Singapore Management University

Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open

Access) Dissertations and Theses

5-2024

Essays on weak identification

Dennis Guo Wei LIM
Singapore Management University, dennis.lim.2019@phdecons.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

O‘ Part of the Econometrics Commons

Citation
LIM, Dennis Guo Wei. Essays on weak identification. (2024). 1-268.
Available at: https://ink.library.smu.edu.sg/etd_coll/603

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.


https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/342?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

ESSAYS ON WEAK IDENTIFICATION

By
DENNIS LIM GUO WEI

A DISSERTATION
In

ECONOMICS

Presented to the Singapore Management University in Partial Fulfilment
of the Requirements for the Degree of PhD in Economics
2024

Supervisor of Dissertation

PhD in Economics, Programme Director



ESSAYS ON WEAK IDENTIFICATION

by
DENNIS LIM GUO WEI

Submitted to School of Economics in partial fulfillment of

the requirements for the Degree of Doctor of Philosophy in Economics

Dissertation Committee:

Zhang Yichong (Supervisor/Chair)
Associate Professor of Economics

Singapore Management University

Li Jia
Professor of Economics

Singapore Management University

Yu Jun
Professor of Economics

Singapore Management University

Wang Wenjie
Assistant Professor of Economics

Nanyang Technological University

Singapore Management University
Copyright (©) 2024 by Dennis Lim Guo Wei



Abstract

This dissertation presents a comprehensive examination of inference techniques for weak
instrumental variable (IV) models, crucial in addressing endogeneity and bias in econo-
metric analyses. Comprising two interconnected chapters, the research explores innovative
methodologies to enhance the reliability and robustness of IV regression estimations. Chap-
ter 1 is concerned with maximizing the power of tests in the many weak IVs setting. This
is done by introducing a novel approach that considers a linear combination of jackknife
Anderson-Rubin (AR), jackknife Lagrangian multiplier (LM), and orthogonalized jackknife
LM tests for inference in IV regressions with many weak instruments and heteroskedasticity.
Following I. Andrews (2016), weights are adaptively chosen in a linear fashion based on a
decision-theoretic rule, ensuring control of asymptotic size under weak and strong identifi-
cations. The proposed test exhibits optimal power against local alternatives, confirmed by
simulations and empirical applications to Angrist and Krueger’s (1991) dataset. Chapter
2 deals with inference under both fixed and diverging weak IVs simultaneously. In partic-
ular, conventional and jackknife Anderson-Rubin (AR) Tests are developed separately to
conduct weak-identification-robust inference when the number of IVs is fixed or diverging to
infinity with the sample size, respectively. These two tests compare distinct test statistics
with distinct critical values. To implement them, researchers first need to take a stance
on the asymptotic behaviour of the number of IVs, which is ambiguous when this number
is just moderate. Instead, in this paper, two analytical and two bootstrap-based weak-
identification-robust AR tests are introduced, all of which control asymptotic size whether
the number of IVs is fixed or diverging - in particular, the number of instruments is allowed
but not required to be greater than the sample size. Power properties of these uniformly

valid AR tests under both fixed and diverging number of IVs are analysed.
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Chapter 1

A Conditional Linear Combination

Test with Many Weak Instruments

1.1 Introduction

Various recent surveys in leading economics journals suggest that weak instruments remain
important concerns for empirical practice. For instance, I.Andrews, Stock, and Sun (2019)
survey 230 instrumental variable (IV) regressions from 17 papers published in the American
Economic Review (AER). They find that many of the first-stage F-statistics (and non-
homoskedastic generalizations) are in a range that raises such concerns, and virtually all of
these papers report at least one first-stage F with a value smaller than 10. Similarly, in
Lee, McCrary, Moreira, and Porter’s (2022) survey of 123 AER articles involving IV regres-
sions, 105 out of 847 specifications have first-stage Fs smaller than 10. Moreover, many IV
applications involve a large number of instruments. For example, in their seminal paper,
Angrist and Krueger (1991) study the effect of schooling on wages by interacting three base
instruments (dummies for the quarter of birth) with state and year of birth, resulting in
180 instruments. Hansen, Hausman, and Newey (2008) show that using the 180 instruments
gives tighter confidence intervals than using the base instruments even after adjusting for
the effect of many instruments. In addition, as pointed out by Mikusheva and Sun (2022),
in empirical papers that employ the “judge design” (e.g., see Maestas, Mullen, and Strand
(2013), Sampat and Williams (2019), and Dobbie, Goldin, and Yang (2018)), the number
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of instruments (the number of judges) is typically proportional to the sample size, and the
famous Fama-MacBeth two-pass regression in empirical asset pricing (e.g., see Fama and
MacBeth (1973), Shanken (1992), and Anatolyev and Mikusheva (2022)) is equivalent to IV
estimation with the number of instruments proportional to the number of assets. Similarly,
Belloni, Chen, Chernozhukov, and Hansen (2012) consider an IV application involving more
than one hundred instruments for the study of the effect of judicial eminent domain deci-
sions on economic outcomes. Carrasco and Tchuente (2015) used many instruments in the
estimation of the elasticity of intertemporal substitution in consumption. Furthermore, as
pointed out by Goldsmith-Pinkham, Sorkin, and Swift (2020), the shift-share or Bartik in-
strument (e.g., see Bartik (1991) and Blanchard, Katz, Hall, and Eichengreen (1992)), which
has been widely applied in many fields such as labor, public, development, macroeconomics,
international trade, and finance, can be considered as a particular way of combining many
instruments. For example, in the canonical setting of estimating the labor supply elasticity,
the corresponding number of instruments is equal to the number of industries, which is also

typically proportional to the sample size.

In this paper, following the seminal study by I.Andrews (2016), we propose a jackknife
conditional linear combination (CLC) test that is robust to weak identification, many in-
struments, and heteroskedasticity. The proposed test also achieves efficiency under strong
identification against local alternatives. The starting point of our analysis is the observation
that, under strong identification, an orthogonalized jackknife Lagrangian multiplier (LM)
test is the uniformly most powerful (UMP) test against local alternatives among the class of
tests that are constructed based on jackknife LM and Anderson-Rubin (AR) tests and are
either unbiased or invariant to sign changes. However, the orthogonalized LM test may not
have good power under weak identification or against certain fixed alternatives. Therefore,
we consider a linear combination of jackknife AR, jackknife LM, and orthogonalized LM
tests. Specifically, we follow I. Andrews (2016) and determine the linear combination weights
by minimizing the maximum power loss, which can be viewed as a maximum regret and is
further calibrated based on the limit experiment of interest and a sufficient statistic for the
identification strength under many instruments. Then, similar to I.Andrews (2016), we show
such a jackknife CLC test is adaptive to the identification strength in the sense that (1) it
achieves correct asymptotic size, (2) it is asymptotically and conditionally admissible under

weak identification among certain class of tests, (3) it converges to the UMP test mentioned
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above under strong identification against local alternatives,' and (4) it has asymptotic power
equal to 1 under strong identification against fixed alternatives. The properties of jackknife
AR, jackknife LM, orthogonalized LM, and our CLC tests are summarized in Table 1.1.
Simulations based on the limit experiment as well as calibrated data confirm the good power
properties of our test. Then, we apply the new jackknife CLC test to Angrist and Krueger’s
(1991) dataset with the specifications of 180 and 1,530 instruments. We find that, in both
specifications, our confidence intervals (Cls) are the shortest among those constructed by
weak identification robust tests, namely, the jackknife AR, LM, and CLC tests, and the
two-step procedure. Furthermore, our Cls are found to be even shorter than the non-robust
Wald test Cls based on the jackknife IV estimator (JIVE) proposed by Angrist, Imbens, and
Krueger (1999), which is in line with the theoretical result that the jackknife CLC test is

adaptive to the identification strength and is efficient under strong identification.

‘ Weak ID, fixed alternative ‘ Strong ID, local alternative ‘ Strong ID, fixed alternative

Jackknife AR Admissible Not UMP Power 1
Jackknife LM Admissible Not UMP Power 1
Orthogonalized LM | Admissible UMP Non-monotonic power
CLC Admissible UMP Power 1

Table 1.1: Power Comparison of the Tests

Relation to the literature. The contributions in the present paper relate to two strands
of literature. First, it is related to the literature on many instruments; see, for example,
Kunitomo (1980), Morimune (1983), Bekker (1994), Donald and Newey (2001), Chamberlain
and Imbens (2004), Chao and Swanson (2005), Stock and Yogo (2005a), Han and Phillips
(2006), D.Andrews and Stock (2007), Hansen et al. (2008), Newey and Windmeijer (2009),
Anderson, Kunitomo, and Matsushita (2010), Kuersteiner and Okui (2010), Anatolyev and
Gospodinov (2011), Belloni, Chernozhukov, and Hansen (2011), Okui (2011), Belloni et al.
(2012), Carrasco (2012), Chao, Swanson, Hausman, Newey, and Woutersen (2012), Hausman
et al. (2012), Hansen and Kozbur (2014), Carrasco and Tchuente (2015), Wang and Kaffo
(2016), Kolesar (2018), Matsushita and Otsu (2020), Selvsten (2020), Crudu, Mellace, and

'We emphasize that the UMP property of our CLC test under strong identification holds within
the class of sign-invariant or unbiased tests that are constructed based on jackknife AR and LM
tests only. It may be possible to construct more efficient tests using test statistics besides the
jackknife AR and LM. How to construct a globally optimal test under strong identification with
many IVs and heteroskedastic errors is a topic that remains to be explored in future research.

13



Sandor (2021), and Mikusheva and Sun (2022), among others. In the context of many
instruments and heteroskedasticity, Chao et al. (2012) and Hausman et al. (2012) provide
standard errors for Wald-type inferences that are based on JIVE and jackknifed versions of
the limited information maximum likelihood (LIML) and Fuller’s (1977) estimators (HLIM
and HFUL). These estimators are more robust to many instruments than the commonly used
two-stage least squares (T'SLS) estimator because they can correct the bias caused by the
high dimension of IVs.? In simulations derived from the data in Angrist and Krueger (1991),
which is representative of empirical labor studies with many instrument concerns, Angrist
and Frandsen (2022, Section IV) show that such bias-corrected estimators outperform the
TSLS that is based on the instruments selected by the least absolute shrinkage and selection
operator (LASSO) introduced in Belloni et al. (2012) or the random forest-fitted first stage
introduced in Athey, Tibshirani, and Wager (2019). Furthermore, under many weak moment
asymptotics, Newey and Windmeijer (2009) provide new variance estimators for the jackknife
GMM and the class of generalized empirical likelihood (GEL) estimators, which includes the
continuous updating estimator (CUE) and EL estimator as special cases. In the linear
heteroskedastic IV model, consistency and asymptotic normality of CUE require m?/n — 0
and m3/n — 0, respectively, where m and n denote the number of moment conditions and
the sample size (e.g., see p.689 of Newey and Windmeijer (2009)). Such conditions are needed
to simultaneously control the estimation error for all the elements of the heteroskedasticity
consistent weighting matrix. Somewhat stronger rate conditions are required for other GEL

estimators.

However, the Wald-type inference methods are invalid under weak identification, which
occurs when the concentration parameter remains bounded as the sample size increases to
infinity. In this case, all the estimators mentioned earlier become inconsistent, and there is
no consistent test for the structural parameter of interest (see Section 3 of Mikusheva and
Sun (2022)). For weak identification robust inference under many instruments, D.Andrews

and Stock (2007) consider the AR test, the score test introduced in Kleibergen (2002),

2Specifically, the rate of growth of the concentration parameter, which measure the overall instru-
ment strength, is denoted as p2. JIVE, HLIM, and HFUL remain consistent with heteroskedastic
errors even when instrument weakness is such that p? is slower than the number of instruments K,
provided that p2/v/K — 0o as the number of observations n — oo (Chao et al., 2012; Hausman
et al., 2012). In contrast, TSLS is less robust to instrument weakness as it is shown to be consistent
only under homoskedasticity if 12 /K — oo (Chao and Swanson, 2005).
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and the conditional likelihood ratio test introduced in Moreira (2003). Their IV model is
homoskedastic and requires the number of instruments to diverge slower than the cube root
of the sample size (K3/n — 0, where K denotes the number of instruments). Anatolyev and
Gospodinov (2011) propose a modified AR test that allows for the number of instruments to
be proportional to the sample size but still require homoskedastic errors. Recently, Crudu
et al. (2021) and Mikusheva and Sun (2022) propose jackknifed versions of the AR test
in a model with many instruments and heteroskedasticity. Both tests are robust to weak
identification, but Mikusheva and Sun’s (2022) jackknife AR test has better power properties
due to the use of a cross-fit variance estimator. However, the jackknife AR tests may be
inefficient under strong identification. To address this issue, Mikusheva and Sun (2022) also
propose a new pre-test for weak identification under many instruments and apply it to form
a two-stage testing procedure with a Wald test based on the JIVE introduced in Angrist
et al. (1999). The JIVE-Wald test is more efficient than the jackknife AR under strong
identification. Therefore, an empirical researcher can employ the jackknife AR if the pre-test
suggests weak identification and the JIVE-Wald if the pre-test suggests strong identification.
In addition to the jackknife AR, Matsushita and Otsu (2020) propose a jackknife LM test,
which is also robust to weak identification, many instruments, and heteroskedastic errors.
However, the jackknife CLC test introduced in our paper is more efficient than the jackknife
AR, the jackknife LM, and the two-step test under strong identification and local alternatives,

while still being robust to weak identification.

Second, our paper is related to the literature on weak identification under the framework
of a fixed number of instruments or moment conditions, in which various robust inference
methods are available for non-homoskedastic errors; see, for example, Stock and Wright
(2000), Kleibergen (2005), D.Andrews and Cheng (2012), I.Andrews (2016), . Andrews and
Mikusheva (2016), I. Andrews (2018), Moreira and Moreira (2019), D.Andrews and Guggen-
berger (2019), and Lee et al. (2022). In particular, our jackknife CLC test extends the work
of I.Andrews (2016) to the framework with many weak instruments. I.Andrews (2016) con-
siders the convex combination between the generalized AR statistic (S statistic) introduced
by Stock and Wright (2000) and the score statistic (K statistic) introduced by Kleibergen
(2005). We find that under many weak instruments, the orthogonalized jackknife LM statis-
tic plays a role similar to the K statistic. However, the trade-off between the jackknife AR

and orthogonalized LM statistics turns out to be rather different from that between the S
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and K statistics. As pointed out by I.Andrews (2016), in the case with a fixed number of
weak instruments (or moment conditions), the K statistic picks out a particular (random)
direction corresponding to the span of a conditioning statistic that measures the identifica-
tion strength and restricts attention to deviations from the null along this specific direction.
In contrast to the K statistic, the S statistic treats all deviations from the null equally.
Therefore, the trade-off between the K and S statistics is mainly from the difference in at-
tention to deviation directions. We find that with many weak instruments, the jackknife AR
and orthogonalized LM tests do not have such difference in deviation directions. Instead,
their trade-off is mostly between local and non-local alternatives. Furthermore, although
the standard LM test (without orthogonalization) is not weak identification robust under
[.Andrews (2016)’s framework, the jackknife LM test is under many instruments. Therefore,
we consider a linear combination of jackknife AR, jackknife LM, and orthogonalized jack-
knife LM tests and find that the resulting CLC test has good power properties in a variety

of scenarios.

Notation: We denote Z(u) as the normal random variable with unit variance and expec-
tation p and [n] = {1,2,--- ,n}. We further simplify Z(0) as Z, which is just a standard
normal random variable. We denote z, as the (1 — «) quantile of a standard normal random
variable and Cq (a1, ag; p) as the (1 — «) quantile of random variable alzf +az(pZ1 + (1 —
p2)1/ 22524+ (1—a; — a2)222 where Z7 and Z5 are two independent standard normal random
variables, « is the significance level, p is a constant in (—1,1), and a; and ag are the weights
of the first and second components in the random variable. We further simplify Co ., as Cq,
which is just the 1 — a quantile of Z2. We let Cy max(p) = SUD(a,,05)eA, Cala1, az; p), where
Ap = {(ay,a2) € [0,1] x [0,1],a1 + ag < @} for some @ < 1. We suppress the dependence of
Ca,max(p) on @ for simplicity of notation. The operators E* and P* are expectation and prob-
ability taken conditionally on data, respectively. For example, E*1{Z?(j1) > C,}, in which
i1 is some estimator of the expectation i based on data, means the expectation is taken over
the normal random variable by treating /i as deterministic. We use ~~ to denote convergence
in distribution, U 2V to denote that U and V' share the same distribution, and maxeig())
and mineig(V) to denote maximum and minimum eigenvalues of a positive semidefinite ma-
trix V. For two sequences of random variables U,, and V,,, we write U, 4 Vi +op(1) if there
exist U, 4 U, and V, 4 V,, such that U, — V,, = op(1).
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1.2 Setup and Limit Problems

We consider the linear IV regression with a scalar outcome Y;, a scalar endogenous variable

X;, and a K x 1 vector of instruments Z; such that
Yi=Xif+e, Xi=I+V;, Vié€ln], (1.2.1)

where II; = EX; and {Zi}ie[n] is treated as fixed, following the many-instrument literature.
We let K diverge with sample size n, allowing for the case that K is of the same order of
magnitude as n. We further have EV; = 0 by construction, and Ee; = 0 by IV exogeneity.
We allow (e;, Vi) to be heteroskedastic across i. Also, following the literature on many
instruments (e.g., Mikusheva and Sun (2022)), we assume that there are no controls included
in our model as they can be partialled out from (Y;, X;, Z;). We provide more discussions
about the effect of partialling out the covariates after Assumption 1 below.

We are interested in testing § = fy. Let e;(8y) = Y — X;60 = e;+XiA, where A = §— .
We collect the transpose of Z; in each row of Z, an n x K matrix of instruments, and denote

P = 2(272)727. In addition, Let Qu = =<2 P 404 € = Quyi. Then, as

pointed out by Mikusheva and Sun (2022), the rescaled C is the concentration parameter

that measures the strength of identification in the heteroskedastic IV model with many
instruments. Specifically, the parameter (5 is weakly identified if C is bounded and strongly
identified if |C| — oo. We consider drifting sequence asymptotics so that all quantities are
implicitly indexed by the sample size n except specified otherwise. We omit such dependence
for notation simplicity.

Throughout the paper, we consider three scenarios: (1) weak identification and fixed
alternatives in which C — C for some fixed constant C € R and A is fixed and bounded,
(2) strong identification and local alternatives in which C = C/dyn, A = Ady, C and A are
bounded constants independent of n, and d,, — 0 is a deterministic sequence, and (3) strong
identification and fixed alternatives in which C = C, /dy, for the same C and d,, defined in case

(2) and A is fixed and bounded.® Many weak identification robust tests proposed in the

3If we follow the setup in Chao et al. (2012) and Hausman et al. (2012) and assume II; =
ni/y/n so that oo > C > 37,01 30, mibPymj/n > ¢ > 0 for some constants ¢,C, then C =
12 Yiepn) 2y TPy
VK n
(d,, — 0) is equivalent to that defined in Chao et al. (2012) and Hausman et al. (2012) (p2 /v K —

, implying that d, = VK /2. Then, our definition of strong identification
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literature (namely, the jackknife AR tests proposed by Crudu et al. (2021) and Mikusheva
and Sun (2022) and the jackknife LM test proposed by Matsushita and Otsu (2020)) depend
on a subset of the following three quantities: (Qe(ﬁo),e(ﬁo)u QX e(80)> Qx,x). Throughout the

paper, we maintain the following high-level assumption.

Assumption 1. Under both weak and strong identification, the following weak convergence

holds:

Qe,e 0 b, Dy Dy
Rx.e ~ N O, | P2 ¥ 7 : (1.2.2)
Qxx—C 0 b3 7 T

for some (P, P12, P13, V, 7, 7).

Although there are no controls in the model (1.2.1), we further verify Assumption 1 in
Section A.1 of the Appendix for a proper linear IV regression that includes a fixed dimension
of exogenous control variables, which are then partialled out from the original outcome
variable, endogenous variable, and instruments.*

Assumption 1 implies that,” under both strong and weak identification,

Qe(Bo).e(pr) — A*C 0 ®1(Bo)  Pi2(Bo) P13(Bo)
Qxeay —AC | N [o]. | 2By By () +op(1), (1.2.3)
Qxx—C 0 ®13(Bo)  7(Bo) T
where

D1 (By) = A 4+ 4A3T + A2(4V + 2B13) 4+ 4AD 5 + Oy,

00).
4Here, we focus on the case where the number of exogenous control variables is treated as fixed.
In the case where the dimension of the exogenous variables is also large and assumed to diverge
to infinity with the sample size, Chao, Swanson, and Woutersen (2023a) propose new versions of
various jackknife IV estimators and show they are consistent and asymptotically normal under
strong identification. We conjecture that it is possible to replace our jackknife construct (i.e. Qqp)
by the new version and consider weak identification robust tests and their linear combinations in
the same manner as studied in this paper. This is left as a topic for future research.

Qe(Bo) e (Bo) 1 28 A%\ [ Qee
®Note that QX,e(80) =10 1 A Qxe |-
Qx,x 0o 0 1 Qx,x
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D19(fy) = AT + 3A%r + A2V + dy3) + 1o,
D13(By) = AT + 2A7 + P13,
U(Go) = AT +2A7 + U,
7(Bo) = AT + 7. (1.2.4)

In particular, under strong identification, we have Qx xd, LN 5, which has a degenerate

distribution. Also, under local alternatives, we have A = o(1) so that

(@1(B0), P12(Bo), P13(5o), ¥(Bo), 7(Bo)) = (P1, P12, P13, ¥, 7).

To describe a feasible version of the test, we assume we have consistent estimates for all

the variance components.

: _ _ ®12(Bo) - — (3 £ P T -~ Y o
Assumption 2. Let p(f) = —z2200— 5(4) = (&1(5)., Bra). Dus(Bo). ¥(50). 7). T 5A0)
be an estimator, and B € R be a compact parameter space. Then, we have infg g ®1(5o) > 0,
infg,ep ¥(Bo) >0, T >0, and for By € B,

[17(Bo) = (Bo)ll2 = op(1),

where y(Bo) = (P1(5o), P12(B0), L13(5o), ¥(Bo), 7(Bo), T, p(Bo))-

Several remarks on Assumption 2 are in order. First, Chao et al. (2012) propose a
consistent estimator for W where there is strong identification and many instruments. It is
possible to compute 7(fp) based on Chao et al.’s (2012) estimator with their JIVE-based
residuals é; from the structural equation replaced by e;(fp). Under weak identification and
Bo = B, Crudu et al. (2021) and Matsushita and Otsu (2021) establish the consistency of
such estimators for ®;(fp) and W(fy), respectively. Similar arguments can be used to show
the consistency of the rest of the elements in 7(p) under both weak and strong identification.
In addition, the consistency can be established under both local and fixed alternatives. We
provide more details in Section A.2.1 in the Appendix. Second, motivated by Kline, Saggio,
and Seglvsten (2020), Mikusheva and Sun (2022) propose cross-fit estimators 61(50) and 7,
which are consistent under both weak and strong identification and lead to better power

properties. Following their lead, one can write down the cross-fit estimators for the rest of
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the elements in v(5p) and show they are consistent. We provide more details in Section
A.2.2 in the Appendix. Note that both Crudu et al.’s (2021) and Mikusheva and Sun’s
(2022) estimators are consistent under heteroskedasticity and allow for K to be of the same
order of n. Third, the consistency of 7(f3y) over the entire parameter space under both
strong and weak identifications is more than necessary and maintained mainly for simplicity
of presentation. In fact, for our jackknife CLC test proposed below to control size, it suffices
that 7(8p) and (61(50), 612(50), \T/(Bo)) are consistent under the null for weak and strong
identifications, respectively. Furthermore, the power analyses under strong identification
in Lemma 1.2.1, and subsequently, Theorems 1.4.2 and 1.4.4, only require consistency of
(@1(60), 612(50), @(60)) under local alternatives and 7(5y) = Op(1) under both local and

fixed alternatives.

Under this framework, Crudu et al. (2021) and Mikusheva and Sun (2022) consider the
jackknife AR test

{AR(fo) > za}, AR(B()):%, (1.2.5)
®,"%(50)

and Matsushita and Otsu (2020) consider the jackknife LM test

QX e(50)

1{LM2(B) > Ca}, LM(Bo) = S
0

(1.2.6)

Both tests are robust to weak identification, many instruments, and heteroskedasticity.
Lemma 1.2.1 below characterizes the joint limit distribution of (AR(Bo), LM (3))" under

strong identification and local alternatives.

Lemma 1.2.1. Suppose Assumptions 1 and 2 hold and we are under strong identification

with local alternatives, that is, there exists a deterministic sequence d, — 0 such that C =

6For example, Mikusheva and Sun (2022, p.22) establish the limit of their cross-fit estimator v
under weak identification and many instruments when the residual é; from the structural equation
is computed based on the JIVE estimator. We can construct W(5y) by replacing é; by e;(5p). Then,

the argument, as theirs with Qx ./Qx x replaced by A, establishes that \Tl(ﬁo) SN U(5p).

20



CN/dn and A = Zdn, where C and A are bounded constants independent of n. Then, we have

AR(Bo) — M d s ~0~ 1 p
LM (o) Na 25) \p 1

where p = ®19//P1 V.

Two remarks are in order. First, under strong identification, we consider local alternatives
so that 8 — By — 0. This is why we have (¥(8p), ®1(80), P12(5o)) converge to (¥, D1, P13a),
which are just the counterparts of (¥(8p), ®1(8), P12(5o)) when Sy is replaced by /5. Second,
although AR(fy) has zero mean, and hence, no power in this case, it is correlated with
LM (5p). It is therefore possible to use AR(fy) to reduce the variance of LM (fy) and obtain
a test that is more powerful than the LM test.

Lemma 1.2.2. Consider the limit experiment in which researchers observe (N1, Na) with

()= 0)-6)

know the value of p and that EN7 = 0, and want to test for 6 = 0 versus the two-sided
alternative. In this case, 1{Ny? > C,} is UMP among level-a tests that are either invariant

to sign changes or unbiased, where
N3 = (1= p*) V2N — pi)
is the normalized residual from the projection of No on Ni.

Let the orthogonalized jackknife LM statistic be LM*(8y) = (1 — p(80)%)~/2(LM (o) —
p(Bo)AR(Bp)). Then, Lemma 1.2.1 implies, under strong identification and local alternatives,

AR N 0 10
LM*(Bo) N3 ) \0 1
Lemma 1.2.2 with § = ACU~Y/2 implies, in this case, that the test 1{LM*2(8y) > Cqo} is

asymptotically strictly more powerful than the jackknife AR and LM tests based on AR(fy)
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and LM (5y) against local alternatives as long as p # 0. In addition, under strong identifi-
cation and local alternatives, Mikusheva and Sun’s (2022) two-step test statistic is asymp-

totically equivalent to LM (f3p), and thus, is less powerful than LM*(/p) too.

Next, we compare the behaviors of AR(fSy), LM (o), and LM*(fy) under strong identi-

fication and fixed alternatives.

Lemma 1.2.3. Suppose Assumption 2 holds, (Qe(ﬁo),e(ﬁo) —A%C, Qx,e(80) —AC, QX7X—C)T =
Op(1), and we are under strong identification so that d,C — CNfor some d, — 0. Then, we
have, for any fized A # 0,

AR2 () 71 (By) AYC?
di | LM2(Bo) | = W (o) AC?
LM (6p) (1= p2(80)) "1 (W12(Bo) = pl(Bo) @y *(Bo)A)2A%C?

Given d,, — 0 and both ®7!(6)AYC2 > 0 and &7 (8y)A2C% > 0, AR2(By) and LM2()
have power 1 against fixed alternatives asymptotically. By contrast, LM*2(3) may not have

power if A = A,(6y) = @1/2@0)‘1’_1/2(50),0_1(50)-

Next, we compare the performance of AR(fy) and LM*(fy) under weak identification

and fixed alternatives.

Lemma 1.2.4. Suppose Assumptions 1 and 2 hold and we are under weak identification so

that C — C € R. Then, we have, for any fized A # 0,

B 0))
LM*(ﬁo) N; mQ(A) 01
P12(Bo)

—— Cmd
U (B80)P1(Bo)

where p(Bo) =

mi(A)) _ RN CIING
ma(A) (1= p2(Bo)) /2T 2(8) AC — p(Bo) (1 — p*(Bo))~Y/20, *(Bp)A2C )
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In particular, as A — oo, we have

C P23
ml(A) — m and mQ(A) — T1/2 (1 _ p%3)1/2,
where po3 = W is the correlation between Qx . and QX7X.7

By comparing the means of the normal limit distribution in (1.2.8), we notice that
under weak identification and fixed alternatives, neither LM*(5y) dominates AR(fy) or
vice versa. We also notice from Lemma 1.2.4 that for testing distant alternatives, the
power of LM*(5y) is different from AR(fSp) by a factor of pa3/ m, so that it will
be lower when |p23| < 1/v/2. Under weak identification and homoskedasticity,® we have
po3 = p = ®12/v/Ud1. Therefore, although the test 1{LM*?(3y) > C,} has a power ad-
vantage under strong identification against local alternatives, it may lack power under weak
identification against distant alternatives if the degree of endogeneity is low. Furthermore,
LM*(Bp) may not have power if A = A,(fp).

In the current setting with many instruments, AR(Sy) and LM*(fp) play roles similar
to that of Stock and Wright’s (2000) S and Kleibergen’s (2005) K statistics in I.Andrews’s
(2016) setting, respectively. In the fixed number of IVs case, the power trade-off between
S and K statistics is based on the direction of deviations from the null. However, as shown
in Lemma 1.2.4 (the case with weak identification and fixed alternatives), the deviations of
AR(fBp) and LM*(fp) from the null do not have such a difference in direction under the
many-instrument setting because Cis just a scalar. Instead, their power trade-off is between

local and non-local alternatives. This is in stark contrast to the setting in I. Andrews (2016).

To achieve the advantages of AR(By), LM (5y), and LM*(fy) in all three scenarios above,
we need to combine them in a way that is adaptive to the identification strength. Following
I.Andrews (2016), we consider the linear combination of AR?(5y), LM?(By), and LM*2(f).
Recall that (N1, N5) are the limits of (AR(Sy), LM*(5)) in either strong or weak identifi-

cation. See (1.2.7) and (1.2.8) for their expressions in these two cases. Then, in the limit

"We suppress the dependence of my(A) and ma(A) on () and C for notation simplicity.
8Specifically, we say the data are homoskedastic if the covariance matrices of (e;, V;) are constant
across i.
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experiment, the linear combination test can be written as

Paranco = L{atNT + as(pN1 + (1 = %) 2N5)2 + (1 — a1 — az)N3? > Calar, as; )},
(1.2.9)

where (ag,a2) € Ag are the combination weights, N7 ~ Z(0;), and N5 ~ Z(f2); the mean
parameters #7 and 0y are defined in Lemmas 1.2.1 and 1.2.4 for strong and weak identification,

respectively; and p is the limit of p(fp).”

a1+ agp®  agp(l — p?)L/? be
asp(1 — p2)Y/?

( a1 + ap? azﬁ(152)1/2> u(”l(‘”’”) ! )) u’ (1.2.10)

agp(l — ﬁ2)1/2 1 — a1 — asp? 0 va(ay, ag

Let the eigenvalue decomposition of the matrix

1 — Q] —a2ﬁ2

where, by construction, vy(ay,a2) > va(ai,az) > 0 and U is a 2 X 2 unitary matrix. We
highlight the dependence of eigenvalues (v, 12) on the weights (aj,a2). The dependence of

U on (ay,ag) is suppressed for notation simplicity. Then, we have
NZ N 1 32 1/2N* 2 1— . N*2 _ N2 X/’Q
aNT 4 az(pN1 + (1= p7) 77N)" 4+ (1 — a1 — ag)Ny™ = vi(ar, ag)NT + va(ar, a2) N5

a‘nd ¢a1,a2700 - ]-{Vl(al?aQ)-[\V/’E + 1/2(@1,(12)./’\7’22 Z Ca<a17a’2;ﬁ)}7 Where

(JSG) —u’ <N1> (1.2.11)
N N

and ./\71 and Kfz are independent normal random variables with unit variance. This implies
that ¢g, a.,00 can be viewed as a linear combination test of two independent chi-squared
random variables with one degree of freedom, and those two chi-squared random variables
are obtained by properly rotating A7 and N5 (i.e., the limits of AR(8y) and LM*(fy)).

Theorem 1.2.1 states the key properties of ¢, 4,00 under the limit experiment.

Theorem 1.2.1. (i) Suppose we are under weak identification and fized alternatives and
let N ~ Z(01), Ny ~ Z(62), and they are independent, where 61 = mi(A) and

9Under fixed alternatives, p = p(Bp); under local alternatives, p = p.
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02 = ma(A) as in (1.2.8). We consider the test of Hy : 01 = 02 = 0 against Hy : 01 # 0
or 03 # 0. Let ®, denote the class of size-a tests for Hy : 01 = 02 = 0 constructed
based on (ﬁQ,NQQ) defined in (1.2.11). Then, for any (a1,a2) € Ao, Pay,as,00 defined
in (1.2.9) is an admissible test within ®o. In addition, let (51,52) = (01,0)U. If
(5%, 5%) = b-(v1(a1,a2), (a1, a2)) for some positive constant b, then for any test ¢ € D,

there exists some b > 0 such that for any 0 < b < b, we have E¢ < Edar,a0,00-

(11) Suppose we are under strong identification and local alternatives and

B G

where 0 = gr5. We consider the test of Hy : 6 = 0 against Hy : 0 # 0. Then, ¢a; as,00
defined in (1.2.9) is UMP among the class of level-« tests that are constructed based on
(N1, N2) and invariant to the sign change if and only if a1 = 0 and asp = 0. In this

case, this test is also UMP among the class of unbiased level-a tests that are constructed

based on (N1, N2).

(11i) Suppose Assumption 2 holds, (Qe(ﬁo),e(ﬂo)—ﬂc, Qx e(5) —AC, Qx.x—C)T =0,(1), and

we are under strong identification with fized alternatives. If 1 > aq p > C%q;ﬂféog) for some

constant § > Camaz(p(50)) and (a1, az,n) € Ao, where Ay(Bo) = 1/ (Bo)W=12(50)p~ (o),
then

1{a1, AR*(Bo) 4 agn LM?(Bo) + (1 — a1n — a2.n) LM*?(B0) > Ca(a1m, azn; p(5o))} — 1.

Several remarks are in order. First, unlike the one-sided jackknife AR test proposed by
Mikusheva and Sun (2022), we construct the jackknife CLC test based on AR? () for several
reasons. First, under weak identification, when the concentration parameter C, and thus,
m1(A) defined in Lemma 1.2.4 is nonnegative, the one-sided test has good power. However,
even in this case, the power curves simulation in Section 1.5.1 shows that our jackknife CLC
test is more powerful than the one-sided AR test in most scenarios. Second, our jackknife

CLC test will have good power even when C is negative.'? Third, we show below that under

10We note that € = =<k Zj};“ip“nf - Zie["l(l‘%i‘n MU here M = I — P. Tf TIT MTI and
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strong identification and local alternatives, our jackknife CLC test converges to the UMP
test 1{NV;? > C,} whereas both the one- and two-sided tests based on AR(fy) have no
power, as shown in Lemma 1.2.1. Fourth, under strong identification and fixed alternatives,
our jackknife CLC test has asymptotic power equal to 1, as shown in Lemma 1.2.3 and
Theorem 1.4.4 below. In this case, using the one-sided jackknife AR test cannot further
improve the power. Fifth, combining LM*2(8y) with AR?(B) (and LM?(fp)), rather than
AR(Bp), can substantially mitigate the impact of power loss of LM*(5y) at A(5p), as shown
in the numerical investigation in Section 1.5.

Second, Theorem 1.2.1(i) implies that ¢g, 4,00 is admissible among tests that are also

quadratic functions of N and N5 with the same rotation I but different eigenvalues (71, 0);

that is,
(N NU <'71 O> ur <N1> .
0 i 3

Specifically, in the special case with az = 0 (i.e., we put zero weight on LM?(5;)), the
rotation matrix U = Iy and ¢q, 0,00 is admissible among level-a tests based on the test
statistics of the form a1 NZ + (1 — a1)N3?2 for a; € [0,1], which is similar to the result for
the linear combination of S and K statistics in I.Andrews (2016).

Third, similar to I.Andrews (2016, Theorem 2.1), Theorem 1.2.1(i) also shows that our
linear combination test is optimal against certain alternatives under weak identification.
Additionally, in the case with ag = 0, the power optimality result in 1.2.1(i) also carries over
t0 Pay.0,00 among level-a tests of the form ayNE + (1 — a1)Ny? for a1 € [0,1].

Fourth, when a; = 0 and asp = 0 and under strong identification and local alternatives,
we have ¢, 4500 = 1{Ny? > C,}, which is both the UMP invariant and unbiased test.
When p = 0 and under local alternatives, apN32 in the second and third terms of g, 45,00
cancels out, implying that ¢q, 4y.00 = 1{/\/'2*2 > C,} as long as a; = 0.

Fifth, we note that both the rotation matrix ¢/ and the eigenvalues v; and v in (1.2.10)
are functions of (a1, a2). We choose this specific parametrization so that ¢q, a,00 can be

written as a linear combination of AR?(8y), LM?(By), and LM*2(fy). It is possible to use

Zie[n] P;I1? are sufficiently large, C can be negative. Mikusheva and Sun (2022) further assume
that IIT MTI < CHTTH for some constant C' > 0, which implies that C > 0.
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alternative parametrizations to combine AR(fy) and LM*(fy). For example, let

cos(¢) —sin(¢)
o) =
© <sin<<> cos<<>>

ART(Bo, ¢) _ 0(0) AR(Bo)
LM (5,¢) LM*(Bo)

limit experiment, the linear combination test statistic can be written as

be a rotation matrix with angle ¢ and ( ) . Then, in the

aN? + (1 — a)NJ?, (1.2.12)

where (N} J\/'QT ) are the limits of (ART(8o, ¢), LMT(Bo,¢)) under either weak or strong identi-
fication. In the following, we will use a minimax procedure to determine the optimal weights
(a1,az) for our jackknife CLC test ¢q, 0,00 Similarly, we can use this procedure to select
the value of a and ¢ for the new parametrization in (1.2.12). Under strong identification
and local alternatives, Lemma 1.2.2 shows that the test 1{LM*?(53y) > C,} is the most
powerful test against local alternatives. This is achieved by our jackknife CLC test ¢, a5,00
with a; = 0 and agp = 0. In this case, the alternative parametrization does not bring any

additional power.

1.3 A Conditional Linear Combination Test

In this section, we determine the weights (a1, a2) in the jackknife CLC test via a minimax
procedure. Under weak identification, the limit test statistic of the jackknife CLC test with

weights (a1, ag) is

) | Jm 2 mi(2)) + ax(p(B0) Z1(ma (A)) + (1= 92(60)) > Za(ma(A)))?
02,00 +(1— a1 — az) 22(ma(A)) > Calar, az; p(Bo)) ’
(1.3.1)

where mi(A) and mga(A) are defined in Lemma 1.2.4, and Z;(-) and Z»(+) are independent.
In this case, we can be explicit and write ¢g, 45,00 = @a1,a2,00(A). However, the limit power

of the jackknife CLC test will typically remain unknown as the true parameter 5 (and hence
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A) is unknown. To overcome this issue, we follow I. Andrews (2016) and calibrate the power,
i.e, Edq, a0,00(9), where § ranges over all possible values that A can potentially take; we

define ¢g, 4,.00(0) as well as the range of potential values of A below.

R R -1 s~
R ®1(6o) P12( C13(6
- s (28 B0 (s

from the projection of Qx x on (Qe(g,),e(80): @x.e(8,))- By (1.2.3), under weak identification,

) be the residual

D=D+oy(1), DLN(up,o%),

where

up =0 |1 (a2 A) ®1(Bo)  P12(Po) o P13(o) and
’ ®12(80)  Y(Bo) 7(5o)

1
®1(Lo)  P12(Bo) D13(5o)

o2 ="T— | (® T

b (@13(f0), 7(6o0)) (‘1912(50) W(ﬂo)) (T(ﬁo) )

We note that D is a sufficient statistic for (tp, which contains information about the con-
centration parameter C and is asymptotically independent of AR(fy), LM (5p), and hence
LM*(o).

Under weak identification, we observe that mj(A) and ma(A) in Lemma 1.2.4 can be

written as
mi(A)) [ Ci(A)
(9 - (69 o
where
C1(A)) _ ;% (By) A2
Co(A) )\ (1= pP(Bo)) "2 (W 2(Bo) A — p(Bo) @1 /2 (50) A?)
- B 4-1
e ((z wm) ]
7 D12(60)  W(o) 7(Bo) |
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By (1.3.2), we see that ¢4,.45,00 = Pay,a0,00(A) defined in (1.2.9) can be written as

. a1 Z2(C1(A)up) + az(p(Bo) 21(C1(A)up) + (1 — p*(Bo)) 2 22(Ca(A) up))?
+(1 — a1 — a2) 23(Co2(A)up) > Calar, az; p(Bo)) .

This motivates the definition that

¢ (5) 1 {GIZ%<CI(5)ILD) + QZ(P(ﬁO)Zl(Cﬁ((S)pJD) + (1 — pQ(ﬂo))1/2ZQ(CQ(5),uD))2} .

+(1 — a1 — a2) Z3(Ca(d)pup) > Calar, az; p(fo))
(1.3.4)

To emphasize the dependence of ¢g, 4,.00(0) on p and v(fp), we further write ¢q, g,00(6)
as ¢a1,a2,oo(5a “D, 7(60))
The range of values that A can take is defined as D(5y) = {J : 0 + By € B}, where B

is the parameter space. For instance, in their empirical application of returns to education,
Mikusheva and Sun (2022) assume that 8 (i.e., the return to education) ranges from -0.5
to 0.5, with B = [-0.5,0.5]. We adopt the same practice in our simulations based on
calibrated data in Section 1.5.2 and empirical application in Section 1.6. Specifying the
parameter space is almost inevitable for any weak-identification-robust inference method,
but additional simulation results in Section A.21 of the Appendix show that our method is

insensitive to the choice of parameter space.

Following the lead of I.Andrews (2016), we define the highest attainable power for each
0 € D(Bo) as Psup = SUD(41.,a5)eA (10 ,7(80)) EPar,as,00(0; t0; ¥(Bo)), which means that

P(S,MD - E¢a1,a2,m(5; UD, 7(60))

is the power loss when the weights are set as (a1, a2). Here we denote the domain of (a1, a2)

as A(up,v(Bo)) and define it as A(up, (o)) = {(a1,a2) € Ao, a1 € [a(up,v(bo)), 1]} where
Ao = {(a1,a2) € [0,1] x [0,1],a1 + az < a} for some a < 1,

(1.3.5)

Q(ND,’Y(ﬁQ)) — min (pl, p2Ca,max(p(BO))(I)1(ﬁo)cB(ﬁO)) 7

AL(Bo) s,

the two tuning parameters (p1,p2) = (0.01,1.1), A.(Bo) = @1/2(50)\11_1/2(50)/)_1(50) as
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defined after Lemma 1.2.3, and

1
®1(Bo)  P12(fo) ®13(50)

c = su 1— (62,6

5% 561?(%0) 0 (q)u(ﬁo) W(ﬁo)) (ﬂﬁo))

The maximum power loss over § € D(fp) can be viewed as a maximum regret. Then, we

choose (a1, az) that minimizes the maximum regret; that is,

(al(MD,’Y(BO))7CLQ(ND,’Y(BO))) € arg min sup (P(S,MD - E¢a1,a2,oo(67 N/D/Y(ﬂ())))‘
(a1,a2)€A(up,7(Bo)) 6€D(Bo)

(1.3.6)

Four remarks on the domain of (a1, as2) (i-e., A(tp,v(5o))) are in order. First, the lower
bound a(up,v(5o)) is motivated by Theorem 1.2.1(iii). Specifically, we require p; € (0, 1)
and close to 0 and po > 1. In the Appendix, we provide a detailed report on the finite
sample performance of our CLC test for both simulation designs analyzed in Section 1.5 and
the empirical application in Section 1.6, where we consider different values of p; and ps.
The results indicate that our test’s finite sample performance is not affected by the specific

values chosen for (p1,p2), as all the results are very close to those reported in the main
P2Ca.max (p(80)) P1(Bo)cs(Bo)

d AT (Bo)iid may

be larger than p;. In this case, we have A(up,v(B80)) = {(a1,a2) € Ao,a1 € [p1,1]}. Third,

under strong identification and local alternatives, 2 QCO"m‘"‘X(Z&'%’B)O);I; 1(Bo)es(Bo) i) converge to
* D

paper. Second, under weak identification, pp is bounded, an

zero so that

A(pp,v(Bo)) = {(cu as) € Ag, a1 € P2Camax(P(50))®1(Bo) e (o) 1] }

AL(Bo)ut,

We show in Theorem 1.4.2 below that in this case, the minimax jackknife CLC test con-
verges to 1{N3? > C,} defined in Lemma 1.2.2, which is the UMP invariant and unbi-
ased test. Furthermore, the minimax a; satisfies the requirement in Theorem 1.2.1(iii) with
¢ = 1.1C4 max(p(Bo)) so that under strong identification, our CLC test has asymptotic power
1 against fixed alternatives, as shown in Theorem 1.4.4. Fourth, we require @ < 1 for some
technical reason. In our simulations, we have not observed the minimax a; + ao reaching

the upper bound. Therefore, setting the upper bound to @ or 1 does not have any numerical
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impact.
Since we cannot observe the values of up and () in practice, we adopt the plug-in
method described in Section 6 of I.Andrews (2016). Specifically, we replace v(fp) with its

consistent estimator 7(fy) as specified in Assumption 2. To obtain a proxy of up,'' we
define

1/2

~ -1 .
~ s = ®1(Bo)  P12(Bo) ®13(50)
op=| YT — (®13(8), 7(Bo)) (@12(60) F(50) ) ( (o) ) ;

which is a function of 7(/3y) and a consistent estimator of op by Assumption 2. Then, under
weak identification, we have lA)Q/E% = D?/0%, + op(1) 4 Z%(up/op) + op(1) and D*/o?%
is a sufficient statistic for ,u% Let 7 = D? /6\% We consider two estimators for pup as

functions of D and & op, namely, fp(D ,7(60 = 0py/Tpp and firs( ,/7\(60)) = 0D\ Thrs:

where 7, = max(r — 1,0) and

~ 00 ~\ J -
~ ~ T T 1
Thrs =7 = LD (‘5) (Z (‘5) m)
J=0

Specifically, Kubokawa, Robert, and Saleh (1993) show that 7, is positive as long as 77 > 0
and 7 > 7. > 7 — 1. It is also possible to consider the MLE based on a single observation
D? /6\%. However, such an estimator is harder to use because it does not have a closed-form

expression.

