂,γ̂(β0))
− α)h(D̂) → E

[
E
(
ϕa(fs(D,γ(β0)),γ(β0)),∞(0, µD, γ(β0))− α|D

)
h(D)

]
= 0.

A.11 Proof of Corollary 1.4.1

By the continuous mapping theorem, we have

lim
n→∞

Eϕ̂As(D̂,γ̂(β0))
1{|D̂ − d| ≤ ε}

E1{|D̂ − d| ≤ ε}
=

E(ϕa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞1{|D − d| ≤ ε})
E1{|D − d| ≤ ε)}

,

and

lim
ε→0

E(ϕa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞1{|D − d| ≤ ε})
E1{|D − d| ≤ ε)}

= E(ϕa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞|D = d),

where, by construction, we have

ϕa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞

= 1{ν1,s(D, γ(β0))Ñ 2
1 + ν2,s(D, γ(β0))Ñ 2

2 ≥ C̃α(ν1,s(D, γ(β0)), ν2,s(D, γ(β0)))}

and

(Ñ1, Ñ2) = (Z1(m1(∆)),Z2(m2(∆)))Us(D, γ(β0)).

Similarly, we can show

lim
ε→0

lim
n→∞

Eϕ̃(ÃR
2

s(β0), L̃M
∗2
s (β0), D̂, γ̂(β0))1{|D̂ − d| ≤ ε}

E1{|D̂ − d| ≤ ε}
= E(ϕ̃(Ñ 2

1 , Ñ 2
2 , D, γ(β0))|D = d).
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Therefore, conditional on D = d, ϕa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞ is a linear com-

bination of (Ñ 2
1 , Ñ 2

2 ) with weights (ν1,s(d, γ(β0)), ν2,s(d, γ(β0))), and Ñ1 and Ñ2 are two

independent normal random variables with unit variance and expectations θ1 and θ2, respec-

tively. Under the null, we have (θ1, θ2) = (0, 0), which, by definition of ϕ̃(·), implies

E(ϕ̃(Ñ 2
1 , Ñ 2

2 , D, γ(β0))|D = d) ≤ α.

Therefore, ϕ̃(Ñ 2
1 , Ñ 2

2 , D, γ(β0)) is a level-α test. Then, the two optimality results follow

Theorem 1.2.1(i).

A.12 Proof of Theorem 1.4.2

Denote cB = cB(β) and ∆∗ = ∆∗(β). By Assumption 2, Φ1 > 0, which implies |∆∗| > 0.

Under strong identification and local alternatives, we have ∆ → 0, cB(β0) → cB, ∆∗(β0) →
∆∗, Cα,max(ρ(β0)) → Cα,max(ρ), and AR(β0)

LM∗(β0)

dnD̂

⇝ N




0
∆̃C̃

((1−ρ2)Ψ)1/2

C̃

 ,

1 0 0

0 1 0

0 0 0


 .

This implies dnσ̂D
√
r̂ = dnD̂

p−→ C̃, which further implies dnfpp(D̂, γ̂(β0))
p−→ C̃. For

fkrs(D̂, γ̂(β0)), we note that

max(r̂ − 1, 0) ≤ r̂krs ≤ r̂.

Therefore, we also have fkrs(D̂, γ̂(β0))dn
p−→ C̃. Let En(ε) = {||γ̂(β0)−γ(β0)||+ |δnD̂−C̃| ≤

ε}. Then, for an arbitrary ε > 0, we have P(En(ε)) ≥ 1− ε when n is sufficiently large.

Denote δ = dnδ̃. We have

As(D̂, γ̂(β0)) ∈ argmin
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0))

sup
δ̃∈D̃n

(
P
dnδ̃,s

(D̂, γ̂(β0))− E∗ϕa1,a2,s(dnδ̃, D̂, γ̂(β0))
)
,
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where D̃n = {δ̃ : dnδ̃ ∈ D(β0)}. Let

Qn(a1, a2, δ̃) = P
dnδ̃,s

(D̂, γ̂(β0))− E∗ϕa1,a2,s(dnδ̃, D̂, γ̂(β0)) and

Q(a1, a2, δ̃) = E1{Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}

− E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2
+(1− a1 − a2)Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)

 ,

where Z1 is standard normal, Z2((1−ρ2)−1/2Ψ−1/2δ̃C̃) is normal with mean (1−ρ2)−1/2Ψ−1/2δ̃C̃
and unit variance, and Z1 and Z2(·) are independent. Then, we aim to show that

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n

∣∣∣∣Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)

∣∣∣∣ p−→ 0. (A.12.1)

We divide D̃n into three parts:

D̃n,1(ε) = {δ̃ ∈ D̃n, |δ̃| ≤M1(ε)},

D̃n,2(ε) =

{
δ̃ ∈ D̃n,

∣∣∣∣ dnδ̃

∆̂∗(β0)
− 1

∣∣∣∣ ≤ ε

}
, and

D̃n,3(ε) = D̃n ∩ D̃c
n,1(ε) ∩ D̃c

n,2(ε),

where M1(ε) is a large constant so that

P

(
(1− a)Z2

(
M1(ε)ε|C̃|

(2(1− ρ2)ΨcB)1/2

)
≥ Cα,max(ρ) + 1

)
= 1− ε. (A.12.2)

When n is sufficiently large and ε is sufficiently small, on En(ε), there exists a constant c

such that

|∆̂∗(β0)−∆∗| ≤ cε, inf
δ̃∈D̃n,2(ε)

|dnδ̃| ≥ (1− ε)(|∆∗| − cε),

|Φ̂1(β0)− Φ1| ≤ cε, |d2nf2s (D̂, γ̂(β0))− C̃2| ≤ cε,

sup
δ̃∈D̃n,2(ε)

1− (d2nδ̃
2, dnδ̃)

( Φ̂1(β0) Φ̂12(β0)

Φ̂12(β0) Ψ̂(β0)

)−1(
Φ̂13(β0)

τ̂(β0)

)2

105



≤

1− (∆2
∗,∆∗)

(Φ1 Φ12

Φ12 Ψ

)−1(
Φ13

τ

)2

+ cε ≤ cB + cε,

|ĉB(β0)− cB| ≤ cε. (A.12.3)

This further implies

D̃n,1(ε) ∩ D̃n,2(ε) = ∅.

Recall ϕa1,a2,s(δ, D̂, γ̂(β0)) defined in (1.3.7). With δ replaced by dnδ̃ and when δ̃ ∈
D̃n,1(ε), we have(

d−1
n Ĉ1(dnδ̃)

d−1
n Ĉ2(dnδ̃)

)
(dnfs(D̂, γ̂(β0)))

p−→

(
0

(1− ρ2)−1/2Ψ−1/2δ̃C̃

)
,

Therefore, uniformly over (a1, a2) ∈ A0 and δ̃ ∈ D̃n,1(ε) and conditional on data, we have

ϕa1,a2,s(dnδ̃, D̂, γ̂(β0))⇝ 1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2
+(1− a1 − a2)Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)

 .

This implies

sup
(a1,a2)∈A0,δ̃∈D̃n,1(ε)

∣∣∣∣E∗ϕa1,a2,s(dnδ̃, D̂, γ̂(β0))

− E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2
+(1− a1 − a2)Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)


∣∣∣∣ p−→ 0.

In addition, by Lemma 1.2.2, for any δ̃, E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2
+(1− a1 − a2)Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)


is maximized at a1 = 0 and a2ρ = 0. This implies

sup
δ̃∈D̃n,1(ε)

|P
dnδ̃,s

(D̂, γ̂(β0))− E1{Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}|
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= sup
δ̃∈D̃n,1(ε)

| sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0))

E∗ϕa1,a2,s(dnδ̃, D̂, γ̂(β0))− E1{Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}|

≤ sup
δ̃∈D̃n,1(ε)

∣∣∣∣ sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0))

E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2
+(1− a1 − a2)Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)


− E1{Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}
∣∣∣∣+ op(1),

≤ sup
δ̃∈D̃n,1(ε)

∣∣∣∣ sup
(a1,a2)∈A0

E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2
+(1− a1 − a2)Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)


− E1{Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}
∣∣∣∣+ op(1) = op(1),

where the second inequality is due to the facts that a(fs(D̂, γ̂(β0)), γ̂(β0)) = op(1) under

strong identification and E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2
+(1− a1 − a2)Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)

 is

continuous at a1 = 0 uniformly over |δ̃| ≤M1(ε). Therefore, we have

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,1(ε)

∣∣∣∣Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)

∣∣∣∣ p−→ 0. (A.12.4)

Next, we consider the case in which δ̃ ∈ D̃n,2(ε). We have

ϕa1,a2,s(dnδ̃, D̂, γ̂(β0))

= 1


a1Z2

1 (Ĉ1(dnδ̃)fs(D̂, γ̂(β0)))

+a2

(
ρ̂(β0)Z1(Ĉ1(dnδ̃)fs(D̂, γ̂(β0))) + (1− ρ̂2(β0))

1/2Z2(Ĉ2(dnδ̃)fs(D̂, γ̂(β0)))
)2

+(1− a1 − a2)Z2
2 (Ĉ2(dnδ̃)fs(D̂, γ̂(β0))) ≥ Cα(a1, a2; ρ̂(β0))


≥ 1
{
a(fs(D̂, γ̂(β0)), γ̂(β0))Z2

1 (Ĉ1(dnδ̃)fs(D̂, γ̂(β0))) ≥ Cα,max(ρ̂(β0))

}
.

By (A.12.3), on En(ε), there exists a constant c > 0 such that

Ĉ2
1(dnδ̃)(dnfs(D̂, γ̂(β0)))

2
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=
Φ̂−1
1 (β0)(dnδ̃)

4(dnfs(D̂, γ̂(β0)))
21− (d2nδ̃

2, dnδ̃)

( Φ̂1(β0) Φ̂12(β0)

Φ̂12(β0) Ψ̂(β0)

)−1(
Φ̂13(β0)

τ̂(β0)

)2

≥ (Φ1(β0) + cε)−1(1− ε)4(|∆∗| − cε)4(C̃2 − cε)

cB + cε
≥ c

and

a(fs(D̂, γ̂(β0)), γ̂(β0))Ĉ
2
1(dnδ̃)f

2
s (D̂, γ̂(β0))

≥
p2Cα,max(ρ̂(β0))Φ̂1(β0)ĉB(β0)

∆̂4
∗(β0)d

2
nf

2
s (D̂, γ̂(β0))

Ĉ2
1(dnδ̃)(dnfs(D̂, γ̂(β0)))

2

≥
p2Cα,max(ρ̂(β0))(Φ1 − cε)(cB − cε)

(|∆∗|+ cε)4(C̃2 + cε)

(Φ1(β0) + cε)−1(1− ε)4(|∆∗| − cε)4(C̃2 − cε)

cB + cε

≥ (p2 − cε)Cα,max(ρ̂(β0)),

where the last inequality holds because ε can be arbitrarily small. This means, on En(ε) and
when δ̃ ∈ D̃n,2(ε),

E∗ϕa1,a2,s(dnδ̃, D̂, γ̂(β0)) ≥ P∗(op(1) + (p2 − cε)Cα,max(ρ̂(β0)) ≥ Cα,max(ρ̂(β0))) → 1.

As P(En(ε)) → 1, we have

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,2(ε)

[
1− E∗ϕa1,a2,s(dnδ̃, D̂, γ̂(β0))

]
p−→ 0,

and thus,

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,2(ε)

[
P
dnδ̃,s

(D̂, γ̂(β0))− E∗ϕa1,a2,s(dnδ̃, D̂, γ̂(β0))
]

≤ sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,2(ε)

[
1− E∗ϕa1,a2,s(dnδ̃, D̂, γ̂(β0))

]
p−→ 0. (A.12.5)

Furthermore, note that a1 + a2 ≤ a < 1 and when δ̃ ∈ D̃n,2(ε), on En(ε), (A.12.3) implies
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δ̃2 → ∞. Therefore, we have

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2
+ (1− a1 − a2)Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃)

≥ (1− a)Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) = (1− a)δ̃2C̃2

(1− ρ2)Ψ
(1 + op(1)) → ∞,

which further implies

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,2(ε)

1− E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2
+(1− a1 − a2)Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)


 p−→ 0

and

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,2(ε)

[
E1{Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}

− E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2
+(1− a1 − a2)Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)


]

p−→ 0. (A.12.6)

Combining (A.12.5) and (A.12.6), we have

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,2(ε)

∣∣∣∣Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)

∣∣∣∣→ 0. (A.12.7)

Last, we consider the case in which δ̃ ∈ D̃n,3(ε). On En(ε), (A.12.3) implies

Ĉ2
2(dnδ̃)f

2
s (D̂, γ̂(β0))

=
δ̃2(1− dnδ̃

∆̂∗(β0)
)2

(1− ρ̂2(β0))Ψ̂(β0)

d2nf
2
s (D̂, γ̂(β0))1− (d2nδ̃

2, dnδ̃)

( Φ̂1(β0) Φ̂12(β0)

Φ̂12(β0) Ψ̂(β0)

)−1(
Φ̂13(β0)

τ̂(β0)

)2

≥
(1− cε)M2

1 (ε)ε
2(C̃2 − cε)

(1− ρ2)ΨcB

≥
M2

1 (ε)ε
2C̃2

2(1− ρ2)ΨcB
,
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where the second inequality holds when ε is sufficiently small. In this case,

E∗ϕa1,a2,s(dnδ̃, D̂, γ̂(β0)) ≥ P∗((1− a)Z2
2 (Ĉ2(dnδ̃)fs(D̂, γ̂(β0))) ≥ Cα,max(ρ̂(β0)))

≥ P∗
(
(1− a)Z2

2

(
M1(ε)ε|C̃|

(2(1− ρ2)ΨcB)1/2

)
≥ Cα,max(ρ̂(β0))

)
≥ P∗

(
(1− a)Z2

2

(
M1(ε)ε|C̃|

(2(1− ρ2)ΨcB)1/2

)
≥ Cα,max(ρ) + cε

)
− ε ≥ 1− 2ε,

where the second inequality is by the fact that the CDF (survival function) of Z2(λ) is

monotone decreasing (increasing) in |λ| and the last equality is by the definition of M1(ε) in

(A.12.2) and the fact that Cα,max(ρ̂(β0))
p−→ Cα,max(ρ) . This implies, on En(ε),

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,3(ε)

[
P
dnδ̃,s

(D̂, γ̂(β0))− E∗ϕa1,a2,s(dnδ̃, D̂, γ̂(β0))
]
≤ 2ε.

(A.12.8)

In addition, we note that (1− ρ2)−1Ψ−1δ̃2C̃2 satisfies

(1− ρ2)−1Ψ−1δ̃2C̃2 ≥
M2

1 (ε)ε
2C̃2

2(1− ρ2)ΨcB
,

where we use the facts that δ̃2 ≥ M2
1 (ε), cB ≥ 1, and ε < 1. Therefore, by the same

argument, we have

E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2
+(1− a1 − a2)Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)

 ≥ 1− ε

and

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,3(ε)

[
E1{Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}

− E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2
+(1− a1 − a2)Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)


]
≤ ε. (A.12.9)
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Combining (A.12.8) and (A.12.9), we have, on En(ε),

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,3(ε)

∣∣∣∣Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)

∣∣∣∣ ≤ 3ε. (A.12.10)

Combining (A.12.4), (A.12.7), and (A.12.10), we have

P

(
sup

(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n

|Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)| > 5ε

)

≤ P

(
sup

(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,1(ε)

|Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)| > ε, En(ε)

)

+ P

(
sup

(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,2(ε)

|Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)| > ε, En(ε)

)

+ P

(
sup

(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,3(ε)

|Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)| > 3ε, En(ε)

)
+ P (Ec

n(ε))

≤ o(1) + ε.

Since ε is arbitrary, we have

ωn ≡ sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n

|Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)|
p−→ 0.

Then we have

0 ≤ sup
δ̃∈D̃n

Qn(a(fs(D̂, γ̂(β0)), γ̂(β0)), 0, δ̃)− sup
δ̃∈D̃n

Qn(As(D̂, γ̂(β0)), δ̃)

≤ sup
δ̃∈D̃n

Q(a(fs(D̂, γ̂(β0)), γ̂(β0)), 0, δ̃)− sup
δ̃∈D̃n

Q(As(D̂, γ̂(β0)), δ̃) + 2ωn

= op(1)− sup
δ̃∈D̃n

Q(As(D̂, γ̂(β0)), δ̃) + 2ωn,

where the equality holds because (1) sup
δ̃∈ℜQ(a1, 0, δ̃) is continuous at a1 = 0 as shown in

the proof of I.Andrews (2016, Theorem 5), (2) a(fs(D̂, γ̂(β0)), γ̂(β0)) = op(1) under strong

identification, and (3) sup
δ̃∈ℜQ(0, 0, δ̃) = 0 by construction.
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Furthermore, we have

Q(a1, a2, δ̃) = E1{Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}

− E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2
+(1− a1 − a2)Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)


= E1{Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}

− E1

{
(a1 + a2ρ

2)Z2
1 + a2ρ(1− ρ2)1/2Z1Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

+(1− a1 − a2ρ
2)Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)

}

Note that a1 = 0 and a2ρ = 0 if and only if a1 + a2ρ
2 = 0, given that a1 and a2 are

nonnegative. Therefore, Theorem 1.2.1(ii) implies, for any constant C > 0, there exists a

constant c > 0 such that

inf
(a1,a2)∈A0,a1+a2ρ2≥C

sup
δ̃∈D̃n

Q(a1, a2, δ̃) ≥ c > 0.

Therefore,

P
(
A1,s(D̂, γ̂(β0)) +A2,s(D̂, γ̂(β0))ρ

2 ≥ C > 0
)
≤ P (c ≤ op(1) + 2ωn) → 0.

This implies A1,s(D̂, γ̂(β0))
p−→ 0 and A2,s(D̂, γ̂(β0))ρ

p−→ 0.

To see the optimality result, note that

(ϕ̂As(D̂,γ̂(β0))
, ϕ(AR(β0), LM(β0)))⇝ (1{N ∗2

2 ≥ Cα}, ϕ(N1,N2)),

where (N1,N2) is defined above Theorem 1.4.2 and N ∗
2 = (1 − ρ2)−1/2(N2 − ρN1). Then,

the result holds by Theorem 1.2.1(ii).

A.13 Proof of Theorem 1.4.3

We prove the result that lim supn→∞ supλn∈Λn
Eλ(ϕ̂As(D̂,γ̂(β0))

) = α. The other one can be

proved in the same manner. Throughout the proof, we are under the null, i.e., β0 = β. We

start by proving the result for the full sequence {n}, rather than a subsequence {nk} of {n}.
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Then, we note that the same proof goes through with nk in place of n.

We consider two cases: sequences λn for which Cn converges to a constant and those for

which it diverges to infinity. First, let us consider the case where Cn → C̃ for some fixed

constant C̃ ∈ ℜ. For this case, it is established in Theorem 1.4.1 that under β0 = β,

(AR2(β0), LM
∗2(β0),As(D̂, γ̂(β0)))⇝ (Z2

1 ,Z2
2 ,As(D, γ)),

where the two normal random variables are independent from each other and independent

of D, and furthermore (by letting h(·) in Theorem 1.4.1 be an identity function),

lim
n→∞

Eλn
(ϕ̂As(D̂,γ̂(β0))

) = α.

Second, let us consider the case where Cn diverges to infinity. Then, by Theorem 1.4.2, we

have

lim
n→∞

Eλn
(ϕ̂As(D̂,γ̂(β0))

) = P(Z2
2 ≥ Cα) = α.

To complete the proof, we note that the above argument verifies Assumption B∗ in Andrews

et al. (2020a) and then we can establish the result by using Corollary 2.1 in their paper.

A.14 Proof of Theorem 1.4.4

We consider strong identification with fixed alternatives. By construction, we haveA1,s(D̂, γ̂(β0)) ≥
p2Cα,max(ρ̂(β0))Φ̂1(β0)ĉB(β0)

∆̂4
∗(β0)f2

s (D̂,γ̂(β0))
. By Theorem 1.2.1(iii), it suffices to show that, w.p.a.1,

p2Cα,max(ρ̂(β0))Φ̂1(β0)ĉB(β0)

∆̂4
∗(β0)f

2
s (D̂, γ̂(β0))

≥ q̃Ψ2(β0)ρ
4(β0)

C2Φ1(β0)
,

or equivalently,

p2Cα,max(ρ̂(β0))Φ̂1(β0)ĉB(β0)

∆̂4
∗(β0)d

2
nf

2
s (D̂, γ̂(β0))

≥ q̃Ψ2(β0)ρ
4(β0)

C̃2Φ1(β0)
=

q̃Φ1(β0)

C̃2∆4
∗(β0)

, (A.14.1)

113



for some constant q̃ > Cα,max(ρ(β0)). Under strong identification and fixed alternatives, we

have

dnD̂ = dn

QX,X − (Qe(β0),e(β0), QX,e(β0))

(
Φ̂1(β0) Φ̂12(β0)

Φ̂12(β0) Ψ̂(β0)

)−1(
Φ̂13(β0)

τ̂(β0)

)
p−→

1− (∆2,∆)

(Φ1(β0) Φ12(β0)

Φ12(β0) Ψ(β0)

)−1(
Φ13(β0)

τ(β0)

) C̃.

Therefore, we have

dnfs(D̂, γ̂(β0)) = dnD̂ + op(1)
p−→

1− (∆2,∆)

(Φ1(β0) Φ12(β0)

Φ12(β0) Ψ(β0)

)−1(
Φ13(β0)

τ(β0)

) C̃

for s ∈ {pp, krs}. This means for any ε > 0, w.p.a.1,

d2nf
2
s (D̂, γ̂(β0)) ≤ (cB(β0) + ε)C̃2.

In addition, we have ĉB(β0)
p−→ cB(β0) ≥ 1, ∆̂∗(β0)

p−→ ∆∗(β0), Cα,max(ρ̂(β0))
p−→

Cα,max(ρ(β0)), and Φ̂1(β0)
p−→ Φ1(β0) > 0, which imply ĉB(β0) ≥ cB(β0) − cε, Φ̂1(β0) ≥

Φ1(β0)− cε, Cα,max(ρ̂(β0)) ≥ Cα,max(ρ(β0))− cε, and ∆̂4
∗(β0) ≤ ∆4

∗(β0)+ cε, w.p.a.1. There-

fore, we have, w.p.a.1,

p2Cα,max(ρ̂(β0))Φ̂1(β0)ĉB(β0)

∆̂4
∗(β0)d

2
nf

2
s (D̂, γ̂(β0))

≥
p2(Cα,max(ρ(β0))− cε)(cB(β0)− cε)(Φ1(β0)− cε)

(∆4
∗(β0) + cε)(cB(β0) + ε)C̃2

≥
(p2 − cε)Cα,max(ρ(β0))Φ1(β0)

∆4
∗(β0)C̃2

,

where the second inequality holds because ε can be arbitrarily small. Then, we can let q̃ in

(A.14.1) be (p2 − cε)Cα,max(ρ(β0)) which is greater than Cα,max(ρ(β0)). This concludes the

proof.
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A.15 Proof of Theorem A.1.1

We first extend our notation. For ai ∈ ℜd1×1 and bj ∈ ℜd2×1, we writeQa,b as
∑

i∈[n]
∑

j ̸=i aiPijb
⊤
j /

√
K.

Let γ̂e = (W⊤W )−1(W⊤ẽ) and γ̂V = (W⊤W )−1(W⊤Ṽ ). Then, we have ei = ẽi −W⊤
i γ̂e,

Vi = Ṽi −W⊤
i γ̂V , and Xi = Πi + Vi = Πi + Ṽi −W⊤

i γ̂V . By Lemma A.19.1, we have

Qe,e = Qẽ−Wγ̂e,ẽ−Wγ̂e = Qẽ,ẽ − 2Qẽ,W γ̂e + γ̂⊤e QW,W γ̂e = Qẽ,ẽ + oP (1).

In addition, let X = Π+ Ṽ . Then, we have X = X −Wγ̂V and

QX,e = QX−Wγ̂V ,ẽ−Wγ̂e

= QX,ẽ −Qẽ,W γ̂V −QX,W γ̂e + γ̂⊤V QW,W γ̂e

= QX,ẽ −QX,W γ̂e + oP (1)

= QX,ẽ −QΠ,W γ̂e + oP (1)

= QX,ẽ +
∑
i∈[n]

ΠiPiiW
⊤
i γ̂e/

√
K + oP (1),

where the last equality holds because

QΠ,W =
∑
i∈[n]

Πi(
∑
j ̸=i

PijW
⊤
j )/

√
K = −

∑
i∈[n]

ΠiPiiW
⊤
i /

√
K.

Denote Gi = (
∑

i∈[n]ΠiPiiW
⊤
i )(
∑

i∈[n]WiW
⊤
i )−1Wi. Then, we have

QX,e = QṼ ,ẽ +QΠ,ẽ +
∑
i∈[n]

Giẽi/
√
K + oP (1)

=

∑
i∈[n]

∑
j ̸=i ṼiPij ẽj

√
K

+
∑
i∈[n]

(Gi + ωi)√
K

ẽi + oP (1),

where ωi =
∑

j ̸=i PijΠj .

Similarly, we have

QX,X = QX−Wγ̂V ,X−Wγ̂V

= QX,X − 2QX,W γ̂V + γ̂⊤V QW,W γ̂V
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= QΠ,Π + 2QΠ,Ṽ +QṼ ,Ṽ − 2QΠ,W γ̂V + oP (1)

= QΠ,Π +

∑
i∈[n]

∑
j ̸=i ṼiPijṼj

√
K

+ 2
∑
i∈[n]

ωi +Gi√
K

Ṽi + oP (1).

Given {ẽi, Ṽi}i∈[n] are independent, we can follow the same argument in the proof of Chao

et al. (2012, Lemma 2) and show the joint asymptotic normality of∑i∈[n]
∑

j ̸=i ẽiPij ẽj
√
K

,

∑
i∈[n]

∑
j ̸=i ṼiPij ẽj

√
K

,

∑
i∈[n]

∑
j ̸=i ṼiPijṼj

√
K

,
∑
i∈[n]

(Gi + ωi)√
K

ẽi,
∑
i∈[n]

(Gi + ωi)√
K

Ṽi

 .

In particular, we see that

V ar

∑
i∈[n]

(Gi + ωi)ẽi√
K

 =
∑
i∈[n]

(Gi + ωi)
2σ̃2i

K

≤ C
∑
i∈[n]

(Gi + ωi)
2

K

≤ C

[
(
∑

i∈[n]ΠiPiiW
⊤
i )(
∑

i∈[n]WiW
⊤
i )−1(

∑
i∈[n]ΠiPiiWi)

K
+

Π⊤Π

K

]

≤ C

[
p2n

Π⊤Π

K
+

Π⊤Π

K

]
= O(1)

and the same result for V ar(
∑

i∈[n]
(Gi+ωi)Ṽi√

K
). This implies the joint asymptotic normality

of

(Qe,e, QX,e, QX,X −QΠ,Π),

and thus, verifying Assumption 1.

To see the second result in Theorem A.1.1, we note that

E

∑
i∈[n]

Giẽi/
√
K

2

≤ C
∑
i∈[n]

G2
i /K
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= C(
∑
i∈[n]

ΠiPiiW
⊤
i )(
∑
i∈[n]

WiW
⊤
i )−1(

∑
i∈[n]

ΠiPiiWi)/K

≤ C
∑
i∈[n]

Π2
iP

2
ii/K

≤ CΠ⊤Πp2n/K.

If Π⊤Πp2n/K = o(1), then we have
∑

i∈[n]Giẽi/
√
K = oP (1). Similarly, we can show

that, if Π⊤Πp2n/K = o(1),
∑

i∈[n]GiṼi/
√
K = oP (1). These imply QX,W γ̂e = oP (1) and

QX,W γ̂V = oP (1), which further imply that

QX,e = QX,ẽ + oP (1) and QX,X = QX,X + oP (1).

A.16 Proof of Theorem A.2.1

We focus on the consistency of Φ̂1(β0) and Ψ̂(β0). The consistency of the rest four estimators

can be established in the same manner. We have ei(β0) = ei +∆Xi = Vi(∆) + ∆Πi, where

Vi(∆) = ei +∆Vi. Therefore,

Φ̂1(β0) =
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ije

2
i (β0)e

2
j(β0)

=
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(∆

2Π2
i + 2∆ΠiVi(∆) + V 2

i (∆))(∆2Π2
j + 2∆ΠjUj(∆) + U2

j (∆))

=
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijV

2
i (∆)U2

j (∆) + ∆
4

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(ΠiVi(∆)U2

j (∆) + ΠjUj(∆)V 2
i (∆))

+ ∆2 2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(Π

2
iU

2
j (∆) + Π2

jV
2
i (∆) + 4ΠiΠjVi(∆)Uj(∆))

+ ∆3 4

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(Π

2
iΠjUj(∆) + Π2

jΠiVi(∆)) + ∆4 2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠ

2
iΠ

2
j

≡
4∑

l=0

∆lTl.

We first note that 1
K

∑
i∈[n] ω

2
i σ

2
i = o(1), 1

K

∑
i∈[n] ω

2
i γi = o(1), and 1

K

∑
i∈[n] ω

2
i η

2
i = o(1).
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To see this, note that

1

K

∑
i∈[n]

ω2
i σ

2
i ≤ C

K

∑
i∈[n]

ω2
i =

C

K

∑
i∈[n]

(PiΠ− PiiΠi)
2

≤ C

K
(2Π⊤P 2Π+ 2

∑
i∈[n]

P 2
iiΠ

2
i ) ≤ C

Π⊤Π

K
= o(1),

where the second and third inequalities are shown in the Proof of Mikusheva and Sun (2022,

Lemma S1.4). The results for 1
K

∑
i∈[n] ω

2
i γi = o(1) and 1

K

∑
i∈[n] ω

2
i η

2
i = o(1) can be

established in the same manner.

We first consider T0. Denote ξij = V 2
i (∆)U2

j (∆)− EV 2
i (∆)U2

j (∆). We want to show that

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijξij = op(1).

Note that

E

 1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijξij

2

=
1

K2

∑
i∈[n]

∑
j ̸=i

P 4
ijEξ

2
ij +

4

K2

∑
i∈[n]

∑
j ̸=i

∑
i′ ̸=i,j

P 2
ijP

2
ii′Eξijξii′ .

As both Eξ2ij and |Eξijξii′| are bounded, we have

1

K2

∑
i∈[n]

∑
j ̸=i

P 4
ijEξ

2
ij ≤

C

K2

∑
i∈[n]

∑
j ̸=i

P 2
ij ≤

C

K
= o(1)

and∣∣∣∣∣∣ 1

K2

∑
i∈[n]

∑
j ̸=i

∑
i′ ̸=i,j

P 2
ijP

2
ii′Eξijξii′

∣∣∣∣∣∣ ≤ C

K2

∑
i∈[n]

∑
j ̸=i

∑
i′ ̸=i,j

P 2
ijP

2
ii′ ≤

C

K2

∑
i∈[n]

∑
j ̸=i

P 2
ijPii = o(1).

Therefore, we have

T0 =
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijE(V

2
i (∆)U2

j (∆)) + op(1)
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= ∆4 2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijη

2
i η

2
j +∆3 4

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(η

2
i γj + η2jγi) + ∆2 2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(η

2
i σ

2
j + η2jσ

2
i + 4γiγj)

+ ∆
4

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(γiσ

2
j + γjσ

2
i ) +

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i σ

2
j + op(1)

= Φ1(β0) + op(1).

By the same argument above, we have

T1 = ET1 + op(1) = op(1)

because ET1 = 0. Similarly, we have ET3 = 0 and T3 = op(1). Next, we have

T2 = ET2 + oP (1) ≤
C

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠ

2
i + op(1) ≤

CpnΠ
⊤Π

K
+ op(1) = op(1).

Last, we have

T4 ≤
C

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠ

2
i = o(1),

where the first inequality is by maxi∈[n] |Πi| < C. This implies

Φ̂1(β0)− Φ1(β0) = op(1).

Next, we consider the consistency of Ψ̂(β0). By the similar argument above, we have

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijXiei(β0)Xjej(β0))

=
1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠiei(β0)Πjej(β0)) +

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠiei(β0)Vjej(β0))

+
1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijViei(β0)Πjej(β0)) +

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijViei(β0)Vjej(β0))

=
1

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(γi +∆η2i )(γj +∆η2j ) + op(1). (A.16.1)
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In addition, we have

1

K

∑
i∈[n]

(
∑
j ̸=i

PijXj)
2e2i (β0)

=
1

K

∑
i∈[n]

(ωi +
∑
j ̸=i

PijVj)
2e2i (β0)

=
1

K

∑
i∈[n]

ω2
i Ee2i (β0) +

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijη

2
jEe2i (β0) + op(1)

=
1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijη

2
j (σ

2
i + 2γi∆+∆2η2i ) + op(1), (A.16.2)

where the second equality is due to Mikusheva and Sun (2022, proof of statement (a) in

Lemma S3.2), and the third equality is due to 1
K

∑
i∈[n] ω

2
i σ

2
i = o(1). In the next section,

we show the same results hold under Assumption 11. Combining (A.16.1) and (A.16.2), we

have

Ψ̂(β0) =
1

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(γi +∆η2i )(γj +∆η2j ) +

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijη

2
j (σ

2
i + 2γi∆+∆2η2i ) + op(1)

=
1

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(γiγj + σ2i η

2
j ) +

4∆

K

∑
i∈[n]

∑
j ̸=i

P 2
ijη

2
i γj +

2∆2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijη

2
i η

2
j + op(1)

= Ψ(β0) + op(1).

A.17 Proof of Theorem A.2.2

Given Lemma A.2.1, Lemmas 2 and 3 in Mikusheva and Sun (2022) hold under Assumptions

10 and 12. Therefore, Mikusheva and Sun (2022, Theorem 3) shows that

Φ̂1(β0)−
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijEV

2
i (∆)EU2

j (∆) = op(1).

In addition, the proof of Theorem A.2.1 shows that

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijEV

2
i (∆)EU2

j (∆) = Φ1(β0) + o(1),

120



which implies the consistency of Φ̂1(β0).

Similarly, given Lemma A.2.1, Lemma S3.1 in Mikusheva and Sun (2022) holds under

Assumptions 10 and 12, so that the consistency of Υ̂ to Υ is also shown by using their

argument. In addition, we use the same argument in the proof of Mikusheva and Sun (2022,

Theorem 5) to show that

Ψ̂(β0) =

 1

K

∑
i∈[n]

(
∑
j ̸=i

PijXj)
2 eiMie

Mii
+

1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijMiXeiMjXej


+∆

 1

K

∑
i∈[n]

(
∑
j ̸=i

PijXj)
2

(
eiMiX

Mii
+
XiMie

Mii

)
+

2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijMiXeiMjXXj


+∆2

 1

K

∑
i∈[n]

(
∑
j ̸=i

PijXj)
2XiMiX

Mii
+

1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijMiXXiMjXXj


= Ψ+ 2∆τ +∆2Υ+ op(1) = Ψ(β0) + op(1),

where the second equality also follows from Lemma S3.1 in Mikusheva and Sun (2022).

Next for Φ̂12(β0), we have

1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijMjXej(β0)ei(β0)Mie(β0)

=
1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijMjXejeiMie

+∆
1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ij (MjXXjeiMie+MjXejXiMie+MjXejeiMiX)

+ ∆2 1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ij (MjXXjXiMie+MjXXjeiMiX +MjXejXiMiX)

+ ∆3 1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijMjXXjXiMiX.

Note that 1
K

∑
i∈[n]

∑
j ̸=i P̃

2
ijMjXejeiMie =

1
K

∑
i∈[n]

∑
j ̸=i P̃

2
ij(MjV+λi)ejeiMie, where
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λi =MiΠ. Then, by Lemma A.2.1 and Lemma 3 of Mikusheva and Sun (2022),

1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijMjXejeiMie−

1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijMjV ejeiMie = op(1).

Furthermore, by Lemma A.2.1 and Lemma 2 of Mikusheva and Sun (2022),

1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijMjV ejeiMie−

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijγjσ

2
i = op(1).

By using similar arguments, we find that

1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijMjXXjeiMie =

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijη

2
jσ

2
i + op(1),

1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijMjXejXiMie =

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijγjγi + op(1),

1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
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1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijγjγi + op(1),

1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijMjXXjXiMie =

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijη

2
jγi + op(1),

1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijMjXXjeiMiX =

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijη

2
jγi + op(1),

1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijMjXejXiMiX =

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijγjη

2
i + op(1),

1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijMjXXjXiMiX =

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijη

2
j η

2
i + op(1).

Putting these results together, we obtain

Φ̂12(β0) = Φ12 +∆(2Ψ + Φ13) + 3∆2τ +∆3Υ+ op(1) = Φ12(β0) + op(1).

We use similar arguments to prove the results for Ψ̂13(β0) and τ̂(β0). For Φ̂13(β0), notice
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that

1

K

∑
i∈[n]

∑
j ̸=i
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=
1

K

∑
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∑
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+∆
1

K

∑
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∑
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K

∑
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∑
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=
1

K

∑
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∑
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P 2
ijγiγj +∆

1

K

∑
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∑
j ̸=i

P 2
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2
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K

∑
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∑
j ̸=i

P 2
ijη

2
i η

2
j + op(1),

which implies that

Φ̂13(β0) = Φ13 + 2∆τ +∆2Υ+ op(1) = Φ13(β0) + op(1).

Finally, for τ̂(β0), notice that

1

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijXiMiXMjXej(β0) =

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijη

2
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1

K

∑
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∑
j ̸=i

P 2
ijη

2
i η

2
j∆+ op(1),

1

K

∑
i∈[n]

(
∑
j ̸=i

PijXj)
2

(
ei(β0)MiX

2Mii
+
XiMie(β0)

2Mii

)
=

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijη

2
i γj +

1

K

∑
i∈[n]

∑
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P 2
ijη

2
i η

2
j∆+ op(1),

which implies that

τ̂(β0) = τ +∆Υ+ op(1) = τ(β0) + op(1).

This completes the proof of the theorem.
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A.18 Proof of Lemma A.2.1

Let pn = maxi Pii. We first give some useful bounds, which is similar to Lemma S1.4 in

Mikusheva and Sun (2022):∑
i∈[n]

ω2
i =

∑
i∈[n]

(PiΠ− PiiΠi)
2 ≤ 2Π′P 2Π+ 2

∑
i∈[n]

P 2
iiΠ

2 ≤ CΠ⊤Π,

max
i∈[n]

ω2
i = max

i∈[n]
(
∑
j ̸=i

PijΠj)
2 ≤ max

i∈[n]
(
∑
j ̸=i

P 2
ij)Π

⊤Π ≤ pnΠ
⊤Π,

which imply ∑
i∈[n]

ω4
i ≤ max

i∈[n]
ω2
i (
∑
i∈[n]

ω2
i ) ≤ Cpn(Π

⊤Π)2.

First, we show that Mikusheva and Sun (2022, Lemma S2.1) hold under our conditions

following the lines of argument in their proof. More specifically, we notice that to show

∆2|EA2| = o(1), where A2 is defined in the proof of Mikusheva and Sun (2022, Lemma

S2.1), it suffices to show the following terms are o(1):

C∆2

K

∑
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∑
j ̸=i

P 2
ij |λi||Πj | ≤
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K

∑
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Piiλ
2
i

1/2∑
j∈[n]

PjjΠ
2
j

1/2

≤ C∆2

K
pn
(
λ⊤λ

)1/2 (
Π⊤Π

)1/2
≤ C∆2

K3/2
pn
(
Π⊤Π

)
= o(1) by λ⊤λ ≤ C

Π⊤Π

K
,

C∆2

K

∑
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∑
j ̸=i

P 2
ij |Πi||Πj | ≤

C∆2

K

∑
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PiiΠ
2
i

1/2∑
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PjjΠ
2
j

1/2

≤ C∆2

K
pn
(
Π⊤Π

)
= o(1).

Then, we prove the variance of ∆2A2 = o(1) by showing that
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∑
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∑
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P 4
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2
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2
j ≤
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(
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(
Π⊤Π

K

)2

= o(1) by P 2
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(
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)
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≤ C∆4

K3

(
pn(Π

⊤Π)2 + pnK(Π⊤Π)2
)
= o(1) by

∑
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P 2
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2
i
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2
j

 ≤ C∆4
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⊤Π)2 = o(1),

and
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∑
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∑
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∑
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∑
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P 2
jk ≤ K and P 2

ij ≤ Pii ≤ pn.

Second, we show that Mikusheva and Sun (2022, Lemma S2.2) holds under our conditions.

Notice that |∆EA1| = o(1) by

C|∆|
K

∑
i∈[n]

∑
j ̸=i
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K

(pnK)1/2(Π⊤Π)1/2 = o(1),

Then, we show that the variance of ∆A1 is o(1) by showing the following terms are o(1):
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C∆2
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(pnK)(Π⊤Π) = o(1).

Then, to show that Mikusheva and Sun (2022, Lemma 3) holds under our conditions, we

show the following terms are o(1):

C

K

∑
i∈[n]

∑
j ̸=i

P 2
ij |ΠiλiΠjλj | ≤

C

K

∑
i∈[n]

∑
j∈[n]

P 2
ijΠ

2
iΠ

2
j

1/2∑
i∈[n]

∑
j∈[n]

P 2
ijλ

2
iλ

2
j

1/2

≤ C

K
pn
(
Π⊤Π

) (
λ⊤λ

)
≤ C

K2
pn
(
Π⊤Π

)2
= o(1),
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C

K2

∑
j∈[n]

∑
i∈[n]

P 2
ij |Πi||λi|

2

λ2j ≤
C

K2

∑
j∈[n]

pn∑
i∈[n]

|Πi||λj |

2

λ2j ≤
C

K2
p2n
(
Π⊤Π

)(Π⊤Π

K

)2

= o(1),

C

K2

∑
i∈[n]

∑
i′∈[n]

∑
j∈[n]

∑
j′∈[n]

P 2
ij |ΠiλiΠj |P 2

i′j′|Πi′λi′Πj′|
∑
k∈[n]

|MjkMj′k|

≤ C

K2

∑
i∈[n]

∑
j∈[n]

P 2
ijΠ

2
iλ

2
i

∑
i∈[n]

∑
j∈[n]

P 2
ijΠ

2
j

 ≤ C

K2
p2n(Π

⊤Π)(λ⊤λ) ≤ C

K3
p2n
(
Π⊤Π

)2
= o(1),

where
∑

k∈[n] |MjkMj′k| ≤ 1 by Mikusheva and Sun (2022, Lemma S1.1(ii)).

Now we show that Mikusheva and Sun (2022, Lemma S3.2 ) holds under our conditions,

i.e.,

(a)
1

K

n∑
i=1

(ωi +
∑
j ̸=i

PijVj)
2Vi −

 1

K

n∑
i=1

ω2
i E[Vi] +

1

K

∑
i,j ̸=i

P 2
ijE[Vi]η

2
j

 p−→ 0,

(b)
1

K

n∑
i=1

(ωi +
∑
j ̸=i

PijVj)
2 ξ1,i
Mii

∑
k ̸=j

Pikξ2,k
p−→ 0,

(c)
1

K

n∑
i=1

(ωi +
∑
j ̸=i

PijVj)
2aiξ1,i

p−→ 0,

(d)
1

K

n∑
i=1

(ωi +
∑
j ̸=i

PijVj)
2 ai
Mii

∑
k ̸=i

Pikξ1,k −
2

K

n∑
i=1

∑
j ̸=i

P 2
ijωi

ai
Mii

E[Vjξ1,j ]
p−→ 0,

(e)
1

K

n∑
i=1

(ωi +
∑
j ̸=i

PijVj)
2Πi

λi
Mii

p−→ 0,

where ξ1,i, ξ2,i stay for either ei or Vi, Vi stay for e2i , eiVi, or V
2
i , and ai stay for either Πi or

λi

Mii
.

To prove statement (a), following the arguments in Mikusheva and Sun (2022), we just

need to show the following terms are o(1):

E

 1

K

∑
i∈[n]

ω2
i Vi

2

≤ C

K2

∑
i∈[n]

ω4
i ≤ C

K2
max
i∈[n]

ω2
i

∑
i∈[n]

ω2
i

 ≤ C

K2
pn
(
Π⊤Π

)2
= o(1),

127



C

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(ω

2
i + |ωi||ωj |) ≤

C

K

∑
i∈[n]

Piiω
2
i +

∑
i∈[n]

Piiω
2
i

1/2∑
j∈[n]

Pjjω
2
j

1/2
 ≤ C

K
pnΠ

⊤Π = o(1),

where we have used maxi∈[n] ω
2
i ≤ pnΠ

⊤Π,
∑

i∈[n] ω
2
i ≤ CΠ⊤Π, and Mikusheva and Sun

(2022, Lemma S1.3(b)).

To prove statement (b), we show that

C

K2

∑
i∈[n]

∑
j ̸=i

(P 2
ijω

4
i + P 2

ijw
2
iw

2
j + P 4

ijw
2
i + P 4

ij |ωiωj |)

≤ C

K2

pn∑
i∈[n]

ω4
i +

∑
i∈[n]

Piiω
4
i

1/2∑
j∈[n]

Pjjω
4
j

1/2

+
∑
i∈[n]

Piiω
2
i pn + pn

∑
i∈[n]

Piiω
2
i

1/2∑
j∈[n]

Pjjω
2
j

1/2


≤ C

K2

(
p2n(Π

⊤Π)2 + p2n(Π
⊤Π)2 + p2n(Π

⊤Π) + p2n(Π
⊤Π)

)
= o(1),

C

K2

∑
i∈[n]

ω2
i +

∑
i∈[n]

∑
j∈[n]

P 2
ij |ωiωj |

 ≤ C

K2

(
Π⊤Π+ pnΠ

⊤Π
)
= o(1),

where we have used
∑

i∈[n] ω
2
i ≤ CΠ⊤Π and

∑
i∈[n] ω

4
i ≤ Cpn(Π

⊤Π)2.

To prove statement (c), we show that, for ai = Πi or λi/Mii,

C

K2

∑
i∈[n]

P 2
iia

2
i +
∑
i∈[n]

∑
j∈[n]

P 2
ij |aiaj |

 ≤ C

K2

(
p2na

⊤a+ pna
⊤a
)
= o(1),

C

K2

∑
i∈[n]

ω4
i

λ2i
M2

ii

≤ C

K2

(
max
i∈[n]

ω2
i

)2∑
i∈[n]

λ2i ≤ Cp2n

(
Π⊤Π

K

)3

= o(1),

C

K2

∑
i∈[n]

ω4
iΠ

2
i ≤

C

K2

∑
i∈[n]

ω4
i ≤ C

K2
pn
(
Π⊤Π

)2
= o(1), where we have used max

i∈[n]
|Πi| ≤ C,

C

K2

∑
i∈[n]

∑
j ̸=i

P 4
ij

(
a2i + |ai| |aj |

)
≤ C

K2

(
p2na

⊤a+ p2na
⊤a
)
= o(1),

C

K2

∑
i∈[n]

∑
j ̸=i

P 2
ij(ω

2
i a

2
i + |ωiai||ωjaj |) ≤

C

K2

(
p2n(Π

⊤Π)(a⊤a) + pn(Π
⊤Π)(a⊤a)

)
= o(1).
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To prove statement (d), we first show that

C

K2


∑

i∈[n]

ω2
i |ai|

2

+

∑
i∈[n]

|ωiai|

2
 = o(1).

In particular, when ai = Πi, we have

C

K2


∑

i∈[n]

ω2
i |Πi|

2

+
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|ωiΠi|
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+
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+
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i
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K2

(
(Π⊤Π)2 + (Π⊤Π)2

)
= o(1),

When ai =
λi

Mii
, we have

C

K2


∑

i∈[n]

ω2
i

∣∣∣∣ λiMii
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+
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∣∣∣∣ωi λiMii
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2
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K2

∑
i∈[n]

ω4
i

 (λ⊤λ) +

∑
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ω2
i
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K2
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pn(Π

⊤Π)2(λ⊤λ) + (Π⊤Π)(λ⊤λ)
)
= o(1).

Furthermore, we can show that

C

K2

∑
i∈[n]

|ωiai|

2

≤ C

K2
(Π⊤Π)(a⊤a) = o(1),

C

K

∑
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Pii |ai| ≤
C

K

∑
i∈[n]

P 2
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1/2 (
a⊤a
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K
(pnK)1/2

(
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)1/2

= o(1),

C
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∑
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K2

∑
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ii
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K2
pnK

(
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= o(1).
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To prove statement (e), we show that∣∣∣∣∣∣CK
∑
i∈[n]

ω2
iΠi

λi
Mii

∣∣∣∣∣∣ ≤ C

K
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K
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C
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PijωiΠi
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2

≤ C

K2
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ω2
i
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ijλ

2
i


≤ CKp

1/2
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K2
= o(1),

C
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∑
j∈[n]

∑
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ijΠi

λi
Mii

2

≤ C

K2

∑
j∈[n]

∑
i̸=j

P 2
ij |λi|

2

≤ CKpnλ
⊤λ

K2
= o(1),

C

K

∑
j∈[n]

∑
i̸=j

P 2
ij

∣∣∣∣Πi
λi
Mii

∣∣∣∣ ≤ C

K

∑
i∈n

∑
j∈[n]

P 2
ij |Πiλi| ≤

C

K
pn(Π

⊤Π)1/2(λ⊤λ)1/2 = o(1),

C

K2

∑
j∈[n]

∑
k ̸=j

∑
i̸=j,k

P 2
ijP

2
ikΠi

λi
Mii

2

≤ C

K2

∑
j∈[n]

∑
k ̸=j

∑
i̸=j,k

P 2
ijP

2
ik|λi|

2

≤ C

K2

∑
j∈[n]

∑
k ̸=j

∑
i̸=j,k

P 4
ijP

4
ik

λ⊤λ ≤ Cp3nKλ
⊤λ

K2
= o(1),

where we have used Mikusheva and Sun (2022, Lemma S1.1(ii)).

Finally, we can show that Mikusheva and Sun (2022, Lemma S3.1) also holds under our

conditions by using similar arguments. We omit the details for brevity.

A.19 Lemma A.19.1 and Its Proof

Lemma A.19.1. Suppose assumptions in Theorem A.1.1 hold. Then, we have

γ̂e = OP (n
−1/2), γ̂V = OP (n

−1/2), Qẽ,W = OP (1), QṼ ,W = OP (1),

γ̂⊤V QW,W⊤ γ̂V = oP (1), γ̂⊤e QW,W⊤ γ̂e = oP (1), and γ̂⊤e QW,W⊤ γ̂V = oP (1).
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Proof. We have γ̂e = OP (n
−1/2) because Eẽi = 0 and mineig(W⊤W/n) ≥ c > 0. Similarly,

we have γ̂V = OP (n
−1/2). To see that Qẽ,W = OP (1), we note that EQẽ,W = 0 and

EQẽ,WQ
⊤
ẽ,W ≤ C

∑
i∈[n]

(
∑
j ̸=i

PijWj)
⊤(
∑
j ̸=i

PijWj)/K = C
∑
i∈[n]

P 2
iiW

⊤
i Wi/K ≤ C,

where we use the fact that
∑

j ̸=i PijWj = −PiiWi since Pij is the ij-th element of P =

Z(Z⊤Z)−1Z⊤. Similarly, we have QṼ ,W = OP (1).

To see γ̂⊤V QW,W⊤ γ̂V = oP (1), we note that

∣∣γ̂⊤V QW,W⊤ γ̂V
∣∣ ≤∑

i∈[n]

(W⊤
i γ̂V )

2/
√
K = oP (1),

where we use the fact that
∑

i∈[n]WiW
⊤
i /n = OP (1) and γ̂V = OP (n

−1/2), so that

∑
i∈[n]

(W⊤
i γ̂V )

2 = OP (1).

Similarly, we can show that

γ̂⊤e QW,W⊤ γ̂e = oP (1), and γ̂⊤e QW,W⊤ γ̂V = oP (1).

A.20 Comparison with HLIM Estimator under Strong

Identification

We consider the model in Section A.1 and the HLIM estimator proposed by Hausman et al.

(2012). Specifically, Hausman et al. (2012) estimate (β, γ) by (β̂HLIM , γ̂HLIM ) defined as

(β̂HLIM , γ̂HLIM ) = argmin
b,r

Q(b, r), Q(b, r) =

∑
i∈[n]

∑
j ̸=i(Ỹi − X̃ib−W⊤

i r)P̃ij(Ỹi − X̃ib−W⊤
i r)∑

i∈[n](Ỹi − X̃ib−W⊤
i r)

2
,
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where P̃ij is the projection matrix constructed by (W⊤
i , Z̃

⊤
i )

⊤. Following Hausman et al.

(2012), we let Π̃i = µnπ̃i/
√
n such that

∑
i∈[n] π̃

2
i /n ≥ c > 0 for some constant c. As

explained in the paper, under strong identification, we have µ2n/
√
K → ∞. In both cases

considered in Hausman et al. (2012, Assumption 6), the convergence rate can be unified as
√
K/µ2n. Then, the Wald statistic can be written as

Wh(β0) =
µ2n(β̂

HLIM − β0)/
√
K

Φ̂
1/2
h

,

where Φ̂h is a consistent estimator of Φh, and Φh is the asymptotic variance of β̂HLIM .

To study the behaviour of Wh(β0) under strong identification and local alternatives, we let

β0 denote the local alternative in the sense that β0 = β + ∆̃
µ2
n/

√
K
. We will provide the

expression for Φh later. We also note that the notation in Hausman et al. (2012) and our

paper is different. Specifically, their δ0 is our (γ
⊤, β0)

⊤, their δ̂ is our ((γ̂HLIM )⊤, β̂HLIM )⊤,

their Xi is our (W
⊤
i , X̃i)

⊤, their Zi is our (W
⊤
i , Z̃

⊤
i )

⊤, and thus their projection matrix P is

our P̃ , which is the one based on (W⊤
i , Z̃

⊤
i )

⊤. We use P and PW to denote the projection

matrices based on our Zi and Wi, respectively, where Zi = ([MW ]i·Z̃)
⊤, [MW ]i· is the ith

row of MW , and MW = In − PW .

Further denote L as a matrix that selects the last element of δ̂ = ((γ̂HLIM )⊤, β̂HLIM )⊤

and

Sn =

(
Id 0

π⊤x 1

)
diag(

√
n, · · · ,

√
n, µn),

where πx = (W⊤W )−1W⊤Π̃ is the projection coefficient of Π̃ onW . Then, the corresponding

definition of D̂(δ0) in Hausman et al. (2012, p.235) under our notation is as follows:

D̂(δ0) =

∑
i∈[n]

∑
j ̸=i

[
WiP̃ijej(β0)− ei(β0)P̃ijej(β0)

W⊤e(β0)

e⊤(β0)e(β0)

]
√
K

,

where Wi = (W⊤
i , X̃i)

⊤, W is a n × (d + 1) matrix with its ith row being W⊤
i where d

is the dimension of Wi, and ei(β0) = ẽj − X̃j(β0 − β). In addition, we note that Xi =

X̃i −W⊤
i πx = Πi + Ṽi as defined in Theorem A.1.1, Xi = Xi −W⊤

i γ̂V , ei(β0) = ei(β0) +

W⊤
i γ̂e−W⊤

i π̂x(β0− β), where πx = (W⊤W )−1(W⊤Π̃), π̂x = (W⊤W )−1(W⊤X̃) = πx+ γ̂V ,
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γ̂V = (W⊤W )−1(W⊤Ṽ ), and γ̂e = (W⊤W )−1(W⊤ẽ). Further let δ be between δ = (γ⊤, β)⊤

and δ0.

Then, following the argument in the proof of Hausman et al. (2012, Theorem 2), we have

(µ2n/
√
K)(β̂HLIM − β0)

= (µ2n/
√
K)L(δ̂ − δ0)

= −(µ2n/
√
K)L

(
∂D̂(δ)

∂δ

)−1

D̂(δ0)

= −(µ2n/
√
K)L(S⊤

n )
−1

(
S−1
n
∂D̂(δ)

∂δ
(S⊤

n )
−1

)−1

S−1
n D̂(δ0)

= −(µ2n/
√
K)(0, 1/µn)(H

−1 + oP (1))diag(1/
√
n, · · · , 1/

√
n, 1/µn)

(
Id 0

−π⊤x 1

)
D̂(δ0)

= − µn√
K

((
(H21 + oP (1))/

√
n− π⊤x (H

22 + oP (1))/µn, (H
22 + oP (1))/µn

))
D̂(δ0)

= (H22 + oP (1))(−π⊤x , 1)D̂(δ0)/
√
K

= (H22 + oP (1))

∑
i∈[n]

∑
j ̸=i

[
XiP̃ijej(β0)− ei(β0)P̃ijej(β0)

X
⊤
e(β0)

e⊤(β0)e(β0)

]
√
K

,

where by Hausman et al. (2012, Lemma A7), S−1
n

∂D̂(δ)
∂δ (S⊤

n )
−1 p−→ H, and we denote H−1 =(

H11 H12

H21 H22

)
.

Following the same argument in the proof of Lemma A.19.1, we can show that∑
i∈[n]

∑
j ̸=i γ̂

⊤
VWiP̃ijej(β0)

√
K

= oP (1),

∑
i∈[n]

∑
j ̸=iXiP̃ijW

⊤
i (γ̂e − π̂x(β0 − β))

√
K

= oP (1)∑
i∈[n]

∑
j ̸=i ei(β0)P̃ijW

⊤
i (γ̂e − π̂x(β0 − β))

√
K

= oP (1), and∑
i∈[n]

∑
j ̸=i(γ̂e − π̂x(β0 − β))⊤WiP̃ijW

⊤
i (γ̂e − π̂x(β0 − β))

√
K

= oP (1).
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In addition, we have X
⊤
e(β0)/e

⊤(β0)e(β0)
p−→ ρ̃. Then, we have

µ2n(β̂
HLIM − β0)/

√
K = H22

∑
i∈[n]

∑
j ̸=i

[
XiP̃ijej(β0)− ei(β0)P̃ijej(β0)ρ̃

]
√
K

+ oP (1).

Because X⊤W = 0 and e⊤W = 0, we have X⊤P̃ e(β0) = X⊤Pe(β0) and e(β0)
⊤P̃ e(β0) =

e(β0)
⊤Pe(β0). Therefore, we have∑

i∈[n]
∑

j ̸=iXiP̃ijej(β0)
√
K

=
X⊤Pe(β0)−

∑
i∈[n]XiP̃iiei(β0)

√
K

=

∑
i∈[n]

∑
j ̸=iXiPijej(β0) +

∑
i∈[n]Xiei(β0)(Pii − P̃ii)

√
K

= QX,e(β0) −

∑
i∈[n]Xiei(β0)PW,ii

√
K

= QX,e(β0) + oP (1),

where we use the facts that P̃ii = Pii + PW,ii and∑
i∈[n]

Xiei(β0)PW,ii =
1

n

∑
i∈[n]

Xiei(β0)W
⊤
i

(
W⊤W/n

)−1
Wi = OP (1).

Similarly, we have ∑
i∈[n]

∑
j ̸=i ei(β0)P̃ijej(β0)
√
K

= Qe(β0),e(β0) + oP (1),

and thus,

µ2n(β̂
HLIM − β0)/

√
K = H22(QX,e(β0) − ρ̃Qe(β0),e(β0)) + oP (1).

In order for the HLIM based Wald test to have a pivotal standard normal distribution in

the limit, the asymptotic variance Φh must be

Φh = (H22)2(Ψ− 2ρ̃Φ12 + ρ̃2Φ1),
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which means the Wald statistic satisfies Wh(β) =
QX,e(β0)

−ρ̃Qe(β0),e(β0)

(Ψ−2ρ̃Φ12+ρ̃2Φ1)1/2
+ oP (1).

A.21 Additional Simulation Results

A.21.1 Additional Simulation Results Based on the Limit Prob-

lem

In this section, we present further simulation results for the power behavior of tests under

the limit problem described in Section 1.2.

For Figures A.1–A.32, all the settings remain the same as those in Section 1.5.1 in the

main paper except we use alternative values of the tuning parameters for (1.3.5). Specifically,

for the values of p1 and p2 in

a(µD, γ(β0)) = min

(
p1,

p2Cα,max(ρ(β0))Φ1(β0)cB(β0)

∆4
∗(β0)µ

2
D

)
,

we use (p1, p2) = (0.01, 1.5), (0.01, 2), (0.001, 1.1), (0.001, 1.5), (0.001, 2), (0.1, 1.1), (0.1, 1.5),

or (0.1, 2), instead of (0.01, 1.1) in Section 1.5. Specifically, Figures A.1–A.4 report the results

for (0.01, 1.5), Figures A.5–A.8 report those for (0.01, 2), Figures A.9–A.12 report those for

(0.001, 1.1), Figures A.13–A.16 report those for (0.001, 1.5), Figures A.17–A.20 report those

for (0.001, 2), Figures A.21–A.24 report those for (0.1, 1.1), Figures A.25–A.28 report those

for (0.1, 1.5), and Figures A.29–A.32 report those for (0.1, 2), respectively. We find the

results are very similar to those reported in the main paper.