In practice, we estimate E¢q, 4,,00(0, D, 7(50)) by E*@a, a0,5(9, D, ~(Bo)) for s € {pp, krs},

where

(bahaz,s ((57 ﬁ? /’;(60))

a123(C1(5) f5(D. 7)) 2
=14 +az [5(50) Z1(CL(0) DA A0)) + (1 - wo))l/?zz(@w)fs(ﬁ,wom] ,
2(

+(1 — a1 — a2) 23(Ca(0) fs(D,7(Bn)) > Calar, az; p(B0))
(1.3.7)

Un fact, as @a, as,00(0, D, ¥(Bo)) only depends on p%, we aim to find a good estimator for u%.
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and (61(5) 52(5)) are similarly defined as (C1(6),C2(d)) in (1.3.3) with v(5p) replaced by
~(Bo); that is,

Cio)) _ @, (0)9?
Co(5) ) — \ (1= 72(B0))" V2T~ 1/2(8y)5 — p(ﬁo) b, 2 (80)62)

1, 4 -1
x |1= (52 (5) 61(60) 612(50) (I)lg(/ﬁ())
, ®12(F0)  V(Bo) 7(Bo) '

Let P&s( 77(/30» = Sup(al a2)€A(f.(DA(80))A(Bo)) *¢a1 as, 8(6 (ﬁO)) Then, for s €
1mn

{pp, krs}, we can estimate a(jp, v(6o)) in (1.3.6) by As(D, 3(B0)) = (A1s(D,7(80)), Ass (D, 3(50)))

defined as

As(D,A(50)) € arg min sup (Ps.s(D,7(50)) = E* Gy ar.5(0, D, A(0))),
(a17a2)eA(f$ (Dﬁ(ﬂO))ﬁ(/BO)) 562)(50)

(1.3.8)

where ¢a, ay.5(6, D, 7(Bo)) is defined in (1.3.7),

A(f5(D,7(50)).7(Bo)) = {(a1,a2) € Ao, a1 € [a(fs(D,7(Bo)), 7)), al},

A4(Bo) f2(D,7(5o))

. D1(6y) P12(bo) ®13(5o)
c = su 1—(6%6 - Py :
5() 5D ) { 0 ((‘1)12(50) v (o) ) ( 7(Bo) ))]

and £*<50) = 1/2(ﬁ0) UY2(60)p~1(By). Then, the feasible jackknife CLC test is, for

Q(fs(ﬁﬂ\(ﬂo))ﬁ\(ﬁo)) = min <0.01 O‘maX( (50))¢ (Bo ) (50)) 7
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s € {pp, krs},

~

5o { Avo(DA(B0) AR () + An.o(D. 5(50)) LM (%) } |
ADAGD T (1 = A1 (D AB)) — Azs(D,F(50) LM 2(50) = CalAs(D,7(50)); A(50))
(1.3.9)

1.4 Asymptotic Properties

We first consider the asymptotic properties of the jackknife CLC test under weak identifica-

tion and fixed alternatives, in which C — C and A is treated as fixed so that we have
D~ D :N(MDao-D)'

We see from (1.3.6) and (1.3.8) that As(d,r) = (a1(fs(d,r),r),a2(fs(d,r),r)) is a function
of (d,r) € ® x T, where T is the parameter space for v(5y) and s € {pp, krs}. We make the

following assumption on Ag(+).

Assumption 3. Let Sg be the set of discontinuities of As(-,v(Bo)) : ® — [0,1] x [0,1].
Then, we assume Ag(d,r) is continuous in r for any d € R/Ss, and the Lebesque measure

of Ss is zero for s € {pp, krs}.

Assumption 3 is a technical condition that allows us to apply the continuous mapping
theorem. It is mild because A;(-) is allowed to be discontinuous in its first argument. In
practice, we can approximate Ag(+) by a step function defined over a grid of d so that there is
a finite number of discontinuities. The continuity of As(-) in its second argument is due to the
smoothness of the bivariate normal PDF with respect to the covariance matrix. Therefore,

in this case, Assumption 3 holds automatically.

Theorem 1.4.1. Suppose we are under weak identification and fized alternatives and that

Assumptions 1-3 hold. Then, for s € {pp, krs},

A8<ﬁ>:y\(ﬁ0)) ~ -AS(D7 7(50)) = (al (fS(D7 7(50))7 7(50»7 az(fS(Dv 7(50))7 ’Y(BO)))
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and!?

Ed 4. (5A(5)) ™ EPar(£.(D (o)) v(Bo))sas (£ (D.A(Bo)) 7o) 00 (A5 D5 (o)),

where ¢a, as,00(0) 1s defined in (1.3.4) and a;(fs(D,v(Bo)),v(Bo)) is interpreted as a;(pp, y(So))
defined in (1.3.6) with pup replaced by fs(D,~v(5o)) forl = 1,2 defined in Section 1.5.

In addition, let BLy be the class of functions h(-) of D that is bounded and Lipschitz with
Lipschitz constant 1. Then, if the null hypothesis holds such that A =0, we have

~

E(Ou,(DAs0)) ~ a)h(D) =0, Vh e BLy.

Several remarks on Theorem 1.4.1 are in order. First, we see that the power of our jack-
knife CLC test is B¢ 4, (D ~(80)),00 (A, D, ¥(B0)), which does not exactly match the minimax

power

Eqbal(.LLDﬁ(ﬁo))ﬂz(kLD,’Y(ﬁo)),oo(Aa HD, 7(50))

in the limit problem. This is because under weak identification, it is impossible to con-
sistently estimate pup, or equivalently, the concentration parameter. A similar result holds
under weak identification with a fixed number of moment conditions in I.Andrews (2016).
The best we can do is to approximate pup by reasonable estimators based on D such as
Top(D,7v(Bo)) and firs(D,v(Bo)), which are random even asymptotically. Second, Theorem
1.4.1 implies that our jackknife CLC test controls size asymptotically conditionally on 13,
and thus, unconditionally. Last, according to Theorem 1.4.1, the CLC test’s asymptotic
power, with weights (a1, a2) chosen through the minimax procedure, is equivalent to the
limit experiment’s asymptotic power when the weights are Ag(D,v(5p)), which is a function
of D. As D is independent of the normal random variables in ¢g, 4,.00(9) in (1.3.4), the two
optimality results stated in Theorem 1.2.1(i) also hold asymptotically, conditional on D. To

make this statement precise, we define the eigenvalue decomposition

A~

As(D,7(60)) + A2s(D,7(B0)* (o) Azs(D,3(B0))i(Bo) (1 — p2(Bo)) />
A2,s(D,7(80))p(50) (1 — 2 (Bo)) % 1 — A15(D,7(Bo)) — Az,s(D,7(0))5*(Bo)

12We assume that & = +o0 if C' > 0 and min(C, +00) = C.
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~
~

~ v1,s(D,7(bo)) 0 A=
— Uy(D, b N Uy (D, T 4.
(D,7(Bo)) ( 0 VQ,S(D,?(ﬁo))> (D,7(Bo)) (1.4.1)

Define a class of tests

( ~

(22, 22.d,7) : EQE(Z%,ZQQ,d, r) < a, for any (d,r) € R x F,\
(5(212, Z2.d,r) is continuous in 7,
the discontinuities of é(le, Z2.d,r) wr.t.

the first three arguments have zero Lebesgue measure

where (21, Z5) are two independent standard normal random variables. Further define, for

s € {pp, krs},
AR(5o) S ~anT [ AR)
—— % - US D, .
<LM5(ﬁo)) (D,7(bo)) (LM*(60)>

Assumption 4. Suppose Us(d,r) is continuous in r and the set of discontinuities of Us(-)

w.r.t. its first argument has zero Lebesgue measure.

Corollary 1.4.1. Suppose we are under weak identification and fixed alternatives and that
Assumptions 1-4 hold. Let (;5() € &, and for any d € R, denote (61,02) = (m1(A), ma(A))Us(d,v(Bo)).
Then, the following two optimality results hold.

(1) If for some d € R and s € {pp, krs}, we have

EQ(AR. (B0), L. (80), D.5(5o))1{|D — d| < <}

lim lim —
e—0n—o0 E1{|D—d| < 5}
Ed 4 5w {ID —d| < e}
> lim lim AS(D’V(BQ)
e—=0n—o00 El{’D_d’ SE}

for all (61,09) € R2, then

EG(AR, (fo), LM, (5). D, 7o) 1{|D — d| < <}

lim Lim —
e—0n—o0 El{‘D _ d‘ < 5}
Eb 4 Hagan H{ID —dl < ¢}
= lim lim AS(DW(ﬁOA))
e—=0n—o0 E1{|D — d| < 5}
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for all (01,67) € R2.

(i) If (03,03) = b - (v1.5(d,7(Bo)), va.s(d,v(Bo))) for some positive constant b, then there
exists b > 0 such that if 0 < b < b, we have

EG(AR. (Bo), LM, (B9), D.7(50))1{|D — d| < ¢}

lim lim =
e—0n—o00 El{‘D _ d‘ < g}
E6 4 (A H{ID —dl < ¢}
< lim lim AS(D’VWOA))
e—0n—0o0 E1{|D—d| Sé‘?}

Corollary 1.4.1 shows that under weak identification and fixed alternatives, our jackknife
CLC test is asymptotically admissible and optimal against certain alternatives conditional
on D.

Next, we consider the performance of ¢ A(DAB)) defined in (1.3.9) under strong identi-
fication and local alternatives. To precisely state the optimality result, we further consider

the class of level-a tests against # = 0 v.s. the two-sided alternative that are constructed
based on one observation of (N, N3), where § = ACT~/2 and

() (6)-69)

é(+) : Ep(N1,N2) < o under the null,
@ = BINTN) = 6N, —AD)

the discontinuities of ¢(-) has zero Lebesgue measure

Specifically, denote

and

&(+) : Ep(N1,N2) < a under the null,
oy = E¢(N1,N2) > a  under the alternative,

the discontinuities of ¢(-) has zero Lebesgue measure

as the classes of sign-invariant and unbiased tests, respectively.
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Theorem 1.4.2. Suppose that Assumptions 1 and 2 hold. Further suppose that we are
under strong identification and local alternatives as described in Lemma 1.2.1. Then, for

s € {pp, krs}, we have
ALs(DA(Bo) =0, Asg(DA(Bo))p =0, and 6 paay) ~> HAZ® = Cal,

where N 4 N <%, 1). In addition, suppose qzn 1s a generic test such that én =
(AR(By), LM(B9)) + op(1) for some ¢ € &L U DY and the sequence {dp}n>1 is uniformly

integrable. Then, we have

~

lim E(b.As(lA)ﬁ(ﬁo)) = sup lim E¢(AR(Bo), LM (Bo)) > nlglolo E(Izn-

n—o0 ¢€¢,éuq)g n—oo

Five remarks are in order. First, under strong identification, up, and thus, D approaches
infinity, and so does our estimator D. This is how our estimator D can detect the iden-
tification strength. In addition, we show in the proof of Theorem 1.4.2 that under strong
identification, the calibrated power gap 775’5(1/5, 7(B0)) — E* s 00,5 (0, ﬁﬁ(ﬂo)) is maximized
when ¢ is in the region of local alternatives. However, in this region, as shown by Lemma
1.2.2, the maximum power gap can achieve zero if all the weights are put on LM*(/3p), which
leads to the first result in Theorem 1.4.2. Second, our jackknife CLC test is adaptive to iden-
tification strength. In practice, econometricians do not know whether the true value g is
close to the null gy. Therefore, our jackknife CLC test calibrates power across all possible
values of § (i.e., € D(fp)), which include both local and fixed alternatives. Yet, Theorem
1.4.2 shows that the minimax procedure can produce the most powerful test as if it is known
that 8 belongs to the region of local alternatives. Third, Theorem 1.4.2 shows that under
strong identification and local alternatives, our jackknife CLC test converges to the UMP
level-a test that is either invariant to the sign change or unbiased and constructed based on
AR(Bp) and LM (5y). Therefore, it is more powerful than both the jackknife AR and LM
tests. Fourth, under strong identification and local alternatives, the JIVE-based Wald test
proposed by Chao et al. (2012) is asymptotically equivalent to the jackknife LM test, which
implies that the jackknife AR and JIVE-Wald-based two-step test in Mikusheva and Sun
(2022) is also dominated by the jackknife CLC test. Fifth, consider the HLIM based Wald
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test statistic proposed by Hausman et al. (2012), which is denoted as W},(fp). In Section

A.20 in the Appendix, we show that, under local alternative and strong identification,

/2 ~(D1/2
Wi(Fo) = s LM (o) - ’)1/2 R(fo) + op(1).
h h

where § = plimy, 00X "e(B0)/(e(Bo) Te(Bo)) and W), = ¥ —25P 15+ 2Py is the corresponding
asymptotic variance. Then, by letting ¢, = 1{W2(By) > Cqo} and

1/2 ~<I)1/2 2
S(AR(Bo), LM (fp)) = 1 ‘Pm M) - L ARG | = Gt
h h

Theorem 1.4.2 implies our jackknife CLC test is more powerful than the HLIM based Wald
test under strong identification against local alternatives. In fact, by direct calculation, we

can see that, for § = Zgllf*lﬂ,

\1,1/2 @1/2 . 02 02
vy, oy, 1—p2+ (ﬁcb}/%x—l/? - p) P

The noncentrality parameter for the HLIM based Wald test is weakly smaller than that of
the CLC test, which explains the power comparison. The equality holds if ,6@1/ 2g-1/2 = 0,
which further holds in the special case of many weak IVs and homoskedasticity in the sense
that IITII/K = o(1) and E(V;,e;) " (Vi, e;) does not vary across i.

Combining Theorems 1.4.1 and 1.4.2, we can show the uniform size control of our jackknife
CLC test no matter the identification is strong or weak. Let A\, € A,, be the data generating
process of n observations of (e, V, Z). Under A, the covariance matrix of (Qe.e, @x,e, @x,x)

is denoted as V,. We impose the following restriction on the sequence of classes of DGPs

38



({An}n21)513

{ {Vi, ei}ie[n] are independent, Ee; = EV; = 0, \
max; Ee? + max; EV;4 < (i < o0,
Cn = \/L} Zie[n] Zj;éi I; P11 € R,
P <Cy <1, (1.4.2)
0 < k1 < mineig(V,,) < maxeig(V,) < ky < 00,
where C, C9, k1, and kg are some fixed constants,
and Assumption 2 holds for gy = . )

In Sections A.2.1 and A.2.2 of the Appendix, we further verify that Assumption 2 holds,
respectively, for the standard variance estimators, which follow the construction in Crudu
et al. (2021), and the cross-fit variance estimators, which follow Mikusheva and Sun (2022).
Theorem 1.4.3 shows that our jackknife CLC test has correct asymptotic size, under similar

arguments as those in Andrews, Cheng, and Guggenberger (2020a) and I.Andrews (2016).

Theorem 1.4.3. Suppose Assumption 3 holds, {Ap}n>1 satisfies (1.4.2), and we are under
the null hypothesis that Bg = B. Then, we have

B inf ol Ex O aa) =Hmsup sup 0, p(a)) =

Last, we show that, under strong identification, the jackknife CLC test a A(DAB) defined

in (1.3.9) has asymptotic power 1 against fixed alternatives.

Theorem 1.4.4. Suppose Assumption 2 holds, and (Qe(ﬁo),e(ﬂo) —A%C, Qx e(gy) —AC, Qx x—
)" = Op(1). Further suppose that we are under strong identification with fized alternatives

so that A = 8 — By is nonzero and fized. Then, we have

PA(DAG) — L

13In (1.4.2), we focus on the model without exogenous control variables. The independence and
moment conditions for (e;, V;) are sufficient for Assumption 1. We further verify in Section A.1 of
the Appendix that the joint asymptotic normality (Assumption 1) holds in the case with exogenous
controls.
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1.5 Simulation

1.5.1 Power Curve Simulation for the Limit Problem

In this section, we present simulation results to compare the power performance of various
tests under the limit problem described in Section 1.2. We consider the following tests with
a nominal rate of 5%: (i) our jackknife CLC test, where up is estimated using either pp or
krs method, (ii) the one-sided jackknife AR test defined in (1.2.5), (iii) the jackknife LM
test defined in (1.2.6), and (iv) the test that is based on the orthogonalized jackknife LM
statistic LM*?(p) defined in this paper. We conduct 5,000 simulation replications to obtain
stable simulation results.

We set the parameter space for 8 as B = [-6/C,6/C|, where C = 3 and 6. The choice
of parameter space follows that in I.Andrews (2016, Section 7.2). We set 5y = 0, and
the values of the covariance matrix in (1.2.2) are set as follows: ®; = ¥ = T = 1, and
Q19 = P13 =7 = p, where p € {0.2,0.4,0.7,0.9}. We then compute y(5y) based on (1.2.4) as
[ ranges over B and generate AR(fy) and LM () based on (1.2.3). Last, we implement our
CLC test purely based on AR(5y), LM (Bo), v(Bo), and B without assuming the knowledge
of (C, ). We have tried to simulate under alternative settings of the covariance matrix, and
the obtained patterns of the power behavior are very similar.

Figures 1.1-1.4 plot the power curves for p = 0.2,0.4,0.7, and 0.9. In each figure, we
report the results under both C = 3 and 6. We observe that overall, the two jackknife CLC
tests have the best power properties in terms of minimizing the maximum regret. Especially
when the identification is relatively strong (C = 6) and/or the degree of endogeneity is
not very low (p = 0.4,0.7, or 0.9), the jackknife CLC tests outperform their AR and LM
counterparts by a large margin. In addition, we notice that when C = 3, for some parameter
values LM*(fy) can suffer from substantial declines in power relative to the other tests,
which is in line with our theoretical predictions. By contrast, our jackknife CLC tests are
able to guard against such substantial power loss because of the adaptive nature of their
minimax procedure. In Section A.21.1 of the Appendix, we further report power curves for

alternative values of the tuning parameters (pj,p2) in (1.3.5) and of C, and find that the
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overall patterns remain very similar.
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Figure 1.1: Power Curve for p = 0.2 with nominal size represented by the horizontal dotted
line.

Note: The orange line with circle represents pp, which is the probability of rejection by
using the test ¢a,. qs,pp (0, ﬁﬁ(ﬁo)); the green line with upward-pointing triangle represents
krs, which is the probability of rejection by using the test ¢q, 4, krs(6, ﬁ,ﬁ(ﬁo)); the brown
dash line with additive sign represents AR test given in (1.2.5); the blue dotted line with
cross represents LM test given in (1.2.6); the dark dash line with downward-pointing
triangle represents LM™* test defined just above (1.2.7).
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Figure 1.2: Power Curve for p = 0.4 with nominal size represented by the horizontal dotted
line.
Note: The lines are explained under Figure 1.1.
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1.3: Power Curve for p = 0.7 with nominal size represented by the horizontal dotted

The lines are explained under Figure 1.1.
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Figure 1.4: Power Curve for p = 0.9 with nominal size represented by the horizontal dotted

line.

Note: The lines are explained under Figure 1.1.

1.5.2 Simulation Based on Calibrated Data

We follow the approach of Angrist and Frandsen (2022) and Mikusheva and Sun (2022)

and use a data generating process (DGP) calibrated based on the 1980 census dataset from

Angrist and Krueger (1991). We define the instruments as

Zi = (({Qi = ¢,Ci = ¢})geq23.4y cei31, 393 (1{Qi = @, Pi = P})gef2,3.4} pei51 states} )



where Q;, C;, P; are individual i’s quarter of birth (QOB), year of birth (YOB) and place
of birth (POB), respectively, so that there are 180 instruments. Note that the dummy with
g = 1 and ¢ = 30 is omitted in Z;. We denote Y; as income, X; as the highest grade
completed, and W; as the full set of YOB-POB interactions; that is,

Wi = (1{Cz' =c P = p}c€{307...,39},p€{51 states})a

which is a 510 x 1 matrix.
As in Angrist and Frandsen (2022), using the full 1980 sample (consisting of 329,509 indi-
viduals), we first obtain the average X; for each QOB-YOB-POB cell; we call this 5(¢, ¢, p).

Next we use LIML to estimate the structural parameters in the following linear IV regression:
Y; = XiBx + W, Bw + e,

X, =Z/T,+ W,/ Ty +V,

where X is endogenous and instrumented by Z; and W; is the exogenous control variable.
Denote the LIML estimate for Sy w = (,B)T(,BVTV)T as /BEFIML = <B\LFIMLX7B\LFIML w). We
let J(Cy, P;) = W' Briarr,w and

w(Q;,Ci, P) =Y; — XigLIML,X - WiTB\LIML,W-

Based on the LIML estimate and the calibrated w(Q;, C;, P;), we simulate the following
two DGPs:

1. DGP 1:
Yi = § + Bsi + w(Qi, Ci, Pi)(vi + ra&;) (1.5.1)

s; ~ Poisson(ju;),

where [ is the parameter of interest, v; and & are independent standard normal, § =
LS L 9(Ci, Py, i = max{1l,70 + v} Z; + k1v;}, and 9 + 74 Z; is the projection of
5:(q,c,p) onto a constant and Z;. We set x; = 1.7 and k9 = 0.1 as in Mikusheva and
Sun (2022).
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2. DGP 2: Same as DGP 1 except that x; = 2.7 and

s; ~ | Poisson(2u;) /2]

We consider sample sizes of 0.5%, 1%, and 1.5% of the full sample size. Upon obtaining
n observations, we exclude instruments with Z?:l Zij < 5. This results in three different
sample sizes: small, medium, and large, with 1,648, 3,296, and 4,943 observations, respec-
tively. The number of instruments also varies across sample sizes, with 119, 142, and 150
instruments for small, medium, and large samples, respectively. Our DGP 1 is exactly the
same as that in Mikusheva and Sun (2022), with the correlation parameter of p = 0.41. DGP
2 has a higher correlation parameter of p = 0.7. The identification strength increases with
the sample size. For DGP 1, the concentration parameters C/ T2 for small, medium, and
large samples are 2.15, 3.62, and 4.85, respectively. For DGP 2, they are 2.38, 3.97, 5.28,
respectively.

We emphasize that following Angrist and Frandsen (2022) and Mikusheva and Sun (2022),
we only use W; to compute the LIML estimator and calibrate w(Qi, Ci, P;), but do not use
it to generate new data. Therefore, for the simulated data, the outcome variable is ¥;, the
endogenous variable is §;, the IV Zi is viewed to be fixed, and the exogenous control variable
is just an intercept. We then denote the demeaned versions of ¥;, §;, and Z; as Y, Xi,
and Z;, respectively, in (1.2.1) and implement various inference methods described below.
Following Mikusheva and Sun (2022), we test the null hypothesis that § = 5y for 5y = 0.1
while varying the true value § € B. The parameter space is set as B = [—0.5,0.5], which
is consistent with the choice of parameter space for the empirical application below. The
results below are based on 1,000 simulation repetitions. We provide more details about the
implementation in Section A.3 in the Appendix. We set (p1,p2) = (0.01,1.1) in (1.3.5).
Additional simulation results using other choices of (p1,p2) and B are reported in Section
A.21.2 in the Appendix. All of them are very close to what we report here.

We compare the following tests with a nominal rate of 5%:

1. pp: our jackknife CLC test when up is estimated by the method pp.

2. krs: our jackknife CLC test when up is estimated by the method krs.

3. AR: the one-sided jackknife AR test with the cross-fit variance estimator proposed by
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Mikusheva and Sun (2022).

4. LM_CF: Matsushita and Otsu’s (2021) jackknife LM test, but with a cross-fit variance

estimator (details are given in Section A.2.2 in the Appendix).

5. 2-step: Mikusheva and Sun’s (2022) two-step estimator in which the overall size is set
at 5%.

6. LM*: LM* test defined in this paper.

7. LM_MO: Matsushita and Otsu’s (2021) original jackknife LM test.
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Figure 1.5: Power Curve for DGP 1 with (p1,p2) = (0.01,1.1) and nominal size of 5%
represented by the horizontal dotted line

Note: The orange line with circle represents pp test; the green line with upward-pointing
triangle represents krs test; the brown dash line with additive sign represents AR test
given in (1.2.5); the blue dotted line with cross represents LM test with cross-fit variance;
the purple dash line with diamond represents the 2-step test proposed by Mikusheva and
Sun (2022) with overall 5% significance level; dark line with downward-pointing triangle
represents LM*; the yellow dash line with rectangle represents the LM test proposed by
Matsushita and Otsu (2021).
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Figure 1.6: Power Curve for DGP 2 with (p1,p2) = (0.01,1.1) and nominal size of 5%
represented by the horizontal dotted line
Note: The lines are explained in Figure 1.5.

Figures 1.5 and 1.6 plot the power curves of the aforementioned tests. We can make four
observations. First, all methods control size well because they are all weak identification
robust. Second, the performance of the jackknife CLC test with krs is slightly better than
that with pp, which is consistent with the power curve simulation in Section 1.5.1. Third, in
DGP 1 with a small sample size, the power of the jackknife AR test is at most about 9.2%
higher than that of the krs test when 5 is around -0.3. However, for alternatives close to the
null (e.g., when [ is around 0), the power of the krs test is 24% higher, which implies that
the power of the krs test is still better than that for the jackknife AR test in the minimax
sense. The power of the jackknife LM tests is similar to that of the krs test in DGP 1 with
a small sample size. Fourth, for the rest of the scenarios, the power of the krs test is the
highest in most regions of the parameter space. The power of the jackknife AR and LM
is at most 0.7% higher than that of the krs test at some point. For DGP 1 with medium
and large sample sizes, the maximum power gaps between our krs test and the jackknife
LM are about 8.6% and 5.6%, and about 43.2% and 50% compared with the jackknife AR.
Furthermore, they are 23.3%, 19.5%, and 18.5% compared with the jackknife LM for DGP
2 with small, medium, and large sample sizes, respectively, and about 41.5%, 55.3%, and

55.85% compared with the jackknife AR.

Figures 1.7 and 1.8 show the average values of (a1, a2), which represents the weights
assigned to AR(fp) and LM (3p) in our CLC tests, under DGPs 1 and 2, respectively. The
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weight assigned to LM*(fp) is simply 1 — a; — az. As shown in Table 1.1, under weak
identification and fixed alternatives, there is no clear winner among AR(5y), LM (By), and
LM*(Bp), and thus, our CLC test assigns weights to all the three tests. However, under
strong identification and local alternative, LM*(fp) is the UMP test and should carry all
the weights, which means a; + a2 should be minimum. On the other hand, under strong
identification and for some fixed alternatives, LM*(/3p) may lack power while both AR(Sy)
and LM (fp) have power 1. In this case, as long as we do not assign all weights on LM*(/3),
our CLC test should also have power 1. We observe that our simulation results are consistent
with these theoretical predictions. First, when [y is close to the null 0.1, both a; and asy are
small, indicating that most of the weights are put on LM*(y). Second, we observe from
Figures 1.5 and 1.6 that the power of LM*(3y) drops rapidly when f is smaller than around
zero. Therefore, our CLC test assigns more weights on AR(fSy) and LM (). Third, for
distant alternatives, significant weights are assigned to AR(f5p) and LM (fy), which ensures
the good power of our CLC test. Additionally, we note that the weights assigned to AR(5)
(a1) are higher on the left side of the parameter space relative to the right, since AR(f) is

more powerful on the left.

Small Medium Large

Average vltes of afor DGP1L
L
1
L

N &
aa

Figure 1.7: Average Values of a for DGP 1.
Note: The orange line with circle represents the average value of a; in the pp test; the
green line with upward-pointing triangle represents the average value of a9 in the pp test;
the red dotted line with circle represents the average value of a; in the krs test; the blue
dotted line with upward-pointing triangle represents the average value of ao in the krs test.
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Figure 1.8: Average Values of a for DGP 2
Note: The lines are explained in Figure 1.7.

1.6 Empirical Application

In this section, we consider the linear IV regressions with the specification underlying Angrist
and Krueger (1991, Table VII, column (6)), using the full original dataset.'* The outcome
variable Y and endogenous variable X are log weekly wages and schooling, respectively.
We follow Angrist and Krueger (1991) and focus on two specifications with 180 and 1,530
instruments. The 180 instruments consist of 30 quarter and year of birth interactions (QOB-
YOB) and 150 quarter and place of birth interactions (QOB-POB). The second specification
includes full interactions among QOB-YOB-POB, resulting in 1,530 instruments. The ex-
ogenous control variables have been partialled out from the outcome, endogenous variables,
and IVs. Further details on the empirical application can be found in Section A.4 in the
Appendix. The considered tests are similar to those in the previous section. The jackknife
AR test is defined in (1.2.5) with @, being the cross-fit estimator in Mikusheva and Sun
(2022). The jackknife LM test is defined in (1.2.6) with the cross-fit estimator for W(Jy).
The pp and krs tests are our jackknife CLC tests. The two-step procedure is given by Miku-
sheva and Sun (2022, Section 5). Specifically, the researcher accepts the null if F > 998

4The dataset can be downloaded from MIT Economics, Angrist Data Archive,
https://economics.mit.edu/faculty /angrist /datal /data/angkrul991.
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and Wald(By) < Co.02'° or if F <9.98 and AR(fBp) < z.02- In the case of 180 instruments,
because F = 13.42 > 9.98, the lower and upper bounds of the 95% confidence interval (CI)
for the two-step procedure correspond respectively to the minimum and maximum of the
set {Bo € R : Wald(5y) < Co.o2}; similarly, for the 1,530 instruments, as F=632< 9.98,
the lower and upper bounds of the CI for the two-step procedure correspond respectively
to the minimum and maximum of the set {fp € R : AR(By) < #.02}. We also report
the 95% Wald test CI based on the JIVE estimator, denoted as JIVE-t. Table 1.2 reports
the 95% ClIs by inverting the corresponding 5% tests mentioned above for the parameter
space B = [—0.5,0.5]. Note all Cls except JIVE-t are robust to weak identification. As s
are higher than 4.14 in both cases, the JIVE-t (5%) has the Stock and Yogo (2005b)-type
guarantee with at most a 5% size distortion (i.e., the overall size is less than 10%). We set
(p1,p2) in (1.3.5) as (0.01,1.1). The empirical results with other choices of (p1,p2) and B
are reported in Section A.22 of the Appendix. All of them are very close to what we report

here.

jackknife AR jackknife LM JIVE-t Two-step pp krs
(5%) (5%) (5%) (5%) (5%) (5%)

180 IVs | [0.008,0.201]  [0.067,0.135] [0.066,0.132] [0.059,0.139] [0.067,0.128] [0.067,0.128]

1530 IVs | [-0.035,0.22]  [0.036,0.138] [0.035,0.133] [-0.051,0.242] [0.037,0.133] [0.037,0.133]

B Table 1.2: Confidence Intervals
Notes: The F’s for 180 and 1,530 instruments are 13.42 and 6.32, respectively. The grid-
search used for our confidence interval was over 10,000 equidistant grid-points for £, €
[—0.5,0.5]. Our jackknife AR confidence interval for 1530 instruments differs from that in
Mikusheva and Sun (2022) because they used year-of-birth 1930-1938 dummies for the QOB-
YOB-POB interactions, whereas we used 1930-1939 dummies. More details are provided in
Section A.4 in the Appendix.

Table 1.2 highlights that the Cls generated by our jackknife CLC tests are the shortest
among all the weak identification robust Cls (i.e., pp, krs, jackknife AR, jackknife LM, and
two-step). Furthermore, the jackknife CLC Cls are 7.6% and 2.0% shorter than the non-
robust JIVE-t CIs with 180 and 1,530 instruments, respectively, which is in line with our

~ ~ ~ A 2 ~
BF = Qx x/Y, where T is the cross-fit estimator. Wald(f) is defined as (%) , where

is the JIVE estimator and V is a cross-fit estimator of the asymptotic variance of 3 We refer
interested readers to Mikusheva and Sun (2022, Section 5) for more details.
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theoretical result that the CLC tests are adaptive to the identification strength and efficient

under strong identification.
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Chapter 2

A Valid Anderson-Rubin Test under
Both Fixed and Diverging Number of

Weak Instruments

2.1 Introduction

Existing literature on hypothesis testing for instrumental variable (IV) models focuses on
either fixed number of instruments asymptotics (e.g. Andrews, Moreira, and Stock (2006),
Kleibergen (2005)) or diverging instruments asymptotics (e.g. Angrist et al. (1999), Chao
and Swanson (2005), Andrews and Stock (2007), Chao et al. (2012), Mikusheva and Sun
(2022)). To fully understand the problem at hand, we first restrict our attention to the
Anderson-Rubin (AR) statistic. The reason for this restriction is as follows: Andrews et al.
(2006)[Lemma 1(d)] showed that Z'Y" is a sufficient statistic for the parameter of interest
f in the general Instrumental Variable IV framework (see (2.2.1)). They considered the
Anderson-Rubin (AR) statistic!, which is a bijective transformation of the sufficient statistic
Z'Y. Since a statistic is a sufficient statistic if and only if their bijective transformation is

itself a sufficient statistic?, it follows that the AR-statistic is a sufficient statistic for the

!They denoted this statistic as S in equation (2.6) of their paper
2This follows straightforwardly from the Factorization Theorem, see for instance Lehmann and
Romano (2006)[Corollary 2.6.1]
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parameter of interest 5. It is therefore reasonable to simply restrict our attention to this

particular statistic and draw out its most salient features.

Going back to the problem, classical IV models assume that the number of instruments
is fixed, and with it, the two-staged-least-square (2SLS) estimation was proposed. However,
Sawa (1969) and Phillips and Hale (1977), among many others, have shown that the usual
2SLS estimation is biased whenever the number of instruments (K') diverge to infinity. To
overcome this, Angrist et al. (1999) proposed running a first-stage regression n times, once
for each observation, leaving out one observation at a time, where n is the number of sample
size. This is commonly referred to as “jackknifing” of a given statistic. In particular, Chao
et al. (2012) derived the asymptotic property of the jackknifed instrumental variable (JIVE)
estimator under the case of K — oo, showing that the estimator converges to a standard
normal distribution under some appropriate re-scaling. However, when K is moderate, it
is unclear which statistic the researcher should use for weak-identification-robust inference.
On one hand the researcher could use the classical AR test for a fixed number of instruments
(defined as ARgssica; I section 2.6.1), which has size control under a fixed number of
instruments but has power deficit when the number of instruments is large (See Lemma
B.2.5). On the other hand, the researcher could instead use the jackknifed AR tests proposed
by Crudu et al. (2021) and Mikusheva and Sun (2022) (defined as ARgqndara and ARy,
respectively, in section 2.6.1), which provides good size control whenever the number of
instruments is large, but in general has size distortion when the number of instruments is
small (e.g., see the discussions in Section 2.2.2). Since the two types of AR statistics are
important components of many other weak-identification-robust test statistics proposed in

the literature, we expect a similar non-uniformity issue for these statistics as well.

A simple simulation illustrates this issue.? Figure 2.1 demonstrates the case of a moderate
number of instruments, with the number of instruments K equal to 15 and the sample size
n equal to 200. In this paper, we propose four new tests that are robust to both weak

identification and the number of instruments, two of which are denoted as Qgtqndara and

3The tests in Figure 2.1 are simulated based on the design of section 2.6.2, except we have
reduced the sample size from 400 to 200. The concentration parameter G =~ 70. Note that using a
different (higher or lower) concentration parameter does not change the size, shape, power-ranking,
and percentage difference in power among the tests. In fact, G ~ 70 was a result of mx ~ 0.25,
which is very small in practice.
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Figure 2.1: Power curve for K = 15 and n = 200
Note: The red-line with downward-pointing triangle represents Q) standard; the green line with
a colored-circle represents ARg;qndard; the black dotted line with ‘x’ represents AR jussical;
the orange-line with colored-square represents Jgandard- Lhe first horizontal dotted black
line represents 5%, while the second represents 10%.

Jstandara 0 Figure 2.1 (see section 2.6.1 for the detailed descriptions of these tests). At the
true parameter 5 = 0, the null rejection probabilities of ARussical, ARstandards @ standard,
and Jyandara are 3.1%, 8%, 5.3%, and 5.4%, respectively. In addition, we observe that
the power of AR jussical 18 low throughout, while our tests Qgtandard and Jstandard have the
added advantage of mirroring ARgundard’s power while controlling for size. Our proposed
test takes into account this mismatch between fixed and diverging instrument asymptotics,
and provide a critical-value that converges in both cases to the correct asymptotic limit
distribution under the null, regardless of identification strength, so long as the number of

controls grow slower than the fourth root of the number of instruments*. The analytical

4Chao, Swanson, and Woutersen (2023b) showed that when the dimension of controls are large,
partialling these controls out leads to inconsistent estimates under weak identification. They as-
sumed \/%TV = o(1), where dy is the dimension of the controls, and showed that this condition
is sufficient for consistent hypothesis testing. We have a similar type of assumption here (see
assumption 6)
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critical value defined in (2.2.8) is related to Anatolyev and Solvsten (2023),” and we extend

their result to the problem of weak instruments.

Relation to the literature: Tests that allow for both fixed and diverging instruments dates
back to Anatolyev and Gospodinov (2011). They proposed an estimator that is robust to the
number of instruments, but requires errors to be homoskedastic. To improve finite sample
performance Kaffo and Wang (2017) proposes bootstrapping as an alternative, although it
relies on homoskedastic errors once again. Maurice J. G. Bun and Poldermans (2020) relaxes
the assumption of homoskedastic errors but requires Z;e; to be identically and independently
distributed (i.i.d.), where Z; is the instrument and e; is the second-stage error. Relaxing the
i.i.d. assumption, Boot and Ligtenberg (2023) proposed an estimator based on a continuous
updating objective function (see their Corollary 2), but their approach relies on an invariance
assumption on the second stage error term. Belloni et al. (2012) relaxes the ii.d. and
invariance assumption, but require the first-stage IV moment to be sparse. However, Kolesar,
Muller, and Roelsgaard (2023) advised against making sparsity assumption whenever the
number of instruments is less than the sample size. In contrast to the aforementioned
approaches, our test procedure allow for heteroskedastic error but does not rely on invariance

or sparsity assumption.

Structure of the paper: Section 2.2 makes precise the model setup and provides the
testing procedure for our statistic under full-vector inference for both fixed and diverging
instruments. It further motivates and introduces the robust critical-value for our test statis-
tic. Section 2.3 provides a new strong approximation result for any ‘AR-type’ tests. Section
2.4 provides the asymptotic size and power properties of our test. Specifically, this section
demonstrates that our test consistently differentiates the null from the alternative under
strong identification, for both fixed and diverging instruments. Furthermore, that our test
have exact asymptotic size-control for both fixed and diverging instruments is also shown. As
an additional result, we derive in this section the exact distribution of a generic Jackknifed-

AR statistic under fixed K setting. Note that the number of instruments is assumed to be

°In particular, they showed that a weighted chi-bar distribution is able to mirror statistics of
the AR-type - we say that a statistic T is of an AR-type if we can express T = £Ae for some
deterministic symmetric matrix A and ¢ is a random vector with zero mean and well-defined (or
finite) covariance matrix.
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less than the sample size in sections 2.2-2.4 in order to simplify our discussion. Section 2.5
relaxes this and allow the number of instruments to be possibly larger than the sample-size.
In particular, this section discusses the case of instruments being rank-deficient, and includes
high-dimensional instruments as a special case. Section 2.6.2 provides simulation results for
our power-curve based on calibrated data, which lends itself to our theory. Section 2.6.3
provides an application of our theory to empirical data. Proofs of Theorems, Lemmas, and
Corollaries stated in the main text are given in Appendix B.1, while Auxiliary Lemmas are
provided in Appendix B.2. In Appendix B.3 we provide details on the two estimators satis-
fying (2.2.12). In Appendix B.4 we discuss general limit problems under fixed and diverging
instruments. Appendix B.5 provides more detail on the rank-deficiency procedure of Section
2.5.

Notation: We write [n] to mean {1,...,n} and N := {1,2,...}. In this paper, n is generally
taken to be the sample size, unless otherwise stated. For any vector or matrix A, ||A||r :=

trace(A’A) is taken to be the Frobenius-norm. When there is no room for confusion, we
simply write it as ||A||]. The spectral norm is denoted as ||Al|s = \/WA’A), where
Amin(B) and A\pap(B) are defined as the minimum and maximum eigenvalue of a square
matrix B. For any real numbers a,b € R, we write a < Cb to mean that a is less than or
equal b times a constant C' that is independent of sample size n. For any index j, integer m
and constant C > 0, we write an, j(C) to mean the jth chi-square random variable with m-
degrees-of-freedom and non-centrality parameter C. At times we do not include the index 7,
and write simply as x2,(C) to mean a generic chi-square random variable with m-degrees-of-
freedom and non-centrality parameter C. We also write X?n, ; to mean X%% j(O), i.e. centrality
parameter equal zero, and write WPA1 to mean ‘with probability approaching one’. We
define ¢; to be a vector of zeros, with value 1 only on the ith element. For any set S, we
write S¢ to mean the complement of the set, and use the symbol ‘®’ to denote Kronecker
product. We write Zg(J) to represent a standard Gaussian plus a constant J € RE | i.e.
Zg(J) = N(J,Ix). For any statistic T', denote q1_o(7T) to be the (1 — «)-quantile of the
law of T'.
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2.2 Setup and Testing Procedure

2.2.1 Setup

Consider the model

Y =XB+W +¢
X=I+7 (2.2.1)

where X € RM<dx 7 e RMXAw }7’”@“ e R™! and 7 € R ig a full-tank matrix of
instruments. ﬁl = E()?Z\Z,Wl) e R¥dx 6 Also, B € R and € R™W™*1 We observe
(17,)? W, Z ), and assume that W is a full-ranked matrix of exogenous control variables
with dyy < n, implying that its projection matrix Py := W(W'W)~ W' is well defined. Fur-
thermore, the error terms e; are assumed to be independent across i. We assume throughout
this paper that dxy = 1 in order to highlight the most salient features of our test, but we
remark here that it can be extended to higher dimensions (i.e. dx to be of dimension greater

than one) so that 3 can be multivariate.”

We are interested in testing

Hy: B =0y wversus Hy: [ # By, (2.2.2)

where dx, the dimension of [, is fixed. We aim to obtain a test that guarantees a correct size
control irrespective of identification strength and asymptotic frameworks with regard to K
and dyy. Specifically, our test remains valid no matter the instruments are strong or weak,
and it remains valid no matter the dimensions of the instruments and control variables, K
and dyy, are fixed or diverge to infinity as n — 00.® Whenever they do diverge, we allow K
to grow at the same rate as the sample size n, while dy must grow at a slower rate than n.

For now we assume that K < n, but we will relax this assumption in Section 2.5.

6Note that assuming Z is of full rank implies that the number of instruments must be less than
the sample-size

"See Remark 1

8The number of instruments K should be better written as K,, to reflect its dependence on
sample size n, but we drop this notational dependence and simply write K whenever it does not
cause confusion.
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To proceed, we first partial out the exogenous control variables W (we give appropriate

regularity conditions for dy below) and rewrite the model as

Y=X3+e
X =T+ (2.2.3)

where Y = My Y, X = My X, I = Myll, e = Mye, v = My, Z = MywZ, My =
I, — PY, and PV := W(W'W)~'W’. Throughout the text, we denote o7 = Ee?,¢? :=

EvZ,0? = Ee?,¢? = Ev?,5; = Cov(€;,v;), and P := Z(Z'Z)"12"9 We define ¢;(3p) :=
Y — XG5y = e+ AX, where A :=  — [y. Similarly, define 01-2(50) = 51-2 + 2A%; + AQEZ.Q,

and gf(ﬁo) = EZQ + 2A%; + AQEZ.Z. For notational simplicity, we write ¢ = (eq,...,e,)

instead of e(fy) whenever § = [y. Furthermore, define U := Z(Z’Z)_l/2 e R™K and
; 2 Pijaib; . .o

Qup = Lich ZE/J% 9% for any two vectors a,b € R™, where P;j is the (i, j)-th element of

P. We make the following assumptions throughout the rest of the paper.
Assumption 5. Suppose that the errors (e;,v;) are mean zero and independent across i.

Assumption 6 (Moment conditions). Suppose p—K" = o(1) and p, < 6 < 1, where p, :=
max; Py;. Furthermore, assume pl¥ = max; P}/ = o(1), and dy = O(K1=M/%) for any
n > 0. Let the errors and |11;| be bounded in the eighth moment and bounded away from zero
in the second moment, i.e. max;(I1$ + Eet + Ev?) < C < oo, and (I'T1)2, 02(Bo), s?(Bo) >
C > 0. Furthermore, suppose that C < Amin(W'W/n) < Apax(W'W/n) < C and Z has a
full rank.

We note that for a balanced-instrument design without control variables, p,, = % Hence,
for both fixed and diverging K, p—K" = % = o(1). Furthermore, p, < 1 since each element on
the diagonal of a projection matrix is always bounded by one. As mentioned above, we allow
the number of controls dyy to diverge to infinity. However, in order for p!" to shrink to zero
in Assumption 6, dy must grow at a slower rate than n, i.e. dy = o(n), since p)/ > dTW
by definition. In particular, we require that dy = O(K1=1/4) for any n > 0. Such an

assumption ensures that we can strongly approximate our test statistics (see Theorem 1 and

9This implies that the partialled-out instrument matrix Z is full-ranked. In section 2.5 we
discuss what to do in the event Z is not full-ranked.
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the discussions after it). In the case of fixed K,

pndiy p}mﬂ 1/2 1= /2 p}ﬂ/ 2
il D2 0(1) - K-07072) = o) — o(1)0(1) = o),

while in the case of diverging K,

2 2
Pndyy diy

iy < 7 = 00 K—=m2 12 — 5(1).

2.2.2 Some Background and Motivations

In this section, we briefly discuss the general difficulties of constructing a weak-identification-
robust test that achieves a simultaneous size control under both fixed and diverging number
of instruments with heteroskedastic errors. First, let us consider the classical case of a fixed
number of instruments and homoskedastic errors. For simplicity, we assume for the moment
that control variables are not present in the model of (2.2.1). Under the null, a consistent

2

. . . /\2 L l 2
estimator of the error variance o can be given by 0° := = Zie[n] e7. Then, under standard

regularity conditions, for the classical AR test statistic, we have

e' Pe B 1
Ko?2  Ko?+o0,(1)

1
(n=Y22'e) (n " Z2' 2) N2 7 e) ~ %X%(

Now, consider the case of a diverging number of instruments. Note that by Chao et al.
: i Fiseie S ) Pii0”
(2012)[Lemma A2], Liel 2ipi 015, N(0,1). Furthermore, WPA1, el A Licly Do

V2Ka? Ko = Ko? =
et P
ZZLI?] =1 (See Lemma B.2.1). Therefore, we have

Ko?2 K K52 Ko?