Furthermore, Figures A.33–A.36 present the power curves in the cases with stronger

identification (C = 9 or 12). The overall patterns are very similar to those for C = 6. For

Figures A.33–A.36, the tuning parameters are set as (p1, p2) = (0.01, 1.1), which are same

as those in Section 1.5 of the main text. The results for other values of p1 and p2 remain

very similar and are thus omitted for brevity.
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Figure A.1: Power Curve for ρ = 0.2 and (p1, p2) = (0.01, 1.5)

Note: The orange line with circle represents pp, which is the probability of rejection by

using the test ϕa1,a2,pp(δ, D̂, γ̂(β0)); the green line with upward-pointing triangle represents

krs, which is the probability of rejection by using the test ϕa1,a2,krs(δ, D̂, γ̂(β0)); the brown

dash line with additive sign represents AR test given in (1.2.5); the blue dotted line with

cross represents LM test given in (1.2.6); the dark dash line with downward-pointing

triangle represents LM∗ test defined just above (1.2.7).

−6 −3 0 3 6

0.0

0.2

0.4

0.6

0.8

1.0

C = 3

(β − β0)C

Po
we

r

−6 −3 0 3 6

0.0

0.2

0.4

0.6

0.8

1.0

C = 6

(β − β0)C

Figure A.2: Power Curve for ρ = 0.4 and (p1, p2) = (0.01, 1.5)

Note: The lines are explained under Figure A.1.
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Figure A.3: Power Curve for ρ = 0.7 and (p1, p2) = (0.01, 1.5) with 5% nominal size repre-

sented by the horizontal dotted line

Note: The lines are explained under Figure A.1.

−6 −3 0 3 6

0.0

0.2

0.4

0.6

0.8

1.0

C = 3

(β − β0)C

Po
we

r

−6 −3 0 3 6

0.0

0.2

0.4

0.6

0.8

1.0

C = 6

(β − β0)C

Figure A.4: Power Curve for ρ = 0.9 and (p1, p2) = (0.01, 1.5) with 5% nominal size repre-

sented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.5: Power Curve for ρ = 0.2 and (p1, p2) = (0.01, 2) with 5% nominal size represented

by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.6: Power Curve for ρ = 0.4 and (p1, p2) = (0.01, 2) with 5% nominal size represented

by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.7: Power Curve for ρ = 0.7 and (p1, p2) = (0.01, 2) with 5% nominal size represented

by the horizontal dotted line

Note: The lines are explained under Figure A.1.

−6 −3 0 3 6

0.0

0.2

0.4

0.6

0.8

1.0

C = 3

(β − β0)C

Po
we

r

−6 −3 0 3 6

0.0

0.2

0.4

0.6

0.8

1.0

C = 6

(β − β0)C

Figure A.8: Power Curve for ρ = 0.9 and (p1, p2) = (0.01, 2) with 5% nominal size represented

by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.9: Power Curve for ρ = 0.2 and (p1, p2) = (0.001, 1.1) with 5% nominal size

represented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.10: Power Curve for ρ = 0.4 and (p1, p2) = (0.001, 1.1) with 5% nominal size

represented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.11: Power Curve for ρ = 0.7 and (p1, p2) = (0.001, 1.1) with 5% nominal size

represented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.12: Power Curve for ρ = 0.9 and (p1, p2) = (0.001, 1.1) with 5% nominal size

represented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.13: Power Curve for ρ = 0.2 and (p1, p2) = (0.001, 1.5) with 5% nominal size

represented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.14: Power Curve for ρ = 0.4 and (p1, p2) = (0.001, 1.5) with 5% nominal size

represented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.15: Power Curve for ρ = 0.7 and (p1, p2) = (0.001, 1.5) with 5% nominal size

represented by the horizontal dotted line

Note: The lines are explained under Figure A.1.

−6 −3 0 3 6

0.0

0.2

0.4

0.6

0.8

1.0

C = 3

(β − β0)C

Po
we

r

−6 −3 0 3 6

0.0

0.2

0.4

0.6

0.8

1.0

C = 6

(β − β0)C

Figure A.16: Power Curve for ρ = 0.9 and (p1, p2) = (0.001, 1.5) with 5% nominal size

represented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.17: Power Curve for ρ = 0.2 and (p1, p2) = (0.001, 2) with 5% nominal size

represented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.18: Power Curve for ρ = 0.4 and (p1, p2) = (0.001, 2) with 5% nominal size

represented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.19: Power Curve for ρ = 0.7 and (p1, p2) = (0.001, 2) with 5% nominal size

represented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.20: Power Curve for ρ = 0.9 and (p1, p2) = (0.001, 2) with 5% nominal size

represented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.21: Power Curve for ρ = 0.2 and (p1, p2) = (0.1, 1.1) with 5% nominal size repre-

sented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.22: Power Curve for ρ = 0.4 and (p1, p2) = (0.1, 1.1) with 5% nominal size repre-

sented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.23: Power Curve for ρ = 0.7 and (p1, p2) = (0.1, 1.1) with 5% nominal size repre-

sented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.24: Power Curve for ρ = 0.9 and (p1, p2) = (0.1, 1.1) with 5% nominal size repre-

sented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.25: Power Curve for ρ = 0.2 and (p1, p2) = (0.1, 1.5) with 5% nominal size repre-

sented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.26: Power Curve for ρ = 0.4 and (p1, p2) = (0.1, 1.5) with 5% nominal size repre-

sented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.27: Power Curve for ρ = 0.7 and (p1, p2) = (0.1, 1.5) with 5% nominal size repre-

sented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.28: Power Curve for ρ = 0.9 and (p1, p2) = (0.1, 1.5) with 5% nominal size repre-

sented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.29: Power Curve for ρ = 0.2 and (p1, p2) = (0.1, 2) with 5% nominal size represented

by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.30: Power Curve for ρ = 0.4 and (p1, p2) = (0.1, 2) with 5% nominal size represented

by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.31: Power Curve for ρ = 0.7 and (p1, p2) = (0.1, 2) with 5% nominal size represented

by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.32: Power Curve for ρ = 0.9 and (p1, p2) = (0.1, 2) with 5% nominal size represented

by the horizontal dotted line

Note: The lines are explained under Figure A.1.

151



−6 −3 0 3 6

0.0

0.2

0.4

0.6

0.8

1.0

C = 9

(β − β0)C

Po
we

r
pp
krs
AR
LM
LM*

−6 −3 0 3 6

0.0

0.2

0.4

0.6

0.8

1.0

C = 12

(β − β0)C

Figure A.33: Power Curve for ρ = 0.2 and (p1, p2) = (0.01, 1.1), C = 9 or 12 with 5%

nominal size represented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.34: Power Curve for ρ = 0.4 and (p1, p2) = (0.01, 1.1), C = 9 or 12 with 5%

nominal size represented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.35: Power Curve for ρ = 0.7 and (p1, p2) = (0.01, 1.1), C = 9 or 12 with 5%

nominal size represented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.36: Power Curve for ρ = 0.9 and (p1, p2) = (0.01, 1.1), C = 9 or 12 with 5%

nominal size represented by the horizontal dotted line

Note: The lines are explained under Figure A.1.

A.21.2 Additional Simulation Results Based on the Calibrated

Data

We run two sets of robustness checks for the calibrated data provided in Section 1.5.2. For

the first set, we retained the parameter space of B = [−0.5, 0.5] and used 16 grid-points in

total over this space, instead of 31 grid-points used in the main text. As in the previous
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section, we vary over (p1, p2) equals (0.001, 1.1), (0.001, 1.5), (0.001, 2), (0.01, 1.5), (0.01, 2),

(0.1, 1.1), (0.1, 1.5), and (0.1, 2). Figures A.37–A.44 are results for DGP 1, while Figures

A.45–A.52 are results for DGP 2. We find that our results are very similar to the main text’s

specification, i.e. (p1, p2) = (0.01, 1.1).

For the second set of robustness checks, we fix (p1, p2) = (0.01, 1.1) as in the main text

and vary the parameter space as B2 = [−0.25, 0.25] and B3 = [−1, 1] over 21 equally-sized

grid-points. This is done in order to capture the null of H0 : β = 0.1. DGP 1 is reported in

Figures A.53 and A.54, while DGP 2 is reported in Figures A.55 and A.56.
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Figure A.37: Power Curve for DGP 1 given in (1.5.1) with (p1, p2) = (0.001, 1.1) and Pa-

rameter Space = B. The nominal size of 5% is represented by the horizontal dotted line

Note: The orange line with circle represents pp test; the green line with upward-pointing

triangle represents krs test; the brown dash line with additive sign represents AR test

given in (1.2.5); the blue dotted line with cross represents LM test with cross-fit variance;

the purple dash line with diamond represents the 2-step test proposed by Mikusheva and

Sun (2022) with overall 5% significance level; dark line with downward-pointing triangle

represents LM∗; the yellow dash line with rectangle represents the LM test proposed by

Matsushita and Otsu (2021).
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Figure A.38: Power Curve for DGP 1 with (p1, p2) = (0.001, 1.5) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.39: Power Curve for DGP 1 with (p1, p2) = (0.001, 2) and Parameter Space = B
Note: The lines are explained under Figure A.37.

155



−0.5 −0.3 −0.1 0.1 0.3 0.5

0.0

0.2

0.4

0.6

0.8

1.0

Small, (p1,p2) = ( 0.01 , 1.5 )

β

Pr
ob

ab
ilit

y o
f r

eje
cti

on
 of

   H
0: 

β 0 
= 0

.1

pp
krs
AR
LM_CF
2−step
LM*
LM_MO

−0.5 −0.3 −0.1 0.1 0.3 0.5

0.0

0.2

0.4

0.6

0.8

1.0

Medium

β

Pr
ob

ab
ilit

y o
f r

eje
cti

on
 of

   H
0: 

β 0 
= 0

.1

−0.5 −0.3 −0.1 0.1 0.3 0.5

0.0

0.2

0.4

0.6

0.8

1.0

Large

β

Pr
ob

ab
ilit

y o
f r

eje
cti

on
 of

   H
0: 

β 0 
= 0

.1

Figure A.40: Power Curve for DGP 1 with (p1, p2) = (0.01, 1.5) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.41: Power Curve for DGP 1 with (p1, p2) = (0.01, 2) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.42: Power Curve for DGP 1 with (p1, p2) = (0.1, 1.1) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.43: Power Curve for DGP 1 with (p1, p2) = (0.1, 1.5) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.44: Power Curve for DGP 1 with (p1, p2) = (0.1, 2) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.45: Power Curve for DGP 2 with (p1, p2) = (0.001, 1.1) and Parameter Space = B
Note: The lines are explained under Figure A.37.

158



−0.5 −0.3 −0.1 0.1 0.3 0.5

0.0

0.2

0.4

0.6

0.8

1.0

Small, (p1,p2) = ( 0.001 , 1.5 )

β

Pr
ob

ab
ilit

y o
f r

eje
cti

on
 of

   H
0: 

β 0 
= 0

.1

pp
krs
AR
LM_CF
2−step
LM*
LM_MO

−0.5 −0.3 −0.1 0.1 0.3 0.5

0.0

0.2

0.4

0.6

0.8

1.0

Medium

β

Pr
ob

ab
ilit

y o
f r

eje
cti

on
 of

   H
0: 

β 0 
= 0

.1

−0.5 −0.3 −0.1 0.1 0.3 0.5

0.0

0.2

0.4

0.6

0.8

1.0

Large

β

Pr
ob

ab
ilit

y o
f r

eje
cti

on
 of

   H
0: 

β 0 
= 0

.1

Figure A.46: Power Curve for DGP 2 with (p1, p2) = (0.001, 1.5) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.47: Power Curve for DGP 2 with (p1, p2) = (0.001, 2) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.48: Power Curve for DGP 2 with (p1, p2) = (0.01, 1.5) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.49: Power Curve for DGP 2 with (p1, p2) = (0.01, 2) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.50: Power Curve for DGP 2 with (p1, p2) = (0.1, 1.1) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.51: Power Curve for DGP 2 with (p1, p2) = (0.1, 1.5) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.52: Power Curve for DGP 2 with (p1, p2) = (0.1, 2) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.53: Power Curve for DGP 1 with (p1, p2) = (0.01, 1.1) and Parameter Space = B2

Note: The lines are explained under Figure A.37.
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Figure A.54: Power Curve for DGP 1 with (p1, p2) = (0.01, 1.1) and Parameter Space = B3

Note: The lines are explained under Figure A.37.
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Figure A.55: Power Curve for DGP 2 with (p1, p2) = (0.01, 1.1) and Parameter Space = B2

Note: The lines are explained under Figure A.37.
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Figure A.56: Power Curve for DGP 2 with (p1, p2) = (0.01, 1.1) and Parameter Space = B3

Note: The lines are explained under Figure A.37.

A.22 Additional Results for the Empirical Application

For the first set of robustness check, we ran 1001 equal-spaced grid-points from parameter

space B = [−0.5, 0.5] (step size = 0.001) over the 9 different variations of (p1, p2), which

we furnish in Table A.1. The first row is the specification used in the main text, (p1, p2) =

(0.01, 1.1). We do not include ‘jackknife AR’, ‘jackknife LM’, ‘JIVE-t’ and ‘Two-step’ since

variations of (p1, p2) will not affect the result of those methods. We find that our results are

similar to the main text.

(p1, p2)-values pp with 180 IVs krs with 180 IVs pp with 1530 IVs krs with 1530 IVs

(5%) (5%) (5%) (5%)

(0.01,1.1) [0.067,0.128] [0.067,0.128] [0.037,0.133] [0.037,0.133]

(0.001,1.1) [0.072,0.127] [0.072,0.127] [0.041,0.132] [0.041,0.132]

(0.001,1.5) [0.067,0.127] [0.067,0.127] [0.038,0.132] [0.038,0.132]

(0.001,2) [0.066,0.128] [0.066,0.128] [0.039,0.133] [0.039,0.133]

(0.01,1.5) [0.067,0.127] [0.067,0.127] [0.04,0.134] [0.04,0.134]

(0.01,2) [0.071,0.125] [0.071,0.125] [0.041,0.133] [0.041,0.133]

(0.1,1.1) [0.069,0.126] [0.069,0.126] [0.037,0.132] [0.037,0.132]

(0.1,1.5) [0.072,0.126] [0.072,0.126] [0.044,0.132] [0.044,0.132]

(0.1,2) [0.069,0.127] [0.069,0.127] [0.035,0.132] [0.035,0.132]

Table A.1: Confidence Intervals under different values of (p1, p2) with Parameter Space B
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For the second set of robustness checks, we consider two different parameter spaces,

namely B2 = [−1, 1] and B3 = [−0.25, 0.25]. Both parameter spaces have 1001 equal-spaced

grid-points, and we have retained the values (p1, p2) = (0.01, 1.1) as in our main text. Table

A.2 reports the results. Overall, these additional robustness checks show that the results

reported in our main text are reliable and hold for different parameter spaces.

Parameter Space pp with 180 IVs krs with 180 IVs pp with 1530 IVs krs with 1530 IVs

(5%) (5%) (5%) (5%)

B [0.067,0.128] [0.067,0.128] [0.037,0.133] [0.037,0.133]

B2 [0.068,0.124] [0.068,0.124] [0.042,0.134] [0.042,0.134]

B3 [0.07,0.1275] [0.07,0.1275] [0.037,0.1335] [0.037,0.1335]

Table A.2: Confidence Intervals under (p1, p2) = (0.01, 1.1) with varying Parameter Space

B2 and B3
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Appendix B

Technical Results for Chapter 2

B.1 Proofs For Main Text

B.1.1 Proof of Theorem 1

For any vector a, b ∈ Rn, we define Qa,b :=
∑

i∈[n]

∑
j ̸=i aiPijbj√
K

.

We will first prove the first part of Theorem 1. This is done in Step 1–Step 4. The

proof of the second part of Theorem 1 is shown in Step 5.

Recall that e = ẽ+ PW ẽ and E = ε+ PW ε, so that we have

Qe,e = Qẽ,ẽ + 2Qẽ,PW ẽ +QPW ẽ,PW ẽ

QE ,E = Qε,ε + 2Qε,PW ε +QPW ε,PW ε (B.1.1)

We want to strongly approximate these two equations. It is instructive to first provide an

outline for our proof before delving into it. To do so, consider a sequence of independent

random variables {(ϑi}ni=1 with the criteria that

(i) Eϑi = 0

(ii) E[ϑ2i ] = E[ẽ2i ] = E[ε2i ]

(iii) {(ϑi}ni=1 is independent of {ẽi}ni=1 and {εi}ni=1
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Such a sequence will always exist by the Kolmogorov-Extension-Theorem. This sequence

will be used throughout the proof. We define ϑ := (ϑ1, ..., ϑn)
′.

The idea of the proof is to express

Qe,e −QE ,E = Remaindern +Op(
pnd

2
W

K1/2
) (B.1.2)

The term ‘Remaindern’ collects all the difference in terms that cannot be collected as

Op(
pnd

2
W

K1/2 )-terms. To be precise, step 1 will imply that QPW ẽ,PW ẽ −QPW ε,PW ε = Op(
pnd

2
W

K1/2 ),

so that this term is collected in the last term of the right-hand-side of (B.1.2). In step 2 we

deal with the difference between the middle-term on the right-side of (B.1.1), which implies

that

2Q(ẽ,PW ẽ − 2Qε,PW ε = Hn +Op(
pnd

2
W

K1/2
)

where Hn := − 1√
K

∑
i∈[n]

∑
j ̸=i PiiP

W
ij {ẽiẽj − ϑiϑj}. Thus Hn goes into the ‘Remaindern’

term of (B.1.2), with the remaining terms collected as Op(
pnd

2
W

K1/2 )-terms. In step 3 we deal

with the first term on the right-side of (B.1.2) (i.e. Qẽ,ẽ − Qε,ε) and note that this term

goes into ‘Remaindern’. We will then collect all the terms in ‘Remaindern’ and strongly

approximate these terms. Specifically, we can express

Remaindern = Fn −Fn

where

Fn := Qẽ,ẽ −
2√
K

∑
i∈[n]

∑
j ̸=i

PiiP
W
ij ẽiẽj ,

Fn := Qε,ε −
2√
K

∑
i∈[n]

∑
j ̸=i

PiiP
W
ij εiεj

and we strongly-approximate these two terms. Note that Fn is the part of the terms in

‘Remaindern’ that belongs to Qe,e, while Fn belongs to QE ,E . Step 4 puts everything

together and completes the proof for the first part of Theorem 1. Step 5 completes the

proof for the second part of Theorem 1.
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Step 1: We show that for any

QPW ẽ,PW ẽ −QPWϑ,PWϑ = Op(
pnd

2
W

K1/2
)

QPW ε,PW ε −QPWϑ,PWϑ = Op(
pnd

2
W

K1/2
) (B.1.3)

Consider first a sequence of independent random variables {Ui}ni=1 with bounded first

and second moments. Furthermore, let {Ũi}ni=1 be independent random variables, as well as

independent from {Ui}ni=1. Suppose that the EUi = EŨi and EU2
i = EŨ2

i for every i ∈ [n].

We will show that

QPWU,PWU −Q
PW Ũ ,PW Ũ

= Op(
pnd

2
W

K1/2
) (B.1.4)

Note that PPW = 0, so that

QPWU,PWU =
1√
K
U ′PWPPWU − 1√

K

∑
i∈[n]

Pii{(PW
i )′U}2 = − 1√

K

∑
i∈[n]

Pii{(PW
i )′U}2

with U := (U1, ..., Un)
′. Denoting U∗

i := Ui − EUi, Ũ
∗
i := Ũi − EŨi, we have

(QPWU,PWU −Q
PW Ũ ,PW Ũ

) = − 1√
K

∑
i∈[n]

Pii

([
(PW

i )′U∗ + (PW
i )′EU

]2 − [(PW
i )′Ũ∗ + (PW

i )′EU
]2)

= − 1√
K

∑
i∈[n]

Pii[(P
W
i )′U∗]2 +

1√
K

∑
i∈[n]

Pii[(P
W
i )′Ũ∗]2 − 1√

K

∑
i∈[n]

Pii(P
W
i )′U∗(PW

i )′EU

+
1√
K

∑
i∈[n]

Pii(P
W
i )′Ũ∗(PW

i )′EU ≡ C1 + C2 + C3 + C4

By the fact that EU∗ = 0,

E

∣∣∣∣∣∣ 1√
K

∑
i∈[n]

Pii((P
W
i )′U∗)2

∣∣∣∣∣∣ = 1√
K

∑
i∈[n]

Pii

∑
ℓ∈[n]

(PW
iℓ )2V ar(Ui) ≤

Cpn√
K

∑
i∈[n]

∑
ℓ∈[n]

(PW
iℓ )2

=
Cpn√
K

∑
i∈[n]

PW
ii =

CpndW

K1/2
,
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so that by Markov inequality, C1 = Op(
pndW
K1/2 ). In a similar manner, we can show that

C2 = Op(
pndW
K1/2 ). Next,

EC2
3 ≤ 1

K

∑
i,i′∈[n]

PiiPi′i′|(PW
i )′EU · (PW

i′ )′EU |
∑
ℓ∈[n]

|PW
iℓ P

W
i′ℓ |V ar(Ui)

(i)

≤ Cp2n
K

∑
i,i′∈[n]

|(PW
i )′EU · (PW

i′ )′EU |

∑
ℓ∈[n]

(PW
iℓ )2 ·

∑
ℓ∈[n]

PW
i′ℓ


=
Cp2n
K

∑
i,i′

|(PW
i )′EU · (PW

i′ )′EU | · PW
ii P

W
i′i′

≤ Cp2n
K

∑
i,i′

∑
ℓ,ℓ′

|PW
iℓ P

W
i′ℓ | · P

W
ii P

W
i′i′ =

Cp2n
K

(
∑
ℓ∈[n]

∑
i∈[n]

|PW
iℓ P

W
ii |)2

(ii)

≤ Cp2n
K

∑
ℓ∈[n]

(
∑
i∈[n]

(PW
iℓ )2 ·

∑
i∈[n]

(PW
ii )2)

2

≤ Cp2n
K

(
∑
ℓ∈[n]

PW
ℓℓ dW )2 =

Cp2n
K

d4W

where (i) and (ii) follows from Cauchy-Schwartz inequality. Hence C3 = Op(
pnd

2
W

K1/2 ). In

a similar manner, C4 = Op(
pnd

2
W

K1/2 ), so that (B.1.4) follows. An application of (B.1.4) with

(U, Ũ) replaced by (ẽ, ϑ) and (ε, ϑ) yields the first and second equation of (B.1.3) respectively.

Step 2: We show that

2Qẽ,PW ẽ − 2Qϑ,PWϑ = H(1)
n − 2√

K

∑
i∈[n]

PiiP
W
ii (ẽiẽj − ϑiϑj) = H(1)

n +Op(
pnd

2
W

K1/2
)

2Qε,PW ε − 2Qϑ,PWϑ = H(2)
n − 2√

K

∑
i∈[n]

PiiP
W
ii (εiεj − ϑiϑj) = H(2)

n +Op(
pnd

2
W

K1/2
) (B.1.5)

where H(ℓ)
n := − 2√

K

∑
i∈[n]

∑
j ̸=i PiiP

W
ij

{
ζ
(ℓ)
i ζ

(ℓ)
j − ϑiϑj

}
and ζ

(ℓ)
i := ẽi or εi for ℓ = 1 or 2

respectively.

We first derive a general result: consider a sequence of independent random vectors

{(Ui, Ti)
′}ni=1. Suppose we have another sequence of independent random vectors {(Ũi, T̃i)

′}ni=1

such that for every i ∈ [n], E(Ui, Ti) = E(Ũi, T̃i) and E[(Ui, Ti)(Ui, Ti)
′] = E[(Ũi, T̃i)(Ũi, T̃i)

′].
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We assume the two sequences are independent from each other, and that the first two mo-

ments are bounded. By noting PWP = 0,

QPWU,T =
1√
K
U ′PWPT − 1√

K

∑
i∈[n]

Pii(P
W
i )′U · Ti = − 1√

K

∑
i∈[n]

Pii(P
W
i )′U · Ti

= − 1√
K

∑
i∈[n]

Pii

∑
j ̸=i

PW
ij UjTi −

1√
K

∑
i∈[n]

PiiP
W
ii UiTi,

which implies that

QPWU,T −Q
PW Ũ ,T̃

= − 1√
K

∑
i∈[n]

∑
j ̸=i

PiiP
W
ij UjTi +

1√
K

∑
i∈[n]

∑
j ̸=i

PiiP
W
ij ŨjT̃i +Op(

pnd
2
W

K1/2
),

(B.1.6)

where the last equality follows from Markov inequality and

E

 1√
K

∑
i∈[n]

PiiP
W
ii (UiTi − ŨiT̃i)

2

=
1

K

∑
i∈[n]

P 2
ii(P

W
ii )2E(UiTi − ŨiT̃i)

2 ≤ Cp2n
K

∑
i∈[n]

PW
ii =

Cp2ndW
K

.

If replace (Ui, Ti) with (ẽi, ẽi), as well as (Ũi, T̃i) with (ϑi, ϑi), then an application of (B.1.6)

would yield the first equation of (B.1.5). The second equation of (B.1.5) follows by replacing

(Ui, Ti) with (εi, εi) and (Ũi, T̃i) with (ϑi, ϑi).

Step 3: Define

Fn := Qẽ,ẽ −
2√
K

∑
i∈[n]

∑
j ̸=i

PiiP
W
ij ẽiẽj and

Fn := Qε,ε −
2√
K

∑
i∈[n]

∑
j ̸=i

PiiP
W
ij εiεj

We will show that there exists a random variable F ′
n

d
= Fn such that

Fn = F ′
n +Op

[p1/2n + p
3/2
n (pWn )1/2dW

K1/2

]1/3 (B.1.7)
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Define gn(x) := max
(
0, 1− d(x,A3δn)

δn

)
and fn(x) := Egn(x+hnN ), where N has a standard

normal distribution and hn := 3δn
Ch

for some Ch > 1. By Pollard (2001)[Theorem 10.18], fn(·)
is twice-continuously differentiable such that for all x, y,∣∣∣fn(x+ y)− fn(x)− y∂fn(x)−

1

2
y2∂2fn(x)

∣∣∣ ≤ |y|3

9δnh2n
(B.1.8)

and

1−B(Ch)1{x ∈ A} ≤ fn(x) ≤ B(Ch) + (1−B(Ch))1{x ∈ A3δn}, (B.1.9)

where Ch := 3δn
hn

and B(Ch) :=
(

C2
h

exp(C2
h−1)

)1/2
. Furthermore, define

Gn(a1, ..., an) :=

∑
i∈[n]

∑
j ̸=i{aiPijaj − 2PiiP

W
ij aiaj)}√

K

so Fn = Gn(ẽ1, ..., ẽn) and Fn = Gn(ε1, ..., εn). By triangle inequality,

|Efn(Fn)− Efn(Fn)|

≤
∑
i∈[n]

|Efn(Gn(ẽ1, ..., ẽi, εi+1, ..., εn))− Efn(Gn(ẽ1, ..., ẽi−1, εi, ..., εn))| , (B.1.10)

where Gn(ε1, ..., εn, ẽn+1) ≡ Gn(ε1, ..., εn) and Gn(ε0, ẽ1, ..., ẽn) ≡ Gn(ẽ1, ..., ẽn). Then con-

sider the last term of the telescoping sum. Define

λn−1 :=

∑
i∈[n−1]

∑
j ̸=i,j∈[n−1]{ẽiPij ẽj − 2PiiP

W
ij ẽiẽj}√

K

∆n :=
2ẽn
∑

i∈[n−1] ẽiPin
√
K

−
2ẽn
∑

i∈[n−1] PiiP
W
in ẽi√

K
−

2Pnnẽn
∑

i∈[n−1] P
W
in ẽi√

K

∆̃n :=
2εn
∑

i∈[n−1] ẽiPin
√
K

−
2εn
∑

i∈[n−1] PiiP
W
in ẽi√

K
−

2Pnnεn
∑

i∈[n−1] P
W
in ẽi√

K

so that Gn(ẽ1, ..., ẽn) = ∆n + λn−1 and Gn(ẽ1, ..., ẽn−1, εn) = ∆̃n + λn−1. Further denote
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In−1 as the σ-field generated by {εi, ẽi}i∈[n−1] and observe that

E(∆n|In−1) = E(∆̃n|In−1) and

E(∆2
n|In−1) = E(∆̃2

n|In−1),

so that together with (B.1.8), letting x = λn−1, y = ∆n and ∆̃n, we have

|Efn(Gn(ẽ1, ..., ẽn))− Efn(Gn(ẽ1, ..., ẽn−1, εn))|

≤ |E∂fn(λn−1)(∆̃n −∆n)|+
1

2
|E∂2fn(λn−1)(∆̃

2
n −∆2

n)|+
E|∆̃n|3 + E|∆n|3

9δnh2n

=
E|∆n|3 + E|∆̃n|3

9δnh2n
. (B.1.11)

We proceed to bound E|∆n|3. Let {ξi}i∈[n−1] be a sequence of independent Rademacher

random variables. Using the simple inequality that |a+b|3 ≤ 2(a2+b2)·|a+b| ≤ 8(|a|3+|b|3),
we have by independence of the errors across i that

E|∆n|3 ≤
C

K3/2
E

∣∣∣∣∣∣
∑
i∈[n]

(Pin + PiiP
W
in + PnnP

W
in )ẽi

∣∣∣∣∣∣
3

(B.1.12)

Denoting θi as either Pinẽi, PiiP
W
in ẽi or PnnP

W
in ẽi, we have

E

∣∣∣∣∣∣
∑

i∈[n−1]

θi

∣∣∣∣∣∣
3

(i)

≤ 8E

∣∣∣∣∣∣
∑

i∈[n−1]

θiξi

∣∣∣∣∣∣
3

(ii)

≤ 8

∫ ∞

0

t2P

∣∣∣∣∣∣
∑

i∈[n−1]

θiξi

∣∣∣∣∣∣ > t

 dt

= 8E

∫ ∞

0

t2P

∣∣∣∣∣∣
∑

i∈[n−1]

θiξi

∣∣∣∣∣∣ > t

∣∣∣∣In−1

 dt
(iii)

≤ 16E

∫ ∞

0

t2exp(−1

2

t2∑
i∈[n−1] θ

2
i

)dt

(iv)

≤ CE

 ∑
i∈[n−1]

θ2i

3/2

(v)

≤ C

E(
∑

i∈[n−1]

θ2i )
2

3/4

(B.1.13)

where (i) follows from the Symmetrization Lemma of Van der Vaart andWellner (1996)[Lemma

2.3.1]; (ii) follows from the integral identity; (iii) follows from Hoeffding’s inequality (see

Van der Vaart and Wellner (1996)[Lemma 2.2.7]); (iv) follows from the change of variable
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s = t2/
∑

i∈[n−1] θ
2
i ; (v) follows from Holder’s inequality. Note that for θi = Pinẽi,

E(
∑

i∈[n−1]

θ2i )
2 =

∑
i∈[n−1]

∑
j∈[n−1]

Eθ2i θ
2
j ≤ C

∑
i∈[n]

∑
j∈[n]

P 2
inP

2
jn = CP 2

nn,

so that E(
∑

i∈[n−1]

θ2i )
2

3/4

≤ CP
3/2
nn

Similarly we can obtainE(
∑

i∈[n−1]

θ2i )
2

3/4

≤ C(pnP
W
nn)

3/2 if θi = PiiP
W
in ẽi and

E(
∑

i∈[n−1]

θ2i )
2

3/4

≤ C(PnnP
W
nn)

3/2 if θi = PnnP
W
in ẽi

Hence, by (B.1.12) and (B.1.13), we have

E|∆̃n|3 ≤ C
P

3/2
nn + p

3/2
n (PW

nn)
3/2 + (PnnP

W
nn)

3/2

K3/2
.