2
¢’ Pe 1 Zie[n] Zj;éi Pijeie; n Zie[n] Piie; P2

We observe that there are two distinct limiting distributions for the same (classical) statistic
under two different scenarios for K. Indeed, for the case with diverging K, ¢’ Pe itself would
diverge to infinity, so that the denominator K acts as a form of normalization. Such normal-
ization has the same order as the diagonal elements. To see this, note that the diagonal ele-
ments Zie[n] Pjie? = O(K), while the non-diagonal elements Zie[n] >z Dijeiej = O(VK),

so that the diagonal terms dominate the non-diagonals. Note that the non-diagonals have

o8



e’ Pe
Ko?

does not work simultaneously for both cases of instruments, due to the diagonal elements.

a smaller order due to it being centered. At this stage, we conclude that the statistic

This highlights the importance of removing the diagonals under diverging K. Therefore, in
order to consider both cases of fixed and diverging K, a natural idea would be to focus on

the jackknifed statistic, where the diagonals are removed, i.e.,

D icin) 2jzi ijeie

)

2Ko?
which converges weakly to a %—distribution under fixed K. On the other hand, as
K — 00, we see that XK pf (0,1). A researcher would therefore be inclined to use the

V2K

following test under homoskedasticity: Reject Hy whenever

D icn) 2ujzi Dijeies - X — K
2K o2 U\ VeK )

which has correct asymptotic size control no matter K is fixed or diverging, under ho-
moskedasticity. However, under general heteroskedasticity, the problem becomes more com-
plicated. To see why, suppose we have certain consistent variance estimator gl(ﬁo) in the

case with heteroskedastic errors so that under the null,”

Dicn) 2ujzi Digeies

2K D1 (o)

~ N(0,1),

when K — oo. However, when K is fixed, the asymptotic distribution of this statistic is no
longer (y% — K)/V2K, resulting in size distortions in this case (this is also confirmed by
our simulations in Section 2.6.2). Nevertheless, as we will explain in the next section, even
under heteroskedastic errors, our proposed tests are able to provide a correct asymptotic
size control simultaneously for both fixed and diverging numbers of instruments (and control

variables).

10See section 2.2.5 for more details on this estimator

29



2.2.3 Analytical Tests

Our first test statistic is denoted as @(ﬁo) and defined as

S . _CBo) PelBo)
Q)= Pac?(o)

(2.2.4)

Our analytical test compares the test statistic Q (Bo) with a robust critical value C’a,df(?fl (50)),
where a € (O 1) is the significance level and under the null, 61(@)) is a consistent estimator
of ®1(5o) = 7% Zle ] Z]# Pfj 12 (Bo)o (ﬁo), with more details provided in section 2.2.5. We
will reject Hy : B = [y at the a &gmﬁcance level if

Q(0) > Coar (®1(50)).

To see the exact formula of the critical value, we need to explain the limit distribution
of our test statistic @(ﬁo) under the null 5 = [y, in which case e;(5p) has mean zero and

variance equal to 02(8p). When K is fixed, under regularity conditions, we can show that

Q(Bo) ~ Z'DypZ = Z Wi X3 ko (2.2.5)

kelK]

where Z ~ N(0, I) and D,, := diag(wi p, ..., wk ) are the eigenvalues of

(Z'M(Bo)2)'*(2'2)" 1 (Z'A(Bo) 2)'/?
Zz’e[n] Pii0?(50> ’

Q(5o) = (2.2.6)

where A(By) = diag(o?(Bo), - ,02(5o)), and {x? ) ke[k] are K independent chi-squared
random variables with 1 degree of freedom. i) Piia?(fBo), the denominator of Q(f), is
chosen so that trace(Q(5p)) = 1. Also note that Q(fy) is positive semi-definite, implying

that its eigenvalues (w1, -+ ,wg) are nonnegative and sum up to 1.

In addition, let K(ﬂo) = diag(e?(Bo), -+ ,€2(Bo)). Then, when K is fixed, we can consis-

tently estimate the eigenvalues (w1, ..., wk ) by the eigenvalues of

(Z'N(Bo) 2)1*(2' 2)~ 1 (Z'N(Bo) Z) "/
> ien Piie} (Bo) ’

60
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which are denoted as wy, = (Wi, -+, Wk ). This motivates us to consider the 1—a quantile
of weighted chi-squared random variable with weights wy, (i.e., Fg, =Y, €[K] @mxi ;), which
is denoted as ¢1—o(Fg,) and can be simulated given w. However, the eigenvalue estimators
are not consistent if K is diverging as fast as the sample size n. Fortunately, in this case,

we can show that that

®~1/2(5) Z Pyie (Bo) | (Q(Bo) — 1) ~» N(0,1)
ze[n
and
-1

> 2wk, +1/df | (Fa— 1)~ N(0,1).
ke[K]

where ®1(f5)) = & D icin] Dicin] Djti PZQJ ZQ(ﬁO)UJQ.(BO) and df is our degree-of-freedom ad-

justment. In particular, df is some deterministic sequence such that!!

df 71 = o(K /%), (2.2.7)

In fact, we allow df to take the value of co so that 1/df can be taken to be zero. For generality
we simply assume df satisfies (2.2.7). This degree-of-freedom correction is asymptotically

negligible, but is included for better finite-sample performance.

Given a consistent estimator 51(50) of ®1(fp), we can adjust the critical value q1—q(Fg, )

as

@1(5) q1-a(Fg )—1

jg 2icp) Piei (Bo) \ | /2 Y ictk) W2, + 1/df

UIn our simulation (section 2.6.2), we let df = (n — K)/2. To see why this holds, note that
by assumption 6, max; P; < § < 1, so that & = Liciey < § < 1. Therefore KY2df~1 =

2,/%1%% < 2,/1/5%1,/71_% = 0(1),/-2% = o(1), where the last equality follows from

n— K — oo since £ < § < 1.

n

Coar(P1(B0)) = (2.2.8)
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This adjustment guarantees the asymptotic size control of our test under diverging K.

Lastly, we note that the critical value Ca’df(il(ﬁo)) can be rearranged as

1 (5o)
\/% Zie[n] Piie? (Bo)

V22 el Wiy T+ 1/df

When K is fixed, we are able to show that, under the null,

N1-a(Fg,) + (@1-a(Fg,) — 1) —-1]. (2.2.9)

EI;l(ﬂO)
Tlf Zie[n] Piie3 (o) P

— —1—0,
\/ 2 Zz’e[K] wz‘Q,n + 1/df

implying that the second term in (2.2.9) is asymptotically negligible. This guarantees that

our analytical test achieves the correct asymptotic size under fixed K as well.

2.2.4 Bootstrap Tests

The test statistic for our bootstrap tests is defined as

T(Bo, ®1(Bo)) == Loicln] 2 Pijei(ﬁO)ej(ﬁO), (2.2.10)

K1 (f)

with @1(50) satisfying (2.2.12) and having the additional requirement that it can be con-
structed from using only e(fp) and P. The two variance estimators 51(50)“@”‘1“” and
61(50)cf discussed in section 2.2.5 satisfy this requirement. We reject Hy : = [y at the «

significance level if

T(Bo, ®1(Bo)) > CB 4y, (B1(Bo), L),

where C8 deS(:ﬁl(Bo), L) is a bootstrap-based critical value that depends on (1) some large
positive integer B, (2) the significance level a, (3) i.i.d. random variables {£; };c[,] following
the probability law £ with the property that its mean is zero, variance is one, fourth moment

is bounded, and (4) the structure of the variance estimator ®1(5).
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Specifically, the bootstrap critical value is computed in the following manner: Fix [y, a
large B, and some «a € (0,1). Fix any ¢ € {1,..., B}, and generate i.i.d. random variables
{Kie}iep following the law £. We then multiply each e;(fy) by ki, denoting the new
random variable as 1; ¢ := k; ge; (o). Since Zﬁl (Bo) is assumed to be constructed by using only
e(Bp) and P, we construct 6{35’[(50) in exactly the same way that @1(50) was constructed,
but replacing (e(fp), P) with (1, P), where 1y = (11,4, ..., 7n¢)’. Once this is done, we can

construct the bootstrap statistic

FBSL . _ > icn) 2jzi Diamienje
Ko7 (50)

By repeating this process for every ¢ € [B], we obtain a collection of statistics {jBS7£}g€[B].
Then

2 reim) L {JBS’E = Z}

Co]?,dfgs($1<ﬁ0>7£) =inf{zeR:1-a< -

+1/dfgs  (2.2.11)

where df 5 é = o(1) is a deterministic sequence that is asymptotically negligible, but is in-

cluded for better finite-sample performance.!?

2.2.5 Estimators for ®;(5)

In this section, we provide further details of @1(50) discussed in the previous section. We

assume that 61(&)) is some estimator satisfying

1(fo) = 1(Bo) + D(A) + op(1+ Y _ AY) (2.2.12)
1€[4]

2In section 2.6.1 we take dfgg = (3 log(n — K))/(n — K) . To see that this is an o(1) term,
simply note that n — K — oo by assumption 6, and apply L’Hopital rule. Furthermore, note that
J(Bo, P1(Bp)) has the same form as the jackkinfe AR statistics in Crudu et al. (2021) and Mikusheva
and Sun (2022), which are asymptotically valid with standard normal critical values under diverging

K. In this paper, we propose bootstrap tests for j(ﬁo,zﬁl(ﬂo)) and show the bootstrap validity
under both diverging and fixed K.
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where

KZZPZQJ 22 60)

i€[n] j#i

and
O(1) if A #0 is fixed

o(l) if A=o(1)

D(A) =

We introduce two estimators that satisfy (2.2.12) under both fixed and diverging K (and
dy ) — this is shown in Appendix B.3. The first variance estimator is due to Crudu et al.
(2021), which we denote as

q)standard : K Z Z PQ 2 ﬂO)

i€[n] j#i

In this case, its accompanying function for D(A) is given as'?

Dstandard K Z ZPQ 2A2H2 2(50) + A4H3H?)
n] j#i

In order to reduce the bias of the variance estimator under the alternative, we further consider

the cross-fit variance estimator due to Mikusheva and Sun (2022), which is defined as

o/ (Bo) = > S S B fea(Bo) Me( o) e (Bo) Mie( o)

i€[n] j#i

~ 2
where M = I, — Z(Z'Z)"1Z" and PZ-2 = m;

under both fixed and diverging K (and dyy) in Appendlx B.3. In particular, its corresponding

and we show it also satisfies (2.2.12)

asymptotic property as well as the expression of D¢ (A) is provided in Theorem B.3.0.2.14
To see why the cross-fit estimator works, under the alternative, we can express e;(fy) =
e; + All; + Av;. Consider the case where = 290. Then IT = MWﬁ = MWZGO, so that
MII = MMWZGO =MZ0Oy=0as Z = MWZ. Hence we can remove the effects of A from

13This is shown in Theorem B.3.0.1
4 Note that the cross-fit estimator is more ‘costly’ than the standard estimator in the sense that
the former requires that max; P;; < § < 1, while the latter does not have this requirement.
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IT;. The bias of the standard variance estimator 6‘?“”‘1“7"‘1(50) grows the at fourth power of
A, so that removing this component leads to higher power. Note that whenever the controls
W are dropped out of the model (2.2.1), the cross-fit estimator is exactly Mikusheva and Sun
(2022)’s cross-fit estimator and Efﬁif (Bo) = ®1(Hp) under the null. However, when there are
exogenous control variables in the model, E@if(ﬁo) # ®1(fp) due to the effects of partial-ling
out the controls My, from the error terms e, which leads to dependence among the error
terms e; in the reduced-form model (2.2.3). We show that the cross-fit variance estimator

remains consistent under the null with the assumption that p}/’ = max; P} = o(1).

2.3 Strong Approximation

This section is concerned with the conditions for which we can view the error terms (e;, v;)
as being normally distributed. This is important for understanding the limit distribution of
(2.2.4) under fixed instruments, as well as generic Jackknifed-AR tests under fixed instru-
ments.

Consider a sequence of independent random variables {;};c[, such that e; ~ N (0,02),
so that ; mirrors the first and second moment of ¢;. We assume that {5i}ie[n] is independent
of {(e;, 571)}@'6[11]' We have the following result which tells us that under the null, whether our
statistic is Jackknifed or of the AR-type, we can always treat our errors as being normally

distributed.

Theorem 1 (Strong approximation). Suppose assumption & holds and sup;cy E(€)* < oc.

Then we have

—ZZPwelej \/_ZZP”EE

ze [n] j#i i€[n] j#i
1/3
o [ @ el ) | ey
p K1/2 K1/2

where p, := max; Py; and £ := Myye. Furthermore,

1 1/2
gePe——SngLO 1/2
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The requirement for strong approximation is very weak, namely that &2 = o(1) and

2
f}g?yg = 0(1). In the simple case where dyy is bounded, i.e. dy < C for some C < oo, we

only require that £2 = o(1), since then

dwnkl® ol ot
= n

o1 = O = o)

In view of Theorem 1, we can view errors to be normally distributed under assumption 6.
The requirement for the eighth-moment of errors to be bounded is used only to control the
size of our test statistic under the diverging K case, specifically when K diverges at the same

order as n (see Theorem 2 and Lemma B.2.3, diverging K case).

2.4 Asymptotic Properties

2.4.1 Asymptotic Size

We discuss the size properties of our test in this section. We begin by making the following

assumption, which ensures that we have uniform size-control.
Assumption 7. Suppose p, < E% for some C' < oo

Intuitively, Assumption 7 states that the largest value on the diagonal of the projection
matrix P is regular in the sense that the order of p,, is equal to the fraction of instruments over
the number of observations, % This follows from the fact that, by definition, % < pp. In the
case of balanced instruments, we have that p,, = % Furthermore, note that this assumption
automatically implies the first part of Assumption 6, since then £ < 6%% = g = o(1).

By the results of the previous sections, we can show uniform size-control of our test under
any identification strength, simultaneously for both fixed and diverging instruments. Let

A\n € A, be the data generating process of n observations for (e,v,Z,W). We impose the
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following restriction on the sequence of classes of DGPs ({Ap}n>1):

( {é,@}ie[n] are independent, Ee; = Ev; = 0, \
Be = 0(1),pl¥ = o(1),dw = O(K(=m/4) for any n > 0,
max; H? + max; EE? + max; Eg? < C < o0,

IT'11, JZZ(BO), CZ.Q(BO) > (C under the null,

C < Amin () < Mo (W) < T,
0<P; <0<1,

61(&)) satisfies (2.2.12) under the null,

(2.4.1)

where 0 < C, C,§ < oo are some fixed constants

Then our test has size-control uniformly over the set of DGPs that satisfy (2.4.1). We

formalize the statement as follows:

Theorem 2. Suppose {Ap}n>1 satisfies (2.4.1), (2.2.7), and assumption 7 holds. Then
under the null, for both fired and diverging instruments, we have exact size-control for the

proposed tests, i.e.

liminf inf P)\n (Q\(ﬁo) > Ca’df($1(ﬂ0))) = limsup sup P)\n (@\(ﬁo) > Ca,df(al(ﬂo))) =

n—00 A\, EA, n—oo A, EA,

and

liminf inf lim Py, (f(ﬁo,$1(50)) >C§df35@1(ﬁo),£))

n—00 A\,€A, B—oo

—timsup sup T Py, (60, $1(50)) > CLyy,. (B1(50), £)) =

n—oo A,EA, B0

Remark 1. Note that Theorem 2 still holds when [ is multivariate (instead of a scalar
in (2.2.1)). This is because under the null, the true error e can be taken as known, with
the remaining computation of our test depending only on the controls W and instrument
Z, both of which are observed. Therefore, repeating the proof under the null yields uniform
size-control for any B € R¥X with fived dx > 1.
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2.4.2 Asymptotic Power

In this section we show that under strong identification, for both fixed and diverging K,
our tests consistently differentiate the null from the alternative, where strong identification
means C := @ — oo. The concentration parameter C was introduced by Mikusheva
and Sun (2022).'5 To motivate this concentration parameter, note that under the linear IV
setting where II; = 7'Z;, for K — oo it was shown in Mikusheva and Sun (2022)[Theorem

1] that whenever ”/%” is bounded, no test can consistently differentiate the null from

the alternative. Furthermore, Chao et al. (2012)’s consistent estimator was based on the

assumption that % — 00.16 Taken together, one can expect that the requirement of

' Z' Zn
VK

differentiates the null from the alternative. In fact, this requirement is equal to requiring

— 00 in the linear IV setting is important to ensuring that our test consistently

that C — oo, which explains why C should be the right measure of identification strength.
17

The Case with Diverging K

We want to evaluate the power of our test Q(8y) and J(Bo, ®1(5o)) under different scenarios.
In particular, we consider three cases for some sequence d, — 0: (1) Strong identification
and local alternative, where d,C = C and A = gd,ll/ ? for some fixed g,g € R; (2) Strong
identification and fixed alternative, where d,C = C and A = A: (3) Weak identification and
fixed alternative, where C = Cand A = A.

Theorem 3. Suppose Assumption 5, 6, 7, (2.2.7) and H/TH = O(1) holds. Then for any esti-
mator ®1(By) that satisfies (2.2.12), we have under strong identification and fized alternative

lim P (@(50) > Ca,df@l(ﬁo))) =1

n—oo

15Section B.4 provides more detail regarding the concentration parameter C
16Gee Assumption 2 of their paper
. . A . P” /Zi 2
17To see this, note that we can express the concentration parameter as C = = \Z/EZ m_ Zicin) \/E(ﬂ ) ,
so that by assumption 6, (1 — 5)% <C< % We can then see that the order between
n'Z'Zw
VK

and C are the same.

68



and

lim lim P (f(ﬁo,$1(5o)) > cgjdes@l(ﬁo),c)) —1

n—o00 B—oo

Theorem 3 shows that whenever identification strength diverges to infinity, our test con-
sistently differentiates the null from the alternative. Note that in general, for any fixed

alternative A not necessarily zero, for diverging K we have that!'®
Fz —1
V2 2 ielk) Wi + 1/ df

Therefore, under weak identification with fixed alternatives, we have the following result:

- N(0,1)

Theorem 4. Suppose Assumption 5, 6, 7, (2.2.7) and HITH = O(1) holds. Then for K — oo
and any estimator @1(50) 2 ®1(By), we have under weak identification and fized alternative
that

Jim P (@(50) > Ca,df($1(ﬁ0))) =1-F <Q1O‘<N(O’ D)= %)

and

n—00 B—00 (I)l(BO)

-~ ~ - ~2~
lim lim P <J(50, ®1(6y)) > cﬁdes@l(ﬁo),ﬁ)) =1-F (qla(N(O, 1)) - L)

where F(-) denotes the cumulative distribution function (CDF) of a standard normal distri-
bution. In particular, if we further assume II'MTI < HITH — 0, then @1(50) can be taken as
?{;li (Bo) for € = {standard,cf} given in section 2.2.5.

The assumption of H/TH — 0 automatically ensures that a{m”d‘”’d(ﬂo) 2 ®1(B), while
the additional requirement of TI'MII < ITTH is made to ensure that <I>§f (By) &> @1(Bo) as
well. Next, we have the asymptotic power for our test under strong-identification and local-

alternative, which is similar to the case of weak identification and fixed alternative.

18Gee the proof of Theorem 3
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Theorem 5. Suppose Assumption 5, 6, 7, (2.2.7) and HITH = O(1) holds. Then for K —
oo and any estimator 51(50) that satisfies (2.2.12), under strong identification and local

alternative we have

Tim P (@(Bo) - Ca,df($1(ﬁ0))) =1-F <CI1a(N(0, 1)) - %)

and

n—o00 B—oo

~ ~ ~ N2
lim lim P (J(ﬁo, 1 (Bo)) > cﬁdes@l(ﬁo),z)) _1_F <q1a(N(o, 1) — L))

The Case with Fixed K

We introduce a measure of identification strength for a fixed number of instruments, defined

as

%

/7% = HNKJL

where pp , = n~1/2Z'T1. For notational simplicity we drop the dependence on n and simply
denote p , by pg. Note that there is an intimate relationship between the concentration
parameter defined above for the fixed K case (i.e. 1i2) and the concentration parameter C
defined for the diverging K case discussed earlier: 12 and C have the same order. To see
this, note that under the assumption that Z'Z/n E Q) 7z, a positive-definite matrix, we have
that with WPAT1,

Z/Z Z/Z -1 A (QZZ)N

where we note that 12 = Wieptie- Since 0 < Mpin(Qz2) < Amae(Qzz) < C, 12 has the
same order as II'PII; as K is fixed, ;7721 has the same order as H\//%H. Furthermore, observe

Zie[n] Pyull} QZie[n] Pi; . I'PII __
/A < max; HiT < CvK < C under fixed instruments, so that N i

) Pirll? - : ~
Z&% has the same order as C. Combining these facts yield the result that 2 has

C +
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the same order as C.

We say that there is strong identification whenever 12 — oco. Otherwise we say that
there is weak identification. To be precise we consider three cases for some sequence d,, — 0:
(1) Strong identification and local alternative, where A = Ad,, for some fixed A and 2 =
12 /d? for some positive and finite constant 1%; (2) Strong identification and fixed alternative
whereby 112 = ?/d? and A = A; (3) Weak identification and fixed alternative where A = A
and 112 — 2, where 2 is some finite positive value. Note that weak identification and local
alternative is not discussed since it has no power. Defining Ag;(A) := E(e;, Avs)(ei, Av;),

we make the following assumption:

Assumption 8. For every sequence of A, — AT € R, suppose %Zie[n] Noi(Ay) ® Z;Z! —
S(AY) and LnZ — Qgzz, where ©(AV) is positive-semi-definite and Qzy is positive-definite

matrices. Furthermore, assume that sup; ||Z;||F < oo.

Under the assumption that the errors in the DGP of (2.2.1) are independent and identi-
cally distributed, the assumption that %Zie[n] Noi(Ay) ® Z;Z! — S(AT) in assumption 8

can be removed.

Recall from (2.2.9) that the power of our proposed test involves the critical value that
is itself random. This randomness comes from the limit of the eigenvalues from Dg :=
diag(Wiy, ..., Wk ). Since this is generally unknown, in order to show that our proposed
tests consistently differentiates the null from the alternative whenever we have strong iden-
tification (under fixed instruments), under minimal assumptions, we begin by showing some

intermediate asymptotic properties pertaining to the critical value (2.2.8).

Lemma 2.4.1. Suppose Assumption 5, 6, 8 holds and we are under fivred K. Assume (2.2.7)
holds and consider any estimator @1(60) satisfying (2.2.12). Then for fized A we have

1 (Bo)
5 P2
\/gzle[n] (ﬁO) o Op(l)

V22 ieiw) Wi+ 1/df

Under the alternative, for fixed K, the limiting distribution of the critical value Ca,df($1 (Bo))

(see (2.2.8) for its expression) becomes that of a weighted chi-square Fumix-distribution.
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Given that the limit w"™" is unknown in practice, in order to discuss the power properties
of our test, one straightforward method is to find the worst-case power property, i.e. we want
limit __ limit limit

to examine the values of w = (whmit . wlimit) such that ||w!™||p = 1, wl™? > 0 and

q1—a(Fuimi) is the largest it can be. We have the following result due to Fleiss (1971):

Lemma 2.4.2. For any vector a € RE for some fized dimension K such that Zz’e[K} a; =1

and each a; > 0, we have

QIfa(X%) 2 i-a Z an%,E
Le[K]

where the X% ¢ are independent chi-squares with one-degree-of-freedom

Note that for fixed K, by expression (B.1.20), Lemma 2.4.1 and 2.4.2, we can obtain an

upper bound for the power of our test under the worst-case scenario’s power

P QM) > 11-a(*(1) + Op(1)) <P (Q(B0) > a1-alFi,) + 0p(1))

Combining lemmas 2.4.1 and 2.4.2, we can show that our test consistently differentiates the
null from the alternative. The requirement is that the concentration parameter i2 diverges
to infinity. This requirement is similar to Mikusheva and Sun (2022)[Theorem 1] (this was
established for diverging instruments), which shows that for any set of bounded concentration
parameter, there is no test that can consistently differentiate the null from the alternative.

This result is formally given as:

Theorem 6. Suppose Assumption 5, 6, 8, (2.2.7) holds and we are under fized K. For
any estimator @1(&)) that satisfies (2.2.12), our test consistently differentiates the null from

alternative, 1i.e.

tim P (Q(60) > Coqr(@1(50))) = 1

n—oo

and

lim lim P (f(ﬁ()@l(ﬁo)) > cgdes@l(ﬁo),c)) _1

n—o00 B—oo
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for any fized A # 0, whenever 12 — oc.

To simplify the discussion for the power properties of the remaining cases, we assume
without loss of generality that under weak identification, ux = ,'” while under strong
identification, d,px = fi, where i € RE is some constant. Denote Q*(fg) := limy, 00 Q(50)
defined in (2.2.6). We have the following result:

Theorem 7. Suppose Assumption 5, 6, 8, (2.2.7) holds and we are under fized K. Further-
more, let I% = O(1) and suppose *(Bo) is well defined. Then under strong identification

and local alternative, for any estimator 61(60) that satisfies (2.2.12),

lim P (@(ﬁo) > Cmdf@l(ﬁo))) By (ZK (2(0)Zﬁ)/9*(ﬁo)zx (E(O)ﬁﬁ) > Q1—a(Fw*))

n—o0

and

n—o00 B—oo

lim Tim P (7050, $1(50)) > CLy, (B1(50). £)) = P (zK (SO)37) 0 (50)2x (SOBF) > ar-alF

where w* = (w7, ...,w}) are the eigenvalues of Q*(By).

Note that w} > 0 and Zz‘e[K} w! = 1. We can diagonalize Q*(5y) = Q*,D*Q* such that
Q*Q*/ = Q*/Q* = Ik, with D* = diag(wy, ...,w}). Then we can express the asymptotic

power under strong identification and local alternative as

P> wid M) >aqa | D wixd,
1€[K] i€[K]

where M; := zQ(L;Q*Z(O)ﬁV is the non-centrality parameter, by which the power of the test
depends on. Furthermore, we can show that our proposed tests (i.e. analytical and bootstrap-

based tests) have certain desirable properties; in particular, our tests are admissible within

9Under weak identification, Wbk = fi2 — [% € R. This implies that px must be bounded.
By Bolzano-Weierstrass, for every sub-sequence of puy, there exists a further sub-sequence pg;,
that converges to u, where p/st = fi>. Therefore, instead of arguing along sub-sequences, the
simplification that pux = p allows us to argue along the full sequence.
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some class of tests. Consider the test

Pa,uwe =1 Z w;X%,i(Mi) > (1-a Z w?X%,K
i€[K] 1€[K]

Then we have the following result due to Marden (1982):

Corollary 2.4.1. Let ®, be the class of size-« tests for Hy : Mp = ... = Mg = 0 constructed
based on K independent chi-squares (X% PR X% i) Then ¢q+ is an admissible test within
D, .

Corollary 2.4.1 relates back to Theorem 7 in the sense that our proposed tests are ad-
missible over the class of tests that are based on X% or some combination of independent
chi-squares (not necessarily a linear combination), under strong identification and local alter-
native. Finally, we can express the asymptotic power of our tests under weak identification

and fixed alternative as follows:

Theorem 8. Suppose Assumption 5, 0, 8, (2.2.7) holds and we are under fized K. Assume
Q*(Bo) is well defined and consider any estimator 61(50) L ®1(By). Then under weak

identification and fived alternative, if we further assume that IU'TL = O(1), we have

n—oo

lim P (@(50) > cmdf@l(@o))) —p (ZK (2(5);7)/9*(60)2;( (E(Z)ﬁ) > Q1—a(Fw*)>

and

/ N\

tim Tim P (7050, $1(50)) > Ly, (B1(0). £)) =P (ZK (2@)7) @ () 2k (S@)) > a1-aFur)

n—o0 B—oo /

where w* are the eigenvalues of Q*(By). In particular, if we assume I MTI < HTH — 0, then

51(60) can be taken as @{ (Bo) for € = {standard,cf} given in section 2.2.5.

Note that the assumption of II'Il = O(1) automatically implies weak identification for
fixed K. To see this, observe that WPAT,

7'z
/ji = ,U/K,uK < )\max(QZZ) : /L/K ( n

-1
> MK = )\max(QZZ)H/PH < Amaz(Qzz) - I,
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so that 112 < C for some constant C' < co. As before, we can re-write the asymptotic power

given in Theorem 8 as

wall >q1a walz

where M; := ZQ(L;Q*Z(K)IL)? is the non-centrality parameter. This ensures that our tests
have power strictly greater than a. The asymptotic rejection criteria for both our tests can

be written as

aa,w*:: walz >QI04 ZwX1Z

Analogous to Theorem 7, we have the result that under weak-identification and fixed-
alternative, our tests are admissible within some class of tests. This follows from the following

corollary.

Corollary 2.4.2. Let ®, be the class of size-a tests for Hy: My = ... = Mg = 0 constructed

based on K independent chi-squares (X3 ;, ..., X% i) Then aa,w* s an admissible test within

D,.

2.5 Rank-Deficiency and High-Dimensional Instruments

In this section we explore the problem of rank-deficiency in instruments (i.e. Z is not
full-ranked). Under such rank-deficiency, the projection matrix P := Z(Z'Z)~'Z’ is not

well-defined. To overcome this, we consider the ridged-projection-matrix defined as

P, =

n

Z(Z'Z +yplg) 12

for some (sequence of) v, > 0. Following Dovi, Kock, and Mavroeidis (2023), we set the

parameter 7y, to equal

Y —maxargmaxg E ”7%

'YnEn an]];ﬁz
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where I'), ;== {y, € R: 9, > 0if r = K and v, > 7- > 0if r < K} and r := Rank(Z). We
make the additional assumption to ensure that «; exists. In fact, whenever assumption 6
holds, assumption 9 will automatically hold,?? so that assumption 9 is seen as a “generalized”

version of the balanced-design assumption (i.e. p, < 4J < 1).

Assumption 9 (Assumption 3 of Dovi et al. (2023)). There exists constants c¢,~y— > 0 not

depending on n, some h > 1 and some sequence v, € [7,00) such that

DD Pzt

i€[n] j#i
where ¥ =0 ifr=K andy =~v_ ifr < K

Recall from sections 2.2.3-2.2.5 that the estimators involved depend on the number of
instruments K. The reason is that we assumed the instruments have full rank (i.e. r = K).
When instrument rank is deficient, we should focus instead on the rank of the instruments.
In particular, we should replace P and K by P, and r respectively in the previous sections.
Note that under these changes, our proposed analytical and bootstrap-based tests will once
again control for size, even if the number of instruments exceed the sample-size. For clarity
of exposition, we provide details of the testing procedure as well as its asymptotic properties

in Appendix B.5

Remark 2. Note that in section 2.2 we assumed that Z is of full-rank. This assumption
implies that the number of instruments must be less than the sample size (i.e. K < n).
Throughout the rest of section 2.5, however, we do not make this assumption. Instead, we
focus on the rank-deficiency of partialled-out instrument Z. This allows for the number of
instruments to be much larger than the sample size (i.e. K >> n), which includes the

high-dimensional case.

2.6 Simulation and Application

In this section, we compare the difference in power and size between existing tests and our

test, under two different data generating processes (DGP). To begin, we explicitly define

20In particular, we simply require p, < § < 1 from assumption 6. See the proof of Proposition 1
in Dovi et al. (2023)
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these tests and their corresponding critical-values.

2.6.1 Description of Tests

We consider the following tests, letting df = (n— K)/2, dfps = (n— K)/(3 log(n — K)), law
L following a Rademacher distribution (i.e. equal probability of —1 and 1), and a = 0.05
(i.e. 95% confidence level):

(1) Our proposed test using the standard estimator which rejects whenever

Q(Bo) > Coqr(B5temdard(5,))

(2) Our proposed test using the cross-fit estimator, which rejects whenever

Q(fo) > Coar (@ (50))

(3) The Jackknifed AR-statistic for diverging K provided by Mikusheva and Sun (2022),

which rejects whenever

1

— Z Pl‘jei<ﬂ())€j(60) > (l1—a (N(Ov 1)) )
o (Bo)WVEK icin) 14

(4) The standard estimator for diverging K by Crudu et al. (2021) which rejects whenever

1

PN Z Z Pij&'(ﬁ())ej(ﬁo) > (l-a (N(O, 1)) :
q)ftandard(ﬁo)ﬁ i€n] j#i

(5) The classical AR-statistic for fixed K, i.e. we reject whenever
1o-1 2 o = 1/25 O — l 1{1; 2 2
S I > qi—a(X%), where Jp :=n""""Ze(fy) and y, := nZ {diag(e1(Po), -..,e5(B0))} Z

(6) The Jackknifed-AR for fixed K and homoskedastic errors given by Mikusheva and Sun

7



(2022)[Supplementary Appendix, Lemma S4.1], which rejects whenever

! X% — K
~ > D PieilBo)e(Bo) > di—a <—> ;
\/M\/? ic[n] j#i VoK

(7) The bootstrapped-based test using @{tand”d(ﬁo) as variance estimator, which rejects

whenever

T(Bo, B5tendard(py)) > C2 . (DP9 (5y), L);

(8) The bootstrapped-based test using 6? (Bo) as variance estimator, which rejects whenever
T (B0, 8 (B0)) > Clupys (B7°(B0). L),

We denote the tests (1), (2), (3), (4), (5), (6), (7). (8) by Qstandard: Qcf> ARcf, ARstandard> ARclassicals
JARhomo, Jstandard and J.y respectively.

2.6.2 Simulation Based on Hausman et al. (2012)

We consider the following model based on the DGP given by Hausman et al. (2012), with sam-
ple size n = 400, and vary the number of instruments K € {1,2,3,4,5,6, 8,10, 15, 20,40, 100, 200, 300}.
Let

X =ngz1+Us
W=(1,..1) €¢R"

Ui = pUs + Ul (¢v1 + 0.86v2)
l_pl 2 ¢2—|—0864 Ul . U?;

zi1 ~N(0.5,1), w1 ~ z15(Beta(0.5,0.5) — 0.5),  wva; ~ N(0,0.862),

D, = dz’ag(\/l + 23, \/1 + 23, /14 22)

Us; ~ exponential(0.2) — 5, ¢=0.3, p; =03
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We assume that the errors across different ¢ are independent. Furthermore, 21 = (211, 221, --., 2n1)
are independent from any error terms, and mx € R is chosen to be such that the identifica-
tion strength is small; since the value of K affects identification strength, we have different
values of mx for different instruments. We consider values of g such that for each K, the
concentration parameter C = 70.2! The diagonal matrix D, allows U; to be dependent on
z1 but at the same time has variance bounded away from zero, in the event some elements

of z1 are close to zero. We assume § =0 and =1 to be the true parameters.

The ith instrument observation for K > 6 is given by

r._ 9 3 4 5
Z; = (214, 214, 21 Z14> 21 21iDit, s 216 Di ik —5),

where Dy, € {0,1} is a dummy variable with P(D;, = 1) = 1/2, so that Z; € RX. For

K <5, the ith instrument observation is

Z!:=zy for K =1,

= (21, zi2) for K =2,
/

Z; = (i1, zio, zinzig) for K = 3,
! . 2 o

Z; = (Zil,Zz‘Q,Zﬂzig,zil) for K =4,

Z! = (21, zi2, 21 % 2 .23 for K =5
;T Zl?Z’LQaZ’LlZ’LQazil,ZZ'z) or = 0,

zia ~ N(0.5,1) independent of z;

Note that zo := (212, 222, ..., 2n2)’ does not affect the DGP, so that in some sense it is a
‘spurious’ instrument. It is added for smaller instruments to ensure that the C' in assumption
7 is not too large. We conduct 1,000 simulation replications to obtain stable results and

detail the probability of rejection under the null of g = 5y in the following table.

Table 2.1 provides the probability of rejection under the null for different values of K;

2'We used the command ‘set.seed(1)’ for our simulation in R programming so that Z can be
pinned down without changing. After this was done, we calibrated the value of 7w so that C :=
% = 70 for each K, where Py := P —diag(P) and P := MW Z(Z'M"W Z)=Y(M")Z'. Note
that m changes with K. Furthermore, through extensive simulation, the results will not change
much when C changes by a little, say £20.
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Table 2.1: Rejection Probability under Null

ARgstandard  Qstandard ARcy Qe ARcassicat JARhomo Jstandard — Jef

(5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%)

K=1 0.072 0.06 0.072 0.061 0.06 0.062 0.06 0.06

K=2 0.079 0.054 0.08 0.055 0.046 0.054 0.048 0.049

K=3 0.066 0.048 0.07 0.053 0.044 0.053 0.047 0.044

K =4 0.08 0.058 0.086 0.065 0.052 0.068 0.052 0.053

K=5 0.077 0.05 0.083 0.056 0.059 0.06 0.049 0.048

K=6 0.08 0.061 0.128 0.099 0.053 0.098 0.059 0.061

K =8 0.073 0.047 0.106 0.08 0.049 0.082 0.056 0.06

K =10 0.073 0.05 0.098 0.082 0.047 0.081 0.051 0.055
K =15 0.083 0.054 0.111 0.089 0.039 0.087 0.057 0.062
K =20 0.07 0.048 0.10  0.069 0.04 0.079 0.051 0.052
K =40 0.062 0.041 0.092 0.061 0.023 0.074 0.047 0.048
K =100 0.048 0.035 0.075 0.058 0.001 0.068 0.046 0.045
K =200 0.059 0.043 0.103 0.086 0 0.098 0.056 0.061
K =300 0.066 0.065 0.134 0.131 0 0.125 0.056 0.067

Note: We reject at the 95% confidence-level, i.e. o = 0.05

we make four observations. First, the AR undara Suffers from size issues when the number
of instruments is small-moderate. Our corresponding proposed tests Qsiandard a4 Jstandard
resolves this. Second, severe size distortion also occurs for AR.; under small-moderate
amount of instruments;?? our corresponding analytical test Q) tries to resolve this, albeit
partially successful. However, notice that Q. reduces the size distortion by about 20%—30%.
The bootstrap-based cross-fit test J.; has more success in that size-distortion is mostly

negligible, even when its counterpart AR.; experiences severe size-distortion. Third, the

22The size-distortion of ARy persists even under large K (say K > 200) due to p, := max; Py
being very close to one (it is roughly 0.992 in the simulation when K = 300). Recall from Theorem
B.3.0.2 that one of the key assumptions in assuring &’if(ﬁo) satisfies (2.2.12) is that p, < J < 1 for
some ¢ > 0. Note that even though this assumption was made in Theorem B.3.0.1, it is actually
not needed for the consistency of @fta”dm'd(ﬁg), which explains why ARgandard has reasonable size
for larger K.
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classical AR-test for fixed instruments AR .ssicar generally does not suffer size-distortion
for any number of instruments; however, we will see that it suffers from substantial power
decline when the number of instruments is larger, say K > 6, as seen from Figure 2.4-2.8.
Finally, JARpomo suffers from size-distortion even for small instruments, say K = 3. This is
to be expected since the critical value of JARp,mo 18 based on homoskedastic errors, while

the errors of the DGP are heteroskedastic.

In order to obtain a fair power-comparison between the tests due to size-distortion, for
each given K we compute the (1 — «)-quantile of each distribution under the null. We then
reject the tests whenever the test-statistic is greater than this null-computed quantile, i.e.

we compute the size-corrected power.23

Probabilty of rejection of Hy: fy=0
Probabilty of rejection of Hy: fy=0

—x
~

Figure 2.2: Power curve for K = 1,2
Note: The red-line with downward-pointing triangle represents Q)standard; the yellow-line
with a upward-pointing triangle represents AR, ; the purple-line with a cross represents Q. ;
the green line with a colored-circle represents A Rgiqndard; the blue dotted line with diamond
represents JARpomo; the black dotted line with an ‘x’ represents AR jqssical; the orange-line
with a colored-square represents Jgundard; the dark-red dotted line with asterisk represents
Jeg. The horizontal dotted black line represents 5%-level.

ZNote that these null-computed quantiles are in general infeasible in the sense that they cannot
be constructed without knowing the true DGP and parameters
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Figure 2.3: Power curve for K = 3,4
Note: The red-line with downward-pointing triangle represents Q) standard; the yellow-line
with a upward-pointing triangle represents AR, r; the purple-line with a cross represents Q. ;
the green line with a colored-circle represents AR andard; the blue dotted line with diamond
represents JARpomo; the black dotted line with an ‘x’ represents AR jssical; the orange-line
with a colored-square represents Jgiondard; the dark-red dotted line with asterisk represents
Jeg. The horizontal dotted black line represents 5%-level.
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Figure 2.4: Power curve for K = 5,6
Note: The red-line with downward-pointing triangle represents Q) standard; the yellow-line
with a upward-pointing triangle represents AR, r; the purple-line with a cross represents Q. ;
the green line with a colored-circle represents AR andard; the blue dotted line with diamond
represents JARpomo; the black dotted line with an ‘x’ represents AR jqssical; the orange-line
with a colored-square represents Jgiondard; the dark-red dotted line with asterisk represents
Jeg. The horizontal dotted black line represents 5%-level.
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Figure 2.5: Power curve for K = §,10
Note: The red-line with downward-pointing triangle represents Q)standard; the yellow-line
with a upward-pointing triangle represents AR, r; the purple-line with a cross represents Q. ;
the green line with a colored-circle represents AR andard; the blue dotted line with diamond
represents JARpomo; the black dotted line with an ‘x’ represents AR jssical; the orange-line
with a colored-square represents Jgiondard; the dark-red dotted line with asterisk represents
Jeg. The horizontal dotted black line represents 5%-level.
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Figure 2.6: Power curve for K = 15,20
Note: The red-line with downward-pointing triangle represents Q)standard; the yellow-line
with a upward-pointing triangle represents AR, r; the purple-line with a cross represents Q. ;
the green line with a colored-circle represents AR andard; the blue dotted line with diamond
represents JARpomo; the black dotted line with an ‘x’ represents AR jqssical; the orange-line
with a colored-square represents Jgiondard; the dark-red dotted line with asterisk represents
Jeg. The horizontal dotted black line represents 5%-level.
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Figure 2.7: Power curve for K = 40,100
Note: The red-line with downward-pointing triangle represents Q)standard; the yellow-line
with a upward-pointing triangle represents AR, r; the purple-line with a cross represents Q. ;
the green line with a colored-circle represents AR andard; the blue dotted line with diamond
represents JARpomo; the black dotted line with an ‘x’ represents AR jssical; the orange-line
with a colored-square represents Jgiondard; the dark-red dotted line with asterisk represents
Jeg. The horizontal dotted black line represents 5%-level.
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Figure 2.8: Power curve for K = 200, 300
Note: The red-line with downward-pointing triangle represents Q) standard; the yellow-line
with a upward-pointing triangle represents AR, r; the purple-line with a cross represents Q. ;
the green line with a colored-circle represents AR andard; the blue dotted line with diamond
represents JARpomo; the black dotted line with an ‘x’ represents AR jqssical; the orange-line
with a colored-square represents Jgiondard; the dark-red dotted line with asterisk represents
Jeg. The horizontal dotted black line represents 5%-level.
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Figures 2.2-2.8 plot the size-adjusted power curve for the aforementioned tests; we high-
light five observations. First, our four proposed tests Qstandard, Qcf, Jstandara and J.y have
generally similar power over different number of instruments, which is expected as their
rejection rate are asymptotically equal under every alternative. Second, the size-adjusted
power of our proposed tests is at least as good as the well-known estimators ARgtqndards
ARcp, ARugssical and JARpome over varying numbers of instruments. Third, for moderate
to large number of instruments (say K > 6), the power of the AR 4ssicq; s comparatively
lower than all other tests. Fourth, when the number of instruments is large, the power

curves for AR.; and JAR}om, are similar because the two tests differ only in the critical

2
value used (i.e. q1_o(N(0,1)) for the former and ql_a(xg) for the latter). As K — oo,
2
% ~» N(0,1), so that eventually, for larger instruments, the rejection rate of these two

tests should be equal. Finally, for very large instruments (K = 200, 300), the size-adjusted
power of Qgtandara and @y are approximately equal, and dominates the other tests. The
power of ARgqndard i approximately equal to Jgundarq, While the power of AR,.¢ is approx-

imately equal to J.r.

2.6.3 Empirical Application

In this section, we consider the linear IV regression with underlying specification based on
Angrist and Krueger (1991), using the full original dataset.?* In particular, we consider
the 1980s census of 329,509 men born in 1930-1939 based on Angrist and Krueger’s (1991)
dataset. The model follows Mikusheva and Sun (2022), which can be written explicitly as

38
In W, = Constant + H,' C+ Y _YOBi &+ Y POBi s+ BEi + i (2.6.1)
¢=30 57#56
38
E; = Constant + HiT)\ + Z YOB,; cpic + Z POB; sos + Z; i + €
c=30 5#£56

24The dataset can be downloaded from MIT Economics, Angrist Data Archive,
https://economics.mit.edu/faculty /angrist /datal /data/angkrul991.
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where W; is the weekly wage, F; is the education of the i-th individual, H; is a vector of
covariates,? Y OB, . is a dummy variable indicating whether the individual was born in year
c={30,31,...,39}, while QOB; j is a dummy variable indicating whether the individual was
born in quarter-of-birth j € {1,2,3,4}. POB;, is the dummy variable indicating whether
the individual was born in state s € {51 states}.?S Both ~; and ¢; are the error terms. We

consider twenty-one varying numbers of instruments; in particular,
K = {3, 10,20, 30,50, 100, 150, 180, 200, 250, 300, 350, 400, 450, 600, 765,918, 1071, 1224, 1377, 1530},

so that Z; g varies with K. Specifically, we have

3
Zig = Z QOB,; ;o;,

=1
1 39 3 39
Zi1o = Z Z QOB,; ;YOB; Hje¢, ..., Zi30 = Z Z QOB,; ;YOB; ;.
Jj=1¢=30 j=1 ¢=30
1 3
Zi50 = Z Z QOB,; jPOB; 40}, ..., Zi150 = Z Z QOB,; jPOB; 40; s,
j=1 s£56 J=1 s£56
3 3 39
Zi180 = Z Z QOB; jPODB; 65 s + Z Z QOB; ;YOB; ;.
j=1 556 =1 ¢=30
33 38
Zigoo = Y > _YOB;jPOB; QOB jibcs, ... Ziaso = » . Y YOB; j;POB; QOB jies,
c=30 s#56 c=30 s#56

38 3
Zi 600 = Z Z YOB,; ;POB; stc;s + Z Z QOB,; jPOB; s0; s,

¢=30 s£56 J=1 s£56

34 3
Zizs=Y_Y_ Y QOBi;YOB; POB;fj.s, ..

¢=30 j=1 se{51 states}

39 3
o Zion = Y Y QOBi;YOB; POB; Jjcs

c¢=30 j=1 se{51 states}

25The covariates we consider are: RACE, MARRIED, SMSA, NEWENG, MIDATL, ENOCENT,
WNOCENT, SOATL, ESOCENT, WSOCENT, and MT.
26The state numbers are from 1 to 56, excluding (3,7,14,43,52), corresponding to U.S. state codes.
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The coefficient § is the return to education. We vary this 5 across 1,000 equidistant grid-
points from -0.5 to 0.5 (i.e., § € {—0.5,—-0.499,—0.498, ...,0,...,0.499,0.5}) and solve for
the range of § where the null hypothesis cannot be rejected, according to section 2.6.1.

Specifically, we can write the above model as

InW; =C;I' + BE; + (2.6.2)
E; =Cit+ Z;0 + ¢, (2.6.3)

where Cj is a (329,509% 71)-matrix of controls containing the first four terms on the right-
hand of (2.6.1). We can then partial out the controls C; by multiplying each equation (2.6.2)
and (2.6.3) by the residual matrix I — C(CTC)~'C" to obtain a form analogous to that in

the main text:

E:XZ/B—i_e’L?
X, =1I; +v;

Then, at each grid-point we take Sy = 3 and compute ARgqndard, @standard ARcf, Qcfr ARclassical
and JARpomo. We reject the chosen value of 3y for if it exceeds the one-sided 5%-quantile
of the corresponding critical-value (i.e. « = 0.05 with the tests and their critical-value
described in Section 2.6.1). Note that the full QOB,Y OB, POB or their interactions are
not used in order to avoid multicollinearity. We report the upper and lower bounds of the

confidence set for which the null cannot be rejected in Table 2.2 below.
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Table 2.2: Confidence Interval

ARstandard Qstandard AR assical JARRomo Jstandard
(5%) (5%) (5%) (5%) (5%)

K =3 | [0.056,0.147] [0.052,0.151] [0.053,0.151]] [0.052,0.151] _ [0.052,0.15]
K =10 | [-0.007,0.16] [-0.011,0.165] [-0.011,0.166] [-0.011,0.165] [-0.011,0.167]
K =20 | [0.017,0174] [0.015,0.178] [0.014,0.18]  [0.014,0.178] _ [0.009,0.183]
K=30 | [0,0.169]  [0.002,0.172] [0.002,0.177] [-0.002,0.172] [-0.004,0.173]
K =50 | [0.005,0.183] [0.002,0.188]  [-0.01,0.188] _ [0.002,0.188] [0.188,0,0.198]
K =100 [0.018,0.2] [0.017,0.202]  [0.009,0.203]  [0.017,0.202] [0.013,0.203]
K =150 | [0.023,0.208] [0.022,0.21] [0.022,0.212]  [0.022,0.21]  [0.021,0.211]
K =180 | [0.008,0.201] [0.007,0.202] [0.007,0.207] [0.007,0.202]  [0.005,0.206]
K =200 | [0.216,0.23] [0.223,0.233] [-0.214,0.236] [0.224,0.233] [-0.131,0.252]
K =250 | [0.118,0.258] [0.122,0.261] [-0.111,0.256] [-0.122,0.261]  [-0.1,0.275]
K =300 | [0.097,024] [0.1,0.242] |[-0.085,0.238] [-0.1,0242]  [-0.092,0.26]
K =350 | [0.107,028] [-0.11,0.283] [-0.092,0.274] [0.11,0.283]  [-0.071,0.273]
K =400 | [0.078,0.305] [-0.081,0.308] [-0.058,0.298] [-0.081,0.308] [-0.076,0.257]
K =450 | [0.105,0.29] [-0.107,0.293] [-0.092,0.281] [-0.107,0.293]  [-0.047,0.25]
K =600 | [[0.018,0.228] [-0.019,0.229] [-0.013,0.224] [-0.019,0.220] [-0.011,0.231]
K =765 | [0.09,0.102] [-0.093,0.104] [0.125,0.163] [-0.092,0.194] [-0.108,0.201]
K =918 | [[0.055,0.182] [-0.058,0.183] [-0.076,0.157] [-0.056,0.183]  [-0.064,0.19]

K = 1071 | [0.042,0.19] [-0.044,0.192] [-0.064,0.168] [0.042,0.191] [-0.05,0.196]
K = 1224 | [-0.035,0.209] [-0.036,0.208] [-0.052,0.186] [-0.035,0.209] [-0.042,0.231]
K — 1377 | [0.034,0.207] [-0.036,0.209] [-0.052,0.186] [-0.035,0.208] [-0.042,0.231]
K = 1530 | [-0.035,0.219] [-0.036,0.221] [-0.049,0.206] [-0.035,0.22]  [-0.038,0.229)]

Note: We reject at the 95% confidence-level, i.e. a = 0.05

We have omitted AR.r, Q.r and J.r from the Table 2.2 because the confidence interval of
these tests are either very similar or exactly the same as AR andard, @standard a0d Jstandard
respectively. Therefore, we can speak of the confidence interval (C.I) for the aforementioned

tests interchangeably (e.g. when we mention the C.I. of AR.f, we also mean the C.I. of
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ARgtandard). We now make a few observations, which we discuss in detail. First of all, recall
from Table 2.1 that the size-control for @).s was slightly distorted due to p, being extremely
close to one, a requirement for the validity of the cross-fit variance estimator Zﬁ? (Bo). In
this empirical application p;, is bounded away from one, so that Qstandara and Q. should be
expected to be close to each other. In fact, we can also expect the C.I. of AR 4ndara to be
close to ARy over all values of instruments, which holds true. Second, the C.I. of AR 4ssical
is quite different from all other statistics for larger instruments, which is to be expected since
AR jussical 1s meant for testing under fixed instruments. However, notice that the C.I. of
Qstandara (and therefore Q.r) is close to ARqssicar for smaller instruments, while Qgandara
differs from ARgandara (and ARy) at these values, which suggests that the C.I. for both
ARgtandara and AR,y may not be valid for smaller instruments. For large instruments (say
K > 350), the C.I. of Qgandard (and Q.s) converges to that of ARgundarqd (and AR r). We
can therefore see that our proposed test ensures that the C.I. we obtain is correct. Third,
JARpomo's C.1. converges to that of AR.; as the number of instruments increase. This is

expected since the test JAR},qy,, converges to AR.f as K — oo.

Fourth, comparing Q.; and JARj},y, for small instruments, we see that their C.I. are
very similar. We can infer from this that the data seems to be exhibiting homoskedastic
variance. This requires some explanation. Consider a fixed A not necessarily zero. Note

that under some additional assumptions, we can show that under fixed K, WPA1, we have®’
|[wy, — wp|| =0

This implies that WPA1, Fgz ~» F,, approximately. Under homoskedasticity, w; , = %, SO
2
that F, = XYK Therefore, WPA1 approximately,

G1-a(Fg) — 1 E/E-1 %~ K
W — ql—o - =(1-« W
nllF V2 Zie[K] K2

2TIn particular, if we impose the additional assumption that maX;e|n] % ~ 0, then we

can see that this result follows from Lemma B.2.3
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By rearrangement, the rejection criteria for (). becomes: reject whenever

¢ . ‘ﬂ—a(F@)_l ~ X%(_K)
\/mlez[; Pm BO 50) 1) > q1- < \/§||7j}/n||F ) dl—« ( \/ﬁ

Furthermore, recall that the rejection criteria for JARomo iS given as

Z i — K )
P’LZ - 1 [0 - —
Kd f(ﬁo) i) HE) Q) ~1) > - < V2K

We therefore conclude that under homoskedasticity, for fixed K, the rejection rate of Q.;
and JAR},mo should be approximately equal. Since the C.I. of both tests are similar, we can
infer somewhat that the variance is homoskedastic. As a form of robustness check, note that
AR jussical and JARpomo has similar C.1. for small K, where we recall AR j,ssicql 18 TODUSt to
heteroskedasticity under fixed K. This further confirms our intuition. To summarize point

four, our proposed tests Qstandard and Q¢ can serve to check for homoskedastic variance.
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Appendix A

Technical Results for Chapter 1

A.1 Exogenous Control Variables

Suppose we observe {}71, X;. Zi, Witicpn), where

YVi=XiB+W'y+é, Xi=ILi+V,
X; e R, Z; e RE, W, € R, 1I; = EX;, and (ZiaWi)iE[n] are treated as fixed. We allow
K to diverge to infinity with n while d is fixed. We then have E¢; = EV; = 0. Denote
Py = VV(VVTVV)_lVVT and My = I,, — Py be the projection and residual matrices based
on W, respectively, where [, is the n x n identity matrix and W = (W7, Wa, - -- ,I/Vn)T €
R7<d - Further denote Y, X,¢é, 11,V as matrices with their ith row being Y, X;, 6, 11;, Vi,

respectively. Then, we have
Yi=Xif+ei, Xi=Ii+V,

where Y = MY, X = My X,V = My V, e = Myé, Il = M1, and Z = My Z. We still
denote P as the projection matrix constructed by Z. The next theorem shows Assumption
1 holds.

Theorem A.1.1. Suppose {‘zaéi}ie[n] are independent, max; Eé;l + max; E‘N/Z-4 < C < oo,
max; ||[Will2 < C < oo, HTII/K = O(1), and 0 < ¢ < mineig(W "W /n) < mazeig(W "W /n) <
C < oo, for some constants ¢, C. Then, Assumption 1 holds and Qe = Qs + op(1). If
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: " 2111 .
in addition, p;, == = o(l) with p, = max; P;, then we have Qx,. = Q% ; + op(1l) and
QX,X = nyy + OP(l), where yz =1II; + ‘z

Theorem A.1.1 shows Assumption 1 still holds if (Y;, X, Z;) are defined after partialing out
the fixed dimensional control variables W;. It further provides a sufficient condition under
which the effect of partialling-out on the sampling error is asymptotically negligible, i.e.,
the asymptotic covariance matrix remains the same after partialing out W;. To interpret
the sufficient condition, we consider the balanced design in which p, is of order K/n. If
K/n =o(1) and IT"TI/n = O(1), then the sufficient condition holds because

'K
pPI'I/K = O (TZ) = o(1).
On the other hand, if K = n, the sufficient condition requires II"II/K = o(1), which
can hold under both weak identification (II"TI/v/K = O(1)) and strong identification
(TTTTI/vV K — 00). We further emphasize that, even if K =< n and II"TI/K =< 1 so that the
sufficient condition does not hold, Assumption 1 still holds. It is just that partialing out the

exogenous control variable will have a non-negligible effect on the asymptotic covariance of

(Qe,er Qx,e, Qx,x — Qi)

A.2 Verifying Assumption 2

A.2.1 Standard Estimators

In this section, we maintain Assumption 10, which is stated below and just Mikusheva and
Sun (2022, Assumption 1).

Assumption 10. Suppose {Vi,@‘}ie[n} are independent and Ee; = EV; = 0. Suppose P 1is
an n X n projection matrix of rank K, K — oo asn — oo and there exists a constant 6 such
that P < 0 <1.

Following the results in Chao et al. (2012) and Mikusheva and Sun (2022), we can show
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that under either weak or strong identification, Assumption 1 in the paper holds:

Qe,e 0 @1 @12 @13
Rx.e ~ N O, | P2 ¥ 7 : (A.2.1)
Qxx—C 0 b3 7 T

where af = Ee?, 771'2 = EViQ, Vi = EeiVi, wi = Zj;ﬁi Py,

0= fin e 30 3 it}

n| j#i
_ 2
Q1o = nlingo — Z z#: yjai +7i05),
| j#i
P13 = nlggo e Z Z TRLALE
n] j#i
1
. 2 2 2
i n] j#i 1€[n]
: 2 2
7':nh_>no1o KZZ wnlfyj%—?z%%- , and
i n] j#i 1€[n]
BT P2p2,2
1= lim KZ; ZJnZnJ+_Zw
| j#i

We note that the standard estimators of the above variance components proposed by
Crudu et al. (2021) are equal to Chao et al.’s (2012) estimators with their residual é; replaced
by e;i(Bo). Specifically, let

KZZPZZ Bo),

i€ln] j#i

Bia(0) = 7o 3 O PA(Xe;(B0)e(Bo) + Xiea(Bo)e(6o)).
i€ln] j#i

®13(80) = 174 Z Z > Xiei(Bo)Xje;(Bo),
i€[n] j#i
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== Z > PyX;)el (o) + ZP  Xiei(Bo) X e (Bo),

i€[n] j#i z J#1
1 2 2
NS S ST RRVRL
i€[n] j#i i€[n] j#i
= 2 v2 12
T= KZZPZ-]-XZ-X]-.
i€[n] j#i

Assumption 11. Suppose max;c, [IL;| < C, % = o(1), and max; Ee?+maxi EVZ-6 < 00.

Two remarks on Assumption 11 are in order. First, max;cp, [Il;| < C is mild because
II; = EX;. Second, Assumption 11 allows for weak identification when I1TTI/v/K VK — ¢ for a
constant c. Tt also allows for strong identification when ITTIT/v/K — oo and ITTIT/K — 0.
The restriction that IITII/K — 0 is needed because Assumption 2 includes the case of fixed
alternatives (i.e., fixed A # 0), which is not considered in Crudu et al. (2021) and Chao et al.
(2012). Furthermore, our results include 7(8y) and Y, which are not considered in Crudu

et al. (2021) and Chao et al. (2012), and the consistency of these terms require IITII/K — 0.

Theorem A.2.1. Suppose Assumptions 10 and 11 hold. Then Assumption 2 holds for Crudu
et al.’s (2021) estimators defined above.

A.2.2 Cross-Fit Estimators

2
Let M = I—P, M;; be the (¢, j) element of M, M; be the 7th row of M, and P2 —M”J\ZJJrM

Then, Mikusheva and Sun (2022) consider the cross-fit estimators for @1(50) U(fFp), and T
defined as

®1(6o) = I Z Z [ei(B0) Mie(Bo)]lej (Bo) Mje(Bo)l,

i€[n] j#i
~ ; M
B(6) = = | S (3 Py il elh) +ZZ 2 M, Xei(Bo) M X ey (o) |, and
icn] j#i €[n] j#i
T= KZ}}; X (B0) Mi X][X(B0) M; X],
zen JF
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where X and e(f3p) are the column vectors that collect all X; and e;(5p), respectively. Fol-
lowing their lead, we can construct the cross-fit estimators for the rest three elements in
v(Bo) as follows:

12(fo) = = ST S PR Xes(Bo)es( o) Mie(Bo) + MiXex(Bo)e; (5o) Mye(Bo),

i€[n] j#i
@13 60 K Z Z ]\4)(6Z ﬁ() M Xej(ﬁo) and
i€[n] j#i
i(Bo) M X X;Me(fo)
o) = - 373 PG, Xy ) (X e (U X)),
i€[n] j#i i€[n] j#i

Assumption 12. Suppose Assumption 11 holds. Further suppose that TIT MTI < Cl‘}[{J for

some constant C' > 0.

Compared with the assumptions in Mikusheva and Sun (2022), Assumption 12 further
requires that max;ep, |II;| < C. However, for all the above cross-fit estimators to be consis-
tent, we only need HTH /K — 0, which is weaker than that assumed in Mikusheva and Sun
(2022) (e.g., Theorems 5 in their paper require IITIT/K%/% — 0).

Lemma A.2.1. Suppose Assumptions 10 and 12 hold. Then, Lemmas 2, 3, 53.1, §3.2 in
Mikusheva and Sun (2022) hold.

Theorem A.2.2. Suppose Assumptions 10 and 12 hold. Then, Assumption 2 holds for
Mikusheva and Sun’s (2022) cross-fit estimators defined above.

A.3 Details for Simulations Based on Calibrated Data

The DGP contains only the intercept as the control variable. Therefore, we implement
our jackknife CLC test on the demeaned version of (gji,éi,z-). The parameter space is
B = [-0.5,0.5]. We test the null hypothesis that § = Sy for Sy = 0.1 while varying the true
value 3 over 31 equal-spaced grids over . The grids for ¢ is the grid for § minus ;. We
generate grids of (ay,as) as a; = sin®(t;) and ap = cos?(t1)sin?(t2) with ¢1 taking values
over 16 equal-spaced grids over [a/%( fs(ﬁ,/v\(ﬁo)), 7/2] and ty taking values over 16 equal-
spaced grids over [0, 7/2]. We gauge E*¢q, 4,,5(0, D, ~(Bo)) via a Monte Carlo integration with
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R = 2000 draws of independent standard normal random variables. In practice, it is rare but
possible that As(ﬁ, ~(Bo)) defined in (1.3.8) is not unique. To increase numerical stability, we
follow I. Andrews (2016) and allow for some slackness in the minimization. Let G, be the grid
of (a1, az) mentioned above, @(al, az) = supgep(ﬁo)(P57s(ﬁ,fy\(ﬁ0)) — E*ay 00,5 (0, ﬁ,fy\(ﬁo))),

@min = min(,, 4,)eg., @(al, az) + 1/n, where n is the sample size, and
= = {(a1,a2) € G : Q(a) < Qunin + (Quin(1 — Quuin))/*(2log (log(R)))'/* R~/2}.

The slackness term in the definition of = is due to the law of the iterated logarithm for sum
of Bernoulli random variables and captures the randomness of the Monte Carlo integration.
Suppose there are L elements in = with an ascending order w.r.t. (¢, t2), which are denoted
as {(ay,a2;)}- . We then define .,45(13,/7\(50)) as (ay,| /2], a2, 1/2))- We use the cross-fit

estimators defined in Section A.2.2 throughout the simulation.

A.4 Details for Empirical Application

We consider the 1980s census of 329,509 men born in 1930-1939 based on Angrist and
Krueger’s (1991) dataset. The model for 180 instruments follows Mikusheva and Sun
(2022), which can be written explicitly as

38
In W; = Constant + HZT( + Z YOB; & + Z POB; sns + BE; + v

c=30 57#56

38
E; = Constant + H; X + Z YOB,; cpic + Z POB,; o
c=30 5#56
3 3 39
+ Z Z QOBZ',]'POBZ"S5C7S + Z Z QOBZ'JYOBZ',C(%"C + &5,
j=1 s£56 j=1 ¢=30

where W; is the weekly wage, F; is the education of the i-th individual, H; is a vector of
covariates, ! Y OB, . is a dummy variable indicating whether the individual was born in year

c={30,31,...,39}, while QOB; j is a dummy variable indicating whether the individual was

I'The covariates we consider are: RACE, MARRIED, SMSA, NEWENG, MIDATL, ENOCENT,
WNOCENT, SOATL, ESOCENT, WSOCENT, and MT.
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born in quarter-of-birth j € {1,2,3,4}. POB;, is the dummy variable indicating whether
the individual was born in state s € {51 states}.? Both 7; and &; are the error terms. The
coefficient [ is the return to education. We vary this £ across 10,000 equidistant grid-points
from -0.5 to 0.5 (i.e., € {—0.5,—-4.9999, —4.9998, ..., 0, ..., 4.9999,0.5}) and solve for the
range of § where the null hypothesis cannot be rejected. Specifically, we can write the above

model as

InW; =C;I' + BE; +
E; = Cit + Z;© + ¢,

where Cj is a (329,509x 71)-matrix of controls containing the first four terms on the right-
hand of the first equation, while Z; is the (329,509x180)-matrix of instruments containing
the first two terms in the third line. We can then partial out the controls C; by multiplying
each equation by the residual matrix I — C(C'"C)~'C" to obtain a form analogous to that

in the main text:

Yi=XiB+ e,

X; =1I; +v;.
Then, at each grid-point we take 5y = § and compute AR(Sy), LM (By), Wald(By), QZAW(M(BO))
and ¢ Aprs (DA (Bo)’ We reject the chosen value of By for AR(fy) if it exceeds the one-sided
5%-quantile of the standard normal (i.e., reject if AR(Bg) > z0.05). If LM (B0)?> > Co.os,
we reject the chosen [y for Jackknife LM. If Wald(By) > Coos, we reject for JIVE-t. If
$As(m(ﬁo)) > Co,05(As(l3,:y\(ﬁo));ﬁ(ﬂo)) for s € {pp, krs}, we reject accordingly. The two-
step procedure depends on the value of F. If F' > 9.98, we reject if Wald(fBy) > Co.o2;
otherwise if F < 9.98, we reject if AR(Bo) > 20.02.

The model for 1,530 instruments can be written explicitly as

38
In W; = Constant + HZTC + Z YOB; & + Z POB; sns + BE; + ;.
¢=30 57#56

2The state numbers are from 1 to 56, excluding (3,7,14,43,52), corresponding to U.S. state codes.
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38
E; = Constant + HiT/\ + Z YOB; cpte + Z POB,; so
c=30 s#£56

3 39
+S°S S QOBiYOB; POB; b

Jj=1 ¢=30 se{51 states}

The main difference between this 1,530-instrument specification and the 180-instrument one
is that we now have QOB-YOB-POB interactions as our instruments, compared with QOB-
YOB and QOB-POB interactions in the case of 180 instruments. Note that in both cases,

only quarter-of-birth 1-3 are used; quarter 4 is omitted in order to avoid multicollinearity.

A.5 Proof of Lemma 1.2.1

Under strong identification, by (1.2.3) and Assumption 2, we have

10 0 Qe.e 0 d; Py 0
01 0 QX,e ~ N O}, P2 ¥ 0 )
00 do) \Qxx C 0 0 0

In addition, we note that e;(8y) = e; + X;A with A = dng — 0. Therefore, we have

Qe(Bo)e(po) = Qe + 28Qx . + A’Qx x = Qec + 0p(1),
Qx.e(fo) = Qx.e T AQxx = Qx.c + CA + 0y(1),
B12(Bo) L @12, and W2(8y) L w2,

This implies

<AR(60)> _ <Q6(50)56(50)£61/2(50)> —~ N (( ~0~ > (1 p)) '
LM (o) Qx.e(80)/ Y *(Bo) &)\ 1
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A.6 Proof of Lemma 1.2.2

Recall N = (1 — p?)"/2(N2 — pN7) and

() () €2)

Because p is known, it suffices to construct the uniformly most powerful invariant test based
on observations (N7, N5). As the null and alternative are invariant to sign changes, the max-
imum invariant is (N7, N3?2). Then, Lehmann and Romano (2006, Theorem 6.2.1) implies
the invariant test should be based on the maximum invariant. Note (N7, N3?) are inde-
pendent, N; follows a standard normal distribution, and N5 follows a noncentral chi-square
distribution with one degree of freedom and noncentrality parameter A = %. Therefore,
by the Neyman-Pearson’s Lemma (Lehmann and Romano (2006, Theorem 3.2.1)), the most
powerful test based on observations (N7, N5?) is the likelihood ratio test where the likelihood

ratio function evaluated at (N7 = 01, N5 2 = (3) depends on £ only and can be written as

R0 2) = + 1o (2D LoV )

2

In addition, we note that LR (f2; A) is monotone increasing in ¢2 for any A > 0 and ¢ > 0.
Therefore, Lehmann and Romano (2006, Theorem 3.4.1) implies the likelihood ratio test is
equivalent to 1{N5 2 > C,}, which is uniformly most powerful among tests for A = 0 v.s.
A > 0 and based on observations (N1, N32) only. This means it is also the uniformly most

powerful test that is invariant to sign changes.

In addition, the joint density of (N1, N3) is

_ _ 1 N? 2pN1 N3 N? pN1 — Ny 62
(2) 1(1 - %) 1/2€XP (—5 (1 —1p2 T — 2 + 1 —2p2)> exp (91——,02) exp (1 _ p2>

= C(0) exp(ON5)h(N1, N2),

where C(#) = (2m)~1(1—p?) "2 exp (15)2) and h(N71, N2) = exp (—% (1-/1/'12)2 - qu\_%\& + 1/1%2)2)).
Note that N5 is symmetric around 0 under the null. By Lehmann and Romano (2006, Section

4.2), 1{N;? > C,} is the UMP unbiased level-a test.
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A.7 Proof of Lemma 1.2.3

Under strong identification and fixed alternatives, because (Qe(ﬁo)ﬁ(ﬁo) — A%C,Q Xe(Bo) —
AC,Qxx —C)" = 0py(1), we have

A%C

dnAR /2

(60) L (I)l/ (Bo)
dnLM(/60>

W72 (o)

This implies

. ) 1 Ag p(BO)Aza
dn LM*(B0) — (1= p2(Bo)) /2 (\111/2(60) - @}/2(50) ) |

which leads to the desired result.

A.8 Proof of Lemma 1.2.4

Under weak identification, (1.2.3) implies

Qe(o)eBo) | _ [ Qee + 200 + A?Qx x N A%C ®1(80)  P12(Bo)
QX e () Qxet+AQx x AC | "\ ®@12(B0) W (Bo) 7
which leads to the first result.

For the second result, it is obvious that mj(A) — CY1/2. In addition, we have

C (A1 (Bo) — A%D15(f0))
(1(B0)(P1(Bo) T (Bo) — f5(B0)))/?2
C _C P23
(T(YW — 72))1/2  TY2 (1 — p2,)1/2’

mQ(A) =

_>

where we use the fact that

®1(By) /A = T,
(@1(B0)T(Bo) — ®15(Bp))/A* — TW — 72,
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D4 (o) —Aﬁ‘bm(ﬁo) s

A.9 Proof of Theorem 1.2.1

The first statement in Theorem 1.2.1(i) is a direct consequence of Marden (1982, Theorem
2.1) because the acceptance region A = {(A, B) : 11 A2 +1,B? < Cy (a1, az; p(Bo))} is closed,
convex, and monotone decreasing in the sense that if (4, B) € Aand A’ < A, B’ < B, then
(A", B") € A. The second statement in Theorem 1.2.1(i) follows Andrews (2016, Theorem
2.1), which is a direct consequence of results in Monti and Sen (1976) and Koziol and Perlman
(1978).

For Theorem 1.2.1(ii), we note that p = p under local alternatives and
Par,az,00 = 1 {(al +a2p®)NT + 2a2p(1 — p*) PNING + (1 — a1 — azp)N3* > Cylar, as; P)} :

The “if” part of Theorem 1.2.1(ii) is a direct consequence of Lemma 1.2.2. The “only if” part
of Theorem 1.2.1(ii) is a direct consequence of the necessary part of Lehmann and Romano
(2006, Theorem 3.2.1). Specifically, given N and N5 are independent, the “only if” part
requires ai + a2p2 = 0, which implies a; = 0 and agp = 0.
For Theorem 1.2.1(iii), we consider two cases of fixed alternatives: (1) A # @iﬂ(ﬁo)\lf_l/z(ﬂo)p_l (Bo)
and (2) A = @}/2(50)\11_1/2(50”_1(ﬁo). In Case (1), by Lemma 1.2.3, the limits of d2 AR?(f),
d2 LM?(By), d2 LM*%(f3y) are all positive, which implies that for all (a1, a2,) € Ao,

Wa1n AR (o) + azn LM? (fo) + (1 = avn — a2,0) LM™*(80) > Calarn, azm; p(50))} = 1.
In Case (2), we have

P (a1 AR*(B0) + azn LM*(B0) + (1 — a1,n — a2,,) LM**(B0) > Ca (a1, azn; 9(50)))

702 (80)p*(Bo) ~ )
p (L 42 AR? Co@1m, G2
> ( ZRCIG (Bo) > Colaim, azn; p(Po)

> P (G+ 0p(1) > Comax(p(Bo))) — 1,

where the first inequality follows from the restriction on ay, and the facts that LM 2 (Bo) >0
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and LM*2(f3y) > 0, the second inequality follows from d2 AR%(5y) — (I>1_1(50)A;1(BO)C~2 (by
Lemma 1.2.3) and p(8y) — p(Bo), and the last convergence follows from the fact that
¢ > Cqmax(p(Bo)). This concludes the proof.

A.10 Proof of Theorem 1.4.1

We are under weak identification. By Lemma 1.2.4 and Assumption 2, we have

AR(Bo) mi(A) 10 0
LM*(Bo) | ~N ma2(A) |, 10 1 0
D 1135) 00 0%)

This implies (AR(Bo), LM*(5), lA)) are asymptotically independent. By Assumption 3, we

have

(AR (B0), LM (o), As(D,5(80))) ~ (Z°(m1(A)), Z*(ma(A)), As(D, 7 (o))

where the two normal random variables are independent and independent of D, and by

definition, As(D,7(50))) = (ar(fs(D,v(Po)), 7(Bo)), aa(fs(D,7(5o)),¥(Fo))). In addition,
we have p(8y) — p(Bo). By the bounded convergence theorem, this further implies

Ed 4, (5A(80)) ~ EPar(£.(D1(50))1(B0))saz(£.(Dy(5)) v (Bo)) 00 (B D5 Y(Bo))- - (A10.1)

In addition, suppose the null holds so that A = 0. This implies m1(A) = ma(A) = 0.

Then, we have

~ A~

(D 4,520 — O (D)~ (Day(£.(DA(50))1(Bo))saz(f (Do) (Bo)) 00 (05 11D, ¥ (B0)) — ) f (D),

Dar (£2(D1(B0))7(Bo)) a2 (f(D1(B0)) 7 (Bo)),00 (05 4D, YV (B0) )
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a1 (fs(D,7(B0)), 7(B0) 23 + az(fs(D,¥(Bo)), 7(B0)) (p(Bo) 21 + (1 — p*(Bo)) /2 Z2)
=1 (1 — a1 (fs(D,7(60)),¥(Bo)) — az(fs(D,v(Bo)), ¥(bo))) 23 :
Ca(ar(fs(D,v(B0)),7(Bo)), a2(fs(D,7(Bo)), ¥(Bo)); p(Bo))

Z1 and Z9 are independent standard normals, and they are independent of D. Then, by the
definition of C,(-), we have

~

E( 4By — VD) = E [E (Da(s. (D)) 2(50)).00 (0 1105 7 (F)) — @] D) A(D)] = 0.

A.11 Proof of Corollary 1.4.1

By the continuous mapping theorem, we have

B paen P — A S €} E(Gus 0050 4(80) asr (Do) 28000 HID — d] < €})
n—00 E1{|D —d| < ¢} EI{|D —d| <¢)} ’

and

i E 0 (£ (Do) (o)) as( (Do) a(Bo)).oo LHID — ] < €})
250 EL{[D —d| <<))

= B(Pas (1.(D,1(80))1(80)) 02 (£ (D1 (Bo)) 1(80)) 00| P = )

where, by construction, we have

Par(£.(D¥(B0)):1(Bo)) a2 (£ (Dv(5o))i¥(Bo)),00
= Hu15(D,y(B0))NE + v2.5(D,7(80))NG > Colvr s(D,v(6o)), v2.s(D,v(Bo)))}

and
(N1, N2) = (Z1(m1(A)), Za(ma(A)))Us(D,(5o)).-

Similarly, we can show

oo 1 EOUARL0), LA, (o), D30 1D —d| < e}

E(J(NE, N2, D, D =d).
e—=0n—oc0 E1{|D d| < 6} (¢( 7(50)” )
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Therefore, conditional on D = d, @y, (1,(D~(80))v(Bo))saz(f+(Div(Be))1(Bo)),00 18 & linear com-
bination of (NZ,NZ) with weights (v1.s(d,v(50)), v2.5(d,7(Bo))), and Ny and N3 are two
independent normal random variables with unit variance and expectations 6 and 6, respec-

tively. Under the null, we have (1,62) = (0,0), which, by definition of ¢(-), implies
E(6(NT. N3, D, 7(Bo)|D = d) < a

Therefore, &(Kff,ﬁg,D,’y(ﬁo)) is a level-a test. Then, the two optimality results follow
Theorem 1.2.1(i).

A.12 Proof of Theorem 1.4.2

Denote cg = cg(f) and A, = A,(fB). By Assumption 2, ®; > 0, which implies |A,| > 0.
Under strong identification and local alternatives, we have A — 0, ¢g(f8y) — c5, Ax(Bo) —
A*> Ca,max(ﬂ(ﬁ())) — Ca,max(ﬁ)a and

AR(f) 0 100
LM*(ﬁO) ~ N ((1_?)6\11)1/2 ;1 0
d.D C 00 0

This implies d,0pV7 = d,D -2+ C, which further implies d,, f,p(D,7(50)) == C. For
fkrs(ﬁ7fy\<50)>, we note that

max(7 — 1,0) < Tpps < T

Therefore, we also have fis(D.5(80))dn —2 C. Let Ex(e) = {|[F(50) —(Bo)ll +16,D —C| <
e}. Then, for an arbitrary € > 0, we have P(E,(¢)) > 1 — ¢ when n is sufficiently large.

Denote § = dng. We have

As(D.7(60)) € arg min sup (P,,5,,(D,3(50)) = E Gy 00.(did, DA(A)) )

(a1,a2)€A(f«(D7(Bo)) A (Bo)) 6€Dn
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where D,, = {g dnd € D(Bo)}. Let

Qula1,a2,0) = P, 5 (D,7(50)) = E*Ga, z,5(dnd, D, 7(Bo))  and
Qar, az,8) = EL{Z3((1 — p*) /¥~ Y25C) > Co}

o\ 2
o JmZ (le (1= )2 Zy((1 - ,02)_1/2\11_1/25(,’))
+(1—a; — ag)ZQQ((l - pz)_l/Q\Il_l/Qgg) > Cqlar, az;p)

where Z is standard normal, 22«1_/)2)—1/2\1,—1/25@’) is normal with mean (1—,02)_1/2\11_1/235

and unit variance, and Z; and Z5(-) are independent. Then, we aim to show that

Qnla1,az,0) — Q(a1, az,0)

sup
(al 7a2)€A(fS (ﬁﬁ(ﬂo))ﬁ([%)) vgeﬁn

0. (A12.1)

We divide ﬁn into three parts:

Dp1(c) = {0 € Dp, |8] < Mi(e)},

no

A*(BO)
Dp(e) = Dy NDS 1 (€) N D 5(e),

where M (e) is a large constant so that

P ((1 — )22 ((2<1J‘f1;§;;|i)1/2> > Co,max(p) + 1> —1-—-c. (A.12.2)

When n is sufficiently large and ¢ is sufficiently small, on &,(g), there exists a constant ¢
such that

[Ac(Bo) = A < e, inf  [dad] > (1 —&)(JAs] — ce),
5€Dn72(6)

D1 (Bo) — 1| < ee, |2 f2(D,A(Bo)) — C| < e,

~ ~ -1 . 2
sup |1 - (252 d,3) ?1(50) (1>A12(50) ‘{13(50)
5Dy a(e) 12(60)  Y(Bo) 7(6o)
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-1
o, O 0]
< |[1-— (AE,A*) ! 12 13 + ce < ¢+ ce,
di19 U T

les(Bo) — | < ce. (A.12.3)

This further implies

~ ~

’Dn,l(g) NnD, 2(5) = 0.

)

Recall ¢a1,a2,5(5,ﬁ,7y\(5o)) defined in (1.3.7). With ¢ replaced by dnd and when & €

15”71 (€), we have

d;1C1 (dnd) ~ » 0
(dnlé\z(dng)> (dnfs(D7 7(60))) — <<1 _ p2)1/2\111/2/(§5> )

Therefore, uniformly over (aj,az) € Ag and se 57171(8) and conditional on data, we have

_\ 2
Gar an.s (dnd, D, 3(S0)) ~ 1 a1 2{ + az (pZ1 + (1= p?)V225((1 - 02)_1/2\11‘1/256))
h +(1— a1 — a2) 23((1 — p?) Y20 1/25C) > Co(ar, az; p)

This implies

~

E*ba,.a9.5(dnd, D, 5(50))

sup
(a1 ,a2)6A0,5€5n,1 (e)

~\ 2
o Jaztra (om0 2z - e 50)) 20

(1 —ay — az) Z2((1 — p?)~Y2U~1/25C) > Cu(an, ag; p)

—\ 2
a1312 + a2 (,031 + (1 - ,02)1/222((1 — p2)1/2\111/256)>

+(1— a1 —a2)Z3((1 — p2)_1/2\11_1/23c~) > Cqlay, az;p)
is maximized at a; = 0 and agp = 0. This implies

In addition, by Lemma 1.2.2, for any g, El

Csup [P, 5(D,3(B0)) — E{Z3((1 - p?)72w125C) > Co}|
5€Dn’1(8)
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= sup | sup E*Gar a2,(dnd, D, 7(B0)) — EL{Z5((1 — p*)~ /20 7/25C) > Co}|
5€Dn1(e) (a1,a2)€A(f+(DA(B0)) A(fo))
~\ 2
22 (Z 1— 2122 (1 — p2)-1/2g-1/2 )
sup g1 d 2L taz(pZ1+ (1-p7) " 25((1 - p7) oC)

< sup ~——
(a1,a2)€A(f+ (D F(60))7(60)) +(1 — a1 —a2) Z2((1 — p?)~V2U=Y26C) > Cular, az; p)

Seﬁn,l (E)

—E{Z3((1 - p»)~2U125C) > Cu}| + 0,(1),

o\ 2
— a1 22 + az (le+(1—p2)1/222((1—p2)_1/2\11_1/2(50)>

<  sup ——
(a1,a2)€Ao +(1—aj — ag)Zg((l — ,02)’1/2\11*1/25(3) > Culay, az; p)

Seﬁn,l (E)

— EN{23((1 - p?)TYPUTV25C) > Co}| + 0p(1) = 0p(1),

where the second inequality is due to the facts that a( fs(l/iﬁ(ﬂo)) 7(Bo)) = op(1) under
2

a1 Z? + az (le + (1= pA)122y((1 = p?) 120 1/25(3))

+(1 — a1 —a2)Z3((1 — p?)~ 120~ 1/25C) Calay,az; p)

continuous at a; = 0 uniformly over \3] < M;(g). Therefore, we have

strong identification and E1 is

sup (ay, ag,g) — Q(a,az,0) 250. (A.12.4)

(al 7a2)€A(fS (ﬁ,/’)\/(ﬁo)),;}/\(ﬁo)),g€§n,1 (5)

Next, we consider the case in which & € 57172(5). We have

Gar,az.s(dn, D, 7 (o))
a123(C1(dnd) f5(D,7(50)))
=14 +a (ﬁ(@o>zl<61<dn3>fs<z3,wao))) +(1- ﬁ?(ﬁo>>1/222<62<dn3>fs<ﬁ,wo))))2
+(1 = a1 — a2) Z3(Ca(dnd) £s(D,3(Bo))) > Calar, az; p(5o))

> 1{al (D, 7(80)), 7(50)) 23 (Cr(dnd) £s(D, F(80))) 2 Covpmas (60 } -

By (A.12.3), on &, (e), there exists a constant ¢ > 0 such that

C?(dy6)(dn f+(D,7(50)))>?
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&7 (B0)(dnd) (dn f5(D,3(50)))2
1 — (@23, d,5) (o) Bu(i)  (Bis()
o B15(80) (o) 2(80)

(D1(Bo) + c2) "1 (1 — )*(|A,| — c2)4(C? — c2)
cB +ce

v

>c
and

a(f+(D,7(B0)), 7(80))CT(dn) £2(D,7(8o))
P2Ca,max(p (50))%(50)63(50) L3N (DA 2
e Ry Gl fDAG) )
S P2 Camax (P(B0))(P1 — c2) (e — c£) (@1(Bo) + ce) (1 — ) (|As] — ce)*(C* — ce)
B (JAx |+65)4(C~2—|—c€) cg + ce
> <p2 - 65) amax( (50))

>

where the last inequality holds because ¢ can be arbitrarily small. This means, on &,(¢) and

when 0 € 57172(5),

E*Gar a0, (dnd, D, 7(80)) = P*(0p(1) + (p2 — )Camax(P(50)) = Camax(P(0))) = 1

As P(&,(g)) — 1, we have

_Sup o {1 - E*¢a1,a278( 5. B §<50))} i) 0,
(a1,a2)€A(fs(D7(B0)),V(Bo)),0€Dn,2(¢)
and thus,
_sup o [Pdnﬁs(ﬁﬁ(%)) - E*¢a1,a2,s<dnga D\,:y\(ﬁo))]
(a1,a2)€A(fs(D7(Bo)),7(Bo)),0€Dn 2 (¢)
< sup [1 — E*ay s (dnd, Bﬁ(ﬁo))] 250. (A.12.5)

(a1,a2)€A(fs(D3(Bo))A(Bo)),0€ Dy 2 (<)

Furthermore, note that aj + ay < @ < 1 and when 0 € 5,%2(5), on &,(g), (A.12.3) implies
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62 — o0o. Therefore, we have

_~\ 2 ~—
a1 Z? +as (,021 + (1= ) 2251 = p2)_1/2\11_1/2(5C)) +(1—ay —a2)Z2((1 — p?)~Y2u~1250)

(1—@)6%C?

> (L= Z5(1 = ) P60 = S

(1+0p(1)) = oo,

which further implies

e\ 2
alz% + a2 (le + (1 - p2)1/232((1 — p2)1/2\D1/256))

sup 1—-E1 s
(a1,2) €A+ (D7(80))7(80)),0€Dn 2 () +(1— a1 — a2) 22((1 — p?)~120125C) > Cqlar, az; p)
and
sup {51{222((1 — pH)~V2u1250) > ¢, )
(al7a2)€A(fS(ﬁvfy\(ﬂo))557(60))736,5“»2(5)

—\ 2
a1 Z? + az (le + (1= pA)22y((1 - p2)1/2\111/25C)>
+(1 — a1 —ag)Z2((1 - p2)"V20=1/25C) > Cylar, az; p)

—El ] 250, (A.12.6)

Combining (A.12.5) and (A.12.6), we have

~

Qn(a1,a2,6) — Q(al,az,g)| — 0. (A.12.7)

sup
(a1,a2)€A(fs(DA(50)),7(B0)),0€ Dy 2(e)

Last, we consider the case in which 0 € 5,173(5). On &,(e), (A.12.3) implies

C3(dnd) f2(D.7(0))
07(1 - z05)7 22 £2(D (o)

(1— 72(50)) 0 (Bo) 5160 B &)) -1 <$13<6o>>

— (d258%,dyd) | [ ~ I
o ) (%2(50) Y (o) 7(Bo)

(1 — ce)M2(2)e2(C? — ce)
(1—p?)¥ep
M?(e)e

252
—2(1 — p2)Vep’
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where the second inequality holds when ¢ is sufficiently small. In this case,

> Ca,max(b\(/BO)))
> P* ((1 —a)Z) ((2(1M1 ; -] ) > Ca,max@(ﬂo)))

. _ M

where the second inequality is by the fact that the CDF (survival function) of Z2()) is
monotone decreasing (increasing) in |A| and the last equality is by the definition of M;(¢) in

(A.12.2) and the fact that Cy max(p(50)) SN Camax(p) . This implies, on &,(e),

s [Py (D5(50) ~ E Gy ans(dd, DA ()| < 2
(a1,a2)€A(fs(D7(Bo)),¥(Bo)),0€Dn,3(¢)

(A.12.8)

In addition, we note that (1 — pQ)_lﬁf_ng@ satisfies

M?2(£)e2C?

1— 2 lo—15202 >
(1—p%) (O 31— Py

where we use the facts that 62 > M%(s), cg > 1, and € < 1. Therefore, by the same

argument, we have

~_\ 2
a1 Z? + az (le + (1= pA)1225((1 - p2)1/2\111/25(3)>
+(1 — a1 —ag)Z2((1 - p2)—1/2\1/—1/2§(7) > Cqlay, az;p)

El >1—c¢

and
sup lEl{Z%((l — p2)_1/2\11_1/256~) > Cu}
(al,CLQ)GA(fs(ﬁ,:y\(ﬁo)),:Y\(,B())),g€§n,3(€)
e\ 2
alz% + a2 (le +(1-— p2)1/222((1 — ,02)_1/2\11_1/25C)) :| <
<e.
+(1 — a1 —az) Z3((1 — p*)~V20=125C) > Cylar, az; p)

—El (A.12.9)
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Combining (A.12.8) and (A.12.9), we have, on &,(¢),

~

sup Qn(a1,a2,0) — Q(a1, az,0)

< 3e. (A.12.10)
(a1,a2)€A(fs(D7(Bo))7(50)),0€ D 3(2)

Combining (A.12.4), (A.12.7), and (A.12.10), we have

P _sup |Qn(a1,a2,g) — Q(al,ag,gﬂ > be
al,ag EA fs

77 50 a’Y(ﬂO))7565n

<P sup |Qn(at, as,0) — Q(ar, a2, 6)| > 575n(5)>

(a1,a2)€A(fs(DA(Bo))A(B0)),0€ D1 (<)

+

(a1,a2)€A(fs(D3(B0))7(Bo)),0€ D2 (e)

+P

P < sup |Qn(a1,&27g) - Q(al,a%gﬂ > 57571(5))

(a1,a2)€A(fs(D,3(50)),3(50)),0 €Dy 3(€)
<o(1) +

sup |Qn(a1,a2,g) - Q(al,ag,gﬂ > 36,5n(€)) +P(&(9))

Since ¢ is arbitrary, we have

Wn

_sup o \Qn(al,ag,g) — Q(al,ag,g)\ 2.0,
(a1,a2)€A(fs(D7(o)),7(Bo)),0€Dy

Then we have

0 < sup Qu(al(fs(D.7(5)),7(50)),0,0) — sup Qu(As(D,7(Bo)). )

6€D, 6eD,,
< sup Q(a(f+(D,7(60)).7(50)). 0.0) — sup Q(As(D.7(5y)). ) + 2n
0€Dy, 6€Dn
= Op(l) - ~SU-P Q(AS< 77(5())) ) + 2(")”7
0€Dy,

where the equality holds because (1) SUPj.p Q(a1, O,g) is continuous at a; = 0 as shown in
the proof of I.Andrews (2016, Theorem 5), (2) a(fs(D,5(50)),7(B0)) = 0p(1) under strong
identification, and (3) SUDj_p Q(0, O,g) = 0 by construction.
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Furthermore, we have

Q(a1,a2,0) = E1{23((1 — p*)"12071/25C) > C,}

N2
a1 Z2 + az (,021 + (1= p?)Y22y((1 - p2)_1/2\11_1/25C))
+(1— a1 — a2) 23((1 — p?)"/2U7Y25C) > Cqlar, az; p)

—El

= E1{Z3((1 - p*)""/2w1/25C) > Cu}
gy )@ a2p?) 2+ ap(1 = )220 25((1 - )RR
+(1— a1 — agp®) Z5((1 — p?)~H/2W=1/26C) > Colar, az; p)

Note that a1 = 0 and agp = 0 if and only if a; + a2p2 = 0, given that a; and ag are
nonnegative. Therefore, Theorem 1.2.1(ii) implies, for any constant C' > 0, there exists a

constant ¢ > 0 such that

inf sup Q(ay,a2,6) > ¢ > 0.
(a1,a2)€Ao,a1—|—azp2ZC geﬁn

Therefore,
P (A1s(D.7(50) + A2u(DA(B0))o* = € > 0) <P (e < 0y(1) + 2n) = 0.

This implies A; 4(D,5(80)) = 0 and A 4(D,5(6o))p - 0.
To see the optimality result, note that

~

((ﬁAs(ﬁﬁ(lgO))vqs(AR(ﬁO)aLM(ﬁO))) ~ (1{N2*2 > Ca}7¢(N1;N2))7

where (N1, N2) is defined above Theorem 1.4.2 and Ny = (1 — p?)"Y2(N3 — pN7). Then,
the result holds by Theorem 1.2.1(ii).

A.13 Proof of Theorem 1.4.3

We prove the result that limsup,,_,.,supy ea, E,\(q/b\A D ;Y\(,Bo))) = a. The other one can be
proved in the same manner. Throughout the proof, we are under the null, i.e., 5y = 5. We

start by proving the result for the full sequence {n}, rather than a subsequence {ny} of {n}.
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Then, we note that the same proof goes through with nj in place of n.