Similarly, we have

E|∆n|3 ≤ C
P

3/2
nn + p

3/2
n (PW

nn)
3/2 + (PnnP

W
nn)

3/2

K3/2
.

In general, for any generic jth term, we can show that

|Efn(Gn(ẽ1, ..., ẽn))− Efn(Gn(ẽ1, ..., ẽn−1, εn))| ≤ C
P

3/2
jj + p

3/2
n (PW

jj )
3/2 + (PjjP

W
jj )

3/2

K3/2δnh2n

where the constant C is independent of n. By (B.1.10), letting hn :=
[
Ch(p

1/2
n +p

3/2
n (pWn )1/2dW )
K1/2

]1/3
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and recalling δn = Chhn

3 , we have

|Efn(Fn)− Efn(Fn)| ≤ C

∑
i∈[n] P

3/2
ii + p

3/2
n (PW

ii )3/2

K3/2δnh2n
≤ C

p
1/2
n + p

3/2
n (pWn )1/2dW

K1/2δnh2n
≤ C

C2
h

.

Therefore, by (B.1.9) we have

P {Fn ∈ A} ≤ Efn(Fn)

1−B(Ch)
≤ 1

1−B(Ch)

(
Efn(Fn) +

C

C2
h

)
≤ 1

1−B(Ch)

(
B(Ch) + (1−B(Ch))P

{
Fn ∈ A3δn

}
+

C

C2
h

)
= P

{
Fn ∈ A3δn

}
+
B(Ch) +

C
C2

h

1−B(Ch)

By Strassen’s Theorem (see Pollard (2001)[Theorem 10.8]),there exists a random variable

F ′
n

d
= Fn such that

P

|Fn −F ′
n| > Ch

[
Ch(p

1/2
n + p

3/2
n (pWn )1/2dW )

K1/2

]1/3 ≤
B(Ch) +

C
C2

h

1−B(Ch)

Fix any τ > 0. Given that B(Ch) → 0 whenever Ch → ∞, we can find a sufficiently large

Ch such that
B(Ch)+

C

C2
h

1−B(Ch)
≤ τ , implying

|Fn −F ′
n| = Op

[(p1/2n + p
3/2
n (pWn )1/2dW )

K1/2

]1/3 ,

so (B.1.7) is shown.

Step 4: We complete the proof. We can re-express

Qe,e = Fn +Rn
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and

QE ,E = Fn +Rn

where Fn,Fn were defined in Step 3, so clearly Rn = Qe,e −Fn; similarly Rn = QE ,E −Fn.

Define

R̃n := − 2√
K

∑
i∈[n]

PiiP
W
ij ϑiϑj +QPWϑ,PWϑ

and note that by (B.1.3) and (B.1.5),

Rn − R̃n = Op(
pnd

2
W

K1/2
) (B.1.14)

and

Rn − R̃n = Op(
pnd

2
W

K1/2
). (B.1.15)

Therefore, by noting that Fn,Fn, R̃n are mutually independent, we have

Qe,e = Fn +Rn = F ′
n + (Fn −F ′

n) + (Rn − R̃n) + R̃n

= F ′
n + R̃n +Op

[p1/2n + p
3/2
n (pWn )1/2dW

K1/2

]1/3
+
pnd

2
W

K1/2


d
= Fn + R̃n +Op

[p1/2n + p
3/2
n (pWn )1/2dW

K1/2

]1/3
+
pnd

2
W

K1/2


= Fn +Rn − (Rn − R̃n) +Op

[p1/2n + p
3/2
n (pWn )1/2dW

K1/2

]1/3
+
pnd

2
W

K1/2


= QE ,E +Op

[p1/2n + p
3/2
n (pWn )1/2dW

K1/2

]1/3
+
pnd

2
W

K1/2

 .

where the second line of the preceding equation follows from (B.1.7) and (B.1.14); the last
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line follows from (B.1.15). This gives the first result of Theorem 1.

Step 5: We prove the second part of the Theorem here. Note that by PWP = 0,

e′Pe

K
=
ẽ′P ẽ

K
=

1√
K
Qẽ,ẽ +

∑
i∈[n] Piiẽ

2
i

K
,

and similarly

E ′PE
K

=
1√
K
Qε,ε +

∑
i∈[n] Piiε

2
i

K
.

Then ∑
i∈[n] Piiẽ

2
i

K
−

∑
i∈[n] Piiϑ

2
i

K
= Op

(
p
1/2
n

K1/2

)
∑

i∈[n] Piiε
2
i

K
−

∑
i∈[n] Piiϑ

2
i

K
= Op

(
p
1/2
n

K1/2

)
(B.1.16)

which follows from

E

(∑
i∈[n] Pii(ẽ

2
i − ϑ2i )

K

)2

=

∑
i∈[n] P

2
iiE(ẽ

2
i − ϑ2i )

2

K2
≤
Cpn

∑
i∈[n] Pii

K2
=
Cpn
K

Then define Jn :=
Qẽ,ẽ√
K

and Jn := Qε,ε√
K
. By repeating the proof of step 3, we can show that

there exists a random variable J ′
n

d
= Jn such that

Jn = J ′
n +Op(

p
1/2
n

K
). (B.1.17)

Putting everything together, we have

e′Pe

K
= Jn +

(∑
i∈[n] Piiẽ

2
i

K
−

∑
i∈[n] Piiϑ

2
i

K

)
+

∑
i∈[n] Piiϑ

2
i

K

(i)
= J ′

n +

∑
i∈[n] Piiϑ

2
i

K
+Op

(
p
1/2
n

K1/2

)
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d
= Jn +

∑
i∈[n] Piiϑ

2
i

K
+Op

(
p
1/2
n

K1/2

)

=
E ′PE
K

−

(∑
i∈[n] Piiϑ

2
i

K
−

∑
i∈[n] Piiε

2
i

K

)
+Op

(
p
1/2
n

K1/2

)

=
E ′PE
K

+Op

(
p
1/2
n

K1/2

)

where (i) follows from (B.1.16) and (B.1.17). This completes the proof of the second part of

Theorem 1.

B.1.2 Proof of Theorem 2

Consider any sub-sequence λnk ∈ Λnk . We will show that for both fixed and diverging K,

lim
nk→∞

Pλnk

(
Q̂(β0) > Cα,df (Φ̂1(β0))

)
= α. (B.1.18)

lim
nk→∞

lim
B→∞

Pλnk

(
Ĵ(β0, Φ̂1(β0)) > CB

α,dfBS
(Φ̂BS

1 (β0),L)
)
= α (B.1.19)

Then (B.1.18) and (B.1.19) satisfy Assumption B* of Andrews, Cheng, and Guggenberger

(2020b). By Corollary 2.1(c) of their paper, Theorem 2 follows. Without loss of generality,

we implicitly consider the sequence λn ∈ Λn and show that it satisfies (B.1.18) and (B.1.19).

We break the proof into two parts, part I and II, which deals with (B.1.18) and (B.1.19)

respectively. For each part, we deal with fixed and diverging instruments separately. We

drop the dependence on β0 for notational simplicity.

Part I (analytical tests):
Fixed K case: Consider first the case when K is fixed. We can write the rejection

criteria (2.2.8) as

Q̂(β0) > q1−α(Fw̃n
) + (q1−α(Fw̃n

)− 1)


√

Φ̂1(β0)
1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n + 1/df

− 1

 (B.1.20)

We denote Q(β0) as Qn(β0) to reflect its relationship to the sample size n. Under the
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null, by Theorem B.4.1.1 and Lemma B.2.3, we know that for any sub-sequence nj , there

exists a further sub-sequence njk such that

Q̂njk
(β0)⇝

∑
i∈[K]

w∗
i χ

2
1,i =: χ2w∗ (B.1.21)

where the chi-squares are independent with one degree of freedom. Furthermore, Fw̃njk
⇝

χ2w∗ since w̃njk

p→ w∗ by Lemma B.2.3. By arguing along sub-sequences, we can assume

without loss of generality that the above convergence is in terms of a full sequence, i.e.

w̃n
p→ w∗ and wn → w∗. This is because if for any sub-sequence we can show size-control

for a further sub-sequence, then size-control holds for the entire sequence. Note that

(a) ||wn||2F · (
∑
i∈[n]

Piiσ
2
i )

2 = trace(U ′ΛUU ′ΛU) =
∑
i∈[n]

∑
j∈[n]

P 2
ijσ

2
i σ

2
j

(b)
∑
i∈[n]

P 2
iiσ

4
i ≤ C

2
pnK = o(1)

(c) Φ̂1
(i)
= Φ1 + op(1)

(ii)
=

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij σ̃

2
i σ̃

2
j + op(1)

(iii)
=

2

K

∑
i∈[n]

∑
j∈[n]

P 2
ijσ

2
i σ

2
j + op(1)

(d)
1

K

∑
i∈[n]

Piie
2
i
(iv)
=

1

K

∑
i∈[n]

Piiσ
2
i + op(1)

where (i) follows from our assumption of consistent estimator; (ii) from the second part of

Theorem B.3.0.1; (iii) follows from (b); (iv) follows from Lemma B.2.1. Then from (d) we

have

(e)

1√
K

∑
i∈[n] Piiσ

2
i

1√
K

∑
i∈[n] Piie2i

=

1
K

∑
i∈[n] Piiσ

2
i

1
K

∑
i∈[n] Piie2i

=

1
K

∑
i∈[n] Piiσ

2
i

1
K

∑
i∈[n] Piiσ2i + op(1)

p→ 1,

and from (c) we have

(f)

√
Φ̂1√

1
K

∑
i∈[n]

∑
j∈[n] P

2
ijσ

2
i σ

2
j

=

√√√√ 2
K

∑
i∈[n]

∑
j∈[n] P

2
ijσ

2
i σ

2
j + op(1)

1
K

∑
i∈[n]

∑
j∈[n] P

2
ijσ

2
i σ

2
j

=
√
2 + op(1)
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Putting it together,

√
Φ̂1

1√
K

∑
i∈[n] Piie2i

=

√
1
K

∑
i∈[n]

∑
j∈[n] P

2
ijσ

2
i σ

2
j

1√
K

∑
i∈[n] Piiσ2i

·
1√
K

∑
i∈[n] Piiσ

2
i

1√
K

∑
i∈[n] Piie2i

·

√
Φ̂1√

1
K

∑
i∈[n]

∑
j∈[n] P

2
ijσ

2
i σ

2
j

(e),(f)
=

√
1
K

∑
i∈[n]

∑
j∈[n] P

2
ijσ

2
i σ

2
j

1√
K

∑
i∈[n] Piiσ2i

(1 + op(1))(
√
2 + op(1)) =

√
2

√∑
i∈[n]

∑
j∈[n] P

2
ijσ

2
i σ

2
j∑

i∈[n] Piiσ2i
+ op(1)

(a)
=

√
2||wn||+ op(1) =

√
2||w∗||+ op(1), (B.1.22)

so that since w̃n
p→ w∗ and wn → w∗,

√
Φ̂1

1√
K

∑
i∈[n] Piie2i√

2
∑

i∈[K] w̃
2
i,n + 1/df

p→
√
2||w∗||√
2||w∗||

= 1

as 1
df = o(1). Therefore,

(q1−α(Fw̃)− 1)


√

Φ̂1
1√
K

∑
i∈[n] Piie2i√

2
∑

i∈[K] w̃
2
i,n + 1/df

− 1

 = (q1−α(Fw∗)− 1 + op(1))op(1) = op(1),

so we can write (B.1.20) as

q1−α(Fw̃n
) + (q1−α(Fw̃n

)− 1)


√

Φ̂1
1√
K

∑
i∈[n] Piie2i√

2
∑

i∈[K] w̃
2
i,n + 1/df

− 1

⇝ q1−α(χ
2
w∗)

By Van der Vaart and Wellner (1996)[Example 1.4.7],Q̂(β0), q1−α(Fw̃n
) + (q1−α(Fw̃n

)− 1)


√

Φ̂1
1√
K

∑
i∈[n] Piie2i√

2
∑

i∈[K] w̃
2
i,n + 1/df

− 1


⇝ (χ2w∗ , q1−α(χ

2
w∗)),
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from which an application of Theorem 1.3.6 from the same reference yields

Q̂(β0)− q1−α(Fw̃n
)− (q1−α(Fw̃n

)− 1)


√

Φ̂1
1√
K

∑
i∈[n] Piie2i√

2
∑

i∈[K] w̃
2
i,n + 1/df

− 1

⇝ χ2w∗ − q1−α(χ
2
w∗);

applying Theorem 1.3.4(vi) of the same reference yields

lim
n→∞

Pλn

Q̂(β0)− q1−α(Fw̃n
)− (q1−α(Fw̃n

)− 1)


√

Φ̂1
1√
K

∑
i∈[n] Piie2i√

2
∑

i∈[K] w̃
2
i,n + 1/df

− 1

 > 0


= P

(
χ2w∗ > q1−α(χ

2
w∗)
)
= α

We have therefore shown that for fixed K, (B.1.18) is satisfied.

Diverging K: assume now that K → ∞. By Theorem B.4.2.1 we have

1√
K

∑
i∈[n] Piie

2
i√

Φ̂1

(
Q̂(β0)− 1

)
= Qe,e⇝ N (0, 1) (B.1.23)

Next, define I := σ
(
{w̃i,n}ni=1

)
n≥1

to be the sigma-field generated by the sequence of random

variables w̃i,n and s2n := 2
∑

i∈[K] w̃
2
i,n. Conditioning on I, we have

V ar(Fw̃n
− 1 | I) = E

∑
i∈[K]

w̃i,n(χ
2
1,i − 1)

 = s2n. (B.1.24)

Additionally, we have

lim
K→∞

Cmaxi w̃
2
i,n∑

i∈[n] w̃
2
i,n

= 0. (B.1.25)

To see (B.1.25), note that maxi w̃i,n = op(1) by Lemma B.2.3. Furthermore,
∑

i∈[K] w̃i,n = 1

by construction. Let maxi w̃i,n = θ0 for some 0 < θ0 < 1. Denote i∗ to be the index such
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that w̃i∗,n = maxi w̃i,n. As
∑

i̸=i∗ w̃i,n = 1− θ0, we have

∑
i∈[n]

w̃2
i,n =

∑
i̸=i∗

w̃2
i,n + w̃2

i∗,n =
∑
i̸=i∗

w̃2
i,n + θ20 ≥

∑
i ̸=i∗

(
1− θ0
K − 1

)2 + θ20 =
(1− θ0)

2

K − 1
+ θ20,

so that

maxi w̃
2
i,n∑

i∈[n] w̃
2
i,n

=
θ20∑

i∈[n] w̃
2
i,n

≤
θ20

θ20 +
(1−θ0)2

K−1

=
1

1 +
(1−θ0)2

θ20(K−1)

= o(1),

where the last equality follows from recalling Lemma B.2.3, i.e. θ20 = maxi w̃
2
i,n = op(K

−1),

so that

(1− θ0)
2

θ20(K − 1)
=

1 + o(1)

θ20(K − 1)
=

1 + o(1)

o(1)
→ ∞

Thus, by (B.1.25) we can obtain

lim
K→∞

1

s4n

∑
i∈[K]

E(w̃i,n(χ
2
1,i − 1))4 ≤ lim

K→∞

C
∑

i∈[n] w̃
4
i,n

s4n
≤ lim

K→∞

Cmaxi w̃
2
i,n

∑
i∈[n] w̃

2
i,n

(
∑

i∈[K] w̃
2
i,n)

2

= lim
K→∞

Cmaxi w̃
2
i,n∑

i∈[K] w̃
2
i,n

= 0. (B.1.26)

Since the Lyapunov condition (B.1.24) and (B.1.26) is satisfied, by the Lyapunov Central

Limit Theorem, conditional on I we have

Fw̃n
− 1√

2
∑

i∈[K] w̃
2
i,n + 1/df

(i)
=

√
2
∑

i∈[K] w̃
2
i,n√

2
∑

i∈[K] w̃
2
i,n + 1/df

Fw̃n
− 1√

2
∑

i∈[K] w̃
2
i,n

= (1 + op(1))
Fw̃n

− 1√
2
∑

i∈[K] w̃
2
i,n

⇝ N (0, 1). (B.1.27)

where (i) follows from observing that 1 =
∑

i∈[K] w̃i,n ≤ ||w̃n||F
√
K by cauchy-schwartz

inequality, so that 1
||w̃n||F df ≤

√
K
df = o(1) by assumption. Since the distributional convergence

in (B.1.27) holds for any sequence w̃i,n, then it must hold unconditionally by Lemma B.2.4.
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Hence, asymptotically, by (B.1.23) we have exact α-level size control whenever

1√
K

∑
i∈[n] Piie

2
i√

Φ̂1

(
Q̂(β0)− 1

)
> q1−α

 Fw̃n
− 1√

2
∑

i∈[K] w̃
2
i,n + 1/df

 .

We can rearrange this rejection criteria as

Q̂(β0) > 1 +

√
Φ̂1

1√
K

∑
i∈[n] Piie2i

· q1−α

 Fw̃n
− 1√

2
∑

i∈[K] w̃
2
i,n + 1/df

 ≡ Cα,df (Φ̂1(β0)),

implying that we have exact asymptotic size control for K → ∞. By an application of

Van der Vaart and Wellner (1996)[Example 1.4.7, Theorem 1.3.6, Theorem 1.3.4(vi)], as was

done previously for the fixed K case, we have (B.1.18). The proof of part I is complete.

Part II (bootstrap tests):

We can first establish that for any fixed sample size n, conditioning on data, for any

z ∈ R,

∑
ℓ∈[B] 1

{
ĴBS,ℓ ≤ z

}
B

p̂→ P̂L

∑i∈[n]
∑

j ̸=i Pijηiηj√
KΦBS,n

1 (β0)

≤ z

∣∣∣∣P̂
 (B.1.28)

as B → ∞, where we drop the dependence of ĴBS,ℓ on (e(β0),L, Φ̂1(β0)) for notational sim-

plicity;
p̂→ and PL(·|P̂ ) means convergence in probability and probability measure under the

law L conditioning on the data, respectively; ΦBS,n
1 (β0) :=

2
K

∑
i∈[n]

∑
j ̸=i P

2
ije

2
i (β0)e

2
j(β0);

random variables {ηi}i∈[n]
d∼ L. First observe that Φ̂BS,ℓ

1 (β0)
p̂→ ΦBS,n

1 (β0) by E(ηi|ei) = 0,

V ar(ηi|ei) = e2i , and the assumption that Φ̂1(β0) satisfies (2.2.12). Second, observe that{
ĴBS,ℓ

}
ℓ∈[B]

are i.i.d., so that (B.1.28) follows from the law of large numbers.

Fixed K case: Consider first when K is fixed. As in part I, we assume without loss

of generality that w̃n
p→ w∗ and wn → w∗ instead of over a sub-sequence. Since w̃n

p→ w∗

implies some sub-sequence converges almost-surely, we can assume w̃n
a.s.→ w∗ over the full
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Note that

Ĵ(β0, Φ̂1(β0)) =

∑
i∈[n] Piie

2
i (Q̂s(β0)− 1)√
KΦ̂1

=
Q̂(β0)− 1√

2||w∗||
+ op(1)⇝

∑
i∈[K]

w∗
i√

2||w∗||
(χ21,i − 1)

(B.1.29)

where the last equality follows from recalling from Part I that

√
KΦ̂1∑

i∈[n] Piie2i
=

√
2||w∗||+ op(1)

for the fixed K case; the weak convergence follows from (B.1.21). Next, we will show that

P-almost surely, for any z ∈ R,

P̂L

∑i∈[n]
∑

j ̸=i Pijηiηj√
KΦBS,n

1 (β0)

≤ z

∣∣∣∣P̂
→ P

∑
i∈[K]

w∗
i√

2||w∗||
(χ21,i − 1) ≤ z

 (B.1.30)

as n→ ∞. Conditional on data, Pλn
-almost surely we have∑

i∈[n]
∑

j ̸=i Pijηiηj√
KΦBS,n

1 (β0)

=

∑
i∈[n] Piiη

2
i√

KΦBS,n
1 (β0)

(
η′Pη∑

i∈[n] Piiη2i
− 1

)

(i)
=

∑
i∈[n] Piiη

2
i√

KΦBS,n
1 (β0)

∑
i∈[K]

w̃BS
i,n χ

2
1,i − 1

+ op̂(1)

(ii)
=
∑
i∈[K]

w̃BS
i,n√

2||w∗||
(χ21,i − 1) + op̂(1)

(iii)
=
∑
i∈[K]

w̃i,n√
2||w∗||

(χ21,i − 1) + op̂(1)

=
∑
i∈[K]

w∗
i,n√

2||w∗||
(χ21,i − 1) + op̂(1)

where (i) follows from Theorem 1 adapted to conditioning on data1, w̃BS
n := (w̃BS

1,n , ..., w̃
BS
K,n)

′

1Although Theorem 1 requires the fourth moment to be bounded from above, we
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are the eigenvalues of
(Z′ΛηZ)1/2(Z′Z)−1(Z′ΛηZ)1/2∑

i∈[n] Piiη2
i

and Λη := diag(η21, ..., η
2
n); (ii) follows from∑

i∈[n] Piiη
2
i√

KΦBS,n
1 (β0)

=
√
2||w̃n||+ op̂(1) =

√
2||w∗||+ op̂(1),

which is analogous to (B.1.22); (iii) follows from Lemma B.2.3 adapted to the conditioned

data, where there exists for every sub-sequence nj a further sub-sequence njk such that under

the null

max
i∈[K]

(w̃BS
i,njk

− w̃i,njk
)2 = op̂(1),

and we can assume without loss of generality that this holds under the full sequence. This

proves (B.1.30). Finally, by Vaart (1998)[Lemma 21.2], (B.1.30) implies

q1−α

∑i∈[n]
∑

j ̸=i Pijηiηj√
KΦBS,n

1 (β0)

 p̂→ q1−α

∑
i∈[K]

w∗
i,n√

2||w∗||
(χ21,i − 1)

 ,

so that conditioning on data and combining with (B.1.28) yields, WPA1 (with respect to

law L)

lim
n→∞

lim
B→∞

CB
α,dfBS

(Φ̂1(β0),L) = q1−α

∑
i∈[K]

w∗
i,n√

2||w∗||
(χ21,i − 1)

 ,

noting that dfBS = o(1). The preceding equation holds Pλn
-almost surely, so that by bounded

convergence theorem,

lim
n→∞

lim
B→∞

Pλn

(
Ĵ(β0, Φ̂1(β0)) > CB

α,dfBS
(Φ̂1(β0),L)

)
= α

note that supi∈N e4i < ∞ with probability greater than 1 − ε for any ε >
0. Therefore, following the arguments later on, we can prove a version of (B.1.19),

that is α(1 − ε) ≤ lim infnk→∞ limB→∞ Pλnk

(
Ĵ(β0, Φ̂1(β0)) > CB

α,dfBS
(Φ̂BS

1 (β0),L)
)

≤

lim supnk→∞ limB→∞ Pλnk

(
Ĵ(β0, Φ̂1(β0)) > CB

α,dfBS
(Φ̂BS

1 (β0),L)
)

≤ α(1 − ε) + ε. since ε > 0

was arbitrary, we have (B.1.19) itself. Hence we can assume without loss of generality that
supi∈N e4i < ∞ with probability one.
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This completes the proof of the fixed K case.

Diverging K: assume now that K → ∞. Then by Chao et al. (2012)[Lemma A2],

Ĵ(β0, Φ̂1(β0))⇝ N (0, 1) (B.1.31)

Furthermore, by applying Chao et al. (2012)[Lemma A2] conditioned on data, we have2

P̂L

∑i∈[n]
∑

j ̸=i Pijηiηj√
KΦBS,n

1 (β0)

≤ z

∣∣∣∣P̂
 p̂→ P (N (0, 1) ≤ z) , (B.1.32)

so that combining with (B.1.31), (B.1.28), using bounded convergence theorem and dfBS =

o(1) yields

lim
n→∞

lim
B→∞

Pλn

(
Ĵ(β0, Φ̂1(β0)) > CB

α,dfBS
(Φ̂1(β0),L)

)
= α

This completes the proof for the diverging K case.

B.1.3 Proof of Theorem 3

We first prove the first part of the statment. Note that (B.1.27) holds for any sequence of

∆n → ∆† not necessarily zero, i.e.

Fw̃n
− 1√

2
∑

i∈[K] w̃
2
i,n + 1/df

⇝ N (0, 1) (B.1.33)

Furthermore, our rejection criteria for the test under diverging K can be rewritten as

1√
K

∑
i∈[n]

Piie
2
i (β0)

(
Q̂(β0)− 1

)
>

√
Φ̂1(β0) · q1−α

 Fw̃n
− 1√

2
∑

i∈[K] w̃
2
i,n + 1/df

 (B.1.34)

2Note that the following equation holds true for any sequence of ∆n → ∆† not necessarily zero,

as long as Φ̂1(∆n)
p→ Φ1(∆

†), where we have rewritten the dependence of Φ̂1(·) on ∆n instead of
β0, so that β0 is seen as “moving” in this case.
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By (2.2.12), noting that

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i (β0)σ

2
j (β0) ≤

C

K

∑
i,j∈[n]

P 2
ij = C = O(1),

the estimator Φ̂1(β0) = Op(1). Therefore the right-hand-side of (B.1.34) is an Op(1) term.

The left-hand-side of (B.1.34) diverges to infinity for C → ∞ and fixed ∆ ̸= 0 by Theorem

B.4.2.2. The result of the first statement thus follow. For the second part of the statement,

note that (B.1.32) holds even under the alternative. Therefore, by (B.1.28), (B.1.32) and

dfBS = o(1), we have that P-almost surely,

lim
n→∞

lim
B→∞

CB
α,dfBS

(Φ̂1(β0),L)
p̂→ q1−α(N (0, 1)).

Combining with the fact that

Ĵ(β0, Φ̂1(β0)) =
1√

KΦ̂1(β0)

∑
i∈[n]

Piie
2
i (β0)

(
Q̂(β0)− 1

)
p→ ∞

by Theorem B.4.2.2 yields the second statement.

B.1.4 Proof of Theorem 4

By Theorem B.4.2.2,

1√
KΦ1(β0)

∑
i∈[n]

Piie
2
i (β0)(Q̂(β0)− 1)⇝ N

(
∆2C√
Φ1(β0)

, 1

)

Therefore, by (B.1.33), for fixed ∆ and any estimator Φ̂1(β0)
p→ Φ1(β0).

lim
n→∞

P
(
Q̂(β0) > Cα,df (Φ̂1(β0))

)
= lim

n→∞
P

 1√
KΦ̂1(β0)

∑
i∈[n]

Piie
2
i (β0)(Q̂(β0)− 1) > q1−α

 Fw̃n
− 1√

2
∑

i∈[K] w̃
2
i,n + 1/df


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= 1− F

q1−α(N (0, 1))− ∆2C√
Φ̂1(β0)


= 1− F

(
q1−α(N (0, 1))− ∆2C√

Φ1(β0)

)

Noting that ∆ = ∆̃ and C = C̃ completes the first part of the proof. For the second part of

the proof, it only remains to show that, P-almost surely,

lim
n→∞

lim
B→∞

CB
α,dfBS

(Φ̂1(β0),L)
p̂→ q1−α

(
N

(
∆2C√
Φ1(β0)

, 1

))
.

But this follows directly from (B.1.28), (B.1.32) and dfBS = o(1). Finally, we show that

Φ̂standard
1 (β0)

p→ Φ1(β0), (B.1.35)

Φ̂cf
1 (β0)

p→ Φ1(β0). (B.1.36)

in order to complete the last part of the proof. Recall from section 2.2.5 that

Dstandard(∆) =
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(2∆

2Π2
jσ

2
i (β0) + ∆4Π2

iΠ
2
j) → 0

by the assumption that Π′Π
K → 0, σ2i (β0) < C and

∑
j∈[n] P

2
ij = Pii ≤ 1. By (2.2.12) we

have (B.1.35). Furthermore, by Π′MΠ ≤ Π′Π
K → 0, (B.1.36) follows from Mikusheva and

Sun (2022)[Theorem 3].

B.1.5 Proof of Theorem 5

Note that Φ̂1(β0)
p→ Φ1(β0) by (2.2.12) and ∆ → 0. Furthermore, ∆2C√

Φ̂1(β0)
= ∆̃2C̃√

Φ1(β0)
+

o(1) = ∆̃2C̃√
Φ1(β0)

, so that by Theorem B.4.2.2 we have

1√
KΦ1(β0)

∑
i∈[n]

Piie
2
i (β0)(Q̂(β0)− 1)⇝ N

(
∆̃2C̃

Φ1/2(β0)
, 1

)
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Finally, by (B.1.33) we have

lim
n→∞

P
(
Q̂(β0) > Cα,df (Φ̂1(β0))

)
= lim

n→∞
P

 1√
KΦ̂1(β0)

∑
i∈[n]

Piie
2
i (β0)(Q̂(β0)− 1) > q1−α

 Fw̃n
− 1√

2
∑

i∈[K] w̃
2
i,n + 1/df


= 1− F

(
q1−α(N (0, 1))− ∆̃2C̃

Φ1/2(β0)

)
This proves the first part of the statement. For the second part of the statement, it only

remains to show that, P-almost surely,

lim
n→∞

lim
B→∞

CB
α,dfBS

(Φ̂1(β0),L)
p̂→ q1−α

(
N

(
∆2C√
Φ1(β0)

, 1

))
,

which follows directly from (B.1.28), (B.1.32) and dfBS = o(1).