We consider two cases: sequences \,, for which C,, converges to a constant and those for
which it diverges to infinity. First, let us consider the case where C, — C for some fixed

constant C € R. For this case, it is established in Theorem 1.4.1 that under gy = £,

(AR(80), LM*2(By), As(D,7(50))) ~ (2%, 22, As(D, 7)),

where the two normal random variables are independent from each other and independent

of D, and furthermore (by letting A(-) in Theorem 1.4.1 be an identity function),

Tim E, (6,4, 55(a)) = @

Second, let us consider the case where C,, diverges to infinity. Then, by Theorem 1.4.2, we

have

~

lim Ey (¢

n—ooo " As(ﬁﬁ(ﬁo))> - P(ZQQ > Cq) =

To complete the proof, we note that the above argument verifies Assumption B* in Andrews

et al. (2020a) and then we can establish the result by using Corollary 2.1 in their paper.

A.14 Proof of Theorem 1.4.4

We consider strong identification with fixed alternatives. By construction, we have 4; s( ,(Bo)) >

bz “XZ’E/(BO()iZ)()@%((%‘?)C)B(BO). By Theorem 1.2.1(iii), it suffices to show that, w.p.a.l,

P2Comax (0(50)) @1 (50)Cs (o) . 4 (o) ()
MG f2DAB))  — Cilbo)

or equivalently,

P2Camax(P(B0))®1(B0)e5(Bo) q‘I’Q(ﬁo) 4(Bo) _ ~(§¢1(ﬁ0)
MEBEDAG) - Cwk) | EAkG)

(A.14.1)
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for some constant ¢ > Cq maz(p(Bo)). Under strong identification and fixed alternatives, we

have

A~ A~ _1 A~
. _ D1(Bo)  P12(So) P13(6o)
b= (Q” (Retoy et Axesn) (612%) \wao)) (?(60) ))

Ly 11— (A%, A) ®1(80)  P12(bo) - ®13(50) C.
P12(80)  ¥(bo) 7(Bo)
Therefore, we have

-1
w2 - (2 ) ()|

for s € {pp, krs}. This means for any € > 0, w.p.a.1,

d2 f2(D,7(Bo)) < (e5(fo) +£)C*

In addition, we have ¢8(80) —= cg(fo) > 1, A(Bo) —= Av(Bo); Camax(P(B0)) —=
Comax(p(B0)), and @1 (o) < ®1(8n) > 0, which imply ¢s(80) > cs(fo) — c=, ®1(Bo) >
®1(Bo) — cg, Camax(P(B0)) > Camax(p(Bo)) — ce, and ﬁi(ﬁo) < AY(By) +ce, w.p.a.1. There-

fore, we have, w.p.a.1,

P2Ca,max (P (50))@1(/30)06(50) P2(Camax(p(Bo)) — ce)(ca(Bo) — c)(P1(Bo) — ce)

N4(Bo)d2 f2(D.A(Bo)) (AL(Bo) + c2)(cB(Bo) + €)C2
S (p2 — c£)Ca,max(p(B0))P1(Bo)
a A4 (Bo)C?

)

where the second inequality holds because € can be arbitrarily small. Then, we can let ¢ in
(A.14.1) be (p2 — c€)Cq max(p(Ho)) which is greater than Cy max(p(5o)). This concludes the

proof.
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A.15 Proof of Theorem A.1.1

We first extend our notation. For a; € R%*! and b; € R*1, we write Qg p as Zie[n] Z#i az-PijbjT/\/f.
Let % = (WTW)"{(WTé) and 4y = (WTW)"HWTV). Then, we have e; = & — W, 4,
Vi= f/z — WZT&V, and X; =1I; + V; =1II; + f/, — WZT&V. By Lemma A.19.1, we have

Qee = Qe-wa.e-wa. = Qez — 2Qew e + Ao Qww e = Qe + op(1).

In addition, let X = I+ V. Then, we have X = X — WAy and

Qxe = Qx_wsy c-wa.
=Qx:— Qewiv —Qx e+ A Qw e
=Ux; —Qxwiet op(1)
= Qx;:— Quwie +op(1)
= Qx:+ > LPW 4 /VE + 0p(1),

i€[n]

where the last equality holds because

QH,W - Z Hz(z Pz]WJT)/\/E = — Z HZP”WZT/\/E

i€[n] J#i i€[n]

Denote G; = (Zz‘e[n} HiPiin‘T)(zie[n] WiWiT)*lWi. Then, we have

Qxe=Qy s+ Qe+ Z Giei/VE +op(1)
1€[n]
. L ViPiiés 4
— 2uicin) 21 Vil + Z (Gitw) wl)éi +op(1),
VK VK

i€[n]
where W; = Zﬁéz Pinj.
Similarly, we have
QX,X = QY*W’?V,Y*W’YV
= Qxx — 2Qx v + W Qwwiv
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= Quu + 2@y + Qp  — 2QuwAv + op(1)

— Qun + Zie[n} Zj;éz‘ ViPijVj 49 Z w; + G
’ VK VK

% —+ Op(l).
i€[n]

Given {é;, Vi}ie[n} are independent, we can follow the same argument in the proof of Chao

et al. (2012, Lemma 2) and show the joint asymptotic normality of

Dicin) i P8 Dicn 2pi Vilisls Liepn) 2ji VilisVs 3 (Gitwi) 3 (Gi +wi)

7 ) - = —V
VK VK VK : K : vE
i€[n] 1€[n]
In particular, we see that
(Gi + wi)é (Gi + wi)?o?
1% — | = —_t
i€ln) i€[n]
(Gi + wi)Q
< - - @7
<C e
i€[n]
(i) TePaW;) (i WiV, ) T (i iPaWi) 11T
<C +
K K
LI I
< S
<ol Tl —om
and the same result for Var(Zie[n] (G’;%Wi). This implies the joint asymptotic normality

of

(Qe,er Qx,e, Qx,x — Qi)

and thus, verifying Assumption 1.

To see the second result in Theorem A.1.1, we note that

2

E) Gie/VKE | <C) GI/K

i€[n] i€[n]
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cOY_mpPw,HO_ wiw )OO LR/
i€[n] i€[n] 1€[n]

<C Z 12P2/ K
T

<cCl Hpn/K.

If TITTIp2 /K = o(1), then we have Z | Gi :€i/VK = op(1). Similarly, we can show
that, if IITTIp2 /K = o(1), Y ic ] Gi V/\/_ = op(1). These imply Q% yY = op(1) and
QY,W'VV = op(1), which further imply that

Qxe=Qx;+op(l) and Qxx=CQxx+op(l)

A.16 Proof of Theorem A.2.1

We focus on the consistency of @1 (Bo) and @( Bo). The consistency of the rest four estimators
can be established in the same manner. We have ¢;(8y) = e; + AX; = V;(A) + All;, where
Vi(A) = e; + AVj. Therefore,

)= = 30T PR (G o)

i€[n] j#i
= Z D " PHAMI 4 2ATLV(A) + VA(A)) (AT + 2ATLU;(A) + UF(A))
i€[n] j#i
- i 2 VAR + e 303 PRI @) 4 I )
i€ n] JF#i n] j#i
K Z Sr? )+ IEV2(A) + AILILV; (A)Uj(A))
i€[n] j#i
4
+ AT SN PRIRILU(A) + TETVE(A)) + A2 = P
ze[n | j#i 7,6 [n] j#i

We first note that 7 > icln] wio? =o(1), + > i) w?v; = o(1), and + > i) w?n? = o(1).
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To see this, note that

szgngZw —KZPH PyIT;)?

1€[n] 1€[n] 1€[n]
C IITII
< K(QHTP2H +2) P < C—= =o(1),
i€[n]

where the second and third inequalities are shown in the Proof of Mikusheva and Sun (2022,
Lemma S1.4). The results for & Z w v = o(1) and + Zie[n] w?n? = o(1) can be

established in the same manner.

We first consider Tp. Denote &;; = VQ(A)UJ (A) — EVQ(A)Uf(A). We want to show that

LYY R =)

i€[n] j#i
Note that
K Z Z S - K2 Z Z JEE + =2 Z Z Z PP ES i
n] 74 i€[n] j7i i€ln] j#i i'#i,)

As both Efgj and |E&;;&i| are bounded, we have

C
EDIP OIS ool B S
n] j#i n] j#t
and
K2 ZZ Z ij WEfszm/ < KQZZ Z PE]PZ% < K2 ZZPQP“ _O
i€[n] j#i i'#i,5 i€[n] j#i i'#ij icln] j#i

Therefore, we have

== ZZP2E (VA(A)UZ(A)) + 0p(1)

i€[n] j#i
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NS =2 577377]2+A3KZZ 2 (s + i) +A2KZ]§
zEn] [

ze[n | j#i n) j#i
2
SR et e Kzszw )
n] j#i n| j#i

= ®1(bo) + 0p(1).
By the same argument above, we have

Ty = ET7 + Op(l) = Op(l)

because ET7 = 0. Similarly, we have ET3 = 0 and T3 = 0,(1). Next, we have

Cp, 111
+ 0p(1) = 0p(1).

TQZETQ+0P ZZPQHQ ST
i€[n] j#i

Last, we have

where the first inequality is by max;ep, |II;| < C. This implies

1 (o) — ©1(5o) = 0p(1).

Next, we consider the consistency of \/I;(Bo). By the similar argument above, we have

= 573 PR Xiei(50) X (50)
i€[n] j#i
KZZ 21Le:(Bo) 1L (o)) ZZ 2 Tye4(B0) Vi (Bo))
n] j#i i€[n] j#i
ZZ 2 Viea(B0)Lje; (Bo)) + = ZZ 2Viei(Bo)Vies (o))
n] j#i n| j#i
- % Z > P2+ Ay + And) + 0,(1). (A16.1)
n] j#i
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In addition, we have

KZ ZPUX 22/80

i€[n] j#i
KZ (wi+ ) PigV;)ed (o)
€[n] j#i
“x Zw256 (o) + 55 D2 3 PRk ) + op(1)
ze [n] j#i
K Z Z 3 (07 + 27 + A%F) + 0y(1), (A.16.2)
n] j#i

where the second equality is due to Mikusheva and Sun (2022, proof of statement (a) in
Lemma S3.2), and the third equality is due to Z = 202 = o(1). In the next section,
we show the same results hold under Assumption 11. Comblmng (A.16.1) and (A.16.2), we

have

U (Bo) = KZZ% (i + An?) (v + An3) + ZZ 202 (07 + 27 + A%?) + 0,(1)

i€[n] j#i ZE[n | j#i
S IMIICHES SHILTI SH L
i€[n] j#i n| j#i i€[n] j#i

= W(By) + op(1).

A.17 Proof of Theorem A.2.2

Given Lemma A.2.1, Lemmas 2 and 3 in Mikusheva and Sun (2022) hold under Assumptions
10 and 12. Therefore, Mikusheva and Sun (2022, Theorem 3) shows that

1(Bo) — = ZPQEVQ JEUZ(A) = 0,(1).
n| j#i

In addition, the proof of Theorem A.2.1 shows that

K Z ZPQEV? JEUZ(A) = @1(Bo) + o(1),
n) j#i
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which implies the consistency of @1(50).

Similarly, given Lemma A.2.1, Lemma S3.1 in Mikusheva and Sun (2022) holds under
Assumptions 10 and 12, so that the consistency of Y to T is also shown by using their
argument. In addition, we use the same argument in the proof of Mikusheva and Sun (2022,

Theorem 5) to show that

= K Z Z P”X 262M. Z Z MiXeiMlej

i€[n] j#i i€[n] j#i
e M; X  X;M;e
Al Z S Py, ( MX ) 2 ZZ M X e My X X
icn] j#i zz zz o] i
X, M; X
+ A2 KZ ZP”X 2 KZZPig.MiXXiMjXXj
i€[n] jFi Mg i€[n] j#i

= U+ 2A7 + A*Y + 0,(1) = U(Bo) + 0,(1),
where the second equality also follows from Lemma S3.1 in Mikusheva and Sun (2022).

Next for 612(50), we have

= Z S B2M;Xe;(Bo)es(Bo) Mie(Bo)

n] j#i
K Z Z MlejeiMie
n] j#i
+ A— Z Z MjXXjeiMie + MleinMie + MlejeiMiX)
ze [n] j#i
Z > PE(MXX;XiMie + M;X Xje;MiX + MjXe; X; M; X)
n] j7#i
Z > PIMX XXM X.
n] j7#i

Note that % Zie[n] Z#i ISZ-QJ-M]-XejeiMie = % Zz’e[n} Eﬁél P2 (M V+X\)ejeiMie, where

121



Ai = M;IL. Then, by Lemma A.2.1 and Lemma 3 of Mikusheva and Sun (2022),

174 Z Z 20 i XejeiM;e — Z Z MjVejeiMie = op(1).

i€n] j#i ze[n] J#i

Furthermore, by Lemma A.2.1 and Lemma 2 of Mikusheva and Sun (2022),

174 Z Z 2M;Veje;Me — Z ZP]7]0 = op(1).

i€[n] j#i n] j#

By using similar arguments, we find that

KZZ 2M;X XjeiMe = KZZ Pinio} + op(1),

i€[n] j#i n| j#i

KZZ 2 M;XejXiMie = ZZ 2357 + 0p(1),
i€[n] j#i n] j#i

KZZ 2M;Xeje My X = KZZ 2357 + 0p(1),
i€[n] j#i n] j#i

KZZPQMXXXMe_ ZZ P22y + 0p(1),
ic[n] j#i i€n] j#i

KZZ 2MX XjeMiX = — ZZP]anyZ+Op 1),
i€[n] j#i i€ln] j#i

KZZ 2M;Xe; X MiX = — ZZPJ%UZ+OP 1),
i€[n] j7i n] j#i

= Z > PEMXX;XiMX = Z > Pinini +op(1).
i€[n] j#i ze[n | j#i

Putting these results together, we obtain

$1Q(ﬁ0) =®&9 + A(Q\If + (1313) + 3A2’7' + A?’T + Op(l) = (1)12(ﬂ0) + 0p(1).

We use similar arguments to prove the results for \Tflg(ﬁo) and 7(8p). For @13(&)), notice
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that

= ZZ 2 M; Xe;(50) M; X ej(Bo)

1€ n] j#i
K Z Z MiXeiMlej
n| j#i
+ A% Z > PH(MXe:M;X X + M X X;M;Xey)
n] j#i
!
+AZZ Z > PIMiXXiM;X X,
i€[n] j#i
SNBSS D WATELANES S o LA
n) j#i n] j#i i€[n] j#i

which implies that

D13(80) = P13 + 2A7 + AT + 0,(1) = B13(50) + 0p(1).

Finally, for 7(8p), notice that

KZZ 2 X, M X M;Xej(Bo) = KZZPJWJ KZZP]n,nJA+op()

i€[n] j#i i€[n] j#i i€[n] j#i
i(Bo)M; X X Mie(fBo) 9
S S I D W IL LIRS D) e
i€n] j#i ic[n] j#i i€[n] j#i

which implies that
T(Bo) = 7+ AT + 0p(1) = 7(5o) + 0p(1).

This completes the proof of the theorem.
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A.18 Proof of Lemma A.2.1

Let p, = max; P;;. We first give some useful bounds, which is similar to Lemma S1.4 in
Mikusheva and Sun (2022):

Y wi=) (A-PRlL)° <2AUPI+2 %  PIF < CH'IL

i€[n] i€[n] i€[n]
maxw = max Z PZJH < max( HTH < anTH,
i€[n] - i€[n] :

which imply

Z axw Z w?) < Cpp(ITTII)2.

icln] i€ln]

First, we show that Mikusheva and Sun (2022, Lemma S2.1) hold under our conditions
following the lines of argument in their proof. More specifically, we notice that to show
A?|EAy| = o(1), where Aj is defined in the proof of Mikusheva and Sun (2022, Lemma
S2.1), it suffices to show the following terms are o(1):

1/2 1/2
CA2
DN Z Pi)? SR | == () ()
i€ln] j#i i€[n] j€ln)
’ T T HTH
Smpn(ﬂ ) =o(1) by ATA < C—— I
1/2 1/2
CA?
> P wm<——2mm SOPE | < —=p (ITTD) = o(1).

i€[n] j#i i€[n]

Then, we prove the variance of A2Ay = o(1) by showing that

CA4 A4 2 CA* , /1IN
Y < SR (TN < 5 () =e by B <P

i€[n] j€[n]
2
CA4 |
Z MDD pE AT [ Pyl < (PN A)(ITTID) + (ATA) (pn K) (I TD)
i€[n] Jj€ln] J€(n]
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CA*

< (pa(TTTTD)? + pu K(ITTTD?) = o(1) by > P}y < puK,
j€ln]
2
CAY CAY CA4
N d Y pimal | < N ORI || D Py < ?P%(HTH)Q = o(1),
i€[n] j€[n] i€[n] J€[n]
and
2 2
CA4 9
S S (S ) - S (S ) Y (S,
j€[n] ken] \i€n] JE€n] k#j \i€[n] ]E[n} i€[n]
2

cal P2 P17 Ai

S Gm L2 M | 2P| | 2 Rl | + > Phlu
JE[n] k#j 1€[n) 1€[n] jE[n] 1€[n]

CAY CA4

<~ Ky (AT + Z ATA
Jj€[n] \i€[n
4K 2 HTH 2 4 N HTH
 CAMGHITIN | ORI 1) 55~ 03 = 5™ S 1 < K o < < .
JE[n] k#j JE[n] k#j

Second, we show that Mikusheva and Sun (2022, Lemma S2.2) holds under our conditions.
Notice that |AEA;| = o(1) by

1/2

C'A'ZZ < SRR @ <
i€[n]

n] j#i

g0 2ar™my 2 = o),

Then, we show that the variance of AA; is o(1) by showing the following terms are o(1):

cA® A2 NG < cA® AT AT

= (o[ 2P N0 D PENINT | < e (TN +pa(ATY) = o(1),
i€[n] \Jj€[n] i€[n] j€[n]

CAz 4 r\2 212 CA 2/\ T 2/\ 1 T

— SN PO ININD YD PAX < == ROV +PEOTN) Fpa(ATN) = o(1),
i€[n] j€[n] i€[n] j€[n]
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2
DI [NIEDy LA e (pe NN + 23T X)) = o(1),

i€[n] k€n| i€[n] jen
2
CAQ CAZ
Z 2|\l <—Z Z AN < = (aK)(ATA) = o(1),
Jj€[n] \i€[n J€[n] \i€[n
2
C'A2 CA2 CA?
Z 2] | < Z (1) < —5 (pa ) (1L T1) = o(1),
j€[n] \i€[n j€[n] \i€[n

2

2
(jlx :5:: :5:: :E:: |IIiA4}k]ijk|

jE€[n] ke[n] \i€[n]

2 2
_ CA2 Z Z Z P¢3‘|HiMiijk| + A Z |H¢Miijj|
J€ln] k#j \i€ln] JG[ ] \i€ln]
CA2 2 T T
= KQEZE:Mﬂ 2: IIH+ §:§: i

J€n] k#j i€[n]
2

CA C'A?
< fggrf(P%UITiI)+‘fggrf(an]TiI)::0(1%

CA?
Z D P M My Z 2 [T My M| | < ﬁKpn(HTH) =o(1),

j€[n] ke[n] \i€[n]
2

2 2
ot >3 < S )T = o)

1€[n] j€n

Then, to show that Mikusheva and Sun (2022, Lemma 3) holds under our conditions, we

show the following terms are o(1):

1/2 1/2

KZZ 'H““K_ ZZP@ang ZZP§A§A§

i€[n] j#i i€[n] j€[n] 1€[n] j€n

< %pn () (ATA) < Kgpn (mTm)” = o(1),
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2 2

C C HTH 2
JjE€n] \: cln icn
K2ZZZ Z TP J\H ATy [ M Mg
i€[n] i’€[n] j€[n] 7 €[n] keln]
C’
i€[n] j icln] j

where Zke[n] | M, M| <1 by Mikusheva and Sun (2022, Lemma S1.1(ii)).

Now we show that Mikusheva and Sun (2022, Lemma S3.2 ) holds under our conditions,

ie.,

(a) szﬁzpwv sz2E +—ZP2E 250,

JFi ij#i

(b) szz ZPUV 2€1ZZPZk§2k—>O

2
JFi

(C> KZWZ+ZPZJV az£12—>0
J#i

(d) KZwﬁZvaz“Z me—gzzzﬂwza E[Vié1,] = 0,

J#i =1 j#i

(e) 7 Z w; —i—ZPUV

J#i

— 0,

where &1 ;,&2; stay for either e; or V;, V; stay for e?, e; Vi, or Vf, and a; stay for either II; or
Ai

i

To prove statement (a), following the arguments in Mikusheva and Sun (2022), we just

need to show the following terms are o(1):

2

f | ] = et < et | 2t | < 7)),

i€[n] i€[n] i€ln]

127



1/2 1/2

% Z Z Pfj(wf + |wi]Jw;]) % Z P”w + Z P”w Z P]Jw < %anTH =o(1

i€[n] j#i i€[n] i€[n] Jj€n|

where we have used max;cp, w? < anTH, w? < CHTH, and Mikusheva and Sun
i€[n] %4 1€[n] i
(2022, Lemma S1.3(b)).

To prove statement (b), we show that

K2 ZZ Pz%w?+Pz%wz +Pz§w12+P4|wiwj|)
n] j#i
1/2 1/2 1/2

K2 pnzw + ZPMW Z P]jw + Zpiiwz'zpn+pn ZP”(,Q Z P]wa

i€[n] Jj€n] i€[n] i€[n] Jj€n|

| /\

C
< 75 (P (ITTD? 4 p (17T 4 p7 (I TD) + p (ITTI)) = o(1),

C
%2 Z w? + Z Z P%|wwﬂ < [32 (HTH —l—anTH) =o(1),

1€[n] 1€[n] j€[n]
where we have used Zie[n} w? < CT'II and Zz‘e[n} w} < Cpp(TTTID)2.

To prove statement (c), we show that, for a; = I1; or A\;/Mj;,

C C
5 Z P2a? + Z Z s laiag| | < 2 (p%aTa —i—pnaTa) = o(1),

K2
i€[n] j€[n
C 111
NGRS (?é%’f“’) ZWO ( ) = o(1),
1€[n]
%2 Z wiI? < %2 Zw < KQp" HTH) = o(1), where we have used max |II;| < C,
i€[n] 1€[n] el
C
e Z Z a + |a] \aj]) < e (pna a—l—p%aTa) = o(1),
i€[n] j#i
C
el Z ZPQ w?a? + |wiag||lwja;]) < =2 (pi(HTH)(aTa) +pn(HTH)(aTa)) = o(1).
i€[n] j#i
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To prove statement (d), we first show that

2 2

% Z w? || Z |w;ail =o(1).

i€[n] 1€[n]

In particular, when a; = II;, we have

2 2 2

% S|+ [ ) fwill) g% d oWl o+

i€[n] i€[n] i€[n]

< o+ [ ) @y | < S @z - )

1€[n]
When a; = J\AT? we have
2 2
C o | A Ai C 2| T
Sl sefil) < (Sloie]) =& ( (et ) oo (3
1€[n] 1€[n] i€[n] i€[n]
C
< (po(MTID(ATA) + (ITTID(ATA)) = o(1).
Furthermore, we can show that
2
C C
e D fwiail | < (M) (a"a) = o(1),
i€[n]
1/2
C C 9 T2 _C 1/9 1/2
ie Z Py |az| < Iie P (a CL) < ?(p ) / (a a) = 0(1),
i€[n] i€[n]
2
C C
| X ) < ] 70 < s (a7a) = o)
i€[n] i€[n]
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To prove statement (e), we show that

1/2
c 2| i | o C 4 T2 O D2 Ty1/2 _

> S—Z Gl <z (229 ()T < g aTmaTy Y2 = o),

i€[n] i€[n] 1€[n]

2
C C

IO D DI I 7 ZIP@]H%HAI 5=l DI N DIt

jelnl \ 7 J€[n] \ i#J i#]

_ CKp VAITIIAT A
< 702 = o(1),

2 2

C Y C CKpATA
K2 Z ZPiJ'HiMZ.Z, S Z Z 2Nl < KT o(1),

JEM] \ i#J j€[n] \ i#j
C i C C
K PIPBALE T ST > ) PiILN| < ([T YTV = o(1),

jeln) i# " i€n jeln]

2 2

D IDII DN T BEE D D) I D BFE T 1Y

JE[n] k#1 \i#4.k Mi Jj€E[n] k#5 \i#jk

< K2 SN N pipL | AT < %jm o(1),

JE[n] k#j i#£j,k

where we have used Mikusheva and Sun (2022, Lemma S1.1(ii)).
Finally, we can show that Mikusheva and Sun (2022, Lemma S3.1) also holds under our

conditions by using similar arguments. We omit the details for brevity.

A.19 Lemma A.19.1 and Its Proof

Lemma A.19.1. Suppose assumptions in Theorem A.1.1 hold. Then, we have

5o = Op(n™Y2), Ay = O0p(n™1?),  Qaw = Op(1), Qyw = Op(1),

W Qwwiv = op(1), A Qwwrde = op(1), and A Quwriv = op(1).
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Proof. We have 4, = Op(n~'/2) because E¢; = 0 and mineig(W ' W/n) > ¢ > 0. Similarly,
we have 4y = Op(n~1/2). To see that Qew = Op(1), we note that EQzw = 0 and

EQewQiw <C Y O PyW) O _PyWy)/K =C ) PIW,Wi/K <C,
i€[n] j#i Jj#i i€[n]

where we use the fact that Zj#. P;;W; = —P;W; since P;; is the ij-th element of P =
Z(Z'7Z)71ZT. Similarly, we have Qy w =0p(1).

To see 4y Q. 9v = op(1), we note that

v Quarav| < ) (W 4v)? VK = op(1),

i€[n]

where we use the fact that > WiWiT/n — Op(1) and 4y = Op(n~1/?), so that

i€[n]

> (W) = 0p(1).

1€[n]

Similarly, we can show that

Yo Qwwrde = op(1), and 4. Quwriv = op(1).

A.20 Comparison with HLIM Estimator under Strong

Identification

We consider the model in Section A.1 and the HLIM estimator proposed by Hausman et al.
(2012). Specifically, Hausman et al. (2012) estimate (3,7) by (3HEIM 4HLIMY (efined as

2

(BHEIM AHLIMY — argmin Q(b,7), Q(b,r) =

Zie{n] Zﬁéz(f/ Xib— W;Tr) Py (Y; — Xib— W,r)

bir D icmn (Vi = Xib — W;Tr)?
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where Pij is the projection matrix constructed by (W', ZZT )T. Following Hausman et al.
(2012), we let II; = p,7;/+/n such that Zz‘e[n} 72/n > ¢ > 0 for some constant c. As
explained in the paper, under strong identification, we have u?2/ VK — 0o. In both cases
considered in Hausman et al. (2012, Assumption 6), the convergence rate can be unified as

VK /12, Then, the Wald statistic can be written as

BHLIN — ) VR

q)h

2
Wi (o) = ti

where <1A'>h is a consistent estimator of ®;, and ®; is the asymptotic variance of BHLIM .

To study the behaviour of W}, (5y) under strong identification and local alternatives, we let

Bo denote the local alternative in the sense that Gy = 0 + e /A N We will provide the

expression for ®; later. We also note that the notation in Hausman et al. (2012) and our
paper is different. Specifically, their dg is our (', 8p) ", their § is our ((4HEIMYT, BHLIM)T
their X; is our (WZ-T, X;) T, their Z; is our (WiTv ZZ-T)T, and thus their projection matrix P is
our P, which is the one based on (WZT, ZZT )T. We use P and Py to denote the projection

matrices based on our Z; and W, respectively, where Z; = ([Myw].Z2)", [Myy);. is the ith

Y

row of My, and My = I, — Py.
Further denote L as a matrix that selects the last element of § = ((§7LIM)T FHLIMyT

and

Iy 0
Sn - < iir ) dlag(\/ﬁa 7\/57 :un)7

T, 1

where 7, = (W W)W Tl is the projection coefficient of IT on W. Then, the corresponding

definition of D(dy) in Hausman et al. (2012, p.235) under our notation is as follows:

~ _ ~ W'e 0
. 2 icln] 2uji [Wip 15 (Bo) - ei(ﬁO)Pijef(BO)EWBO)(Qﬂ)o)
D(50> = \/E ’

where W; = (W,7, X;)T, W is a n x (d + 1) matrix with its ith row being W] where d
is the dimension of Wj;, and €;(8y) = &; — Xj(ﬂo — B). In addition, we note that X; =
X; — WZ-TM — II;, + V; as defined in Theorem A.1.1, X; = X; — WiTﬁV, €i(Bo) = ei(Bo) +
W, 4e — W, #,(80 — B), where 7, = (WTW)"Y W TTI), 71, = (WTW) YW TX) =7 + Ay,
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Ay = (WTW)"YWTV), and 5. = (WTW)~Y(WTé&). Further let § be between 6 = (y7,8)T
and 5().

Then, following the argument in the proof of Hausman et al. (2012, Theorem 2), we have
(g VE) (BT — 53y)
= (s / VE)L(8 — 60)
-1
D@\ -
= D(6
~6aVRL (257 bl

1
~GAVRILST) (57 181;(25)(8;)—1) 521 D)

= (2 VRO, 1) (™ + 0p(1)ding(L/ Vi, -+, 1/Vt, 1) (Iﬁ : ‘1)) D)

N—
o
—~
o)
(e
Nulg

T (2 0p ()i = =] (2 + 0p (1), (2 + 09 (1) 1)

= (H? + op(1))(—n, . 1)D(d0)/VE
ety St [Xeiss (Bo) — Bl o) Py (o) e
\/X )

= (H* +op(1))
where by Hausman et al. (2012, Lemma A7), S, 18D( )(ST) 2, H, and we denote H™! =
Hll H12
H21 H22 )
Following the same argument in the proof of Lemma A.19.1, we can show that

D icin) 2o W WiPise;(Bo) D i) 2o i XiLgWiT (e — 7ta(Bo — B))

\/E = OP(1>7 \/E = OP(l)
D icln] 2ujti ei(Bo) Py W, (A — #(Bo — B))
Nire =op(1), and
Dicln] 2oji(Ye = Ta(Bo = B) T Wiy Wi (e — #a(Bo — B)) "
NG =op(1).
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In addition, we have YTE(EO)/ET(ﬁO)E(ﬁo) 2, 5. Then, we have

D icin] 2uji [ XiPije;(Bo) — ei(Bo) Pije;(Bo)]
VK

Because X "W = 0 and e' W = 0, we have X " Pe(8y) = X T Pe(fy) and e(fy) " Pe(By) =
e(Bo) " Pe(By). Therefore, we have

N%(BHLIM . ﬁo)/ﬁ: H22 +0P(1)-

D icln] Dt XiPjej(o) B XTPe(f) — > icln] XiPiiei(Bo)

VK B VK
Zie[n] Zj;éi Xipijej(ﬁo) + Zie[n] Xiei(Bo)(Pii — 152-1-)
B VK
D icn) Xi€i(Bo) Pwii
= Qxe(o) ~ e

= Qx.e(gy) T or(1),

where we use the facts that ]Bii = Py + Pw; and
1 -1
> Xiei(Bo) Pwiii = - > Xie(Bo)W;" (WTW/n) " Wi = Op(1).
i€[n] i€[n]

Similarly, we have

D icinl 2o €i(Bo) Pije (Bo)
€[n] J#\/E 0)L%5€5\P0 _ Qe(ﬂo),e(ﬁo) +op(1),

and thus,

pn (BTHM — Bo) [NK = H*2(Qx ¢(55) — PQe(Bo) c(50)) + 0P (1)

In order for the HLIM based Wald test to have a pivotal standard normal distribution in

the limit, the asymptotic variance ®; must be

Dy, = (H?)2(U — 25D 1o + 5°D1),
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which means the Wald statistic satisfies W}, (5) = %éf(g%)@_jfgf (I[;)l’;}?g) +op(1).

A.21 Additional Simulation Results

A.21.1 Additional Simulation Results Based on the Limit Prob-

lem

In this section, we present further simulation results for the power behavior of tests under

the limit problem described in Section 1.2.

For Figures A.1-A.32, all the settings remain the same as those in Section 1.5.1 in the
main paper except we use alternative values of the tuning parameters for (1.3.5). Specifically,

for the values of p; and ps in

a(pp, (o)) = min (pl, p2Ca,max(p(Bo))‘I>1(ﬁo)czs(ﬁo)) 7

AL(Bo)

we use (py,p2) = (0.01, 1.5), (0.01,2), (0.001, 1.1), (0.001, 1.5), (0.001,2), (0.1, 1.1), (0.1, 1.5),
or (0.1,2), instead of (0.01, 1.1) in Section 1.5. Specifically, Figures A.1-A.4 report the results
for (0.01,1.5), Figures A.5-A.8 report those for (0.01,2), Figures A.9-A.12 report those for
(0.001, 1.1), Figures A.13-A.16 report those for (0.001, 1.5), Figures A.17-A.20 report those
for (0.001,2), Figures A.21-A.24 report those for (0.1,1.1), Figures A.25-A.28 report those
for (0.1,1.5), and Figures A.29-A.32 report those for (0.1,2), respectively. We find the

results are very similar to those reported in the main paper.

Furthermore, Figures A.33-A.36 present the power curves in the cases with stronger
identification (C = 9 or 12). The overall patterns are very similar to those for C = 6. For
Figures A.33-A.36, the tuning parameters are set as (p1,p2) = (0.01,1.1), which are same
as those in Section 1.5 of the main text. The results for other values of p; and ps remain

very similar and are thus omitted for brevity.
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Figure A.1: Power Curve for p = 0.2 and (p1,p2) = (0.01, 1.5)
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using the test ¢a,.q0.pp (0, ﬁﬁ(ﬂo)); the green line with upward-pointing triangle represents
krs, which is the probability of rejection by using the test ¢q, 45 krs(6, ZA),/W\(BO)); the brown
dash line with additive sign represents AR test given in (1.2.5); the blue dotted line with
cross represents LM test given in (1.2.6); the dark dash line with downward-pointing
triangle represents LM™* test defined just above (1.2.7).
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Figure A.19: Power Curve for p = 0.7 and (p1,p2) = (0.001,2) with 5% nominal size
represented by the horizontal dotted line
Note: The lines are explained under Figure A.1.

Cc=3 CcC =6
1.0 - ke=dk-K-F=F-W F - - - - - - 1.0 4 F-F-W-F- W52 G- -T - -V -
NG 7 - =
xz
NS v/
| x
. >
0.8 — . 0.8 — <
* Y x
\ +
v [y =
Vv
0.6 — \ 0.6 — \ <
] = |
5 . x L
o ' > \ > -+
0.4 \ & * + 0.4 - VX +
\ o + \ 4 E
: ’ + < -
S x L+ p < v
N A+ A -+
X x - . -
0.2 — v N . 0.2 - | > 4
" < R \ 4
? . +‘,+ Yox . L
o X A, e
¥
0.0 - 0.0 -
T T T T 1 T T T T 1
-6 -3 o 3 6 -6 -3 o 3 6
(B-Bo)C (B-po)C

Figure A.20: Power Curve for p = 0.9 and (p1,p2) = (0.001,2) with 5% nominal size
represented by the horizontal dotted line
Note: The lines are explained under Figure A.1.
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Figure A.21: Power Curve for p = 0.2 and (p1,p2) = (0.1,1.1) with 5% nominal size repre-
sented by the horizontal dotted line
Note: The lines are explained under Figure A.1.
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Figure A.22: Power Curve for p = 0.4 and (p1,p2) = (0.1,1.1) with 5% nominal size repre-
sented by the horizontal dotted line
Note: The lines are explained under Figure A.1.
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Figure A.23: Power Curve for p = 0.7 and (p1,p2) = (0.1,1.1) with 5% nominal size repre-
sented by the horizontal dotted line
Note: The lines are explained under Figure A.1.
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Figure A.24: Power Curve for p = 0.9 and (p1,p2) = (0.1, 1.1) with 5% nominal size repre-
sented by the horizontal dotted line
Note: The lines are explained under Figure A.1.
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Figure A.25: Power Curve for p = 0.2 and (p1,p2) = (0.1, 1.5) with 5% nominal size repre-
sented by the horizontal dotted line
Note: The lines are explained under Figure A.1.
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Figure A.26: Power Curve for p = 0.4 and (p1,p2) = (0.1, 1.5) with 5% nominal size repre-
sented by the horizontal dotted line
Note: The lines are explained under Figure A.1.
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Figure A.27: Power Curve for p = 0.7 and (p1,p2) = (0.1, 1.5) with 5% nominal size repre-
sented by the horizontal dotted line
Note: The lines are explained under Figure A.1.
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Figure A.28: Power Curve for p = 0.9 and (p1,p2) = (0.1, 1.5) with 5% nominal size repre-
sented by the horizontal dotted line
Note: The lines are explained under Figure A.1.

149



1.0 o 1.0 AR P o-9-9°%
>
PP N /=
krs -+ L4 Y ox
x .
o8 - R --+-- AR 0.8 —| p \x /
+ x > D >
. B LM Zovvay N <= ~
RENIPA £ R Llyl‘* x + +
P N x ~, < .
0.6 — AN p¢ = . 0.6 — . +
= v/ -+ < .- -+ .
5 B + . v -
H N ¥
o i = v o< o N < K
0.4 — o+ 0.4 — WV +
- > + 8 .
v +,,f . ® - /,+’
0.2 - * > 0.2 | +
N + 4 ,,’
+. e N +
N A+ s X7, =z P
NgZ X TN L
haad =
oo - 0.0 -
T T T T 1 T T T T 1
-6 -3 o 3 6 -6 -3 o 3 6
(B-Bo)C (B-po)C

Figure A.29: Power Curve for p = 0.2 and (p1, p2) = (0.1, 2) with 5% nominal size represented
by the horizontal dotted line
Note: The lines are explained under Figure A.1.
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Figure A.30: Power Curve for p = 0.4 and (p1, p2) = (0.1, 2) with 5% nominal size represented
by the horizontal dotted line
Note: The lines are explained under Figure A.1.
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Figure A.31: Power Curve for p = 0.7 and (p1, p2) = (0.1, 2) with 5% nominal size represented
by the horizontal dotted line
Note: The lines are explained under Figure A.1.
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Figure A.32: Power Curve for p = 0.9 and (p1, p2) = (0.1, 2) with 5% nominal size represented
by the horizontal dotted line
Note: The lines are explained under Figure A.1.
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Figure A.33: Power Curve for p = 0.2 and (p1,p2)

nominal size represented by the horizontal dotted line

Note: The lines are explained under Figure A.1.
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Figure A.35: Power Curve for p = 0.7 and (p1,p2) = (0.01,1.1), C' = 9 or 12 with 5%
nominal size represented by the horizontal dotted line
Note: The lines are explained under Figure A.1.
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Figure A.36: Power Curve for p = 0.9 and (p1,p2) = (0.01,1.1), C = 9 or 12 with 5%
nominal size represented by the horizontal dotted line
Note: The lines are explained under Figure A.1.

A.21.2 Additional Simulation Results Based on the Calibrated
Data

We run two sets of robustness checks for the calibrated data provided in Section 1.5.2. For
the first set, we retained the parameter space of B = [—0.5,0.5] and used 16 grid-points in

total over this space, instead of 31 grid-points used in the main text. As in the previous
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section, we vary over (p1,p2) equals (0.001,1.1), (0.001,1.5), (0.001,2), (0.01,1.5), (0.01,2),
(0.1,1.1), (0.1,1.5), and (0.1,2). Figures A.37-A.44 are results for DGP 1, while Figures
A.45-A.52 are results for DGP 2. We find that our results are very similar to the main text’s
specification, i.e. (p1,p2) = (0.01,1.1).

For the second set of robustness checks, we fix (p1,p2) = (0.01,1.1) as in the main text
and vary the parameter space as By = [—0.25,0.25] and B3 = [—1, 1] over 21 equally-sized
grid-points. This is done in order to capture the null of Hy : = 0.1. DGP 1 is reported in
Figures A.53 and A.54, while DGP 2 is reported in Figures A.55 and A.56.

Small, (p1,p2) = (0.001, 1.1) Medium Large

2-step

+
PN =
++++++++ -

Probabilty of rejection of Hy: f=0.1
Probabilty of rejection of Hy: f=0.1
Probabilty of rejection of Hy: f=0.1

Figure A.37: Power Curve for DGP 1 given in (1.5.1) with (p1,p2) = (0.001,1.1) and Pa-
rameter Space = 3. The nominal size of 5% is represented by the horizontal dotted line
Note: The orange line with circle represents pp test; the green line with upward-pointing
triangle represents krs test; the brown dash line with additive sign represents AR test
given in (1.2.5); the blue dotted line with cross represents LM test with cross-fit variance;
the purple dash line with diamond represents the 2-step test proposed by Mikusheva and
Sun (2022) with overall 5% significance level; dark line with downward-pointing triangle
represents LM*; the yellow dash line with rectangle represents the LM test proposed by
Matsushita and Otsu (2021).
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Small, (p1,p2) = (0.001,1.5)

nof Hy fy=0.1

Probability of rejection of Hy: By=0.1
Probability of rejection of Hy: =01

Figure A.38: Power Curve for DGP 1 with (p1,p2) = (0.001, 1.5) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Probability of rejection of Hg: =01

Probability of rejection of Hg: y=0.1

Figure A.39: Power Curve for DGP 1 with (p1,p2) = (0.001,2) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.40: Power Curve for DGP 1 with (p1,p2) = (0.01,1.5) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.41: Power Curve for DGP 1 with (p1,p2) = (0.01,2) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Small, (p1.p2) = (0.1, 1.1) Large

nof Hy fy=0.1

Probability of rejection of Hy: By=0.1
Probability of rejection of Hy: =01

Figure A.42: Power Curve for DGP 1 with (p1,p2) = (0.1,1.1) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.43: Power Curve for DGP 1 with (p1,p2) = (0.1, 1.5) and Parameter Space = BB
Note: The lines are explained under Figure A.37.
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nof Hy fy=0.1

Probability of rejection of Hy: By=0.1
Probability of rejection of Hy: =01

0.2

Figure A.44: Power Curve for DGP 1 with (p1,p2) = (0.1,2) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.45: Power Curve for DGP 2 with (p1,p2) = (0.001, 1.1) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.46: Power Curve for DGP 2 with (p1,p2) = (0.001, 1.5) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.47: Power Curve for DGP 2 with (p1,p2) = (0.001,2) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.48: Power Curve for DGP 2 with (p1,p2) = (0.01,1.5) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.49: Power Curve for DGP 2 with (p1,p2) = (0.01,2) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.50: Power Curve for DGP 2 with (p1,p2) = (0.1,1.1) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Figure A.51: Power Curve for DGP 2 with (p1,p2) = (0.1, 1.5) and Parameter Space = BB
Note: The lines are explained under Figure A.37.
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Small, (p1,p2) = (0.1, 2) Medium
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Figure A.52: Power Curve for DGP 2 with (p1,p2) = (0.1,2) and Parameter Space = B
Note: The lines are explained under Figure A.37.

Small, Parameter Space = [-0.25,0.25]

iy
Probability of rejection of Hg: y=0.1

Probability of rejection of Hg: =01
°
o
I
\G/O
o +%
/ 4.t
Probability of rejection of Hg: =01
°
o
I
\

;
v =
7 NG y W\ \h A
L _____ o™ o7 AL ___ Negite
e sHSo 7 8w
0.0 - 0o -vVY
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
—0.25 -0.15 -0.05 0.05 0125 0.2 -0.25 -0.15 -0.05 0.05 0125 0.2

Figure A.53: Power Curve for DGP 1 with (p1,p2) = (0.01,1.1) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Small, Parameter Space = [-1,1]
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Figure A.54: Power Curve for DGP 1 with (p1,p2) = (0.01,1.1) and Parameter Space = B3
Note: The lines are explained under Figure A.37.
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Figure A.55: Power Curve for DGP 2 with (p1,p2) = (0.01,1.1) and Parameter Space = B
Note: The lines are explained under Figure A.37.
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Small, Parameter Space = [-1,1]
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Figure A.56: Power Curve for DGP 2 with (p1,p2) = (0.01,1.1) and Parameter Space = B3
Note: The lines are explained under Figure A.37.

A.22 Additional Results for the Empirical Application

For the first set of robustness check, we ran 1001 equal-spaced grid-points from parameter
space B = [—0.5,0.5] (step size = 0.001) over the 9 different variations of (p1,p2), which
we furnish in Table A.1. The first row is the specification used in the main text, (p1,p2) =
(0.01,1.1). We do not include ‘jackknife AR’; ‘jackknife LM’, ‘JIVE-t’ and ‘Two-step’ since

variations of (p1, p2) will not affect the result of those methods. We find that our results are

vvvvvvvvvvvvvv

similar to the main text.

(p1, p2)-values

Probability of rejection of Hy: By=0.1

pp with 180 IVs

Probability of rejection of Hy: =01

krs with 180 IVs

pp with 1530 IVs

krs with 1530 IVs

(5%) (5%) (5%) (5%)

(0.01,1.1) 0.067,0.128] [0.067,0.128] [0.037,0.133] 0.037,0.133]
(0.001,1.1) 0.072,0.127] [0.072,0.127] [0.041,0.132] [0.041,0.132]
(0.001,1.5) 0.067,0.127] 0.067,0.127] [0.038,0.132] [0.038,0.132]
(0.001,2) [0.066,0.128] [0.066,0.128] [0.039,0.133] 0.039,0.133]
(0.01,1.5) 0.067,0.127] 0.067,0.127] [0.04,0.134] 0.04,0.134]
(0.01,2) [0.071,0.125] [0.071,0.125] [0.041,0.133] [0.041,0.133]
(0.1,1.1) [0.069,0.126] [0.069,0.126] [0.037,0.132] 0.037,0.132]
(0.1,1.5) [0.072,0.126] [0.072,0.126] [0.044,0.132] [0.044,0.132]
(0.1,2) [0.069,0.127] [0.069,0.127] [0.035,0.132] [0.035,0.132]

Table A.1: Confidence Intervals under different values of (pi, p2) with Parameter Space B
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For the second set of robustness checks, we consider two different parameter spaces,

namely By = [—1,1] and Bs = [—0.25,0.25]. Both parameter spaces have 1001 equal-spaced

grid-points, and we have retained the values (p1, p2) = (0.01,1.1) as in our main text. Table

A.2 reports the results. Overall, these additional robustness checks show that the results

reported in our main text are reliable and hold for different parameter spaces.

Parameter Space

pp with 180 IVs krs with 180 IVs pp with 1530 IVs krs with 1530 I'Vs

(5%) (5%) (5%) (5%)
B [0.067,0.128] [0.067,0.128] [0.037,0.133] [0.037,0.133]
B, [0.068,0.124] [0.068,0.124] [0.042,0.134] 0.042,0.134]
Bs 0.07,0.1275] [0.07,0.1275] [0.037,0.1335] [0.037,0.1335]

Table A.2: Confidence Intervals under (p1,p2) = (0.01,1.1) with varying Parameter Space

By and Bs
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Appendix B

Technical Results for Chapter 2

B.1 Proofs For Main Text

B.1.1 Proof of Theorem 1

For any vector a,b € R"™, we define = Licin) 25249 Pi ’
y ) ) a,b VK

We will first prove the first part of Theorem 1. This is done in Step 1-Step 4. The

proof of the second part of Theorem 1 is shown in Step 5.

Recall that e = ¢ + PWe and € = ¢ + PWe, so that we have

Qe,e = Qg+ 2Qz pwe + Qpwe pwe
Qee = Qe+ 2QE7PW5 + QPW57PW5 (B.1.1)

We want to strongly approximate these two equations. It is instructive to first provide an
outline for our proof before delving into it. To do so, consider a sequence of independent

random variables {(¥;}}_; with the criteria that

(i) E¥; = 0
(it) E[7] = E[€7] = E[£]]
(i12) {(9;}7; is independent of {e;}}'_; and {&;}I";
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Such a sequence will always exist by the Kolmogorov-Extension-Theorem. This sequence
will be used throughout the proof. We define ¥ := (91, ...,9,)’.

The idea of the proof is to express

pnd2y

Qe,e — Qe e = Remainder, + Op(m

) (B.1.2)

The term ‘Remainder,’ collects all the difference in terms that cannot be collected as

O (7}’;1/"2") terms. To be precise, step 1 will imply that Q pwz pwe — Qpw. pw, = Op(%),
so that this term is collected in the last term of the right-hand-side of (B.1.2). In step 2 we
deal with the difference between the middle-term on the right-side of (B.1.1), which implies

that

pnd?
2Q(,pve — 2Q:, pwe = Hn + Op( Kl}g)

where H,, := —\/—% Zie[n] Z#i PMPZ‘;V {eie; —V;9;}. Thus H,, goes into the ‘Remaindery,’

term of (B.1.2), with the remaining terms collected as O (1}?1/@’) -terms. In step 3 we deal
with the first term on the right-side of (B.1.2) (i.e. Qzz — Q) and note that this term
goes into ‘Remainder,’. We will then collect all the terms in ‘Remaindery,’ and strongly

approximate these terms. Specifically, we can express
Remainder,, = F,, — F,

where

n :Q'é,'é_ ZZPZZ 616]7

ze[n | j#i

Fni= Qe,s Z Z Py P 525]

ze[n | j#i

and we strongly-approximate these two terms. Note that Fj, is the part of the terms in
‘Remainder,,’ that belongs to ()., while F, belongs to Q)¢ ¢. Step 4 puts everything
together and completes the proof for the first part of Theorem 1. Step 5 completes the

proof for the second part of Theorem 1.
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Step 1: We show that for any

pndsy
Qpweprve — Qpwy pwy = Op(m)
pndiy
Qpwepwe — Qpwy pwy = Op(—K1/2 ) (B.1.3)

Consider first a sequence of independent random variables {U;}" ; with bounded first
and second moments. Furthermore, let {Ui}i:1 be independent random variables, as well as
independent from {U;}!" ;. Suppose that the EU; = EU; and EU? = Eﬁf for every i € [n].
We will show that

pndiy
K1/2

Qpwy,pwy = Qpwi pwip = Opl ) (B.1.4)

Note that PPV = 0, so that

1 1 1
- —UpPVppWy - — P{(PYYUY = ——— P {(PVYU)?
Qpwupwiy = —= =D Pd(PYUY = ——= ) Pl(P") U}

i€[n]

with U := (Uy, ..., Uy)'. Denoting U} := U; — EU;, (72* = (72 — E(Z-, we have

~ 2
(QPWU,PWU QPWU PWU \/_ Z Py ( PW) U* + (PW)/EU] |:(PZW>/U* —+ (PZW>’EU:| )

i€[n]
Z Py[(PYU)? > PR Z Py(PYVYU*(PVYEU
26 [n] \/_ i€[n] \/_

\/_ Z Py(PVYU*(PYVYEU = C1 + Cy + Cs + Cy

By the fact that EU* = 0,

fzpm (Y yU™)? —fzpmz W2V ar(U CPHZZ

1€[n] i€[n] Len] ze[n Len]
Cpn 11,74 Cpndw
- Ui Z P = K12
1€[n]
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so that by Markov inequality, C; = Op(& ”dw). In a similar manner, we can show that

Cy = Op(p"dw). Next,

K1/2
EC§§ > PaPu|(PYYEU - (PYYEUY P P Var(U))
zz 'en] Le[n)
(i) Op2
< B S pYyEU - (PEYEUL S (P2 ST P
i,i'€[n] leln] C€[n]
_Cm Z] (PVYEU - (PYVYEU|- PY P,
<SS Rra- A - SR S ey
1,0 AL Le[n] i€[n]
2
(@) OP% 2 Cp?z 144 2 Cp% 4
S A PO < QO Pitdw)? = iy
Le[n] i€ln] ze[n] L€n]

where (i) and (ii) follows from Cauchy-Schwartz inequality. Hence C3 = O (p;;?/vg) In

a similar manner, Cy = Op(%), so that (B.1.4) follows. An application of (B.1.4) with

(U, U) replaced by (¢,9) and (&, 9) yields the first and second equation of (B.1.3) respectively.

Step 2: We show that

2
2Qg,pwe — 2Qu pwy = \/— Z Ve - o) =M + 0 (Kl/g)
i€[n]
d2
2Q. pwe — 2Qu pwy = \/_ S PP (i —0:9;) = HY + 0,5 lg) (B.1.5)
1€[n]
where H% = \ﬁ Zze i) Zﬁél PMPZ_‘;V {Ci(@(j@ _ ﬁiﬁj} and Ci(f) :=¢; ore;for{ =1or?2
respectively.

We first derive a general result: consider a sequence of independent random vectors
{(U;, T;)'}_,. Suppose we have another sequence of independent random vectors {(U;, T;) ) 2
such that for every i € [n], E(U;, Ty) = E(Us, T;) and E[(Us, T;)(U;, T3)'] = E[(Us, Ty) (Ui, T;)').
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We assume the two sequences are independent from each other, and that the first two mo-

ments are bounded. By noting PV P = 0,

1
Qpwyr = \/—EU’PWPT - \/—_ Z Py(PVYU - Ty = —— Z Py(PYVYU
1
== Pi) P%VUJ-E ¢_ > PP U,
i€[n] J#i i€[n]

which implies that

2
praT—QPWﬁf:—\/_ZZP PWUT+\/_ZZP PVUT; + 0 (K‘f/Vg)

€[n] j#i i€[n] j#i
(B.1.6)
where the last equality follows from Markov inequality and
2
~ 2o Cpp _ Cpadw
’Le n icln

If replace (Us, Ty) with (¢;,¢;), as well as (U;, T;) with (d;,9;), then an application of (B.1.6)
would yield the first equation of (B.1.5). The second equation of (B.1.5) follows by replacing
(Us, T;) with (g4, e;) and (U;, T;) with (9;,9;).

Step 3: Define

ni= Qs — \/_ Z Z P P eze] and

i€[n] j#i

Fn = Qs,a - \/_— Z Z]DZZPZJ €i€j

i€[n] j#i

We will show that there exists a random variable F,, < Fn such that

1/3
o2+ pd P (Y )1/2dW] (B.1.7)

K1/2
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Define g, (z) := max <0, 1— d(m’(;;;%n)) and fp(x) := Egn(z+ hpN), where N has a standard
normal distribution and h,, := % for some Cj, > 1. By Pollard (2001)[Theorem 10.18], fy ()

is twice-continuously differentiable such that for all z, v,

3
Fula+) = fule) = 101o(0) - 370100 < G (B.18)
and
~ B(Cy)l{z € A} < fu(x) < B(Cy) + (1 — B(Cy))L{z € A%, (B.1.9)

1/2
where C}, 1= " = and B(Cp) = <%) . Furthermore, define

D icin) 2jpitaiPija; — 2P Pl ajag)}
gn<CL1, ey an) =
VK

so Fy, = Gu(e1, ..., en) and Fp, = Gy(e1, ..., e,). By triangle inequality,

[Efn(Fn) — Efu(Fn)l
< Efa(Gn(@rs s i Eigts s En)) = Efa(Gu(ELy s @i, €y onr )] (B.1.10)

i€[n]

where G, (€1, ..., €n, €nt1) = Gnle1, ..., en) and Gy (e, €1, ..., €n) = Gplel, ..., en). Then con-

sider the last term of the telescoping sum. Define

Zie[n—l} Zﬁéz j€n—1] {ezpljej - 2Pzzpj aé}}

Ap—1 = Vi
A 2’5”2‘ eln— 1]aﬂn - QGnZ eln P“P €; - 2P, .€n Zzén 1 P €;
T \/_ \/E VK
A 26n D icpn-1) Gibin 260 Dicinoy) P P)Ve ~ 2Punen Yicin- 1 P i
V_ VK VK

so that Gp(e1,...,en) = Ap + M—1 and Gy (€1, ..., en—1,6n) = A, + Ap_1. Further denote

172



Z,—1 as the o-field generated by {5i>gz'}z‘e[n—1} and observe that

(Ap|Z,—1) and
(A%’Infl)a

E(AL|Zn—1) =

E
E(A?L‘Infl) E

so that together with (B.1.8), letting = = A\,—1, y = A, and A, we have

|Efn(gn(€1;~ )) Efn(gn(ela---agn—lagn))l
E|AL + EJA,[°
95,2

< EDfuOn1) (B — An)] + 5IE fu(n 1) (B2 — A2+

_E|APHEA,P

B.1.11
95,,h2 ( )

We proceed to bound E|A,[3. Let {&i}iepn—1) be a sequence of independent Rademacher
random variables. Using the simple inequality that |a+b|*> < 2(a?4-0%)-|a+b| < 8(|al>+|b]?),

we have by independence of the errors across ¢ that

C -
E| (Pin+ PPy + Pun P )i (B.1.12)

3
A < =

1€[n]

Denoting 0; as either Pj,e;, PiiPiIfL/EZ- or PnnPi‘fl/gi, we have

E Z : <8E Z 0:&; (?8/00# Z 0:6| >t | at
0

1€[n—1] 1€[n—1] 1€[n—1]
SE/OOtQP > 0| > T dt(@mE/th ( 1 & )dt
0 ieln—1] 0 23 i1 %
3/2 3/4
(i)
<CE[ > 0 < ClECY 6 (B.1.13)
i€[n—1] i€[n—1]

where (7) follows from the Symmetrization Lemma of Van der Vaart and Wellner (1996)[Lemma
2.3.1]; (i7) follows from the integral identity; (iii) follows from Hoeffding’s inequality (see
Van der Vaart and Wellner (1996)[Lemma 2.2.7]); (iv) follows from the change of variable
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s =12/ > efn—1] 91-2, (v) follows from Holder’s inequality. Note that for 6; = P,e;,

E( Y 6)2= > > E<CY Z PLP? =CP2,

1€[n—1] i€[n—1] j€[n—1] i€[n] j€[n

so that

Similarly we can obtain

\ 3/4

E( Y 62)? < ClpaPYY3? if 6 = P;PVe; and
i€[n—1]
3/4
E( Y 67)? < C(PPYY3? it 0, = P, PVE,
i€[n—1]

Hence, by (B.1.12) and (B.1.13), we have

3/2

P2 + i 2 (PWY32 4 (P, P )3/2

E|A? < C e

Similarly, we have

P3/2 3/2(PW)3/2 (PnnPan>3/2

ElAP<C e

In general, for any generic jth term, we can show that

P3/2 3/2(PW>3/2 (PPW)3/2
Ji JI7 45
|Efn(gn(ela~- )) Efn(gn<€17" en l,En))| <C K?’/Q(th%

3/2 1/2 1/3
where the constant C'is independent of n. By (B.1.10), letting h,, := Cu(pr! +pK1/(2 ) Zdw)

174



. Chhn
and recalling 9,, = ==,
3/2 | 3/2 W\3/2 1/2 | 3/2
Ef(F) — (7 < o2 T o (Bl gl Py O
" " K3/26,h2 - K1/26,h2 - 02

Therefore, by (B.1.9) we have

Efu(F) ! <
PUR e <750 < T-BOY (Ef s C_ﬁ>

! C
< ?(Ch) (B<Ch) + (1 — B(Oh))P {fn e A35n} + C_}QL)

B(Ch) + C%:

By Strassen’s Theorem (see Pollard (2001)[Theorem 10.8]),there exists a random variable
F} 2 7, such that

P{|E,—FlLl > Cy

1/3 C
Cr(py? + pi (W) 2dyy) < B+
K1/2 - 1- B(Ch)

Fix any 7 > 0. Given that B(C}) — 0 whenever C}, — oo, we can find a sufficiently large
B(Cn)+ 5
C}, such that % < 7, implying

1/3
B — o, [ [ W) )
n nl — Yp K1/2 )

o (B.1.7) is shown.

Step 4: We complete the proof. We can re-express
Qe,e = Fn + Rn
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and

QE,SZ}—n"'Rn

where F,, F,, were defined in Step 3, so clearly R, = Q¢ — Fy; similarly R, = Q¢ ¢ — Fu.

Define

'ﬁ,n = Piipi?/ﬁiﬁj -+ QPWﬂ,PWﬂ

2
>
\/Eze[n]

and note that by (B.1.3) and (B.1.5),

2

-~ pndW
Rn - Rn - OP( K1/2 )

and

~ P d2
Ry — R = Op( I’;JQV

).
Therefore, by noting that F,,, F,, ﬁn are mutually independent, we have

Qe,e:Fn"‘Rn:F;z“f'(Fn_‘Fyll)'f‘(Rn_ﬁn)"’ﬁn
- 11/3
o>+ o2 (W) Py +pnd%v\
\ K1/2 K1/2

= F) +Rn+ 0,

- 11/3
o>+ o2 (W) Py N pnd%v\
\ K1/2 K1/2

L Fo+ R+ 0y

11/3
il + o (o) Py

K1/2

=Fn+Rn—(Rn—Rn)+0,

=Qee+ Oy

1/3
o+ pi 2 (ol ) 2dyy padiy
K1/2 K1/2

_l_

(B.1.14)

(B.1.15)

pndiy

K1/2

where the second line of the preceding equation follows from (B.1.7) and (B.1.14); the last
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line follows from (B.1.15). This gives the first result of Theorem 1.

Step 5: We prove the second part of the Theorem here. Note that by P P =0,

¢Pe _FPE_ 1, Vi Pii}
K - K - \/E e,e K ’
and similarly
E'PE _ LQ N Zie[n} Pz’ﬂ?
K K °F K
Then
Zze[n] P“E? Zze[n] P”ﬁzz —0 p711/2
K a K - P\ K12
D iem Pt Dicn PV} pr?
I _ I =0, 173 (B.1.16)

which follows from

2
e [ Ziewm Pl — 09\ "  Vicp BB 09 Con i i _ Cp
I7a K2 - K2 K

Then define J,, := ?/"’l; and J, := QE}’;. By repeating the proof of step 3, we can show that

there exists a random variable 7, 4 Jn such that

ﬂ

1/2

Jo =T+ op(p;( ). (B.1.17)

Putting everything together, we have

e’ Pe Jn+< €[n] _ €[n] n €[n]

K K K K
@O g, > i Pit? L0 pil?
— Yn K p K1/2
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4 gy e PO

K K1/2
_EPE ([ Liew PatT Yicp Pusl o p*
K K K P\ g1/2

_&re L, i’
K K12
where (i) follows from (B.1.16) and (B.1.17). This completes the proof of the second part of

Theorem 1.

B.1.2 Proof of Theorem 2

Consider any sub-sequence A\, € A,,. We will show that for both fixed and diverging K,

nliinoo P, <Q(/60) > Cy, df(¢1(ﬁo))> a. (B.1.18)
i T Py (T B1(50) > €L, (5 (50), £)) = (B.1.19)

Then (B.1.18) and (B.1.19) satisfy Assumption B* of Andrews, Cheng, and Guggenberger
(2020b). By Corollary 2.1(c) of their paper, Theorem 2 follows. Without loss of generality,
we implicitly consider the sequence A\, € A,, and show that it satisfies (B.1.18) and (B.1.19).
We break the proof into two parts, part I and /I, which deals with (B.1.18) and (B.1.19)
respectively. For each part, we deal with fixed and diverging instruments separately. We

drop the dependence on [ for notational simplicity.

Part / (analytical tests):
Fixed K case: Consider first the case when K is fixed. We can write the rejection
criteria (2.2.8) as

cI>1(50)
\ﬁ Z,e[n] (/80)

\/2 D ielk) Win + 1/df

We denote Q(5y) as Qn(Ho) to reflect its relationship to the sample size n. Under the

Q(Bo) > qi-a(Fz,) + (q1-a(Fz,) — 1) ~1 (B.1.20)
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null, by Theorem B.4.1.1 and Lemma B.2.3, we know that for any sub-sequence n;, there

exists a further sub-sequence n;, such that

Qny, (Bo) ~ Z wixt; = Xor (B.1.21)

where the chi-squares are independent with one degree of freedom. Furthermore, F@njk ~
X2, since fﬁn].k Lo by Lemma B.2.3. By arguing along sub-sequences, we can assume
without loss of generality that the above convergence is in terms of a full sequence, i.e.
W, P w* and w, — w*. This is because if for any sub-sequence we can show size-control

for a further sub-sequence, then size-control holds for the entire sequence. Note that

(a) ||wn||%.(z Pyio?)? = trace(U'AUU'AU) = ZZ 20207

i€[n] j€n
—=2

(b) §j%ﬁ<0mK:dn

1€[n]
@ Lo D 2SS 2 4 0,01 -KEZEZ%%%+%”

i€[n] j#i n) j€n]

1

(d) Ve Z Pzze Z P”U +0p(1
i€[n]

where (i) follows from our assumption of consistent estimator; (ii) from the second part of
Theorem B.3.0.1; (iii) follows from (b); (iv) follows from Lemma B.2.1. Then from (d) we

have

1 2
TR 2icln Py & 2icin Pio? B & Qicn Pio? e
1 1 1 ’
K Zie[n] Pie} % Zie[n] Pie} % Zie[n} Piio} + 0p(1)

()

and from (c) we have

P icin 1 b O'ZO' + 0,(1)
: - KZ%ZZJ LR FONE
\/K i€[n] jE[ ]P o? K £uigln] Luj€n 1] z ]

. J
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Putting it together,

= 1 —
(I)l \/K ze[n ]G[n] zy z j e Zze[n] PZZO-? (I)1
1 2 T 2
VK ZZG[H] PZZeZ' . /K ZiG n 'P”O-i VK Z’LG[’I‘L] P"'Lei \/% ien] Z]E[n} PE]O’?O’?

\/K i€[n ]G [n] PEJUZ sz \/Zze[n JjE€[n })22] i ]
P 1+ 0, (D) (V2 + 1)) = VAL
~/K Zze [n)] ”Oi i€n] ’L’LO-

L Vlfwall + 0p(1) = VIIu|| + (1) (B.1.22)

+ 0p(1)

: ~ P
so that since w, — w* and w,, — w*,

Vo,
VR 2icin Piic] P V2wt _

/2D W2, + 1/df 2wl

as % = 0(1). Therefore,

=

P,
% Zi€ n Piie?
(q1-a(Fg) — 1) e — 1| = (@1-a(Fur) = 14 0p(1))0p(1) = 0p(1),

\/2 2 ierk) Win + 1/df

so we can write (B.1.20) as

=

®,
1 52
T Lieln Fiici

— -1 ~ QI—Q(X%U*)
V2 i) Wi+ L df

By Van der Vaart and Wellner (1996)Example 1.4.7],

N1-a(Fg,) + ((1-a(Fg,) — 1)

vV,

VA TR
Vi 2uiein i€l

— —1 ~ (y?u*vq1—a(Y3)*))7
V22 ielw) Wiy 1/ df

Q(BO) q1— a( ) + (CIl—a(F&?n) - 1)
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from which an application of Theorem 1.3.6 from the same reference yields

Vo,

2) VR 2icin Piic]

Q(bo) — q1-a(Fz,) — (q1-a(Fg,) — 1) — 1|~ Xor — 1—a(Xoe);
\/2 2 ek w;,, +1/df

applying Theorem 1.3.4(vi) of the same reference yields

=

Py
i 2) 7 Lielm Pi€?
hm P)\'n Q(/BO) - Q1fa(F1En) - (qlfa(Fﬁ]' ) - 1) Lis clnl — 1 > 0
n—oo

\/2 2 ek Wi + 1/df

=P (Xar > q1—a(Xar)) =@

We have therefore shown that for fixed K, (B.1.18) is satisfied.

Diverging K: assume now that K — oco. By Theorem B.4.2.1 we have

1 2
T 2uicin) Fii€i /A
A e () —1) = Qe N (0.1 (B.1.23)
1

Next, define Z := o ({@i,n}?zl)n>1 to be the sigma-field generated by the sequence of random

variables w;,, and s2 :=2S"._ . w? . Conditioning on Z, we have
) n ie[K] Vin g ’

Var(Fg, = 1|T)=E | > winlxi, —1) | =52 (B.1.24)
1€[K]
Additionally, we have
C max; w?
lim Lt ), (B.1.25)

2
Koo Zze[n] Win

To see (B.1.25), note that max; w; », = 0p(1) by Lemma B.2.3. Furthermore, Zz‘e[K} Wiy =1

by construction. Let max; fﬁi’n = 6y for some 0 < Oy < 1. Denote i* to be the index such
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that w; , = max; w; . As ZZ# Wi =1 — 6, we have

. ~ 0o .2 (1—6p)*
DW= W+ W szn+90—Z<K D0 = e 0
i€[n] i 170" i£T*
so that

52 2 2
max; wi,n 90 9 1

LA — < :O(l)v
> iem w?, D ich] w?, 02 + (1 fol) 1+ 9(1( 90))

where the last equality follows from recalling Lemma B.2.3, i.e. 62 = max; w?, = op(K -1,

n
so that

(1 —6p)? _ 1+ 0(1) :1+0(1)_>
BE-1 BE-1 o

Thus, by (B.1.25) we can obtain

CY ictn Wi C max; w? 2
lim — Z E(win(x1; — 1))4 < lim m < lim ¢ in N;e[n; in
K—o0 S5, icK] K—oo Sp, K—o0 (ZZE[K] wm)
C max; w

= 0. (B.1.26)

Since the Lyapunov condition (B.1.24) and (B.1.26) is satisfied, by the Lyapunov Central

Limit Theorem, conditional on Z we have

~2
Fz, —1 @V 22 Lielk) Win Fy —1
/2 > il w?, H1/df )2 > ielK] w;, +1/df | /2 D ielK] Wy,
Fy —1
= (14 0,(1)) Yn ~ N(0,1). (B.1.27)

\/ 2 ZiG[K} 1:522,71

where (i) follows from observing that 1 = 3, Win < ||wnl| VK by cauchy-schwartz

inequality, so that @ e dr HF i < \/; = o(1) by assumption. Since the distributional convergence
in (B.1.27) holds for any sequence wj ,, then it must hold unconditionally by Lemma B.2.4.
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Hence, asymptotically, by (B.1.23) we have exact a-level size control whenever

—=>iem Pie? -
VK eé] <Q(50) - 1) > G1-a
1

Fy —1

\/2 2 ik Win + 1/df

We can rearrange this rejection criteria as

=~

o, Fg —1

Vi 2icln) Fiie; 2 i W2y + 1/df

implying that we have exact asymptotic size control for K — oo. By an application of
Van der Vaart and Wellner (1996)[Example 1.4.7, Theorem 1.3.6, Theorem 1.3.4(vi)], as was

Q(Bo) > 1+ = Coap(®1(50)),

done previously for the fixed K case, we have (B.1.18). The proof of part I is complete.

Part /] (bootstrap tests):

We can first establish that for any fixed sample size n, conditioning on data, for any

z€R,

ZEG[B] 1 {jBS’E < 2}

B

Dicin) 2jzi Lignin

Ko7 (By)

A~

LAy < z|P (B.1.28)

as B — oo, where we drop the dependence of JBSL on (e(Po), L, 61(60)) for notational sim-
plicity; 2 and P £(|}A7) means convergence in probability and probability measure under the

law £ conditioning on the data, respectively; ® Sn (Bo) = 7 Zze Zj i Pfj 22(60) (Bo);

random variables {7; };c[n) L . First observe that @Bse(ﬁ ) L@ Bsn(ﬁo) by E(nilei) = 0,

Var(nile;) = €2, and the assumption that <I>1(ﬁo) satisfies (2.2.12). Second, observe that

JBS: e are i.i.d., so that (B.1.28) follows from the law of large numbers.
€B

Z’

Fixed K case: Consider first when K is fixed. As in part I, we assume without loss
of generality that w, P w* and w,, — w* instead of over a sub-sequence. Since w;, R

. . ~  a.s.
implies some sub-sequence converges almost-surely, we can assume w, — w* over the full

183



Note that

SR S e Pie?(@Qs(Bo) = 1) O(5y) — 1 :
T, 1(430) = = ’ :%gﬁlﬁu Fol) ~ 3 it 1)
1 i€[K]
(B.1.29)

where the last equality follows from recalling from Part I that

VE® .
sz = VAWl + o)
icln) 14%

for the fixed K case; the weak convergence follows from (B.1.21). Next, we will show that

P-almost surely, for any z € R,

o Xicm) 2 Pigmin

P£ <
Ko7 (8)

AP =P Y (3 - < (B.1.30)

as n — oo. Conditional on data, Py -almost surely we have

Z ];éz Pzﬂ?zﬂ] . Z ]D”nz 77/P77 1
11771

7 Zz n ‘P”T}Z ~
4 <l ]s sznSXu + 05(1)
K75 () \ielk]

” "’BS
Z f||w*|| o)

Z wa*H — 1)+ 05(1)

i€[K]

BS (~BS ~BS )

where (i) follows from Theorem 1 adapted to conditioning on datal , W, WYy s -y W,

TAlthough Theorem 1 requires the fourth moment to be bounded from above, we
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U 1/2 (71 rz\N—=1(rz/ 1/2 .
282 Z(ij)Pr(ﬁZ A2 and Ay, = diag(

Z €[n] P”nz

Ko7 (By)

are the eigenvalues of n2,...,n2); (id) follows from

= V2||@n]| + 05(1) = V2[[w*|| + 05(1),

which is analogous to (B.1.22); (ii7) follows from Lemma B.2.3 adapted to the conditioned
data, where there exists for every sub-sequence n; a further sub-sequence nj, such that under

the null

and we can assume without loss of generality that this holds under the full sequence. This
proves (B.1.30). Finally, by Vaart (1998)[Lemma 21.2], (B.1.30) implies

d1—a

Y

Dicln) 2ji Lianing 5, Z .
KPS (6y) f el

so that conditioning on data and combining with (B.1.28) yields, WPA1 (with respect to
law L)

n—o0 B—oo

lim lim CZ deS((I)l(ﬁo) Z \/_Hw*|| -1,

noting that dfpg = o(1). The preceding equation holds P -almost surely, so that by bounded

convergence theorem,

lim lim Py ( (B0, ®1(80)) > CP oy, (1), )) —a

n—o0 B—oo

note that sup;en ef < oo with probability greater than 1 — ¢ for any ¢ >

0.  Therefore, following the arguments later on, we can prove a version of (B.1.19),
that is a(l — 2) < liminfy, e limpoe Py, (T(50,81(80) > CByp, (®F5(80),0)) <

lim sup,,, o0 liMp—00 P, (j(ﬂg,:f’l(ﬂo)) > CBdeS(q)BS(BO) )) < afl —¢)+e. sincee >0

was arbitrary, we have (B.1.19) itself. Hence we can assume without loss of generality that
SUP;eN ef < 0o with probability one.
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This completes the proof of the fixed K case.
Diverging K: assume now that KX — co. Then by Chao et al. (2012)[Lemma A2,
J(Bo, @1(60)) ~ N(0,1) (B.1.31)

Furthermore, by applying Chao et al. (2012)[Lemma A2] conditioned on data, we have?

=~ Zz‘e[n} Zj;éi Pijming
Pr

<zP| BPW(0,1)<2), (B.1.32)

KoP5™ ()

so that combining with (B.1.31), (B.1.28), using bounded convergence theorem and dfpg =
o(1) yields

lim lim Py, (f(ﬁ0,$1(50)) > cﬁdes@l(ﬁo),L)) —a

n—o00 B—oo

This completes the proof for the diverging K case.

B.1.3 Proof of Theorem 3

We first prove the first part of the statment. Note that (B.1.27) holds for any sequence of

A, — AT not necessarily zero, i.e.

Py, — 1 ~ N(0,1) (B.1.33)

\/ 2 Zz‘e[K] {Eiz,n +1/df

Furthermore, our rejection criteria for the test under diverging K can be rewritten as

~

= 3 Pack() (QU60) = 1) > Y B1(50) - 01 Py, — 1

ic[n) \/2 2 ieir) Wiy +1/df

ZNote that the following equation holds true for any sequence of A, — AT not necessarily zero,
as long as ®(A,) 5 ®1(A"), where we have rewritten the dependence of ®;(-) on A,, instead of
Bo, so that By is seen as “moving” in this case.

(B.1.34)
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By (2.2.12), noting that

KZZPEJ? BO <_Z 1),

i€ln] j#i i,j€[n]

the estimator 51(/30) = Op(1). Therefore the right-hand-side of (B.1.34) is an Op(1) term.
The left-hand-side of (B.1.34) diverges to infinity for C — oo and fixed A # 0 by Theorem
B.4.2.2. The result of the first statement thus follow. For the second part of the statement,
note that (B.1.32) holds even under the alternative. Therefore, by (B.1.28), (B.1.32) and
dfps = o(1), we have that P-almost surely,

lim lim C} deS($1(ﬁo),£) g 1-a(N(0,1)).

n—o00 B—oo
Combining with the fact that
1

J(Bo, ®1(50)) = — Z Pyie2(Bo) (@(ﬁo) — 1) RN
K(I)l(ﬂ()) i€[n]

by Theorem B.4.2.2 yields the second statement.

B.1.4 Proof of Theorem 4

By Theorem B.4.2.2,

1

~ A2C
P “e? — 1)~ N — 1
R () 2 (Bo)(Q(Bo) — 1) ( ) >

®1(So
Therefore, by (B.1.33), for fixed A and any estimator ®;(8o) 2 ®1 ().

lim P Qo) > Coar (@1 (60)) )

n—oo

—im P [ ———— SR80 (0(50) — 1) > a1 fo, — 1

nee K®1(5o) icln) \ 2 2iefr) Wi + 1/df
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—1—F | qi_a(N(0, 1))—6—26
d1(6o)
2
=1-F | q1-a(N(0,1)) — %)

Noting that A = AandC=C completes the first part of the proof. For the second part of

the proof, it only remains to show that, P-almost surely,

i lm B, (@160, L) B (N[ 2 4
adfss (PL1(50 1-a — :
n—oo B—oo ,df (I)l(ﬁo)

But this follows directly from (B.1.28), (B.1.32) and dfps = o(1). Finally, we show that

?{Sitandard(ﬁ()) £> ®1(ﬁ0)7 (B.1.35)
o5 (Bo) & @1(Bo)- (B-1.36)

in order to complete the last part of the proof. Recall from section 2.2.5 that

Dstandard K Z Z A2H2 2 BO) +A4HZ2H§) 0

i€[n] j#i

by the assumption that H,TH — 0, 02(By) < C and Z]Gn] = P; < 1. By (2.2.12) we
have (B.1.35). Furthermore, by II'MTI < HKH — 0, (B.1.36) follows from Mikusheva and
Sun (2022)[Theorem 3].

B.1.5 Proof of Theorem 5

Note that ® L) by (2.2.12) and A — 0. Furthermore, Ac . _AC +
1<ﬁ0> 1(60) Y ( ) \/‘1>1(50) \/‘1)1 Bo)

o(l) = A , so that by Theorem B.4.2.2 we have
®1(Bo)

1

.
T zze? 0 — 1)~ N (i, 1)
TN E[j] (Bo)(Q(Bo) — 1)

1/2(3p)
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Finally, by (B.1.33) we have

Jim P (@(50) > Ca,df@ﬂﬂo)))

| Fy —1
= lim P Z Pzze BO ) ) > q1-a =

e K@l(ﬁo) i€n \/ 2 ZiE[K] w?,n + 1/df

.
—1-F <q1a(N<O’ ) - qﬂ?z—(cﬁo))

This proves the first part of the statement. For the second part of the statement, it only

remains to show that, P-almost surely,

lim lim CB.. (®1(B), L )—>ﬁ q N —ZC 1
a,dfss 1{~0 11—« s s
n—00 B—0o df (I)l(ﬁo)

which follows directly from (B.1.28), (B.1.32) and dfgg = o(1).

B.1.6 Proof of Lemma 2.4.1

The proof is similar to the proof of Theorem 2. For completeness we will include the proof

here. Note that

(a) wall- () Puof(50))® = Y Phot(50)a(6o)

i€[n] i,j€[n]
() > P2oi(Bo) < CpakK = o(1)
ze[n]
(c) = Z Z PZQJ o2 (Bo ﬂo) + D(A) by assumption of (2.2.12)
n] j#i

Hence
$1(ﬁ0) (i) \/ Zze [n] Zg;éz P’L2j 22 Uz(ﬁo) + Op(l)
1 P 2 - - + Op(1>
VE Zie[n] 1€ (50) \/_g Zie[n} Pmai (50) + Op<1)
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L Salfwallp + Op(1) < V2| Du, + Astllp + V2 Aulr +Op(1)

D /3| Duy, + Asgllp + Op(1)

where (7) follows from (¢) and Lemma B.2.1; Ay is defined in Lemma B.2.3 and D,,, =

diag(wi p, ..., wr ); (i) follows from |[Ag||% = [|Qu(Bo)||% = S e PioZ(Ba) = CK

IN

C. Furthermore, we have by Lemma B.2.3
1Dg, — Dn — Anllp = 0p(1)
where Dy, = diag(win, ..., Wk »), SO that
l|wn||F = [|(Dg, — Dn — An) + A + Dyllr = ||Ax + Dal|F + 0p(1)

Putting it together we have

1 (Bo) 1 (Bo)
Tlf et Fiei (Po) \/% 2ierm Fiief (o) < \/§||Dn + Apllr + Op(l)

V2 e @+ 1/ VARV T 2+ 1

_ VD + Al + O,(1)
V2[As + Dallr + 0p(1)

2 140,01) =0,(1)

which completes the proof.

B.1.7 Proof of Lemma 2.4.2

We require a Theorem by Fleiss (1971):

Theorem 9. (Fleiss (1971)) Let {Xfm}fil be a sequence of mutually independent chi-squares
with n;-degrees of freedom. Define

2
X?’Li,i

Ty = ———— 5
Zi:l Xnii

to be the ratio of chi-squares. Then for any non-negative constants ay, ..,ar, conditional on
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{Ti}E,,

g ax® Lo A2
iXn,,i 1 XZ'LG[K] i
1€[p]

where ¢ 1= Z (K] a; T;

1€

We denote Fy := {w €eQ:Ty= mian[K]Tg} for every ¢ € [K]; furthermore P(Uze[K] Fi) =
1 and P(ﬂge[K] Fy) = 0. Then for any chosen non-negative (a1, ..., ax ) such that Zee[K] ay =

1 and for any = € R4, we have

P(xii<anFil{Ti}eex) =E (1X;1gx1f1\{Te}Ee[K]) =17P (X7 1 < sl{Ti}err)

; (i)
D1rP(Tik <2) < 1mP | Y aly- vk <a

Le[K]
F1mp | 3 aods <olTihee | =P | 2 eods <20 FilTideg
(e[K] Le[K]

where (¢) and (7ii) follows from Theorem 9; (i7) follows from the fact that whenever w € Fi,
T, < EEG[K] ayTy since Zée[K} ay = 1. Taking expectation on both sides of the equation
yield

P (X%,l < xm]—“l) <P Z CLgX%e <zNF
Le[K]
Note that {F;} (k] are mutually disjoint except on a null set. Therefore
POG <o) < Y POdi<enA) <Y P DY and,<anF| =P Y ani, <«
1€[K] 1€[K] Le[K] Le[K]

where (iii) follows from 1£x3, <1 ].-ixil and

Pxii<a)=> P(ii<anF) <Y P(xi,<znF).
i€[K] €K
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Hence we can conclude that the distribution function of a chi-square is smaller than that of

a weighted-chi-square. This implies that

N-a(X?) = qa( ) axiy)

le[K]

B.1.8 Proof of Theorem 6

We begin by establishing some results: later on we will show that for any sequence of
A, — AT with AT finite,

nV2((Z278) (2 AnD)) ~ Ik, Ig)N (0,2(AT)) (B.1.37)

where B(AT) 1= limy, 00 % Zie[n] Noi(Ap) ® Z;Z!. Furthermore, fy := Py, (since A, is
allowed to change) so that (g is allowed to change with n; however we drop the notational

dependence on n and understand that this implicitly holds. Then we can obtain

e(o) Pe(fo)
YAV

-1
— (nfl/Qzl’é“_i_ Annl/Qzl’i}“_i_Annl/Zle)/( ) (n*1/2zl’é“+ Annfl/Qzljl‘}“_i_Ann*l/Qzll—[)

v (I, TN (0, S(AT) + AT g ) Q4 (Txe, T )N(0, S(AT)) + Al pg) (B.1.38)
To show (B.1.38), note that by assumption 8 we have

1 Z (Zii), (A Zi0)) (Zii), (AnZii))) = % 3 Moi(An) ® ZiZ, - S(A).

" e [n] i€[n]

Furthermore, for every n > 0

1 . _ _ _
=~ > E{lIZ&, anziv)|[F1{|(Ziei, AnZivi)||p 2 nv/n}} = 0.

1€[n]
The preceding equation follows from

{E{1(Zis, AnZo)|[21{]|(Zies, AnZiw) || > n/n} } )
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(1) - ~ _ ~ ~
< E1/(Zi&, Azl - P (n™2I1(Zi8, AnZit) | 2 )

(i)
< O(1 + AP (n_l/QH(Z{eVZ', AnZi)F > n) +o(1)

(i) Zil[ZE(@ + A2 2 2
n“n n n

where (i) follows from Cauchy-Schwartz inequality and (i7) follows from sup; E||(Z;€;, An Zi0;)||% <
2sup; || Zi| |3 - E(e} + A201) < C(1+ A2) < C(1+ A?) +0(1) < 00, by assumption 6 and 8;
(1ii) follows from Markov-inequality. We can then apply the Lindeberg-Feller Central-Limit-
Theorem to obtain (B.1.38). Furthermore, note that

-1

> Piel(Bo) | = C0+AT+ AT o) (B.1.39)

i€[n]

for some C' > 0. To see (B.1.39), first denote o2(AT) := 03(50) where AT = 8 — 3y. Then
observe that

szze BO é ZPMU 50 +_ZPZZH2+OP(1+A)

i€[n] ze[n] i€[n]
(i) 1

< = > Puo?(Bo) + A7 max 1 + op(1 + A)
1€[n]

(iii) )

< C(1+A,)+CA; +o,(1+Ay)

<C(L+Ap+A2) +op(1+Ay)

W o+ At al?) ¢ op(1)

where (i) follows from Lemma B.2.1; (ii) follows from Zze[n i = K; (iit) follows from

max; 01.2(50) < maxi(?f? + A%Z‘f +2A,7;) < C(1+ A,) and max; H% < 'l < C; for (iv),

note that o,(1 + Ap) — 0p(1 + AT) = 0,(1); hence (B.1.39) is shown. We are now ready to

prove our result.
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Let A,, = AT = A. Then
(I, ION(0, ) + Apg = dy ' (dn (I, T )N (0, %) + Adypire) = dy,* (0p(1) + Adopire)
so that WPAT,

(0p(1) + Adnpg)' Q5 (0p(1) + Adnpg) > mineig(Q ) - A%d2 i px

= mineig(Qy) - A*d2iz = mineig(Q,y) - A*i* > 0.

Therefore, WPAT1, the last line of (B.1.38) diverges to oo, as d,;! — oo. By (B.1.38) and
(B.1.39) we have

Q(Bo) = Ce(Bo)'Pe(Bo) + 0p(1) — oo

Furthermore, by lemma 2.4.2 we know that ¢1—o(Fj,) = Op(1); by lemma 2.4.1 and (B.1.20),

we have

D, <,8 )
= > icm Pue (Bo)

P (Q(A0) > Caap(®1(80))) =P | QB0) > q1-a(Fa,) + (11-a(Fz,) — 1)
( ) NoSERCYY

—Pp (@(50) > Op(1)) —1

This completes the proof for the first part for the statement of Theorem 6. For the second
part, WPAT,

T(Bo, 1(B0)) = szze (Bo) ( 50)—1) (B.1.40)
K®1(Bo) icln

by @(ﬁo) — oo and WPAL,

Z €ln] Pzze (ﬁ()) (4) Zle[n PmO' (BO ’Lz CZZE Py O\/_

\/th Bo) - \/Kq)l Bo) \/W \/_

where (i) follows from Lemma B.2.1; (i7) follows from assumption 6 and 61(50) < ( for
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some C7 > 0 WPA1. Furthermore, by (B.1.28) and (B.1.32), P-almost surely,

- 5 A2C
lim lim CZ,. (®1(80),L) D qia | N | —=.1] |,
n—o00 B—oo df L0 ! \/ (I)l(ﬁ())

so that combining with (B.1.40) yields the second statement of Theorem 6.

B.1.9 Proof of Theorem 7

Note that we have d,ug = and A = A, = d,A — 0. Then by (B.1.37), A,n~ 1275 =

op(1), whence

AVA

e(Bo) Pe(Bo) = (n 22"+ Apn~ 12 Z'T1Y ( -

-1
) (n"Y2Z'E+ Apn~Y2Z'TD) + 0,(1)

_ (274 Ry (an ) (225 + R7D) + 0p(1)

'
K

e ZH Piie; (B) = iz Z[] Piio; (B) + 0p(1) = e Z Piio; + op(1)
en en

i€[n]

Furthermore, by Lemma B.2.1, p, = O(1) and A — 0, we have

where (3 is the true parameter. Therefore we have

~ , -1 o~
(n=Y22/E + ARy (Z—nZ) (n=V22'8 + Aq)

~ / ~
_ ((Z’AOZ)_l/QZ’EJr (n‘lZ’AoZ)_1/2Aﬁ> Q(8) ((Z’AOZ)—1/2Z”5+ (n‘lZ’AOZ)_l/QAﬁ) +op(1)

~

Q(Bo) =

+ 0p(1)

/

~ (N(o,zK> - z(om) 0 (8) (N(o,m - z<o>lﬁ> = Zx (z<o>£ﬁ)

/

Q' (8) 2k (2(0)A7)

(B.1.41)
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where Q(f) is defined in (2.2.6), Ag := diag(Ao 1, ..., Ao,n) and the convergence follows from
(B.1.37) and Q*(8) := limy 00 2(5). Next, we deal with the critical value. If we show that

®1(So)
\/%Zie ue (60) p 1

V22 el Wi+ 1/df

then by (B.1.41) and (B.1.20) we can obtain

and

(B.1.42)

lmlP(@U%)>Chdﬂ$ﬂ&ﬁ0:=P(ZK(EUDKﬁyfo%ZK<ZUD5?>>qvaU%0>a

n—oo

which completes the first part of the proof. Note that by Lemma B.2.1, since A — 0, we

have
50 KZZ N252+0p (1)
n] j#i

Repeating the proof of Lemma 2.4.1 yields

®1(fo)

= V2[[wal|F + 0p(1)
\/_1} Zie[n] Pllezz(ﬁo) P

By Lemma B.2.3 we have that

2
in — Wn) — 1
Zrél[ayj(w wp) op(1)

Finally,

1 (8o)
T%ZZE ne (ﬁO) o \/§||wn||F

\/er ydf  V2lwall%+ 1/df

where the last equality follows by recalling from (B.1.27) that

Valwllr |
T =~ D
V2|l

+o0p(1) =

[|wnl|

iy~ Lol
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Therefore, together with the assumption that w, — w* (which holds as lim,_,. 2(8y) —
02*(6p)), (B.1.42) is shown. This proves the first statement of the theorem. To prove the
second part of the theorem, note that 61(50) E ®1(5p) by (2.2.12). Furthermore, observe
that by (B.1.41) and Lemma B.2.1,

~ 1 ~ > iep FPiioi (Bo) /~
T(Bo, ®1(Bo)) = ——=—=—= Puc}(f0) (Q(Bo) — 1) = Q(Bo) — 1) +0p(1)
0, F1L70 \/mie% 0( 0 ) VE®1(Bo) ( 0 )

~ /

2k (S0)A7) @82k (SOA7) -1
V2|

(B.1.43)

where the last equality follows from the proof of Lemma 2.4.1. Finally, by (B.1.28) and
(B.1.30) we have P-almost surely,

. . = D w
lim lim C'C]ideS(@l(/Bo)»ﬁ) S -« Z —Z(X%,i -,

n—o00 B—oo

so that combing with (B.1.43) yields the second statement of Theorem 7.

B.1.10 Proof of Corollary 2.4.1

The result is a straightforward application of Marden (1982)[Theorem 2.1}, by observing
that the acceptance region A := {(a1,...,ax) € RE : Zz’e[K] aw; < Q1—a(zz’e[K] wixi )}
is convex and monotone decreasing in the sense that if (ay,...,ax) € A and b; < a; for all i,
then b e A

B.1.11 Proof of Theorem 8:

We prove the first statement of Theorem 8 first. Begin by noting that A = A and K = [i.