B.1.6 Proof of Lemma 2.4.1

The proof is similar to the proof of Theorem 2. For completeness we will include the proof

here. Note that

(a) ||wn||2F · (
∑
i∈[n]

Piiσ
2
i (β0))

2 =
∑
i,j∈[n]

P 2
ijσ

2
i (β0)σ

2
j (β0)

(b)
∑
i∈[n]

P 2
iiσ

4
i (β0) ≤ CpnK = o(1)

(c) Φ̂1(β0) =
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i (β0)σ

2
j (β0) +D(∆) by assumption of (2.2.12)

Hence √
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)

(i)
=

√
2
K

∑
i∈[n]

∑
j ̸=i P

2
ijσ

2
i (β0)σ

2
j (β0) +Op(1)

1√
K

∑
i∈[n] Piiσ2i (β0) +Op(1)

+ op(1)
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(a),(b)
=

√
2||wn||F +Op(1) ≤

√
2||Dwn + ΛH ||F +

√
2||ΛH ||F +Op(1)

(ii)
=

√
2||Dwn + ΛH ||F +Op(1)

where (i) follows from (c) and Lemma B.2.1; ΛH is defined in Lemma B.2.3 and Dwn :=

diag(w1,n, ..., wK,n); (ii) follows from ||ΛH ||2F = ||ΩH(β0)||2F =
∆4 ∑

i,j∈[n] P
2
ijΠ

2
iΠ

2
j∑

i∈[K] Piiσ2
i (β0)

≤ ∆4CK
CK ≤

C. Furthermore, we have by Lemma B.2.3

||Dw̃n
−Dn − ΛH ||F = op(1)

where Dw̃n
:= diag(w̃1,n, ..., w̃K,n), so that

||w̃n||F = ||(Dw̃n
−Dn − ΛH) + ΛH +Dn||F = ||ΛH +Dn||F + op(1)

Putting it together we have

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n + 1/df

=

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)√

2||w̃n||2F + 1/df
≤

√
2||Dn + ΛH ||F +Op(1)√

2||w̃n||2F + 1/df

=

√
2||Dn + ΛH ||F +Op(1)√
2||ΛH +Dn||F + op(1)

p→ 1 +Op(1) = Op(1)

which completes the proof.

B.1.7 Proof of Lemma 2.4.2

We require a Theorem by Fleiss (1971):

Theorem 9. (Fleiss (1971)) Let {χ2ni,i
}Ki=1 be a sequence of mutually independent chi-squares

with ni-degrees of freedom. Define

Ti :=
χ2ni,i∑K
i=1 χ

2
ni,i

to be the ratio of chi-squares. Then for any non-negative constants a1, .., aK , conditional on
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{Ti}Ki=1, ∑
i∈[p]

aiχ
2
ni,i

d
= c1 · χ2∑

i∈[K] ni

where c1 :=
∑

i∈[K] aiTi

We denote Fℓ :=
{
w ∈ Ω : Tℓ = minℓ∈[K]Tℓ

}
for every ℓ ∈ [K]; furthermore P(

⋃
ℓ∈[K]Fℓ) =

1 and P(
⋂

ℓ∈[K]Fℓ) = 0. Then for any chosen non-negative (a1, ..., aK) such that
∑

ℓ∈[K] aℓ =

1 and for any x ∈ R+, we have

P
(
χ21,1 ≤ x ∩ F1|{Tℓ}ℓ∈[K]

)
= E

(
1χ2

1,1≤x1F1
|{Tℓ}ℓ∈[K]

)
= 1F1

P
(
χ21,1 ≤ x|{Tℓ}ℓ∈[K]

)
(i)
= 1F1

P
(
T1χ

2
K ≤ x

) (ii)

≤ 1F1
P

∑
ℓ∈[K]

aℓTℓ · χ2K ≤ x


(iii)
= 1F1

P

∑
ℓ∈[K]

aℓχ
2
1,ℓ ≤ x|{Tℓ}ℓ∈[K]

 = P

∑
ℓ∈[K]

aℓχ
2
1,ℓ ≤ x ∩ F1|{Tℓ}ℓ∈[K]


where (i) and (iii) follows from Theorem 9; (ii) follows from the fact that whenever ω ∈ F1,

T1 ≤
∑

ℓ∈[K] aℓTℓ since
∑

ℓ∈[K] aℓ = 1. Taking expectation on both sides of the equation

yield

P
(
χ21,1 ≤ x ∩ F1

)
≤ P

∑
ℓ∈[K]

aℓχ
2
1,ℓ ≤ x ∩ F1

 .

Note that {Fℓ}ℓ∈[K] are mutually disjoint except on a null set. Therefore

P(χ21,1 ≤ x)
(iii)

≤
∑
i∈[K]

P
(
χ21,i ≤ x ∩ Fi

)
≤
∑
i∈[K]

P

∑
ℓ∈[K]

aℓχ
2
1,ℓ ≤ x ∩ Fi

 = P

∑
ℓ∈[K]

aℓχ
2
1,ℓ ≤ x


where (iii) follows from 1Fi

χ21,i ≤ 1Fi
χ21,1 and

P(χ21,1 ≤ x) =
∑
i∈[K]

P
(
χ21,1 ≤ x ∩ Fi

)
≤
∑
i∈[K]

P
(
χ21,i ≤ x ∩ Fi

)
.
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Hence we can conclude that the distribution function of a chi-square is smaller than that of

a weighted-chi-square. This implies that

q1−α(χ
2
1) ≥ q1−α(

∑
ℓ∈[K]

aℓχ
2
1,ℓ)

B.1.8 Proof of Theorem 6

We begin by establishing some results: later on we will show that for any sequence of

∆n → ∆† with ∆† finite,

n−1/2((Z ′ẽ)′, (Z ′∆nṽ)
′)′⇝ (IK , IK)N

(
0,Σ(∆†)

)
(B.1.37)

where Σ(∆†) := limn→∞
1
n

∑
i∈[n] Λ0,i(∆n) ⊗ ZiZ

′
i. Furthermore, β0 := β0,n (since ∆n is

allowed to change) so that β0 is allowed to change with n; however we drop the notational

dependence on n and understand that this implicitly holds. Then we can obtain

e(β0)
′Pe(β0)

= (n−1/2Z ′ẽ+∆nn
−1/2Z ′ṽ +∆nn

−1/2Z ′Π)′
(
Z ′Z

n

)−1

(n−1/2Z ′ẽ+∆nn
−1/2Z ′ṽ +∆nn

−1/2Z ′Π)

⇝ ((IK , IK)N (0,Σ(∆†)) + ∆†µK)′Q−1
ZZ((IK , IK)N (0,Σ(∆†)) + ∆†µK) (B.1.38)

To show (B.1.38), note that by assumption 8 we have

1

n

∑
i∈[n]

E
(
((Ziẽi)

′, (∆nZiṽi)
′)′((Ziẽi)

′, (∆nZiṽi)
′)
)
=

1

n

∑
i∈[n]

Λ0,i(∆n)⊗ ZiZ
′
i → Σ(∆†).

Furthermore, for every η > 0

1

n

∑
i∈[n]

E
{
||(Ziẽi,∆nZiṽi)||2F 1{||(Ziẽi,∆nZiṽi)||F ≥ η

√
n}
}
→ 0.

The preceding equation follows from

{
E
{
||(Ziẽi,∆nZiṽi)||2F 1{||(Ziẽi,∆nZiṽi)||F ≥ η

√
n}
}}2

192



(i)

≤ E||(Ziẽi,∆nZiṽi)||4F · P
(
n−1/2||(Ziẽi,∆nZiṽi)|| ≥ η

)
(ii)

≤ C(1 + ∆†2)P
(
n−1/2||(Ziẽi,∆nZiṽi)||F ≥ η

)
+ o(1)

(iii)

≤ C(1 + ∆†2)
||Zi||2FE(ẽ2i +∆nṽ

2
i )

η2n
≤ C(1 + ∆n)

2

n
=
C(1 + ∆†)2

n
+ o(1)

where (i) follows from Cauchy-Schwartz inequality and (ii) follows from supi E||(Ziẽi,∆nZiṽi)||4F ≤
2 supi ||Zi||4F · E(ẽ4i +∆2

nṽ
4
i ) ≤ C(1 +∆2

n) ≤ C(1 +∆†2) + o(1) <∞, by assumption 6 and 8;

(iii) follows from Markov-inequality. We can then apply the Lindeberg-Feller Central-Limit-

Theorem to obtain (B.1.38). Furthermore, note that∑
i∈[n]

Piie
2
i (β0)

−1

≥ C(1 + ∆† +∆†2)−1 + op(1) (B.1.39)

for some C > 0. To see (B.1.39), first denote σ2i (∆
†) := σ2i (β̃0), where ∆† = β − β̃0. Then

observe that ∑
i∈[n]

Piie
2
i (β0))

(i)
=

1

K

∑
i∈[n]

Piiσ
2
i (β0) +

∆2
n

K

∑
i∈[n]

PiiΠ
2
i + op(1 + ∆n)

(ii)

≤ 1

K

∑
i∈[n]

Piiσ
2
i (β0) + ∆2

nmax
i

Π2
i + op(1 + ∆n)

(iii)

≤ C(1 + ∆n) + C∆2
n + op(1 + ∆n)

≤ C(1 + ∆n +∆2
n) + op(1 + ∆n)

(iv)
= C(1 + ∆† +∆†2) + op(1)

where (i) follows from Lemma B.2.1; (ii) follows from
∑

i∈[n] Pii = K; (iii) follows from

maxi σ
2
i (β0) ≤ maxi(σ̃

2
i + ∆2

nζ̃
2
i + 2∆nγ̃i) ≤ C(1 + ∆n) and maxiΠ

2
i ≤ Π′Π ≤ C; for (iv),

note that op(1 + ∆n) − op(1 + ∆†) = op(1); hence (B.1.39) is shown. We are now ready to

prove our result.
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Let ∆n = ∆† = ∆. Then

(IK , IK)N (0,Σ) + ∆µK = d−1
n (dn(IK , IK)N (0,Σ) + ∆dnµK) = d−1

n (op(1) + ∆dnµK) ,

so that WPA1,

(op(1) + ∆dnµK)′Q−1
ZZ(op(1) + ∆dnµK) ≥ mineig(Q−1

ZZ) ·∆
2d2nµ

′
KµK

= mineig(Q−1
ZZ) ·∆

2d2nµ̃
2
n = mineig(Q−1

ZZ) ·∆
2µ̃2 > 0.

Therefore, WPA1, the last line of (B.1.38) diverges to ∞, as d−1
n → ∞. By (B.1.38) and

(B.1.39) we have

Q̂(β0) ≥ Ce(β0)
′Pe(β0) + op(1) → ∞.

Furthermore, by lemma 2.4.2 we know that q1−α(Fw̃n
) = Op(1); by lemma 2.4.1 and (B.1.20),

we have

P
(
Q̂(β0) > Cα,df (Φ̂1(β0))

)
= P

Q̂(β0) > q1−α(Fw̃n
) + (q1−α(Fw̃n

)− 1)


√

Φ̂1(β0)
1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n + 1/df

− 1




= P
(
Q̂(β0) > Op(1)

)
= 1

This completes the proof for the first part for the statement of Theorem 6. For the second

part, WPA1,

Ĵ(β0, Φ̂1(β0)) =
1√

KΦ̂1(β0)

∑
i∈[n]

Piie
2
i (β0)

(
Q̂(β0)− 1

)
→ ∞ (B.1.40)

by Q̂(β0) → ∞ and WPA1,∑
i∈[n] Piie

2
i (β0)√

KΦ̂1(β0)

(i)

≥

∑
i∈[n] Piiσ

2
i (β0)√

KΦ̂1(β0)

(ii)

≥
C
∑

i∈[n] Pii
√
KC1

≥ C
√
K√
C1

> 0

where (i) follows from Lemma B.2.1; (ii) follows from assumption 6 and Φ̂1(β0) ≤ C1 for
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some C1 > 0 WPA1. Furthermore, by (B.1.28) and (B.1.32), P-almost surely,

lim
n→∞

lim
B→∞

CB
α,dfBS

(Φ̂1(β0),L)
p̂→ q1−α

(
N

(
∆2C√
Φ1(β0)

, 1

))
,

so that combining with (B.1.40) yields the second statement of Theorem 6.

B.1.9 Proof of Theorem 7

Note that we have dnµK = µ̃ and ∆ = ∆n = dn∆̃ → 0. Then by (B.1.37), ∆nn
−1/2Z ′ṽ =

op(1), whence

e(β0)
′Pe(β0) = (n−1/2Z ′ẽ+∆nn

−1/2Z ′Π)′
(
Z ′Z

n

)−1

(n−1/2Z ′ẽ+∆nn
−1/2Z ′Π) + op(1)

= (n−1/2Z ′ẽ+ ∆̃µ̃)′
(
Z ′Z

n

)−1

(n−1/2Z ′ẽ+ ∆̃µ̃) + op(1)

Furthermore, by Lemma B.2.1, pn
Π′Π
K = O(1) and ∆ → 0, we have

1

K

∑
i∈[n]

Piie
2
i (β) =

1

K

∑
i∈[n]

Piiσ
2
i (β) + op(1) =

1

K

∑
i∈[n]

Piiσ̃
2
i + op(1)

where β is the true parameter. Therefore we have

Q̂(β0) =
(n−1/2Z ′ẽ+ ∆̃µ̃)′

(
Z′Z
n

)−1

(n−1/2Z ′ẽ+ ∆̃µ̃)∑
i∈[n] Piiσ̃2i

+ op(1)

=
(
(Z ′Λ0Z)

−1/2Z ′ẽ+ (n−1Z ′Λ0Z)
−1/2∆̃µ̃

)′
Ω(β)

(
(Z ′Λ0Z)

−1/2Z ′ẽ+ (n−1Z ′Λ0Z)
−1/2∆̃µ̃

)
+ op(1)

⇝

(
N (0, IK) + Σ(0)∆̃µ̃

)′

Ω∗(β)

(
N (0, IK) + Σ(0)∆̃µ̃

)
= ZK

(
Σ(0)∆̃µ̃

)′
Ω∗(β)ZK

(
Σ(0)∆̃µ̃

)
(B.1.41)
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where Ω(β) is defined in (2.2.6), Λ0 := diag(Λ0,1, ...,Λ0,n) and the convergence follows from

(B.1.37) and Ω∗(β) := limn→∞Ω(β). Next, we deal with the critical value. If we show that

w̃n
p→ w∗ and

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n + 1/df

p→ 1, (B.1.42)

then by (B.1.41) and (B.1.20) we can obtain

lim
n→∞

P
(
Q̂(β0) > Cα,df (Φ̂1(β0))

)
= P

(
ZK

(
Σ(0)∆̃µ̃

)′
Ω∗(β)ZK

(
Σ(0)∆̃µ̃

)
> q1−α(Fw∗)

)
,

which completes the first part of the proof. Note that by Lemma B.2.1, since ∆ → 0, we

have

Φ̂1(β0) =
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij σ̃

2
i σ̃

2
j + op(1)

Repeating the proof of Lemma 2.4.1 yields√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)

=
√
2||wn||F + op(1)

By Lemma B.2.3 we have that

max
i∈[K]

(w̃i,n − wn)
2 = op(1)

Finally,

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n + 1/df

=

√
2||wn||F√

2||w̃n||2F + 1/df
+ op(1) =

√
2||wn||F√
2||w̃n||F

+ op(1)
p→ 1,

where the last equality follows by recalling from (B.1.27) that

||w̃n||
||w̃n||+ 1/df

= 1 + op(1).
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Therefore, together with the assumption that wn → w∗ (which holds as limn→∞Ω(β0) →
Ω∗(β0)), (B.1.42) is shown. This proves the first statement of the theorem. To prove the

second part of the theorem, note that Φ̂1(β0)
p→ Φ1(β0) by (2.2.12). Furthermore, observe

that by (B.1.41) and Lemma B.2.1,

Ĵ(β0, Φ̂1(β0)) =
1√

KΦ̂1(β0)

∑
i∈[n]

Piie
2
i (β0)

(
Q̂(β0)− 1

)
=

∑
i∈[n] Piiσ

2
i (β0)√

KΦ1(β0)

(
Q̂(β0)− 1

)
+ op(1)

=
1√

2||wn||

(
Q̂(β0)− 1

)
+ op(1)⇝

ZK

(
Σ(0)∆̃µ̃

)′
Ω∗(β)ZK

(
Σ(0)∆̃µ̃

)
− 1

√
2||w∗||

(B.1.43)

where the last equality follows from the proof of Lemma 2.4.1. Finally, by (B.1.28) and

(B.1.30) we have P-almost surely,

lim
n→∞

lim
B→∞

CB
α,dfBS

(Φ̂1(β0),L)
p̂→ q1−α

∑
i∈[K]

w∗
i√

2||w∗||
(χ21,i − 1)

 ,

so that combing with (B.1.43) yields the second statement of Theorem 7.

B.1.10 Proof of Corollary 2.4.1

The result is a straightforward application of Marden (1982)[Theorem 2.1], by observing

that the acceptance region A := {(a1, ..., aK) ∈ RK
+ :

∑
i∈[K] aiw

∗
i ≤ q1−α(

∑
i∈[K]w

∗
i χ

2
1,i)}

is convex and monotone decreasing in the sense that if (a1, ..., aK) ∈ A and bi ≤ ai for all i,

then b ∈ A

B.1.11 Proof of Theorem 8:

We prove the first statement of Theorem 8 first. Begin by noting that ∆ = ∆̃ and µK = µ̃.

Defining An := n−1/2Z ′ẽ+ ∆̃n−1/2Z ′ṽ, Vn := EAnA′
n and Yn :=

∆̃2 ∑
i∈[n] PiiΠ

2
i∑

i∈[n] Piiσ2
i (β0)

, we have

Q̂(β0)
(i)
=

(An + µ̃)′(Z
′Z
n )−1(An + µ̃)∑

i∈[n] Piiσ2i (β0) + ∆̃2
∑

i∈[n] PiiΠ2
i + op(1)
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(ii)
= (V−1/2

n An + V−1/2
n µ̃)′

Z ′Λ(β0)PΛ(β0)Z∑
i∈[n] Piiσ2i (β0) + ∆̃2

∑
i∈[n] PiiΠ2

i

(V−1/2
n An + V−1/2

n µ̃) + op(1)

= (1 + Yn)
−1(V−1/2

n An + V−1/2
n µ̃)′

Z ′Λ(β0)PΛ(β0)Z∑
i∈[n] Piiσ2i (β0)

(V−1/2
n An + V−1/2

n µ̃) + op(1)

(iii)
= (1 + Yn)

−1(V−1/2
n An + V−1/2

n µ̃)′Ω(β0)(V
−1/2
n An + V−1/2

n µ̃) + op(1)

(iv)
⇝ (1 + Yn)

−1
(
N (0, IK) + Σ(∆̃)µ̃

)′
Ω∗(β0)

(
N (0, IK) + Σ(∆̃)µ̃

)
(B.1.44)

where (i) follows from Lemma B.2.1; (ii) follows by recalling that

Λ(β0) := diag
(
(σ̃21 + 2∆̃γ̃1 + ∆̃2ζ̃2i ), ..., (σ̃

2
n + 2∆̃γ̃n + ∆̃2ζ̃2n)

)
;

(iii) follows from definition (2.2.6); (iv) follows from (B.1.37). To deal with the critical-value,

note that by Lemma B.2.3 we have that

max
i∈[K]

(w̃i,n − wn − λHi,n)
2 = op(1)

so that

||w̃n||2F = ||wn + ΛH ||2F + op(1) = ||wn||2F +
∆̃2
∑

i∈[n] PiiΠ
2
i∑

i∈[n] Piiσ2i (β0)
+ 2w′

nΛ
H + op(1)

= ||wn||2F + Yn + 2w′
nΛ

H + op(1) (B.1.45)

where ΛH = (λH1,n, ..., λ
H
K,n) is defined in Lemma B.2.3. Furthermore,√

Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)

(i)
=

√
2
K

∑
i∈[n]

∑
j ̸=i P

2
ijσ

2
i (β0)σ

2
j (β0)

1√
K

∑
i∈[n] Piiσ2i (β0) +

∆̃2√
K

∑
i∈[n] PiiΠ2

i

+ op(1)

(ii)
=

√
2
K

∑
i,j∈[n] P

2
ijσ

2
i (β0)σ

2
j (β0)

1√
K

∑
i∈[n] Piiσ2i (β0) +

∆̃2√
K

∑
i∈[n] PiiΠ2

i

+ op(1)

=

√
2
K

∑
i,j∈[n] P

2
ijσ

2
i (β0)σ2

j (β0)

1√
K

∑
i∈[n] Piiσ2

i (β0)

1 +
∆̃2

∑
i∈[n] PiiΠ2

i∑
i∈[n] Piiσ2

i (β0)

+ op(1)
(iii)
=

√
2||wn||F
1 + Yn
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where (i) follows from Lemma B.2.1 and (c) in the proof of Lemma 2.4.1; (ii) follows from

(b) in the proof of Lemma 2.4.1; (iii) follows from (a) in the proof of Lemma 2.4.1. Therefore

we have

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n + 1/df

(i)
=

||wn||F
(1 + Yn)

(√
||wn||2F + Yn + 2w′

nΛ
H + 1/df

) + op(1)

(ii)
=

||w∗||F√
||w∗||2F + 2w∗′ΛH

+ op(1). (B.1.46)

where (i) follows from (B.1.45); (ii) follows from ||wn − w∗||F = o(1), 1/df = o(1), and

Yn :=
∆̃2
∑

i∈[n] PiiΠ
2
i∑

i∈[n] Piiσ2i (β0)

(iii)

≤
∆̃2pn

∑
i∈[n]Π

2
i∑

i∈[n] Pii
=

∆̃2pnΠ
′Π

K

(iv)
= o(1);

(iii) follows from σ2i (β0) ≥ C > 0 by assumption 6, (iv) follows from Π′Π = O(1) and
pn
K = o(1) by assumption 6. Furthermore, we can show that

ΛH = (n−1Z ′Z)−1/2Z
′HnZ

n
(n−1Z ′Z)−1/2 → 0, (B.1.47)

which follows from

λmax

(
Z ′HnZ

n

)
= ∆̃2λmax

 1

n

∑
i∈[n]

ZiZ
′
iΠ

2
i

 ≤ ∆̃2

n

∑
i∈[n]

λmax

(
ZiZ

′
iΠ

2
i

)
≤ ∆̃2

n

∑
i∈[n]

Π2
i ||Zi||2F

(i)

≤ C∆̃2Π
′Π

n
= o(1)

where (i) follows from supi ||Zi||F <∞ by assumption 8. Therefore, combining (B.1.46) and

(B.1.47) yields

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n + 1/df

p→ 1 (B.1.48)
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Finally, since λHi,n → 0 and maxi∈[K](w̃i,n−wn−λHi,n)2 = op(1), we have ||w̃n−wn||2F = op(1).

This implies

q1−α(Fw̃n
) = q1−α(Fwn) + op(1)

p→ q1−α(Fw∗)

In view of the preceding equation, (B.1.44), (B.1.48) and (2.2.9), we have the first statement

of Theorem 8. For the second statement, note that we just showed√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)

=
√
2||w∗||+ op(1)

Therefore by (B.1.44) and Yn = o(1), we have

Ĵ(β0, Φ̂1(β0)) =
1√

KΦ̂1(β0)

∑
i∈[n]

Piie
2
i (β0)

(
Q̂(β0)− 1

)
=

1√
2||w∗||

(
Q̂(β0)− 1

)
+ op(1)

⇝
ZK

(
Σ(∆̃)µ̃

)′
Ω∗(β0)ZK

(
Σ(∆̃)µ̃

)
− 1

√
2||w∗||

(B.1.49)

Next, by (B.1.28) and (B.1.30) we have P-almost surely,

lim
n→∞

lim
B→∞

CB
α,dfBS

(Φ̂1(β0),L)
p̂→ q1−α

∑
i∈[K]

w∗
i√

2||w∗||
(χ21,i − 1)

 ,

so that combining with (B.1.49) yields the second statement of Theorem 8. Finally, the last

part of the theorem is shown in exactly the same way as the last part of the proof of Theorem

4.

B.1.12 Proof of Corollary 2.4.2

Repeat the proof of corollary 2.4.1 and replace Mi by Mi for each i
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B.2 Proofs for Technical Lemmas

Lemma B.2.1. Under Assumption 5 and 6, for any fixed ∆ := β − β0 not necessarily zero,

1

K

∑
i∈[n]

Piie
2
i (β0) =

1

K

∑
i∈[n]

Piiσ
2
i (β0) +

∆2

K

∑
i∈[n]

PiiΠ
2
i + op(1),

where ∆2

K

∑
i∈[n] PiiΠ

2
i = Op(∆

2pn
Π′Π
K )

Proof of Lemma B.2.1:

To begin, recall

σ2i (β0) = σ̃i
2
+∆2ς̃2i + 2∆γ̃i (B.2.1)

Furthermore,

e2i (β0) = (ei +∆Xi)
2 = ((MW

i )′ẽ+∆Πi +∆vi)
2

= ((MW
i )′ẽ)2 + 2∆Πi(M

W
i )′ẽ+ 2∆vi(M

W
i )′ẽ+∆2Π2

i + 2∆2Πivi +∆2v2i

= Ai,1 + 2∆Ai,2 + 2∆Ai,3 +∆2Ai,4 + 2∆2Ai,5 +∆2Ai,6 (B.2.2)

We will show that

1

K

∑
i∈[n]

Pii(Ai,1 − σ̃2i ) = Op

(√
pn
K

+
√
pWn

)
(B.2.3)

1

K

∑
i∈[n]

PiiAi,2 = Op(

√
pn
K

), (B.2.4)

1

K

∑
i∈[n]

Pii(Ai,3 − γ̃i) = Op(

√
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+
√
pWn )), (B.2.5)

1
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∑
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PiiAi,4 = Op(∆
2pn

Π′Π

K
) (B.2.6)

1

K

∑
i∈[n]

PiiAi,5 = Op(

√
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K

+ pWn ). and (B.2.7)
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1

K

∑
i∈[n]

Pii(Ai,6 − ς̃2i ) = Op(

√
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K

+
√
pWn ) (B.2.8)

Observe that
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we have B2 = Op(
√
pWn ). Also,

EB3 =
1
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∑
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(PW
ij )2σ̃2i ≤ C

K

∑
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PiiP
W
ii ≤ CpWn = O(pWn )

so that putting it all together yields (B.2.3). Next, we can express Ai,2 = Πiẽi−Πi(P
W
i )′ẽ ≡
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Ai,2,1 + Ai,2,2. By Markov inequality,
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8 ≤ C

K2

∑
i,i′∈[n]

PiiPi′i′(
∑
j∈[n]

∑
j′∈[n]

(PW
ij )2(PW

ij′ )
2 +

∑
j∈[n]

(PW
ij )4) ≤ C(pWn )2

K2
(
∑
i∈[n]

Pii)
2 = O((pWn )2)

we have (B.2.5). Next, (B.2.6) is obvious. For (B.2.7), noting that vivi′ = ṽiṽi′+
∑

ℓ∈[n] P
W
iℓ ṽℓ

∑
ℓ∈[n] P

W
i′ℓ ṽℓ−
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∑
ℓ∈[n] P

W
i′ℓ ṽℓṽi −

∑
ℓ∈[n] P

W
iℓ ṽℓṽi′ , we have

E(
1

K

∑
i∈[n]

PiiAi,5)
2 =

C

K2

∑
i,i′∈[n]

PiiΠiPi′i′Πi′E(vivi′)

≤ C

K2

∑
i∈[n]

P 2
iiΠ

2
i +

C

K2

∑
i,i′∈[n]

Pii|Πi|Pi′i′ |Πi′ |
∑
ℓ∈[n]

|PW
iℓ P

W
i′ℓ |+

C

K2

∑
i,i′∈[n]

Pii|Πi|Pi′i′|Πi′ ||PW
i′i |

≤ C
pn
K2

∑
i∈[n]

Pii +
C

K2

∑
i,i′∈[n]

PiiPi′i′

√∑
ℓ∈[n]

(PW
iℓ )2

√∑
ℓ∈[n]

(PW
i′ℓ )

2 + CpWn

≤ C
pn
K

+ CpWn + CpWn = O(
pn
K

+ pWn )

Finally we deal with (B.2.8). Since v2i = ṽ2i − 2
∑

j∈[n] P
W
ij ṽiṽj + (

∑
j∈[n] P

W
ij ṽi)

2, we have

1

K

∑
i∈[n]

Pii(Ai,6 − ς̃2i ) =
1

K

∑
i∈[n]

Pii(ṽ
2
i − ς̃2i )−

2

K

∑
i∈[n]

Pii

∑
j∈[n]

PW
ij ṽiṽj +

1

K

∑
i∈[n]

Pii(
∑
j∈[n]

PW
ij ṽi)

2

= B9 +B10 +B11

Observe B9 = Op(
√

pn
K ) by

E

 1

K

∑
i∈[n]

Pii(ṽ
2
i − ς̃2i )

2

≤ C

K2

∑
i∈[n]

P 2
ii = O(

pn
K

).

Furthermore, similar to (B.2.9) we have

EB2
10 ≤ CpWn = O(pWn )

and

EB11 ≤
C

K

∑
i∈[n]

Pii

∑
j∈[n]

(PW
ij )2 ≤ CpWn = O(pWn )

This completes the proof of (B.2.8). By the assumption of pn
K = o(1) and pWn = o(1), each

term from (B.2.3)-(B.2.8) except (B.2.6) is op(1). Hence Lemma B.2.1 is shown.
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Lemma B.2.2. Suppose Assumption 5 and 6 holds. Then for fixed ∆ not necessarily zero,

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ije

2
i (β0)σ

2
j (β0) =

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i (β0)σ

2
j (β0) +

∆2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠ

2
iσ

2
j (β0) + op(1)

Proof of Lemma B.2.2:

Step 1: We first show that

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ije

2
iσ

2
j (β0) =

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i σ

2
j (β0) + op(1) (B.2.10)

Note σ2i = σ̃2i , so we can express

e2i − σ2i =
(
ẽ2i − σ̃2i

)
− 2

∑
j∈[n]

PW
ij ẽj ẽi + (

∑
j∈[n]

PW
ij ẽj)

2

= Ci,1 + Ci,2 + Ci,3.

Therefore

E

 1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
j (β0)(Ci,1 + Ci,2 + Ci,3)

2

=
1

K2

3∑
ℓ=1

3∑
ℓ′=1

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′σ

2
j (β0)σ

2
j′(β0)E(Ci,ℓCi′,ℓ′)

≡ 1

K2

3∑
ℓ=1

3∑
ℓ′=1

Bℓ,ℓ′

We will show that 1
K2Bℓ,ℓ′ = o(1) for each ℓ, ℓ′ ∈ {1, 2, 3}, which will complete the proof by

Markov inequality. First,

1

K2
B1,1 =

1

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′σ

2
j (β0)σ

2
j′(β0)E(Ci,1Ci′,1)

=
1

K2

∑
i∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
ij′σ

2
j (β0)σ

2
j′(β0)EC

2
i,1 ≤

C

K2
pnK = o(1)
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where the inequality is from

EC2
i,1 = E(ẽ2i − σ̃2i )

2 ≤ Eẽ4i + σ̃4i ≤ C

Second,

1

K2
B1,2 =

1

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′σ

2
j (β0)σ

2
j′(β0)E(ẽ

2
i − σ̃2i )(

∑
k∈[n]

PW
i′k ẽkẽi′))

≤ C

K2

∑
i∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
ij′σ

2
j (β0)σ

2
j′(β0)P

W
ii ≤ CpWn

K2

∑
i∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
ij′ ≤ CpWn = o(1),

Third, note that

Ci,3 =
∑
j ̸=i

(PW
ij )2ẽ2j +

∑
j ̸=i

∑
k ̸=i,j

PW
ij P

W
kj ẽj ẽk (B.2.11)

so

1

K2
B1,3 =

1

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′σ

2
j (β0)σ

2
j′(β0)E

(ẽ2i − σ̃2i )(
∑
k ̸=i′

(PW
i′k )

2ẽ2k)


+

1

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′σ

2
j (β0)σ

2
j′(β0)E

(ẽ2i − σ̃2i )(
∑
k ̸=i′

∑
k′ ̸=i′,k

PW
i′kP

W
k′kẽkẽk′)


=

1

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′σ

2
j (β0)σ

2
j′(β0)E

(ẽ2i − σ̃2i )(
∑
k ̸=i′

(PW
i′k )

2ẽ2k)


≤ CpWn )

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′ ≤ CpWn = o(1).

Fourth, the proof that 1
KB2,1 = op(1) is analogous to that of 1

KB1,2 = op(1). Fifth, using

the simple inequality of |ab| ≤ 1
2a

2 + 1
2b

2

1

K2
B2,2 =

4

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′σ

2
j (β0)σ

2
j′(β0)E

(
∑
k∈[n]

PW
ik ẽkẽi)(

∑
k∈[n]

PW
i′k ẽkẽi′)


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≤ 4

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′σ

2
j (β0)σ

2
j′(β0)E

(
∑
k∈[n]

PW
ik ẽkẽi)

2

≤ C

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′(
∑
k ̸=i

(PW
ik )2 ≤ CpWn = o(1).

Sixth,

1

K2
B2,3

(B.2.11)
=

1

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′σ

2
j (β0)σ

2
j′(β0)E

(
∑
k ̸=i

PW
ik ẽkẽi)(

∑
k ̸=i′

(PW
i′k )

2ẽ2k


+

1

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′σ

2
j (β0)σ

2
j′(β0)E

(
∑
ℓ̸=i

PW
iℓ ẽℓẽi)(

∑
k ̸=i′

∑
k′ ̸=i′,k

PW
i′kP

W
k′kẽkẽk′)


≤ C

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′σ

2
j (β0)σ

2
j′(β0)P

W
ii

+
C

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′σ

2
j (β0)σ

2
j′(β0)

∑
ℓ̸=i

(|PW
iℓ P

W
i′ℓ P

W
iℓ |+ (PW

iℓ )2|PW
ii′ |)

≤ CpWn
K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′ ≤ CpWn = o(1).

Seventh, the proof that 1
KB3,1 = op(1) is analogous to that of 1

KB1,3 = op(1). Eighth, that
1
KB3,2 = op(1) is analogous to that of 1

KB2,3 = op(1). Finally, using 2|ab| ≤ a2 + b2,

1

K2
B3,3 ≤

C

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′E

(
∑
k∈[n]

PW
ik ẽk)

2(
∑
k∈[n]

PW
i′k ẽk)

2


≤ C

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′

∑
k∈[n]

∑
k′∈[n]

(PW
ik )2(PW

i′k′)2 +
∑
k∈[n]

∑
k′∈[n]

|PW
ik P

W
i′kP

W
ik′PW

i′k′ |


≤ C(pWn )2

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i

P 2
ijP

2
i′j′ ≤ C(pWn )2 = o(1)

The proof of (B.2.10) is complete.

207



Step 2: We complete the proof.

Note that we can write ei(β0) = e2i +∆2(Π2
i + v2i + 2Πivi) + 2∆viei + 2∆Πiei, so

e2i (β0)− σ2i (β0) = (e2i − σ̃2i ) + ∆2(v2i − ς̃2i ) + 2∆Πivi + 2∆Πiei + 2∆(viei − γ̃i) + ∆2Π2
i

Note that by the same proof as step 1, we have

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijv

2
i σ

2
j (β0) =

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ij ς̃

2
i σ

2
j (β0) + op(1) (B.2.12)

and

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijvieiσ

2
j (β0) =

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ij γ̃iσ

2
j (β0) + op(1) (B.2.13)

Finally, we will show that

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
j (β0)Πiei = op(1) (B.2.14)

and

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
j (β0)Πivi = op(1) (B.2.15)

We will only show (B.2.14) since (B.2.15) follows the same proof. By the inequality (a+b)2 ≤
2a2 + 2b2 and ei = ẽi − (PW

i )′ẽ, we have

E

 1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
j (β0)Πiei

2

≤ 2E

 1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
j (β0)Πiẽi

2

+ 2E

 1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
j (β0)Πi(P

W
i )′ẽ

2

≡ A1 + A2
(i)
= o(1),
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where (i) follows from

A1 ≤
C

K2

∑
i,j,j′∈[n]

P 2
ijP

2
ij′ ≤

Cpn
K

= o(1)

and

A2 ≤
C

K2

∑
i,i′,j,j′

P 2
ijP

2
i′j′

∑
ℓ∈[n]

|PW
iℓ P

W
i′ℓ |

(ii)

≤ CpWn
K2

∑
i,i′,j,j′

P 2
ijP

2
i′j′ = CpWn = o(1)

where (ii) follows from Cauchy-Schwartz inequality. Therefore, by Markov inequality we

have (B.2.14). Combining (B.2.10)-(B.2.15) yields Lemma B.2.2

Lemma B.2.3. Suppose Assumption 5, 6 and 7 holds. Fix any ∆ not necessarily zero. For

either fixed or diverging K, consider any sub-sequence nj ⊂ n. Then there exists a further

sub-sequence njk ⊂ nj such that

max
i∈[K]

(w̃i,njk
− wi,njk

− λHi,njk
)2 = op(1)

where ΛH = (λH1,n, ..., λ
H
K,n) are the eigenvalues of ΩH(β0) :=

U ′HnU∑
i∈[n] Piiσ2

i (β0)
, Hn := diag(T1,n, ..., Tn,n)

and Ti,n := ∆2Π2
i . Furthermore,

(i) for K → ∞, maxi w̃i,n = o(K−1/2);

(ii) for fixed K, if wn converges to a limit under the full-sequence (i.e. ||wn−w∗||F = o(1)),

then

max
i∈[K]

(w̃i,n − wi,n − λHi,n)
2 = op(1)

Proof of Lemma B.2.3:

For notational simplicity, we abuse notation and write Ti ≡ Ti,n. Furthermore, we write
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Λ̂(β0) and Λ(β0) as Λ̂ and Λ respectively. Note that for both fixed and diverging K, we have

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
i (β0)− σ2i (β0)− Ti)(e

2
j(β0)− σ2j (β0)− Tj) = op(1) (B.2.16)

where the last equality follows from

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
i (β0)− σ2i (β0)− Ti)(e

2
j(β0)− σ2j (β0)− Ti) =

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
i (β0)− Ti)(e

2
j(β0)− Tj)

+
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i (β0)σ

2
j (β0)−

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
i (β0)− Ti)σ

2
j (β0)−

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
j(β0)− Tj)σ

2
i (β0)

(i)
= 2Φ1 −

4

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
i (β0)− Ti)σ

2
j (β0) + op(1)

(ii)
= 2Φ1 − 2Φ1 + op(1) = op(1)

where (i) follows from noting that by repeating the proof of Theorem B.3.0.1, we can show

that

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
i (β0)− Ti)(e

2
j(β0)− Tj) =

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i (β0)σ

2
j (β0) + op(1) = Φ1 + op(1);

(ii) follows from noting that by repeating the proof of Step 2 in Lemma B.2.2, we can show

in a similar manner that

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
i (β0)− Ti)σ

2
j (β0) = Φ1 + op(1).

Fixed K case: Assume first that K is fixed. Then we have

1

K

∑
i∈[n]

∑
j∈[n]

P 2
ij(e

2
i (β0)− σ2i (β0)− Ti)(e

2
j(β0)− σ2j (β0)− Tj)

=
1

K

∑
i∈[n]

∑
j∈[n]

P 2
ij(e

2
i (β0)− σ2i (β0)− Ti)(e

2
j(β0)− σ2j (β0)− Tj)

+
1

K

∑
i∈[n]

P 2
iiE(e

2
i (β0)− σ2i (β0)− Ti)

2 = op(1)
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where the last equality follows from (B.2.16) and

1

K

∑
i∈[n]

P 2
iiE(e

2
i (β0)− σ2i (β0))

2 ≤ C

K

∑
i∈[n]

P 2
ii ≤ Cpn =

pn
K
K = o(1)

for fixed K. Therefore

||U ′Λ̂U − U ′ΛU − U ′HnU ||2F = E||U ′(Λ̂− Λ−Hn)U ||2F
= Etrace(U ′(Λ̂− Λ−Hn)UU

′(Λ̂− Λ−Hn)U)

= trace

(Z ′Z)−1/2
∑
i∈[n]

ZiZ
′
i(e

2
i (β0)− σ2i (β0)− Ti)(Z

′Z)−1
∑
j∈[n]

ZiZ
′
i(e

2
j(β0)− σ2j (β0)− Tj)(Z

′Z)−1/2


=
∑
i∈[n]

∑
j∈[n]

P 2
ij(e

2
i (β0)− σ2i (β0)− Ti)(e

2
j(β0)− σ2j (β0)− Tj) = op(1),

which gives us

||U ′Λ̂U − U ′ΛU − U ′HnU ||F = op(1) (B.2.17)

Then we have

||Ω̂s,n(β0)− Ωs,n(β0)− ΩH(β0)||2F =

∣∣∣∣∣
∣∣∣∣∣
∑

i∈[n] Piiσ
2
i (β0) · U ′(Λ̂−Hn)U −

∑
i∈[n] Piie

2
i (β0)U

′ΛU∑
i∈[n] Piie2i (β0) ·

∑
i∈[n] Piiσ2i (β0)

∣∣∣∣∣
∣∣∣∣∣
2

F

=
1/K2(

1
K

∑
i∈[n] Piie2i (β0) ·

1
K

∑
i∈[n] Piiσ2i (β0)

)2
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[n]

Piiσ
2
i (β0) · U ′(Λ̂−Hn)U −

∑
i∈[n]

Piie
2
i (β0))U

′ΛU

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

(i)
=

1/K2

( 1
K

∑
i∈[n] Piiσ2i (β0))

4 + op(1)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[n]

Piiσ
2
i (β0) · U ′(Λ̂−Hn)U −

∑
i∈[n]

Piie
2
i (β0)U

′ΛU

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

(ii)

≤ 2/K2

( 1
K

∑
i∈[n] Piiσ2i (β0))

4 + op(1)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[n]

Piiσ
2
i (β0) · U ′(Λ̂− Λ−Hn)U

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

+
2/K2

( 1
K

∑
i∈[n] Piiσ2i (β0))

4 + op(1)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[n]

Pii(e
2
i (β0)− σ2i (β0)) · U ′ΛU

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F
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≤ 2

( 1
K

∑
i∈[n] Piiσ2i (β0))

4 + op(1)

∣∣∣∣∣∣∣∣ 1K ∑
i∈[n]

Piiσ
2
i (β0)

∣∣∣∣∣∣∣∣2
F

·
∣∣∣∣∣∣∣∣U ′(Λ̂− Λ−Hn)U

∣∣∣∣∣∣∣∣2
F

+
2

( 1
K

∑
i∈[n] Piiσ2i (β0))

4 + op(1)

∣∣∣∣∣∣∣∣ 1K ∑
i∈[n]

Pii(e
2
i (β0)− σ2i (β0))

∣∣∣∣∣∣∣∣2
F

·
∣∣∣∣∣∣∣∣U ′ΛU

∣∣∣∣∣∣∣∣2
F

(iii)
= op(1)

where (i) follows from Lemma B.2.1; (ii) follows from (a+ b)2 ≤ 2a2+2b2; (iii) follows from

(a)

∣∣∣∣∣∣∣∣ 1K ∑
i∈[n]

Piiσ
2
i (β0)

∣∣∣∣∣∣∣∣2
F

≤
∣∣∣∣∣∣∣∣max

i
σ2i (β0)

∣∣∣∣∣∣∣∣2
F

≤ max
i

(σ2i +∆2ς2i + 2∆γi) = O(1)

(b)

∣∣∣∣∣∣∣∣ 1K ∑
i∈[n]

Pii{e2i (β0)− σ2i (β0)}
∣∣∣∣∣∣∣∣2
F

= ||op(1)||2F = op(1) by Lemma B.2.1

(c)

∣∣∣∣∣∣∣∣U ′(Λ̂− Λ−Hn)U

∣∣∣∣∣∣∣∣2
F

= op(1) by (B.2.17)

(d)

∣∣∣∣∣∣∣∣U ′ΛU

∣∣∣∣∣∣∣∣2
F

=
∑
i∈[n]

Piiσ
2
i = O(K) = O(1)

(e)
1

1
K

∑
i∈[n] Piiσ2i (β0)

≤ 1
C
K

∑
i∈[n] Pii

=
1

C
= O(1).

Note that

||Ωs,n(β0)||2F =
1

(
∑

i∈[n] Piiσ2i (β0))
2
||U ′ΛU ||2F =

1

(
∑

i∈[n] Piiσ2i (β0))
2

∑
i∈[n]

∑
j∈[n]

P 2
ijσ

2
i (β0)σ

2
j (β0)

≤ 1

C1

∑
i∈[n]

∑
j∈[n]

P 2
ijσ

2
i (β0)σ

2
j (β0) = O(1).

therefore, by Bolzano-Weierstrass Theorem, for every sub-sequence nj there exists a further

sub-sequence njk such that Ωs,njk
(β0) → Ω∗(β0). Let w∗ to be the eigenvalues of Ω∗(β0),

so that w∗
i ≥ 0 and

∑
i∈K w∗

i = 1. By continuous mapping theorem, wi,njk
→ w∗

i for each

i ∈ [K]. By ||Ω̂s,n(β0) − Ωs,n(β0) − ΩH(β0)||2F = op(1) and ||Ωs,njk
(β0) − Ω∗(β0)||2F = o(1),

we know

||Ω̂s,njk
(β0)− Ω∗(β0)− ΩH(β0)||2F = op(1)
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Given that w̃n are the eigenvalues of Ω̂s,n(β0), by continuous mapping theorem w̃njk
−λHnjk

p→
w∗. Clearly this means that maxi∈[K](w̃i,njk

− wi,njk
− λHi,njk

)2 = op(1). This concludes the

proof for fixed K.

Diverging K case: Assume now that K → ∞.

Note first that

1
1
K

∑
i∈[n] Piiσ2i (β0)

≤ 1
C
K

∑
i∈[n] Pii

=
1

C
≤ C.

We will show that3

max
i
w̃i,n = op(K

−1/2) = op(1) (B.2.18)

To this end, denote || · ||S as the spectral-norm. Observe that

max
i
wi,n = ||Ωs(β0)||S =

1∑
i∈[n] Piiσ2i (β0)

||U ′ΛU ||S ≤ 1∑
i∈[n] Piiσ2i (β0)

||U ||2S ||Λ||S

(i)
=

1∑
i∈[n] Piiσ2i (β0)

||Λ||S =
maxi σ

2
i (β0)∑

i∈[n] Piiσ2i (β0)

(ii)

≤ C/K
1
K

∑
i∈[n] Piiσ2i (β0)

= o(K−1/2)

(B.2.19)

where (i) follows by U ′U = IK ; (ii) follows from expression (B.2.1). Furthermore, we have

max
i
λHi,n = ||ΩH(β0)||S =

||U ′HnU ||S∑
i∈[n] Piiσ2i (β0)

≤ ||Hn||S
KC

=
maxi∆

2Π2
i

KC
≤ C

K
= o(K−1/2)

(B.2.20)

Next, we can orthogonally diagonalize Ωs(β0) = Q′
1DwQ1, Ω̂s(β0) = Q′

2Dw̃Q2 and ΩH(β0) =

Q′
3ΛHQ3, where Dw̃ = diag(w̃1,n, ..., w̃K,n), Dw = diag(w1,n, ..., wK,n); Q

′
1Q1 = Q′

1Q1 =

IK = Q′
2Q2 = Q2Q

′
2 = Q′

3Q3 = Q3Q
′
3. Then

max
i∈[n]

(w̃i,n − wi,n − λHi,n)
2 = ||Dw̃ −Dw − ΛH ||2S

(i)
= ||Ω̂s(β0)−A′Ωs(β0)A− B′ΩH(β0)B||2S

3The reason we show that maxi w̃i,n = op(K
−1/2) instead of showing op(1) immediately is that

we will be using this property in the proof of Theorem 2 later on
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≤
(
||Ω̂s(β0)− Ωs(β0)− ΩH(β0)||S + ||Ωs(β0)−A′Ωs(β0)A+ ΩH(β0)− B′ΩH(β0)B||S

)2
(ii)

≤ 4||Ω̂s(β0)− Ωs(β0)− ΩH(β0)||2S + 4||Ωs(β0)−A′Ωs(β0)A||2S + 4||ΩH(β0)− B′ΩH(β0)B||2S
(iii)

≤ 4||Ω̂s(β0)− Ωs(β0)− ΩH(β0)||2S + o(K−1) (B.2.21)

where (i) follows from A′ := Q′
1Q2 and B′ := Q′

1Q3; (ii) follows from the simple inequality

(a+ b)2 ≤ 2a2 + 2b2; the first part of (iii) follows from

4||Ωs(β0)−A′Ωs(β0)A||2S ≤ 8||Ωs(β0)||2S + 8||A′Ωs(β0)A||2S
(iv)

≤ 16||Ωs(β0)||2S
(v)
= o(K−1)

with (iv) following from A′A = IK and (v) following in the same manner as (B.2.19). The

second part of (iii) follows from

4||ΩH(β0)− B′ΩH(β0)B||2S ≤ 16||ΩH(β0)||2S ≤
||U ||2S ||Hn||2S

(
∑

i∈[K] Piiσ2i (β0))
2
≤

||Hn||2S
K2C2

≤ C

K2
= o(K−1).

Next, we can express

||Ω̂s(β0)− Ωs(β0)− ΩH(β0)||2S =

∣∣∣∣∣
∣∣∣∣∣ U ′Λ̂U∑

i∈[n] Piie2i (β0)
− U ′(Λ−Hn)U∑

i∈[n] Piiσ2i (β0)

∣∣∣∣∣
∣∣∣∣∣
2

S

≤ 2

∣∣∣∣∣
∣∣∣∣∣U ′(Λ̂− Λ−Hn)U∑

i∈[n] Piie2i (β0)

∣∣∣∣∣
∣∣∣∣∣
2

S

+ 2

∣∣∣∣∣
∣∣∣∣∣ U ′(Λ−Hn)U∑

i∈[n] Piie2i (β0)
− U ′(Λ−Hn)U∑

i∈[n] Piiσ2i (β0)

∣∣∣∣∣
∣∣∣∣∣
2

S

≤ 2

∣∣∣∣∣
∣∣∣∣∣U ′(Λ̂− Λ−Hn)U∑

i∈[n] Piie2i (β0)

∣∣∣∣∣
∣∣∣∣∣
2

S

+
2(
∑

i∈[n] Piie
2
i (β0)−

∑
i∈[n] Piiσ

2
i (β0))

2 · ||U ′(Λ−Hn)U ||2S(∑
i∈[n] Piie2i (β0) ·

∑
i∈[n] Piiσ2i (β0)

)2
(i)
=

2||U ′(Λ̂− Λ−Hn)U ||2S
(
∑

i∈[n] Piie2i (β0))
2

+ o(K−2) (B.2.22)

where (i) follows from Lemma B.2.1 and ||U ′(Λ−Hn)U ||2S ≤ ||Λ−Hn||2S = maxi(σ
2
i (β0)−

∆2Π2
i )

2 ≤ C, in the same manner as in (B.2.19). We now separate the problem into two

cases now to consider: (A) K
n = o(1) and (B) K

n → c∗ > 04. Suppose for the moment that

4Note that (B) should really be for some sub-sequence K
n rather than the full sequence. However,

we can always assume W.L.O.G that (B) holds for the full sequence since the result of Lemma
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we are under case (A). Then

∣∣∣∣U ′(Λ̂− Λ−Hn)U
∣∣∣∣2
S
≤
∣∣∣∣U ′(Λ̂− Λ−Hn)U

∣∣∣∣2
F

=
∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
i (β0)− σ2i (β0)− Ti)(e

2
j(β0)− σ2j (β0)− Tj) +

∑
i∈[n]

P 2
ii(e

2
i (β0)− σ2i (β0)− Ti)

2

(ii)
= o(K) +

∑
i∈[n]

P 2
ii(e

2
i (β0)− σ2i (β0)− Ti)

2 (iii)
= o(K)

where (ii) follows from (B.2.16) and (iii) follows from

E

 1

K

∑
i∈[n]

P 2
ii(e

2
i (β0)− σ2i (β0)− Ti)

2

 ≤ C
1

K

∑
i∈[n]

P 2
ii ≤ Cpn

1

K

∑
i∈[n]

Pii = Cpn = o(1)

since pn ≤ CK
n = o(1) under case (A), together with assumption 7. Therefore, by Lemma

B.2.1 we have

2||U ′(Λ̂− Λ−Hn)U ||2S
(
∑

i∈[n] Piie2i (β0))
2

= o(K−1) (B.2.23)

so that combining (B.2.19), (B.2.20), (B.2.21),(B.2.22) and (B.2.23) yields

max
i
w̃2
i,n ≤ 4max

i
(w̃i,n − wi,n − λHi,n)

2 + 4max
i
w2
i,n + 4max

i
(λHi,n)

2 = o(K−1)

which proves (B.2.18).

Next, suppose we are now under case (B). Denote Λ̂ := diag(e21+∆2v21+2∆e1v1, ..., e
2
n+

∆2v2n + 2∆envn) and Λ† := 2diag(∆Π1e1 +∆2Π1v1, ...,∆πnen +∆2Πnvn). Then

||U ′(Λ̂− Λ−Hn)U ||2S = ||U ′(Λ̂− Λ + Λ†)U ||s2 ≤ 2||U ′(Λ̂− Λ)U ||2S + 2||U ′Λ†U ||2S (B.2.24)

We first show that the preceding equation is o(K). To begin, observe that

||U ′Λ†U ||2S ≤ ||U ′Λ†U ||2F = 4
∑
i,j∈[n]

P 2
ij(∆Πiei +∆2Πivi)(∆Πjej +∆2Πjvj)

B.2.3 is provided for some sub-sequence.
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= 4
∑
i,j∈[n]

P 2
ij(∆

2ΠiΠjeiej + 2∆3ΠiΠjeivj +∆4ΠiΠjvivj) (B.2.25)

Furthermore,∑
i,j∈[n]

P 2
ijΠiΠjeiej =

∑
i,j∈[n]

P 2
ijΠiΠj

(
ẽiẽj − 2ẽj(P

W
i )′ẽ+ (PW

i )′ẽ(PW
j )′ẽ

)
= o(K) (B.2.26)

where the last equality follows from

(a) E

 1

K

∑
i,j∈[n]

P 2
ijΠiΠj ẽiẽj

2

≤ C

K2

∑
i,j∈[n]

P 4
ij +

C

K2

∑
i∈[n]

P 4
ii ≤ C

pn
K

= o(1)

(b) E

 1

K

∑
i,j∈[n]

P 2
ijΠiΠj ẽj(P

W
i )′ẽ

2

≤ C

K2

∑
i,j,i′,j′∈[n]

P 2
ijP

2
i′j′|PW

ij P
W
i′j′ + PW

ij′ P
W
i′j | ≤ CpWn = o(1)

(c) E

∣∣∣∣∣∣ 1K
∑
i,j∈[n]

P 2
ijΠiΠj(P

W
i )′ẽ(PW

j )′ẽ

∣∣∣∣∣∣ (i)≤ 1

K

∑
i,j∈[n]

P 2
ijΠ

2
i E((P

W
i )′ẽ)2 ≤ C

K

∑
i,j∈[n]

P 2
ij

∑
ℓ∈[n]

(PW
iℓ )2

≤ Cpn = o(1)

where (i) follows from 2|ab| ≤ a2 + b2. In the same way as we have shown (B.2.26), we can

show that ∑
i,j∈[n]

P 2
ijΠiΠjeivj = o(K)

and ∑
i,j∈[n]

P 2
ijΠiΠjvivj = o(K),

so that by (B.2.25) we can conclude

||U ′Λ†U ||2S = o(K). (B.2.27)
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Next, we will show that

||U ′(Λ̂− Λ)U ||2S = o(K) (B.2.28)

We can express

Λ̂ = diag(e21, ..., e
2
n) + ∆2diag(v21, ..., v

2
n) + 2∆diag(e1v1, ..., envn) ≡ Λ̂1 + Λ̂2 + Λ̂3

and

Λ = diag(σ̃21, ..., σ̃
2
n) + ∆2diag(ς̃21 , ..., ς̃

2
n) + 2∆diag(γ̃1, ..., γ̃n) ≡ Λ1 + Λ2 + Λ3

Then by using 2|ab| ≤ a2 + b2 we have

||U ′(Λ̂− Λ)U ||2S ≤ 4||U ′(Λ̂1 − Λ1)U ||2S + 4||U ′(Λ̂2 − Λ2)U ||2S + 4||U ′(Λ̂3 − Λ3)U ||2S .

Therefore, to show (B.2.28) it suffices to show

||U ′(Λ̂1 − Λ1)U ||2S = o(K), (B.2.29)

since the other terms can be shown in the same way. To this end, recall that e2i = ẽ2i +

((PW
i )′ẽ)2 − 2ẽi(P

W
i )′ẽ. Then define Λ̂1,1 := diag(ẽ21, ..., ẽ

2
n) so that

||U ′(Λ̂1 − Λ1)U ||2S ≤ 2||Λ̂1,1 − Λ1||2S + 2||U ′(Λ̂1 − Λ̂1,1)U ||2S
≤ 2||Λ̂1,1 − Λ1||2S + 2||U ′(Λ̂1 − Λ̂1,1)U ||2F = max

i
(e2i − σ̃2i )

2 +
∑
i,j∈[n]

P 2
ij((P

W
i )′ẽ)2((PW

j )′ẽ)2

+ 4
∑
i,j∈[n]

P 2
ij(ẽi(P

W
i )′ẽ)(ẽj(P

W
j )′ẽ)− 4

∑
i,j∈[n]

P 2
ij ẽi(P

W
i )′ẽ((PW

j )′ẽ)2 (B.2.30)

By Van der Vaart andWellner (1996)[Lemma 2.2.2] and noting the lp-norm inequality ||f ||1 ≤
||f ||2, defining f := maxi(ẽ

2
i − σ̃2i )

2 we have

E
(
1

K
max

i
(e2i − σ̃2i )

2
)
=

1

K
||f ||1 ≤

1

K
||f ||2 ≤

n1/2

K
max

i

(
E(e2i − σ̃2i )

4
)1/2
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≤ C
n1/2

K
= C

n1/2

K1/2

1

K1/2
≤ C

1

K1/2
= o(1).

under case (B). Furthermore,

(a) E

∑
i,j∈[n]

P 2
ij((P

W
i )′ẽ)2((PW

j )′ẽ)2

 ≤
∑
i,j∈[n]

P 2
ijE((P

W
i )′ẽ)4

≤
∑
i,j∈[n]

P 2
ij(
∑
ℓ∈[n]

(PW
iℓ )4 +

∑
ℓ∈[n]

∑
ℓ′∈[n]

(PW
iℓ )2(PW

iℓ′ )
2) ≤ (pWn )2K = o(K)

(b) E

∑
i,j∈[n]

P 2
ij |(ẽi(PW

i )′ẽ)(ẽj(P
W
j )′ẽ)|

 ≤
∑
i,j∈[n]

P 2
ijEẽ

2
i ((P

W
i )′ẽ)2

≤ C
∑
i,j∈[n]

P 2
ij

∑
ℓ∈[n]

(PW
iℓ )2 ≤ pWn

∑
i,j∈[n]

P 2
ij = o(K)

(c) 2E

∣∣∣∣∣∣
∑
i,j∈[n]

P 2
ij ẽi(P

W
i )′ẽ((PW

j )′ẽ)2

∣∣∣∣∣∣ ≤
∑
i,j∈[n]

P 2
ijE(ẽi(P

W
i )′ẽ)2 +

∑
i,j∈[n]

P 2
ijE((P

W
j )′ẽ)4

Putting everything together into (B.2.30) yields (B.2.29), which in turn yields (B.2.28).

Combining (B.2.24), (B.2.27) and (B.2.28) yields

||U ′(Λ̂− Λ−Hn)U ||2S = o(K)

Combining the preceding equation with Lemma B.2.1, (B.2.19), (B.2.20), (B.2.21) and

(B.2.22) yields

max
i
w̃2
i,n ≤ 4max

i
(w̃i,n − wi,n − λHi,n)

2 + 4max
i
w2
i,n + 4max

i
(λHi,n)

2 = o(K−1)

which proves (B.2.18) for Case (B). The proof for diverging K case is complete.