Defining A, := n=V/22'¢ + An=1/22'7, V,, := EA, A’ and Y, := %, we have
ictn) 1105

(An + 1) (B2) (A + 1)
> et Fiio} (Bo) + A2 37 Pilly + op(1)

Q(6o) Y
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'A(ﬁo)P/}v(ﬂo)Z
D icin Piio? (Bo) + A2 37 ey Pull?
1 Z'N(Bo) PA(Bo) Z
> e Fiio} (Bo)
(i) (14 V) Vs vo1/2 n+V_1/2~) 9(50)(V_1/2An+v1;1/2ﬁ)+0p(1)

@(Hyn)_l <N(0 Ig) + 3(A )) (ﬂo)( (O,IK)+E(£)22> (B.1.44)

(@) (V_l/QAn+V 1/2m,

(Vo2 A0 + Vi 200 + 0,(1)

= (1+ D)7 (Vo PA + V5 ) (Vi 2R, Vi V2T + 0,(1)

where (i) follows from Lemma B.2.1; (iz) follows by recalling that
A(Bo) := diag ((Ef +2A7; + KQZZ-Q), (G4 207, + KQZ,%)) ;

(1ii) follows from definition (2.2.6); (iv) follows from (B.1.37). To deal with the critical-value,
note that by Lemma B.2.3 we have that

g%(wz n — Wp — /\z{In)z = op(1)

so that

A2 PuIl2
Eze[n] 7 +2w;1AH +0p(1)

2 icfn) P} (Bo)
= lwn| % + Y + 20, A" + 0,(1) (B.1.45)

[@nllf = llwn + A" |[F + 0p(1) = |lwal[f +

where AH = ()\H

T - 7>‘§,n) is defined in Lemma B.2.3. Furthermore,

61(50) (7) \/K i€[n] ]752 1] g (BO> (60) n (1)
= (@)
\/LE Zze[n] Pnef(ﬁ()) \/I? Zze[ nU (60 Zze[n PMHQ g

(i%) \/% ZZ JEN] Pz2] 22<ﬂ0) (BO)

B ;T op(1)
\/7 ZZG P”U (BO \ﬁ Zze[n “H
\/? i,j€[n] 7.] a3 (ﬁO) (50)

_ \ﬁzze PaokB) op(1) (0 V2wl

Zze[n] P“H 1 + yn
1+ S Pric?(Bo)

110, (/BO)
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where (i) follows from Lemma B.2.1 and (¢) in the proof of Lemma 2.4.1; (ii) follows from

(b) in the proof of Lemma 2.4.1; (¢i7) follows from (a) in the proof of Lemma 2.4.1. Therefore

we have
HED)
e e T () el +op(1)
V22 iew) Wiy T 1/df (14 In) (%IIwnH% + Vn + 2w, AT 4 1/df)
(@) [lw*||F +op(1). (B.1.46)

Vw5 + 20" Ay

where (i) follows from (B.1.45); (ii) follows from ||w,, — w*||F = o(1), 1/df = o(1), and

A D icn Pilly (i) A%p, D i 1T A2p T (i0)
Zze[n] Pu'(f%(ﬁo) B Zze[n} Py K

Yy = o(1);

(#di) follows from o?(By) > C > 0 by assumption 6, (iv) follows from IT'Il = O(1) and
Be = o(1) by assumption 6. Furthermore, we can show that

Ag=(n"12'2)"
n

(n~12'2)71% 0, (B.1.47)

which follows from

n

Z'H,Z
)\max ( = ) AQ max Z Z; ZHZQ < — Z )\max Z Z/H2

ze[n

< 7 -z L

1€[n]

Z2% = o(1)

where (i) follows from sup; || Zi||r < oo by assumption 8. Therefore, combining (B.1.46) and
(B.1.47) yields

D)
ﬁ Zie[n] Piie?(Bo) D

— —1 (B.1.48)
\/ QZz’e[K] wz‘Q,n + 1/df
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Finally, since A7 — 0 and maX;e (k] (Wi —wn— AT )2 = 0p(1), we have ||w,, —wy||% = op(1).

This implies
Q1—o¢(F{En) = q1-a(Fw,) + 0p<1) 5 q1—a(Fu+)

In view of the preceding equation, (B.1.44), (B.1.48) and (2.2.9), we have the first statement

of Theorem 8. For the second statement, note that we just showed

®1(fo)

= V2[[w*|| + 0p(1)
7 Lietn i€} (B0) g

Therefore by (B.1.44) and V), = o(1), we have

T (60, ®1 () = Pae2(B0) (Q(0) = 1) = ———— (@) — 1) + 0p(1)
0, ®1(5o — (50)162[71} 0 ( 0 ) \/EHUJ*H( 0 ) P
2 (SA) ()2 (A7) 1 -
V2l -

Next, by (B.1.28) and (B.1.30) we have P-almost surely,

n—00 B—oo

lim lim CZ (®1(60),£) B q1-a Z\/’Iyly}w*um -0,

so that combining with (B.1.49) yields the second statement of Theorem 8. Finally, the last
part of the theorem is shown in exactly the same way as the last part of the proof of Theorem
4.

B.1.12 Proof of Corollary 2.4.2

Repeat the proof of corollary 2.4.1 and replace M; by M; for each i
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B.2 Proofs for Technical Lemmas

Lemma B.2.1. Under Assumption 5 and 6, for any fired A := 3 — [y not necessarily zero,

Zpue 50 ZP’LZU BO +_ZP11H2+Op

ze[n i€[n]
where 30 3 e q Pall? = Op(A%pn )
Proof of Lemma B.2.1:
To begin, recall
o7 (Bo) = 7" + ARF + 2475, (B.2.1)
Furthermore,

2(Bo) = (ei + AX)? = (M]V)E + ATL + Av;)?
= (M}VYe)? 4+ 2AIL;(MV)'E + 280, (M) € + ATI? + 2A2TTu0; + A%?
= Ai,l + QAA@Z + 2AA1'73 + AZAZ'A + 2A2Ai75 + AQAiﬁ (B.Q.Q)

We will show that

1 (AL 2y Pn foW

? Z[} P’L’L(A’L,l - 0'1') = Op < ? + \/ Py, ) (B23)
1€|n

1 [Pn

17 Z PiiAi 2 = Op( E), (B.2.4)
i€[n]

1 ~\ pn W

17 ZH Pii(Aiz — i) = Op(1 ] 7= =tV ), (B.2.5)
1€|n

1 , I

e Z PiiAi 4 = Op(A ]%7) (B.2.6)

1 _ pn W

? Z PiiAi,S = Op( E +pn ) and (B27)
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1 (A ~2\ _ Dn /W
? Z pn(Az,6 — S ) = Op( ? + \/ Py ) (B28)

i€[n]

Observe that

%ZPZ’L 21_0 KZPM - i ZP“Z ejel ZPM(ZPZ‘;‘/E})Z
i€[n] 1€[n] ze[n Jj€[n] ie[n] j€[n]

= B1+ B2+ B3

By Markov inequality and

we have that By = O,(y/ ). Since

Z Z PuPz’z’ Z Z PWP ,E Ezg]gl,g],)

ZG[H]ZG[ ] Jj€ln] j'eln]

- % Z PIY "> P PYEE ) + e Z > PaPer Y > P PEEE )
i€ln]  j€[n] j'€ln] i€[n] v #1 j€ln] j'€n]

<—Z Z i K2ZZPPHP P’/_._(Pi‘i/‘//))
i€[n] JE[n] i€[n] 'F#i

<Cpy (B.2.9)

we have By = Op(1/pV). Also,

EB; = Z P Z 252 < = 7 Z PPy <Cpl =0(p))

ze[n J€[n] i€[n]

so that putting it all together yields (B.2.3). Next, we can express A; 2 = IL;e; — II;(P}V)e =
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A;21 + Aiga. By Markov inequality,

2
1 - C Cp p
(Fyomna | <G> rs Dot
1€[n] i€[n]
and
2
1
= > Pidizz | <73 S Papy yZ| Pl < Cpl,
i€[n] INE

we obtain (B.2.4). For (B.2.5), observe that v; = v; — >, ]P vj and Mle = ¢ —
Z]E[n] We;, so that

K Z P“ i,3 — ’YZ K Z Pzz ezvl 71 Z P“UZ Z (]

i€[n] i€[n] ze[n J€[n]
ZPMQZ H]+EZPZZ(Z Z
ze[n J€[n] i€[n] J€[n] j€[n]

= Bs + Bg + By + Bs
Note Bs = Op(\/%) and Bg = Op(\/W) by
EB? < % > P
i€[n]
and
EB; < Cp),’

as in (B.2.9); the argument for By = O,(1/pY) is analogous to Bg. Furthermore, by

BB < 3 PP Y R+ S

1,1’ €[n] Jj€ln] j’€ln) j€ln] ze[n

i)> = O((pn)?)

we have (B.2.5). Next, (B.2.6) is obvious. For (B.2.7), noting that vjvy = 0ivi+3 ey PV, > ]
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Wor ~ Wo ~
Zée[n] Py vevi — Zeqn] Py vevir, we have

! C
E(? Z PiiAi,f))Q = ﬁ Z P’iiHiPi’i’Hi’E(UiUi/)

1,1’ €[n]
< —ZPZ%H? K2 > Pallli| P [Tl ) |PZ%VP%|+K2 > Plll| P [T || P
i€[n] 1,1’ €[n] Le(n] 1,0’ €[n]
< C_ Z Pu + = K2 Z Pzzpz’z’ Z Z (PZ‘//Z)2 + CpTVLV
i€[n] 1,4’ €[n] Le(n]

§0?+C’p +CpW O(pn pzv)

Finally we deal with (B.2.8). Since v? =07 — 2 Z]E[n P%Vfﬁﬁj + (de[n] PY;)?, we have

KZP’LZ 1,6 — z szua;z 622 ZPMZ UZU] ZPZZZ
i€ln]

i€[n] 16[ ] J€[n] ze[n] Jj€[n]

= Bg + Big + Bi1

Observe By = Op(1/52) by

2

-3 KQZ
i€[n]

7

1 ~2
7 2 Pul@
i€[n]
Furthermore, similar to (B.2.9) we have
EBfy < Cpy =0y

and

EBH < — Z P” Z < Cp O( )

€ln] J€[n]

This completes the proof of (B.2.8). By the assumption of 22 = o(1) and p}, = o(1), each
term from (B.2.3)-(B.2.8) except (B.2.6) is 0p(1). Hence Lemma B.2.1 is shown.
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Lemma B.2.2. Suppose Assumption 5 and 6 holds. Then for fired A not necessarily zero,

% 2 2 Pheoln) = 2 S Phot()

i€[n] j#i i€[n] j#i
Proof of Lemma B.2.2:
Step 1: We first show that
72> Pie KZZ
i€[n] j#i n] j#i

2

Note 01-2 =07, SO We can express

(&

2 2_ W~ ~
Z-—O'Z-— e—a —25 Pjj ejei +
J€n]

=Cip+Cig+Cigs.

Therefore

I DIPILALY

ze[n ];éz

zl+012+013)

o%(Bo) +—ZZP2H2 2(Bo) + 0p(1)

i€[n] j#i

3 (B0) + op(1) (B.2.10)

(27

JEn]

K2ZZ Z ZZPEJPZQJ/UJ 50 O (BO) ( ZEOZ é’)

(=1 £'=1ii¢[n]

= % ZZB&@

(=1 ¢'=1

| 3# J'#

We will show that %B&E’ =
Markov inequality. First,

—2 By =
i/ E€n] j# j'Fi

K2 Z Z Z PZ%PZQJ’UJ (BO)

i€[n] j#£i j'F#i
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KZ Z ZZP@%PZQ]’O‘] 60 0-’(60) ( ’LlC’L 1)

C
K2an =o(1)



where the inequality is from

(e

EC?, = — 0} <Eei+at<C

Second,

LIRS DIDIDY

2 p2
Pz]sz’

0] ﬁoa,(ﬁo (€2 — 5?2 ZP,keke,

ii’'€n] jF#i j'Fi ke[n]
@)
< K2 Z DI ZACHLACHI Z DD PPy < Cpl =o(1),
n] j#t j'#i n| j#i j'#i
Third, note that
Cia=Y (PYPE2+3 "3 PYpRYEs, (B.2.11)
j#i J#i k#i,j
SO
—2 Bz = K2 Z Z ZPZZJPZQJ/U] e — a PZ%)%%)
i,i'€n] j# j'Fi k;ﬁz’
Z ZZPZ%PZQJ,UJ Bo) a, (Bo)E e —0 Z P,kPk,kekek,)
i,i'€[n] j#i j'# k;éz k'#i )k
2 p2 2~2
DD T @ - P
HEn] JF£i §'F#a k#z
CP 2 2
S S e o -
ii'€[n] j#L j'#
Fourth, the proof that %BQJ = 0p(1) is analogous to that of %BLQ = op(1). Fifth, using

the simple inequality of |ab| < %a2 + %bz

K2 22 = KQZZZ o (Bo)r (5

i,i'E€n] j#i j'F#i

§:P
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< 2 20D Ao (E | (3 Piad)

ii'€n] jF#i §'F#i k€(n]
2 p2
<15 S SRR P <Ol = o).
i,i’€[n] j#i j'# ki

Sixth,

[(1—2323 Biu K2 Z ZZ i zy 0 BOO—/ 50 ZPk ekel ZPVV)QEJIZC

i,i'€[n] j#i j'# ki k4!
Y S A (S A Y A
i,i'E€n] j#i j'Fi £ k#£i k£ k

—K2 Z ZZ ij l] ] ’(50)

i,i'E[n] j#1 J'Fi

S S PR o0 S (P P P+ (PP )

1,0/ €[n] j#i §'# IZ2)

Cpn’ 2 p2 w
< K2 Z ZZP’L]PZ_] < Cp, =o(1).

i, i'€[n] j#i j'#i

Seventh, the proof that +Bs1 = 0,(1) is analogous to that of %3173 = 0p(1). Eighth, that
%3372 = 0p(1) is analogous to that of 7-Bag = op(1). Finally, using 2|ab| < a® + b2,

333 < K2 Z > ) PipiE Z P () Phier)
ken)

i,i'E€n] j#i j'Fi

= K2 Z ZZP%PZQJ Z Z Pii)? + Z Z | PR Py P P

i,i'E€[n] jFi j'Fi ken] k'e ken] k'e

Z ZZPZQJPZZJ < C(py)? = o(1)

i, i'E€n] j#I A0

The proof of (B.2.10) is complete.
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Step 2: We complete the proof.

Note that we can write e;(fy) = e? + AQ(HZ2 + Uiz + 2IL;v;) + 2Avie; + 2Alle;, so

e2(Bo) — 02(Bo) = (e — 72) + A% (v} — 2) 4 2AILv; + 2ATLe; 4+ 2A(vie;

Note that by the same proof as step 1, we have

KZZ i ( KZZ "ot o3 (o) + op(1)

n] j#i i€[n] j#i

and

K Z Z 1)1610' 60 K Z szj71 50 + Op( )

i€[n] j#i n] j#

Finally, we will show that

KZZP% 03 (Bo)Lie; = op(1)

n] j#i

and

KZZPEJ o} (Bo)vi = 0p(1)

n] j#i

— i) + APIT7

(B.2.12)

(B.2.13)

(B.2.14)

(B.2.15)

We will only show (B.2.14) since (B.2.15) follows the same proof. By the inequality (a+b)?

2a2 + 2b% and ¢; = ¢; — (PV)'€, we have

2

KZZPZQJ ]QBOH‘EZ

i€[n] j#i

<2 KZZP@?%H@Z +2E KZZP@? IL,(PY)e

n] j#i n] j#i
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where (i) follows from

A1<— ST PP < Cp”:o(l)

i,5,3'€[n]

and

AQS% Z PZQJPZZJ Z|

1,9,3,9’ L€[n] 1,7,5,5"

Z]PZ2] Cprvzv = 0(1)

where (ii) follows from Cauchy-Schwartz inequality. Therefore, by Markov inequality we
have (B.2.14). Combining (B.2.10)-(B.2.15) yields Lemma B.2.2

Lemma B.2.3. Suppose Assumption 5, 6 and 7 holds. Fix any A not necessarily zero. For
either fized or diverging K, consider any sub-sequence nj C n. Then there exists a further

sub-sequence nj, C nj such that

. H 2 _
ng[a%(wz nj, — Wing, — )‘i,n]-k) = op(1)

where A = ()\{In, . )\[Pgn) are the eigenvalues of Qg (5o) 1= % Hy, = diag(Tyn, ..., Tnpn)
’ ien) 1110 ’ ’
and Ty = AQH?. Furthermore,

(i) for K — oo, max; w;, = o( K~/2);
(1) for fized K, if wy converges to a limit under the full-sequence (i.e. ||w, —w*||Fp = o(1)),

then

max (W, — win — A2 = 0p(1)
1€[K] ’

Proof of Lemma B.2.3:

For notational simplicity, we abuse notation and write T; = T;,. Furthermore, we write
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K(BO) and A(fp) as A and A respectively. Note that for both fixed and diverging K, we have

=SS PR (5) ~ o (60) — T (50) ~ o3 (60) — Ty) = 0,(1) (B.2.16)

i€[n] j#i

where the last equality follows from

= >SS PR (B) — o2(Bo) — T(E(Bo) — o2(Bo) — == N —T;)(¢3(B0) — 1)
1€ n] j#i 1€[n] J;éz
Z > Pioi(Bo)a(Bo)— =D Y P2 T)o3(Bo) — = Y Y P} —Tj)o? (Bo)
i€[n] Jséz i€[n] j#i ze[n] J#
W 9p, — = Z N P2 —T)02(Bo) + op(1) 2 281 — 28, + 0,(1) = 0,(1)
ze[n | j#i

where (i) follows from noting that by repeating the proof of Theorem B.3.0.1, we can show

that

23> P T(ER(B0) ~ Ty) = = 3 O Po?(0)o3(fo) + op(1) = @1 + 0p(1);

i€[n] j#i i€[n] j#i

(1) follows from noting that by repeating the proof of Step 2 in Lemma B.2.2, we can show

in a similar manner that

K Z Z —T)03(Bo) = @1+ 0p(1).

i€[n] j#i

Fixed K case: Assume first that K is fixed. Then we have

KZZ e2(8o) — 02(o) — T1) (€2(Bo) — 02(Fo) — T5)

i€n] j€n

KZZ (o) — 02 (o) — T (3 (Bn) — o3 (Bo) —T))
i€[n] j€[n
ZPQE (Bo) — o; (50) ) = o0p(1)
ze[n
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where the last equality follows from (B.2.16) and

LS P () - o) %Z Cpn = 22K = o(1)
i€[n]

1€[n|

for fixed K. Therefore

|U'AU — U'AU — U'H,U||% = E|JU'(A = A — H,)U||%
= Etrace(U'(A — A — H,)UU'(A — A — H,)U)

= trace 1/2ZZZ/ (Bo) — o; (50 Z ZZ’ BO _J (/30) T)(Z Z)_1/2
Jj€[n]
= 573" PR (B0) — 02(80) — TS (o) — 02(Bo) — Tj) = 0p(1),
i€[n] j€[n]

which gives us
|U'AU — U'AU — U'H,U||p = 0p(1) (B.2.17)

Then we have

0 502(80) - U'(A = Ha)U = S, Pac(0)U'AU ||
HQs,n(BO) - Qs,n(ﬂo) QH ﬁO HF Zze[n ) ( Zze[n] z( 0)

Z €[n] Pzze (BO) Zie[n} Piio'l?(ﬁo)

a
2
2
_ /K 3 || D2 Paot(B) - U'(A — Ha)U = 3 Pac}(B0))U'AU
(% ZiE[n] Pz’z'@?(BO) : % Zz‘e[n} Piiaf(ﬁo)) i€n] i€} F
2
() 1/K2 2 1A 2 /
Y Piio?(Bo) - U'(A — Ho)U = Piie2(Bo)U'AU
(% Zze[n] Puo-?(ﬁo)yl + Op(l) zez[n} 16% F
2
(1) 2/K? 2 A
< Piio; (ﬁo) . U/(A —A— Hn)U
(% Dicp Fiio? (B0)* + op(1) Zez[n] .
2
2/ K*?
+ Pu 50 —0; (50)) -U'AU
(% Dicpn) Piio? (Bo))* + op(1 z; F
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2
< = Pma B
(£ 5 ey Pio2(G0)) + 0,1 H E: ’
2

(ii1)
=" op(1)

9 2

. '%Z%WWWMm

U'AU
(7 Dieqm Piioi (Bo)* + op(1)

F F

where (i) follows from Lemma B.2.1; (ii) follows from (a +b)? < 2a® + 2b?; (4i4) follows from

2
Z Piio? (o) S max o2(fo)|| < maX(a + A%Z +2Ay) = 0(1)
i€[n] ’ F
) 2
®) || % E[:] Pii{e}(Bo) — o7 (50)} T [lop(1)[|7 = 0p(1) by Lemma B.2.1
1en
2
(c) wm—A—mmy = 0,(1) by (B.2.17)
F
(d) ' U’AU = Py} = = 0(1)
i€[n]
1 1 1

() < — — =0(1).
& Yicin Pioi(B0) T % >iem P €

Note that

1
Qs n 2 _ U/AU 2 P2 2
I (Fo)lf = 5= Hazxﬁ»” I = = HNL%QEZEZ o2 (o)

n] j€n]
< azz ij z 60) ( )
i€[n] jeln]

therefore, by Bolzano-Weierstrass Theorem, for every sub-sequence n; there exists a further
sub-sequence nj, such that Qs (60) — 2*(8). Let w* to be the eigenvalues of Q*(5),
so that w > 0 and Zz‘e & w; = 1. By continuous mapping theorem, wj; — wj for each
i € [K]. By [[Qun(B0) = Qo) — 2 (B0)lI} = 0p(1) and ||, (Bo) — 2 (B0)l[} = o(1),

we know

190,,, (B0) — (o) — Qa (Bo)l[3 = 0p(1)
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Given that w,, are the eigenvalues of Q s,n(Bo), by continuous mapping theorem @njk — )\gk E
w*. Clearly this means that maxje || (Win,;, — Win, — M )2 = 6,(1). This concludes the

Uz
proof for fixed K.

Diverging K case: Assume now that K — oc.
Note first that

1 1 :1<C.

< = <
K ZZE[TL PZZU (ﬁo K Z’LG n] P” Q

We will show that?

max W, = o,(K~/2) = 0,(1) (B.2.18)
(3
To this end, denote || - ||g as the spectral-norm. Observe that
19,60l 0] Al
max Wi n = 0)11S — s < S
7 o s ZlG[n] P1103(50> Z ZZ 7 (/8 ) 5

(i) 1 max; o7 (8p) (Z) C/K

= [Alls =
s Zze[n PZZU (BO i7e Zze[n PZZU (60)

12
2 iein Fiio? (Bo) SO

(B.2.19)
where (i) follows by U'U = If; (ii) follows from expression (B.2.1). Furthermore, we have

U'HnU||s ||H,||ls max; A%TI2  C B
max A7 = 15 (5o)||s = I n < _ POk 1/2)
e > ie Pio?(Bo) = KC KC K

(B.2.20)

Next, we can orthogonally diagonalize Q5(5p) = Q| DwQ1, Qu(Bo) = Q5D zQ2 and Qg (5y) =
Q3AnQ3, where Dy = diag(wip, ..., Wk ), Dw = diag(wip, ..., wkn); @1Q1 = Q1Q1 =
Ik = Q4Q2 = Q20 = Q5Q3 = Q3Q%. Then

max(W, — Wiy — A = ||Dg — Do — Ap|3 D110 (50) — A'Qu(Bo) A — B'Q (o) Bl|

i€[n]

3The reason we show that max; @;,, = o,(K ~/?) instead of showing 0,(1) immediately is that
we will be using this property in the proof of Theorem 2 later on
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< (104(60) ~ 2(50) — Qs (Bo)ls + 1925(60) ~ A (o)A + 2 (o) — B0 (60)Bls )

(i)
< 4)1Q%(B0) — Qs(Bo) — L (Bo) 15 + 41192s(Bo) — A'Q(Bo) All% + 4112 (Bo) — B (B0) B| g
(#i7)

< 4][9(B0) — 2s(B0) — 2 (Bo) |3 + o(K ) (B.2.21)

where (i) follows from A" := Q(Q2 and B’ := QQ3; (i7) follows from the simple inequality
(a + b)? < 2a® + 2b%; the first part of (i7i) follows from

=

(iv) v
41192 (50) — A (50) All% < 8/12(B0)l % + 8lIAQ(Bo) A% < 16]12(50) |13 2 o(K )

with (iv) following from A’A = Ik and (v) following in the same manner as (B.2.19). The

second part of (ii7) follows from

UG _ [HallE _ C
(O iepr Lo (Bo))* — K2C? — K?

41922 (o) — B'Q (50) B[S < 16]|2m(50)[[5 < = o(K™).

Next, we can express

2
- U’AU U'(A — H,)U
Qs — Qs —-Q
« 2 2
||vd—a—mu| || va-mggr - va-m)u
T || Riep Fuei(Bo) || D e Pii€}(Bo) Y ieq i (Bo)
) 2
U(A—AN—H,)U Q(Zie[n] Piie;(Bo) — Eie[n] Piio?(Bo))? - [|U'(A — Hy)UJI%
=2 Z p..62(6 ) T 2
i€[n] THEAT (Zie[n] Pyie2(fo) - > icln] Piiaf(ﬁo))

@ 20U (A — A — Hy)U|I3
(Zie[n] Piie}(Bo))?

+o(K™?) (B.2.22)

where (i) follows from Lemma B.2.1 and ||[U'(A — H,)U||% < ||A — Hy||% = max;(o?(6o) —
A%I?)? < C, in the same manner as in (B.2.19). We now separate the problem into two

cases now to consider: (A) % =o(1) and (B) % — ¢* > 0%, Suppose for the moment that

4Note that (B) should really be for some sub-sequence % rather than the full sequence. However,
we can always assume W.L.O.G that (B) holds for the full sequence since the result of Lemma
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we are under case (A). Then

HU/]\—A—H U||?S<||UfA_A_H [

=Y ) BAE(Bo) — 07 (Bo) — Ti)(e3(Bo) — o3 (Bo) — Z ¢ (Bo) — o7 (Bo) — T;)?

ze[n} jF#L

K)+ S PAE(Bo) - 02(B0) — T2 " o(K)

i€[n]

where (i7) follows from (B.2.16) and (iii) follows from

Z ¢; (Bo) — o7 (Bo) — T;)? <C—Z i < Cpnr= Z = = o(1)

1€[n] i€[n]

since p, < 6% = o(1) under case (A), together with assumption 7. Therefore, by Lemma
B.2.1 we have

2(|U"(A — A — Hy)U|I3

(g Pac?(Bo)? oK) (B.2.23)

so that combining (B.2.19), (B.2.20), (B.2.21),(B.2.22) and (B.2.23) yields
max w2, < dmax(w;, — wiy — M) 4+ dmaxw?, + 4max(AF )% = o( K1)
which proves (B.2.18).

Next, suppose we are now under case (B). Denote A= diag(e? + A%v} +2Aeqv1, ..., €2 +
A?v2 + 2Ae,vy) and AT = 2diag(Allye; + A%y, ..., Ampe, + A2TL0,). Then

1U'(A = A= Ha)U|% = [JU'(R = A+ ADUIS < 2||U'(A = AU + 2||UATU|[ (B.2.24)
We first show that the preceding equation is o(K). To begin, observe that

IUATU|E < [[UATUIF =4 ) PA(ALe; + Aoy (Alljej + ATLv;)

i,j€[n]

B.2.3 is provided for some sub-sequence.
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=4 ) PHAMLITee; + 20PN jev; + AMTLITv;)

i,j€[n]

Furthermore,

(B.2.25)

> PALee; = Y PRI (65, — 265(PY e+ (Y Ye(P)V)'e) = o(K) (B.2.26)

i,j€[n] i,j€[n]

where the last equality follows from

2
. C
(a) E Z PAIILjee; | < e > B Z < —0(1)
i,j€[n i,J€[n] ze[n
2
C
(b) E Z 2ILIe; (P Ye | < 2 > PIRLIPY P+ PP < Cpy = o(1)
,]G[n i.4,d",j'€n]
Z
Z PAILIL(PY)E(PYYe| < — Z PAII?E((PY)e)? < Z Z
,Je[n i,j€[n] i,j€[n]  L€[n]

<Cpp= 0(1>

where (i) follows from 2|ab| < a? + b?. In the same way as we have shown (B.2.26), we can

show that

Z Hiﬂjeivj = o(K)

i,j€n]

and

Z Hiﬂjvivj =o(K),

i.j€n

so that by (B.2.25) we can conclude

|U'ATU| = o( K).
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Next, we will show that
IIU'(A = AUJ|% = o(K) (B.2.28)
We can express
A = diag(e?, ..., e2) + A’diag(v?, ..., v2) + 2Adiag(eyvy, ..., envn) = A1 + Ay + As
and
A = diag(c3, ...,02) + A’diag(SE, ..., <2) + 2Adiag(Y1, ..., yn) = A1 + Ao + A3
Then by using 2|ab| < a® + b we have
"R = MUIE < 40" (Ra = A)UIE + 411U'(Re = A2) UG + 411U'(Rs = As)U I3
Therefore, to show (B.2.28) it suffices to show
1U'(Ay — AU = o(K), (B.2.29)

since the other terms can be shown in the same way. To this end, recall that e? =e2 +

1
((PZ.W)’E)2 2¢; (PW) Then define A1 1 = diag(e?, ..., €2) so that

10" (A — AU < 2|[Ar — A%+ 2|07 (A — Ay 1>U||%

< 2[Ary = Ml + 20U (Ar = M)UE = max(ef =37 + Y PH(EY) ()’
i,j€[n]
+4 ) Pi@Rye (P )e) -4 > prarV)e(pY)e)? (B.2.30)
i,j€[n] i,j€[n]

By Van der Vaart and Wellner (1996)[Lemma 2.2.2] and noting the l,-norm inequality || f||; <

|| f]l2, defining f := maXi(E? — 55)2 we have
1 9 nl/2 ) 12
E (g max(e? ~59)%) = 2l < Il < o max (E(F ~57)")
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_ n'2 1 _ 1
_C K :CK1/2K1/2_OWZO(1)

under case (B). Furthermore,

(@) E| > PHEYYQ (RO | < Y PE(RY) !

i,j€[n] JE[ ]

<P BN DD PP < ()’ K = oK)

i,je€lnl  Len] ten] L'€ln]

®) E| Y PUGETDEE ) < Y PREH(PY)E)?

i.j€[n] i,j€[n]
<o Y Bl Y B ol
i,J€[n] L€[n] i,j€[n]
(c) 2B ) Pre(RYYe((P)e)| < Y PIE@E(RY)e?+ Y PIE(PY)e)
i,j€[n] i,j€[n] i,j€[n]

Putting everything together into (B.2.30) yields (B.2.29), which in turn yields (B.2.28).
Combining (B.2.24), (B.2.27) and (B.2.28) yields

|U'(A — A — Hy)U||% = o(K)

Combining the preceding equation with Lemma B.2.1, (B.2.19), (B.2.20), (B.2.21) and
(B.2.22) yields

maxw n < élrlrlax(wZ n— Wi — A2+ dmaxw?, +4max(\E)? = o(K 1)
1 ’ ) ’ ) ’

which proves (B.2.18) for Case (B). The proof for diverging K case is complete.
[

Lemma B.2.4. (Conditional distributional convergence implies unconditional distributional
convergence) Suppose we have real random variables X, X1, Xo, X3, ... defined on a probability
space (2, F,P). Consider any sub-sigma-field A C F such that P-almost everywhere, for any
Borel set B € B(R) we have P(X; € B|A)(w) ~ P(X € B|A)(w). Then X; ~ X.
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Proof of Lemma B.2.4:
We need to show that for any function f € Cy(R), where Cy(R) is the set of continuous and

bounded functions on R, we can obtain
Ef(X;) — Ef(X) (B.2.31)

By Dudley (2002)[Theorem 10.2.5], we can express

E (O ) = [ F@Pxalin) voe N (B.2.32)

where NN; is the negligible set for each i € [n]. Define N := U;cz, N; where Z := {0,1,2, ...},
so that (B.2.32) holds for any w € N¢, with PN¢ = 1. For any w € N€ by our assumption
we know P(X; € B|A)(w) weakly converges to P(X € B|A)(w). Therefore, for every w,

/ F ()P x, ald,0) / F ()P xpaldrs).
R R

By Dudley (2002)[Theorem 10.2.2], for every fixed w, Py, 4(dz,w) is probability measure

over € R. Hence, by dominated convergence Theorem and (B.2.32)

/00 ~E €A @) = [ [ Padn P
= [ Pyt w)pa) ~ Ef

which proves (B.2.31)

Lemma B.2.5. Assume that we do not have controls W in the data-generating process of
(2.2.1). Fiz any A # 0 and let L\/%H = O € REX" guch that Okl,, = §K e RE s fized
for every fized K, where Aty := diag(I1y, ..., 11,,) and 1,, € R™ is a vector of ones. Suppose
that for every fivzed K, ||Z'(£¢' — EEE)Z||p = op(1) and assumption 8 holds, where & =

e; + Av;. Furthermore, assume that Apin(00K) > C1 > 0, Mpaa(E1,x(A)) < Co < o0,
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and HgKH%/K < %, where C1,Cy does not depend on K. Then

lim lim P ((Z’e(ﬁo))’(Z’K(ﬁo)Z)_l(Zle(ﬁo)) > q1a(x?<)> =0

K—o00n—o00

where K(BO) = diag<e%(ﬁo)7 ) ei(ﬁo))

Proof of Lemma B.2.5:

Fix some K. Define J,, i := (Z'e(80)) (Z'N(B0) Z) "1 (Z'e(Bo)) and 1 g (A) 1= I S(A)logc €
REXK where log = (Ig,Ix)'. Then e;(59)? = & + A2 + 2AIL¢ and Z'e(By) =
Z'¢ + Ay/nbg.

nY2Ze(Bo) ~ N (AE}@(A)@K, 21(A)) (B.2.33)

where the convergence follows from the Lindeberg-Feller Central-Limit-Theorem, assumption

8, LIl — (1) and || 2/ (¢¢—EEE) Z|| p = 0p(1). The Lindeberg-Feller condition can be verified

’ n2

by fixing any 1 > 0 and observing that

LS Bz 1zl > v € 23 EIZEEPUZeEl > 1)
]

ze[n} ze[n
W Bzl Oy 1 ¢
< = IR Y s — =
_n.[] nn - Hnn nn_>0
S ZETL

where (i) follows from the Cauchy-Schwartz inequality; (i7) follows from E||Z;&;]|% < max; || Z;||FEE! <

C; (iii) follows from Markov-inequality. Furthermore, we have

Z'NBo)Z

n

= %1,k (A) + A*0 Ok + 0,(1) (B.2.34)
where the equality in the preceding equation follows from Markov inequality and

Zie[n] E¢ 2 trace(Z; 21 Z; Z)) CZ@G 112 sup; || Zi| |3 _ 11 Q)
p— = O
2

n? n2 ~ n

c D iepn) ZiZilliki
n

F
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Therefore, by (B.2.33) and (B.2.34), we have

Inic ~ Z(A0K) (I + A28 (A) 20405 1 (A) V)1 Z(Abk)
Xi (A2 7)

)\min(IK + AZELK(A)_l/Q@/K@KELK<A)_1/2)
Xk (A%[10x|17)

1+ A2)\mm(ZLK(A)_l/Q@/K@KELK(A)_l/Q)

< A2 |3

14 AZ)\min(217K(A)_1)/\min(@/[(@l{)

X5 (A0 [3,) < X5 (D210 17)

- 2 dmin (01 O1) = 1+ A2C;
L A e (a) ’

<

(B.2.35)

where C'5 > 0 is some chosen constant such that it does not depend on K and T Sk (A)) 2

% > (3 > 0 by assumption. Finally, note that

X OxllEy g 4 A%l
= <1 B.2.36
1+ A2C5 1+ A2C5 ( )

whenever Cg > %. Since HgKH%:/K < g—;, we can always find such a Cj, so that by
noting fh—a(%) — 1, combining with (B.2.35) and (B.2.36) yields

lim lim P (J,x > qi—a(x%)) < lim

K—00n—o0 K—o0

2 2117112 2
X (A%0k | 7) XK
P _a(== =P(1-— 1) =

for some 17 > 0.
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B.3 Two Estimators Satisfying Criteria (2.2.12)

This section provides proof for the consistency of Crudu et al. (2021) and Mikusheva and Sun
(2022)’s estimators under the null, for both fixed and diverging instruments. The diverging
instruments case is discussed in the aforementioned papers. We show that under some

regularity conditions, consistency under the null still holds for fixed instruments.

Theorem B.3.0.1 (Standard estimator). Suppose Assumption 5 and 6 holds. If ’% =
O(1), then for fived A,

(I)standard : K Z Z Pz% Z2 )

1€[n] j#i
== S 02(fo) + 20202 (o) + AMTIIE) + 0p(1+ Y AY)
i€[n] j#i i€[4]
_ (I)I(BO) + Dstandard ‘|‘ Op 1 + ZAZ

1€[4]
where ®1(5o) := 3¢ Zze in] Zﬁgz 00 o?(Bo)o (50)

Theorem B.3.0.2 (Cross-fit estimator). Suppose Assumption 5 and 6 holds. Furthermore,

!
assume py, % . Then

o5 (8) = % D ) Brlei(Bo) Me(Bo))ej(Bo) Mje(Bo)] = ®1(8) + 0p(1)
i€[n] j#i

where M .= I, — Z(Z'Z)~1Z" and ]3% = WZM? For fized A # 0, prnl'[ MII — o),
then
O (Bo) = @1(o) + DY (A) +0p(1 4+ Y~ AY)
where
cf 2A2 , )
pRa) = Z A)MIIV;(A) M;IT
i€[n]

| §#i
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2A222P2HM660HM660 +—ZZ V(A)V;(A)MITT

i€[n] j#i n] j#i
N B V(AL Mle(fo) + Z > BAVi(A)M{TITL; Mje (50))
i€[n] j#i n| j#i

with V(A) := e+ Awv.

B.3.1 Proof of Theorem B.3.0.1

Noting that e;(8p) = Vi(A) + AIl; where V;(A) := e; + Av;, we have

Byederd(5y) = = 373" PRVA(A) + AT 4 2ATLV(A)(VA(A) + A2 + 2ATLV(A))
i€[n] j#i
21/2(A 212 (A
KZZP TS S0 3
ze[n ] j#i n] j#i
2A4
N PAILVA)VA(A) > PRI
ze[n] ji ze[n | j#i
SAS 22 2
ZPZJH,LHV ZZP ILIT;Vi(A)V;(A)
n] j#i ze[n | j#i

5
EZTg

=0

The proof entails showing that

KZZB% o2 (50)o3 (Bo) + opl(1+ > AY) (B.3.1)

n] j#i i€[4]
4A2 2 2 2~2 3 4
> PIII(G7 + AT + 2A%) + op(1 + AT + AY) (B.3.2)
ze[n | j#i
Ty = 0p(1 + A% + A3 (B.3.3)
oAt 5
= Z > P (B.3.4)
ze[n | jFi
Ty = op(1 + A% + A (B.3.5)
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Ts = 0p(1 + A% + A3 + A%

(B.3.6)

Combining (B.3.1)-(B.3.6) yields the second equation of Theorem B.3.0.1. By recalling that
o?(Bo) = o7 + AQZE + 2A%;. Combining with

447 ZZPZH? o2 + A%

ze[n | j#i

and

C(A% + A% + AY)

+2A9;) < - Y PE=C(A%+ A%+ AY)
i,5€(n]
21712 2 4
Z PAII?II? < Z — CA

n) j#i i,j€n

yields the last equation of Theorem B.3.0.1.

Step 1: We show

TP

2 2
z]zg KZZPZ]UZU]+OP )

i€[n] j#i i€[n] j#i
By noting e¢; = (¢; — > teln PM €y), we observe
KZZ zyeze]_KZZPZ%NZQ? ZPEJNZZ
i€[n] j#i i€[n] j#i n| j#i Le[n]
ZZPff? meﬁ—ZZ
ZE[n ] j#i n] j#i
ZZ Z W Ee(Y P e’
n] j#i Le[n L€(n]
Z Z ng €r€;) Z Pg eg
i€[n] j#i Le[n) Le(n]
9
= Z Am
m=1
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(B.3.7)

§ : jt &)’
i€[n] j#i

Le[n
ZZP@Q]NJZ Z il 64>2
n) j#i Leni
Z > PSPl Z P &)
26 [n] j#i L€n]



We will show that A, = o,(1) for m =2,3,...,9. First,

2
KZZ @)Y Piag
ze[n | j#i L€(n)
= 3 SIS RS S PYPRE® - 5@ - 5)aeieey)
ZZETL] JFL §IEY Ee[n]é’ [n]
—KQZZZ DI IO WLl PR zzz 22| Pl
n] j#i £€n i€[n] j#i Le[n] n] j#i Len
Cpn Pn
2p2 < =o(1)
ZEZ[T; EEZ Zl

implying that

:%ZZPZQJNfZPgeEe]—i—Op (1)

i€[n] j#i len
Furthermore,
2
® Z D ) P
n] j#i Le[n]
K2 Z Z Z P%Pfj/gz Sir Z Z Pjg P,g/ (evejepejr)
i,i'€n] j#i jIFEV L€n] 6’7&]
2 p2 2 p2 W W
< Z SRR B g X 2SRRI
i,i’€[n] j#i L€(n) men] J#L §IFEY
C
szWK+ ﬁ( w )2K* = 0(py) = o(1)

so that Ay = 0,(1). We can show that A4 = 0p(1) analogously. Next,

EA3<— > P (P2 < Cpy = o(1)

ze[n} J#i Le[n)
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so A3 = 0p(1). Note that A7 = 0,(1) by the same argument. Next,

Edy < DS SR XD (B +1PY P PYPY) | <00l = o)

i€[n] j#i £,ken]

s0 Ag = 0p(1). By the simple inequality of |ab] < $a® + 32,

E%ZZ Z L;ezeg Z gejeg

ze[n] J#i L€[n] Le(n]
ZZ Z Pl &)’ +EZZP12EZ eejez
ze[n] J#i L€n] i€[n] j#i
2
ZZP@?E > Pl ZZ Y (P2 <opyl =o(1)
ze [n] j#i Le(n) n) j#i Le(n)

so As = 0,(1). Next, observe that

=3 ZZPQE Z Pl et = e ZZP2E64E Z Ple,)"!

i€[n] j#i Le(n] i€[n] j#i Leln)
W4
S DI DI AL NI W
i€[n] j#i Le[n] ken] Le(n]
< Clpy )?

implying that

EA% 2 Z Z Z il €Z€g % Z Z ij Z V4 6J€€
i€[n] j#i

i€[n] j#i Le(n] Le[n

< Cpy +Clpy)* = 0p(1)

Hence Ag = 0,(1). The proof of Ag = 0,(1) is analogous. Therefore we have shown that

& 2 2Pl = At o)

i€[n] j#i
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It remains to show that
A=D1+ 0p(1) (B.3.8)
By defining 7, := (W/W)~'W’e, we can write e = ¢ — W7, so

Qee = Qze — 2Qz w7, + QwA., w3,

By the fact that Ay, (W' W/n) > C > 0, we have that 75, = Op(n_1/2). We can express

1 A AN
|QW%7W%| = \/F WPW/V@ o \/_? Z Pl Wh/e - _\/_?76 Z P“WWZ/%?

i€[n] i€[n]

Pn i~
< ¢_||%||FAmax > Pawiw < 7l el A (W)

1€[n]

= %Opm—l)op(n) = 0,(

so Qws,, w5, = 0p(1). Furthermore,

) = op(1)

sl

—— 1 ~
EH_ Z PyeiW!||% = —E Z Z Py Pjjeie; W,Wi | = Etmce(z P252W, W)

n] j€[n] i€[n]

p’n / p2
< n
C’Ktmce(W W) = O(—Kn)

so that
Qe = ——T PWF, — —— Y PieWF = | —= ZP A o
e, Ye \/F e \/? . -1 7 /€ -1 1 e
1€[n] ZG [n]
p _
= op(\/%nlﬂ)op(n 2y = 0,(1).
Therefore Qc.e = Qzz + 0p(1), implying that &1 = Avar( == Zzen Z]# 2]~12~j2, S0
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we can express our requirement of showing (B.3.8) as
2~2~2
KZZ 25757 + 0p(1) (B.3.9)
1en j#i
instead. Express

2~2~2 232752 S22~ | ~SD~2 ~2~D)
Al——g g Pj;o; ]_KE g Pi(eje; —ejoj +e;o; —0;05)

n] j#i i€[n] j#i

KZZPEJ? P2(e25% — 5757) = By + By
€N j#i 1en j#i

and note that

~ i)
O 2SS B @ -3 +o,(1) D o,(1)

i€[n] j#i
where (i) follows from
2
E|B—— Z ZPZNE ej — 5]2) K2 Z Z PZ%Pf],E (e? — 02)(5? — af)(gf, oa
ze[n | j#i i1’ €[n] j;éz
J'#
£ p4 1
SN WIS S
n] j€ln]
and (ii) follows from
2
~ ~ C C’p
252 2 n
KZZP RSP LS S
n] j#i i,i'€n] j#i

The proof of By = 0,(1) is analogous to (ii). Hence (B.3.9) is shown, which proves (B.3.7).
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Step 2: We show (B.3.1) In a similar way to showing (B.3.7) we have

2A4ZZ zgz2]2_ ZZ gzgj+0P1+A4)7

n] j#i i€[n] j#i
2 2
MZZ%M%MEEZWWMM%
n] j#i i€n] j#i
4A? 2,22 2
TZZ“‘ = ZZ JE + o1+ A%
i€ln] jF#i n] j#i
%ZZPQezv]e] ZZ 07]+0p1+A)
i€[n] j7i n] j#i
4A3 2 92 3
YZZPUUUJ% ZZ 35+ op(1 4+ A%)
i€[n] j#i i€[n] j#i

Therefore by expression (B.2.1),

KZZP2V2 ] Kzzpfjele]—k—zzpﬁ]vz%—i—_

i€[n] j#i i€[n] j#i n] j#i
4“22 T2 Peue+ g
n] j#i ze[n | j#i
S el a4 35
i€[n] j#i i€[4]

Therefore (B.3.1) is shown

Step 3: We show (B.3.2). Note that we have

4A2

Z Pl = D PG + 0p(1 + A?)

n] j#i ze[n ] j#i

ZPZ 22 = ZPQAQHQ—{—OP (1+A%)

n] j#t n| j#i

4A -
Z elv,HQ Z Pfj%l—[? + 0p(1 + A?)
i€[n] j#i Ze[n] J#
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E E szviewjej

ze[n ] §#i

2020 0.
g g Pijvivje;

n] j#i
(B.3.10)

(B.3.11)



To see this, for the first equation, observe that Ee;ejeyep # 0 only if i = £ =4’ = ¢ or two

pairs are equal (e.g. i = £ and ¢/ = (). Therefore

2
8A2 64A4 S
ZZ a(pMyer? | = = > PP IGIG PY Pl Eciccscy
Ze[n ]#’L ‘,j#i,i/,j’¢i’7;€ v
CA4 2 P2 171271712 W CA 2 p2 2172 pW
ZPWPZJH 12 (P} > PP GG PY P
1,5,3 1,7,5,5"
111 Il
< ONY WP ol )2 At — o (A
() oz T Cn ") oz = on(&)
Furthermore, we have
2
AN? Cp,A*
w2 2 PE - PRIGPAI; < =2 Al
ze[n | j#i 1,5,¢ il

4 /
l

and

4N? Z ZPQ PW PZWHJQ' < il Z Z H? Z 2 < CAQpZVpn[rgH = 0(A2)7

ze[n | j#i i€[n] j#i Le[n)

so that by expressing ¢; = ¢; + (P!V)'¢ and using Markov inequality,

4A2 Z 6 _ 0 2 _ 4A2 Z P2 6 _ ~2 2 8A2 Z PW /~1—[2

i€[n] j#i i€[n] j#i i€[n] j#i
4A2 > PPV Yed PV = 0,(1+ A?)
7 V4 .
ze[n | 5#i

The second and third equation of (B.3.11) is shown similarly. Expressing VZ(A) = e? +
A%v? + 2Avje; and combining with what we just showed, we have (B.3.2).
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Step 4: We show (B.3.3). We can express
I Vi(Q)VEA(A) = e VE(A) + Al VE(A)

Notice then that to show Th = 0,(1+A%+A3), it suffices to show > icin) 2ji Fij P2Ie;VA(A) =
op(1+ A% + A3, However, since V2(A) = €2 + A%v? + 2Av;e;, showing Th = 0,(1 + A% + A3

can be reduced to showing

= Z > Pllljeje} = oy(1), (B.3.12)

i€[n] jFi

since the other terms are dealt is a similar manner. To begin, express 62 = E?+(Zm€[n} P%em)Q—

2¢; Zme[n] PVe,, so that

N njejg:_zz .%z[jg 201,55 P e
i1€[n] j#%

i€[n] j#i n|] j#i me[n]
Z Hje}ZP emel—i——zz ZP eme
ze [n] j#i me(n] i€[n] j#i me(n]
Z Z II; Z P};Vngm( Z Pi%gm)z
ze [n] j#i me[n] me[n]
ZZ jz emz emez—ZTQE
ze [n] j#i me[n] me(n]

Then T51 = o0,(1) by

E(Ty1)* < 7 > PZQJR%H?EE’ZE?,E% Z P |TLIT, [Ec2

i,i'€[n] j#i i,i'€n
C Cpn 2
<@ Pt Z Py < O + O = ol)
JE€[n] i,i'€[n

Next, T272 = Op(l) by

& 20 S PAL Y (P PERIE < 3 S PARY < aplt = o)
i€[n] j#1

ze[n] J#i me[n]
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Furthermore,
Cp
ET23 = K2 Z P%Pf] Z +|P1]PZ] = n Z PZ_27PZ2] Cprvzv =o(1)
i,5,1',5' €[N men] i,7,4',5'€[n]
so T3 = 0p(1). We can repeat a similar proof to show T4 = 0p(1). Next,

2D PABECY PlEt e S %L]PWN

ze[n] J#i me[n] i€[n] j#i

< Cpy =o(1)

so To5 = o0p(1). We can show in a similar manner that T = 0,(1). Therefore we have
shown (B.3.12), which proves (B.3.3)

Step 5: We prove (B.3.5). Since V;(A) = e; + Auw;, it suffices to prove

i Z Z Pz%'szHjej = op(1),

n] j#i
which follows from e; =¢; — (P]W)' e, together with
2
~ C Chp
2172 2 2 no_
= ZZPUHZH@ < Y pPipy< = = ol1)
i€[n] j#i i1 ,j€[n]
and
2
\ ¢ o
(LS mim ) < S X e e
i€[n] j#i VRV Le[n]
C w W
< 2 Z P’LQ]‘PZ2] (Pje ) Z(Pﬂ)Q
i?jvi/vj 66[”} ZE n
C
= > PP PP, < Cpy))? = o(1)

L
27]72 7.7
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Step 6: We prove (B.3.6). Since V;(A)V;(A) = ejej + Aejv; + Aviej + A%ivj, it suffices to

prove

= Z Y Pillilljeie; = 0,(1)

i€[n] j#i

We can express eje; = ¢;¢j — ¢;(P}V)'€ —¢;(P/V)e+ (PV)e(P}")'¢ and note that

2
_ C Cpn
K Z Z Hiﬂjeiej < ﬁ Pé’ < }?n = 0(1>
ZG['I’L j;é’L 7'7]6[”]
Furthermore,
2
e\ DA ) < 3 T B R
icln] j#i i.3,4,5'€[n]
C
w2 P Z W2 D (B2 + )
i.4j'€ln me[n]
C
= PZ%P{‘} \/P%VP%,HpKV)?)§c<pzv>2=o<1>
i,,1.3'€[n]
and
2

= Z > PRI (PY) (P e

ze[n | j#i
2 p2 W pW pW pW W pW
? Z P’L]PZ] Z|szpzmp P]m|+Z|sz})szzm’ zm’|)
,J Z’,J €[n] meln]
> PP <Cpy)? = o(1)
i,3,',5' €[n]

We have shown (B.3.6), and the proof is complete.
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B.3.2 Proof of Theorem B.3.0.2

Observe that we can express

7 (8y) = = Z > " PAVI(A) + ATL)M(V(A) + ATD(V5(A) + AI) Mj(V(A) + AIT)
i€[n] j#i
2
== Z > P} V(A)V;(A)M] 428 Z > " PIVi(A)MTIV;(A)M]TT
i€[n] j#i n] j#i
2AQZZP2H M]e(o)IL; Me(5o) +—ZZ V(A)V;(A) M
n] j#i ze[n | j#i
ZZ V(AL Mie(5o) +—ZZ A) ML Mie(fo)
ze[n ] J# n] j#i

5
2T
=0
where V(A) := e + Av. The proof entails showing

KZZPZQJ o7 (Bo 50)+0p 1+ZN (B.3.13)
1€[4]

i€[n] j#i
as well as
Ty = ETy + 0p(1 + ZN) for ¢€{1,..,5} and
i€[4]
> ET =DY(A (B.3.14)
Le[n]
When A = 0, it is clear that T7 =T> = ... = T5 = 0, so that the case of Theorem B.3.0.2 for

A = 0 is shown immediately upon proving (B.3.13); this is shown in Step 1 below. We can

therefore focus on the case of A # 0.