Lemma B.2.4. (Conditional distributional convergence implies unconditional distributional

convergence) Suppose we have real random variables X,X1, X2, X3, ... defined on a probability

space (Ω,F ,P). Consider any sub-sigma-field A ⊂ F such that P-almost everywhere, for any

Borel set B ∈ B(R) we have P(Xi ∈ B|A)(ω)⇝ P(X ∈ B|A)(ω). Then Xi⇝ X.
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Proof of Lemma B.2.4:

We need to show that for any function f ∈ Cb(R), where Cb(R) is the set of continuous and

bounded functions on R, we can obtain

Ef(Xi) → Ef(X) (B.2.31)

By Dudley (2002)[Theorem 10.2.5], we can express

E (f(Xi)|A) (ω) =

∫
R
f(x)PXi|A(dx, ω) ∀ω ∈ N c

i (B.2.32)

where Ni is the negligible set for each i ∈ [n]. Define N := ∪i∈Z+
Ni where Z+ := {0, 1, 2, ...},

so that (B.2.32) holds for any ω ∈ N c, with PN c = 1. For any w ∈ N c, by our assumption

we know P(Xi ∈ B|A)(ω) weakly converges to P(X ∈ B|A)(ω). Therefore, for every ω,∫
R
f(x)PXi|A(dx, ω) →

∫
R
f(x)PX|A(dx, ω).

By Dudley (2002)[Theorem 10.2.2], for every fixed ω, PXi|A(dx, ω) is probability measure

over x ∈ R. Hence, by dominated convergence Theorem and (B.2.32)

Ef(Xi) = E (E (f(Xi)|A) (ω)) =

∫
ω∈Nc

∫
R
f(x)PXi|A(dx, ω)P(dω)

→
∫
ω∈Nc

∫
R
f(x)PX|A(dx, ω)P(dω) = Ef(X)

which proves (B.2.31)

Lemma B.2.5. Assume that we do not have controls W in the data-generating process of

(2.2.1). Fix any ∆ ̸= 0 and let Z′ΛΠ√
n

= ΘK ∈ RK×n such that ΘK1n = θ̃K ∈ RK is fixed

for every fixed K, where ΛΠ := diag(Π1, ...,Πn) and 1n ∈ Rn is a vector of ones. Suppose

that for every fixed K, ||Z ′(ξξ′ − Eξξ′)Z||F = op(1) and assumption 8 holds, where ξi :=

ei + ∆vi. Furthermore, assume that λmin(Θ
′
KΘK) ≥ C1 > 0, λmax(Σ1,K(∆)) ≤ C2 < ∞,
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and ||θ̃K ||2F /K < C1

C2
, where C1, C2 does not depend on K. Then

lim
K→∞

lim
n→∞

P
(
(Z ′e(β0))

′(Z ′Λ̂(β0)Z)
−1(Z ′e(β0)) > q1−α(χ

2
K)
)
= 0

where Λ̂(β0) := diag(e21(β0), ..., e
2
n(β0))

Proof of Lemma B.2.5:

Fix someK. Define Jn,K := (Z ′e(β0))
′(Z ′Λ̂(β0)Z)

−1(Z ′e(β0)) and Σ1,K(∆) := I′2KΣ(∆)I2K ∈
RK×K , where I2K = (IK , IK)′. Then ei(β0)

2 = ξ2i + ∆2Π2
i + 2∆Πiξi and Z ′e(β0) =

Z ′ξ +∆
√
nθ̃K .

n−1/2Z ′e(β0)⇝ N
(
∆Σ

1/2
1,K(∆)θ̃K ,Σ1(∆)

)
(B.2.33)

where the convergence follows from the Lindeberg-Feller Central-Limit-Theorem, assumption

8, Π′Π
n2 = o(1) and ||Z ′(ξξ′−Eξξ′)Z||F = op(1). The Lindeberg-Feller condition can be verified

by fixing any η > 0 and observing that

1

n

∑
i∈[n]

E{||Ziξ||2F 1(||Ziξ||F > η
√
n)}

(i)

≤ 1

n

∑
i∈[n]

√
E||Ziξ||4FP(||Ziξ||F > η

√
n)

(iii)

≤ C

n

∑
i∈[n]

E||Ziξi||2F
ηn

≤ C

n

∑
i∈[n]

1

ηn
=

C

ηn
→ 0

where (i) follows from the Cauchy-Schwartz inequality; (ii) follows from E||Ziξi||4F ≤ maxi ||Zi||4FEξ4i ≤
C; (iii) follows from Markov-inequality. Furthermore, we have

Z ′Λ̂(β0)Z

n
= Σ1,K(∆) + ∆2Θ′

KΘK + op(1) (B.2.34)

where the equality in the preceding equation follows from Markov inequality and

E

∣∣∣∣∣
∣∣∣∣∣
∑

i∈[n] ZiZ
′
iΠiξi

n

∣∣∣∣∣
∣∣∣∣∣
2

F

=

∑
i∈[n] Eξ

2
iΠ

2
i trace(ZiZ

′
iZiZ

′
i)

n2
≤
C
∑

i∈[n]Π
2
i supi ||Zi||4F
n2

≤ Π′Π

n2
= o(1)
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Therefore, by (B.2.33) and (B.2.34), we have

Jn,K ⇝ Z(∆θ̃K)′(IK +∆2Σ1(∆)−1/2Θ′
KΘΣ1,K(∆)−1/2)−1Z(∆θ̃K)

≤
χ2K(∆2||θ̃K ||2F )

λmin(IK +∆2Σ1,K(∆)−1/2Θ′
KΘKΣ1,K(∆)−1/2)

=
χ2K(∆2||θ̃K ||2F )

1 + ∆2λmin(Σ1,K(∆)−1/2Θ′
KΘKΣ1,K(∆)−1/2)

≤
χ2K(∆2||θ̃K ||2F )

1 + ∆2λmin(Σ1,K(∆)−1)λmin(Θ′
KΘK)

=
χ2K(∆2||θ̃K ||2F )

1 + ∆2 λmin(Θ′
KΘK)

λmax(Σ1,K(∆))

≤
χ2K(∆2||θ̃K ||2F )

1 + ∆2C3
, (B.2.35)

where C3 > 0 is some chosen constant such that it does not depend on K and
λmin(Θ

′
KΘK)

λmax(Σ1,K(∆))
≥

C1

C2
≥ C3 > 0 by assumption. Finally, note that

χ2
K(∆2||θ̃K ||2F

K )

1 + ∆2C3
=

1 +
∆2||θ̃K ||2F

K

1 + ∆2C3
< 1 (B.2.36)

whenever C3 >
||θ̃K ||2F

K . Since ||θ̃K ||2F /K < C1

C2
, we can always find such a C3, so that by

noting q1−α(
χ2
K

K ) → 1, combining with (B.2.35) and (B.2.36) yields

lim
K→∞

lim
n→∞

P
(
Jn,K > q1−α(χ

2
K)
)
≤ lim

K→∞
P

(
χ2K(∆2||θ̃K ||2F )

1 + ∆2C3
> q1−α(

χ2K
K

)

)
= P (1− η1 > 1) = 0

for some η1 > 0.
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B.3 Two Estimators Satisfying Criteria (2.2.12)

This section provides proof for the consistency of Crudu et al. (2021) and Mikusheva and Sun

(2022)’s estimators under the null, for both fixed and diverging instruments. The diverging

instruments case is discussed in the aforementioned papers. We show that under some

regularity conditions, consistency under the null still holds for fixed instruments.

Theorem B.3.0.1 (Standard estimator). Suppose Assumption 5 and 6 holds. If pnΠ
′Π

K =

O(1), then for fixed ∆,

Φ̂standard
1 (β0) :=

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ije

2
i (β0)e

2
j(β0)

=
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(σ

2
i (β0)σ

2
j (β0) + 2∆2Π2

jσ
2
i (β0) + ∆4Π2

iΠ
2
j) + op(1 +

∑
i∈[4]

∆i)

= Φ1(β0) +Dstandard(∆) + op(1 +
∑
i∈[4]

∆i)

where Φ1(β0) :=
2
K

∑
i∈[n]

∑
j ̸=i P

2
ijσ

2
i (β0)σ

2
j (β0)

Theorem B.3.0.2 (Cross-fit estimator). Suppose Assumption 5 and 6 holds. Furthermore,

assume pn
Π′Π
K . Then

Φ̂cf
1 (β) :=

2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ij [ei(β0)M

′
ie(β0)][ej(β0)M

′
je(β0)] = Φ1(β) + op(1)

where M := In − Z(Z ′Z)−1Z ′ and P̃ 2
ij :=

P 2
ij

MiiMjj+M2
ij
. For fixed ∆ ̸= 0, if pn

Π′MΠ
K = O(1),

then

Φ̂cf
1 (β0) = Φ1(β0) +Dcf (∆) + op(1 +

∑
i∈[4]

∆i)

where

Dcf (∆) = E

(
2∆2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijVi(∆)M ′

iΠVj(∆)M ′
jΠ
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+
2∆2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijΠiM

′
ie(β0)ΠjM

′
je(β0) +

4∆

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijVi(∆)M ′

iV (∆)Vj(∆)M ′
jΠ

+
4∆

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijVi(∆)M ′

iV (∆)ΠjM
′
je(β0) +

4∆2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijVi(∆)M ′

iΠΠjM
′
je(β0)

)

with V (∆) := e+∆v.

B.3.1 Proof of Theorem B.3.0.1

Noting that ei(β0) = Vi(∆) + ∆Πi where Vi(∆) := ei +∆vi, we have

Φ̂standard
1 (β0) =

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(V

2
i (∆) + ∆2Π2

i + 2∆ΠiVi(∆))(V 2
j (∆) + ∆2Π2

j + 2∆ΠjVj(∆))

=
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijV

2
i (∆)V 2

j (∆) +
4∆2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijV

2
i (∆)Π2

j

+
8∆

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠjVj(∆)V 2

i (∆) +
2∆4

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠ

2
iΠ

2
j

+
8∆3

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠ

2
iΠjVj(∆) +

8∆2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠiΠjVi(∆)Vj(∆)

≡
5∑

ℓ=0

Tℓ

The proof entails showing that

T0 =
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i (β0)σ

2
j (β0) + op(1 +

∑
i∈[4]

∆i) (B.3.1)

T1 =
4∆2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠ

2
j(σ̃

2
i +∆2ς̃2i + 2∆γ̃i) + op(1 + ∆3 +∆4) (B.3.2)

T2 = op(1 + ∆2 +∆3 (B.3.3)

T3 =
2∆4

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠ

2
iΠ

2
j (B.3.4)

T4 = op(1 + ∆3 +∆4) (B.3.5)
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T5 = op(1 + ∆2 +∆3 +∆4) (B.3.6)

Combining (B.3.1)–(B.3.6) yields the second equation of Theorem B.3.0.1. By recalling that

σ2i (β0) = σ̃2i +∆2ζ̃2i + 2∆γ̃i. Combining with

4∆2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠ

2
j(σ̃

2
i +∆2ς̃2i + 2∆γ̃i) ≤

C(∆2 +∆3 +∆4)

K

∑
i,j∈[n]

P 2
ij = C(∆2 +∆3 +∆4)

and

2∆4

K
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∑
j ̸=i

P 2
ijΠ

2
iΠ

2
j ≤

C∆4

K

∑
i,j∈[n]

P 2
ij = C∆4

yields the last equation of Theorem B.3.0.1.

Step 1: We show

1

K

∑
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∑
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P 2
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2
i e

2
j =

1

K

∑
i∈[n]

∑
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P 2
ijσ

2
i σ

2
j + op(1) (B.3.7)

By noting ei = (ẽi −
∑

ℓ∈[n] P
W
iℓ ẽℓ), we observe

1

K

∑
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∑
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iℓ ẽiẽℓ)(

∑
ℓ∈[n]

PW
jℓ ẽj ẽℓ)
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We will show that Am = op(1) for m = 2, 3, ..., 9. First,
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Furthermore,
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so that A2 = op(1). We can show that A4 = op(1) analogously. Next,
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so A3 = op(1). Note that A7 = op(1) by the same argument. Next,
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1

K

∑
i∈[n]

∑
j ̸=i

P 2
ije

2
i e

2
j = A1 + op(1)

226



It remains to show that

A1 = Φ1 + op(1) (B.3.8)

By defining γ̂e := (W ′W )−1W ′ẽ, we can write e = ẽ−Wγ̂e, so
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ẽ′PWγ̂e −

1√
K

∑
i∈[n]

PiiẽiW
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we can express our requirement of showing (B.3.8) as
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2
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∑
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2
i σ̃

2
j + op(1) (B.3.9)

instead. Express
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2
j − ẽ2i σ̃
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2
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2
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and note that
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2
i (ẽ
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where (i) follows from
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The proof of B2 = op(1) is analogous to (ii). Hence (B.3.9) is shown, which proves (B.3.7).
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Step 2: We show (B.3.1) In a similar way to showing (B.3.7) we have
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Therefore by expression (B.2.1),
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Therefore (B.3.1) is shown

Step 3: We show (B.3.2). Note that we have
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To see this, for the first equation, observe that Eẽiẽℓẽi′ ẽℓ′ ̸= 0 only if i = ℓ = i′ = ℓ′ or two

pairs are equal (e.g. i = ℓ and i′ = ℓ′). Therefore
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i )′ẽ and using Markov inequality,
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The second and third equation of (B.3.11) is shown similarly. Expressing V 2
i (∆) = e2i +

∆2v2i + 2∆viei and combining with what we just showed, we have (B.3.2).
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Step 4: We show (B.3.3). We can express
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since the other terms are dealt is a similar manner. To begin, express e2i = ẽ2i+(
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Furthermore,
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im ẽm)4

≤ CpWn = o(1)

so T2,5 = op(1). We can show in a similar manner that T2,6 = op(1). Therefore we have

shown (B.3.12), which proves (B.3.3)

Step 5: We prove (B.3.5). Since Vi(∆) = ei +∆vi, it suffices to prove

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠ

2
iΠjej = op(1),

which follows from ej = ẽj − (PW
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Step 6: We prove (B.3.6). Since Vi(∆)Vj(∆) = eiej +∆eivj +∆viej +∆2vivj , it suffices to
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We have shown (B.3.6), and the proof is complete.
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B.3.2 Proof of Theorem B.3.0.2

Observe that we can express
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as well as

Tℓ = ETℓ + op(1 +
∑
i∈[4]

∆i) for ℓ ∈ {1, ..., 5} and

∑
ℓ∈[n]

ETℓ = Dcf (∆) (B.3.14)

When ∆ = 0, it is clear that T1 = T2 = ... = T5 = 0, so that the case of Theorem B.3.0.2 for

∆ = 0 is shown immediately upon proving (B.3.13); this is shown in Step 1 below. We can

therefore focus on the case of ∆ ̸= 0.

Step 1: We prove (B.3.13):
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Sub-step 1: We show that
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i ẽ+ ((PW

i )′ẽ)2 ≡
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Define the random variable ξij := ẽiM
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where I3 is the distinct index of {i, j, k} ∈ [n] and I4 is the distinct index of {i, j, k, ℓ} ∈ [n].

We first note that maxi,j ̸=i Eξ2ij ≤ C, which follows from the proof of Lemma 2 in Mikusheva

and Sun (2022). Furthermore, noting that P̃ 2
ij =

P 2
ij

MiiMjj+M2
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≤ CP 2
ij by Mii = 1 − Pii ≥

1− δ > 0, we have
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where the first inequality of (c) follows from the fact that since i, j, k, ℓ are distinct in I4,

the non-zero terms of E(ξijξkℓ) are given in the proof of Mikusheva and Sun (2022)[Lemma

2] as

|Eξijξℓk|
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+ C(MiℓMjk +MikMℓj)
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2

The second inequality of (c) follows from Mikusheva and Sun (2022)[Lemma S1.2]. Specifi-

cally, we have

1

K2

∑
i,j,k,ℓ

P 2
ijP

2
kℓ|MiiMjkMℓℓMjk| ≤

1

K2

∑
i,j,k,ℓ

P 2
ijP

2
kℓM

2
jk =

1

K2

∑
j,k,ℓ

PiiP
2
kℓM

2
jk ≤ pn

K2

∑
k,ℓ

P 2
kℓMkk

≤ pn
K2

∑
k,ℓ

P 2
kℓ =

pn
K
,

with the rest of the terms in |Eξijξℓk| dealt in a similar manner. Therefore (B.3.16) is

shown. It remains to show that 2
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so that by Markov inequality,
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Next,

E
2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijA

2
i,3 =

2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ij

∑
k,ℓ,m,p∈[n]

PW
ik MiℓP

W
imMipE(ẽkẽℓẽmẽp)
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where (i) follows from the fact that the non-zero terms in E(ẽkẽℓẽmẽp) are when the indexes

k = ℓ = m = p, or when we have two sets of indexes such that the first two indexes equal the
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Hence

2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijA

2
i,3 = op(1) (B.3.18)

Furthermore,
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implying
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By the simple inequality |ab| ≤ 1
2a

2 + 1
2b

2,
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Restricting (ℓ, ℓ′) ∈ {2, 3, 4} × {2, 3, 4}, by (B.3.17)-(B.3.19), using (B.3.20) we have
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It remains to show that 2
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2
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To this end, we can repeat the argument in the proof of (B.3.16) to show that
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where the last equality follows from Markov inequality and∣∣∣∣∣∣ 2K
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where (i) follows from Cauchy-Schwartz inequality. Next, we will show
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Fix any i. For indexes (k, k′, ℓ, ℓ′,m,m′) ∈ [n]6, define J1 to be the set where k = k′ = ... =

m′, so |J1| = 1. Define J2 to be the set where three indexes are equal, e.g. k = k′ = ℓ

and ℓ′ = m = m′. Define J3 to be the set where two indexes are equal, e.g. k = k′, ℓ = ℓ′,

m = m′. Define J4 to be the set where three indexes and two indexes are equal, and one

index equal i, e.g. k = k′ = ℓ, ℓ′ = m, m′ = i. Note that {Js}4s=1 are not necessarily

mutually exclusive in that there may be overlap. For any i ∈ [n], the non-zero terms in
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where (i),(ii) and (iii) follows by Cauchy-Schwartz inequality. Putting (a)-(d) together we
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have
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where (i) follows from 2|ab| ≤ a2 + b2 and (ii) follows from (B.3.24). By Markov inequality,

(B.3.23) is shown. Finally,
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i ẽ(P
W
j )′ẽ)2
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Putting (B.3.16)-(B.3.25) yields (B.3.15).

Sub-step 2: In a similar way to sub-step 1, we can show that
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By expression (B.2.1) we have

σ2i (β0)σ
2
j (β0) = (σ̃2i +∆2ς̃2i + 2∆γ̃i)(σ̃

2
j +∆2ς̃2j 2∆γ̃j)

Combining with (B.3.15) and (B.3.26) yields (B.3.13).

Step 2: In a similar way to step 1, we can show that Tℓ = ETℓ + op(1 +
∑

i∈[4]∆
i) for

ℓ ∈ [5]. It remains to show that
∑

ℓ∈[5] ETℓ = Dcf (∆), which reduces to showing ETℓ satisfies

the property of D(∆) in (2.2.12) for ℓ ∈ {1, ..., 5}, in order to complete the proof of (B.3.14).
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i )′ẽ)2 = σ̃2i +

∑
ℓ∈[n]

(PW
iℓ )2σ̃2i − 2PW

ii σ̃
2
i ≤ C

241



since
∑

ℓ∈[n](P
W
iℓ )2 = PW

ii ≤ 1, by property of a projection matrix. Similarly,
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By the inequality (a+ b)2 ≤ 2a2 + 2b2 and noting that P̃ 2
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To see this, it suffices to show E(M ′
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Next, to deal with T3 we first show that
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iℓ )

2 + (
∑
ℓ∈[n]

|PW
iℓ M

W
iℓ |)

2 + CPW
ii

∑
ℓ∈[n]

(MW
iℓ )

2 +MW
ii

∑
ℓ∈[n]

|PW
iℓ M

W
iℓ |


≤ C

(
MW

ii + PW
ii M

W
ii + (MW

ii )
2PW

ii

)
≤ C.

Hence (B.3.29) is shown. Then

E|T3| ≤
C∆

K

∑
i∈[n]

∑
j ̸=i

P 2
ijE(V

2
i (∆) · (M ′

iV (∆))2 + V 2
j (∆) · (M ′

jΠ)
2)

(B.3.27),(B.3.29)

≤
C∆(1 +

∑
i∈[4]∆

i)

K

∑
i∈[n]

∑
j ̸=i

P 2
ij +

C∆(1 +
∑

i∈[4]∆
i)

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(M

′
jΠ)

2

≤ C∆(1 +
∑
i∈[4]

∆i) + C∆(1 +
∑
i∈[4]

∆i)
pnΠ

′MΠ

K
= O

∑
i∈[5]

(1 +
pnΠ

′MΠ

K
)∆i

 = O

∑
i∈[5]

∆i


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Next,

E|T4| ≤
C∆

K

∑
i∈[n]

∑
j ̸=i

P 2
ijE
(
V 2
i (∆)(M ′

iV (∆))2 +Π2
j(M

′
je(β0))

2
)

(B.3.29)

≤
C∆(1 +

∑
i∈[4]∆

i)

K

∑
i∈[n]

∑
j ̸=i

P 2
ij +

C∆

K

∑
i∈[n]

∑
j ̸=i

P 2
ijE(M

′
je(β0))

2

≤ C∆(1 +
∑
i∈[4]

∆i) +
C∆

K

∑
i∈[n]

∑
j ̸=i

P 2
ijE(M

′
jV (∆) + ∆M ′

jΠ)
2

≤ C∆(1 +
∑
i∈[4]

∆i) +
C∆

K

∑
i∈[n]

∑
j ̸=i

P 2
ijE(M

′
jV (∆))2 +

C∆

K

∑
i∈[n]

∑
j ̸=i

P 2
ijE(∆M

′
jΠ)

2

(B.3.28)

≤ C∆(1 +
∑
i∈[4]

∆i) +
C∆(1 +

∑
i∈[4]∆

i)

K

∑
i∈[n]

∑
j ̸=i

P 2
ij +

C∆(1 +
∑

i∈[4]∆
i)

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(M

′
jΠ)

2

≤ C∆(1 +
∑
i∈[4]

∆i) + C∆(1 +
∑
i∈[4]

∆i) + C∆(1 +
∑
i∈[4]

∆i)
pnΠ

′MΠ

K
= O

∑
i∈[5]

∆i


Finally,

E|T5| ≤
C∆2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijE
(
V 2
i (∆)(M ′

iΠ)
2 +Π2

j(M
′
je(β0))

2
)

(B.3.27)

≤ C∆2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij +

C∆2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijE(M

′
je(β0))

2

(i)

≤ C∆2 + C∆2pnΠ
′MΠ

K
= O(∆2)

where (i) follows in the same way as T4 above. By Markov inequality, we have shown that

Tℓ = Op(1) for ℓ ∈ {1, ..., 5}. Therefore (B.3.14) is shown, and the proof is complete.
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B.4 Limit Problem For Fixed And Diverging Numbers

of Instruments

B.4.1 Limit Problem for Fixed K

Consider now the case of fixed K. Recall that U := Z(Z ′Z)−1/2 ∈ Rn×K so that U ′U = IK

and UU ′ = P . To deal with the convergence of Q̂(β0), we can assume that (ẽ, ṽ) are jointly

normal by the strong approximation. Therefore we can assume(
U ′e

U ′X

)
=

(
U ′ẽ

U ′X̃

)
d
= N

((
0

U ′Π

)
,

(
U ′Λσ̃U U ′Λγ̃U

U ′Λγ̃U U ′ΛṽU

))

implying that

U ′e(β0) = U ′e+∆U ′X
d
= N

(
∆U ′Π, U ′ΛU

)
where Λ(β0) = Λσ̃ + 2∆Λγ̃ + ∆2Λς̃ , Λσ̃ := diag(σ̃21, ..., σ̃

2
n),Λγ̃ := diag(γ̃1, ..., γ̃n),Λς̃ :=

diag(ς̃21 , ..., ς̃
2
n). We use the variance estimator e2i (β0) := (Yi −Xiβ0)

2 to estimate σ2i (β0) ≡
σ̃2i + 2∆γ̃i +∆2ς̃2i .

Theorem B.4.1.1 (Fixed K asymptotics). Suppose Assumption 5 and 6 holds. Then for

fixed K, under the null

Q̂(β0)
d
=
∑
i∈[K]

wi,nχ
2
1,i + op(1)

where the χ21,i are independent chi-squares with one degree-of-freedom and Dn := diag(w1,n, ..., wK,n)

are the eigenvalues of
(Z′ΛZ)1/2(Z′Z)−1(Z′ΛZ)1/2∑

i∈[n] Piiσ2
i (β0)

.

B.4.2 Limit Problem for Diverging K

Define Qa,b :=
1√
K

∑
i∈[n]

∑
j ̸=i Pijaibj . In the context of diverging K, we say that we have

strong identification whenever C := Q
Π̃,Π̃

→ ∞ and weak identification otherwise. Under

the arguments of Chao et al. (2012) and Mikusheva and Sun (2022), by assumption 5 and

6, one can obtain the following asymptotics for diverging K: Under both Weak and Strong
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Identification, for K → ∞,
Qẽ,ẽ

Q
X̃,ẽ

Q
X̃,X̃

− C

⇝ N


 0

0

0

 ,

 Φ1 Φ12 Φ13

Φ12 Ψ τ

Φ13 τ Υ


 (B.4.1)

for C := Q
Π̃,Π̃

, for some (Φ1,Φ12,Φ13,Ψ, τ ,Υ). We can therefore take (B.4.1) as given

whenever assumption 5 and 6 holds. Under a fixed number of controls, one can usually

obtain an analogous result to (B.4.1) with the replacement of (ẽ, X̃) with (e,X). However,

even when the number of controls increase with sample size, as long as these controls grow

slower than K(1−η)/4, we will have the following result:

Theorem B.4.2.1. Suppose Assumptions 5 and 6 hold. Then for K → ∞, under the null,

Qe,e⇝ N (0,Φ1)

where Φ1 = 2
K

∑
i∈[n]

∑
j∈[n] P

2
ij σ̃

2
i σ̃

2
j Furthermore, under the alternative, if we further as-

sume that Π′Π
K = O(1), then Qe,e

QX,e

QX,X − C

⇝ N


 0

0

0

 ,

 Φ1 Φ12 Φ13

Φ12 Ψ τ

Φ13 τ Υ


 (B.4.2)

for some (Φ12,Φ13,Ψ, τ,Υ). Therefore we have that

Qe(β0),e(β0)⇝ N (∆2C,Φ1(β0))

where C := QΠ,Π, Φ1(β0) = ∆4Υ+ 4∆3τ +∆2(4Ψ + 2Φ13) + 4∆Φ12 + Φ1

Note that Theorem B.4.2.1 can be seen as a minor extension of Theorem A.1 in Lim,

Wang, and Zhang (2024) in that the dimensions of controls were taken as fixed in that

paper.

Theorem B.4.2.2 (Diverging K asymptotics). Suppose Assumption 5 and 6 holds. Then
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for K → ∞, for β = β0 we have

1√
K

∑
i∈[n]

Piie
2
i (β0)

(
Q̂(β0)− 1

)
⇝ N (0,Φ1).

If we further assume that Π′Π
K = O(1), under fixed alternative ∆ we have

1√
K

∑
i∈[n]

Piie
2
i (β0)

(
Q̂(β0)− 1

)
⇝ N (∆2C,Φ1(β0))

B.4.3 Proofs for Section B.4

Proof of Theorem B.4.1.1

By Lemma B.2.1 and Theorem 1, we can obtain

Q̂(β0) =
e′UU ′e∑
i∈[n] Piie2i

=
e′UU ′e∑
i∈[n] Piiσ2i

∑
i∈[n] Piiσ

2
i∑

i∈[n] Piie2i

d
=

(
E ′UU ′E∑
i∈[n] Piiσ2i

+ op(1)

)
(1 + op(1))

= E ′Z(Z ′ΛZ)−1/2 (Z
′ΛZ)1/2(Z ′Z)−1(Z ′ΛZ)1/2∑

i∈[n] Piiσ2i
(Z ′ΛZ)−1/2Z ′E) + op(1)

= Z ′DnZ + op(1)

where Z ∼ N (0, IK).

Proof of Theorem B.4.2.1

We will show that Qe,e

QX,e

QX,X − C

⇝ N


 0

0

0

 ,

 Φ1 Φ12 Φ13

Φ12 Ψ τ

Φ13 τ Υ


 (B.4.3)
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so that by writing Qe(β0),e(β0) = Qe+∆X,e+∆X = Qe,e +∆2QX,X + 2∆QX,e, then

Qe(β0),e(β0) −∆2C =
(

1 2∆ ∆2
) Qe,e

QX,e

QX,X − C

⇝ N (0,Φ1(β0))

which completes the proof.

We will show the following:

(A) Qe,e = Qẽ,ẽ + op(1)⇝ N (0,Φ1)

(B) QX,e = Qṽ,ẽ +

∑
i∈[n](Gi + θi)ẽi

√
K

+ op(1)

(C) QX,X = QΠ,Π +Qṽ,ṽ + 2

∑
i∈[n](Gi + θi)ṽi

√
K

+ op(1)

where θi :=
∑

j ̸=i PijΠj and Gi :=
∑

j∈[n]ΠjPjjP
W
ij . To proof the second part of the

theorem, given that {ẽi, ṽi}i∈[n] are independent, we can follow the proof of Chao et al.

(2012)[Lemma A2] to show the joint asymptotic normality of(
Qẽ,ẽ, Qṽ,ẽ, Qṽ,ṽ,

∑
i∈[n](Gi + θi)ẽi

√
K

,

∑
i∈[n](Gi + θi)ṽi

√
K

)

Then (B.4.3) follows from (A), (B) and (C). In particular, if Π′Π
K = O(1), then denoting

πj := ΠjPjj and noting Gi = (PW
i )′π,

V ar

(∑
i∈[n](Gi + θi)ẽi

√
K

)
=

∑
i∈[n](Gi + θi)

2σ̃2i

K
≤
C
∑

i∈[n]G
2
i

K
+
C
∑

i∈[n] θ
2
i

K

(i)

≤
C
∑

i∈[n]G
2
i

K
+
CΠ′Π

K
=
Cπ′

∑
i∈[n] P

W
i (PW

i )′π

K
+O(1)

=
Cπ′(PW )2π

K
+O(1) ≤ Cπ′π

K
+O(1) =

C
∑

i∈[n] P
2
iiΠ

2
i

K
+O(1)

= Cp2n
Π′Π

K
+O(1) = O(1)
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where (i) follows from Mikusheva and Sun (2022)[Lemma S1.4(a)]. In a similar manner we

can show that V ar
(∑

i∈[n](Gi+θi)ṽi√
K

)
= O(1). This implies the joint asymptotic normality of

(Qe,e, QX,e, QX,X −QΠ,Π),

completing the proof of (B.4.3).