Step 1: We prove (B.3.13):
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Sub-step 1: We show that

K Z Z leiMiel]| 63MJ/ J2d Z Z szgf + 0p(1) (B.3.15)

i€[n] j#i i€[n] j#i

Express
4
eiMle = GM[E (P YE— (PVYeME+ (PYe)2 =Y Aig
(=1
Therefore
4 4
EDIDILITIZ YIRS 3 3) 3 3r: IO
i€[n] j#i (=1 U'=14i€[n] j#i

We first show that

= ZZ Airdjs = % ZZ 25252 + 0,(1) (B.3.16)

i€[n] j#i i€[n] j#i

Define the random variable {;; = ¢;M]ee;Mie — E(e;MeejMie) so that the mean of
fij = (0. Then

KZZ zlAj,l ZZP2 M M +Mz2j)glzgj2 =E KZZ gij

i€ln] j#i i€[n] j#i i€ln] j#i
4 — ~
=71 2 O PUESh + 1 > PPREGG+ 1 D P PR G
i€[n] j#i I3 1y

where I3 is the distinct index of {i,j,k} € [n] and I4 is the distinct index of {3, j, k, ¢} € [n].
We first note that max; j; Ef < ', which follows from the proof of Lemma 2 in Mikusheva
and Sun (2022). Furthermore, noting that Pfj = m < C’P2 by My =1— P >

1—46 >0, we have

C Cp?
KQZZ 4E€”<K2ZZ i S [?;ZPiiZ%zo(l),

n] j#i n] j#i i€[n]
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4 8
e E Pfypl E&ijik| < — E Pz%Pz ECHEE)
Ty

< YRR < YR prk Cpnz P <SP o) and
I3

I ke[n]

4
(¢) ﬁz PkeEfwfké< QZ Pke|E§w
14

where the first inequality of (c) follows from the fact that since i, j, k, ¢ are distinct in Iy,
the non-zero terms of E(§;;&k¢) are given in the proof of Mikusheva and Sun (2022)[Lemma
2] as

|E&ije]
< O|Mii My, + M Mg ) (Mg Mjjg + Mgy My )| + C|(Mj Mg + M Moj ) (Mg, Mip + My Mig))|
+ O(Mip My, + My My;)? + C(PijPre + Py Pjy.)*

The second inequality of (c) follows from Mikusheva and Sun (2022)[Lemma S1.2]. Specifi-

cally, we have

1 2 p2 M2 p 2
%2 > PAPR MaMy MuMjy| < = K2 > PiPLM e ZPMPM %ZPMM%
'7.j7k7g 7] k K ],k,‘g k.l

= KQZPM

with the rest of the terms in |E&;;&,| dealt in a similar manner. Therefore (B.3.16) is
shown. It remains to show that 2 D icn] D lgz%Ai,gAM/ = o0p(1) for (¢,0) € {1,2,3,4} x
{1,2,3,4}\(1,1). Note that

KZZPMZQ— SO B @R = 23S B S (rl e

n] j#i i€[n] j#i 1€[n] j#i ke[n]
< S P ool —o)
i,j€[n]
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so that by Markov inequality,

= Z > PLAT, = op(1) (B.3.17)

i€[n] j#i

Next,

Z A}y = KZZ > P My Py MypE(ereremey)

n] j#i n] j#i  ktm,pe[n]
(Z)
Z Z Z W Mig Py M| + (Py)* M) + Z(Pilg/)QMz%c
n] j#i ke k
Cp” S P = o)
i,5€[n]

where (i) follows from the fact that the non-zero terms in E(ejegeep) are when the indexes
k =/¢ =m = p, or when we have two sets of indexes such that the first two indexes equal the
first set, and the next two indexes equal the second set, e.g. k = ¢ and m = p; (ii) follows

from

Z | Mzé Mzk| Z | Mzk| < Z Z Pilz{VMiI?/ < prvzv'
k0 k

Hence
2 ~
= >N PiAI = o0p(1) (B.3.18)
i€[n] j#i
Furthermore,
E((Pye) < Y (P 21O (B <y o) )R < cpy
0,ke(n] L€(n]
so that
P2A2, 4<Cp7V1V P2 =Cpll =o(1
KZZ KZZ =K Z ij = pn = o(1),
icln] j#i n] j#i i.j€[n]

237



implying

= Z > PIAZ =o0,(1) (B.3.19)

i€[n] j#i
By the simple inequality |ab| < %aQ + %bQ,
2 42 2
I TRIESS 3 o LR 99 3L LI
n] j#i i€[n] j#i i€[n] j#i

Restricting (¢,¢') € {2,3,4} x {2,3,4}, by (B.3.17)-(B.3.19), using (B.3.20) we have

K Z Y PhAigAje = op(1) (B.3.21)

n] j#i

It remains to show that = Zz‘e[n] Z#i ﬁ%Ai’gAj’gl = 0,(1) for (¢,0") € {(1,2),(1,3),(1,4)}.
To this end, we can repeat the argument in the proof of (B.3.16) to show that

K Z > PhAiAz = Z > PIE(Ai1A4)2) + 0p(1) = 0,(1) (B.3.22)

i€[n] j#i n) j#i

where the last equality follows from Markov inequality and

KZZPZE AinAj2)| = %ZZ ZMMPM Zeg %ZZ Z|waz‘g/|

i€[n] j#i i€[n] j#i L€(n) i€[n] j#i L€(n)
@) C
S DIk Z DR Z D> PEMLY
i€[n] j#i Le[n Le[n) n] j#i
<O S Pl — o)
i,j€[n]

where (i) follows from Cauchy-Schwartz inequality. Next, we will show

K Z > PiAindjs=oy(1) (B.3.23)

i€[n] j#i
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Fix any i. For indexes (k,k’,£,¢',m,m’) € [n]%, define J; to be the set where k = k' = ... =
m/, so |J1] = 1. Define J2 to be the set where three indexes are equal, e.g. k = k' = ¢
and ¢/ = m = m’. Define J3 to be the set where two indexes are equal, e.g. k = k', £ =/,
m = m’. Define J; to be the set where three indexes and two indexes are equal, and one
index equal 4, e.g. k = k' = (, ¢/ = m, m" = i. Note that {J;}1_, are not necessarily
mutually exclusive in that there may be overlap. For any ¢ € [n], the non-zero terms in

E(e2exererepemeny) are in {‘75}S 1. Therefore, for any i, j,

EC (Mje)(PY)'e)(Mje))? = Z M;g, Py Mo Mg Py, My E (€321, 080 €meny)
kK 0.0 m,m’
4
<CY N My PR Mo Mg Ply My |
s=1 Js
Then
Z | My Py My Mg Py M| = ZMfk 2 < Mii(py )> < py

Z | Mg, P Mo Migr Py M| < CZ | Mi P M| | Mie Pl Mie |
T2 k0

<O )Y MMy | Mg Mjp| = Cp)l (> [ Mg Mg ])?
I p

(¢) Z|MkPm,M]ng M| < C [ My Py MjoMig Py M|
T3 k.£m

(44)
< (7]V1£i}3;?]]ijjl\f%ifjlﬂfjxfﬁj' < (:EO:?I

(d) Y M P Mo Mip Py M| < C | Mg Pl My Mg Py, Ml
k.0
<O My P My Mip Py | < Cp)ly | My M| Z | Mg P
ke k

(#i7)
< OpWV MMM P < CplV

where (i),(ii) and (iii) follows by Cauchy-Schwartz inequality. Putting (a)-(d) together we
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have

B ((Mje)((P")'e)(Mje))® < Oy, . (B.3.24)
Hence
2
Z > PiAiA; = 23 Z >N PR EEMe(PY ) eMje) e Mye((PY Y eM)e]
ze[n | j#i i, jA A
() ~ ~
= ?ZZZ ij ZJ'EelM/ «PW) eMA) + 7= ZZZPZQQPZQJ’E = z{’e((PjW)leM]/"A]Z
it gL §IF hi' gL §IF
O p2p2. CPW 2p2 w
LSy <O S ot o
(A P 1,44,

where (i) follows from 2|ab| < a? + b* and (ii) follows from (B.3.24). By Markov inequality,
(B.3.23) is shown. Finally,

KZZ AinAja <_ZZ E(e;(P]")e)? + E(M[e(P]V)e)?)

i€[n] j#i n] j#i
= =SB | S ey a? | oy
i€[n] j#i Le[n]

where (i) follows from 2|ab| < a? + b? and (ii) follows from

1 ~
SR e ERR < TS PR <aplf = o)

i€[n] j#i L€(n] 1,J€[n]

and

S S BEMER) YRR < 303 B | S + 3 (MR 2

i€[n] j#i i€[n] j#i k0 k
_C
< = Z > P2 (M P} + Mi(p)))?)
i€n] j#i
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Therefore

= Z D PiAjA = o0p(1). (B.3.25)

i€[n] j#i

Putting (B.3.16)-(B.3.25) yields (B.3.15).

Sub-step 2: In a similar way to sub-step 1, we can show that

KZZ ezM’eejM]’v—KZZ i a2+ 0p(1)

n] j#i i€[n] j#i

KZZ UZM/’UU]M]/’U— KZZ §Z§J +0,(1)
n] j#i i€[n] j#i

% Z Z UZMZ-/erMJ/-e =% Z Z PZ]%% + 0p(1) (B.3.26)
n] j#i i€[n] j#i

By expression (B.2.1) we have
o2 (B0)o2(Bo) = (67 + AXF + 2A%;)(52 + AZF2AY))

Combining with (B.3.15) and (B.3.26) yields (B.3.13).

Step 2: In a similar way to step 1, we can show that T, = ET, + o0,(1 + Z 4] AY) for
¢ € [5]. Tt remains to show that ) teis) ETe = DI (A), which reduces to showing ET} satisfies
the property of D(A) in (2.2.12) for ¢ € {1, ...,5}, in order to complete the proof of (B.3.14).

Note first that

Ee; =E(ei — (PV)e)’ =57+ Y _(PY)%5; —2P) 57 < C
Len]
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since » ée[n](Pi‘g/)z = PZ-I?/ < 1, by property of a projection matrix. Similarly,
Evi2 <C and Ewje; <C,
so that
EVZ(A) = Ee? + A%Ev? + 2AEvie; < C(1 + A + A?) (B.3.27)

By the inequality (a + b)? < 2a® + 2b and noting that 155 < CPZ?]-, we have

E|Ty| < C—A? DO PIEVAH(A)(MTI? < Z > PZEVA(A)(M/TT)?

i€[n] j#i i€[n] j#i
CA2(1+ A+ A?) _CAY(1+ A+ AYp, oy
< K ZPM MH) K Z(MZH)
1€[n] i€[n]
_OAY1+ A+ AYp,

! o 2 3 4
- I'MIT = O (A% + A% + A%)

For T3, note that
E(M/V(A)? <C(1+ A+ A? (B.3.28)

To see this, it suffices to show E(M/e)? < C, since the other terms in V(A) are dealt in a
similar manner. Now, MMWY = MW — P, where we recall M = I, — P, P := Z(Z'Z)~'Z’
and MW = I,, — W(W'W)~'W’. Hence

E(Mje)? = E(M{M"e)* = E(M;")¢ — P[e)* < 2B((M]")'e) + 2E(P[)?)
=2 (My)?57+2)  Pioi <CMY +CP; <C

Le[n] L€[n)

since M}V, P;; < 1. This implies (B.3.28). Expressing M/e(fy) = MV (A)+AM!II, we have

Eim < S50 35 PImEMle(a)? < SR 37 ST PAIBE(AV(A)? + A2

i€[n] j#i i€[n] j#i
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CA%2(1+ A+ A?) 2112 4 )
< T > P+ Z P2(MI1)?
i,j€[n] i.j€[n]
OA2(1 + A+ A2)an’H CA* Z

- K

P” M/H)
i€[n]
2 2 /
< CA (1+A+A )anH+0A4anMH

- K K

O (A% + A% + AT
Next, to deal with 73 we first show that

EV2(A) - (MIV(A)? < C(1+ Z A (B.3.29)

Since V(A) = e + Aw, it suffices to prove that
Ee?(M]e)? = EH(MY )7~ PI)? < 2Ee3(M}Y)2)? + 2663 (Fle)? < C
as the other terms are shown in a similar manner. But this follows from

Ec;((M;")'€)? = B ((M;")'e)” + E((R)&)*(M}")'e)” — 26 (PV ) e((M]" )'e)?

<o Sy + (Y 1P )R+ oY +MWZ|

L€[n] L€(n] fe[n L€n] Ke[n]

<O (MY + Pl + P < ¢

Hence (B.3.29) is shown. Then

I Z > p} (MIV(L))? + VE(A) - (M{IT)?)
i€[n] j#i
(B.3.27),(B.3.29) CA(1 + 14+,
: P S 3 S S5 sy
€ln] j#i i€[n] j#i

1 ) an MH an/MH i . i

SCA(L+ ) A)+CA(L+ ) A T =0 Z(H——K Al =0 > A
ief4] i€[4] i€ls] i[5]
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Next,

Emy < £2 Z > P} A)(MV(A))? + 115 (Mje(6o))?)
i€ln] j#i
(B.3.29) CA(1 + 226[4

< sy TSR

i€[n] j#i i€[n] j#i
SCA(L+) A+ ZZ A) + AMIII)?
i€l4] ze[n | j#i
gCA(lJrZN) ZZ )+ ZZPQE (AMII
1€[4] ze[n | jF#i n) j#i
RSO (1) A+ cal +ZZG[4 &) ZZ it OAHZ ZZP2 (M1
1€[4] i€[n] j#i i€[n] j#i

!/
<CA(L+) A +0A(1+ZA@‘)+OA(1+ZN)% =o Y A
i€[4] i€[4] i€[4] i€[5]

Finally,

E|T%| < ¢a Z > " PE (VA(A) (M) + 113 (Mje(50))%)

i€[n] j#i
XS e
I PE(M
i€[n] j#i i€[n] j#i
(i
2 on? 4 oare TV z2)

K

where (i) follows in the same way as Ty above. By Markov inequality, we have shown that

Ty = Oy(1) for £ € {1, ...,5}. Therefore (B.3.14) is shown, and the proof is complete.
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B.4 Limit Problem For Fixed And Diverging Numbers

of Instruments

B.4.1 Limit Problem for Fixed K

Consider now the case of fixed K. Recall that U := Z(Z'Z)~1/? € R*K 5o that U'U = I
and UU" = P. To deal with the convergence of @(ﬂo), we can assume that (e,v) are jointly

normal by the strong approximation. Therefore we can assume

Ue \ _ [ UZ ) a, 0 U'A;U U'ASU
U'X U'X Ut |\ U'AU - U'AU
implying that

U'e(Bo) = U'e + AU'X £ N (AU'TLU'AU)

where A(ﬂo) = A; + 2AA§ + AzAg, Az = dzag(E%,,E,%),AW = diag(ryll,...,:?n),/\g =
diag(s?, ...,52). We use the variance estimator e?(3p) := (Y; — X;80)? to estimate o2(f) =
07 4 207 + A*Z.

Theorem B.4.1.1 (Fixed K asymptotics). Suppose Assumption 5 and 6 holds. Then for
fixed K, under the null

QUB0) £ >~ winxd, + 0p(1)

i€[K]

where the X%i are independent chi-squares with one degree-of-freedom and D, := diag(wi n, ..., WK n)
Z/AZ)1/2(Z/Z)71(ZIAZ)1/2
Zie[n] ‘F)7'7'U7,2 (/80) ’

are the eigenvalues of (

B.4.2 Limit Problem for Diverging K

Define @, := \/% Zie[n] Z#i P;ja;b;. In the context of diverging K, we say that we have
strong identification whenever C := R — oo and weak identification otherwise. Under
the arguments of Chao et al. (2012) and Mikusheva and Sun (2022), by assumption 5 and
6, one can obtain the following asymptotics for diverging K: Under both Weak and Strong
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Identification, for K — oo,

ce 0 O Dy D3
Qzz |[~N||l o | P2 ¥ 7 (B.4.1)
Qzx—C 0 b3 T T

for C = Qg 1, for some (@1, P19, P13, ¥, 7,T). We can therefore take (B.4.1) as given
whenever assllmption 5 and 6 holds. Under a fixed number of controls, one can usually
obtain an analogous result to (B.4.1) with the replacement of (e, X ) with (e, X'). However,
even when the number of controls increase with sample size, as long as these controls grow

slower than K(1=M/4 we will have the following result:

Theorem B.4.2.1. Suppose Assumptions 5 and 6 hold. Then for K — oo, under the null,

Qe,e ~ N(O, (I)1>

where &1 = % Zz’e[n} Zje[n] PZ.QJ-JZ.ZEJZ Furthermore, under the alternative, if we further as-
sume that H/TH = 0(1), then

Qe,e 0 ¢ P Py
QX,e ~ N 0 ) by U T (B.4.2)
C2)(,X —-C 0 P13 T T

for some (P12, P13, U, 7,Y). Therefore we have that

Qe(Bo),e(Bo) ™ N(A%C, ®1(f))

where C := Q. P1(bo) = AT+ AN3T + A2(4T 4 2013) + 4AD19 + Py

Note that Theorem B.4.2.1 can be seen as a minor extension of Theorem A.l in Lim,

Wang, and Zhang (2024) in that the dimensions of controls were taken as fixed in that
paper.

Theorem B.4.2.2 (Diverging K asymptotics). Suppose Assumption 5 and 6 holds. Then
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for K — oo, for B = By we have

Zpue (Bo) ( ﬁo)—l) ~ N(0, @1).

ze[n

If we further assume that H/TH = O(1), under fized alternative A we have

Zpue (80) (QB0) = 1) ~ N(A%C, @1(80)

ze[n

B.4.3 Proofs for Section B.4
Proof of Theorem B.4.1.1

By Lemma B.2.1 and Theorem 1, we can obtain

Q(Bo) = = =
Zie[n] Piie} Zie[n} Pyio} Zie[n] Piie;

1/2 (Z’AZ)l/Q(Z’Z)_l(Z’AZ)1/2
Zze[n] P”OE

U e CUUe  Yiem Pio? 4 [ UUE
=d = W+Op(l) (1+o0p(1))

(Z'AZ)V2Z'E) + 0,(1)

=E&'Z(Z'ANZ)~
= Z'DpZ + 0,(1)

where Z ~ N(0, Ik).

Proof of Theorem B.4.2.1

We will show that

Qe,e 0 b1 D1y Py3
QX,e ~ N 0 ) by U T (B.4.3)
C2)(,X —-C 0 b3 T T



so that by writing Qe(g,) e(go) = @e+Ax,e+ax = Qee + A2Qx,x + 2AQx ¢, then

Qe,e
Qe — %= (128 22 ) [ Qx| ~NO21(60)
Qxx—C

which completes the proof.

We will show the following;:

(A) Qee = Qzz+ 0p(1) ~ N(0, 1)
Y it (Gi + 6i)e;
(B) Qxe=Qpp+ = = ()

i (Gi + 6;)v;
(C) Qxx=CQun+ Qs+ 2216[n](\/f r +0p(1)

where 6; = Z#i Pyll; and G; = Zje[n] HijjPi?/. To proof the second part of the
theorem, given that {E,@}}ie[n] are independent, we can follow the proof of Chao et al.

(2012)[Lemma A2] to show the joint asymptotic normality of

sz, Qs 2, Qs > iem)(Git0i)ei 3 iy (Gi+ 0i)ui
€,e) Wv,e) 9,0 \/? , \/?

Then (B.4.3) follows from (A),(B) and (C'). In particular, if H/TH = O(1), then denoting
7j == I1;Pj; and noting G; = (P}V)'x,

2

Var (Zie[n](Gi + 9i)€i> _ > e (Gi + 0:)%07 _ C> e Gi . C> e ¥

VE koK "
(i) Czie[n] G% + CII'Tl Cr’ ZiG[n] PiW(PiW)/W +0(1)
' (PWyr Cn'r C Liep il
p— < =
—o() < ==+ o) % +0(1)
/
_ cngKH +0(1) = 0(1)



where (i) follows from Mikusheva and Sun (2022)[Lemma S1.4(a)]. In a similar manner we

Gi+0;)v;
can show that Var (M

TR ) = O(1). This implies the joint asymptotic normality of

(Qe,& QX,ev QX,X - QH,H)a

completing the proof of (B.4.3).

To this end, we begin by showing (A), which proves the first part of Theorem B.4.2.1.
Suppose only that assumption 5 and 6 holds. Then WPA1, where the equalities are in terms

of distribution,

NP -2 22
0, _ e piFiicici @ 1, 2iel P ) Liepn P 3 win?
NTS NI VK VE Ln X1

1€[K]

where (i) follows from Theorem 1 for fixed K and MW P = P; (ii) follows in the same way
~2
as the proof of Theorem B.4.1.1. Therefore, defining T}, := ZGLP

NG and noting that T}, is
away from zero, we have WPA1

d Zze n] ”8 T Zze[n} PZZEzQ/\/F 2
sznX1z_ = Zwi,nx ;

Qee = N =75 B

() Dicin) D% ) @) Win

Zie[n] P“{‘:%/\/E p

where (i) follows from 1 as a consequence of Lemma B.2.1, as well as

the fact that Z elK] Win = 1 (4) follows from ®; = & Z

2igem Fi50003
> et Piio?
Qe,e = Qzz + 0p(1), which follows from

. jeln] P22J~Z25]2 and |jwy,||Fp =

: this follows from (a) in the proof of Lemma 2.4.1. It remains to show that

P 2iep Pie? o
VK NI 55 =
> e P26 e — (Pe)?))

— e = 0,(1), (B.4.4)

Qe,e - Qé,E =
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where the last equality follows fom an application or Markov inequality and

N 2 ISR
c Diem PP e\ Dicpy 2 jem DibisE(eie P e PVe)
VK

K
i JJ ) Z % K
ze [n] j#i icn]
C wdQ .
< CpWpn + %K Y o1

and
E Zie[”l (P e)* _ 226 Pii Zye PW)2~J2 < Czie[n} PPy <C dw 1

- — >UPn——= = 0( )’

VK VK VK VK

where (i) follows from p)V = o(1) and d%, = O(K(="/2) = o(K). The proof of (A) is

complete.

It remains to prove (B) and (C) in order to complete the proof for the second part of the

theorem. We first prove (B). By a similar proof to (B.4.4) we can show that

Qv,e = Qﬁ,g + Op(l)
so that

D i Pulli(PV)'e
VK

Qx.e= Qe+ Que = Que— Qupwe+ Qs+ 0p(1) = Quizz +

2icpn)(Gi +bi)ei
VK

+ 0p(1)

= Qe

+ 0p(1)

To prove (C'), note that by a similar proof to (B.4.4) we can show that

Qup = Qzy + op(1).
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Furthermore, as in the proof of (B), by some rearrangement we can show that

VK ’

Qo = Qny + Qmpwy =

so that putting it together,

Qx,x = Quu +2Qm,y + Qv = Qi + 2 Nie + Qz5 + 0p(1),

which completes the proof of (A), (B) and (C'), thereby completing the proof of the second
part of Theorem B.4.2.1.

Proof of Theorem B.4.2.2

We can express

(@(50) _ 1) _ % Zz’e[n} Zj;éi Pijei(Bo)ej(Bo) _ \/L?Qe(ﬁo)ﬁ(go) |
% Licpy Piie; (o) # Liepn) Piic} (%)

By Theorem B.4.2.1,

1 ~
Nics Z Piie; (fo) (Q(ﬁo) - 1) = Qe(fo).c(po) ~> N(AC, ®1(fo))

i€[n]

B.5 Details regarding Testing Under Rank Deficiency

In this section we provide details of the our testing procedure as well as its asymptotic

properties.

B.5.1 Analytical Test under Rank Deficiency

The analogous statistic Q (Bo) given in (2.2.4) under the ridge-projection matrix is

e(Bo)' Py,e(Bo)
Zie[n} Pii €3 (B0)’

Q" (Bo) = (B.5.1)
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with the corresponding critical value as

‘/ﬁ%(@o) Fz)—1
Codirn (P]"(B0)) =14 1ol = ) ., (B5.2)
r 2icpn) Piione; (Bo) \/2 e ()2 + 1/df
where w," = (wY’";L, - wp) are the eigenvalues of
o () i ZAGZ)AZ'Z +0li) (2N (B0)2)'
0) = )
> et Piin€i (Bo)
K(ﬁo) is defined as in section 2.2.3, Pj; 4, are the (i, j) entries of P,, and
df =t = o(r~1/?). (B.5.3)

Note that the rank of Q) (Bo) equals 7, so that it has only r non-zero eigenvalues. The

variance estimator ®]"(fp) satisfies

7" (Bo) = ]"(Bo) + D™ (A) + 0p(1 + Y AY) (B.5.4)
i€[4]

where ®" () == 2 Zze[n] Zﬁéz Pfj i o?(Bo)o (50) and

O(1) if A #£0 is fixed
o(1) if A=o(1)

DI(A) =

We have two estimators satisfying (B.5.4) that are analogous to the standard and cross-fit

estimator of section 2.2.5; namely,

A'yn,standard
) ZZ i€t (Bo)e (Bo)

n] j#i

and

B3I (50) 2= 2 33 PR lea(Go) M, B0 les (B0) M, (o)

icln) j#i
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where M, := I, — P,,. The proof that @?n’smndard(ﬂo) and 5?’“#(&)) satisfies (B.5.4)
follows in exactly the same way as the proof of Theorems B.3.0.1 and B.3.0.2 respectively,
with an additional usage of Lemma B.5.1; hence we omit them to avoid repetition. Our

analytical test rejects Hy : § = [y at « significance-level if
QV" (50) > C,Zfdf(@Y" (60))

The intuition for size-control is exactly the same as what was described in section 2.2.3.

B.5.2 Bootstrap-based Test under Rank Deficiency

The Bootstrap-based statistic is defined as

Ziqn] Z#i Pijrnei(Bo)es(Bo)

T (Bo, ®7" (Bo)) = —
r®1" (6o)

(B.5.5)

with 5?"(50) satisfying (B.5.4) with the additional requirement that it can be constructed
from e(fy) and Py,. We reject Hy : B = [y at « significance-level if

T (Bo, ®7" (B0)) > Cye (@77 (Bo), L),

where C’gf de5($¥" (Bo), L) is the critical value that depends (1) on some large positive integer
B, (2) significance-level , (3) i.i.d. random variables {#;};c[,) following the probability law
L with the property that its mean is zero, variance is one, fourth moment is bounded, (4)
the structure of the variance estimator 6?"(60) and (5) sequence of 7,. The critical-value
is computed in the following manner: Fix f§y, a large B, and some « € (0,1). Fix any
¢ € {1,..,B}, and generate i.i.d. random variables {r;};c[, following the law L. We
then multiply each e;(5o) by ki ¢, denoting the new random variable 7; » := k; ¢e;(8o). Since
?{SY" (Bo) is assumed to be constructed by using only e(f5y) and Py, , we construct @?n’g(ﬁo) in

exactly the same way that 6?"(50) was constructed, but replacing (e(fo), Py, ) with (ng, Py, ),
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where 79 = (714, ...,n,¢)’. Once this is done, we can construct the statistic

Zz‘e[n} Zj;ﬁi Pijira i om0

~ n,‘€
r®1""(Bo)

Tt =

By repeating this process for every ¢ € [B], we obtain a collection of statistics {j%’e}ge[ B]-
Then

C e (D1(Bo), L) i=inf{z€R:1—a<

ZZG[B] 1 {JAW < Z}
B

where df ; é = 0(1) is a deterministic sequence.

B.5.3 Asymptotic Size Control under Rank Deficiency

Define p,) := max;e(n] Fiin,- We make the following assumption:
Assumption 13. Suppose p%’i < 6% for some C' < oo

Let A, € A, be the data generating process of n observations for (¢, v, Z, W). We impose

the following restriction on the sequence of classes of DGPs ({A,}n>1):

( {E},E}ie[n] are independent, Ee; = Ev; = 0, \
I%; = o(1),p!V = 0(1),dy = O(K1=1/4) for any n > 0,
max; HZZ + max; EEJ;g + max; E5§ < C < o0,
II'TL, 02(fBo), ¢2(Bo) > C under the null,
C < Ain(TW) < N (MW < T,
Iy, € [7,00),h > 1 s.t/.\ *Zie[n] D i Py > Crh7=0ifr=K,7=~_ifr<K
7" (By) satisfies (B.5.4) under the null,
\ where 0 < C, C,vy_ < oo are some fixed constants

(B.5.7)

Then our test has size-control uniformly over the set of DGPs that satisfy (B.5.7). We

formalize the statement as follows:

254



Theorem B.5.3.1. Suppose {A,}n>1 satisfies (B.5.3), (B.5.7) and assumption 13. Then
under the null, for both fixed and diverging instruments, with possibly more instruments than
sample-size, we have exact size-control for the proposed tests, i.e.

liminf _inf Py (@\7:(50) > C‘a,df,%@f(ﬁo)))

n—oo An eAn

= limsup sup Py <@7§(50) > Ca,dfﬁ;($¥;<50)>) =

n—00 Xn GKn

and

liminf_inf lim Py (ﬁi(ﬁo@yn(ﬁo))>cg?df35($ﬁ(5o),£))

n—oo ) cA, B—oo

= timsup sup Tim Py (T5(50, 87 (%)) > Cly, (7 (50). £)) = a

n—00 Xn EKH

B.5.4 Asymptotic Power Properties under Rank Deficiency

The power-properties of our ridge-projection-based-tests are similar to Theorems 3-8. We
first expound on the notion of identification parameter under rank-deficiency of instruments.
Recall in section 2.4.2 we began by introducing the notion of identification parameter G :=
Qnn. Under rank-deficiency of instruments, we have an analogous notion of identification

, P L TLTL . . .
parameter, namely G := 2icin Z”\“ﬁ P =7 We say that we have strong identification if

G — oo and weak identification otherwise.

Power Properties — Diverging Rank

We first discuss the asymptotic-power under diverging rank,” and consider three cases for
some sequence d,, — 0: (1) Strong identification and local alternative, where d,G = G and
A= Kd;/ ? for some fixed K’ 5 € R; (2) Strong identification and fixed alternative, where
dnG = § and A = K; (3) Weak identification and fixed alternative, where G = § and A = A.

We make the following assumption:

5This implies that the number of instruments diverge. We make no assumptions regarding the
number of instruments; in particular we allow K >> n.
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Assumption 14. Suppose that o o(1) and pYV = max; P%V = o(1), and dyw =

r

O(r(=m/%) for any n > 0. Let the errors and |IL;| be bounded in the eighth moment

and bounded away from zero in the second moment, i.e. maxl-(l_[f + E’é/;-3 + Eﬁf) < C <
oo and (I'TN)?,02(B),s?(Bo) > C > 0. Furthermore, suppose C < Apin(W'W/n) <
Max(W'W/n) < C and that Z has full rank.

Note that assumption 14 is very similar to assumption 6, the only difference is that we
have replaced K with r, p, by p?{t, and removed the requirement that p, < § < 1 for
some constant 6 > 0 (since this clearly wouldn’t hold whenever K >> n). Under the usual
conditions of r = K < n, by noting that for any 0 < 71 < 79, we have p)? < pi' < pp,% so
that a sufficient condition for p%—n = o(1) is given by 5 = o(1). We only require p%n =o(1)

instead of MTn = o(1) for some sequence of 7, out of being conservative. Recall that +;: is the

. p’yn
so that in essence, &~ = o(1)

. . . 2
maximum of the arguments that maximize ) . eln) > s b T

1JyYn?
S
is the weakest requirement in the sense that it is possible for anl # o(1) for some 1 <

. . . 2 . ;1"
with the property that vy; maximizes Zie[n] Z#i Pz, yet we can still have B —o(1).

Similar to (B.4.1), under the arguments of Dovi et al. (2023)[Theorem 1], whenever as-
sumption 5 and 14 holds, under both weak and strong identification, for r — oo and any

sequence of 7, satisfying assumption 9, we have

D icln) 2jri Pism€i€;

VT _ 0 DI(B) D1,(B) Pi5(B)
e ij;LFPij,jnfiej ~s N 0 ’ @'{2(6) \1/’7(5) T’Y(ﬁ) (B58)
2icin] Za’f}';PimnXin s 0 ¢¥3(5) ™(8)  TV(B)

for some (@] (8), ®15(8), ®]5(3), ¥V(B),77(8), Y7(3)) with § being the true parameter of
interest.” We have the following power-properties, for which we omit the proof in order to
avoid repetition; the proofs are exactly the same as Theorem 3-5, with an additional use of
Lemma B.5.1.

Theorem B.5.4.1. Suppose Assumption 5, 9, 14 and (B.5.3) holds, with r — oo. For

any estimator @fl(ﬁo) that satisfies (B.5.4), we have under strong identification and fized

6See the expression of l~)u at the start of section B.5.5
"Note that Dovi et al. (2023)[Theorem 1] proved the first of the three equations in (B.5.8), with
®](B) = limy,—00 7" (B) for any sequence of ~, satisfying assumption 9.
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alternative

tim P (Q7(80) > Cogrs(B7(50))) = 1

n—o0

and

lim lim P (j%(ﬁm B (Bo)) > CfdeS@?’t(ﬁo),ﬁ)) =1

n—o00 B—oo

Under weak identification with fixed alternatives, we have the following result:

Theorem B.5.4.2. Suppose Assumption 5, 9, 14 and (B.5.3) holds, with r — oo. For any

estimator 5?" (Bo) E @7 (By), we have under weak identification and fized alternative that

. s A%G
tim P (Q7(80) > Coroz 3] (80)) =1 - F <qla</v<o, D) - —g)

n—o00 (I)l(ﬁO)
and
tim Tim P (T (60, B (60)) > €y, BT (50). £)) = 1= F | q1-alN(0,1)) - NG
n—o00 B—oo W BS @1(50)

where F(-) denotes the cumulative distribution function (CDF) of a standard normal dis-

tribution. In particular, if we assume II'MII < H/TH — 0, then @?’t (Bo) can be taken as

6?2’6(60) for £ = {standard, cf} given in section B.5.1.
Under strong identification and local alternative, we have the following result:

Theorem B.5.4.3. Suppose Assumption 5, 9, 1} and (B.5.3) holds, with r — oo. For
any estimator 5?2(/80) satisfying (B.5.4), under strong identification and local alternative we

have

tim P (Q7(80) > Cougro B} (50))) =1 F [ ar-aV(0,1)) - &G
n—o0 I /(I)l(ﬁo)
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and

n—o00 B—oo

li ' TV o n o (e - A2G
im lim P (J (B0, 8 (60) > Clhye (@] (50),5)) —1-F | q1_a(N(0,1)) e

Power Properties — Fixed Rank

We discuss in this section the asymptotic-power when rank is fixed. In general, there are
two further cases to consider under fixed rank: (i) K is fixed (it) K — oo. In either case,
for K > r, the implication is that there are K — r > 0 linearly-dependent columns; these
linearly-dependent columns provide no additional information, so that when the rank of
instruments is taken to be fixed, we can assume without loss of generality that the number
of instruments is fixed, specifically, r = K. In essence, the power-properties will be (almost)
exactly the same as that described in section 2.4.2. The only difference is that we replace

assumption 8 by the following assumption:

Assumption 15. For every sequence of A, — A € R, suppose %Zie[n] Noi(An)®RZ;Z! —
Z' 741 . . . . . ..
(A1) and ot — Qyy, where S(ATY) is positive-semi-definite and Qzz is positive-

definite matriz. Furthermore, assume that sup; || Z;||p < co.

By repeating the exact proof as in Theorem 6-8 and using Lemma B.5.1, we can obtain

the following results, which we state without proof.

Theorem B.5.4.4. Suppose Assumption 5, 9 14, 15, (B.5.3) holds and we are under fized
r. For any estimator 51(&)) that satisfies (B.5.4), our test consistently differentiates the

null from alternative, i.e.

lim P (@ﬁl (B0) > Codf s (] (50))) =1

n—0o0

and

lim lim P (f%(go,@ﬁ(gg)) > cgfdeS(@Z(ﬂO),ﬁ)) _1

n—00 B—oo
for any fired A # 0, whenever /71;2 — 00
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To simplify the discussion for the power properties of the remaining cases, we assume
without loss of generality that under weak identification, ux = f,® while under strong

identification, d,ux = [, where 1 € R is some constant. Denote

. . (ZNB) )Y Z'Z + i Ik) "N Z'A(Bo) Z)1?
Q = 1
(o) = 15, > iefn) Piiso; (o)

and assume it is well-defined. We have the following result:

Theorem B.5.4.5. Suppose Assumption 5, 9 14, 15, (B.5.3) holds and we are under fized

HH

r. Furthermore, let pa" I = O(1) and suppose Q*(Bo) is well-defined. Then under strong-

identification and local altemative, for any estimator @Y’*‘(ﬁo) that satisfies (B.5.4),

lim P (Q% (Bo) > Cogprs (3] (50))) <2K (2(0)&7)'9*(50)ZK (2<0)3ﬁ) > qla(Fw*)>

n—oo

and

lim lim P (J% (Bo, Q)% (Bo)) > andeS(q)Y:L(ﬂ()%‘C))

n—o00 B—oo

_p (zK (SO)E7) @ (50)2x (S0)37) > ql—a<Fw*>)

where w* = (w7, ...,w}) are the eigenvalues of Q*(By).

Theorem B.5.4.6. Suppose Assumption 5, 9 14, 15, (B.5.3) holds and we are under fized r.
Assume Q*(Bo) is well-defined and consider any estimator 61:‘ (Bo) & ®](Bo). Then under

weak-identification and fized alternative, if we further assume that T'IL = O(1), we have

n—oo

tim P (Q7(80) > Coars (B (50)) =P (Z (SE7) (602 (2B)7) > ql_aww*))
and

lim lim P (J7"(,30 ‘Iﬂ"(ﬂo)) Og”deS(®¥;(ﬁ0)a£))

n—o00 B—oo

8Under weak identification, Wbk = fi2 — [% € R. This implies that px must be bounded.
By Bolzano-Weierstrass, for every sub-sequence of puy, there exists a further sub-sequence pg;,
that converges to u, where p/st = fi>. Therefore, instead of arguing along sub-sequences, the
simplification that pux = p allows us to argue along the full sequence.

259



—P (zK (E(Z)@/Q*(ﬂo)z;( (Z(E)ﬁ) > QI—a(Fw*))

where w* are the eigenvalues of Q*(By).In particular, if we assume TI'MII < H/TH — 0, then
6?’1(50) can be taken as 6?’*“4(&)) for £ = {standard, cf} given in section B.5.1.

B.5.5 Proofs for section B.5

The proofs are analogous to what we have shown before in section 2.4. We require a technical
lemma needed for the proofs later on, which is provided by Dovi et al. (2023). We begin by
introducing some intuition. We can apply the singular-value-decomposition for our n x K

matrix Z as follows:
7 =8S%V’

where S € R" " is such that S'S = 5SS’ = I,, V € REXK ig such that V'V = VV'/ = I,

and ¥ € R"*X ig such that it can be written as

and D € R™" is a diagonal-matrix with elements {D;; };c[,. we can then rewrite

Py, =SSV (VE'SV! 4+ ~,Ig) V'S = SH(Y'E 4+ 1, I5)¥'S" = SDS’

Dj;
- D7 +m
for i € [r] and zero otherwise. Note that these diagonal entries of D are also the eigenvalues

where D = Y(Y'Y 4 v lx) 1Y € R™™ is a diagonal-matrix given by entries Dj; =

of P, . The only additional technical lemma needed for the proofs later on is given as follow:

Lemma B.5.1 (Dovi et al. (2023) Lemma 1). Fizn > 3. Foralli,jm=1,...,n and vy, >0
ifr=K and vy, > 0 forr < K, one has

(z) 0< (P, )E < P“ ~n for all positive integers £

Z i, 'Yn ’Yn) JJ < ijv’yn
i€[n]
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D?
27
(131) g Py, = g —D% o <r

1€[n] i€[r]
() |Pijyal <1
(v) for any Iy C {1,....,n}* and I3 C {1,...,n},
(@) Y ()<,

s

(B) ) (P (Pima)? <7

13

Lemma B.5.1 shows that the ridge-projection matrix has similar properties to the usual
projection. Therefore many of the proofs can be repeated with appropriate replacement (i.e.

replace K and P with r and P, respectively).

Proof of Theorem B.5.3.1: Note that Sy = [ since we are under the null. We separate
our proof into two cases: (i) r is fixed and (i) r — oo. The fixed r case follows in exactly

the same way as the proof of Theorem 2 - Fixed K case. In particular, we can show that
50 ~ Z w; Xl K
i€[r]

where w* := (w},...,w})" is the limit of w™, where w7 is the eigenvalues of

(Z'MB0)2) (22 4 43T) " (Z'M(50)2)'

O —
() > iefn) Piioaei(Bo)

Furthermore, we can show that F T TS Finally we can show that
7 k

Wn,
"

j{;vﬁ
75 Licin] zmn‘f? EA V2|l _

L@z 1 VA

This concludes the proof for the fixed r case. The diverging r case follows in exactly the

261



same way as the proof of Theorem 2 - Diverging K case. In particular, we can show

zz,nz A~ % i€n ZPZ’;Z
7 Piefn) Piin <Q%(5o) B 1) _ el ]Z/J\# IS A (0,1) (B.5.9)
37 (40) P ()
and
Fo—1
~ N(0,1).

V2 e (T2 + 1/df

To see (B.5.9), note that (B.5.7) implies assumption 5, 9 and 14, which in turn implies
(B.5.8). An analogous proof to Lim et al. (2024)[Theorem A.1.] yields

Zie[n} Zj;éi Pijn;eie; B Zie[n] Zj;éi Pim;igigj
vr ) vr

so that combining with (B.5.8) completes the proof for the diverging r case.

+ 0p(1),
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