To this end, we begin by showing (A), which proves the first part of Theorem B.4.2.1.

Suppose only that assumption 5 and 6 holds. Then WPA1, where the equalities are in terms

of distribution,

Qe,e =

∑
i∈[n]

∑
j ̸=i Pijeiej

√
K

(i)
=

1√
K
ε′Pε−

∑
i∈[n] Piiε

2
i√

K

(ii)
=

∑
i∈[n] Piiε

2
i√

K

∑
i∈[K]

wi,nχ
2
1,i − 1


where (i) follows from Theorem 1 for fixed K and MWP = P ; (ii) follows in the same way

as the proof of Theorem B.4.1.1. Therefore, defining Tn :=
∑

i∈[n] Piiσ̃
2
i√

K
and noting that Tn is

away from zero, we have WPA1

Qe,e
d
=

∑
i∈[n] Piiε

2
i√

KΦ1

∑
i∈[K]

wi,nχ
2
1,i − 1

 =
Tn√
Φ1

∑
i∈[n] Piiε

2
i /
√
K

Tn

∑
i∈[K]

wi,nχ
2
1,i − 1


(i)
=

∑
i∈[n] Piiσ̃

2
i√

KΦ1

∑
i∈[K]

wi,n(χ
2
1,i − 1)

(ii)
=
∑
i∈[K]

wi,n√
2||wn||F

(χ21,i − 1)⇝ N (0, 1)

where (i) follows from
∑

i∈[n] Piiε
2
i /
√
K

Tn

p→ 1 as a consequence of Lemma B.2.1, as well as

the fact that
∑

i∈[K]wi,n = 1; (ii) follows from Φ1 = 2
K

∑
i,j∈[n] P

2
ij σ̃

2
i σ̃

2
j and ||wn||F =√∑

i,j∈[n] P
2
ij σ̃

2
i σ̃

2
j∑

i∈[n] Piiσ̃2
i

: this follows from (a) in the proof of Lemma 2.4.1. It remains to show that

Qe,e = Qẽ,ẽ + op(1), which follows from

Qe,e −Qẽ,ẽ =
ẽ′P ẽ√
K

−

∑
i∈[n] Piie

2
i√

K
−Qẽ,ẽ =

∑
i∈[n] Pii(ẽ

2
i − e2i )√

K

=

∑
i∈[n] Pii(2ẽiP

W
i ẽ− (PW

i ẽ)2))
√
K

= op(1), (B.4.4)
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where the last equality follows fom an application or Markov inequality and

E

(∑
i∈[n] PiiẽiP

W
i ẽ

√
K

)2

=

∑
i∈[n]

∑
j∈[n] PiiPjjE(ẽiẽjPW

i ẽ · PW
j ẽ)

K

≤ C

K

∑
i∈[n]

∑
j ̸=i

PiiPjj((P
W
ij )2 + PW

ii P
W
jj ) ≤

CpWn pn
K

∑
i∈[n]

Pii +
Cp2nd

2
W

K

≤ CpWn pn +
Cpwnd

2
W

K

(i)
= o(1)

and

E

(∑
i∈[n] Pii(P

W
i ẽ)2

√
K

)
=

∑
i∈[n] Pii

∑
j∈[n](P

W
ij )2σ̃2j√

K
≤ C

∑
i∈[n] PiiP

W
ii√

K
≤ Cpn

dW√
K

= o(1),

where (i) follows from pWn = o(1) and d2W = O(K(1−η)/2) = o(K). The proof of (A) is

complete.

It remains to prove (B) and (C) in order to complete the proof for the second part of the

theorem. We first prove (B). By a similar proof to (B.4.4) we can show that

Qv,e = Qṽ,ẽ + op(1)

so that

QX,e = QΠ,e +Qv,e = QΠ,ẽ −QΠ,PW ẽ +Qṽ,ẽ + op(1) = QΠ+ṽ,ẽ +

∑
i∈[n] PiiΠi(P

W
i )′ẽ

√
K

+ op(1)

= Qṽ,ẽ +

∑
i∈[n](Gi + θi)ẽi

√
K

+ op(1)

To prove (C), note that by a similar proof to (B.4.4) we can show that

Qv,v = Qṽ,ṽ + op(1).
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Furthermore, as in the proof of (B), by some rearrangement we can show that

QΠ,v = QΠ,ṽ +QΠ,PW ṽ =

∑
i∈[n](Gi + θi)ṽi

√
K

,

so that putting it together,

QX,X = QΠ,Π + 2QΠ,v +Qv,v = QΠ,Π + 2

∑
i∈[n](Gi + θi)ṽi

√
K

+Qṽ,ṽ + op(1),

which completes the proof of (A), (B) and (C), thereby completing the proof of the second

part of Theorem B.4.2.1.

Proof of Theorem B.4.2.2

We can express

(
Q̂(β0)− 1

)
=

1
K

∑
i∈[n]

∑
j ̸=i Pijei(β0)ej(β0)

1
K

∑
i∈[n] Piie2i (β0)

=

1√
K
Qe(β0),e(β0)

1
K

∑
i∈[n] Piie2i (β0)

.

By Theorem B.4.2.1,

1√
K

∑
i∈[n]

Piie
2
i (β0)

(
Q̂(β0)− 1

)
= Qe(β0),e(β0)⇝ N (∆2C,Φ1(β0))

B.5 Details regarding Testing Under Rank Deficiency

In this section we provide details of the our testing procedure as well as its asymptotic

properties.

B.5.1 Analytical Test under Rank Deficiency

The analogous statistic Q̂(β0) given in (2.2.4) under the ridge-projection matrix is

Q̂γn(β0) :=
e(β0)

′Pγne(β0)∑
i∈[n] Pii,γne

2
i (β0)

, (B.5.1)
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with the corresponding critical value as

Cα,df,γn(Φ̂
γn
1 (β0)) := 1 +

√
Φ̂γn
1 (β0)

1√
r

∑
i∈[n] Pii,γne

2
i (β0)

 q1−α(Fw̃n
)− 1√

2
∑

i∈[r](w̃
γn
i,n)

2 + 1/df

 , (B.5.2)

where w̃γn
n = (w̃γn

1,n, · · · , w̃
γn
r,n)

′ are the eigenvalues of

Ω̂γn(β0) :=
(Z ′Λ̂(β0)Z)

1/2(Z ′Z + γnIK)−1(Z ′Λ̂(β0)Z)
1/2∑

i∈[n] Pii,γne
2
i (β0)

,

Λ̂(β0) is defined as in section 2.2.3, Pij,γn are the (i, j) entries of Pγn and

df−1 = o(r−1/2). (B.5.3)

Note that the rank of Ω̂γn(β0) equals r, so that it has only r non-zero eigenvalues. The

variance estimator Φ̂γn
1 (β0) satisfies

Φ̂γn
1 (β0) = Φγn

1 (β0) +Dγn(∆) + op(1 +
∑
i∈[4]

∆i) (B.5.4)

where Φγn
1 (β0) :=

2
r

∑
i∈[n]

∑
j ̸=i P

2
ij,γn

σ2i (β0)σ
2
j (β0) and

Dγn(∆) =

O(1) if ∆ ̸= 0 is fixed

o(1) if ∆ = o(1)

We have two estimators satisfying (B.5.4) that are analogous to the standard and cross-fit

estimator of section 2.2.5; namely,

Φ̂γn,standard
1 (β0) :=

2

r

∑
i∈[n]

∑
j ̸=i

P 2
ij,γne

2
i (β0)e

2
j(β0)

and

Φ̂γn,cf
1 (β0) :=

2

r

∑
i∈[n]

∑
j ̸=i

P̃ 2
ij,γn [ei(β0)M

′
i,γne(β0)][ej(β0)M

′
j,γne(β0)]
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where Mγn := In − Pγn . The proof that Φ̂γn,standard
1 (β0) and Φ̂γn,cf

1 (β0) satisfies (B.5.4)

follows in exactly the same way as the proof of Theorems B.3.0.1 and B.3.0.2 respectively,

with an additional usage of Lemma B.5.1; hence we omit them to avoid repetition. Our

analytical test rejects H0 : β = β0 at α significance-level if

Q̂γ∗
n(β0) > Cγ∗

n

α,df (Φ̂
γ∗
n

1 (β0)).

The intuition for size-control is exactly the same as what was described in section 2.2.3.

B.5.2 Bootstrap-based Test under Rank Deficiency

The Bootstrap-based statistic is defined as

Ĵγn(β0, Φ̂
γn
1 (β0)) :=

∑
i∈[n]

∑
j ̸=i Pij,γnei(β0)ej(β0)√
rΦ̂γn

1 (β0)

(B.5.5)

with Φ̂γn
1 (β0) satisfying (B.5.4) with the additional requirement that it can be constructed

from e(β0) and Pγn . We reject H0 : β = β0 at α significance-level if

Ĵγ∗
n(β0, Φ̂

γn
1 (β0)) > Cγ∗

n

α,dfBS
(Φ̂γ∗

n

1 (β0),L),

where Cγn
α,dfBS

(Φ̂γn
1 (β0),L) is the critical value that depends (1) on some large positive integer

B, (2) significance-level α, (3) i.i.d. random variables {κi}i∈[n] following the probability law

L with the property that its mean is zero, variance is one, fourth moment is bounded, (4)

the structure of the variance estimator Φ̂γn
1 (β0) and (5) sequence of γn. The critical-value

is computed in the following manner: Fix β0, a large B, and some α ∈ (0, 1). Fix any

ℓ ∈ {1, ..., B}, and generate i.i.d. random variables {κi,ℓ}i∈[n] following the law L. We

then multiply each ei(β0) by κi,ℓ, denoting the new random variable ηi,ℓ := κi,ℓei(β0). Since

Φ̂γn
1 (β0) is assumed to be constructed by using only e(β0) and Pγn , we construct Φ̂

γn,ℓ
1 (β0) in

exactly the same way that Φ̂γn
1 (β0) was constructed, but replacing (e(β0), Pγn) with (ηℓ, Pγn),
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where ηℓ = (η1,ℓ, ..., ηn,ℓ)
′. Once this is done, we can construct the statistic

Ĵγn,ℓ :=

∑
i∈[n]

∑
j ̸=i Pij,γnηi,ℓηj,ℓ√
rΦ̂γn,ℓ

1 (β0)

By repeating this process for every ℓ ∈ [B], we obtain a collection of statistics {Ĵγn,ℓ}ℓ∈[B].

Then

Cγn
α,dfBS

(Φ̂γn
1 (β0),L) := inf

z ∈ R : 1− α ≤

∑
ℓ∈[B] 1

{
Ĵγn,ℓ ≤ z

}
B

+ 1/dfBS (B.5.6)

where df−1
BS = o(1) is a deterministic sequence.

B.5.3 Asymptotic Size Control under Rank Deficiency

Define pγnn := maxi∈[n] Pii,γn . We make the following assumption:

Assumption 13. Suppose pγ
∗
n

n ≤ C r
n for some C <∞

Let λn ∈ Λn be the data generating process of n observations for (ẽ, ṽ, Z,W ). We impose

the following restriction on the sequence of classes of DGPs ({Λn}n≥1):

{ẽi, ṽi}i∈[n] are independent, Eẽi = Eṽi = 0,

p
γ∗n
n

r = o(1), pWn = o(1), dW = O(K(1−η)/4) for any η > 0,

maxiΠ
2
i +maxi Eẽ8i +maxi Eṽ8i ≤ C <∞,

Π′Π, σ2i (β0), ζ
2
i (β0) ≥ C under the null,

C ≤ λmin(
W ′W
n ) ≤ λmax(

W ′W
n ) ≤ C,

∃γn ∈ [γ,∞), h ≥ 1 s.t.
∑

i∈[n]
∑

j ̸=i P
2
ij,γn

≥ Crh, γ = 0 if r = K, γ = γ− if r < K

Φ̂γ∗
n

1 (β0) satisfies (B.5.4) under the null,

where 0 < C,C, γ− <∞ are some fixed constants


(B.5.7)

Then our test has size-control uniformly over the set of DGPs that satisfy (B.5.7). We

formalize the statement as follows:
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Theorem B.5.3.1. Suppose {Λn}n≥1 satisfies (B.5.3), (B.5.7) and assumption 13. Then

under the null, for both fixed and diverging instruments, with possibly more instruments than

sample-size, we have exact size-control for the proposed tests, i.e.

lim inf
n→∞

inf
λn∈Λn

Pλn

(
Q̂γ∗

n(β0) > Cα,df,γ∗
n
(Φ̂γ∗

n

1 (β0))
)

= lim sup
n→∞

sup
λn∈Λn

Pλn

(
Q̂γ∗

n(β0) > Cα,df,γ∗
n
(Φ̂γ∗

n

1 (β0))
)
= α

and

lim inf
n→∞

inf
λn∈Λn

lim
B→∞

Pλn

(
Ĵγ∗

n(β0, Φ̂
γn
1 (β0)) > Cγ∗

n

α,dfBS
(Φ̂γ∗

n

1 (β0),L)
)

= lim sup
n→∞

sup
λn∈Λn

lim
B→∞

Pλn

(
Ĵγ∗

n(β0, Φ̂
γ∗
n

1 (β0)) > Cγ∗
n

α,dfBS
(Φ̂γ∗

n

1 (β0),L)
)
= α

B.5.4 Asymptotic Power Properties under Rank Deficiency

The power-properties of our ridge-projection-based-tests are similar to Theorems 3–8. We

first expound on the notion of identification parameter under rank-deficiency of instruments.

Recall in section 2.4.2 we began by introducing the notion of identification parameter G :=

QΠ,Π. Under rank-deficiency of instruments, we have an analogous notion of identification

parameter, namely G :=
∑

i∈[n]

∑
j ̸=i Pij,γ∗nΠiΠj√

r
. We say that we have strong identification if

G → ∞ and weak identification otherwise.

Power Properties – Diverging Rank

We first discuss the asymptotic-power under diverging rank,5 and consider three cases for

some sequence dn → 0: (1) Strong identification and local alternative, where dnG = G̃ and

∆ = ∆̃d
1/2
n for some fixed ∆̃, G̃ ∈ R; (2) Strong identification and fixed alternative, where

dnG = G̃ and ∆ = ∆̃; (3) Weak identification and fixed alternative, where G = G̃ and ∆ = ∆̃.

We make the following assumption:

5This implies that the number of instruments diverge. We make no assumptions regarding the
number of instruments; in particular we allow K >> n.
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Assumption 14. Suppose that p
γ∗n
n

r = o(1) and pWn := maxi P
W
ii = o(1), and dW =

O(r(1−η)/4) for any η > 0. Let the errors and |Πi| be bounded in the eighth moment

and bounded away from zero in the second moment, i.e. maxi(Π
8
i + Eẽ8i + Eṽ8i ) < C <

∞ and (Π′Π)2, σ2i (β0), ς
2
i (β0) ≥ C > 0. Furthermore, suppose C ≤ λmin(W

′W/n) ≤
λmax(W

′W/n) ≤ C and that Z has full rank.

Note that assumption 14 is very similar to assumption 6, the only difference is that we

have replaced K with r, pn by pγ
∗
n

n , and removed the requirement that pn ≤ δ < 1 for

some constant δ > 0 (since this clearly wouldn’t hold whenever K >> n). Under the usual

conditions of r = K < n, by noting that for any 0 ≤ γ1 ≤ γ2, we have pγ2n ≤ pγ1n ≤ pn,
6 so

that a sufficient condition for p
γ∗n
n

r = o(1) is given by pn
K = o(1). We only require p

γ∗n
n

r = o(1)

instead of pγnn
r = o(1) for some sequence of γn out of being conservative. Recall that γ∗n is the

maximum of the arguments that maximize
∑

i∈[n]
∑

j ̸=i P
2
ij,γn

, so that in essence, p
γ∗n
n

r = o(1)

is the weakest requirement in the sense that it is possible for p
γ1
n

r ̸= o(1) for some γ1 < γ∗n

with the property that γ1 maximizes
∑

i∈[n]
∑

j ̸=i P
2
ij,γn

, yet we can still have p
γ∗n
n

r = o(1).

Similar to (B.4.1), under the arguments of Dovi et al. (2023)[Theorem 1], whenever as-

sumption 5 and 14 holds, under both weak and strong identification, for r → ∞ and any

sequence of γn satisfying assumption 9, we have
∑

i∈[n]

∑
j ̸=i Pij,γn ẽiẽj√
r∑

i∈[n]

∑
j ̸=i Pij,γnX̃iẽj√

r∑
i∈[n]

∑
j ̸=i Pij,γnX̃iX̃j√

r
− G

⇝ N


 0

0

0

 ,

 Φγ
1(β) Φγ

12(β) Φγ
13(β)

Φγ
12(β) Ψγ(β) τγ(β)

Φγ
13(β) τγ(β) Υγ(β)


 (B.5.8)

for some (Φγ
1(β),Φ

γ
12(β),Φ

γ
13(β),Ψ

γ(β), τγ(β),Υγ(β)) with β being the true parameter of

interest.7 We have the following power-properties, for which we omit the proof in order to

avoid repetition; the proofs are exactly the same as Theorem 3–5, with an additional use of

Lemma B.5.1.

Theorem B.5.4.1. Suppose Assumption 5, 9, 14 and (B.5.3) holds, with r → ∞. For

any estimator Φ̂γ∗
n

1 (β0) that satisfies (B.5.4), we have under strong identification and fixed

6See the expression of D̃ii at the start of section B.5.5
7Note that Dovi et al. (2023)[Theorem 1] proved the first of the three equations in (B.5.8), with

Φγ
1(β) = limn→∞Φγn

1 (β) for any sequence of γn satisfying assumption 9.
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alternative

lim
n→∞

P
(
Q̂γ∗

n(β0) > Cα,df,γ∗
n
(Φ̂γ∗

n

1 (β0))
)
= 1

and

lim
n→∞

lim
B→∞

P
(
Ĵγ∗

n(β0, Φ̂
γ∗
n

1 (β0)) > Cγ∗
n

α,dfBS
(Φ̂γ∗

n

1 (β0),L)
)
= 1

Under weak identification with fixed alternatives, we have the following result:

Theorem B.5.4.2. Suppose Assumption 5, 9, 14 and (B.5.3) holds, with r → ∞. For any

estimator Φ̂γ∗
n

1 (β0)
p→ Φγ

1(β0), we have under weak identification and fixed alternative that

lim
n→∞

P
(
Q̂γ∗

n(β0) > Cα,df,γ∗
n
(Φ̂γ∗

n

1 (β0))
)
= 1− F

(
q1−α(N (0, 1))− ∆̃2G̃√

Φ1(β0)

)

and

lim
n→∞

lim
B→∞

P
(
Ĵγ∗

n(β0, Φ̂
γ∗
n

1 (β0)) > Cγ∗
n

α,dfBS
(Φ̂γ∗

n

1 (β0),L)
)
= 1− F

(
q1−α(N (0, 1))− ∆̃2G̃√

Φ1(β0)

)

where F (·) denotes the cumulative distribution function (CDF) of a standard normal dis-

tribution. In particular, if we assume Π′MΠ ≤ Π′Π
K → 0, then Φ̂γ∗

n

1 (β0) can be taken as

Φ̂γ∗
n,ℓ

1 (β0) for ℓ = {standard, cf} given in section B.5.1.

Under strong identification and local alternative, we have the following result:

Theorem B.5.4.3. Suppose Assumption 5, 9, 14 and (B.5.3) holds, with r → ∞. For

any estimator Φ̂γ∗
n

1 (β0) satisfying (B.5.4), under strong identification and local alternative we

have

lim
n→∞

P
(
Q̂γ∗

n(β0) > Cα,df,γ∗
n
(Φ̂γ∗

n

1 (β0))
)
= 1− F

(
q1−α(N (0, 1))− ∆̃2G̃√

Φ1(β0)

)
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and

lim
n→∞

lim
B→∞

P
(
Ĵγ∗

n(β0, Φ̂
γ∗
n

1 (β0)) > Cγ∗
n

α,dfBS
(Φ̂γ∗

n

1 (β0),L)
)
= 1− F

(
q1−α(N (0, 1))− ∆̃2G̃√

Φ1(β0)

)

Power Properties – Fixed Rank

We discuss in this section the asymptotic-power when rank is fixed. In general, there are

two further cases to consider under fixed rank: (i) K is fixed (ii) K → ∞. In either case,

for K > r, the implication is that there are K − r > 0 linearly-dependent columns; these

linearly-dependent columns provide no additional information, so that when the rank of

instruments is taken to be fixed, we can assume without loss of generality that the number

of instruments is fixed, specifically, r = K. In essence, the power-properties will be (almost)

exactly the same as that described in section 2.4.2. The only difference is that we replace

assumption 8 by the following assumption:

Assumption 15. For every sequence of ∆n → ∆† ∈ R, suppose 1
n

∑
i∈[n] Λ0,i(∆n)⊗ZiZ

′
i →

Σ(∆†) and Z′Z+γ∗
nIK

n → QZZ , where Σ(∆†) is positive-semi-definite and QZZ is positive-

definite matrix. Furthermore, assume that supi ||Zi||F <∞.

By repeating the exact proof as in Theorem 6–8 and using Lemma B.5.1, we can obtain

the following results, which we state without proof.

Theorem B.5.4.4. Suppose Assumption 5, 9 14, 15, (B.5.3) holds and we are under fixed

r. For any estimator Φ̂1(β0) that satisfies (B.5.4), our test consistently differentiates the

null from alternative, i.e.

lim
n→∞

P
(
Q̂γ∗

n(β0) > Cα,df,γ∗
n
(Φ̂γ∗

n

1 (β0))
)
= 1

and

lim
n→∞

lim
B→∞

P
(
Ĵγ∗

n(β0, Φ̂
γ∗
n

1 (β0)) > Cγ∗
n

α,dfBS
(Φ̂γ∗

n

1 (β0),L)
)
= 1

for any fixed ∆ ̸= 0, whenever µ̃n
2 → ∞
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To simplify the discussion for the power properties of the remaining cases, we assume

without loss of generality that under weak identification, µK ≡ µ̃,8 while under strong

identification, dnµK ≡ µ̃, where µ̃ ∈ RK is some constant. Denote

Ω∗(β0) := lim
n→∞

(Z ′Λ(β0)Z)
1/2(Z ′Z + γ∗nIK)−1(Z ′Λ(β0)Z)

1/2∑
i∈[n] Pii,γ∗

n
σ2i (β0)

and assume it is well-defined. We have the following result:

Theorem B.5.4.5. Suppose Assumption 5, 9 14, 15, (B.5.3) holds and we are under fixed

r. Furthermore, let p
γ∗n
n Π′Π
r = O(1) and suppose Ω∗(β0) is well-defined. Then under strong-

identification and local alternative, for any estimator Φ̂γ∗
n

1 (β0) that satisfies (B.5.4),

lim
n→∞

P
(
Q̂γ∗

n(β0) > Cα,df,γ∗
n
(Φ̂γ∗

n

1 (β0))
)
= P

(
ZK

(
Σ(0)∆̃µ̃

)′
Ω∗(β0)ZK

(
Σ(0)∆̃µ̃

)
> q1−α(Fw∗)

)
and

lim
n→∞

lim
B→∞

P
(
Ĵγ∗

n(β0, Φ̂
γ∗
n

1 (β0)) > Cγ∗
n

α,dfBS
(Φ̂γ∗

n

1 (β0),L)
)

= P

(
ZK

(
Σ(0)∆̃µ̃

)′
Ω∗(β0)ZK

(
Σ(0)∆̃µ̃

)
> q1−α(Fw∗)

)
where w∗ = (w∗

1, ..., w
∗
K) are the eigenvalues of Ω∗(β0).

Theorem B.5.4.6. Suppose Assumption 5, 9 14, 15, (B.5.3) holds and we are under fixed r.

Assume Ω∗(β0) is well-defined and consider any estimator Φ̂γ∗
n

1 (β0)
p→ Φγ

1(β0). Then under

weak-identification and fixed alternative, if we further assume that Π′Π = O(1), we have

lim
n→∞

P
(
Q̂γ∗

n(β0) > Cα,df,γ∗
n
(Φ̂γ∗

n

1 (β0))
)
= P

(
Z
(
Σ(∆̃)µ̃

)′
Ω∗(β0)Z

(
Σ(∆̃)µ̃

)
> q1−α(Fw∗)

)
and

lim
n→∞

lim
B→∞

P
(
Ĵγ∗

n(β0, Φ̂
γ∗
n

1 (β0)) > Cγ∗
n

α,dfBS
(Φ̂γ∗

n

1 (β0),L)
)

8Under weak identification, µ′
KµK ≡ µ̃2

n → µ̃2 ∈ R. This implies that µK must be bounded.
By Bolzano-Weierstrass, for every sub-sequence of µK , there exists a further sub-sequence µKj

that converges to µ, where µ′µ = µ̃2. Therefore, instead of arguing along sub-sequences, the
simplification that µK ≡ µ̃ allows us to argue along the full sequence.
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= P

(
ZK

(
Σ(∆̃)µ̃

)′
Ω∗(β0)ZK

(
Σ(∆̃)µ̃

)
> q1−α(Fw∗)

)
where w∗ are the eigenvalues of Ω∗(β0).In particular, if we assume Π′MΠ ≤ Π′Π

K → 0, then

Φ̂γ∗
n

1 (β0) can be taken as Φ̂γ∗
n,ℓ

1 (β0) for ℓ = {standard, cf} given in section B.5.1.

B.5.5 Proofs for section B.5

The proofs are analogous to what we have shown before in section 2.4. We require a technical

lemma needed for the proofs later on, which is provided by Dovi et al. (2023). We begin by

introducing some intuition. We can apply the singular-value-decomposition for our n × K

matrix Z as follows:

Z = SΣV ′

where S ∈ Rn×n is such that S′S = SS′ = In, V ∈ RK×K is such that V ′V = V V ′ = IK ,

and Σ ∈ Rn×K is such that it can be written as

Σ =

(
D 0r×(K−r)

0(n−r)×r 0(n−r)×(n−r)

)

and D ∈ Rr×r is a diagonal-matrix with elements {Dii}i∈[r]. we can then rewrite

Pγn = SΣV ′(V Σ′ΣV ′ + γnIK)−1V Σ′S′ = SΣ(Σ′Σ + γnIK)Σ′S′ = SD̃S′

where D̃ = Σ(Σ′Σ + γnIK)−1Σ′ ∈ Rn×n is a diagonal-matrix given by entries D̃ii =
D2

ii

D2
ii+γn

for i ∈ [r] and zero otherwise. Note that these diagonal entries of D̃ are also the eigenvalues

of Pγn . The only additional technical lemma needed for the proofs later on is given as follow:

Lemma B.5.1 (Dovi et al. (2023) Lemma 1). Fix n ≥ 3. For all i, j,m = 1, ..., n and γn ≥ 0

if r = K and γn > 0 for r < K , one has

(i) 0 ≤ (Pγn)
ℓ
ii ≤ Pii,γn for all positive integers ℓ

(ii)
∑
i∈[n]

(Pij,γn)
2 = (Pγn)

2
jj ≤ Pjj,γn
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(iii)
∑
i∈[n]

Pii,γn =
∑
i∈[r]

D2
ii

D2
ii + γn

≤ r

(iv) |Pij,γn| ≤ 1

(v) for any I2 ⊂ {1, ..., n}2 and I3 ⊂ {1, ..., n}3,

(a)
∑
I2

(Pij,γn)
4 ≤ r,

(b)
∑
I3

(Pij,γn)
2(Pjm,γn)

2 ≤ r

Lemma B.5.1 shows that the ridge-projection matrix has similar properties to the usual

projection. Therefore many of the proofs can be repeated with appropriate replacement (i.e.

replace K and P with r and Pγn respectively).

Proof of Theorem B.5.3.1: Note that β0 = β since we are under the null. We separate

our proof into two cases: (i) r is fixed and (ii) r → ∞. The fixed r case follows in exactly

the same way as the proof of Theorem 2 - Fixed K case. In particular, we can show that

Q̂γ∗
n

njk
(β0)⇝

∑
i∈[r]

w∗
i χ

2
1,i

where w∗ := (w∗
1, ..., w

∗
r)

′ is the limit of wγ∗
n , where wγ∗

n is the eigenvalues of

Ωγ∗
n(β0) :=

(Z ′Λ(β0)Z)
1/2(Z ′Z + γ∗nIK)−1(Z ′Λ(β0)Z)

1/2∑
i∈[n] Pii,γ∗

n
e2i (β0)

Furthermore, we can show that F
w̃

γ∗njk
njk

⇝ Fw∗ . Finally we can show that

√
Φ̂

γ∗n
1

1√
r

∑
i∈[n] Pii,γ∗ne

2
i√

2
∑

i∈[r](w̃
γ∗
n

i,n)
2 + 1/df

p→
√
2||w∗||√
2||w∗||

= 1

This concludes the proof for the fixed r case. The diverging r case follows in exactly the
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same way as the proof of Theorem 2 - Diverging K case. In particular, we can show

1√
r

∑
i∈[n] Pii,γ∗

n
e2i√

Φ̂γ∗
n

1 (β0)

(
Q̂γ∗

n(β0)− 1
)
=

∑
i∈[n]

∑
j ̸=i Pij,γ∗

n
eiej√

rΦ̂γ∗
n

1 (β0)

⇝ N (0, 1) (B.5.9)

and

F
w̃

γ∗n
n

− 1√
2
∑

i∈[K](w̃
γ∗
n

i,n)
2 + 1/df

⇝ N (0, 1).

To see (B.5.9), note that (B.5.7) implies assumption 5, 9 and 14, which in turn implies

(B.5.8). An analogous proof to Lim et al. (2024)[Theorem A.1.] yields∑
i∈[n]

∑
j ̸=i Pij,γ∗

n
eiej

√
r

=

∑
i∈[n]

∑
j ̸=i Pij,γ∗

n
ẽiẽj

√
r

+ op(1),

so that combining with (B.5.8) completes the proof for the diverging r case.
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